WO2013067732A1 - 一种纳米材料-介质-纳米材料结构的电子发射源 - Google Patents

一种纳米材料-介质-纳米材料结构的电子发射源 Download PDF

Info

Publication number
WO2013067732A1
WO2013067732A1 PCT/CN2011/083983 CN2011083983W WO2013067732A1 WO 2013067732 A1 WO2013067732 A1 WO 2013067732A1 CN 2011083983 W CN2011083983 W CN 2011083983W WO 2013067732 A1 WO2013067732 A1 WO 2013067732A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
layer
nanomaterial
dielectric
oxide
Prior art date
Application number
PCT/CN2011/083983
Other languages
English (en)
French (fr)
Inventor
郭太良
叶芸
王灵婕
林志贤
张永爱
胡利勤
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2013067732A1 publication Critical patent/WO2013067732A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/312Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of metal-insulator-metal [MIM] type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Definitions

  • the invention belongs to the field of vacuum electronic technology and relates to the field of flat panel display, in particular to an electron emission source of a nano material-medium-nanomaterial (NIN) structure.
  • Background technique
  • Field emission display is a new type of flat panel display. It is a vacuum display with a planar field emission array cathode as the electron source and a phosphor as a luminescent material. Compared with other types of displays, field emission displays have high-definition image quality of cathode ray tube display (CRT), thinness of liquid crystal display (LCD) and large area of plasma display (PDP). Set in one.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP large area of plasma display
  • the FED's outstanding performance includes: small size, light weight, low operating energy, long life, good image quality, high brightness, high resolution, full color, multiple gray levels, high response speed, no viewing angle limitation, work Wide temperature range, simple structure, no need to heat the filament, deflection coil and other components, simple process, low-cost large-scale production, rich image grayscale and dynamic range, no polarized light, no harmful X-rays Radiation, anti-magnetic field interference, active illumination.
  • the FED is a high-vacuum device, and the gas emitted by the electron bombardment phosphor not only reacts with the emitter, but also lowers the degree of vacuum, resulting in a decrease in electron emission efficiency.
  • the field emitter array is the most important and difficult component in vacuum microelectronic devices. According to the material and structure of the cathode, it can be divided into the following categories: metal field emission materials, silicon field emission materials, diamond film and diamond-like film field emission materials, GaAs and GaN field emission materials, and field emission of carbon nanotubes. Materials, surface conduction type (SED) field emission materials, ballistic electron emission materials, and oxide field emission materials.
  • SED surface conduction type
  • the main problems existing in metal field emission materials are low cathode emission current density and unstable operation. In order to obtain a sufficiently large current at a very low voltage, a sufficiently sharp microtip is generally used, which is highly demanding in the preparation process. , the cost is also very high, so in the large screen display, this technology is rarely used.
  • the silicon field emission material has high surface work function due to silicon, and its conductivity and thermal conductivity are poor. This inevitably leads to a higher threshold voltage of the silicon tip cone cathode array, poor heat dissipation performance, contamination and emission current. Problems such as stabilization, and the use of isotropic plasma etching to improve its characteristics, but the effect is not good. Consisting of metal-insulator-metal (MIM) and metal-insulator-semiconductor-metal (MISM) multilayer films
  • MIM metal-insulator-metal
  • MIMD metal-insulator-semiconductor-metal
  • the field emission device can work under low vacuum, and has the characteristics of low working voltage, good emission uniformity and small electron emission angle, but its emission efficiency is small, far lower than the practical requirements, for the dielectric layer and the metal layer. Materials are demanding. Materials with low affinity are easy to obtain a relatively large emissivity, but the probability of puncture is low, and it is easy to cause breakdown of the dielectric layer.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide an electron emission source of a nano material-medium-nanomaterial (NIN) structure, which is not only simple in process, high in electron emission efficiency, but also uniform in electron emission and stable. Reliable, with low modulation voltage.
  • NIN nano material-medium-nanomaterial
  • the electron-emitting source of the nanomaterial-medium-nanomaterial structure of the present invention is provided with a plurality of lateral strip-shaped electron-emitting layers 2 spaced apart on the surface and the side surface of the substrate 1 of the organic or inorganic material, and is provided on the electron-emitting layer 2
  • the dielectric conductive layer 3 is provided with an electron-transmissive layer 4 of nano material on the dielectric conductive layer 3.
  • the electron-emitting layer 2 made of a nano material has a function of conducting and emitting electrons.
  • the electron emission layer 2 and the electron transmission layer 4 are two-dimensional nano materials or one-dimensional nano materials; the one-dimensional nano materials are nanowires, nanotubes, nanobelts, and have a diameter of l-200 nm and a length of 0.01-20 ⁇ m. .
  • the electron emission layer 2 has a thickness of 10 to 1000 nm ; the electron transmission layer 4 has a thickness of 10 to 200 nm ; and the electron transmission layer nano material covers 30 to 70% of the surface area of the electron transmission layer.
  • the electron emission layer 2 and the electron transmission layer 4 are graphene, carbon nanotubes (CNT), zinc oxide (ZnO), tin oxide (Sn0 2 ), magnesium oxide (MgO), copper oxide (CuO), and titanium oxide ( Ti0 2 ), manganese oxide (Mn0 2 ), iron oxide (Fe 2 0 3 ), cobalt oxide (CoO), nickel oxide (NiO), silver oxide (Ag 2 0), tungsten oxide (WO), lead oxide (PbO) a composite material composed of a nano material or a plurality of nano materials of bismuth oxide (Bi 2 0 3 ), aluminum nitride (A1 2 N 3 ).
  • the electron-emitting layer 2 and the electron-transmissive layer 4 are prepared by one of in-situ growth method, sol-gel method, hydrothermal method, thermal evaporation method, chemical vapor deposition method, screen printing method, and spin coating method. .
  • the dielectric conductive layer 3 is a dense material having a thickness of 10 to 500 nm or a porous porous material having a pore diameter of 10 to 20 nm and a thickness of 10 to 500 nm.
  • the material of the dielectric conductive layer 3 is silicon oxide (SiO 2 ), silicon nitride (Si 3 N 4 ), aluminum oxide (A1 2 0 3 ), tantalum pentoxide (Ta 2 0 5 ), titanium oxide (Ti0). 2 ), one of magnesium oxide (MgO).
  • the preparation method of the dielectric conductive layer 3 is one of an anodic oxidation method, a chemical vapor deposition method, a sputtering coating method, and an evaporation coating method.
  • the inorganic substrate is ordinary transparent glass, quartz glass, Si wafer, SiC substrate or A1N ceramic substrate.
  • the organic substrate is polyvinyl chloride, polytetrafluoroethylene, phenolic resin, epoxy resin, polyester resin, glass fiber cloth based CCL epoxy resin, bismaleimide modified triazine resin, polyamide An amine resin, a diphenylene ether resin, a styrene-maleic anhydride copolymer resin, a polyisocyanate resin or a polyolefin resin.
  • nanomaterials as electron-emitting layers can increase the emission current density.
  • the electron-transmissive layer of porous and loose nano-materials can reduce the scattering of electrons on the upper electrode, accelerate the transmission of electrons, and improve the electron emission efficiency.
  • nano-materials as electrodes can prevent the metal atoms of the upper electrode from entering the dielectric layer, improve the withstand voltage of the dielectric conductive layer, and avoid the influence of the upper electrode sputtering and etching processes on the withstand voltage performance of the dielectric film.
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Fig. 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Fig. 3 is a schematic structural view of Embodiment 3 of the present invention. detailed description
  • a plurality of horizontal strips of electron emission layers 2 are arranged side by side on the substrate 1 , and each of the electron emission layers 2 is provided with a dielectric conduction layer 3 .
  • the conductive layer 3 is provided with a plurality of longitudinally strip-shaped electron-transmissive layers 4 provided with nanomaterials.
  • An electron-emitting layer is prepared on the lower substrate 11 in the ordinary transparent glass.
  • the CNT paste was printed onto a plain transparent glass substrate 11 using a 250 mesh nylon mesh.
  • a dielectric conductive layer 13 is formed on the conductive electron emission layer 12.
  • the dielectric conductive layer 13 is formed by magnetron sputtering of the MgO target, and the dielectric conductive layer 13 covers the surface of the electron-emitting layer with a thickness of 10-300 nm.
  • An electron-transmissive layer 14 is prepared on the dielectric layer.
  • the patterned graphene solution is applied to the dielectric conductive layer 13 by spin coating.
  • the electron-transmissive layer has an area coverage of 40% on the surface of the dielectric conductive layer and a thickness of 100 nm.
  • An electron-emitting layer was prepared using quartz SiO 2 glass as the lower substrate 21.
  • the quartz Si0 2 glass is selected as the lower substrate 21, and the CrCu conductive film is first magnetron-sputtered on the lower substrate 21; the thickness is 300 nm.
  • the prepared reticle was placed on the CrCu film layer and exposed to ultraviolet light for 60 s on a 4.4 mW/cm 2 lithography machine.
  • the Si 3 N 4 dielectric conductive layer 23 is formed by chemical vapor deposition (CVD) through SiH 4 NH 3 N 2 , and has a thickness of 10-300 nm.
  • the electron transmission layer has a coverage of about 50% and a thickness of 200 nm.
  • Polyvinyl chloride PVC is used as the lower substrate 31, and a graphene electron-emitting layer is first formed on the lower substrate 31 by spin coating to have a thickness of 10-50 nm.
  • the specific process is as follows:
  • the prepared reticle is covered on the photosensitive graphene layer and exposed to a 4.4 mW/cm 2 lithography machine for 70 s.
  • a dielectric conductive layer 33 is formed on the conductive electron emission layer 32.
  • the porous A1 2 0 3 prepared by the anodic oxidation method is preferably coated on the electron emission layer, and the pore diameter of the A1 2 0 3 is 5-10 nm, and the thickness is 300.
  • An electron-transmissive layer 34 is prepared on the dielectric conductive layer.
  • a CNT slurry is screen printed on a dielectric conductive layer film, and after sintering at 350 ° C, a loose nano-electron transmitting layer 34 is formed.
  • the electron transmissive layer has a coverage of 60% on the surface of the dielectric conducting layer and a thickness of 300 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

本发明公开了一种纳米材料-介质-纳米材料(NIN)结构的电子发射源,其是在有机或无机材质的基板1上设置电子发射源,即依次设有纳米材料电子发射层2、介质传导层3、纳米材料电子透射层4。此电子发射源不仅工艺简单,电子发射效率高,而且电子发射均匀,稳定、可靠,具有调制电压低的特点。

Description

一种纳米材料-介质-纳米材料结构的电子发射源
技术领域
本发明属于真空电子技术领域,涉及平板显示领域, 特别涉及一种纳米材料 -介质-纳米材料 (NIN) 结构的电子发射源。 背景技术
场发射显示器 (Field emission display, FED ) 是一种新型平板显示器, 是以 平面场发射阵列阴极为电子源, 荧光粉作为发光物质, 用矩阵选址方式控制的真 空显示器。相对其他种类的显示器,场致发射显示器将阴极射线管显示屏(CRT) 的高清晰的图象质量, 液晶显示屏 (LCD) 的薄度以及等离子体显示屏 (PDP) 的大面积性等优点集于一身。 FED具有的优异性能有: 体积小、 重量轻、 工作 能耗低、 使用寿命长、 图像质量好、 高亮度、 高分辨率、 全彩色、 多灰度、 高响 应速度、 没有视角的限制、 工作温度范围比较宽、 结构简单、 无需加热灯丝,偏 转线圈等零部件, 工艺简单, 可以实现低成本大规模的生产, 图像灰度和动态范 围丰富, 不需要偏振光、 无对人体有害的 X射线辐射、 抗磁场干扰、 主动发光。 但是 FED是一种高真空器件, 电子轰击荧光粉所放出的气体不仅会与发射体反 应, 而且会降低真空度, 从而导致电子发射效率的下降。
场发射体阵列是真空微电子器件中最重要也是最难作的元件。根据阴极的材 料和结构分为以下几大类: 金属场致发射材料、硅场致发射材料, 金刚石薄膜和 类金刚石薄膜场致发射材料、 GaAs和 GaN场致发射材料、碳纳米管场致发射材 料、 表面传导型 (SED)场致发射材料、 弹道电子发射材料和氧化物场致发射材 料等。金属场致发射材料目前存在的主要问题是阴极发射电流密度低和工作不稳 定, 为了能在很低的电压下获得足够大的电流, 一般采用足够尖的微尖, 这对制 备工艺要求很高, 成本也很高, 所以在大屏幕显示方面, 很少用此技术。 硅场致 发射材料由于硅本身的表面功函数高,而且其导电、 导热性都较差, 这必然导致 硅尖锥阴极阵列发射阈值电压较高、散热性能较差, 易受污染且发射电流不稳定 等问题, 目前有使用各向同性等离子蚀刻等方法来改善其特性, 但效果还不佳。 由金属-绝缘体 -金属(MIM)和金属-绝缘体-半导体 -金属 (MISM)多层薄膜构成的 场致发射器件能够在低真空下工作, 且具有工作电压低, 发射均匀性好和电子发 射角小等特点, 但其发射效率小, 远低于实用化的要求, 对介质层和金属层的材 料要求苛刻。 亲和势低的材料容易获得比较大的发射率, 然而遂穿几率低, 且容 易造成介质层的击穿。
综上所述, 有必要提供一种新型的场致发射电子源, 能在低真空度下工作, 具有较高的发射效率, 满足高分辨显示的需要, 实现在较低的驱动电压下工作。 一维的纳米材料由于具有较大的长径比, 小的尖端曲率半径, 当在外加电场作用 下,其尖端就会产生很强的局域电场, 该局域电场可以使电子通过纳米材料的尖 端遂穿到真空, 产生场发射电流。而且容易实现大面积制备, 可以作为电子源的 理想材料。 发明内容
本发明的目的在于克服现有技术的不足, 提供一种纳米材料-介质-纳米材料 (NIN) 结构的电子发射源, 该电子发射源不仅工艺简单, 电子发射效率高, 而 且电子发射均匀, 稳定、 可靠, 具有调制电压低的特点。
为实现上述目的, 本发明采用的技术方案是:
本发明的纳米材料-介质-纳米材料结构的电子发射源是在有机或无机材质 的基板 1表面和侧面上间隔并排设有数个横向条状的电子发射层 2, 在电子发射 层 2上设有介质传导层 3, 在介质传导层 3上设有纳米材料的电子透射层 4。 采 用纳米材料制作的电子发射层 2, 具有电极传导和发射电子的功能。
所述电子发射层 2和电子透射层 4是二维纳米材料或一维纳米材料;所述的 一维纳米材料是纳米线、 纳米管、 纳米带, 直径是 l-200nm, 长度是 0.01-20μηι。
所述电子发射层 2的厚度是 10〜1000nm; 电子透射层 4的厚度是 10〜 200nm; 所述电子透射层纳米材料覆盖电子透射层表面面积的 30〜70%。
所述电子发射层 2和电子透射层 4是石墨烯, 碳纳米管 (CNT ) , 氧化锌 (ZnO ), 氧化锡 (Sn02), 氧化镁 (MgO), 氧化铜 (CuO), 氧化钛 (Ti02), 氧化锰 (Mn02),氧化铁(Fe203),氧化钴(CoO),氧化镍(NiO),氧化银(Ag20), 氧化钨 (WO), 氧化铅 (PbO), 氧化铋 (Bi203 ), 氮化铝 (A12N3 ) 中的一种 纳米材料或多种纳米材料构成的复合材料。 所述电子发射层 2和电子透射层 4的制备方法是原位生长法,溶胶-凝胶法, 水热法, 热蒸发法, 化学气相沉积法, 丝网印刷, 旋涂法中的一种。
所述介质传导层 3是厚度是 10〜500nm的致密材料或孔径是 l〜20nm, 厚 度是 10〜500nm的疏松多孔材料。
所述介质传导层 3的材料是氧化硅(Si02),氮化硅(Si3N4),氧化铝(A1203 ), 五氧化二钽 (Ta205), 氧化钛 (Ti02), 氧化镁 (MgO) 中的一种。
所述介质传导层 3的制备方法是阳极氧化法,化学气相沉积法,溅射镀膜法, 蒸发镀膜法中的一种。
所述无机基板是普通透明玻璃、石英玻璃, Si片, SiC基板或 A1N陶瓷基板。 所述有机基板是聚氯乙烯, 聚四氟乙烯、 酚醛树脂、 环氧树脂、 聚酯树脂、 玻璃纤维布基 CCL有环氧树脂、 双马来酰亚胺改性三嗪树脂、 聚酰亚胺树脂、二 亚苯基醚树脂、 苯乙烯-马来酸酐共聚物树脂、 聚异氰酸酯树脂或聚烯烃树脂。
本发明的显著优点在于:
( 1 ) 采用纳米材料作为电子发射层, 可以提高发射电流密度。
(2)孔状、疏松的纳米材料的电子透射层, 可以减小电子在上电极的散射, 加速电子的透射, 提高电子发射效率。
(3 ) 采用纳米材料作为电极可以避免上电极的金属原子进入介质层, 提高 介质传导层的耐压作用, 同时也避免了上电极溅射、刻蚀等工艺对介质薄膜耐压 性能的影响。
(4) 电子源的调制电压低、 电子发射稳定可靠。 附图说明
图 1为本发明实施例 1的结构示意图。
图 2为本发明实施例 2的结构示意图。
图 3为本发明实施例 3的结构示意图。 具体实施方式
请参阅图 1,本发明的 NIN电子发射源,所述基板 1上间隔并排设有数个横 向条状的电子发射层 2, 所述各电子发射层 2上设有介质传导层 3, 所述介质传 导层 3上设有数个纵向条状的设有纳米材料的电子透射层 4。
实施例 1
( 1 ) 在普通透明玻璃为下基板 11制备电子发射层。
①首先配置 CNT (直径: 10 nm; 长度: 10 μηι)浆料, 将 CNT与硝化棉(粘 度 2000 s) 放入乙酸丁酯中, 搅拌 10 min。
②溶液置于小超声分散清洗机中, 在 40 W超声功率和 50 °C加热温度下分 散 30 min。
③采用 250目尼龙丝网, 将 CNT浆料印刷到普通透明玻璃基板 11。
④在 300-400°C下烧结 1 h以除去浆料中的有机物质, 制备得条状的电子发 射层 12, 厚度为 50-200 nm。
(2)在导电电子发射层 12上形成介质传导层 13。通过磁控溅射 MgO靶材, 形成介质传导层 13,该介质传导层 13为整面覆盖电子发射层表面,厚度为 10-300 nm。
( 3 ) 在介质层上制备电子透射层 14。
①将配置好的石墨烯溶液采用旋涂法涂敷到介质传导层 13上。
②在 300-400°C下烧结 15-30 min以除去浆料中的有机物质, 形成电子透射 层 14。 该电子透射层在介质传导层表面的面积覆盖度为 40%, 厚度为 100 nm。 实施例 2
( 1 ) 以石英 Si02玻璃为下基板 21制备电子发射层。
①选用石英 Si02玻璃为下基板 21, 首先在下基板 21上磁控溅射 CrCu导电 薄膜; 厚度为 300 nm。
②旋涂光刻胶, 80-12CTC烘干 20-30 min, 自然冷却至室温。
③将制备好的掩模版盖在 CrCu膜层上, 在光强为 4.4 mW/cm2光刻机上紫 外线曝光 60s。
④用浓度为 1%的 Na2C03溶液显影, 除去未被光固化的感光胶。
⑤在烘箱中进行烘烤, 在 100-15CTC下烘烤 30 min。
⑥先在三氯化铁溶液刻蚀 Cu电极 l-2min; 然后在高锰酸钾溶液中刻蚀 Cr 电极 3-7min。
⑦在热碱溶液中去除光刻胶, 获得所需的图形。 ⑧将镀有 Cu金属的石英 Si02玻璃基板在大气下 400-60CTC烘烤 3-6 h,原位 生长 CuO 纳米线, 直径约为 40-60 nm, 长度约为 5-10 μηι
(2) 在导电电子发射层 22上形成介质传导层 23
本实施例优选通过 SiH4 NH3 N2, 采用化学气相沉积 (CVD ) 形成 Si3N4 介质传导层 23, 厚度为 10-300 nm
( 3 ) 在介质层上制备电子透射层 24
①在介质薄膜上掩模溅射 Mg金属 5-10 nm
②在 400-60CTC的含 02的大气环境下生长 2-3 h, 形成疏松的 MgO纳米线 电子透射层 24。 该电子透射层的覆盖度约为 50%, 厚度为 200 nm
实施例 3
( 1 ) 在聚氯乙烯 PVC为下基板 31的表面制备电子发射层 32
①选用聚氯乙烯 PVC为下基板 31, 首先在下基板 31上采用旋涂的方法制 备石墨烯电子发射层, 厚度为 10-50nm。, 具体过程如下:
②将石墨烯、质量百分数为 0.5%低熔点玻璃和质量百分数 95%有机浆料(含 光敏单体和光引发剂) 混合在一起, 均匀配制成石墨烯感光浆料。
③利用旋涂工艺将感光石墨烯浆料转移至聚氯乙烯 PVC基板表面,恒温 120 V 烘烤 35min, 冷却至室温。
④将制备好的掩模版盖在感光石墨烯层上, 在光强为 4.4 mW/cm2光刻机上 曝光 70 s
⑤用浓度为 1%的 Na2C03溶液显影, 除去未被光固化的感光石墨烯。
⑥在 430°C下烧结 30 min, 除去石墨烯层中的有机浆料。
( 2) 在导电电子发射层 32上形成介质传导层 33。 本实施例优选阳极氧化 法制备的多孔 A1203, 直接覆盖在电子发射层上, A1203的孔径为 5-10 nm, 厚度 为 300
( 3 )在介质传导层上制备电子透射层 34。 本实施例采用在介质传导层薄膜 上丝网印刷 CNT浆料, 经 350 °C烧结后, 形成疏松的纳米电子透射层 34。 该电 子透射层在介质传导层表面的覆盖度为 60%, 厚度为 300 nm
以上是本发明的较佳实施例, 凡依本发明技术方案所作的改变, 所产生的功 能作用未超出本发明技术方案的范围时, 均属于本发明的保护范围。

Claims

权利要求书
1、 一种纳米材料-介质-纳米材料结构的电子发射源, 其特征在于: 在有机或无 机材质的基板上设置有能产生隧穿效应的电子源; 所述的电子源由电子发射层, 介质传导层和电子透射层构成; 所述电子发射层平铺在基板表面, 介质传导层平 铺在电子发射层表面, 电子透射层连续或非连续平铺在介质传导层表面。
2、 根据权利要求 1所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述电子发射层和电子透射层是二维纳米材料或一维纳米材料; 所述的一 维纳米材料是纳米线、 纳米管、 纳米带, 直径是 l-200nm, 长度是 0.01-20μηι。
3、 根据权利要求 2所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于:所述电子发射层的厚度是 10〜1000nm; 电子透射层的厚度是 10〜200nm; 所述电子透射层纳米材料覆盖电子透射层表面面积的 30〜70 %。
4、 根据权利要求 2所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述电子发射层和电子透射层是石墨烯, 碳纳米管, 氧化锌, 氧化锡,氧 化镁, 氧化铜, 氧化钛, 氧化锰, 氧化铁, 氧化钴, 氧化镍, 氧化银, 氧化钨, 氧化铅, 氧化铋, 氮化铝中的一种纳米材料或多种纳米材料构成的复合材料。
5、 根据权利要求 2所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述电子发射层和电子透射层的制备方法是原位生长法, 溶胶-凝胶法, 水热法, 热蒸发法, 化学气相沉积法中的一种。
6、 根据权利要求 1所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述介质传导层是厚度是 10〜500nm的致密材料或孔径是 l〜20nm, 厚 度是 10〜500nm的疏松多孔材料。
7、 根据权利要求 6所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述介质传导层的材料是氧化硅,氮化硅, 氧化铝, 五氧化二钽, 氧化钛, 氧化镁中的一种。
8、 根据权利要求 6所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于:所述介质传导层的制备方法是阳极氧化法,化学气相沉积法,溅射镀膜法, 蒸发镀膜法中的一种。
9、 根据权利要求 1所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述无机基板是普通透明玻璃、石英玻璃, Si片, SiC基板或 A1N陶瓷基 板。
10、根据权利要求 1所述的纳米材料-介质-纳米材料结构的电子发射源, 其特征 在于: 所述有机基板是聚氯乙烯, 聚四氟乙烯、酚醛树脂、环氧树脂、聚酯树脂、 玻璃纤维布基 CCL有环氧树脂、 双马来酰亚胺改性三嗪树脂、 聚酰亚胺树脂、二 亚苯基醚树脂、 苯乙烯-马来酸酐共聚物树脂、 聚异氰酸酯树脂或聚烯烃树脂。
PCT/CN2011/083983 2011-11-08 2011-12-14 一种纳米材料-介质-纳米材料结构的电子发射源 WO2013067732A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110348994.2 2011-11-08
CN201110348994.2A CN102509679B (zh) 2011-11-08 2011-11-08 一种纳米材料-介质-纳米材料结构的电子发射源

Publications (1)

Publication Number Publication Date
WO2013067732A1 true WO2013067732A1 (zh) 2013-05-16

Family

ID=46221748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083983 WO2013067732A1 (zh) 2011-11-08 2011-12-14 一种纳米材料-介质-纳米材料结构的电子发射源

Country Status (2)

Country Link
CN (1) CN102509679B (zh)
WO (1) WO2013067732A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102988120B (zh) * 2012-12-26 2015-10-14 中国科学院物理研究所 一种基于纳米石墨烯隧穿效应的人造皮肤及其制备方法
CN104392875B (zh) * 2014-10-20 2017-01-18 西安交通大学 一种纳米硅/氮化硅薄膜型电子源及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333496A (ja) * 1993-05-25 1994-12-02 Matsushita Electric Works Ltd 電子放出素子
JPH0785800A (ja) * 1993-09-14 1995-03-31 Oki Electric Ind Co Ltd ガス放電表示パネルの陰極及びその作成方法
CN1707725A (zh) * 2004-06-11 2005-12-14 清华大学 场发射装置及其制造方法
CN102157315A (zh) * 2011-03-21 2011-08-17 福州大学 基于石墨烯/氧化锌纳米线复合材料的发射阴极及其制备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044822B2 (en) * 2002-12-20 2006-05-16 Samsung Sdi Co., Ltd. Method of manufacturing a field emission device utilizing the sacrificial layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06333496A (ja) * 1993-05-25 1994-12-02 Matsushita Electric Works Ltd 電子放出素子
JPH0785800A (ja) * 1993-09-14 1995-03-31 Oki Electric Ind Co Ltd ガス放電表示パネルの陰極及びその作成方法
CN1707725A (zh) * 2004-06-11 2005-12-14 清华大学 场发射装置及其制造方法
CN102157315A (zh) * 2011-03-21 2011-08-17 福州大学 基于石墨烯/氧化锌纳米线复合材料的发射阴极及其制备

Also Published As

Publication number Publication date
CN102509679A (zh) 2012-06-20
CN102509679B (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP3632682B2 (ja) 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
US8529798B2 (en) Process for improving the emission of electron field emitters
US6991949B2 (en) Manufacturing method of an electron emitting apparatus
JP5090917B2 (ja) 活性化させないカーボンナノチューブによる電界放出の増強法
US20050231091A1 (en) Process for improving the emission of electron field emitters
US20060238095A1 (en) Carbon nanotube, electron emission source including the carbon nanotube, electron emission device including the electron emission source, and method of manufacturing the electron emission device
JP2003168355A (ja) 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
US20060226763A1 (en) Display device with electron emitters and method for making the same
JP2008105922A (ja) カーバイド誘導炭素、冷陰極用電子放出源及び電子放出素子
Park et al. Screen printed carbon nanotube field emitter array for lighting source application
WO2013067732A1 (zh) 一种纳米材料-介质-纳米材料结构的电子发射源
JP3581296B2 (ja) 冷陰極及びその製造方法
JP2003249166A (ja) 電子放出体の製造方法、冷陰極電界電子放出素子の製造方法、並びに、冷陰極電界電子放出表示装置の製造方法
JP3633598B2 (ja) 電子放出素子の製造方法及び表示装置の製造方法
JP2004253307A (ja) 表示装置
JP2003115259A (ja) 電子放出装置及びその製造方法、冷陰極電界電子放出素子及びその製造方法、冷陰極電界電子放出表示装置及びその製造方法、並びに、薄膜のエッチング方法
KR20050115057A (ko) 전계 방출 소자용 장수명 이미터 및 그 제조 방법
CN100561652C (zh) 环内栅控型阴极结构的平板显示器及其制作工艺
TWI252562B (en) Pattern formation method of carbon nanotube
KR100809526B1 (ko) 플라즈마 표면 개질에 의한 금속 자성체 나노와이어를포함하는 전계방출 표시소자와 그 제조방법
JP4984130B2 (ja) ナノカーボンエミッタとその製造方法並びに面発光素子
JP3661683B2 (ja) 電子放出素子の製造方法及び表示装置の製造方法
JP5476751B2 (ja) ナノカーボンエミッタ及びその製造方法並びにそれを用いた面発光素子
Li et al. A FED prototype using patterned DLC thin films as the cathode
JP2008214137A (ja) らせん状ナノ炭素材料複合体及びその製造方法並びにそれを用いた電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875475

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875475

Country of ref document: EP

Kind code of ref document: A1