WO2013068028A1 - Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter - Google Patents

Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter Download PDF

Info

Publication number
WO2013068028A1
WO2013068028A1 PCT/EP2011/069523 EP2011069523W WO2013068028A1 WO 2013068028 A1 WO2013068028 A1 WO 2013068028A1 EP 2011069523 W EP2011069523 W EP 2011069523W WO 2013068028 A1 WO2013068028 A1 WO 2013068028A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
terminal
gate
semiconductor switch
auxiliary emitter
Prior art date
Application number
PCT/EP2011/069523
Other languages
English (en)
French (fr)
Inventor
Hans-Günter ECKEL
Steffen PIERSTORF
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2011/069523 priority Critical patent/WO2013068028A1/de
Priority to CN201180076186.3A priority patent/CN104025455B/zh
Priority to CA2854544A priority patent/CA2854544C/en
Priority to US14/356,662 priority patent/US9412853B2/en
Priority to EP11790734.5A priority patent/EP2756598B1/de
Publication of WO2013068028A1 publication Critical patent/WO2013068028A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08126Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in bipolar transitor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the invention relates to a protective device for a voltage-controlled semiconductor switch with a gate terminal, a power emitter terminal, a Hilfsemit- ter-terminal and a collector terminal, the half ⁇ conductor switch a current between the collector terminal and the examemitter- Can switch connection.
  • a protective device can be used, for example, for voltage-controlled IGBT semiconductor switches (IGBT: bipolar transistor with integrated gate electrode) or MOSFET semiconductor switch (MOSFET: metal-oxide field-effect transistor).
  • Such a short circuit is referred to as a "Type 2" short circuit (see conference paper “Influence of the Gate Drive on the Short-Circuit Type 2 and Type 3 Behavior of HV-IGBT” (PCIM2010, 4-6 May 2010) , Nuremberg, Germany, VDE-Verlag Berlin, ISBN: 978-3-8007-3229-6.)
  • Characteristic of a type 2 short circuit is that a short-circuit current spike that is significantly higher than the steady-state short-circuit current, as well as a voltage spike at the over-current ⁇ transition from the dynamic short-circuit current peak on the sta ⁇ tionary short-circuit current occur.
  • the invention has for its object to provide a Schutzeinrich ⁇ device for a voltage-controlled semiconductor switch, which reliably protects ⁇ even in the case of a short circuit of type 2.
  • a protective device is provided with: a voltage limiting device, which limits the voltage between the gate terminal and the power emitter terminal, and a deactivation device, which deactivates the voltage limiting device during switching on of the semiconductor switch, connected to the voltage limiting device.
  • a significant advantage of the protective device according to the invention is the fact that is brought about by the invention as seen in front ⁇ limiting the voltage between the gate terminal and the output emitter-connection in the short circuit case, a reduction also of the voltage between the gate terminal and the auxiliary emitter terminal , whereby the occurring short circuit current amplitude is lowered in an advantageous manner.
  • Protection device consists in the inventively provided deactivation of the voltage limiting device during the switch-on of the semiconductor switch to avoid or minimize switching losses during switching, which would otherwise occur by lowering the gate power emitter voltage.
  • an optimal behavior during a short circuit of the type 2 is achieved by the present invention vorgese ⁇ hene voltage limiting device, wherein nevertheless It is still ensured that the losses during switching on of the semiconductor switch are not significantly increased during normal operation.
  • the protective device comprises a capacitive coupling device which causes a capacitive coupling between the gate terminal and the nurseemit ⁇ ter connection.
  • capacitive coupling Zvi ⁇ rule the gate terminal and the power emitter terminal a raising of the gate power emitter voltage is achieved after reaching the short amplitude in an advantageous manner, resulting in a particularly smooth transition from the short circuit current amplitude to the stationary short-circuit current and thus a particularly low surge peak leads
  • the deactivation device is charged on the input side with the voltage between the gate terminal and the auxiliary emitter terminal and it deactivates the voltage limiting device as a function of the gate auxiliary emitter voltage.
  • the deactivation device is preferably connected in series with the voltage limiting device on the output side.
  • the deactivating device is designed in such a way that, in the event of a voltage jump, the gate voltage applied between the gate terminal and the auxiliary emitter terminal Auxiliary emitter voltage disables the voltage limiting device.
  • the deactivation device has at least one timer whose time constant represents the duration of the deactivation the voltage limiting device after a voltage jump of the gate auxiliary emitter voltage at least also determined.
  • the timer is an RC timer formed by at least one capacitor and at least one resistor.
  • the deactivation device preferably has a voltage-controlled switching element, the control terminal of which is supplied with a control voltage generated by the gate auxiliary emitter voltage.
  • the control terminal of the voltage-driven switching element is preferably a timer - for example, be ⁇ already above-mentioned timer - applied with the auxiliary emitter gate voltage.
  • the timer may for example be an RC element, which is formed by at least one capacitor and at least ⁇ a resistor.
  • the invention further relates to an arrangement with a voltage-controlled semiconductor switch, a protective device, as described above, and a drive circuit for driving the semiconductor switch, wherein the drive circuit is connected to the gate terminal and the auxiliary emitter terminal and the span ⁇ controlled semiconductor switch via the gate auxiliary emitter voltage controls.
  • the invention further relates to a method for protecting a voltage-controlled semiconductor switch, which is provided with a gate terminal, a power emitter Terminal, an auxiliary emitter terminal and a collector terminal is equipped. According to the invention it is provided that the voltage between the gate terminal and the performance-emitter connection with aponsbegrenzungseinrich- processing is limited when the voltage-driven semiconductor ⁇ switch is turned on, and theponsbegrenzungsein- direction with a deactivation device during power shifting of the Semiconductor switch is disabled.
  • the voltage between the gate terminal and the auxiliary emitter terminal is monitored for a voltage ⁇ jump back and the fourth direction ispsbegrenzungsein- deakti ⁇ upon the occurrence of such a voltage jump.
  • the figure shows an arrangement with a voltage-controlled semiconductor switch 10 which has a collector terminal K10, a power emitter terminal L10, an auxiliary emitter terminal H10 and a gate terminal G10.
  • the voltage-controlled semiconductor switch 10 may be, for example, an IGBT, thus a bipola ⁇ ren transistor with integrated gate electrode, or a MOSFET (MOSFET: metal oxide field effect transistor) act.
  • MOSFET metal oxide field effect transistor
  • the auxiliary emitter terminal H10 and the power emitter terminal L10 are thus coupled to one another by an inductance L, which is determined by the line length of the line up to the power emitter terminal L10.
  • the line length between the physical emitter terminal E and the emitter power terminal L10 is usually in the length Zvi ⁇ rule 1 and 5 cm.
  • the semiconductor switch 10 of the auxiliary emitter terminal H10 is used to supply a control voltage and the power emitter terminal L10 for connecting the elec ⁇ cal load.
  • the load current thus flows through the collector terminal K10 and the power emitter terminal L10, and the control current flows through the gate terminal G10 and the auxiliary emitter terminal H10.
  • the semiconductor switch 10 is driven by a drive circuit 20 whose output A20a is connected to the gate terminal G10 of the semiconductor switch 10 and whose output A20b is connected to the auxiliary emitter terminal H10.
  • the drive circuit 20 turns on the semiconductor switch 10 by generating a positive voltage between the gate terminal G10 and the auxiliary emitter terminal H10. It turns off the semiconductor switch 10 by the
  • a protective device 30 is connected between the drive circuit 20 and the semiconductor switch 10.
  • the protective device 30 comprises a voltage limiting device 40 (in the form of a voltage limiting circuit), a deactivation device 50 (in the form of a deactivation circuit) and a capacitive coupling device 60 (in the form of a coupling circuit).
  • the capacitive coupling device 60 is formed by a capacitor Cl, which is connected between the gate terminal G10 and the power emitter terminal L10 of the semiconductor switch 10.
  • the deactivation device 50 has two inputs E50a and E50b, of which the input E50a with the gate terminal G10 of the semiconductor switch and the input E50b with the auxiliary emitter terminal H10 of the semiconductor switch 10 is verbun ⁇ .
  • the two inputs E50a and E50b are thus precisely ⁇ substituted with the two outputs A20a and A20b of the actuation circuit 20 in connection.
  • the deactivation device 50 On the output side, the deactivation device 50 is connected with its output A50a to the gate terminal G10 of the semiconductor scarf ⁇ age 10. Another output A50b communicates with a terminal A40a of the voltage limiting device 40. Another terminal A40b of the voltage limiting device 40 is connected to the power emitter terminal L10 of the semiconductor switch 10. By the output-side interconnection of the deactivation device 50 and the voltage limiting device 40, a series circuit is formed which connects the gate terminal G10 to the power emitter terminal L10. In the exemplary embodiment according to FIG. 1, the voltage limiting device 40 has a transil diode 41 and a diode 42.
  • the function of the two diodes 41 and 42 is to provide the voltage between the gate terminal G10 and reduce the power emitter terminal L10 in Kurz brieflyfall ⁇ , whereby the voltage between the gate terminal G10 and the auxiliary emitter terminal H10 is lowered, where ⁇ again comes to a reduction of the short circuit amplitude.
  • the deactivation device 50 has a timing element 51 and a voltage-controlled switching element 52, which is connected on the input side to the timing element 51. On the output side, the voltage-controlled switching element 52 forms the outputs A50a and A50b of the deactivation device 50.
  • the control terminal S52 of the switching element 52 is supplied with a control voltage via the timing element 51, which voltage is applied to the voltage between the gate terminal G10 and the auxiliary emitter terminal H10 is formed.
  • the timer 51 is an RC timer which is formed by a resistor R and a capacitor C.
  • the function of the timer 51 is to turn off the switching element 52 when the semiconductor switch 10 is switched on or to switch it off so that the deactivation device 50 deactivates the voltage limiting device 40.
  • the switching on of the semiconductor ⁇ switch 10 is in the example shown in the figuressensbei ⁇ game by applying a positive gate voltage to the auxiliary emitter gate terminal G10, and the auxiliary emitter terminal H10 of the semiconductor switch 10. If the potential at the gate terminal G10 raised at power-up, however, the switching element 52 remains switched off by the voltage applied to the control terminal S52 control voltage until the capacitor C of the timer 51 is charged. In the period in which the switching element 52 remains switched off, the voltage limiting device 40 is or remains deactivated, so that it remains without influence on the switch-on of the semiconductor switch 10. Through the Deak activation of the voltage limiting device 40 in the switch-on phase is prevented that the current increase di / dt is reduced when switching on; As a result, the turn-on losses when turning on the semiconductor switch 10 are significantly reduced.
  • the switching element 52 is turned on and the voltage limiting device 40 is activated, so that it is able, in the event of a short circuit in the load, the voltage between the gate terminal G10 and the power Emitter terminal L10 and thus the voltage between the Ga ⁇ te terminal G10 and the auxiliary emitter terminal H10 to reduce ⁇ reduce and bring about a reduction in the short-circuit current amplitude in the event of a short circuit.
  • the capacitive coupling device 60 has the task of raising the Ga ⁇ te emitter voltage after reaching the short-circuit current amplitude in the event of a short circuit again and thus to lead to a gentler transition from the short-circuit current amplitude to sta ⁇ tionary short-circuit current and thus to a lower overvoltage peak.
  • the voltage limiting device 40 has a Transildiode 41 and a diode 42.
  • the voltage limiting device can also be formed by a single Zener diode and / or a diode in combination with a precharged capacitor.
  • the voltage-driven switching element 52 may, for example, be a MOSFET transistor having its source terminal is at the gate potential and the gate thereof via a series resistor (e.g., as the resistance R of the time ⁇ member 51) to the auxiliary emitter terminal H10 the semicon ⁇ terschalters 10 is connected.
  • a series resistor e.g., as the resistance R of the time ⁇ member 51

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Conversion In General (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

Die Erfindung bezieht sich u. a. auf eine Schutzeinrichtung (30) für einen spannungsgesteuerten Halbleiterschalter (10) mit einem Gate-Anschluss (G10), einem Leistungsemitter-Anschluss (L10), einem Hilfsemitter-Anschluss (H10) und einem Kollektor-Anschluss (K10), wobei der Halbleiterschalter (10) einen Strom zwischen dem Kollektor-Anschluss (K10) und dem Leistungsemitter-Anschluss (L10) schalten kann. Erfindungsgemäß ist vorgesehen: eine Spannungsbegrenzungseinrichtung (40), die die Spannung zwischen dem Gate-Anschluss (G10) und dem Leistungsemitter-Anschluss (L10) begrenzt, und eine mit der Spannungsbegrenzungseinrichtung (40) verbundene Deaktivierungseinrichtung (50), die die Spannungsbegrenzungseinrichtung (40) während des Einschaltens des Halbleiterschalters (10) deaktiviert.

Description

Beschreibung
SCHUTZEINRICHTUNG FÜR EINEN SPANNUNGSGESTEUERTEN HALBLEITERSCHALTER
Die Erfindung bezieht sich auf eine Schutzeinrichtung für einen spannungsgesteuerten Halbleiterschalter mit einem Gate- Anschluss, einem Leistungsemitter-Anschluss , einem Hilfsemit- ter-Anschluss und einem Kollektor-Anschluss , wobei der Halb¬ leiterschalter einen Strom zwischen dem Kollektor-Anschluss und dem Leistungsemitter-Anschluss schalten kann. Eine solche Schutzeinrichtung kann beispielsweise für spannungsgesteuerte IGBT-Halbleiterschalter (IGBT: Bipolartransistor mit integrierter Gateelektrode) oder MOSFET- Halbleiterschalter (MOS- FET: Metall-Oxid- Feldeffekttransistor) eingesetzt werden.
In Spannungszwischenkreis-Umrichtern können durch Kurzschlüsse oder Erdschlüsse in der Last sehr hohe Ströme fließen, die die in den Umrichtern eingesetzten spannungsgesteuerten Halbleiterschalter unter Umständen zerstören können. Während das Einschalten eines spannungsgesteuerten Halbleiterschalters auf einen bereits bestehenden Kurzschluss von heutigen Halbleiterschaltern üblicherweise für Zeitspannen von mindestens 10 \is zerstörungsfrei überstanden wird - die Zeitspanne reicht üblicherweise aus, um einen Kurzschluss zu erkennen und abzuschalten - ist ein Kurzschluss bei bereits einge¬ schaltetem und stromführendem Halbleiterschalter deutlich kritischer. Ein solcher Kurzschluss wird als "Typ 2"-Kurz- schluss bezeichnet (vgl. Konferenzbeitrag "Influence of the Gate Drive on the Short-Circuit Type 2 and Type 3 Behaviour of HV- IGBT " (PCIM2010, 4. bis 6. Mai 2010, Nürnberg, Deutschland, VDE-Verlag Berlin, ISBN: 978-3-8007-3229-6) . Charakteristisch für einen Kurzschluss des Typs 2 ist, dass eine Kurzschlussstromspitze, die deutlich höher als der stationäre Kurzschlussstrom ist, sowie eine Spannungsspitze beim Über¬ gang von der dynamischen Kurzschlussstromspitze auf den sta¬ tionären Kurzschlussstrom auftreten. Der Erfindung liegt die Aufgabe zugrunde, eine Schutzeinrich¬ tung für einen spannungsgesteuerten Halbleiterschalter anzugeben, die auch im Falle eines Kurzschlusses des Typs 2 zu¬ verlässig schützt.
Diese Aufgabe wird erfindungsgemäß durch eine Schutzeinrich¬ tung mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Schutzeinrichtung sind in Unteransprüchen angegeben.
Danach ist erfindungsgemäß eine Schutzeinrichtung vorgesehen mit: einer Spannungsbegrenzungseinrichtung, die die Spannung zwischen dem Gate-Anschluss und dem Leistungsemitter-An- schluss begrenzt, und einer mit der Spannungsbegrenzungsein- richtung verbundenen Deaktivierungseinrichtung, die die Span- nungsbegrenzungseinrichtung während des Einschaltens des Halbleiterschalters deaktiviert.
Ein wesentlicher Vorteil der erfindungsgemäßen Schutzeinrichtung ist darin zu sehen, dass durch die erfindungsgemäß vor¬ gesehene Begrenzung der Spannung zwischen dem Gate-Anschluss und dem Leistungsemitter-Anschluss im Kurzschlussfall eine Absenkung auch der Spannung zwischen dem Gate-Anschluss und dem Hilfsemitter-Anschluss herbeigeführt wird, wodurch die auftretende Kurzschlussstromamplitude in vorteilhafter Weise abgesenkt wird.
Ein weiterer wesentlicher Vorteil der erfindungsgemäßen
Schutzeinrichtung besteht in der erfindungsgemäß vorgesehenen Deaktivierung der Spannungsbegrenzungseinrichtung während der Einschaltphase des Halbleiterschalters, um Schaltverluste während des Einschaltens zu vermeiden bzw. zu minimieren, die andernfalls durch eine Absenkung der Gate-Leistungsemitter- Spannung auftreten würden.
Zusammengefasst wird also durch die erfindungsgemäß vorgese¬ hene Spannungsbegrenzungseinrichtung ein optimales Verhalten während eines Kurzschlusses des Typs 2 erreicht, wobei den- noch sichergestellt wird, dass die Verluste während des Ein- schaltens des Halbleiterschalters im Normalbetrieb nicht sig nifikant erhöht werden.
Gemäß einer besonders bevorzugten Ausgestaltung der Schutzeinrichtung ist vorgesehen, dass die Schutzeinrichtung eine kapazitive Koppeleinrichtung aufweist, die eine kapazitive Kopplung zwischen dem Gate-Anschluss und dem Leistungsemit¬ ter-Anschluss bewirkt. Durch eine kapazitive Kopplung zwi¬ schen dem Gate-Anschluss und dem Leistungsemitter-Anschluss wird in vorteilhafter Weise ein Anheben der Gate-Leistungsemitter-Spannung nach Erreichen der Kurzschlussamplitude erreicht, was zu einem besonders sanften Übergang von der Kurz schlussstromamplitude zum stationären Kurzschlussstrom und damit zu einer besonders niedrigen Überspannungsspitze führt
Als vorteilhaft wird es angesehen, wenn die Deaktivierungs- einrichtung eingangsseitig mit der Spannung zwischen dem Gate-Anschluss und dem Hilfsemitter-Anschluss beaufschlagt ist und sie die Spannungsbegrenzungseinrichtung in Abhängigkeit von der Gate-Hilfsemitter-Spannung deaktiviert.
Vorzugsweise ist die Deaktivierungseinrichtung ausgangsseiti mit der Spannungsbegrenzungseinrichtung in Reihe geschaltet.
Um eine zuverlässige Deaktivierung der Spannungsbegrenzungs- einrichtung während des Einschaltens des Halbleiterschalters zu erreichen, wird es als vorteilhaft angesehen, wenn die De aktivierungseinrichtung derart ausgestaltet ist, dass sie im Falle eines Spannungssprungs der zwischen dem Gate-Anschluss und dem Hilfsemitter-Anschluss anliegenden Gate-Hilfsemitter Spannung die Spannungsbegrenzungseinrichtung deaktiviert.
Um zu erreichen, dass die Deaktivierung der Spannungsbegren- zungseinrichtung nach Abschluss des Einschaltvorgangs automa tisch beendet wird, wird es als vorteilhaft angesehen, wenn die Deaktivierungseinrichtung zumindest ein Zeitglied aufweist, dessen Zeitkonstante die Zeitdauer der Deaktivierung der Spannungsbegrenzungseinrichtung nach einem Spannungssprung der Gate-Hilfsemitter-Spannung zumindest auch bestimmt .
Vorzugsweise ist das Zeitglied ein RC-Zeitglied, das durch zumindest einen Kondensator und zumindest einen Widerstand gebildet ist.
Die Deaktivierungseinrichtung weist bevorzugt ein span- nungssteuertes Schaltelement auf, dessen Steuer-Anschluss mit einer mit der Gate-Hilfsemitter-Spannung erzeugten Steuerspannung beaufschlagt ist.
Der Steuer-Anschluss des spannungsgesteuerten Schaltelements ist vorzugsweise über ein Zeitglied - beispielsweise das be¬ reits oben erwähnte Zeitglied - mit der Gate-Hilfsemitter- Spannung beaufschlagt. Das Zeitglied kann beispielsweise ein RC-Glied sein, das durch zumindest einen Kondensator und zu¬ mindest einen Widerstand gebildet ist.
Die Erfindung bezieht sich darüber hinaus auf eine Anordnung mit einem spannungsgesteuerten Halbleiterschalter, einer Schutzeinrichtung, wie sie oben beschrieben worden ist, und einer Ansteuerschaltung zum Ansteuern des Halbleiterschalters, wobei die Ansteuerschaltung an den Gate-Anschluss und den Hilfsemitter-Anschluss angeschlossen ist und den span¬ nungsgesteuerten Halbleiterschalter über die Gate-Hilfsemitter-Spannung steuert.
Bezüglich der Vorteile der erfindungsgemäßen Anordnung sei auf die obigen Ausführungen im Zusammenhang mit den Vorteilen der erfindungsgemäßen Schutzeinrichtung verwiesen, da die Vorteile der erfindungsgemäßen Anordnung denen der erfindungsgemäßen Schutzeinrichtung im Wesentlichen entsprechen.
Die Erfindung bezieht sich darüber hinaus auf ein Verfahren zum Schützen eines spannungsgesteuerten Halbleiterschalters, der mit einem Gate-Anschluss, einem Leistungsemitter- Anschluss, einem Hilfsemitter-Anschluss und einem Kollektor- Anschluss ausgestattet ist. Erfindungsgemäß ist vorgesehen, dass die Spannung zwischen dem Gate-Anschluss und dem Leis- tungsemitter-Anschluss mit einer Spannungsbegrenzungseinrich- tung begrenzt wird, wenn der spannungsgesteuerte Halbleiter¬ schalter eingeschaltet ist, und die Spannungsbegrenzungsein- richtung mit einer Deaktivierungseinrichtung während des Ein- schaltens des Halbleiterschalters deaktiviert wird.
Bezüglich der Vorteile des erfindungsgemäßen Verfahrens sei auf die obigen Ausführungen im Zusammenhang mit den Vorteilen der erfindungsgemäßen Schutzeinrichtung verwiesen, da die Vorteile des erfindungsgemäßen Verfahrens denen der erfindungsgemäßen Schutzeinrichtung im Wesentlichen entsprechen.
Gemäß einer besonders bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die Spannung zwischen dem Gate- Anschluss und dem Hilfsemitter-Anschluss auf einen Spannungs¬ sprung hin überwacht wird und die Spannungsbegrenzungsein- richtung bei Auftreten eines solchen Spannungssprungs deakti¬ viert wird.
Die Erfindung wird nachfolgend anhand eines Ausführungsbei¬ spiels näher erläutert; dabei zeigt eine Figur ein Ausfüh¬ rungsbeispiel für eine erfindungsgemäße Anordnung, die mit einer erfindungsgemäßen Schutzeinrichtung ausgestattet ist. Anhand der in der Figur dargestellten Anordnung wird auch das erfindungsgemäße Verfahren beispielhaft erläutert.
In der Figur sieht man eine Anordnung mit einem spannungsgesteuerten Halbleiterschalter 10, der einen Kollektor-An- schluss K10, einen Leistungsemitter-Anschluss L10, einen Hilfsemitter-Anschluss H10 sowie einen Gate-Anschluss G10 aufweist. Bei dem spannungsgesteuerten Halbleiterschalter 10 kann es sich beispielsweise um einen IGBT, also einen bipola¬ ren Transistor mit integrierter Gateelektrode, oder um einen MOSFET- (MOSFET : Metall-Oxid-Feldeffekttransistor) handeln. Der Hilfsemitter-Anschluss HIO und der Leistungsemitter- Anschluss L10 des Halbleiterschalters 10 unterscheiden sich hinsichtlich ihrer Leitungslängen zum tatsächlichen physikalischen Emitter-Anschlusspunkt E. Während der Hilfsemitter- Anschluss HIO mit einer sehr kurzen elektrischen Leitung an den physikalischen Emitter-Anschlusspunkt E angeschlossen ist, ist die elektrische Leitung zwischen dem Leistungsemit¬ ter-Anschluss L10 und dem physikalischen Emitter-Anschluss¬ punkt E deutlich länger. Elektrisch sind somit der Hilfsemit- ter-Anschluss H10 und der Leistungsemitter-Anschluss L10 durch eine Induktivität L miteinander gekoppelt, die durch die Leitungslänge der Leitung bis zum Leistungsemitter- Anschluss L10 bestimmt wird. Die Leitungslänge zwischen dem physikalischen Emitter-Anschlusspunkt E und dem Leistungs- emitter-Anschluss L10 liegt üblicherweise in der Länge zwi¬ schen 1 und 5 cm.
Für den Betrieb des Halbleiterschalters 10 wird der Hilfs- emitter-Anschluss H10 zum Einspeisen einer Steuerspannung und der Leistungsemitter-Anschluss L10 zum Anschließen der elekt¬ rischen Last verwendet. Der Laststrom fließt somit über den Kollektor-Anschluss K10 und den Leistungsemitter-Anschluss L10, und der Steuerstrom fließt über den Gate-Anschluss G10 und den Hilfsemitter-Anschluss H10.
Der Halbleiterschalter 10 wird von einer Ansteuerschaltung 20 angesteuert, deren Ausgang A20a an den Gate-Anschluss G10 des Halbleiterschalters 10 und deren Ausgang A20b an den Hilfs- emitter-Anschluss H10 angeschlossen ist.
Bei dem in der Figur gezeigten Ausführungsbeispiel schaltet die Ansteuerschaltung 20 den Halbleiterschalter 10 beispielsweise ein, indem sie eine positive Spannung zwischen dem Gate-Anschluss G10 und dem Hilfsemitter-Anschluss H10 erzeugt. Sie schaltet den Halbleiterschalter 10 ab, indem sie die
Spannung zwischen dem Gate-Anschluss G10 und dem Hilfsemit- ter-Anschluss H10 abschaltet. In der Figur lässt sich erkennen, dass zwischen die Ansteuerschaltung 20 und den Halbleiterschalter 10 eine Schutzeinrichtung 30 geschaltet ist. Die Schutzeinrichtung 30 umfasst eine Spannungsbegrenzungseinrichtung 40 (in Form einer Span- nungsbegrenzungsschaltung) , eine Deaktivierungseinrichtung 50 (in Form einer Deaktivierungsschaltung) sowie eine kapazitive Koppeleinrichtung 60 (in Form einer Koppelschaltung) .
Die kapazitive Koppeleinrichtung 60 wird durch einen Konden- sator Cl gebildet, der zwischen den Gate-Anschluss G10 und den Leistungsemitter-Anschluss L10 des Halbleiterschalters 10 geschaltet ist.
Die Deaktivierungseinrichtung 50 weist zwei Eingänge E50a und E50b auf, von denen der Eingang E50a mit dem Gate-Anschluss G10 des Halbleiterschalters und der Eingang E50b mit dem Hilfsemitter-Anschluss H10 des Halbleiterschalters 10 verbun¬ den ist. Die beiden Eingänge E50a und E50b stehen somit eben¬ falls mit den beiden Ausgängen A20a und A20b der Ansteuer- Schaltung 20 in Verbindung.
Ausgangsseitig ist die Deaktivierungseinrichtung 50 mit ihrem Ausgang A50a mit dem Gate-Anschluss G10 des Halbleiterschal¬ ters 10 verbunden. Ein anderer Ausgang A50b steht mit einem Anschluss A40a der Spannungsbegrenzungseinrichtung 40 in Verbindung. Ein weiterer Anschluss A40b der Spannungsbegren- zungseinrichtung 40 ist an den Leistungsemitter-Anschluss L10 des Halbleiterschalters 10 angeschlossen. Durch die ausgangsseitige Verschaltung der Deaktivierungseinrichtung 50 und der Spannungsbegrenzungseinrichtung 40 wird eine Reihenschaltung gebildet, die den Gate-Anschluss G10 mit dem Leistungsemitter-Anschluss L10 verbindet. Die Spannungsbegrenzungseinrichtung 40 weist bei dem Ausführungsbeispiel gemäß Figur 1 eine Transildiode 41 sowie eine Diode 42 auf. Die Funktion der beiden Dioden 41 und 42 besteht darin, die Spannung zwischen dem Gate-Anschluss G10 und dem Leistungsemitter-Anschluss L10 im Kurzschlussfall abzu¬ senken, wodurch auch die Spannung zwischen dem Gate-Anschluss G10 und dem Hilfsemitter-Anschluss H10 abgesenkt wird, wo¬ durch es wiederum zu einer Absenkung der Kurzschlussamplitude kommt .
Die Deaktivierungseinrichtung 50 weist ein Zeitglied 51 sowie ein spannungsgesteuertes Schaltelement 52 auf, das eingangs- seitig mit dem Zeitglied 51 verbunden ist. Ausgangsseitig bildet das spannungsgesteuerte Schaltelement 52 die Ausgänge A50a und A50b der Deaktivierungseinrichtung 50. Der Steuer- Anschluss S52 des Schaltelements 52 ist über das Zeitglied 51 mit einer Steuerspannung beaufschlagt, die mit der Spannung zwischen dem Gate-Anschluss G10 und dem Hilfsemitter-An- schluss H10 gebildet wird.
Bei dem Ausführungsbeispiel gemäß der Figur handelt es sich bei dem Zeitglied 51 um ein RC-Zeitglied, das durch einen Wi¬ derstand R sowie einen Kondensator C gebildet ist. Die Funk- tion des Zeitgliedes 51 besteht darin, das Schaltelement 52 beim Einschalten des Halbleiterschalters 10 auszuschalten bzw. ausgeschaltet zu lassen, so dass die Deaktivierungseinrichtung 50 die Spannungsbegrenzungseinrichtung 40 deaktiviert .
Wie bereits erwähnt, erfolgt das Einschalten des Halbleiter¬ schalters 10 bei dem in der Figur gezeigten Ausführungsbei¬ spiel durch das Anlegen einer positiven Gate-Hilfsemitter- Spannung an den Gate-Anschluss G10 und den Hilfsemitter- Anschluss H10 des Halbleiterschalters 10. Wird das Potential an dem Gate-Anschluss G10 beim Einschalten angehoben, so bleibt das Schaltelement 52 durch die am Steuer-Anschluss S52 anliegende Steuerspannung jedoch noch solange abgeschaltet, bis der Kondensator C des Zeitgliedes 51 aufgeladen ist. In der Zeitspanne, in der das Schaltelement 52 abgeschaltet bleibt, wird bzw. bleibt die Spannungsbegrenzungseinrichtung 40 deaktiviert, so dass diese auf die Einschaltphase des Halbleiterschalters 10 ohne Einfluss bleibt. Durch die Deak- tivierung der Spannungsbegrenzungseinrichtung 40 in der Einschaltphase wird verhindert, dass der Stromanstieg di/dt beim Einschalten reduziert wird; dadurch werden die Einschaltverluste beim Einschalten des Halbleiterschalters 10 deutlich herabgesetzt .
Sobald der Kondensator C über den Widerstand R aufgeladen ist, wird das Schaltelement 52 eingeschaltet und die Span- nungsbegrenzungseinrichtung 40 aktiviert, so dass diese in der Lage ist, im Fall eines Kurzschlusses in der Last die Spannung zwischen dem Gate-Anschluss G10 und dem Leistungs- emitter-Anschluss L10 und damit die Spannung zwischen dem Ga¬ te-Anschluss G10 und dem Hilfsemitter-Anschluss H10 zu redu¬ zieren und eine Absenkung der Kurzschlussstromamplitude im Kurzschlussfall herbeizuführen.
Die kapazitive Koppeleinrichtung 60 hat die Aufgabe, die Ga¬ te-Emitter-Spannung nach Erreichen der Kurzschlussstromamplitude im Kurzschlussfall wieder anzuheben und damit zu einem sanfteren Übergang von der Kurzschlussstromamplitude zum sta¬ tionären Kurzschlussstrom und damit zu einer niedrigeren Überspannungsspitze zu führen.
Bei dem in der Figur gezeigten Ausführungsbeispiel weist die Spannungsbegrenzungseinrichtung 40 eine Transildiode 41 sowie eine Diode 42 auf. Alternativ kann die Spannungsbegrenzungs- einrichtung auch durch eine einzige Zenerdiode und/oder eine Diode in Kombination mit einem vorgeladenen Kondensator gebildet sein.
Bei dem spannungsgesteuerten Schaltelement 52 kann es sich beispielsweise um einen MOSFET-Transistor handeln, dessen Source-Anschluss auf dem Gatepotential liegt und dessen Gate über einen Vorwiderstand (z. B. den Widerstand R des Zeit¬ gliedes 51) mit dem Hilfsemitter-Anschluss H10 des Halblei¬ terschalters 10 verbunden ist. Obwohl die Erfindung im Detail durch das bevorzugte Ausführungsbeispiel näher illustriert und beschrieben wurde, so is die Erfindung nicht durch das offenbarte Beispiel einge¬ schränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen .
Bezugs zeichenliste
10 Halbleiterschalter
20 Ansteuerschaltung
30 Schutzeinrichtung
40 Spannungsbegrenzungseinrichtung
41 Transildiode
42 Diode
50 Deaktivierungseinrichtung
51 Zeitglied
52 Schaltelement
60 Koppeleinrichtung
A20a Ausgang
A20b Ausgang
A40a Anschluss
A40b Anschluss
A50a Ausgang
A50b Ausgang
C Kondensator
di/dt Stromanstieg
E Emitter-Anschlusspunkt
E50a Eingang
E50b Eingang
G10 Gate-Anschluss
H10 Hilfsemitter-Anschluss
K10 Kollektor-Anschluss
L Induktivität
L10 Leistungsemitter-Anschluss R Widerstand
S52 Steuer-Anschluss
T Transistor

Claims

Patentansprüche
1. Schutzeinrichtung (30) für einen spannungsgesteuerten Halbleiterschalter (10) mit einem Gate-Anschluss (G10), einem Leistungsemitter-Anschluss (L10), einem Hilfsemitter-An- schluss (H10) und einem Kollektor-Anschluss (K10), wobei der Halbleiterschalter (10) einen Strom zwischen dem Kollektor- Anschluss (K10) und dem Leistungsemitter-Anschluss (L10) schalten kann,
g e k e n n z e i c h n e t durch
- eine Spannungsbegrenzungseinrichtung (40), die die Spannung zwischen dem Gate-Anschluss (G10) und dem Leistungs¬ emitter-Anschluss (L10) begrenzt, und
- eine mit der Spannungsbegrenzungseinrichtung (40) verbundene Deaktivierungseinrichtung (50), die die Spannungsbe- grenzungseinrichtung (40) während des Einschaltens des Halbleiterschalters (10) deaktiviert.
2. Schutzeinrichtung nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t, dass
die Schutzeinrichtung (30) eine kapazitive Koppeleinrichtung (60) aufweist, die eine kapazitive Kopplung zwischen dem Ga¬ te-Anschluss (G10) und dem Leistungsemitter-Anschluss (L10) bewirkt .
3. Schutzeinrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass
die Deaktivierungseinrichtung (50) eingangsseitig mit der Spannung zwischen dem Gate-Anschluss (G10) und dem Hilfsemit- ter-Anschluss (H10) beaufschlagt ist und die Spannungsbegren- zungseinrichtung (40) in Abhängigkeit von der Gate-Hilfsemitter-Spannung deaktiviert.
4. Schutzeinrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass
die Deaktivierungseinrichtung (50) ausgangsseitig mit der Spannungsbegrenzungseinrichtung (40) in Reihe geschaltet ist.
5. Schutzeinrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass
die Deaktivierungseinrichtung (50) derart ausgestaltet ist, dass sie im Falle eines Spannungssprungs der zwischen dem Ga- te-Anschluss (G10) und dem Hilfsemitter-Anschluss (H10) an¬ liegenden Gate-Hilfsemitter-Spannung die Spannungsbegren- zungseinrichtung (40) deaktiviert.
6. Schutzeinrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass
- die Deaktivierungseinrichtung (50) zumindest ein Zeitglied (51) aufweist,
- wobei die Zeitkonstante des Zeitgliedes (51) die Zeitdauer der Deaktivierung der Spannungsbegrenzungseinrichtung (40) nach einem Spannungssprung der Gate-Hilfsemitter-Spannung zumindest auch bestimmt.
7. Schutzeinrichtung nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t, dass
das Zeitglied ein RC-Zeitglied ist, das durch zumindest einen Kondensator (C) und zumindest einen Widerstand (R) gebildet ist .
8. Schutzeinrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass
die Deaktivierungseinrichtung (50) ein spannungsgesteuertes Schaltelement (52) aufweist, dessen Steuer-Anschluss (S52) mit einer mit der Gate-Hilfsemitter-Spannung erzeugten Steuerspannung beaufschlagt ist.
9. Schutzeinrichtung nach Anspruch 8,
d a d u r c h g e k e n n z e i c h n e t, dass
der Steuer-Anschluss (S52) des spannungsgesteuerten Schaltelements (52) über ein Zeitglied (51) mit der Gate-Hilfs- emitter-Spannung beaufschlagt ist.
10. Anordnung mit einem spannungsgesteuerten Halbleiterschalter (10), einer Schutzeinrichtung (30) nach einem der voran- stehenden Ansprüche und einer Ansteuerschaltung (20) zum Ansteuern des Halbleiterschalters (10), wobei die Ansteuer¬ schaltung an den Gate-Anschluss (G10) und den Hilfsemitter- Anschluss (H10) angeschlossen ist und den spannungsgesteuer- ten Halbleiterschalter (10) über die Gate-Hilfsemitter- Spannung steuert.
11. Verfahren zum Schützen eines spannungsgesteuerten Halbleiterschalters (10), der mit einem Gate-Anschluss (G10), ei- nem Leistungsemitter-Anschluss (L10), einem Hilfsemitter-
Anschluss (H10) und einem Kollektor-Anschluss (K10) ausges¬ tattet ist,
d a d u r c h g e k e n n z e i c h n e t, dass
- die Spannung zwischen dem Gate-Anschluss (G10) und dem
Leistungsemitter-Anschluss (L10) mit einer Spannungsbe- grenzungseinrichtung (40) begrenzt wird, wenn der spannungsgesteuerte Halbleiterschalter (10) eingeschaltet ist, und
- die Spannungsbegrenzungseinrichtung (40) mit einer Deakti- ierungseinrichtung (50) während des Einschaltens des
Halbleiterschalters (10) deaktiviert wird.
12. Verfahren nach Anspruch 11,
d a d u r c h g e k e n n z e i c h n e t, dass
- die Spannung zwischen dem Gate-Anschluss und dem Hilfs- emitter-Anschluss auf einen Spannungssprung hin überwacht wird und
- die Spannungsbegrenzungseinrichtung (40) bei Auftreten eines solchen Spannungssprungs deaktiviert wird.
PCT/EP2011/069523 2011-11-07 2011-11-07 Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter WO2013068028A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/EP2011/069523 WO2013068028A1 (de) 2011-11-07 2011-11-07 Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter
CN201180076186.3A CN104025455B (zh) 2011-11-07 2011-11-07 用于电压控制的半导体开关的保护装置
CA2854544A CA2854544C (en) 2011-11-07 2011-11-07 Protective device for a voltage-controlled semiconductor switch
US14/356,662 US9412853B2 (en) 2011-11-07 2011-11-07 Protective device for a voltage-controlled semiconductor switch
EP11790734.5A EP2756598B1 (de) 2011-11-07 2011-11-07 Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/069523 WO2013068028A1 (de) 2011-11-07 2011-11-07 Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter

Publications (1)

Publication Number Publication Date
WO2013068028A1 true WO2013068028A1 (de) 2013-05-16

Family

ID=45092330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/069523 WO2013068028A1 (de) 2011-11-07 2011-11-07 Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter

Country Status (5)

Country Link
US (1) US9412853B2 (de)
EP (1) EP2756598B1 (de)
CN (1) CN104025455B (de)
CA (1) CA2854544C (de)
WO (1) WO2013068028A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10784795B1 (en) * 2019-08-21 2020-09-22 Delta Electronics, Inc. Conversion circuit
US10734882B2 (en) 2018-02-09 2020-08-04 Delta Electronics, Inc. Conversion circuit
US10784768B2 (en) 2018-02-09 2020-09-22 Delta Electronics, Inc. Conversion circuit and conversion circuitry
US10784770B2 (en) 2018-02-09 2020-09-22 Delta Electronics, Inc. Conversion circuit
US11309887B2 (en) 2018-02-09 2022-04-19 Delta Electronics, Inc. Conversion circuit
EP3683941A3 (de) * 2018-12-28 2020-10-07 Delta Electronics, Inc. Umsetzungsschaltung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814564A1 (de) * 1996-06-20 1997-12-29 ANSALDO INDUSTRIA S.p.A. Elektronischer Schaltkreis mit reduzierten Schalttransienten
EP1191692A1 (de) * 2000-02-25 2002-03-27 Mitsubishi Denki Kabushiki Kaisha Leistungsmodel
WO2009103584A1 (de) * 2008-02-22 2009-08-27 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer schalteinheit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1219780B (it) * 1983-12-20 1990-05-24 Ates Componenti Elettron Circuito di comando in commutazione di carichi induttivi,integrabile monoliticamente,comprendente uno stadio finale di tipo darlington
JP2811941B2 (ja) * 1990-09-05 1998-10-15 富士電機株式会社 スイッチングトランジスタの制御回路
DE10339689B4 (de) 2003-08-28 2005-07-28 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einer Spannungsbegrenzungsschaltung und Verfahren zur Ansteuerung eines Lasttransistors
TW595104B (en) * 2003-09-26 2004-06-21 Sunplus Technology Co Ltd Timing-flexible flip-flop element
JP2008042950A (ja) * 2006-08-01 2008-02-21 Mitsubishi Electric Corp 電力変換装置
DE102007041674B4 (de) 2006-09-21 2017-12-28 Secop Gmbh Elektrischer Schaltkreis mit integriertem Schutz vor Ausgleichsvorgängen
CN102687398A (zh) * 2009-10-26 2012-09-19 日产自动车株式会社 开关元件的驱动电路和电力变换装置
JP5029678B2 (ja) * 2009-12-07 2012-09-19 株式会社デンソー スイッチング素子の駆動装置
CN101882864B (zh) 2010-06-25 2012-08-22 矽力杰半导体技术(杭州)有限公司 一种上电启动电路及其上电启动方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814564A1 (de) * 1996-06-20 1997-12-29 ANSALDO INDUSTRIA S.p.A. Elektronischer Schaltkreis mit reduzierten Schalttransienten
EP1191692A1 (de) * 2000-02-25 2002-03-27 Mitsubishi Denki Kabushiki Kaisha Leistungsmodel
WO2009103584A1 (de) * 2008-02-22 2009-08-27 Continental Automotive Gmbh Verfahren und vorrichtung zum betreiben einer schalteinheit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Konferenzbeitrag", 4 May 2010, VDE-VERLAG, article "Influence of the Gate Drive on the Short-Circuit Type 2 and Type 3 Behaviour of HV-IGBT"

Also Published As

Publication number Publication date
CA2854544C (en) 2019-12-31
EP2756598B1 (de) 2019-10-30
CA2854544A1 (en) 2013-05-16
CN104025455B (zh) 2018-07-20
US9412853B2 (en) 2016-08-09
CN104025455A (zh) 2014-09-03
EP2756598A1 (de) 2014-07-23
US20140320198A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
DE102007019524B4 (de) Halbleitervorrichtung, die einen Spannungsstoß verringert oder verhindert
DE10020981B4 (de) Motor-Steuergerät mit Fehlerschutzschaltung
DE4410978C2 (de) Schaltung und Verfahren zur Verbesserung der Kurzschlußbeständigkeit eines bipolaren Transistors mit isoliertem Gate (IGBT)
WO2013068028A1 (de) Schutzeinrichtung für einen spannungsgesteuerten halbleiterschalter
EP1520331B1 (de) Verfahren und schaltungsanordnung zum begrenzen einer überspannung
DE4320021A1 (de) Verfahren und Vorrichtung zur Kurzschluß-Sicherung von Leistungstransistor-Anordnungen
DE19746112A1 (de) Stromrichteranordnung
WO1995033295A1 (de) Schaltungsanordnung zur strombegrenzung
DE112014004979B4 (de) Halbleitervorrichtung
DE102013205472A1 (de) Klemmschaltung
EP3487022B1 (de) Schutzvorrichtung mit parallelen strompfaden in denen jeweils ein schutzschalter angeordnet ist sowie verfahren zum betrieb einer solchen schutzvorrichtung
WO2018134182A1 (de) Elektrische schaltung und verfahren zum betrieb einer elektrischen schaltung
DE3420003A1 (de) Anordnung zum verhindern uebermaessiger verlustleistung in einer leistungsschalthalbleitervorrichtung
DE19941489A1 (de) Schutzschaltung für eine Reihenschaltung aus Leistungshalbleiter-Endstufe und induktivem Verbraucher
DE4012382C2 (de)
DE4302406C2 (de) Stromversorgungseinheit zur funkenerosiven Bearbeitung
DE102016123678A1 (de) Anordnung und Verfahren zur Erzeugung einer negativen Spannung für einen High-Side-Schalter in einem Wechselrichter
DE102010008815A1 (de) Überspannungsschutz für einen Halbleiterschalter
EP3472934B1 (de) Leistungshalbleiterschaltung
DE3723786C2 (de)
AT523936B1 (de) Verfahren und vorrichtung zum steuern eines halbleiterschalters
DE202012012987U1 (de) Stromquelle für verbesserte GMAW- und GTAW-Schweißleistung
EP3449571B1 (de) Verfahren zum schutz eines halbleiterschalters, schutzvorrichtung für einen halbleiterschalter und ansteuerschaltung für einen halbleiterschalter
DE10035388C2 (de) Stromschaltanordnung
DE19726765C2 (de) Gatespannungsbegrenzung für eine Schaltungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11790734

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2854544

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14356662

Country of ref document: US