US9412853B2 - Protective device for a voltage-controlled semiconductor switch - Google Patents

Protective device for a voltage-controlled semiconductor switch Download PDF

Info

Publication number
US9412853B2
US9412853B2 US14/356,662 US201114356662A US9412853B2 US 9412853 B2 US9412853 B2 US 9412853B2 US 201114356662 A US201114356662 A US 201114356662A US 9412853 B2 US9412853 B2 US 9412853B2
Authority
US
United States
Prior art keywords
voltage
connection
gate
deactivation
semiconductor switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/356,662
Other versions
US20140320198A1 (en
Inventor
Hans-Günter Eckel
Steffen Pierstorf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Assigned to SIEMENS AKTIENGESELLSCHAFT reassignment SIEMENS AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ECKEL, HANS-GUENTER, PIERSTORF, Steffen
Publication of US20140320198A1 publication Critical patent/US20140320198A1/en
Application granted granted Critical
Publication of US9412853B2 publication Critical patent/US9412853B2/en
Assigned to Siemens Energy Global GmbH & Co. KG reassignment Siemens Energy Global GmbH & Co. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SIEMENS AKTIENGESELLSCHAFT
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0812Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/08126Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the control circuit in bipolar transitor switches

Definitions

  • the invention relates to a protective device for a voltage-controlled semiconductor switch having a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection, wherein the semiconductor switch can switch a current between the collector connection and the power emitter connection.
  • a protective device such as this can be used, for example, for voltage-controlled IGBT semiconductor switches (IGBT: insulated-gate bipolar transistor) or MOSFET semiconductor switches (MOSFET: metal-oxide semiconductor field-effect transistor).
  • Very high currents may flow in voltage source converters owing to short-circuits or ground faults in the load, it being possible in certain circumstances for said high currents to destroy the voltage-controlled semiconductor switches used in the converters.
  • the switch-on connection of a voltage-controlled semiconductor switch to an already existing short-circuit is withstood by modern semiconductor switches usually for intervals of at least 10 ⁇ s, without this resulting in destruction—the interval is usually sufficient to identify a short-circuit and to disconnect—a short-circuit is significantly more critical in the case of a semiconductor switch which is already switched on and conducting.
  • a short-circuit such as this is referred to as a “type 2” short-circuit (cf.
  • a protective device having: a voltage-limiting device, which limits the voltage between the gate connection and the power emitter connection, and a deactivation device, which is connected to the voltage-limiting device and deactivates the voltage-limiting device during the switch-on of the semiconductor switch.
  • One essential advantage of the protective device according to the invention consists in that the limiting, provided according to the invention, of the voltage between the gate connection and the power emitter connection in the event of a short-circuit also causes a reduction in the voltage between the gate connection and the auxiliary emitter connection, as a result of which the short-circuit current amplitude which occurs is advantageously reduced.
  • a further essential advantage of the protective device according to the invention consists in the deactivation, provided according to the invention, of the voltage-limiting device during the switch-on phase of the semiconductor switch in order to avoid or minimize switching losses during the switch-on, which switching losses would otherwise occur as a result of a reduction in the gate-power emitter voltage.
  • an optimum behavior during a type 2 short-circuit is achieved by means of the voltage-limiting device provided according to the invention, wherein it is ensured, however, that the losses during the switch-on of the semiconductor switch during normal operation are not significantly increased.
  • the protective device has a capacitive coupling device, which effects a capacitive coupling between the gate connection and the power emitter connection.
  • the gate-power emitter voltage is advantageously raised once the short-circuit amplitude has been reached, which leads to a particularly smooth transition from the short-circuit current amplitude to the static short-circuit current and hence to a particularly low surge peak.
  • the output-side of the deactivation device is preferably connected in series with the voltage-limiting device.
  • the deactivation device In order to achieve a reliable deactivation of the voltage-limiting device during the switch-on of the semiconductor switch, it is considered to be advantageous for the deactivation device to be configured such that, in the event of a sudden change in the gate-auxiliary emitter voltage which is present between the gate connection and the auxiliary emitter connection, it deactivates the voltage-limiting device.
  • the deactivation device In order that the deactivation of the voltage-limiting device is automatically ended once the switch-on process is finished, it is considered to be advantageous for the deactivation device to have at least one timing element, the time constant of which at least also determines the duration of the deactivation of the voltage-limiting device after a sudden change in the gate-auxiliary emitter voltage.
  • the timing element is an RC timing element which is formed by at least one capacitor and at least one resistor.
  • the deactivation device preferably has a voltage-controlled switch element; a control voltage generated using the gate-auxiliary emitter voltage being applied to the control connection of said switch element.
  • the gate-auxiliary emitter voltage is preferably applied to the control connection of the voltage-controlled switch element via a timing element—for example the timing element already mentioned above.
  • the timing element may be an RC element which is formed by at least one capacitor and at least one resistor.
  • the invention also relates to an arrangement having a voltage-controlled semiconductor switch, a protective device as has been described above and an activation circuit for activating the semiconductor switch, wherein the activation circuit is connected to the gate connection and the auxiliary emitter connection and controls the voltage-controlled semiconductor switch by means of the gate-auxiliary emitter voltage.
  • the invention also relates to a method for protecting a voltage-controlled semiconductor switch which is equipped with a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection.
  • the invention provides that the voltage between the gate connection and the power emitter connection is limited by a voltage-limiting device when the voltage-controlled semiconductor switch is switched on, and the voltage-limiting device is deactivated by a deactivation device during the switch-on of the semiconductor switch.
  • the voltage between the gate connection and the auxiliary emitter connection is monitored for a sudden voltage change, and the voltage-limiting device is deactivated in the event of such a sudden voltage change occurring.
  • FIGURE shows an exemplary embodiment of an arrangement according to the invention which is equipped with a protective device according to the invention.
  • the method according to the invention will also be explained by way of example on the basis of the arrangement illustrated in the FIGURE.
  • the auxiliary emitter connection H 10 is used to feed in a control voltage and the power emitter connection L 10 is used to connect the electrical load.
  • the load current flows via the collector connection K 10 and the power emitter connection L 10
  • the control current flows via the gate connection G 10 and the auxiliary emitter connection H 10 .
  • the semiconductor switch 10 is activated by an activation circuit 20 , the output A 20 a of said activation circuit being connected to the gate connection G 10 of the semiconductor switch 10 and the output A 20 b of said activation circuit being connected to the auxiliary emitter connection H 10 .
  • the activation circuit 20 switches on the semiconductor switch 10 , for example, by generating a positive voltage between the gate connection G 10 and the auxiliary emitter connection H 10 . It switches off the semiconductor switch 10 by disconnecting the voltage between the gate connection G 10 and the auxiliary emitter connection H 10 .
  • a protective device 30 is connected between the activation circuit 20 and the semiconductor switch 10 .
  • the protective device 30 comprises a voltage-limiting device 40 (in the form of a voltage-limiting circuit), a deactivation device 50 (in the form of a deactivation circuit) and a capacitive coupling device 60 (in the form of a coupling circuit).
  • the capacitive coupling device 60 is formed by a capacitor C 1 which is connected between the gate connection G 10 and the power emitter connection L 10 of the semiconductor switch 10 .
  • the deactivation device 50 has two inputs E 50 a and E 50 b , of which the input E 50 a is connected to the gate connection G 10 of the semiconductor switch and the input E 50 b is connected to the auxiliary emitter connection H 10 of the semiconductor switch 10 .
  • the two inputs E 50 a and E 50 b are therefore likewise connected to the two outputs A 20 a and A 20 b of the activation circuit 20 .
  • the output-side of the deactivation device 50 is connected by means of its output A 50 a to the gate connection G 10 of the semiconductor switch 10 .
  • Another output A 50 b is connected to a connection A 40 a of the voltage-limiting device 40 .
  • a further connection A 40 b of the voltage-limiting device 40 is connected to the power emitter connection L 10 of the semiconductor switch 10 .
  • a series circuit is formed by the output-side interconnection of the deactivation device 50 and the voltage-limiting device 40 , said series circuit connecting the gate connection G 10 to the power emitter connection L 10 .
  • the voltage-limiting device 40 has a transient-voltage-suppression diode 41 and a diode 42 .
  • the function of the two diodes 41 and 42 consists in reducing the voltage between the gate connection G 10 and the power emitter connection L 10 in the event of a short-circuit, as a result of which the voltage between the gate connection G 10 and the auxiliary emitter connection H 10 is also reduced, which in turn leads to a reduction in the short-circuit amplitude.
  • the deactivation device 50 has a timing element 51 and a voltage-controlled switch element 52 which is connected to the timing element 51 on the input-side.
  • the output-side of the voltage-controlled switch element 52 forms the outputs A 50 a and A 50 b of the deactivation device 50 .
  • a control voltage is applied to the control connection S 52 of the switch element 52 via the timing element 51 , said control voltage being formed by the voltage between the gate connection G 10 and the auxiliary emitter connection H 10 .
  • the timing element 51 is an RC timing element which is formed by a resistor R and a capacitor C.
  • the function of the timing element 51 consists in switching off the switch element 52 or causing said switch element to be switched off when the semiconductor switch 10 is switched on, with the result that the deactivation device 50 deactivates the voltage-limiting device 40 .
  • the semiconductor switch 10 is switched on in the exemplary embodiment shown in the FIGURE by applying a positive gate-auxiliary emitter voltage to the gate connection G 10 and the auxiliary emitter connection H 10 of the semiconductor switch 10 . If the potential at the gate connection G 10 is raised during the switch-on, then the switch element 52 only remains still disconnected by means of the control voltage present at the control connection S 52 until the capacitor C of the timing element 51 has charged up, though. In the time interval in which the switch element 52 remains disconnected, the voltage-limiting device 40 is or remains deactivated, with the result that said voltage-limiting device remains without influence on the switch-on phase of the semiconductor switch 10 .
  • the switch element 52 is switched on and the voltage-limiting device 40 is activated, with the result that said voltage-limiting device is able, in the event of a short-circuit in the load, to reduce the voltage between the gate connection G 10 and the power emitter connection L 10 and hence to reduce the voltage between the gate connection G 10 and the auxiliary emitter connection H 10 and to cause a reduction in the short-circuit current amplitude in the event of a short-circuit.
  • the capacitive coupling device 60 has the task of raising the gate-emitter voltage again once the short-circuit current amplitude has been reached in the event of a short-circuit and thus of leading to a smoother transition from the short-circuit current amplitude to the static short-circuit current and hence to a lower surge peak.
  • the voltage-controlled switch element 52 can be, for example, a MOSFET transistor, the source connection of which is at the gate potential and the gate of which is connected to the auxiliary emitter connection H 10 of the semiconductor switch 10 via a series resistor (for example the resistor R of the timing element 51 ).

Abstract

A protective device for a voltage-controlled semiconductor switch has a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection. The semiconductor switch can switch a current between the collector connection and the power emitter connection. A voltage-limiting device limits the voltage between the gate connection and the power emitter connection. A deactivation device is connected to the voltage-limiting device and deactivates the voltage-limiting device during a switch-on of the semiconductor switch.

Description

BACKGROUND OF THE INVENTION Field of the Invention
The invention relates to a protective device for a voltage-controlled semiconductor switch having a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection, wherein the semiconductor switch can switch a current between the collector connection and the power emitter connection. A protective device such as this can be used, for example, for voltage-controlled IGBT semiconductor switches (IGBT: insulated-gate bipolar transistor) or MOSFET semiconductor switches (MOSFET: metal-oxide semiconductor field-effect transistor).
Very high currents may flow in voltage source converters owing to short-circuits or ground faults in the load, it being possible in certain circumstances for said high currents to destroy the voltage-controlled semiconductor switches used in the converters. Whilst the switch-on connection of a voltage-controlled semiconductor switch to an already existing short-circuit is withstood by modern semiconductor switches usually for intervals of at least 10 μs, without this resulting in destruction—the interval is usually sufficient to identify a short-circuit and to disconnect—a short-circuit is significantly more critical in the case of a semiconductor switch which is already switched on and conducting. A short-circuit such as this is referred to as a “type 2” short-circuit (cf. conference paper “Influence of the Gate Drive on the Short-Circuit Type 2 and Type 3 Behaviour of HV-IGBT” (PCIM2010, May 4-6, 2010, Nuremberg, Germany, VDE-Verlag Berlin, ISBN: 978-3-8007-3229-6). It is characteristic of a type 2 short-circuit that a short-circuit current peak, which is significantly higher than the static short-circuit current, and a voltage peak occur at the point of transition from the dynamic short-circuit current peak to the static short-circuit current. The invention is based on the problem of specifying a protective device for a voltage-controlled semiconductor switch, which protective device also reliably protects in the event of a type 2 short-circuit.
BRIEF SUMMARY OF THE INVENTION
This problem is solved according to the invention by means of a protective device. Advantageous embodiments of the protective device according to the invention are specified in the dependent claims.
Accordingly, a protective device is provided according to the invention, said protective device having: a voltage-limiting device, which limits the voltage between the gate connection and the power emitter connection, and a deactivation device, which is connected to the voltage-limiting device and deactivates the voltage-limiting device during the switch-on of the semiconductor switch.
One essential advantage of the protective device according to the invention consists in that the limiting, provided according to the invention, of the voltage between the gate connection and the power emitter connection in the event of a short-circuit also causes a reduction in the voltage between the gate connection and the auxiliary emitter connection, as a result of which the short-circuit current amplitude which occurs is advantageously reduced.
A further essential advantage of the protective device according to the invention consists in the deactivation, provided according to the invention, of the voltage-limiting device during the switch-on phase of the semiconductor switch in order to avoid or minimize switching losses during the switch-on, which switching losses would otherwise occur as a result of a reduction in the gate-power emitter voltage. In summary, therefore, an optimum behavior during a type 2 short-circuit is achieved by means of the voltage-limiting device provided according to the invention, wherein it is ensured, however, that the losses during the switch-on of the semiconductor switch during normal operation are not significantly increased.
According to a particularly preferred configuration of the protective device, it is provided that the protective device has a capacitive coupling device, which effects a capacitive coupling between the gate connection and the power emitter connection. By means of a capacitive coupling between the gate connection and the power emitter connection, the gate-power emitter voltage is advantageously raised once the short-circuit amplitude has been reached, which leads to a particularly smooth transition from the short-circuit current amplitude to the static short-circuit current and hence to a particularly low surge peak.
It is considered to be advantageous for the voltage between the gate connection and the auxiliary emitter connection to be applied to the input-side of the deactivation device and for said deactivation device to deactivate the voltage-limiting device on the basis of the gate-auxiliary emitter voltage.
The output-side of the deactivation device is preferably connected in series with the voltage-limiting device.
In order to achieve a reliable deactivation of the voltage-limiting device during the switch-on of the semiconductor switch, it is considered to be advantageous for the deactivation device to be configured such that, in the event of a sudden change in the gate-auxiliary emitter voltage which is present between the gate connection and the auxiliary emitter connection, it deactivates the voltage-limiting device.
In order that the deactivation of the voltage-limiting device is automatically ended once the switch-on process is finished, it is considered to be advantageous for the deactivation device to have at least one timing element, the time constant of which at least also determines the duration of the deactivation of the voltage-limiting device after a sudden change in the gate-auxiliary emitter voltage.
Preferably, the timing element is an RC timing element which is formed by at least one capacitor and at least one resistor.
The deactivation device preferably has a voltage-controlled switch element; a control voltage generated using the gate-auxiliary emitter voltage being applied to the control connection of said switch element.
The gate-auxiliary emitter voltage is preferably applied to the control connection of the voltage-controlled switch element via a timing element—for example the timing element already mentioned above. By way of example, the timing element may be an RC element which is formed by at least one capacitor and at least one resistor.
The invention also relates to an arrangement having a voltage-controlled semiconductor switch, a protective device as has been described above and an activation circuit for activating the semiconductor switch, wherein the activation circuit is connected to the gate connection and the auxiliary emitter connection and controls the voltage-controlled semiconductor switch by means of the gate-auxiliary emitter voltage.
With respect to the advantages of the arrangement according to the invention, reference is made to the statements above in connection with the advantages of the protective device according to the invention, since the advantages of the arrangement according to the invention substantially correspond to those of the protective device according to the invention.
The invention also relates to a method for protecting a voltage-controlled semiconductor switch which is equipped with a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection. The invention provides that the voltage between the gate connection and the power emitter connection is limited by a voltage-limiting device when the voltage-controlled semiconductor switch is switched on, and the voltage-limiting device is deactivated by a deactivation device during the switch-on of the semiconductor switch.
With respect to the advantages of the method according to the invention, reference is made to the statements above in connection with the advantages of the protective device according to the invention, since the advantages of the method according to the invention substantially correspond to those of the protective device according to the invention.
According to a particularly preferred configuration of the method, it is provided that the voltage between the gate connection and the auxiliary emitter connection is monitored for a sudden voltage change, and the voltage-limiting device is deactivated in the event of such a sudden voltage change occurring.
BRIEF DESCRIPTION OF THE DRAWING
The invention is explained in more detail below on the basis of an exemplary embodiment; in this case, a FIGURE shows an exemplary embodiment of an arrangement according to the invention which is equipped with a protective device according to the invention. The method according to the invention will also be explained by way of example on the basis of the arrangement illustrated in the FIGURE.
DESCRIPTION OF THE INVENTION
The FIGURE shows an arrangement having a voltage-controlled semiconductor switch 10 which has a collector connection K10, a power emitter connection L10, an auxiliary emitter connection H10 and a gate connection G10. The voltage-controlled semiconductor switch 10 may be, for example, an IGBT, that is to say an insulated-gate bipolar transistor, or a MOSFET (MOSFET: metal-oxide semiconductor field-effect transistor). The auxiliary emitter connection H10 and the power emitter connection L10 of the semiconductor switch 10 differ in terms of their line lengths to the actual physical emitter connection point E. While the auxiliary emitter connection H10 is connected to the physical emitter connection point E by a very short electrical line, the electrical line between the power emitter connection L10 and the physical emitter connection point E is markedly longer. Thus, in electrical terms, the auxiliary emitter connection H10 and the power emitter connection L10 are coupled to one another via an inductance L which is determined by the line length of the line up to the power emitter connection L10. The line length between the physical emitter connection point E and the power emitter connection L10 is usually in the range between 1 and 5 cm.
For the operation of the semiconductor switch 10, the auxiliary emitter connection H10 is used to feed in a control voltage and the power emitter connection L10 is used to connect the electrical load. Thus, the load current flows via the collector connection K10 and the power emitter connection L10, and the control current flows via the gate connection G10 and the auxiliary emitter connection H10.
The semiconductor switch 10 is activated by an activation circuit 20, the output A20 a of said activation circuit being connected to the gate connection G10 of the semiconductor switch 10 and the output A20 b of said activation circuit being connected to the auxiliary emitter connection H10.
In the exemplary embodiment shown in the FIGURE, the activation circuit 20 switches on the semiconductor switch 10, for example, by generating a positive voltage between the gate connection G10 and the auxiliary emitter connection H10. It switches off the semiconductor switch 10 by disconnecting the voltage between the gate connection G10 and the auxiliary emitter connection H10. It can be seen in the FIGURE that a protective device 30 is connected between the activation circuit 20 and the semiconductor switch 10. The protective device 30 comprises a voltage-limiting device 40 (in the form of a voltage-limiting circuit), a deactivation device 50 (in the form of a deactivation circuit) and a capacitive coupling device 60 (in the form of a coupling circuit).
The capacitive coupling device 60 is formed by a capacitor C1 which is connected between the gate connection G10 and the power emitter connection L10 of the semiconductor switch 10.
The deactivation device 50 has two inputs E50 a and E50 b, of which the input E50 a is connected to the gate connection G10 of the semiconductor switch and the input E50 b is connected to the auxiliary emitter connection H10 of the semiconductor switch 10. The two inputs E50 a and E50 b are therefore likewise connected to the two outputs A20 a and A20 b of the activation circuit 20.
The output-side of the deactivation device 50 is connected by means of its output A50 a to the gate connection G10 of the semiconductor switch 10. Another output A50 b is connected to a connection A40 a of the voltage-limiting device 40. A further connection A40 b of the voltage-limiting device 40 is connected to the power emitter connection L10 of the semiconductor switch 10.
A series circuit is formed by the output-side interconnection of the deactivation device 50 and the voltage-limiting device 40, said series circuit connecting the gate connection G10 to the power emitter connection L10.
In the exemplary embodiment according to FIG. 1, the voltage-limiting device 40 has a transient-voltage-suppression diode 41 and a diode 42. The function of the two diodes 41 and 42 consists in reducing the voltage between the gate connection G10 and the power emitter connection L10 in the event of a short-circuit, as a result of which the voltage between the gate connection G10 and the auxiliary emitter connection H10 is also reduced, which in turn leads to a reduction in the short-circuit amplitude.
The deactivation device 50 has a timing element 51 and a voltage-controlled switch element 52 which is connected to the timing element 51 on the input-side. The output-side of the voltage-controlled switch element 52 forms the outputs A50 a and A50 b of the deactivation device 50. A control voltage is applied to the control connection S52 of the switch element 52 via the timing element 51, said control voltage being formed by the voltage between the gate connection G10 and the auxiliary emitter connection H10.
In the exemplary embodiment according to the FIGURE, the timing element 51 is an RC timing element which is formed by a resistor R and a capacitor C. The function of the timing element 51 consists in switching off the switch element 52 or causing said switch element to be switched off when the semiconductor switch 10 is switched on, with the result that the deactivation device 50 deactivates the voltage-limiting device 40.
As has already been mentioned, the semiconductor switch 10 is switched on in the exemplary embodiment shown in the FIGURE by applying a positive gate-auxiliary emitter voltage to the gate connection G10 and the auxiliary emitter connection H10 of the semiconductor switch 10. If the potential at the gate connection G10 is raised during the switch-on, then the switch element 52 only remains still disconnected by means of the control voltage present at the control connection S52 until the capacitor C of the timing element 51 has charged up, though. In the time interval in which the switch element 52 remains disconnected, the voltage-limiting device 40 is or remains deactivated, with the result that said voltage-limiting device remains without influence on the switch-on phase of the semiconductor switch 10. By means of the deactivation of the voltage-limiting device 40 in the switch-on phase, the current increase di/dt is prevented from being reduced during the switch-on; as a result of this, the switch-on losses when the semiconductor switch 10 is switched on are significantly lowered.
As soon as the capacitor C has been charged up via the resistor R, the switch element 52 is switched on and the voltage-limiting device 40 is activated, with the result that said voltage-limiting device is able, in the event of a short-circuit in the load, to reduce the voltage between the gate connection G10 and the power emitter connection L10 and hence to reduce the voltage between the gate connection G10 and the auxiliary emitter connection H10 and to cause a reduction in the short-circuit current amplitude in the event of a short-circuit.
The capacitive coupling device 60 has the task of raising the gate-emitter voltage again once the short-circuit current amplitude has been reached in the event of a short-circuit and thus of leading to a smoother transition from the short-circuit current amplitude to the static short-circuit current and hence to a lower surge peak.
In the exemplary embodiment shown in the FIGURE, the voltage-limiting device 40 has a transient-voltage-suppression diode 41 and a diode 42. Alternatively, the voltage-limiting device can also be formed by a single Zener diode and/or a diode in combination with a pre charged capacitor.
The voltage-controlled switch element 52 can be, for example, a MOSFET transistor, the source connection of which is at the gate potential and the gate of which is connected to the auxiliary emitter connection H10 of the semiconductor switch 10 via a series resistor (for example the resistor R of the timing element 51). Although the invention has been illustrated and described in more detail on the basis of the preferred exemplary embodiment, the invention is not restricted by the disclosed example and other variations may be derived here from by a person skilled in the art without departing from the scope of protection of the invention.
LIST OF REFERENCE SIGNS
  • 10 semiconductor switch
  • 20 activation circuit
  • 30 protective device
  • 40 voltage-limiting device
  • 41 transient-voltage-suppression diode
  • 42 diode
  • 50 deactivation device
  • 51 timing element
  • 52 switch element
  • 60 coupling device
  • A20 a output
  • A20 b output
  • A40 a connection
  • A40 b connection
  • A50 a output
  • A50 b output
  • C capacitor
  • di/dt current increase
  • E emitter connection point
  • E50 a input
  • E50 b input
  • G10 gate connection
  • H10 auxiliary emitter connection
  • K10 collector connection
  • L inductance
  • L10 power emitter connection
  • R resistor
  • S52 control connection
  • T transistor

Claims (11)

The invention claimed is:
1. A protective device for a voltage-controlled semiconductor switch having a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection, wherein the voltage-controlled semiconductor switch can switch a current between the collector connection and the power emitter connection, the protective device comprising:
a voltage-limiting device for limiting a voltage between the gate connection and the power emitter connection; and
a deactivation device connected to said voltage-limiting device and deactivating said voltage-limiting device during a switch-on of the voltage-controlled semiconductor switch, said deactivation device having at least one timing element, wherein a time constant of said timing element at least also determines a duration of a deactivation of said voltage-limiting device after a sudden change in a gate-auxiliary emitter voltage.
2. The protective device according to claim 1, further comprising a capacitive coupling device which affects a capacitive coupling between the gate connection and the power emitter connection.
3. The protective device according to claim 1, wherein a gate-auxiliary emitter voltage between the gate connection and the auxiliary emitter connection is applied to an input-side of said deactivation device, said deactivation device deactivating said voltage-limiting device on a basis of the gate-auxiliary emitter voltage.
4. The protective device according to claim 1, wherein said deactivation device has an output-side connected in series with said voltage-limiting device.
5. The protective device according to claim 1, wherein said deactivation device is configured such that, in an event of a sudden change in a gate-auxiliary emitter voltage present between the gate connection and the auxiliary emitter connection, said deactivation device deactivates said voltage-limiting device.
6. The protective device according to claim 1, wherein said timing element is an RC timing element having at least one capacitor and at least one resistor.
7. The protective device according to claim 1, wherein said deactivation device has a voltage-controlled switch element with a control connection, a control voltage generated using a gate-auxiliary emitter voltage being applied to said control connection of the voltage-controlled switch element.
8. The protective device according to claim 7, wherein the gate-auxiliary emitter voltage is applied to said control connection of said voltage-controlled switch element via said timing element.
9. A configuration, comprising:
a voltage-controlled semiconductor switch having a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection;
a protective device having a voltage-limiting device for limiting a voltage between said gate connection and said power emitter connection and a deactivation device connected to said voltage-limiting device and deactivating said voltage-limiting device during a switch-on of said voltage-controlled semiconductor switch, said deactivation device having at least one timing element, wherein a time constant of said timing element at least also determines a duration of a deactivation of said voltage-limiting device after a sudden change in a gate-auxiliary emitter voltage; and
an activation circuit for activating said voltage-controlled semiconductor switch, said activation circuit connected to said gate connection and said auxiliary emitter connection and controls said voltage-controlled semiconductor switch by means of a gate-auxiliary emitter voltage.
10. A method for protecting a voltage-controlled semiconductor switch equipped with a gate connection, a power emitter connection, an auxiliary emitter connection and a collector connection, which comprises the steps of:
limiting a voltage between the gate connection and the power emitter connection via a voltage-limiting device when the voltage-controlled semiconductor switch is fully switched on; and
deactivating the voltage-limiting device via a deactivation device during a switching-on period of the voltage-controlled semiconductor switch, the deactivation device having at least one timing element, wherein a time constant of the timing element at least also determines a duration of a deactivation of the voltage-limiting device after a sudden change in a gate-auxiliary emitter voltage.
11. The method according to claim 10, which further comprises:
monitoring a voltage between the gate connection and the auxiliary emitter connection for a sudden voltage change; and
deactivating the voltage-limiting device in an event of the sudden voltage change occurring.
US14/356,662 2011-11-07 2011-11-07 Protective device for a voltage-controlled semiconductor switch Active US9412853B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/069523 WO2013068028A1 (en) 2011-11-07 2011-11-07 Protective device for a voltage-controlled semiconductor switch

Publications (2)

Publication Number Publication Date
US20140320198A1 US20140320198A1 (en) 2014-10-30
US9412853B2 true US9412853B2 (en) 2016-08-09

Family

ID=45092330

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/356,662 Active US9412853B2 (en) 2011-11-07 2011-11-07 Protective device for a voltage-controlled semiconductor switch

Country Status (5)

Country Link
US (1) US9412853B2 (en)
EP (1) EP2756598B1 (en)
CN (1) CN104025455B (en)
CA (1) CA2854544C (en)
WO (1) WO2013068028A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10734882B2 (en) 2018-02-09 2020-08-04 Delta Electronics, Inc. Conversion circuit
US10784768B2 (en) 2018-02-09 2020-09-22 Delta Electronics, Inc. Conversion circuit and conversion circuitry
US10784770B2 (en) 2018-02-09 2020-09-22 Delta Electronics, Inc. Conversion circuit
US11309887B2 (en) 2018-02-09 2022-04-19 Delta Electronics, Inc. Conversion circuit
US10784795B1 (en) * 2019-08-21 2020-09-22 Delta Electronics, Inc. Conversion circuit
EP3683941A3 (en) * 2018-12-28 2020-10-07 Delta Electronics, Inc. Conversion circuit

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636713A (en) * 1983-12-20 1987-01-13 Sgs-Ates Componenti Elettronici S.P.A. Monolithically integratable control circuit for switching inductive loads comprising a Darlington-type final stage
US5202619A (en) * 1990-09-05 1993-04-13 Fuji Electric Co., Ltd. Control circuit for a switching transistor
EP0814564A1 (en) 1996-06-20 1997-12-29 ANSALDO INDUSTRIA S.p.A. Electronic switching circuit with reduction of switching transients
EP1191692A1 (en) 2000-02-25 2002-03-27 Mitsubishi Denki Kabushiki Kaisha Power module
US20050068080A1 (en) * 2003-09-26 2005-03-31 Yew-San Lee Timing-flexible flip-flop element
US20050088216A1 (en) 2003-08-28 2005-04-28 Infineon Technologies Ag Circuit arrangement having a load transistor and a voltage limiting circuit and method for driving a load transistor
CN101150250A (en) 2006-09-21 2008-03-26 丹佛斯压缩机有限责任公司 Electric circuit providing protection from transients
WO2009103584A1 (en) 2008-02-22 2009-08-27 Continental Automotive Gmbh Method and device for operating a switching unit
CN101882864A (en) 2010-06-25 2010-11-10 杭州矽力杰半导体技术有限公司 Electrifying startup circuit and electrifying startup method thereof
WO2011052398A1 (en) * 2009-10-26 2011-05-05 日産自動車株式会社 Driving circuit for switching element and power converter
CN102088280A (en) 2009-12-07 2011-06-08 株式会社电装 Device for driving switching elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042950A (en) * 2006-08-01 2008-02-21 Mitsubishi Electric Corp Power transformer

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636713A (en) * 1983-12-20 1987-01-13 Sgs-Ates Componenti Elettronici S.P.A. Monolithically integratable control circuit for switching inductive loads comprising a Darlington-type final stage
US5202619A (en) * 1990-09-05 1993-04-13 Fuji Electric Co., Ltd. Control circuit for a switching transistor
EP0814564A1 (en) 1996-06-20 1997-12-29 ANSALDO INDUSTRIA S.p.A. Electronic switching circuit with reduction of switching transients
US6054890A (en) 1996-06-20 2000-04-25 Ansaldo Sistemi Industriali S.P.A. Electronic switching circuit with reduction of switching transients
EP1191692A1 (en) 2000-02-25 2002-03-27 Mitsubishi Denki Kabushiki Kaisha Power module
CN1348626A (en) 2000-02-25 2002-05-08 三菱电机株式会社 Power module
US20050088216A1 (en) 2003-08-28 2005-04-28 Infineon Technologies Ag Circuit arrangement having a load transistor and a voltage limiting circuit and method for driving a load transistor
US20050068080A1 (en) * 2003-09-26 2005-03-31 Yew-San Lee Timing-flexible flip-flop element
CN101150250A (en) 2006-09-21 2008-03-26 丹佛斯压缩机有限责任公司 Electric circuit providing protection from transients
US8063597B2 (en) 2006-09-21 2011-11-22 Secop Gmbh Electric circuit providing protection from transients
WO2009103584A1 (en) 2008-02-22 2009-08-27 Continental Automotive Gmbh Method and device for operating a switching unit
WO2011052398A1 (en) * 2009-10-26 2011-05-05 日産自動車株式会社 Driving circuit for switching element and power converter
CN102088280A (en) 2009-12-07 2011-06-08 株式会社电装 Device for driving switching elements
US20110133790A1 (en) * 2009-12-07 2011-06-09 Denso Corporation Device for driving switching elements
US8350601B2 (en) 2009-12-07 2013-01-08 Denso Corporation Device for driving switching elements
CN101882864A (en) 2010-06-25 2010-11-10 杭州矽力杰半导体技术有限公司 Electrifying startup circuit and electrifying startup method thereof
US8531851B2 (en) 2010-06-25 2013-09-10 Silergy Semiconductor Technology (Hangzhou) Ltd. Start-up circuit and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Schumann et al.: "Influence of the Gate Drive on the Short-Circuit Type II and Type III Behaviour of HV-IGBT" University of Rostock, Germany PCIM2010 May 4-6, 2010, Nuremberg, Germany VDE-Verlag Berlin pp. 709-714 ISBN: 978-3-8007-3229-6.

Also Published As

Publication number Publication date
EP2756598B1 (en) 2019-10-30
CN104025455A (en) 2014-09-03
CA2854544C (en) 2019-12-31
EP2756598A1 (en) 2014-07-23
CA2854544A1 (en) 2013-05-16
WO2013068028A1 (en) 2013-05-16
US20140320198A1 (en) 2014-10-30
CN104025455B (en) 2018-07-20

Similar Documents

Publication Publication Date Title
US10199916B2 (en) Resistor emulation and gate boost
CA2840440C (en) Short circuit protection circuit and method for insulated gate bipolar transistor
US9412853B2 (en) Protective device for a voltage-controlled semiconductor switch
US7710187B2 (en) Gate drive circuit
US7940503B2 (en) Power semiconductor arrangement including conditional active clamping
JP5452549B2 (en) Power module
US8780516B2 (en) Systems, methods, and apparatus for voltage clamp circuits
US20060044025A1 (en) Power transistor control device
TW201320517A (en) Systems and methods for protecting power conversion systems under open and/or short circuit conditions
US8937823B2 (en) Circuit and method for protecting a controllable power switch
JP2014508496A (en) System and method for operating an inverter
JP2018057105A (en) Semiconductor drive device and power converter using the same
JP2015202034A (en) Gate drive circuit of voltage-driven power semiconductor device
CN114977753B (en) Active clamping method, circuit and power conversion equipment
US11545972B2 (en) Overcurrent protection circuit for switching element turned on and off based on control voltage
JP5527353B2 (en) Gate drive circuit
JP2019110431A (en) Semiconductor device and power module
TWI459673B (en) Power switch series circuit, control method thereof, and multilevel power conversion apparatus
Hemmer Intelligent IGBT drivers with exceptional driving and protection features
JP2017224999A (en) Protection circuit of semiconductor switching element
US11824526B2 (en) Circuit and control method for preventing false turn-on of semiconductor switching device
JP6298735B2 (en) Semiconductor drive device and power conversion device using the same
JP6166790B2 (en) System and method for control of power semiconductor devices
JP2018088728A (en) Gate drive circuit
JP2006014402A (en) Overcurrent protector of power converter

Legal Events

Date Code Title Description
AS Assignment

Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ECKEL, HANS-GUENTER;PIERSTORF, STEFFEN;SIGNING DATES FROM 20140428 TO 20140429;REEL/FRAME:032960/0290

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AKTIENGESELLSCHAFT;REEL/FRAME:055950/0027

Effective date: 20210228

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8