WO2013067707A1 - 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆 - Google Patents

轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆 Download PDF

Info

Publication number
WO2013067707A1
WO2013067707A1 PCT/CN2011/082076 CN2011082076W WO2013067707A1 WO 2013067707 A1 WO2013067707 A1 WO 2013067707A1 CN 2011082076 W CN2011082076 W CN 2011082076W WO 2013067707 A1 WO2013067707 A1 WO 2013067707A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnet
pressure
tire
contact
relay switch
Prior art date
Application number
PCT/CN2011/082076
Other languages
English (en)
French (fr)
Inventor
陈贺章
崔淑芳
Original Assignee
Chen Hezhang
Cui Shufang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chen Hezhang, Cui Shufang filed Critical Chen Hezhang
Priority to PCT/CN2011/082076 priority Critical patent/WO2013067707A1/zh
Priority to CN201180003318.XA priority patent/CN103237668B/zh
Publication of WO2013067707A1 publication Critical patent/WO2013067707A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/001Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving
    • B60C23/004Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving the control being done on the wheel, e.g. using a wheel-mounted reservoir
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre

Definitions

  • the present invention relates to the field of active preventive tire safety technology, and more particularly to a tire air pressure adjusting and preventing puncture device and a vehicle equipped with a tire air pressure adjusting and preventing a puncture device.
  • Tire puncture is one of the important causes of traffic accidents, and the main cause of puncture is the abnormal air pressure inside the tire. If the air pressure is too high, the tire will burst due to the pressure it exceeds the compressive strength of the tire. If the air pressure is too low, the tire will be severely deformed, resulting in severe local wear and rapid temperature rise, resulting in a significant decrease in the compressive strength of the tire. Causes a puncture. In addition, in the case where the tire air pressure is too low, even if the tire is not puncture, it will affect the comfort of the motor vehicle such as a car, and increase the fuel consumption of the motor vehicle and the loss of the tire.
  • the automotive industry has developed two types of tire safety technology, one is passive tire safety technology, and the other is active preventive tire safety technology.
  • Passive tire safety technology focuses on how to avoid traffic accidents after a puncture.
  • runflat tires PAX tires
  • BPMS post-bolt smart brake systems
  • Passive tire safety technology does produce beneficial technical results, but such techniques cannot prevent it from happening.
  • runflat tires have problems such as increased cost, reduced vehicle comfort, and increased fuel consumption.
  • passive tire safety technology is difficult to apply. Therefore, the application of passive tire safety technology has greater limitations.
  • the Central Charge and Deflating System is a typical active preventive tire safety technology.
  • the central charge and discharge system includes a tire pressure temperature monitoring system (TPMS), a rotary seal system, a multi-function tire valve system, and control circuitry.
  • TPMS tire pressure temperature monitoring system
  • the central charge and discharge system can inflate and deflate the tires.
  • the central charge and discharge system also has its limitations, mainly because the system has a complicated structure, and it is more difficult to fully grasp the technology in the implementation process.
  • the technical solution for the rotary seal system in the central charge and discharge system has been disclosed for a long time, in the specific implementation process, it is still difficult to solve the sealing problem, and the cost has been high, which greatly limits the technology. Application range.
  • the automobile industry usually adopts the method of installing the tire pressure temperature detecting system (TPMS) to deal with the puncture problem.
  • TPMS tire pressure temperature detecting system
  • the tire pressure monitoring system can only serve as an early warning. Can not really solve the problem of puncture.
  • the Chinese invention patent No. ZL 200710030196.9 discloses a tire explosion-proof device, the tire explosion-proof device comprising a casing and a control valve, the casing being fixed on the hub,
  • the tire explosion-proof device further includes a power source device composed of a compression unit, a pipeline, a pressure bottle, and a control valve.
  • the invention patent has a good technical effect in terms of automatic adjustment of the tire air pressure, but the invention patent also has its deficiencies, specifically, the invention changes the speed of the tire air pressure. The degree is slightly delayed, and it is not possible to quickly satisfy the change in tire pressure.
  • the Chinese Patent Application No. 01119951.2 discloses a tire pressure adjusting mechanism for a central tire charging and discharging system, comprising: a tire; an air pump and a venting solenoid valve fixed on the tire rim; respectively The charging and deflation slip rings of the column and the insulator are pressed concentrically on the brake drum; the charging and discharging ventilating brush supporting the insulator respectively passing through the brake shoe supporting plate; the charging and discharging brushes are One ends of the charging and discharging brushes are respectively pressed on the lower end surface of the charging and discharging slip ring, and the other ends of the charging and discharging brushes are respectively controlled by charging and discharging in the control box. Signal line connection.
  • 01119951.2 is an improvement on the central charge and discharge system (CTIS), which should produce better technical effects, but The point is always in contact, so unnecessary long-term wear is caused during use, resulting in a greatly shortened life. In addition, the wear of the contacts also increases the noise of the vehicle. Summary of the invention
  • the present invention provides a tire air pressure adjusting and preventing puncture device, which can effectively adjust the air pressure of the tire, prevent tire puncture, and has a simple structure, low cost, durability, and convenience. It is promoted in various motor vehicles such as automobiles and electric vehicles (hereinafter referred to as vehicles).
  • vehicles motor vehicles
  • the present invention further provides a vehicle in which the tire air pressure adjusting and preventing puncture device is installed.
  • the tire air pressure adjusting and preventing puncture device of the present invention comprises the following components respectively mounted on the vehicle body and the hub when used: the components mounted on the vehicle body include a load cell, a vehicle speed sensor, an electromagnet and a two-position relay switch, the electromagnetic There are two conductive rings on the iron;
  • the components mounted on the hub include a pressure sensor, a pressure unit, a gas pipe, a relay switch, an air pump, and a motor;
  • the air pipe is provided with an exhaust pipe connected to the relay switch, and the gas pipe is further provided with a pressure branch connected to the pressure unit;
  • a pressure point is disposed on the pressure sensor, and a support arm movably connected to the support point is disposed on the support point, and two ends of the support arm are respectively provided with two a venting contact and two pumping contacts;
  • the support arm is rotatable about the support point, and when the one end of the support arm is close to the pressure sensor, the other end is away from the pressure sensor,
  • the electromagnet is mounted on the bracket, and after the electromagnet is energized, under the action of electromagnetic force, Two conductive rings on the electromagnet can move on the bracket along the axial direction of the vehicle half shaft; the battery, the load sensor, the vehicle speed sensor and the two-position relay switch are connected by wires, the load cell and the vehicle speed sensor The relationship between the two is a parallel relationship, and the two-position relay switch is also connected to the electromagnet through a wire, and its function is to control the energization and de-energization of the electromagnet.
  • the two-position relay switch in the present invention refers to a switch having two position keys, and when one of the position keys is connected (closed), the other position key is disconnected. (open), and vice versa.
  • One end of the air pipe is fixedly connected to the valve, and the other end of the air pipe is fixedly connected to the air pump; the air pump is connected to the motor through a wire, and the motor passes through the wire and the air contact
  • the relay switch is fixedly connected to the exhaust branch pipe on the air pipe, and the relay switch is further connected to the venting contact by a wire.
  • One end of the pressure unit is fixedly connected with a pressure branch pipe on the air pipe, and the other end of the pressure unit is movably connected with the support arm; a connection point between the pressure unit and the support arm is located at the support One side of the point.
  • the airing contact and the venting contact are disposed opposite to the two conductive rings on the electromagnet, and the pressure unit can drive the venting contact and the airing contact through the supporting arm under the action of an external force The point moves in the axial direction of the half shaft.
  • the air pressure in the tire is within the standard value range, the pressure across the pressure unit is balanced, the relay switch is in a power off state, the motor is in a power off state, and the airing contact and the venting contact are It is in a non-contact state with the two conductive rings on the electromagnet, and at this time, the tire is neither inflated nor deflated.
  • the two venting contacts on the support arm are respectively in contact with the two conductive rings on the electromagnet, so that the relay switch is energized to open, and the inside of the tire
  • the gas is sequentially discharged through the valve and the exhaust branch of the air pipe; at this time, the motor is in a power-off state.
  • the two airing contacts on the support arm move toward the electromagnet and contact the two conductive rings on the electromagnet, the air contact After being in contact with the conductive ring, the motor is energized to rotate, and the air pump is activated to inflate the tire; at this time, the relay switch is in a power-off state.
  • the present invention can further adopt the following technical solutions to better solve the technical problem to be solved by the present invention.
  • the electromagnet includes four electromagnets, that is, a first electromagnet, a second electromagnet, a third electromagnet, and a fourth electromagnet;
  • the pressure sensor includes a first pressure sensor, a second pressure sensor, and a third pressure a sensor and a fourth pressure sensor;
  • the pressure unit includes a first pressure unit, a second pressure unit, a third pressure unit, and a fourth pressure unit;
  • the two-position relay switch includes a first two-position relay switch, and the second two a relay switch, a third two-position relay switch, and a fourth two-position relay switch;
  • the electromagnet, the pressure sensor, the pressure unit, and the two-position relay switch are all set to four in order to make the tire explosion-proof device of the invention more quickly applicable to the automobile at low speed and light load, high speed and light load, Tire pressure regulation in four states of low speed heavy load and high speed heavy load.
  • the shape of the venting contact and the airing contact is a dot shape, a line shape or an annular shape.
  • the pressure unit is a diaphragm pressure switch or a piston pressure switch.
  • the present invention also provides a vehicle equipped with a tire air pressure adjusting and explosion-proof device, comprising a vehicle body, a half shaft, a tire, a hub, a valve, a power main switch and a battery, which further comprises a bracket, the bracket being mounted close to The body of the hub;
  • the tire pressure adjustment and the electromagnet in the explosion-proof device are mounted on the bracket, and the electromagnet can drive the conductive ring along the axial direction of the half shaft 3 in the bracket under the action of electromagnetic force Moving upward;
  • the load cell in the tire pressure adjustment and explosion-proof device, the vehicle speed sensor and the two-position relay switch are mounted on the vehicle body, and one end of the two-position relay switch is connected to the battery, the load cell and the vehicle speed sensor through a wire The other end of the two-position relay switch is connected to the electromagnet through a wire, and the relationship between the load cell and the vehicle speed sensor is a parallel relationship;
  • the tire pressure regulating and pressure sensor, the pressure unit, the air pipe, the relay switch, the air pump and the motor in the explosion-proof device are mounted on the hub;
  • the relay switch is fixedly connected with the exhaust pipe of the air pipe;
  • One end of the unit is fixedly connected to the pressure branch pipe on the air pipe, and the other end of the pressure unit is movably connected with the support arm of the pressure sensor;
  • two airing contacts and two air release contacts on the support arm Corresponding to the two conductive rings on the electromagnet;
  • the so-called relative arrangement means that the two conductive rings can be in contact with two gas-emitting contacts or two gas-discharging contacts in the case of movement or opposite movement;
  • the two venting contacts on the support arm are respectively in contact with the two conductive rings on the electromagnet, so that the relay switch is energized to open, and the excess gas in the tire passes through Discharging the exhaust valve of the valve and the air pipe;
  • the two airing contacts on the support arm move toward the electromagnetic magnet and interact with the electromagnetic
  • the two conductive rings on the iron are in contact, causing the motor to be energized to rotate, and the air pump is activated to inflate the tire.
  • the electromagnet comprises four electromagnets, that is, a first electromagnet, a second electromagnet, a third electromagnet and a fourth electromagnet;
  • the pressure sensor includes a first pressure sensor, a second pressure sensor, a third pressure sensor, and a fourth pressure sensor; two airing contacts and two venting contacts on the support arm of the first pressure sensor and the first electromagnetic Two conductive rings on the iron are oppositely disposed; two airing contacts and two air discharging contacts on the supporting arm of the second pressure sensor are opposite to the two conductive rings on the second electromagnet; the third pressure sensor Two airing contacts and two air venting contacts on the support arm are disposed opposite the two conductive rings on the third electromagnet; two airing contacts and two deflation contacts on the support arm of the fourth pressure sensor The point is opposite to the two conductive rings on the fourth electromagnet;
  • the pressure unit includes a first pressure unit, a second pressure unit, a third pressure unit, and a fourth pressure unit; the gas pipe is provided with four pressure branch pipes; one end of the first pressure unit and the support arm on the first pressure sensor a movable connection, the other end of which is fixedly connected with the pressure branch pipe on the air pipe; one end of the second pressure unit is movably connected with the support arm on the second pressure sensor, and the other end is fixedly connected with the pressure branch pipe on the air pipe; One end of the three pressure unit is movably connected to the support arm on the third pressure sensor, and the other end is fixedly connected with the pressure branch pipe on the air pipe; one end of the fourth pressure unit is movably connected with the support arm on the fourth pressure sensor, The other end is fixedly connected with the pressure branch pipe on the air pipe;
  • the two-position relay switch comprises a first two-position relay switch, a second two-position relay switch, a third two-position relay switch and a fourth two-position relay switch; the first two-position relay switch and the second two-position relay switch jointly control The battery and the first electromagnetic The connection and disconnection of the iron; the first two-position relay switch and the fourth two-position relay switch jointly control the communication and disconnection of the battery and the second electromagnet; the first two-position relay switch, the second two-position relay switch, and The third two-position relay switch jointly controls the connection and disconnection of the battery and the third electromagnet; the first two-position relay switch, the third two-position relay switch and the fourth two-position relay switch jointly control the battery and the fourth Connecting and disconnecting of electromagnets;
  • the two conductive rings of the first electromagnet, the second electromagnet, the third electromagnet and the fourth electromagnet respectively are combined with the first pressure unit, the second pressure unit, the third pressure unit and the first
  • the two airing contacts and the two air outlet contacts on the respective support arms of the four pressure units are not in contact; when the air pressure in the tire is higher than the standard value, at least one of the two conductive rings on the electromagnet is The corresponding two venting contacts are in contact; when the air pressure in the tire is lower than the standard value, at least one of the two conductive rings on the electromagnet is in contact with the corresponding two airing contacts.
  • the shape of the venting contact and the airing contact is a dot shape, a line shape or an annular shape
  • the pressure unit is a diaphragm pressure switch. Or a piston pressure switch.
  • a forced deflation control device is added to the tire air pressure adjusting and explosion-proof device installed in the vehicle, and the forced deflation control device includes two forced venting contacts fixedly mounted on the hub, and is disposed at a forced venting switch on the vehicle body and a fifth electromagnet disposed on the bracket and corresponding to the two forced venting contacts, and the fifth electromagnet is provided with two conductive rings, the two a conductive ring is disposed opposite to the two forced venting contacts;
  • the forced deflation switch is disposed on two parallel wires, one of which is a wire connecting the battery with the load cell, the vehicle speed sensor and the two-position relay switch, and the other wire is the battery a wire connected to the fifth electromagnet;
  • the forced deflation switch is provided with two position keys, one of which is used to control the communication and disconnection of the battery with the electromagnet, and the other position key is used for Controlling the connection and disconnection of the battery with the load cell, the vehicle speed sensor and the two-position relay switch. When one position key is connected (closed), the other position key is disconnected;
  • the position button of the forced deflation switch When it is necessary to force the deflation of the tire, the position button of the forced deflation switch is disconnected, that is, the connection between the battery and the load cell, the vehicle speed sensor and the two-position relay switch is disconnected, and the force is closed.
  • the other position button of the deflation switch connects the battery to the fifth electromagnet; after the fifth electromagnet is energized, the two conductive rings are moved along the axial direction of the half shaft, and the forced deflation Contact contact causes the relay switch 9 to be energized to open, thereby deflation of the tire.
  • a light-emitting device is disposed on the hub of the vehicle, and the light-emitting device is connected to the airing contact or the venting contact by a wire, when two conductive rings on the electromagnet and the airing contact When the venting contacts are in contact, the illuminating device is energized to emit light.
  • a sounding device is disposed on the hub of the vehicle, and the sounding device is connected to the airing contact or the air release contact by a wire, when two conductive rings on the electromagnet and the airing contact When the venting contacts are in contact, the sounding device is energized to sound.
  • the above-mentioned light-emitting device or sound-emitting device may emit light or sound due to simultaneous energization. Need It is to be noted that the above-mentioned light-emitting device or sound-emitting device can also be connected to the airing contact or the venting contact in parallel or in series.
  • the illuminating device and the vocalizing device are added to better meet the diversified needs of the automobile user.
  • the present invention can further adopt the following technical solutions:
  • Two decorative contacts that is, a first decorative contact and a second decorative contact are fixedly mounted on the hub, and the first decorative contact and the second decorative contact are connected to the light emitting device or the sounding device through a wire.
  • the illuminating device and the uttering device may also be connected in series or in parallel while being connected to the first decorative contact and the second decorative contact;
  • a sixth electromagnet is mounted on the bracket, and two conductive rings are disposed on the sixth electromagnet, the two conductive rings are disposed opposite to the first decorative contact and the second decorative contact; the sixth electromagnet is also passed through the wire Connected to the battery;
  • the vehicle body is further provided with a decorative control switch, and the decorative control switch is disposed on a wire connecting the battery and the sixth electromagnet, and functions to control communication between the battery and the sixth electromagnet And when the light-emitting device or the sound-emitting device is required to emit light and sound, the switch is closed, so that the battery is connected to the sixth electromagnet A6, and after the sixth electromagnet A6 is energized, the two conductive rings are driven. Moving, and contacting the first decorative contact and the second decorative contact, thereby causing the light-emitting device or the sound-emitting device to emit light or emit sound after being energized.
  • the tire can be inflated and deflated at any time to meet the tire pressure requirements in a single state to achieve the optimal tire pressure configuration.
  • the so-called single state means that the vehicle is in one of four states: "low speed light load”, “high speed light load”, “low speed heavy load” and “high speed heavy load”.
  • the standard air pressure at low speed and light load is Pl
  • the standard air pressure at high speed and light load is P2
  • the standard air pressure at low speed and heavy load is P3
  • the standard air pressure at high speed and heavy load is P4
  • the tires are set in four states.
  • the present invention keeps the air pressure in the tire within a standard value range by inflating and deflation of the tire in real time.
  • the present invention can convert the air pressure in the tire between four standard air pressures P1, P2, P3 and P4, and can be reached during parking or vehicle travel.
  • the pressure regulation requirements so as to achieve the technical effect of reducing puncture, saving fuel and prolonging the service life of the tire.
  • the present invention can forcibly deflate the tire in a special case where it is necessary to expand the contact area between the tire and the ground.
  • control circuit and the principle and method for adjusting the tire air pressure of the present invention can also be applied to other devices on the hub that need to be powered, such as tire sounding devices, lighting devices, etc., to meet the diverse needs of different automobile users.
  • FIG. 1 is a schematic view showing the assembly of an embodiment of a tire air pressure adjusting and preventing puncture device of the present invention
  • FIG. 2 is a schematic view showing the positional relationship between the electromagnet and the tire in the tire pressure adjusting and preventing puncture device of the present invention
  • Figure 3 is a partial elevational view of Figure 1;
  • Figure 4 is an enlarged view of the portion C of Figure 1.
  • FIG. 5 is a schematic diagram of an automatic control circuit of an embodiment of a tire air pressure adjusting and preventing puncture device of the present invention.
  • FIG. 6 is a schematic view showing an assembly of an embodiment of a forced deflation device and a light-emitting device according to the present invention; Schematic diagram of the control circuit after the deflation device and the illuminating or sounding device.
  • A1-] A1-2 is the two conductive rings on the first electromagnet A1
  • ⁇ 2-] ⁇ 2-2 is the second electromagnet ⁇ 2 two conductive rings
  • A3-] ⁇ 3-2 is the third electromagnet two conductive rings on A3
  • A4-1 is the fourth electromagnet ⁇ 4 two conductive rings
  • ⁇ 5-] ⁇ 5-2 is the fifth electromagnet ⁇ 5 two conductive rings
  • ⁇ 6-] ⁇ 6-2 is the sixth electromagnet ⁇ 6 two conductive rings
  • fourth pressure sensor Bl-7, first pressure unit ⁇ 2-5, second pressure unit
  • Bl-1, B1-3 are the two venting contacts on the support arm of the first pressure sensor B1
  • ⁇ 2-2, ⁇ 2-9 are the second pressure sensor.
  • ⁇ 3-4, ⁇ 3-9 are the third pressure sensor.
  • ⁇ 4-7, ⁇ 4-9 are the fourth pressure sensor.
  • Bl-2, B1-6 are the two pressure contacts on the support arm of the first pressure sensor B1.
  • B2-l, ⁇ 2-8 are the second pressure sensor ⁇ 2 on the support arm of the two, the air contact
  • B3-3, ⁇ 3-8 are the third pressure sensor.
  • B4-6, ⁇ 4-8 are the fourth pressure sensor.
  • a tire air pressure adjusting and preventing puncture device includes components respectively mounted on the hub 6 and the vehicle body in use:
  • the vehicle body is also The term "vehicle fixed body” means a portion of the vehicle body that does not rotate relative to the tire 5, the hub 6 and the axle shaft 3;
  • the components mounted on the hub 6 include the following components:
  • each of the four pressure sensors is provided with a support point, Each support point has one and each branch Supporting a movable support arm, the support arm being rotatable about the support point, that is, when one end of the support arm is close to the pressure sensor, the other end thereof is away from the pressure sensor; Two venting contacts are provided at one end, and two airing contacts are provided at the other end;
  • Bl-1, B1-3 represent two deflation contacts on the support arm of the first pressure sensor B1;
  • B2-2, B2-9 indicate Two bleed contacts on the support arm of the second pressure sensor B2;
  • B3-4, B3-9 represent two bleed contacts on the support arm of the third pressure sensor B3;
  • B4-7, B4-9 indicate Two deflation contacts on the support arm of the fourth pressure sensor B4;
  • ⁇ 1-2, ⁇ 1-6 indicate two pumping contacts on the support arm of the first pressure sensor B1;
  • B2-l, B2-8 indicate Two airing contacts on the support arm of the two pressure sensor B2;
  • B3-3, B3-8 represent two airing contacts on the support arm of the third pressure sensor B3;
  • B4-6, B4-8 indicate the fourth pressure Two airing contacts on the support arm of sensor B4;
  • the air pipe 8 is provided with an exhaust pipe connected to the relay switch 9, and the air pipe 8 is further provided with a first pressure unit B1-7, a second pressure unit B2-5, and a third pressure unit, respectively. B3-7, four pressure manifolds connected by the fourth pressure unit B4-5.
  • the function of the components mounted on the hub 6 is to sense the tire pressure information in real time and transmit the tire pressure information to the components mounted on the vehicle body while accepting and executing the instructions from the components mounted on the vehicle body to inflate the tires 5. , deflate or hold pressure.
  • the components mounted on the vehicle body include the following components:
  • (1) four electromagnets that is, a first electromagnet A1, a second electromagnet A2, a third electromagnet A3, and a fourth electromagnet A4;
  • the first electromagnet A1 is provided with two conductive rings A1-1 and A1-2
  • the second electromagnet A2 is provided with two conductive rings A2-1 and A2-2
  • the third electromagnet A3 is provided with two conductive rings A3-1 and A3-2
  • the fourth electromagnet A4 There are two conductive rings A4-1 and A4-1;
  • the relay switches are each provided with two position keys.
  • the two position switches of the first two-position relay switch K1, the second two-position relay switch ⁇ 2, the third two-position relay switch ⁇ 3 and the fourth two-position relay switch ⁇ 4 are respectively referred to as upper Position key and lower position key.
  • the upper position key when the upper position key is connected, the lower position key is turned off; when the lower position key is connected, the upper position key is turned off.
  • the so-called “upper position key” and “lower position key” are based on the orientation shown in FIG. 5, and the “upper position key” refers to the two position keys of the same relay switch shown in FIG.
  • the position button at the top, and the position button at the bottom is the “down position button”;
  • Vehicle speed sensor ⁇ 6 The function of the components mounted on the vehicle body is to give instructions for inflation, deflation, and pressure keeping according to the vehicle speed and load condition, and the tire pressure information transmitted from the components mounted on the hub.
  • the tire pressure adjusting and explosion-proof device of the present invention The components included in the tire air pressure adjusting and explosion-proof device of the present invention are described above.
  • the tire pressure adjusting and explosion-proof device of the present invention is actually used, that is, when the tire air pressure adjusting and explosion-proof device is installed on a vehicle, the above components are Connection relationship and working principle:
  • the bracket 4 is mounted on the vehicle body near the hub; the first electromagnet Al, the second electromagnet A2, The three electromagnets A3 and the fourth electromagnets A4 are mounted on the bracket 4.
  • the fourth electromagnet A4 is disposed at a position closest to the half shaft 3, the third electromagnet A3 is second, and the second electromagnet A2 is next, and the first electromagnet A1 is farthest from the half shaft 3;
  • the first electromagnets A1, the second electromagnets A2, the third electromagnets A3, and the fourth electromagnets A4 can drive the respective conductive rings to move on the bracket 4 along the axial direction of the half shaft 3 under the action of electromagnetic force. .
  • the first electromagnet A1 is a component corresponding to the tire air pressure adjustment when the vehicle is traveling in a low speed light load state.
  • the two conductive rings A2-1 and A2-2 on A2 are opposed to each other, and the second electromagnet A2 is a member corresponding to the tire air pressure adjustment when the vehicle is traveling under high speed and light load conditions.
  • the third electromagnet A3 is a member corresponding to the tire air pressure adjustment when the vehicle is traveling in a low speed and heavy load state.
  • the fourth electromagnet A4 is a member corresponding to the tire air pressure adjustment when the vehicle is running under a high speed and heavy load state.
  • the first pressure unit B1-7 is movably connected to the support arm on the first pressure sensor B1, the second pressure unit B2-5 is movably connected to the support arm on the second pressure sensor B2, and the third pressure unit B3-7 and the third
  • the support arm on the pressure sensor B3 is movably connected, and the fourth pressure unit B4-5 is movably connected to the support arm on the fourth pressure sensor B3.
  • the connection point between any one of the pressure units and the corresponding support arm is located between the support point of the support arm and the venting contact, and the connection point is between the support points The distance is less than the distance between the support point and the airing contact of the support arm.
  • the smaller displacement of the pressure unit can cause a larger displacement of the corresponding airing contact or the venting contact;
  • second, the moving direction and deflation of the pressure unit The moving direction of the contacts is the same, opposite to the moving direction of the airing contact (as can be seen from FIG. 3, in the present embodiment, the moving direction of the pressure unit is the same as the moving direction of the venting contact, and the airing contact Mobile party To the contrary).
  • the load cell K5 and the vehicle speed sensor ⁇ 6 mounted on the vehicle body pass through the wire between the first two-position relay switch K1, the second two-position relay switch ⁇ 2, the third two-position relay switch ⁇ 3, and the fourth two-position relay switch ⁇ 4. Connection, when the car is in a light load state, the load cell ⁇ 5 is disconnected; when the car is in a low speed state, the vehicle speed sensor ⁇ 6 is disconnected.
  • the first two-position relay switch K1 and the second two-position relay switch ⁇ 2 are disposed in series on the wires connecting the battery 12 and the first electromagnet A1; when the car is in a low speed light load state, the first two The position relay switch K1 is in a state in which the lower position key is connected and the upper position key is off, and the second two-position relay switch ⁇ 2 is also in a state in which the lower position key is connected and the upper position key is off. At this time, the battery 12 and the first electromagnet are A1 is connected. In the case where the battery 12 is in communication with the first electromagnet A1, the tire air pressure adjusting and anti-explosion device of the present invention can adjust the tire air pressure in a low speed light load state in real time.
  • the first two relay switches K1 are also disposed on the wires connecting the battery 12 and the second electromagnet ⁇ 2, and the fourth two-position relay switch ⁇ 4 is also disposed on the wire; when the car is converted from a low speed light load to a high speed light load state
  • the vehicle speed sensor ⁇ 6 When the vehicle speed sensor ⁇ 6 is connected, a command is sent to the first two-position relay switch K1 and the fourth two-position relay switch ⁇ 4, so that the upper position key of the first two-position relay switch K1 is connected, and the lower position key is disconnected, fourth The lower position of the two relay switches ⁇ 4 is keyed and the upper position key is opened, thereby connecting the battery 12 and the second electromagnet ⁇ 2.
  • the tire air pressure adjusting and explosion-proof device of the present invention can adjust the tire air pressure in a high speed and light load state in real time.
  • the first two-position relay switch K1 is also connected to a wire connecting the battery 12 and the third electromagnet A3.
  • a second two-position relay switch ⁇ 2 and a third two-position relay switch ⁇ 3 are also connected, when the car is driven by a low speed
  • the load cell ⁇ 5 is connected, and a command is sent to the second two-position relay switch ⁇ 2 and the third two-position relay switch ⁇ 3, so that the upper position switch of the second two-position relay switch ⁇ 2 is connected,
  • the position key is disconnected
  • the lower position of the third two-way relay switch ⁇ 3 is connected, and the upper position key is disconnected.
  • the first two-position relay switch K1 is still in the state where the lower position key a is connected and the upper position key is disconnected. Therefore, the battery 12 and the third electromagnet A3 are in communication. In the case where the battery 12 and the third electromagnet A3 are in communication, the tire air pressure adjusting and explosion-proof apparatus of the present invention can adjust the tire air pressure in a low speed and heavy load state in real time.
  • the third two-position relay switch K3 and the fourth two-position relay switch ⁇ 4 are also connected in series with the wires connecting the battery 12 and the fourth electromagnet ⁇ 4, and the fourth two-position relay switch ⁇ 4 is also connected with the first two-position relay The switch K1 is connected.
  • the load sensor ⁇ 5 and the vehicle speed sensor ⁇ 6 are in a connected state; the first two-position relay switch K1, the third two-position relay switch ⁇ 3 and the fourth two-position relay switch ⁇ 4 are at The lower position key is disconnected and the upper position key is in communication.
  • the battery 12 and the fourth electromagnet ⁇ 4 are in communication.
  • the tire air pressure adjusting and explosion-proof device of the present invention can adjust the tire air pressure in a high-speed heavy-duty state in real time.
  • the shape of the airing contact and the venting contact on the four pressure sensors may be set in a dot shape, a line shape or an annular shape;
  • the pressure unit may be a diaphragm pressure switch or a piston type
  • the pressure switch
  • the shape of the electromagnet may be an annular shape, or may be other shapes such as a semi-annular shape or a square shape, and an annular shape is preferred.
  • the conductive ring can be as shown in FIG. It is ring-shaped, and it can also be other rings. The ring shape is preferred.
  • the present invention further provides a vehicle equipped with the tire air pressure adjusting and preventing puncture device, which comprises a vehicle body, a half shaft 3, a tire 5, a hub 6, a brake caliper 1, and a brake.
  • Disc 2, main power switch K7 and battery 12; half shaft 3, main power switch K7 and battery 12 are mounted on the vehicle body; the hub 6 is mounted on the half shaft 3, the tire 5 is mounted on the hub 6, and the tire 5 is provided There is a valve 7; it further includes a bracket 4 mounted on one side of the wheel and adjacent to the body of the hub 6; the tire pressure adjustment and the four electromagnets in the puncture prevention device, that is, the first electromagnet Al, the second electromagnet A2, the third electromagnet A3, and the fourth electromagnet A4 are mounted on the bracket 4.
  • the fourth electromagnet A4 is disposed at a position closest to the half shaft 3, and the third electromagnet A3 is second, the second electromagnet A2 is next, and the first electromagnet A1 is farthest from the half shaft 3; under the action of the electromagnetic force, the four electromagnets can drive the respective conductive rings along the half shaft 3 Moving axially on the bracket 4;
  • the components mounted on the vehicle body also include four two-position relay switches, that is, a first two-position relay switch K1, a second two-position relay switch ⁇ 2, a third two-position relay switch ⁇ 3, and a fourth two-position relay switch ⁇ 4, And the load cell ⁇ 5 and the vehicle speed sensor ⁇ 6; the connection relationship of the above components has been described in detail in Embodiment 1, and will not be described again.
  • the four pressure sensors in the tire pressure regulation and explosion-proof device that is, the first pressure sensor B1, the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, the fourth pressure sensor ⁇ 4, four pressure units, that is, the first The pressure unit Bl-7, the second pressure unit ⁇ 2-5, the third pressure unit ⁇ 3-7, the fourth pressure unit ⁇ 4-5, and the air tube 8, the relay switch 9, the air pump 10, and the motor 11 are all mounted on the hub 6:
  • One end of the air tube 8 is fixedly connected to the valve 7 (the gas in the air tube 8 is in communication with the gas in the tire 5), and the other end of the air tube 8 is in communication with the air pump 10, and the four pressure branches on the air tube 8 are respectively connected to the first The pressure unit B-7, the second pressure unit ⁇ 2-5, the third pressure unit ⁇ 3-7, and the fourth pressure unit ⁇ 4-5 are fixedly connected, and the exhaust branch pipe on the gas pipe 8 is fixedly connected with the relay switch 9;
  • the deflation contacts on the respective support arms of the first pressure sensor B1, the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, and the fourth pressure sensor ⁇ 4 pass through the wires B1-5, Bl-9, ⁇ 2-4, ⁇ 2- 7. ⁇ 3-2, ⁇ 3-6, ⁇ 4-2, ⁇ 4-4 are connected to the relay switch 9; respective support arms of the first pressure sensor ⁇ 1, the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, and the fourth pressure sensor ⁇ 4
  • the upper airing contact is connected to the motor 11 through wires B1-4, Bl-8, ⁇ 2-3, ⁇ 2-6, B3-l, ⁇ 3-5, B4-l, ⁇ 4-3, respectively; first pressure sensor Bl,
  • the two venting contacts and the two blasting contacts on the respective support arms of the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, and the fourth pressure sensor ⁇ 4 are respectively associated with the first electromagnet A1, the second electromagnet ⁇ 2,
  • the venting contacts and the airing contacts on the support arms of the four pressure sensors are not in contact with the conductive rings of the four electromagnets; when the air pressure in the tire 5 is higher than In the standard value, at least one of the two conductive rings on the electromagnet moves and contacts the two venting contacts corresponding thereto, so that the relay switch 9 is connected to the battery 12, and the relay switch 9 is turned on after being energized, thereby giving the tire 5 deflation; when the air pressure in the tire 5 is lower than the standard value, at least one electromagnet The upper two conductive rings move and come into contact with their corresponding two air-picking contacts, causing the motor 11 to communicate with the battery 12, thereby activating the air pump 10 to inflate the tire 5.
  • P1 ⁇ P2 ⁇ P3 ⁇ P4 is generally speaking, and it is emphasized that P1 ⁇ P2 ⁇ P3 ⁇ P4 is also convenient for expression, and when the standard pressure value range of the tire is actually set, between P1 and P2, There may also be a certain range of overlap between P2 and P3 and between P3 and P4.
  • the first pressure unit B1-7 will not be displaced due to the pressure balance at the left and right ends, corresponding to the first pressure unit B1-7.
  • the first pressure sensor B1 is maintained at the position ⁇ shown in FIG. 1; the load cell ⁇ 5 and the vehicle speed sensor ⁇ 6 are in an open state, and the first two-position relay switch K1 is in a state in which the lower position key is connected and the upper position key is disconnected.
  • the second relay switch ⁇ 2, the third relay switch ⁇ 3, and the fourth relay switch ⁇ 4 are also in a state in which the lower position key is connected and the upper position key is disconnected, which means that the first electromagnet A1 is connected to the battery 12 on the vehicle body.
  • the second electromagnet ⁇ 2, the third electromagnet A3, and the fourth electromagnet ⁇ 4 are all in a state of being disconnected from the battery 12.
  • the first electromagnet A1 After the first electromagnet A1 is in communication with the battery 12, it is moved from the position X shown in Fig. 1 to the position ⁇ by the electric power. At this time, since the air pressure in the tire 5 is within the range of the standard value P1, the first pressure sensor B1 remains in the position ⁇ , and the second electromagnet ⁇ 2, the third electromagnet A3, and the fourth electromagnetic which are not in communication with the battery 12 The shovel 4 remains in position X because it is not energized.
  • the second pressure unit ⁇ 2-5 since the pressure P1 in the tire is lower than the standard pressure set by the second pressure unit ⁇ 2-5, the third pressure unit ⁇ 3-7, and the fourth pressure unit ⁇ 4-5 (second pressure unit ⁇ 2-5,
  • the standard pressures of the three pressure units ⁇ 3-7 and the fourth pressure unit ⁇ 4-5 are respectively set according to the standards of light load high speed, heavy load low speed, and heavy load high speed), so the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, the first One end of the four pressure sensor ⁇ 4 facing the second electromagnet ⁇ 2, the third electromagnet A3, and the fourth electromagnet ⁇ 4 is held at the position ⁇ , that is, it cannot be moved from the position ⁇ to the position X.
  • the first electromagnet A1, the second electromagnet ⁇ 2, the third electromagnet A3, the fourth electromagnet ⁇ 4 and the first pressure sensor B1, the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, and the fourth pressure sensor ⁇ 4 are both No contact, that is, the conductive rings on the electromagnets are not in contact with the airing contacts and the venting contacts on the support arms of the pressure sensors.
  • the motor 11 does not rotate due to no energization, the air pump 10 does not operate, the relay 9 is turned off, and the tire 5 is in a state of maintaining the standard pressure P1.
  • the conductive rings A1-2 and A1-1 are in contact, causing the motor 11 to communicate with the battery 12, and the motor 11 is rotated by the electric power to drive the air pump 10 to inflate the tire 5, and the air pressure of the tire 5 is gradually increased.
  • the air pressure in the tire 5 reaches the standard value P1
  • the first pressure unit B1-7 is shifted to the left, and the two airing contacts B1-2 and B1-6 on the support arm of the first pressure sensor B1 are moved to the right, thereby The two conductive rings A1-2 and A1-1 on the first electromagnet A1 are disconnected.
  • the motor 11 loses power and stops rotating, the air pump 10 does not operate, the relay 9 is turned off, and the tire 5 is in a state of maintaining the standard pressure P1. .
  • the pressure at the left end of the first pressure unit B1-7 is originally equal to P1, but after the first pressure unit B1-7 is shifted to the right, the pressure at the left end thereof becomes smaller than P1 (for example, a film as a pressure unit).
  • P1 for example, a film as a pressure unit.
  • the first pressure unit B1-7 is moved to the left until the pressure at the left and right ends thereof When they are all P1, they remain in the equilibrium position.
  • the second pressure unit ⁇ 2-5, the third pressure unit ⁇ 3-7, and the fourth pressure unit ⁇ 4-5 are moved to the right, the pressure at the left end thereof becomes small.
  • the "left" and "right” in this manual shall be as shown in Figure 1.
  • the first pressure unit B1-7 When the air pressure of the tire 5 drops to the standard air pressure P1, the first pressure unit B1-7 is shifted to the right, so that the support arm on the first pressure sensor The upper two venting contacts B1-1 and B1-3 are shifted to the right, and are disconnected from the two conductive rings A1-1, A1-2 on the first electromagnet, and the relay 9 is turned off after being powered off, and the deflation is stopped.
  • the tire 5 is in a state of maintaining the standard pressure P1.
  • the pressure at the left end of the first pressure unit B1-7 is originally equal to P1, but after the first pressure unit B1-7 is shifted to the left, the pressure at the left end thereof becomes greater than P1 (for example, the diaphragm pressure switch When the elastic member is compressed, the pressure at the left end thereof becomes large. Therefore, when the air pressure of the tire 5 drops to the standard air pressure P1, the first pressure unit B1-7 moves to the right until the pressure at both the left and right ends is P1. When it is in the balance position. Similarly, after the second pressure unit ⁇ 2-5, the third pressure unit ⁇ 3-7, and the fourth pressure unit ⁇ 4-5 are shifted to the left, the pressure at the left end thereof becomes larger.
  • P1 for example, the diaphragm pressure switch
  • the first electromagnet A1 After the vehicle is started, after the first electromagnet A1 is energized, it is moved from the position X shown in FIG. 1 to the right position. At this time, if the pressure of the tire 5 is equal to the standard value P1, the first pressure sensor B1 is in the position ⁇ , The second electromagnet ⁇ 2, the third electromagnet A3, and the fourth electromagnet ⁇ 4 are all at the position X, and the second pressure sensor ⁇ 2, the third pressure sensor ⁇ 3, and the fourth pressure sensor ⁇ 4 face the second electromagnet ⁇ 2 and the third electromagnet A3. One end of the fourth electromagnet ⁇ 4 is at the position ⁇ . Since the motor 11 is not in communication, the motor 11 does not rotate, the relay 9 is turned off, and the tire 5 is in a state of maintaining the standard pressure P1.
  • the vehicle speed sensor ⁇ 6 When the vehicle is running, from low speed to high speed, the vehicle speed sensor ⁇ 6 is automatically turned on (the vehicle speed sensor ⁇ 6 is reached at the vehicle) The speed at which it is turned on can be determined according to the specific specifications of the tire and the vehicle. For example, the average bridge is 110 km/h and the general truck is 90 km/h.
  • the first relay switch K1 After the vehicle speed sensor K6 is turned on, the first relay switch K1 is converted into a state in which the lower position key is turned off and the upper position key is turned on, so that the second electromagnet A2 is in communication with the battery 12, and the second electromagnet A2 is electrically shifted to the right.
  • the first electromagnet A1 is de-energized, and returns from the position Y to the position X along the axial direction of the half shaft 3.
  • the air pressure in the tire 5 is the standard air pressure P1 in the low speed light load state, and is lower than the standard air pressure P2 in the light load high speed
  • the pressure at the connection end of the pressure branch pipe of the air pipe 8 and the second pressure unit B2-5 The pressure at the other end of the second pressure unit B2-5, that is, the pressure at the right end of the second pressure unit B2-5 is smaller than the pressure at the left end thereof, causing the pressure unit to move to the right, thereby causing the support arm of the second pressure sensor B2
  • the two airing contacts B2-1 and B2-8 are shifted to the left (as can be seen from Fig.
  • the moving direction of the airing contact is opposite to the moving direction of the pressure unit), and respectively two conductive rings A2 on the second electromagnet -2 is in contact with A2-1, so that the motor 11 is connected to the battery 12, and the motor 11 is turned on after being energized, and the air pump 10 is driven to pump the tire 5, and the air pressure in the tire 5 reaches the standard under the set high speed and light load state.
  • the second pressure unit B2-5 is shifted to the right, forcing the two airing contacts B2-1 and B2-8 on the support arm of the second pressure sensor B2 to shift to the right, respectively, and the two on the second electromagnet
  • the conductive rings A2-2 and A2-1 are disconnected, causing the motor 11 to lose power. Cheer play pump 10 is stopped, the tire 5 at standard pressure holding state P2, the vehicle is maintained at high speed.
  • the vehicle speed sensor K6 When the vehicle speed changes from high speed to low speed, the vehicle speed sensor K6 is automatically disconnected, and the first relay switch K1 is in the lower position key communication and the upper position key is disconnected as shown in FIG. 5, causing the second electromagnet A2 to be powered off.
  • the first electromagnet A1 When the first electromagnet A1 is energized to the right, since the tire air pressure P2 is higher than the low speed light load air pressure P1, the pressure of the right end of the first pressure unit (the end connected to the pressure branch pipe of the air pipe 8) is greater than the left end ( The pressure of one end connected to the support arm of the first pressure sensor causes the two bleed contacts B1-1 and B1-3 of the first pressure sensor B1 to shift to the left, and the two conductive rings A1- of the first electromagnet 2 is in contact with A1-1, thereby causing the relay switch 9 to be turned on after being energized, and venting the tire 5, and when the pressure in the tire 5 is lowered to the standard air pressure P1, the two
  • the load sensor K5 When the vehicle is converted from a low speed light load to a low speed heavy load, the load sensor K5 is automatically turned on, the second relay switch K2 is energized, and the lower position key is disconnected, and the upper position key is connected, so that the first electromagnet A1 is powered off and left.
  • the third electromagnet A3 When the third electromagnet A3 is energized to the right, at the same time, the turning on of the load sensor K5 causes the upper position key of the fourth relay switch K4 to be turned on and the lower position key to be turned off.
  • the pressure of the right end of the third pressure unit B3-7 (the end connected to the pressure branch pipe of the air pipe 8) is equivalent to the pressure P1 of the low speed light load state, the pressure is smaller than the actual required tire of the low speed heavy load state.
  • the pressure P3 causes the third pressure unit to move to the right, so that the two pumping contacts B3-3 and B3-8 on the support arm of the third pressure sensor B3 are shifted to the left, from the position Z in the position Z to the position Y, thereby
  • the two conductive loops 3-2 and A3-1 on the third electromagnet are respectively turned on to energize the motor 11, and the air pump 10 is driven to pump the tire 5.
  • the third pressure unit ⁇ 3-7 is shifted to the left.
  • the two airing contacts B3-3 and B3-8 on the support arm of the third pressure sensor B3 are shifted to the right to be disconnected from the two conductive rings A3-2 and A3-1 on the third electromagnet, and the motor 11 is turned off.
  • the air pump 10 stops working. At this time, the car is in a low speed full load state, and the tire is in a state of maintaining the standard pressure P3.
  • the load cell K5 and the vehicle speed sensor K6 are in communication state, and the first two-position relay switch K1, the third two-position relay switch ⁇ 3 and the fourth two-position relay switch ⁇ 4 are both connected.
  • the state in which the lower position key is disconnected and the upper position key is communicated causes the battery 12 to communicate with the fourth electromagnet ⁇ 4 while disconnecting the connection between the battery 12 and the third electromagnet A3.
  • the fourth electromagnet ⁇ 4 is energized and moved from position X to position ⁇ , and the third electromagnet A3 is powered off and moved from position ⁇ to position X.
  • the standard pressure ⁇ 4 required for the tire 5 is higher than the pressure ⁇ 3 of the tire under the low speed and heavy load condition, that is, the fourth pressure unit ⁇ 4-5 and the fourth pressure sensor ⁇ 4
  • the pressure at the connection end of the support arm is smaller than the standard pressure ⁇ 4 required by the tire 5, thereby causing the two air-inducing contacts ⁇ 4-6 and ⁇ 4-8 on the support arm of the fourth pressure sensor ⁇ 4 to move from the position to the position ⁇ , respectively
  • the two conductive rings A4-2, A4-1 of the fourth electromagnet are turned on, causing the motor 11 to be energized to rotate, and the air pump 10 is driven to pump the tire 5.
  • the fourth pressure unit ⁇ 4-5 When the air pressure in the tire 5 reaches the required standard pressure ⁇ 4, the fourth pressure unit ⁇ 4-5 is shifted to the left, causing the two airing contacts ⁇ 4-6 and ⁇ 4-8 on the support arm of the fourth pressure sensor ⁇ 4 to shift to the right. , disconnected from the two conductive rings A4-2, A4-1 on the fourth electromagnet, the motor 11 is powered off and stopped, and the air pump 10 stops working. At this time, the car is in a high speed and heavy load state, and the tire 5 is in a state of maintaining the standard pressure ⁇ 4.
  • the vehicle speed sensor ⁇ 6 is disconnected, and the third relay switch ⁇ 3 is turned off by the lower position key, and the state of the upper position key is changed to the lower position key communication, and the upper position key is disconnected.
  • the load cell ⁇ 5 is turned off, and the fourth relay switch ⁇ 4 is changed to the state where the upper position key is turned off and the lower position key is connected, and the second relay switch ⁇ 2 is changed to the upper position key.
  • the axial direction of 3 moves from position X to the right to position ⁇ .
  • the first pressure unit B1-7 moves to the left, so that the two on the support arm of the first pressure sensor B1
  • the venting contacts B1-1 and B1-3 are in position ⁇ , respectively connected to the conductive rings A1-2 and A1-3 on the first electromagnet A1, so that after the relay switch 9 is energized, the switch is opened to the tire 5 deflation, when the air pressure in the tire 5 drops to a low speed
  • the first pressure unit B1-7 is shifted to the right, and the two bleed contacts B1-1, B1-3 on the support arm of the first pressure sensor B1 are moved from the position Y to the right.
  • the position Z is disconnected from the conductive rings A1-2, A1-1 on the first electromagnet A1, causing the relay switch 9 to be powered off and to stop deflation. At this time, the vehicle is in a low speed light load state, and the tire 5 is in a state of maintaining the standard pressure P1.
  • the present embodiment selects the corresponding tire pressure regulation and explosion-proof according to the four states of "low speed light load”, “high speed light load”, “low speed heavy load” and “high speed heavy load” where the vehicle is located.
  • the device (with four iron magnets and their corresponding components for tire pressure regulation and explosion-proof devices), for vehicles that usually only have “low speed light load” and “low speed heavy load”, such as city buses, For electric vehicles, etc., it is possible to use a tire explosion-proof device in which only two electromagnets and their corresponding components are provided, thereby saving costs.
  • the tire air pressure adjusting and explosion-proof device of the present invention can also automatically inflate the tire when the tire needs to be inflated, in the tire. When deflation is required, the tire is automatically deflated and is not restricted by the driving state of the vehicle.
  • the tire explosion-proof device with four iron magnets and their corresponding components can better meet the tire pressure regulation requirements of the vehicle under different conditions.
  • the vehicle in this embodiment mainly adds a forced deflation control device.
  • a forced deflation control device In special cases, such as when the vehicle is driving on a muddy road, in order to expand the contact surface between the tire and the ground, to prevent the tire from sinking into the mud pit, even if the air pressure in the tire is within the standard value range, it is necessary to reduce the air pressure in the tire. This requires forced deflation of the tire.
  • the present invention provides an automobile provided with a forced deflation control device, and the forced deflation control device includes a fifth electromagnetic device disposed on the bracket 4. Iron A5, a forced deflation switch K8 disposed on the vehicle body, and two forced deflation contacts disposed on the hub 6, that is, a first forced venting contact 14-1 and a second forced deflation contact 14 -2
  • the fifth electromagnet A5 is provided with two conductive rings A5-1 and A5-2. Under the action of electromagnetic force, the fifth electromagnet A5 drives the two conductive rings A5-1 and A5-2 along the half shaft 3 The axial direction moves on the bracket 4.
  • the fifth electromagnet A5 is connected to the battery 12 through the wire D2; when the fifth electromagnet A5 is not in communication with the battery 12, the two conductive rings A5-1 and A5-2 are in the position X shown in FIG. 5, when the fifth electromagnetic When the iron A5 is in communication with the battery 12, the fifth electromagnet A5 drives the two conductive rings A5-1 and A5-2 to move from the position X to the position Y along the axial direction of the half shaft 3 under the action of electric power.
  • the forced deflation switch ⁇ 8 is disposed on the wire D1 of the battery 12 connected to the load cell ⁇ 5, the vehicle speed sensor ⁇ 6, and the first two-position relay switch K1, and is also disposed on the wire D2 in parallel relationship with the wire D1;
  • the forced deflation switch ⁇ 8 is provided with two position keys.
  • this manual will force the two position keys of the deflation switch ⁇ 8 to be called the left position key and the right position key ("left" and "right", respectively.
  • the left position key is set on the D2 circuit, and its function is to control the communication and disconnection between the battery 12 and the fifth electromagnet ⁇ 2, and the right position key is set on the D1 circuit, and its function is to use Connecting and disconnecting the control battery 12 with the load cell ⁇ 5, the vehicle speed sensor ⁇ 6, and the first two-position relay switch K1;
  • the left position key is connected (closed)
  • the right position key is disconnected, the battery 12 is in communication with the fifth electromagnet;
  • the right position key is connected, the left position key is disconnected, at this time, the car is as described in Embodiment 2.
  • the control method adjusts the tire 5 air pressure.
  • the first forced bleed contact 14-1 and the second forced bleed contact 14-2 are fixedly disposed on the hub 6, and are disposed opposite to the two conductive rings A5-1 and A5-2 on the fifth electromagnet A5.
  • the first forced bleed contact 14-1 and the second forced bleed contact 14-2 are also connected to the relay switch 9 by wires.
  • the first forced bleed contact 14-1 and the second forced bleed contact 14-2 are always at the position Y in Fig. 5.
  • the driver disconnects the right position button of the forced deflation switch K8, so that the connection between the battery 12 and the load cell K5, the vehicle speed sensor ⁇ 6, and the first two-position relay switch is disconnected.
  • the left position key of the forced deflation switch ⁇ 8 is closed to connect the battery 12 with the fifth electromagnet ⁇ 5; after the fifth electromagnet ⁇ 5 is energized, the two conductive rings A5-1 and ⁇ 5-2 are driven along the axis of the half shaft 3 Moving from the right position X to the position ⁇ , the first forced venting contact 14-1 and the second forced venting contact 14-2, which are originally located at the position ⁇ , come into contact with each other, causing the relay switch 9 to be energized to open, thereby giving the tire 5 Deflation.
  • the present invention further provides, on the basis of Embodiment 2 or/and Embodiment 3, a vehicle provided with a hub light-emitting device or/and a sounding device, the light-emitting device comprising a decorative bulb
  • the sounding device includes a speaker.
  • the illuminating device or/and the uttering device are fixedly mounted on the hub 6, which can be respectively connected to the airing contact or the venting contact which controls the tire 5 to be inflated and deflated by the wire, when the tire 5 is inflated or deflated.
  • the illuminating device or/and the vocalizing device emit light or/and sound due to energization.
  • the present embodiment adopts the following technical solution:
  • a light-emitting device 13 or/and a sounding device (not shown) are disposed on the hub 6, and two decorative contacts are also fixedly mounted on the hub 6, that is, the first decorative contact 13- 1 and the second decorative contact 13-2; the first decorative contact 13-1 and the second decorative contact 13-2 are always in the position ⁇ shown in FIG.
  • the first decorative contact 13-1 and the second decorative contact 13-2 are connected to the illuminating device 13 or/and the sounding device by wires, and the illuminating device 13 and the sounding device can be connected in series or in parallel.
  • a sixth electromagnet ⁇ 6 is mounted on the bracket 4, and the sixth electromagnet ⁇ 6 is provided with two conductive rings A6-1 and ⁇ 6-2; two conductive rings A6-1 and ⁇ 6-2 and the first decorative contact 13- 1 and the second decorative contact 13-2 are oppositely disposed; when the sixth electromagnet ⁇ 6 is not in communication with the battery 12, the sixth electromagnet ⁇ 6 is located at the position X shown in FIG. 5, and when the sixth electromagnet ⁇ 6 is not connected to the battery 12 When connected, the sixth electromagnet ⁇ 6 drives its two conductive rings A6-1 and ⁇ 6-2 to move from the position X to the right in the axial direction of the half shaft 3 to the position ⁇ under the action of electric power.
  • a decorative control switch ⁇ 9 is disposed on the vehicle body, and a battery is further disposed on the vehicle body.
  • the wire D3 communicating with the sixth electromagnet ⁇ 6 the decorative control switch K9 is disposed on the wire D3, and its function is to control the storage of electricity The communication and disconnection between the pool 12 and the sixth electromagnet A6.
  • the decorative control switch K9 may be an automatic control switch or a manual control switch.
  • the decorative control switch K9 When the lighting device 13 or/and the sounding device are required to emit light and sound, the decorative control switch K9 is closed, so that the battery 12 is connected to the sixth electromagnet A6, and after the sixth electromagnet A6 is energized, the two conductive rings A6-1 And A6-2 are moved rightward along the axial direction of the half shaft 3 to the position Y, and are in contact with the first decorative contact 13-1 and the second decorative contact 13-2 fixed at the position ,, thereby causing the light-emitting device 13 or / And the sounding device emits light or/and sounds after being powered.
  • the present invention is not limited by the above embodiments; the present invention also includes various modified embodiments.
  • the connection point between the pressure unit and the support arm of the pressure sensor can also be set between the support point and the airing contact, in which case The moving direction of the airing contact is convenient for the moving direction of the pressure unit, and the moving direction of the venting contact is opposite to the moving direction of the pressure unit.
  • the number of pressure sensors and related accessories may be one, two, three, or even five or more.
  • any modifications, equivalent substitutions, improvements, etc., made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Fluid Pressure (AREA)
  • Tires In General (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

一种轮胎气压调节与防止爆胎装置以及安装了该装置的车辆,该装置包括使用时安装在车体上的载重传感器(K5)、车速传感器(K6)、两位继电器开关(K1-K4)、设有导电环的电磁铁(A1-A6)以及安装在轮毂(6)上的压力传感器(B1-B4)、压力单元(B1-7、B2-5、B3-7、B4-5)、气管(8)、继电器开关(9)、打气泵(10)和电机(11)。压力传感器(B1-B4)上设有可转动的支撑臂,该支撑臂的一端设有两个放气触点,另一端设有两个打气触点。当轮胎(5)气压符合标准时,放气触点、打气触点与导电环均不接触,当轮胎(5)气压需要调整时,放气触点或者打气触点与导电环接触,从而给轮胎(5)放气或打气。该轮胎气压调节与防止爆胎装置能够有效地调节汽车等机动车辆的轮胎气压,防止轮胎爆胎,并提高车辆舒适性。

Description

轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆
技术领域
本发明涉及主动预防式轮胎安全技术领域,特别涉及轮胎气压调节与防止爆胎装置以及安装了 轮胎气压调节与防止爆胎装置的车辆。
背景技术
轮胎爆胎是酿成交通事故的重要原因之一, 而导致爆胎的主要原因是轮胎内部的气压不正常。 气压过高, 轮胎会因其承受的压力超过轮胎的抗压强度而爆胎; 气压过低, 轮胎会严重变形, 从而 导致轮胎局部磨损严重且温度急剧上升, 致使轮胎的抗压强度显著降低而引起爆胎。此外, 在轮胎 气压过低的情况下, 即使未爆胎, 也会影响汽车等机动车辆行驶的舒适性, 并增加机动车辆的油耗 和轮胎的损耗。
为了解决轮胎爆胎问题, 汽车工业界发展了两类轮胎安全技术, 一类为被动式轮胎安全技术, 另一类为主动预防式轮胎安全技术。
被动式轮胎安全技术的着眼点在于爆胎以后, 怎样避免交通事故。 例如, 漏气行驶轮胎 (PAX 轮胎)、 爆胎后智能刹车系统(BPMS )等, 便属于典型的被动式轮胎安全技术。 被动式轮胎安全技 术的确能产生有益的技术效果, 但是, 这类技术不能防患于未然。 此外, 漏气行驶轮胎还存在增加 成本、 降低车辆行驶的舒适性、 增加油耗等问题。 尤其是对于载重货车, 被动式轮胎安全技术难以 适用。 因此, 被动式轮胎安全技术的应用具有较大的局限性。
主动预防式轮胎安全技术着眼于通过调节轮胎的气压, 防止轮胎因压力不正常而爆胎。例如, 中央充放气系统(CTIS )就是一种典型的主动预防式轮胎安全技术。 中央充放气系统包括轮胎压力 温度监测系统(TPMS)、 旋转密封件系统、 多功能轮胎阀系统和控制电路系统。 中央充放气系统能 给轮胎充气、 放气。 但是, 中央充放气系统也有其局限性, 主要是该系统结构复杂, 在实施过程中 全面掌握该项技术的难度比较大。例如,尽管有关中央充放气系统中的旋转密封件系统的技术方案 早己公开, 但在具体实施过程中, 仍然难以解决密封问题, 成本一直居高不下, 极大的限制了该项 技术的应用范围 。
由于中央充放气系统结构复杂、 成本高昂, 当今汽车工业界通常采取安装轮胎压力温度检测 系统 (TPMS ) 的办法来应对爆胎问题, 然而, 轮胎压力监测系统只能起到预警的作用, 而不能真 正解决爆胎问题。
为了更好地解决爆胎问题,专利号为 ZL 200710030196.9的中国发明专利公开了一种轮胎防爆 装置, 所述轮胎防爆装置包括壳体和控制阀, 所述壳体固定在所述轮毂上, 所述轮胎防爆装置还包 括由压缩单元、 管路、 压力瓶和控制阀组成的动力源装置。 在轮胎气压的自动调节方面, 该发明专 利具有较好的技术效果, 但是, 该发明专利也有其不足, 具体地说, 就是该发明改变轮胎气压的速 度略显滞后, 无法快速满足轮胎气压的变化。
申请号为 01119951.2 的中国发明专利申请公开了一种中央轮胎充放气系统用的轮胎压力调 节机构, 其包括: 轮胎; 固定在所述轮胎钢圈上的气泵和放气电磁阀; 分别经接线柱、 绝缘体同心 地紧压在制动鼓上的充、放气滑环;分别穿过且紧扣在制动蹄支撑盘上的充、放气电刷支撑绝缘体; 充、 放气电刷, 所述充、 放气电刷的一端分别用弹簧压在所述充、 放气滑环的下端面上, 所述充、 放气电刷的另一端分别与控制盒内的充、放气控制信号线连接。从原理上说, 申请号为 01119951.2 的中国发明专利申请所公开的技术方案是对中央充放气系统(CTIS ) 的一种改进, 其实施应当能产 生较好的技术效果, 但是, 由于其触点是常接触式的, 故使用过程中会带来不必要的长期磨损, 致 使其寿命大幅缩短, 此外, 触点的磨损也会增加车辆的噪音。 发明内容
鉴于上述现有技术存在的缺陷,本发明提供了一种轮胎气压调节与防止爆胎装置,其能有效地 调节轮胎的气压, 防止轮胎爆胎, 并且结构简单、 成本较低、 经久耐用, 便于在汽车、 电车等各种 机动车辆(以下简称为车辆) 中推广应用。 在所述轮胎气压调节与防止爆胎装置的基础上, 本发明 进一步提供了一种安装了所述轮胎气压调节与防止爆胎装置的车辆。
本发明轮胎气压调节与防止爆胎装置包括下列使用时分别安装在车体和轮毂上的部件: 安装在车体上的部件包括载重传感器、 车速传感器、 电磁铁和两位继电器开关, 所述电磁铁 上设有两个导电环;
安装在轮毂上的部件包括压力传感器、 压力单元、 气管、 继电器开关、 打气泵和电机; 所述 气管上设有可与所述继电器开关连接的排气支管,所述气管上还设有可与所述压力单元连接的压力 支管; 所述压力传感器上设有一个支撑点, 所述支撑点上设有一条与该支撑点活动连接的支撑臂, 所述支撑臂的两端分别设有两个放气触点和两个打气触点; 所述支撑臂可以围绕所述支撑点转动, 当所述支撑臂的一端接近所述压力传感器时, 其另一端远离所述压力传感器,
在车辆上实际使用本发明轮胎气压调节与防止爆胎装置时,还需要使用其他配件,例如支架, 所述支架安装在车体上, 且位于所述轮毂的一侧附近。
以下, 具体介绍实际使用本发明的轮胎防暴装置时, 上述部件的连接关系和工作原理: 所述电磁铁安装在所述支架上, 所述电磁铁通电后, 在电磁力的作用下, 所述电磁铁上的两 个导电环可以沿着车辆半轴的轴向在所述支架上移动; 所述蓄电池、载重传感器、 车速传感器和所 述两位继电器开关通过导线连接, 载重传感器、车速传感器之间的关系为并联关系, 所述两位继电 器开关还通过导线与所述电磁铁连接,其作用是控制所述电磁铁的通电和断电。本发明中的两位继 电器开关, 是指具有两个位置键的开关, 当其中的一个位置键连通(闭合) 时, 另一个位置键断开 (打开), 反之亦然。
所述气管的一端与所述气门嘴固定连接, 所述气管的另一端与所述打气泵固定连接; 所述打 气泵通过导线与所述电机连接,所述电机通过导线与所述打气触点连接;所述继电器开关与所述气 管上的排气支管固定连接, 所述继电器开关还通过导线与所述放气触点连接。
所述压力单元的一端与所述气管上的压力支管固定连接, 所述压力单元的另一端与所述支撑 臂活动连接; 所述压力单元与所述支撑臂之间的连接点位于所述支撑点的一侧。
所述打气触点和放气触点与所述电磁铁上的两个导电环相对设置, 在外力的作用下, 所述压 力单元可以通过所述支撑臂带动所述放气触点和打气触点沿着所述半轴的轴向移动。
当轮胎内的气压在标准值范围以内时, 所述压力单元两端的压力保持平衡, 所述继电器开关 处于断电关闭状态,所述电机处于断电状态,所述打气触点和放气触点与所述电磁铁上的两个导电 环处于不接触状态, 此时, 所述轮胎既不充气, 也不放气。
当轮胎内的气压高于标准值时, 所述支撑臂上的两个放气触点分别与所述电磁铁上的两个导 电环接触,致使所述继电器开关通电打开,所述轮胎内的气体依次通过所述气门嘴和所述气管的排 气支管排出; 此时, 所述电机处于断电状态。
当轮胎内的气压低于标准值时, 所述支撑臂上的两个打气触点向靠近所述电磁铁的方向发生 移动并与所述电磁铁上两个导电环接触,所述打气触点与所述导电环接触接触后,所述电机通电转 动, 启动所述打气泵给轮胎充气; 此时, 所述继电器开关处于断电关闭状态。
在上述技术方案的基础上, 本发明可进一步采用下述技术方案, 以便更好地解决本发明所要 解决的技术问题。
所述电磁铁包括四块电磁铁, 亦即第一电磁铁、 第二电磁铁、 第三电磁铁和第四电磁铁; 所述压力传感器包括第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器; 所述压力单元包括第一压力单元、 第二压力单元、 第三压力单元、 第四压力单元; 所述两位继电器开关包括第一两位继电器开关、 第二两位继电器开关、 第三两位继电器开关 和第四两位继电器开关;
在该改进的技术方案中, 将电磁铁、 压力传感器、 压力单元、 两位继电器开关均设置为四个, 是为了使本发明轮胎防爆装置更快捷地适用汽车在低速轻载、高速轻载、低速重载和高速重载四种 状态下的轮胎气压调节。
进一步地, 所述放气触点、 打气触点的形状为点状、 线状或者圆环状。
进一步地, 所述压力单元为膜片压力开关或者活塞式压力开关。
本发明还提供了一种安装有轮胎气压调节与防爆装置的车辆,其包括车体、半轴、轮胎、轮毂、 气门嘴、 电源总开关和蓄电池, 其还包括支架, 所述支架安装在靠近所述轮毂的车体上; 所述轮胎气压调节与防爆装置中的电磁铁安装在所述支架上,在电磁力的作用下,所述电磁铁 可以带动所述导电环沿着所述半轴 3的轴向在所述支架上移动;所述轮胎气压调节与防爆装置中的 载重传感器、车速传感器和两位继电器开关安装在车体上,所述两位继电器开关的一端通过导线与 所述蓄电池、载重传感器和车速传感器连接,所述两位继电器开关的另一端通过导线与所述电磁铁 连接, 所述载重传感器与所述车速传感器之间的关系为并联关系;
所述轮胎气压调节与防爆装置中的压力传感器、 压力单元、 气管、 继电器开关、 打气泵和电机 安装在所述轮毂上;所述继电器开关与所述气管的排气支管固定连接;所述压力单元的一端与所述 气管上的压力支管固定连接, 所述压力单元的另一端与所述压力传感器的支撑臂活动连接; 所述 支撑臂上的两个打气触点和两个放气触点与所述电磁铁上的两个导电环相对设置; 所谓相对设置, 是指在发生移动或者相向移动的情况下, 两个导电环可与两个打气触点或者两个放气触点接触; 当轮胎内的气压符合标准时, 所述放气触点、 打气触点与所述导电环互不接触;
当轮胎内的气压高于标准值时,所述支撑臂上的两个放气触点分别与所述电磁铁上的两个导电 环接触,致使继电器开关通电打开,轮胎内的多余气体通过所述气门嘴和所述气管的排气支管排出; 当轮胎内的气压低于标准值时,所述支撑臂上的两个打气触点向靠近所述电磁铁的方向发生移 动并与所述电磁铁上的两个导电环接触,致使所述电机通电转动,启动所述打气泵给所述轮胎充气。
进一步地, 在所述车辆所安装的轮胎气压调节与防爆装置中, 所述电磁铁包括四块电磁铁, 亦即第一电磁铁、 第二电磁铁、 第三电磁铁和第四电磁铁;
所述压力传感器包括第一压力传感器、第二压力传感器、第三压力传感器和第四压力传感器; 第一压力传感器的支撑臂上的两个打气触点和两个放气触点与第一电磁铁上的两个导电环相对设 置;第二压力传感器的支撑臂上的两个打气触点和两个放气触点与第二电磁铁上的两个导电环相对 设置;第三压力传感器的支撑臂上的两个打气触点和两个放气触点与第三电磁铁上的两个导电环相 对设置;第四压力传感器的支撑臂上的两个打气触点和两个放气触点与第四电磁铁上的两个导电环 相对设置;
所述压力单元包括第一压力单元、 第二压力单元、 第三压力单元、 第四压力单元; 所述气管上 设有四条压力支管;第一压力单元的一端与第一压力传感器上的支撑臂活动连接,其另一端与所述 气管上的压力支管固定连接;第二压力单元的一端与第二压力传感器上的支撑臂活动连接,其另一 端与所述气管上的压力支管固定连接; 第三压力单元的一端与第三压力传感器上的支撑臂活动连 接,其另一端与所述气管上的压力支管固定连接;第四压力单元的一端与第四压力传感器上的支撑 臂活动连接, 其另一端与所述气管上的压力支管固定连接;
所述两位继电器开关包括第一两位继电器开关、第二两位继电器开关、第三两位继电器开关和 第四两位继电器开关;第一两位继电器开关和第二两位继电器开关共同控制所述蓄电池与第一电磁 铁的连通与断开;第一两位继电器开关和第四两位继电器开关共同控制所述蓄电池与第二电磁铁的 连通与断开;第一两位继电器开关、第二两位继电器开关和第三两位继电器开关共同控制所述蓄电 池与第三电磁铁的连通与断开;第一两位继电器开关、第三两位继电器开关和第四两位继电器开关 共同控制所述蓄电池与第四电磁铁的连通与断开;
当轮胎内的气压符合标准时, 第一电磁铁、第二电磁铁、第三电磁铁和第四电磁铁各自的两个 导电环与第一压力单元、第二压力单元、第三压力单元和第四压力单元各自的支撑臂上的两个打气 触点和两个放气触点均不接触; 当所述轮胎内的气压高于标准值时,至少有一块电磁铁上的两个导 电环与其所对应的两个放气触点接触; 当所述轮胎内的气压低于标准值时,至少有一块电磁铁上的 两个导电环与其所对应的两个打气触点接触。
进一步地, 在所述车辆所安装的轮胎气压调节与防爆装置中, 所述放气触点、打气触点的形状 为点状、 线状或者圆环状, 所述压力单元为膜片压力开关或者活塞式压力开关。
进一步地,在所述车辆所安装的轮胎气压调节与防爆装置中增设强制放气控制装置,所述强制 放气控制装置包括固定安装在所述轮毂上的两个强制放气触点,设置在车体上的强制放气开关以及 设置在所述支架上、并与所述两个强制放气触点对应的第五电磁铁,第五电磁铁上设有两个导电环, 所述两个导电环与所述两个强制放气触点相对设置;
所述强制放气开关设置在两条并联的导线上,其中的一条导线是将所述蓄电池与所述载重传感 器、车速传感器以及两位继电器开关相连接的导线,另一条导线是将所述蓄电池与第五电磁铁连接 的导线;所述强制放气开关设有两个位置键,其中的一个位置键用于控制所述蓄电池与所述电磁铁 的连通与断开,另一个位置键用于控制所述蓄电池与所述载重传感器、车速传感器以及所述两位继 电器开关的连接与断开, 当一个位置键连通 (闭合) 时, 另一个位置键断开;
当需要给轮胎强制放气时, 断开强制放气开关的一个位置键,亦即断开所述蓄电池与所述载重 传感器、车速传感器和两位继电器开关等部件之间的连接,同时闭合强制放气开关的另一个位置键, 使所述蓄电池与第五电磁铁连通; 第五电磁铁通电后带动其两个导电环沿着所述半轴的轴向移动, 并与所述强制放气触点接触, 导致继电器开关 9通电打开, 从而给轮胎放气。
进一步地,在所述车辆的轮毂上设置发光装置,所述发光装置通过导线与所述打气触点或者放 气触点连接, 当所述电磁铁上的两个导电环与所述打气触点或者放气触点接触时,所述发光装置通 电发光。
进一步地,在所述车辆的轮毂上设置发声装置,所述发声装通过导线与所述打气触点或者放气 触点连接, 当所述电磁铁上的两个导电环与所述打气触点或者放气触点接触时,所述发声装置通电 发声。
在轮胎充气、放气的过程中, 上述发光装置或者发声装置会因同时通电而发光或者发声。 需要 说明的是,上述发光装置或者发声装置还可以并联或者串联的方式与所述打气触点或者放气触点相 连接。
增设发光装置、发声装置是为了更好地满足汽车用户的多样化需求, 为了使所述发光或发声装 置更好地满足随时发光、 发声的需要, 本发明可进一步采用下述技术方案:
所述轮毂上固定安装两个装饰触点, 亦即第一装饰触点和第二装饰触点, 第一装饰触点 和第二装饰触点通过导线与所述发光装置或发声装置连接, 所述发光装置与发声装置还可以 串联或并联的方式连接同时与第一装饰触点和第二装饰触点连接;
所述支架上安装第六电磁铁, 第六电磁铁上设有两个导电环, 所述两个导电环与第一装 饰触点和第二装饰触点相对设置; 第六电磁铁还通过导线与所述蓄电池连接;
所述车体上还设有装饰控制开关, 所述装饰控制开关设置在将所述蓄电池与第六电磁铁 相连接的导线上, 其作用是控制所述蓄电池与第六电磁铁之间的连通与断开; 当需要所述发 光装置或发声装置发光、 发声时, 所述开关闭合, 从而使所述蓄电池与第六电磁铁 A6连通, 第六电磁铁 A6通电后, 带动其两个导电环移动, 并第一装饰触点和第二装饰触点接触, 从而 使所述发光装置或发声装置通电后发光或发声。
本发明具有以下有益效果:
1、 在单一状态下, 可随时给轮胎充气、 放气, 满足单一状态下的轮胎气压要求, 达到最佳的 轮胎气压配置。 所谓单一状态, 是指车辆分别处于 "低速轻载"、 "高速轻载"、 "低速重载"、 "高 速重载" 四种状态中的一种。 假设低速轻载时的标准气压为 Pl, 高速轻载时的标准气压为 P2, 低 速重载时的标准气压为 P3, 高速重载的标准气压为 P4, 则在设定四种状态下的轮胎标准气压值范 围时, 应使 P1< P2< P3< P4。 在单一状态下, 本发明通过实时给轮胎充气、 放气, 使轮胎内的气 压始终保持在标准值范围内。
2、 在车辆的速度及载重量发生变化的情况下, 本发明可以使轮胎内的气压在四种标准气压 Pl、 P2、 P3和 P4之间进行转换, 并且可以在停车或者车辆行驶过程中达到调压要求, 从而达到减 少爆胎、 节约燃油、 延长轮胎使用寿命的技术效果。
3、 通过增设强制放气控制装置, 本发明可以在需要扩大轮胎与地面接触面积的特殊情况下, 给轮胎强制放气。
4、 本发明中的控制电路及其调节轮胎气压的原理和方法也可用于轮毂上需要供电的其他装 置, 例如轮胎发声装置、 发光装置等, 从而满足不同汽车用户的多样化需求。
附图说明
图 1是本发明轮胎气压调节与防止爆胎装置的一个实施例的装配示意图;
图 2是本发明轮胎气压调节与防止爆胎装置中的电磁铁与轮胎之间的位置关系示意图; 图 3是图 1的 Ε向局部视图;
图 4是图 1的 C部放大图
图 5是本发明轮胎气压调节与防止爆胎装置的一个实施例的自控电路原理图 图 6 是本发明中增设了强制放气装置和发光装置的实施例的装配示意图; 图 7是增设了强制放气装置和发光或发声装置之后的控制电路原理图。
附图标记-
1、 刹车卡钳 2、 刹车碟盘 3、 半轴 4、 支架
5、 轮胎 6、 轮毂 7、 气门嘴 8、 气管
9、 继电器开关 10、 打气泵 11、 电机 12、 蓄电池
13、 发光装置 13- 1、 第一装饰触点 13-2、 第二装饰触点 14-1、 第一强制放气触点 14- 2、 第二强制放气触点 Kl、 第一继电器开关 Κ2、 第二继电器开关 Κ3、 第三继电器开关 Κ4、 第四继电器开关 Κ5、 载重传感器 Κ6、 车速传感器 Κ7、 电源总开关 Κ8、 强制放气开关 Κ9、 装饰控制开关 Al、 第一电磁铁 Α2、 第二电磁铁 A3、 第三电磁铁 Α4、 第四电磁铁 Α5、 第五电磁铁 Α6、 第六电磁铁
A1-] A1-2 为第一电磁铁 A1上的两个导电环
Α2-] Α2-2 为第二电磁铁 Α2上的两个导电环
A3-] Α3-2 为第三电磁铁 A3上的两个导电环
Α4-] A4-1为 第四电磁铁 Α4上的两个导电环
Α5-] Α5-2 为第五电磁铁 Α5上的两个导电环
Α6-] Α6-2 为第六电磁铁 Α6上的两个导电环
Bl、 第一压力传感器 Β2、 第二压力传感器 Β3、 第三压力传感器
Β4、 第四压力传感器, Bl-7、 第一压力单元 Β2-5、 第二压力单元
Β3-7、 第三压力单元 Β4-5、 第四压力单元
Bl-1、 B1-3为第一压力传感器 B1的支撑臂上的两个放气触点
Β2-2、 Β2-9为第二压力传感器 Β2的支撑臂上的两个放气触点
Β3-4、 Β3-9 为第三压力传感器 Β3的支撑臂上的两个放气触点
Β4-7、 Β4-9为第四压力传感器 Β4的支撑臂上的两个放气触点
Bl-5、 将放气触点 B1-1与继电器开关 9连通的导线
Bl-9、 将放气触点 B1-3与继电器开关 9连通的导线 B2-4、 将放气触点 Β2-2与继电器开关 9连通的导线
B2-7、 将放气触点 Β2-9与继电器开关 9连通的导线
B3-2、 将放气触点 Β3-4与继电器开关 9连通的导线
B3-6、 将放气触点 Β3-9与继电器开关 9连通的导线
B4-2、 将放气触点 Β4-7与继电器开关 9连通的导线
B4-4、 将放气触点 Β4-9与继电器开关 9连通的导线
Bl-2、 B1-6 为第一压力传感器 B1的支撑臂上的两 、打气触点
B2-l、 Β2-8 为第二压力传感器 Β2的支撑臂上的两 、打气触点
B3-3、 Β3-8 为第三压力传感器 Β3的支撑臂上的两个打气触点
B4-6、 Β4-8 为第四压力传感器 Β4的支撑臂上的两个打气触点
Bl-4、 将打气触点 B1-2与电机 11连通的导线
Bl-8、 将打气触点 B1-6与电机 11连通的导线
B2-3、 将打气触点 B2-1与电机 11连通的导线
B2-6、 将打气触点 Β2-8与电机 11连通的导线
B3-l、 将打气触点 Β3-3与电机 11连通的导线
B3-5、 将打气触点 Β3-8与电机 11连通的导线
B4-l、 将打气触点 Β4-6与电机 11连通的导线
B4-3、 将打气触点 Β4-8与电机 11连通的导线
Dl、 强制放气开关 K8的右位置键控制的导线
D2、 强制放气开关 K8的左位置键控制的导线
D3、 装饰控制开关 K9控制的导线 具体实施方式
以下结合附图, 介绍本发明的实施例。
实施例 1
如图 1、 图 3、 图 4、 图 5所示, 一种轮胎气压调节与防止爆胎装置, 包括使用时分别安装在 轮毂 6上和车体上的部件: 在本发明中, 车体亦称为车辆固定体, 是指除轮胎 5、 轮毂 6和半轴 3 以外的不发生相对转动的车辆主体部分;
安装在轮毂 6上的部件包括下列部件:
( 1 ) 四个压力传感器, 亦即第一压力传感器 Bl、 第二压力传感器 B2、 第三压力传感器 B3、 第 四压力传感器 B4; 所述四个压力传感器上各设有一个支撑点, 所述各支撑点上各设有一条与该支 撑点活动连接的支撑臂,所述支撑臂可以围绕所述支撑点转动,亦即当所述支撑臂的一端接近所述 压力传感器时, 其另一端远离所述压力传感器; 所述支撑臂的一端的设有两个放气触点, 其另一端 设有两个打气触点;
在图 4中, 亦即在图 1的 E部放大图中, Bl-1、 B1-3表示第一压力传感器 B1的支撑臂上的 两个放气触点; B2-2、 B2-9表示第二压力传感器 B2的支撑臂上的两个放气触点; B3-4、 B3-9 表 示第三压力传感器 B3的支撑臂上的两个放气触点; B4-7、 B4-9 表示第四压力传感器 B4的支撑 臂上的两个放气触点; Β1-2、Β1-6 表示第一压力传感器 B1的支撑臂上的两个打气触点; B2-l、 B2-8 表示第二压力传感器 B2的支撑臂上的两个打气触点; B3-3、 B3-8 表示第三压力传感器 B3的支 撑臂上的两个打气触点; B4-6、 B4-8 表示第四压力传感器 B4的支撑臂上的两个打气触点;
( 2 ) 四个压力单元, 亦即第一压力单元 Bl-7、 第二压力单元 B2-5、 第三压力单元 B3-7、 第 四压力单元 B4-5 ;
( 3 ) 继电器开关 9 ;
(4)气管 8, 气管 8上设有可与继电器开关 9连接的排气支管, 气管 8还设有可分别与第一 压力单元 Bl-7、第二压力单元 B2-5、第三压力单元 B3-7、第四压力单元 B4-5连接的四条压力支管。
( 5 ) 打气泵 10;
( 6 ) 电机 11。
安装在轮毂 6上的部件的作用是实时感应轮胎压力信息, 并将轮胎压力信息传递给安装在车 体上的部件, 同时接受并执行来自安装在车体上部件的指令, 对轮胎 5进行充气、 放气或保压。
安装在车体上的部件包括下列部件:
( 1 ) 四块电磁铁, 亦即第一电磁铁 Al、 第二电磁铁 A2、 第三电磁铁 A3、 第四电磁铁 A4; 第 一电磁铁 A1上设有两个导电环 A1-1和 A1-2, 第二电磁铁 A2上设有两个导电环 A2-1和 A2-2 , 第 三电磁铁 A3上设有两个导电环 A3-1和 A3-2, 第四电磁铁 A4上设有两个导电环 A4-1和 A4-1;
( 2 ) 四个两位继电器开关, 亦即第一两位继电器开关 Kl、 第二两位继电器开关 Κ2、 第三两 位继电器开关 Κ3、 第四两位继电器开关 Κ4; 所述四个两位继电器开关各设有两个位置键。 为了表 述的方便, 本说明书将第一两位继电器开关 Kl、 第二两位继电器开关 Κ2、 第三两位继电器开关 Κ3 和第四两位继电器开关 Κ4各自的两个位置键分别称为为上位置键和下位置键。 在本发明的控制电 路中, 当上位置键连通时, 下位置键断开; 当下位置键连通时, 上位置键断开。 在本实施例中, 所 谓 "上位置键"、 "下位置键", 以图 5所示的方位为准, "上位置键"指图 5中所示的同一继电器开 关的两个位置键中位于上方的位置键, 而位于下方的位置键则是 "下位置键";
( 3 ) 载重传感器 Κ5 ;
(4) 车速传感器 Κ6。 安装在车体上的部件的作用是, 根据车辆的车速、载重情况, 并结合安装在轮毂上的部件发 送过来的轮胎气压信息, 给出充气、 放气、 保压的指令。
以上介绍了本发明轮胎气压调节与防爆装置所包括的部件, 以下, 进一步介绍实际使用本发 明轮胎气压调节与防爆装置,亦即将所述轮胎气压调节与防爆装置安装在汽车上时,上述部件的连 接关系和工作原理:
实际使用本发明轮胎气压调节与防爆装置时, 还需要结合其他配件, 例如图 1中的支架 4, 支架 4安装在靠近轮毂的车体上; 第一电磁铁 Al、 第二电磁铁 A2、 第三电磁铁 A3和第四电磁铁 A4安装在支架 4上。 在本实施例中, 第四电磁铁 A4设置在最靠近半轴 3的位置, 第三电磁铁 A3 次之, 第二电磁铁 A2又次之、 第一电磁铁 A1距离半轴 3最远; 第一电磁铁 Al、 第二电磁铁 A2、 第三电磁铁 A3、第四电磁铁 A4均可在电磁力的作用下, 带动各自的导电环沿着半轴 3的轴向在支 架 4上移动。
第一压力传感器 B1的支撑臂上的打气触点 Bl-2、 B1-6和放气触点 Bl-1、 B1-3与第一电磁铁 A1的两个导电环 A1-1和 A1-2相对设置, 第一电磁铁 A1是一个与汽车在低速轻载状态下行驶时的 轮胎气压调节相对应的部件。
第二压力传感器 B2的支撑臂上的打气触点 B2-l、 B2-8和放气触点 B2-2、 B2-9与第二电磁铁
A2上的两个导电环 A2-1和 A2-2相对设置, 第二电磁铁 A2是一个与汽车在高速轻载状态下行驶时 的轮胎气压调节相对应的部件。
第三压力传感器 B3的支撑臂上的打气触点 B3-3、 B3-8和放气触点 B3-4、 B3-9与第三电磁铁 A3上的两个导电环 A3-1和 A 3-2相对设置,第三电磁铁 A3是一个与汽车在低速重载状态下行驶时 的轮胎气压调节相对应的部件。
第四压力传感器 B4的支撑臂上的打气触点 B4-6、 B4-8和放气触点 B4-7、 B4-9与第四电磁铁 A4上的两个导电环 A4-1和 A4-1相对设置, 第四电磁铁 A4是一个与汽车在高速重载状态下行驶时 的轮胎气压调节相对应的部件。
第一压力单元 B1-7与第一压力传感器 B1上的支撑臂活动连接,第二压力单元 B2-5与第二压 力传感器 B2上的支撑臂活动连接,第三压力单元 B3-7与第三压力传感器 B3上的支撑臂活动连接, 第四压力单元 B4-5与第四压力传感器 B3上的支撑臂活动连接。在本实施例中,任何一个压力单元 与其所对应的支撑臂之间的连接点均位于所述支撑臂的支撑点与放气触点之间,且所述连接点到所 述支撑点之间的距离小于所述支撑点到所述支撑臂的打气触点之间的距离。上述结构特征会产生两 个技术效果: 其一, 压力单元较小的位移, 能使其对应的打气触点或放气触点产生较大的位移; 其 二, 压力单元的移动方向与放气触点的移动方向相同, 与打气触点的移动方向相反(从图 3可以直 观地看出, 在本实施例中, 压力单元的移动方向与放气触点的移动方向相同, 与打气触点的移动方 向相反)。
安装在车体上的载重传感器 K5、 车速传感器 Κ6与第一两位继电器开关 Kl、 第二两位继电器 开关 Κ2、 第三两位继电器开关 Κ3和第四两位继电器开关 Κ4之间均通过导线连接, 当汽车处于轻 载状态时, 载重传感器 Κ5断开; 当汽车处于低速状态时, 车速传感器 Κ6断开。 具体地说, 第一 两位继电器开关 K1和第二两位继电器开关 Κ2以串联的方式设置在连接蓄电池 12和第一电磁铁 A1 的导线上; 当汽车处于低速轻载状态时, 第一两位继电器开关 K1处于下位置键连通、 上位置键断 开的状态, 第二两位继电器开关 Κ2也处于下位置键连通、 上位置键断开的状态, 此时, 蓄电池 12 与第一电磁铁 A1连通。 在蓄电池 12与第一电磁铁 A1连通的情况下, 本发明的轮胎气压调节与防 爆装置可以实时调节低速轻载状态下的轮胎气压。
第一两位继电器开关 K1同时也设置在连接蓄电池 12和第二电磁铁 Α2的导线上, 该导线上 还设有第四两位继电器开关 Κ4; 当汽车由低速轻载转化为高速轻载状态时, 车速传感器 Κ6连通, 并分别向第一两位继电器开关 Kl、 第四两位继电器开关 Κ4发送指令, 使第一两位继电器开关 K1 的上位置键连通、 下位置键断开, 第四两位继电器开关 Κ4的下位置键连通、 上位置键断开, 从而 使蓄电池 12和第二电磁铁 Α2连通。 在蓄电池 12和第二电磁铁 Α2连通的情况下, 本发明的轮胎 气压调节与防爆装置可以实时调节高速轻载状态下的轮胎气压。
第一两位继电器开关 K1还与连接蓄电池 12和第三电磁铁 A3的导线连接, 在该导线上, 还 连接有第二两位继电器开关 Κ2和第三两位继电器开关 Κ3,当汽车由低速轻载转化为低速重载状态 时, 载重传感器 Κ5连通, 并向第二两位继电器开关 Κ2和第三两位继电器开关 Κ3发送指令, 使第 二两位继电器开关 Κ2的上位置键连通、 下位置键断开, 第三两位继电器开关 Κ3的下位置键连通、 上位置键断开, 此时, 第一两位继电器开关 K1仍处于下位置键 a连通、 上位置键断开的状态, 故 蓄电池 12和第三电磁铁 A3连通。 在电池 12和第三电磁铁 A3连通的情况下, 本发明的轮胎气压 调节与防爆装置可以实时调节低速重载状态下的轮胎气压。
第三两位继电器开关 K3、第四两位继电器开关 Κ4也以串联的方式连接在与连接蓄电池 12和 第四电磁铁 Α4的导线上, 第四两位继电器开关 Κ4还与第一两位继电器开关 K1连接, 当汽车处于 高速重载状态时, 载重传感器 Κ5和车速传感器 Κ6均处于连通状态; 第一两位继电器开关 Kl、 第 三两位继电器开关 Κ3和第四两位继电器开关 Κ4均处于下位置键断开、 上位置键连通的状态, 此 时, 蓄电池 12和第四电磁铁 Α4连通。 在蓄电池 12和第四电磁铁 Α4连通的情况下, 本发明的轮 胎气压调节与防爆装置可以实时调节高速重载状态下的轮胎气压。
在本实施例中, 所述四个压力传感器上的打气触点和放气触点的形状可设置为点状、 线状或 圆环状;所述压力单元可采用膜片压力开关或者活塞式压力开关;所述电磁铁的形状可以是圆环状, 也可以是半圆环状或者方块状等其他形状, 优先选择圆环状。相应地, 导电环可以是如图 2所示的 圆环状, 也可以是其他环状, 优先选择圆环状。
实施例 2
在实施例 1的基础上, 本发明进一步提供了一种安装了所述轮胎气压调节与防止爆胎装置的 车辆, 其包括车体、 半轴 3、 轮胎 5、 轮毂 6、 刹车卡钳 1、 刹车碟盘 2 、 电源总开关 K7和蓄电池 12; 半轴 3、 电源总开关 K7和蓄电池 12安装在车体上; 轮毂 6安装在半轴 3上, 轮胎 5安装在轮 毂 6上, 轮胎 5上设有气门嘴 7 ; 其还包括支架 4, 支架 4安装在车轮一侧、 靠近轮毂 6的车体上; 所述轮胎气压调节与防止爆胎装置中的四块电磁铁, 亦即第一电磁铁 Al、 第二电磁铁 A2、 第三电磁铁 A3、 第四电磁铁 A4安装在支架 4上, 在本实施例中, 第四电磁铁 A4设置在最靠近半 轴 3的位置, 第三电磁铁 A3次之, 第二电磁铁 A2又次之、 第一电磁铁 A1距离半轴 3最远; 在电 磁力的作用下,所述四块电磁铁可以带动各自的导电环沿着半轴 3的轴向在支架 4上移动; 安装在 车体上的部件还包括四个两位继电器开关,亦即第一两位继电器开关 Kl、第二两位继电器开关 Κ2、 第三两位继电器开关 Κ3、 第四两位继电器开关 Κ4, 以及载重传感器 Κ5和车速传感器 Κ6; 上述部 件的连接关系己在实施例 1中作了详细说明, 在此, 不再赘述。
所述轮胎气压调节与防爆装置中的四个压力传感器, 亦即第一压力传感器 Bl、第二压力传感 器 Β2、 第三压力传感器 Β3、 第四压力传感器 Β4, 四个压力单元, 亦即第一压力单元 Bl-7、 第二压 力单元 Β2-5、 第三压力单元 Β3-7、 第四压力单元 Β4-5以及气管 8、 继电器开关 9、 打气泵 10和电 机 11均安装在轮毂 6上: 气管 8的一端与气门嘴 7固定连接 (气管 8内的气体与轮胎 5内的气体 处于连通状态), 气管 8的另一端与打气泵 10连通, 气管 8上的四个压力支管分别与第一压力单 元 Bl-7、 第二压力单元 Β2-5、 第三压力单元 Β3-7、 第四压力单元 Β 4-5固定连接, 气管 8上的排气 支管与继电气开关 9固定连接;
第一压力传感器 Bl、第二压力传感器 Β2、第三压力传感器 Β3、第四压力传感器 Β4各自的支 撑臂上的放气触点分别通过导线 Bl-5、 Bl-9、 Β2-4、 Β2-7、 Β3-2、 Β3-6、 Β4-2、 Β4-4与继电器开关 9连接; 第一压力传感器 Β1、 第二压力传感器 Β2、 第三压力传感器 Β3、 第四压力传感器 Β4各自 的支撑臂上的打气触点分别通过导线 Bl-4、 Bl-8, Β2-3、 Β2-6 , B3-l、 Β3-5 , B4-l、 Β4-3与电机 11 连接; 第一压力传感器 Bl、 第二压力传感器 Β2、 第三压力传感器 Β3、 第四压力传感器 Β4各自的 支撑臂上的两个放气触点和两个打气触点分别与第一电磁铁 Al、 第二电磁铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4各自的两个导电环相对设置;
当轮胎 5内的气压符合标准时, 所述四个压力传感器的支撑臂上的放气触点和打气触点与所 述四块电磁铁的导电环均不接触; 当轮胎 5内的气压高于标准值时,至少有一块电磁铁上的两个导 电环与其所对应的两个放气触点发生相向移动并接触, 致使继电器开关 9与蓄电池 12连通, 继电 器开关 9通电后打开, 从而给轮胎 5放气; 当轮胎 5内的气压低于标准值时, 至少有一块电磁铁 上的两个导电环与其所对应的两个打气触点发生相向移动并接触, 致使电机 11与蓄电池 12连通, 从而启动打气泵 10给轮胎 5充气。
以上, 对安装了轮胎气压调节与防爆装置的车辆的结构特征作了介绍, 以下, 根据车辆行驶 过程中的不同状态及其相互转换,具体介绍所述车辆调节轮胎气压的方法。假设车辆处于低速轻载 状态时的标准压力为 Pl, 高速轻载时的压力为 P2, 低速重载时的压力为 P3, 高速重载时的压力为 P4, 则在设定轮胎气压的标准值范围时, 应使 P1< P2< P3< P4。 需要说明的是, Pl、 P2、 P3、 P4 的具体数值范围应根据不同类型的车辆和不同类型的轮胎具体设定。 另外, P1< P2< P3< P4是就 总体而言的, 并且强调 P1< P2< P3< P4也是为了表述的方便, 而在实际设定轮胎的标准气压值范 围时, P1与 P2之间、 P2与 P3之间以及 P3与 P4之间也可能存在一定范围的重叠。
1、 车辆启动时的检测 (假设此时车辆为轻载状态)
打开车钥匙, 接通车辆的电源总开关 K7。
( 1 ) 如果此时轮胎 5内的气压在标准值 P1范围内, 那么第一压力单元 B1-7就会因左右两端 的压力平衡而不发生位移, 与第一压力单元 B1-7相对应的第一压力传感器 B1则会保持在图 1所 示的位置 Ζ; 载重传感器 Κ5、 车速传感器 Κ6处于断开的状态, 第一两位继电器开关 K1处于下位 置键连通、 上位置键断开的状态, 第二继电器开关 Κ2、 第三继电器开关 Κ3、 第四继电器开关 Κ4 也处于下位置键连通、 上位置键断开的状态, 这就意味着第一电磁铁 A1与车体上的蓄电池 12接 通, 而第二电磁铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4均处于与蓄电池 12断开的状态。
第一电磁铁 A1与蓄电池 12连通后, 在电力的驱动下, 从图 1所示的位置 X移到位置丫。 此 时, 由于轮胎 5内的气压在标准值 P1范围内, 故第一压力传感器 B1仍保持在位置 Ζ, 而未与蓄电 池 12连通的第二电磁铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4则因未通电而保持在位置 X。 与此同 时, 由于轮胎内的压力 P1低于第二压力单元 Β2-5、 第三压力单元 Β3-7、 第四压力单元 Β4-5设定 的标准压力 (第二压力单元 Β2-5、 第三压力单元 Β3-7、 第四压力单元 Β4-5的标准压力分别按照轻 载高速、 重载低速、 重载高速的标准设定), 故第二压力传感器 Β2、 第三压力传感器 Β3、 第四压 力传感器 Β4面向第二电磁铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4的一端保持在位置 Υ, 亦即不能 由位置 Υ移动到位置 X。 因此, 第一电磁铁 Al、 第二电磁铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4 与第一压力传感器 Bl、 第二压力传感器 Β2、 第三压力传感器 Β3、 第四压力传感器 Β4均不接触, 亦即所述各电磁铁上的导电环与所述各压力传感器的支撑臂上的打气触点和放气触点均不接触。在 这种情况下, 电机 11因未通电而不转动, 打气泵 10不工作, 继电器 9关闭, 轮胎 5处于保持标 准压力 P1的状态。
( 2 ) 如果轮胎 5内的气压低于标准值 Pl, 则第一压力单元 B1-7左端 (与第一压力传感器的 支撑臂连接的一端) 的压力大于右端 (与气管 8 的压力支管连接的一端) 的压力, 致使第一压力 单元 Bl-7右移, 带动第一压力传感器 B1的支撑臂上的两个打气触点 B1-2和 B1-6从位置 Z移到位 置 Y, 从而分别与第一电磁铁 A1上的两个导电环 A1-2和 A1-1接触, 致使电机 11与蓄电池 12连 通, 电机 11在电力的驱动下转动, 带动打气泵 10给轮胎 5打气, 轮胎 5气压逐步提高。 当轮胎 5 内的气压达到标准值 P1时, 第一压力单元 B1-7左移, 带动第一压力传感器 B1的支撑臂上的两个 打气触点 B1-2和 B1-6右移, 从而与第一电磁铁 A1上的两个导电环 A1-2和 A1-1断开, 此时, 电 机 11失去电力停止转动, 打气泵 10不工作, 继电器 9关闭, 轮胎 5处于保持标准压力 P1的状态。 需要说明的是, 第一压力单元 B1-7左端的压力原本等于 Pl, 但是, 在第一压力单元 B1-7右移后, 其左端的压力会变得小于 P1 (例如, 作为压力单元的膜片压力开关中的弹性部件伸展后, 导致其 左端的压力变小), 因此, 当轮胎 5内的气压达到标准值 P1时, 第一压力单元 B1-7会左移, 直到 其左右两端的压力均为 P1时,才保持在平衡位置。 同理,第二压力单元 Β2-5、第三压力单元 Β3-7、 第四压力单元 Β4-5向右移动后, 其左端的压力会变小。 另外, 本说明书中的 "左"、 "右", 以图 1 所示为准。
( 3 ) 如果轮胎 5内的气压高于标准值 Pl, 则第一压力单元 B1-7的右端的压力大于其左端的 压力, 在轮胎气压的作用下, 第一压力单元向左移动, 带动第一压力传感器上的支撑臂上的两个 放气触点 B1-1和 B1-3左移, 并与第一电磁铁上的两个导电环 Al-1、 A1-2接触, 从而使继电器开 关 9与蓄电池 12连通, 继电器开关 9通电后打开, 给轮胎 5放气, 当轮胎 5的气压降到标准气压 P1时, 第一压力单元 B1-7右移, 使得第一压力传感器上的支撑臂上的两个放气触点 B1-1和 B1-3 右移, 与第一电磁铁上的两个导电环 Al-1、 A1-2断开, 继电器 9断电后关闭, 停止放气, 轮胎 5 处于保持标准压力 P1的状态。 需要说明的是, 第一压力单元 B1-7左端的压力原本等于 Pl, 但是, 在第一压力单元 B1-7左移后, 其左端的压力会变得大于 P1 (例如, 膜片压力开关的弹性部件被压 缩后, 导致其左端的压力变大), 因此, 当轮胎 5的气压降到标准气压 P1时, 第一压力单元 B1-7 会向右移动, 直到其左右两端的压力均为 P1时, 才保持在平衡位置。 同理, 第二压力单元 Β2-5、 第三压力单元 Β3-7、 第四压力单元 Β4-5左移后, 其左端的压力会变大。
2、 车辆行驶中不同状态的轮胎气压调节
( 1 ) 低速轻载→高速轻载→低速轻载
车辆启动后, 第一电磁铁 A1通电后, 从图 1所示的位置 X右移到位置 Υ, 此时, 如果轮胎 5 的压力等于标准值 Pl, 则第一压力传感器 B1在位置 Ζ, 第二电磁铁 Α2、 第三电磁铁 A3、 第四电 磁铁 Α4均在位置 X, 第二压力传感器 Β2、 第三压力传感器 Β3、 第四压力传感器 Β4面向第二电磁 铁 Α2、 第三电磁铁 A3、 第四电磁铁 Α4的一端在位置 Υ。 因未与蓄电池连通, 电机 11不转, 继电 器 9关闭, 轮胎 5处于保持标准压力 P1的状态。
当车辆在行驶中, 由低速转到高速时, 车速传感器 Κ6自动接通 (车速传感器 Κ6在车辆达到 何种速度时接通, 可以根据轮胎和车辆的具体规格确定, 例如, 一般的桥车为 110 公里 /小时、一 般的载重车为 90 公里 /小时)。 车速传感器 K6接通后, 第一继电器开关 K1转化为下位置键断开、 上位置键接通的状态, 使得第二电磁铁 A2与蓄电池 12连通, 第二电磁铁 A2得电右移。 与此同时, 由于第一继电器开关 K1 的下位置键断开, 使得第一电磁铁 A1断电, 沿着半轴 3的轴向从位置 Y 回到位置 X。此时, 由于轮胎 5内的气压是低速轻载状态时的标准气压 Pl, 相对于轻载高速的标准 气压 P2要低, 故气管 8的压力支管与第二压力单元 B2-5的连接端的压力小于第二压力单元 B2-5 的另一端的压力, 亦即第二压力单元 B2-5右端的压力小于其左端的压力, 致使该压力单元右移, 从而导致第二压力传感器 B2的支撑臂上的两个打气触点 B2-1和 B2-8左移 (由图 3可知, 打气触 点的移动方向与压力单元的移动方向相反), 并分别与第二电磁铁上的两个导电环 A2-2和 A2-1接 触, 从而使电机 11与蓄电池 12连通, 电机 11通电后转动, 驱动打气泵 10给轮胎 5打气, 当轮胎 5内的气压达到所设定的高速轻载状态下的标准气压值 P2时, 第二压力单元 B2-5右移, 迫使第二 压力传感器 B2的支撑臂上的两个打气触点 B2-1和 B2-8右移, 分别与第二电磁铁上的两个导电环 A2-2和 A2-1断开, 致使电机 11失电, 打气泵 10停止打气, 轮胎 5处于保持标准压力 P2状态, 车辆维持高速行驶。
当车辆速度从高速转为低速时, 车速传感器 K6自动断开, 第一继电器开关 K1处于图 5所示 的下位置键连通、 上位置键断开的状态, 致使第二电磁铁 A2断电左移, 第一电磁铁 A1通电右移, 由于此时轮胎气压 P2比低速轻载的气压 P1要高,故第一压力单元右端(与气管 8的压力支管连接 的一端)的压力大于其左端(与第一压力传感器的支撑臂连接的一端)的压力, 使得第一压力传感 器 B1的两个放气触点 B1-1和 B1-3左移, 与第一电磁铁的两个导电环 A1-2和 A1-1接触, 从而导 致继电器开关 9通电后打开, 给轮胎 5放气, 当轮胎 5内的压力降低到标准气压 P1时, 第一压力 传感器 B1 的支撑臂上的两个放气触点 B1-1和 B1-3右移, 分别和第一电磁铁上两个导电环 A1-2 和 A1-1断开, 继电器开关 9失电关闭, 停止放气。 轮胎 5处于保持标准压力 P1的状态。
( 2 ) 低速轻载→低速重载→高速重载→低速重载→低速轻载
当车辆由低速轻载转化低速重载时, 载重传感器 K5自动接通, 第二继电器开关 K2通电并处 于下位置键断开、 上位置键连通的状态, 使第一电磁体 A1断电左移, 第三电磁体 A3通电右移, 与此同时, 载重传感器 K5的接通也会导致第四继电器开关 K4的上位置键接通、 下位置键断开。 此时, 由于第三压力单元 B3-7右端 (与气管 8的压力支管连接的一端) 的压力相当于低速轻载状 态下的压力 Pl, 该压力小于低速重载状态下的轮胎实际所需的压力 P3, 导致第三压力单元右移, 使得第三压力传感器 B3的支撑臂上的两个打气触点 B3-3和 B3-8左移, 从图 1中的位置 Z移到位 置 Y, 从而与第三电磁铁上的两个导电环 Α3-2和 A3-1分别接通, 使电机 11通电, 带动打气泵 10 给轮胎 5打气。当轮胎 5内的压力达到低速重载所要求的标准气压 Ρ3时,第三压力单元 Β3-7左移, 使得第三压力传感器 B3的支撑臂上的两个打气触点 B3-3和 B3-8右移, 从而与第三电磁铁上的两 个导电环 A3-2和 A3-1断开, 电机 11断电停转, 打气泵 10停止工作。 此时, 汽车处于低速满载状 态, 轮胎处于保持标准压力 P3的状态。
当车辆由低速重载状态进入高速重载状态时, 载重传感器 K5和车速传感器 K6均处于连通状 态, 第一两位继电器开关 Kl、 第三两位继电器开关 Κ3和第四两位继电器开关 Κ4均处于下位置键 断开、 上位置键连通的状态, 致使蓄电池 12与第四电磁铁 Α4连通, 同时使蓄电池 12与第三电磁 铁 A3之间的连接断开。 第四电磁铁 Α4通电后从位置 X右移到位置 Υ, 而第三电磁铁 A3断电后从 位置 Υ左移到位置 X。 与此同时, 在车辆高速重载的情况下, 轮胎 5所需的标准压力 Ρ4较轮胎在 低速重载条件下的气压 Ρ3要高, 亦即第四压力单元 Β4-5与第四压力传感器 Β4的支撑臂连接端的 压力小于轮胎 5所需的标准压力 Ρ4,从而导致第四压力传感器 Β4的支撑臂上的两个打气触点 Β4-6 和 Β4-8从位置 Ζ移到位置 Υ, 分别与第四电磁铁的两个导电环 A4-2、 A4-1接通, 致使电机 11通电 转动, 驱动打气泵 10给轮胎 5打气。 当轮胎 5内的气压达到所要求的标准气压 Ρ4时, 第四压力 单元 Β4-5左移, 导致第四压力传感器 Β4的支撑臂上的两个打气触点 Β4-6和 Β4-8右移, 与第四电 磁铁上的两个导电环 A4-2、 A4-1断开, 电机 11断电停转, 打气泵 10停止工作。 此时, 汽车处于 高速重载状态, 轮胎 5处于保持标准压力 Ρ4的状态。
假如车辆由高速重载变为低速重载, 则车速传感器 Κ6断开, 第三继电器开关 Κ3由下位置键 断开、 上位置键连通的状态转变为下位置键连通、 上位置键断开的状态, 使得第四电磁铁 Α4断电 并沿着半轴 3的轴向从位置 Υ左移回到位置 X, 第三电磁铁 A3通电后沿着半轴 3的轴向从位置 X 右移到位置 Υ, 此时, 由于轮胎气压为 Ρ4, 高于低速重载所要求的标准压力 Ρ3, 使得第三压力单 元 Β3-7左移到位置 Υ, 导致第三压力传感器 Β3的支撑臂上的两个放气触点 Β3-4和 Β3-9分别与第 三电磁铁 A3的两个导电环 Α3-2和 A3-1接通, 从而使继电器开关 9通电打开开关放气, 当轮胎 5 内的压力降到重载低速状态所要求的标准气压 Ρ3时, 第三压力单元 Β3-7右移到位置 Ζ, 导致第三 压力传感器 Β3的支撑臂上的两个放气触点 Β3-4和 Β3-9分别与第三电磁铁 A3的两个导电环 Α3-2 和 A3-1断开。 此时, 车辆处于低速重载状态, 轮胎 5处于保持标准压力 Ρ3的状态。
如果车辆进一步从重载低速变为轻载低速, 则载重传感器 Κ5断开, 第四继电器开关 Κ4变为 上位置键断开、 下位置键连通的状态, 第二继电器开关 Κ2变为上位置键断开、 下位置键连通的状 态, 从而使得第三电磁铁 A3断电后沿着半轴 3的轴向从位置 Υ向左移动回到位置 X, 第一电磁铁 A1通电后沿着半轴 3的轴向从位置 X向右移动到位置 Υ。 此时, 由于重载低速状态所要求的标准 气压 Ρ3高于轻载低速状态所要求的气压 Pl, 故第一压力单元 B1-7向左移动, 使得第一压力传感 器 B1的支撑臂上的两个放气触点 B1-1和 B1-3处在位置 Υ,分别同第一电磁体 A1上的导电环 A1-2 和 A1-3接通, 从而使继电器开关 9通电后, 打开开关给轮胎 5放气, 当轮胎 5内的气压降到低速 轻载所要求的标准压力 P1时, 第一压力单元 B1-7右移, 带动第一压力传感器 B1的支撑臂上的两 个放气触点 Bl-1、 B1-3从位置 Y右移到位置 Z,从而与第一电磁体 A1上的导电环 Al-2、 A1-1断开, 致使继电器开关 9断电关闭, 停止放气。 此时车辆处于低速轻载状态, 轮胎 5处于保持标准压力 P1的状态。
需要特别说明的是, 本实施例是根据车辆所处的 "低速轻载"、 "高速轻载"、 "低速重载" 和"高速重载"四种状态来选择相应的轮胎气压调节与防爆装置(设有四块铁磁铁及其对应的部件 的轮胎气压调节与防爆装置), 对于通常只存在 "低速轻载"和 "低速重载"两种行驶状态的车辆, 例如市内公交车、 电车等, 可以选用只设置了两块电磁铁及其对应部件的轮胎防爆装置, 从而节省 成本。另外, 在本发明的轮胎气压调节与防爆装置仅设置一块电磁铁及其对应部件的情况下, 所述 轮胎气压调节与防爆装置也能在轮胎需要充气的情况下,给轮胎自动充气,在轮胎需要放气的情况 下, 给轮胎自动放气, 并且不受车辆行驶状态的限制。 当然, 就效果而言, 设有四块铁磁铁及其对 应的部件的轮胎防爆装置能够更好地满足车辆在不同状态下的轮胎气压调节需求。
实施例 3
与实施例 2中的车辆相比, 本实施例中的车辆主要是增加了强制放气控制装置。在特殊情 况下, 例如当车辆在泥泞的路面上行驶时, 为了扩大轮胎与地面的接触面, 防止轮胎深陷泥坑中, 即便轮胎内的气压处于标准值范围内, 也需要降低轮胎内的气压, 这就需要给轮胎强制放气。
如图 6、 图 7所示, 在实施例 2的基础上, 本发明提供了一种设有强制放气控制装置的汽 车, 所述强制放气控制装置包括设置在支架 4上的第五电磁铁 A5, 设置在车体上的强制放气开关 K8 以及设置在轮毂 6上的两个强制放气触点, 亦即第一强制放气触点 14-1和第二强制放气触点 14-2
第五电磁铁 A5上设有两个导电环 A5-1和 A5-2 , 在电磁力的作用下, 第五电磁铁 A5会带动 两个导电环 A5-1和 A5-2沿着半轴 3的轴向在支架 4上移动。第五电磁铁 A5通过导线 D2与蓄电池 12连接;当第五电磁铁 A5未与蓄电池 12连通时,两个导电环 A5-1和 A5-2处于图 5所示的位置 X, 当第五电磁铁 A5与蓄电池 12连通时, 在电力的作用下, 第五电磁铁 A5带动两个导电环 A5-1和 A5-2沿着半轴 3的轴向从位置 X移到位置 Y。
强制放气开关 Κ8设置在蓄电池 12与载重传感器 Κ5、 车速传感器 Κ6以及第一两位继电器开 关 K1等部件相连接的导线 D1上, 其同时也设置在与导线 D1呈并联关系的导线 D2上; 强制放气 开关 Κ8设有两个位置键, 为了表述的方便, 本说明书将强制放气开关 Κ8的两个位置键分别称为 左位置键和右位置键 ("左 "和 "右" 以图 7所示的方位为准), 其中, 左位置键设置 D2电路上, 其作用是控制蓄电池 12与第五电磁铁 Α2的连通与断开, 右位置键设置在 D1电路上, 其作用是用 于控制蓄电池 12与载重传感器 Κ5、车速传感器 Κ6以及第一两位继电器开关 K1等部件连接与断开; 当左位置键连通 (闭合) 时, 右位置键断开, 蓄电池 12与第五电磁铁连通; 当右位置键连通时, 左位置键断开, 此时, 汽车按照实施例 2中所述的控制方式调节轮胎 5气压。
第一强制放气触点 14-1和第二强制放气触点 14-2固定设置在轮毂 6上, 并且与第五电磁铁 A5上的两个导电环 A5-1和 A5-2相对设置;第一强制放气触点 14-1和第二强制放气触点 14-2还通 过导线与继电器开关 9连接。 在本实施例中, 第一强制放气触点 14-1和第二强制放气触点 14-2始 终位于图 5中的位置 Y.
当需要给轮胎 5强制放气时, 司机断开强制放气开关 K8的右位置键, 使蓄电池 12与载重传 感器 K5、 车速传感器 Κ6 和第一两位继电器开关等部件之间的连接断开, 同时闭合强制放气开关 Κ8的左位置键,使蓄电池 12与第五电磁铁 Α5连通;第五电磁铁 Α5通电后带动其两个导电环 A5-1 和 Α5-2沿着半轴 3的轴向从位置 X右移到位置 Υ, 与原本位于位置 Υ的第一强制放气触点 14-1和 第二强制放气触点 14-2接触, 导致继电器开关 9通电打开, 从而给轮胎 5放气。
实施例 4
为了满足用户的多样化需求, 本发明在实施例 2或 /和实施例 3 的基础上, 进一步提供 了设有轮毂发光装置或 /和发声装置的车辆, 所述发光装置包括起装饰作用的灯泡, 所述发声 装置包括扬声器。 所述发光装置或 /和发声装置固定安装在轮毂 6上, 其可以通过导线分别与 控制轮胎 5充气、 放气的打气触点或放气触点连接, 当轮胎 5充气或放气时, 所述发光装置 或 /和发声装置因通电而发光或 /和发声。
为了在有需要的情况下, 使所述发光装置或 /和发声装置随时发光或 /和发声, 本实施例 采用了下述技术方案:
如图 6所示, 在轮毂 6上设置发光装置 13或 /和发声装置 (图中未示出); 在轮毂 6上 还固定安装有两个装饰触点,亦即第一装饰触点 13-1和第二装饰触点 13-2 ;第一装饰触点 13-1 和第二装饰触点 13-2始终处于图 5所示的位置 Υ。 第一装饰触点 13-1和第二装饰触点 13-2 通过导线与发光装置 13或 /和发声装置连接, 发光装置 13与所述发声装置可以串联或并联的 方式连接。
在支架 4上安装第六电磁铁 Α6, 第六电磁铁 Α6上设有两个导电环 A6-1和 Α6-2 ; 两个 导电环 A6-1和 Α6-2与第一装饰触点 13-1和第二装饰触点 13-2相对设置; 当第六电磁铁 Α6 未与蓄电池 12连通时, 第六电磁铁 Α6位于图 5所示的位置 X, 当第六电磁铁 Α6未与蓄电池 12连通时, 在电力的作用下, 第六电磁铁 Α6带动其两个导电环 A6-1和 Α6-2沿着半轴 3的轴 向从位置 X向右移动到位置 Υ。
如图 7 所示, 在所述车体上设置装饰控制开关 Κ9, 在所述车体上还设有一条将蓄电池
12与第六电磁铁 Α6连通的导线 D3, 装饰控制开关 K9设置在导线 D3上, 其作用是控制蓄电 池 12与第六电磁铁 A6之间的连通与断开。 在本实施例中, 装饰控制开关 K9可以采用自动控 制开关, 也可以采用手动控制开关。 当需要发光装置 13 或 /和发声装置发光、 发声时, 使装 饰控制开关 K9闭合, 从而使蓄电池 12与第六电磁铁 A6连通, 第六电磁铁 A6通电后, 其两 个导电环 A6-1和 A6-2沿着半轴 3的轴向右移到位置 Y, 与固定在位置 Υ的第一装饰触点 13-1 和第二装饰触点 13-2接触, 从而使发光装置 13或 /和发声装置通电后发光或 /和发声。
以上结合附图介绍了本发明的实施例, 根据说明书公开的内容, 本领域的技术人员应当 理解, 本发明不受上述实施例的限制; 本发明还包括多种变型的实施方式。 例如, 根据轮毂 形状方面的不同特点和电磁铁所处的不同位置, 也可以将压力单元与压力传感器的支撑臂之间 的连接点设置在支撑点与打气触点之间,在这种情况下,打气触点的移动方向便于所述压力单元的 移动方向一致, 而放气触点的移动方向则与该压力单元的移动方向相反。 又如, 根据车辆的档次 和用途的不同, 所压力传感器及其相关配件的数量, 可以是一个, 也可以是两个、 三个, 甚 至五个以上。 总之, 凡在本发明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、一种轮胎气压调节与防止爆胎装置, 其特征在于, 包括下列使用时分别安装在车体和轮毂 (6) 上的部件:
安装在车体上的部件包括载重传感器 (K5)、 车速传感器 (Κ6)、 电磁铁和两位继电器开关, 所述电磁铁上设有两个导电环;
安装在轮毂 (6) 上的部件包括压力传感器、 压力单元、 气管 (8)、 继电器开关 (9)、 打气 泵 (10) 和电机 (11);
气管 (8) 上设有可与继电器开关 (9) 连接的排气支管, 气管 (8) 上还设有可与所述压力 单元连接的压力支管;所述压力传感器上设有一个支撑点,所述支撑点上设有一条与该支撑点活动 连接的支撑臂,所述支撑臂的两端分别设有两个放气触点和两个打气触点;所述支撑臂可以围绕所 述支撑点转动, 当所述支撑臂的一端接近所述压力传感器时, 其另一端远离所述压力传感器。
2、 如权利要求 1所述的轮胎气压调节与防止爆胎装置, 其特征在于:
所述电磁铁包括第一电磁铁(Al)、第二电磁铁(Α2)、第三电磁铁(A3)和第四电磁铁(A4); 所述压力传感器包括第一压力传感器 (Bl)、 第二压力传感器 (Β2)、 第三压力传感器 (Β3) 和第四压力传感器 (B4);
所述压力单元包括第一压力单元 (Bl-7)、 第二压力单元 (Β2-5)、 第三压力单元 (Β3-7) 和第 四压力单元 (B4-5);
所述两位继电器开关包括第一两位继电器开关 (Kl)、 第二两位继电器开关 (Κ2)、 第三两位 继电器开关 (Κ3) 和第四两位继电器开关 (Κ4)。
3、 如权利要求 1或 2所述的轮胎气压调节与防止爆胎装置, 其特征在于: 所述放气触点、 打气触点的形状为点状、 线状或者圆环状。
4、 如权利要求 1或 2所述的轮胎气压调节与防止爆胎装置, 其特征在于: 所述压力单元为 膜片压力开关或者活塞式压力开关。
5、一种安装了权利要求 1所述的轮胎气压调节与防止爆胎装置的车辆,其包括车体、半轴 (3)、 轮胎 (5)、 轮毂 (6)、 气门嘴 (7)、 电源总开关 (Κ7) 和蓄电池 (12), 其还包括支架 (4), 支架 (4) 安装在靠近轮毂 (6) 的车体上;
所述电磁铁安装在支架(4)上, 在电磁力的作用下, 所述电磁铁可以带动所述导电环沿着半 轴 (3) 的轴向在支架 (4) 上移动; 所述载重传感器 (K5)、 车速传感器 (Κ6) 和两位继电器开关 安装在车体上, 所述两位继电器开关的一端通过导线与蓄电池 (12)、 载重传感器 (Κ5) 和车速传 感器 (Κ6) 连接, 所述两位继电器开关的另一端通过导线与所述电磁铁连接; 载重传感器 (Κ5) 与车速传感器 (Κ6) 之间的关系为并联关系;
所述压力传感器、 压力单元、 气管 (8)、 继电器开关 (9)、 打气泵 (10) 和电机 (11) 安装 在轮毂 (6) 上; 继电器开关 (9) 与气管 (8) 的排气支管固定连接; 所述压力单元的一端与气管 (8)上的压力支管固定连接, 所述压力单元的另一端与所述压力传感器的支撑臂活动连接; 所述 支撑臂上的两个打气触点和两个放气触点与所述电磁铁上的两个导电环相对设置;
当轮胎(5) 内的气压符合标准时, 所述放气触点、 打气触点与所述导电环互不接触; 当轮胎 (5) 内的气压高于标准值时, 所述放气触点分别与所述电磁铁上的两个导电环接触, 致使继电器 开关 (9) 通电打开, 轮胎 (5) 内的多余气体通过气门嘴 (7) 和气管 (8) 的排气支管排出; 当 轮胎 (5) 内的气压低于标准值时, 所述支撑臂上的两个打气触点向靠近所述电磁铁的方向发生移 动并与所述电磁铁上两个导电环接触, 使电机 (11) 通电后启动打气泵 (10) 给轮胎 (5) 充气。
6、 如权利要求 5所述的车辆, 其特征在于: 所述电磁铁包括第一电磁铁 (Al)、 第二电磁铁
(Α2)、 第三电磁铁 (A3) 和第四电磁铁 (A4);
所述压力传感器包括第一压力传感器 (Bl)、 第二压力传感器 (Β2)、 第三压力传感器 (Β3) 和第四压力传感器 (B4);
所述压力单元包括第一压力单元 (Bl-7)、 第二压力单元 (Β2-5)、 第三压力单元 (Β3-7) 和 第四压力单元 (B4-5);
所述两位继电器开关包括第一两位继电器开关 (Kl)、 第二两位继电器开关 (Κ2)、 第三两位 继电器开关 (Κ3) 和第四两位继电器开关 (K4);
当轮胎 (5) 内的气压符合标准时, 第一电磁铁 (Al)、 第二电磁铁 (Α2)、 第三电磁铁 (A3) 和第四电磁铁(Α4) 的两个导电环与第一压力单元 (Bl-7)、 第二压力单元(Β2-5)、 第三压力单元 (Β3-7)和第四压力单元(Β4-5)各自的支撑臂上的两个打气触点和两个放气触点均不接触; 当轮 胎 (5) 内的气压高于标准值时, 至少有一块电磁铁上的两个导电环与其所对应的两个放气触点接 触; 当轮胎 (5) 内的气压低于标准值时, 至少有一块电磁铁上的两个导电环与其所对应的两个打 气触点接触。
7、 如权利要求 5或 6所述的车辆, 其特征在于: 所述放气触点、 打气触点的形状为点状、 线状或者圆环状, 所述压力单元为膜片压力开关或者活塞式压力开关。
8、 如权利要求 5或 6所述的车辆, 其特征在于: 还包括强制放气控制装置, 所述强制放气 控制装置包括设置在支架 (4) 上的第五电磁铁 (A5), 设置在车体上的强制放气开关 (K8) 以及 设置在轮毂(6)上的两个强制放气触点,亦即第一强制放气触点(14-1)和第二强制放气触点(14-2);
第五电磁铁 (A5) 通过导线 (D2) 与蓄电池 (12) 连接; 第五电磁铁 (A5) 上设有两个导电 环 (A5-1) 和 (A5-2);
强制放气开关 (K8) 设置在蓄电池 (12) 与载重传感器 (K5)、 车速传感器 (Κ6) 以及所述 两位继电器开关相连接的导线 (D1) 上, 其同时也设置在与导线 (D1) 呈并联关系的导线 (D2) 上; 强制放气开关 (Κ8) 设有两个位置键, 其中的一个位置键用于控制蓄电池 (12) 与第五电磁 铁(Α5)的连通与断开, 另一个位置键用于控制蓄电池(12)与载重传感器(Κ5)、车速传感器(Κ6) 以及所述两位继电器开关的连通与断开, 且其中的一个位置键断开时, 另一个位置键连通;
第一强制放气触点 (14-1) 和第二强制放气触点 (14-2) 固定设置在轮毂 (6) 上, 并且与第 五电磁铁 (Α5) 上的两个导电环 (A5-1) 和 (Α5-2) 相对设置; 第一强制放气触点 (14-1) 和第二 强制放气触点 (14-2) 还通过导线与继电器开关 (9) 连接;
当需要给轮胎 (5) 强制放气时, 断开强制放气开关 (Κ8) 的一个位置键, 使蓄电池 (12) 与 载重传感器(Κ5)、 车速传感器(Κ6) 以及所述两位继电器开关之间的连接断开, 并使蓄电池(12) 与第五电磁铁 (Α5) 连通; 第五电磁铁 (Α5) 通电后带动其两个导电环 A5-1和 Α5-2沿半轴 (3) 的轴向移动并与第一强制放气触点 (14-1) 和第二强制放气触点 (14-2) 接触, 导致继电器开关 9 通电打开, 从而给轮胎 5放气。
9、 如权利要求 5或者 6所述的车辆, 其特征在于: 在轮毂 (6) 上设置发光装置或者发声装 置,所述发光装置或者发声装置通过导线与所述打气触点或者放气触点连接, 当所述电磁铁上的两 个导电环与所述打气触点或者放气触点接触时, 所述发光装置或者发声装置通电后发光或者发声。
10、 如权利要求 5或者 6所述的车辆, 其特征在于: 在轮毂 (6) 上设置发光装置 (13) 或 者发声装置; 在轮毂 (6) 上还固定安装有两个装饰触点, 亦即第一装饰触点 (13-1) 和第二 装饰触点 (13-2); 第一装饰触点 (13-1) 和第二装饰触点 (13-2) 通过导线与发光装置 (13) 或者发声装置连接;
支架 (4) 上还安装有第六电磁铁 (Α6), 第六电磁铁 (Α6) 上设有两个导电环 (A6-1) 和 (A6-2); 第六电磁铁 (Α6) 的两个导电环 (A6-1) 和 (Α6-2) 与第一装饰触点 (13-1) 和 第二装饰触点 (13-2) 相对设置;
所述车体上设有装饰控制开关 (Κ9), 所述车体上还设有一条将蓄电池 (12) 与第六电磁 铁 (Α6) 连通的导线 (D3), 装饰控制开关 (K9) 设置在导线 D3上; 当需要发光装置 (13) 或者发声装置发光或者发声时, 闭合装饰控制开关 (K9), 使蓄电 池 (12) 与第六电磁铁 (Α6) 连通, 第六电磁铁 (Α6) 通电后, 带动其两个导电环 (A6-1) 和 (Α6-2) 沿半轴 (3) 的轴向移动并与第一装饰触点 (13-1) 和第二装饰触点 (13-2) 接触, 从而使发光装置 (13) 或者发声装置通电后发光或者发声。
PCT/CN2011/082076 2011-11-11 2011-11-11 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆 WO2013067707A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/082076 WO2013067707A1 (zh) 2011-11-11 2011-11-11 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆
CN201180003318.XA CN103237668B (zh) 2011-11-11 2011-11-11 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082076 WO2013067707A1 (zh) 2011-11-11 2011-11-11 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆

Publications (1)

Publication Number Publication Date
WO2013067707A1 true WO2013067707A1 (zh) 2013-05-16

Family

ID=48288468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082076 WO2013067707A1 (zh) 2011-11-11 2011-11-11 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆

Country Status (2)

Country Link
CN (1) CN103237668B (zh)
WO (1) WO2013067707A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115107423B (zh) * 2020-12-08 2024-02-13 西安电子科技大学芜湖研究院 一种爆胎防侧翻车轮的传动方法
CN114590082A (zh) * 2022-03-30 2022-06-07 吕建伟 汽车爆胎防倾覆自排气轮毂及平衡控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742857A (en) * 1986-10-07 1988-05-10 Techni Guidance, Inc. Tire pressure sensor and air supply to maintain desired tire pressure
CN1070878A (zh) * 1991-09-03 1993-04-14 易通公司 车辆轮胎充气系统的排气
CN2204734Y (zh) * 1994-11-08 1995-08-09 李育森 轮胎压力信号采集与发射装置
US5452753A (en) * 1993-04-22 1995-09-26 Hughes Aircraft Company Vehicle tire management system including wheel with self-contained tire inflation/deflation apparatus
CN1361024A (zh) * 2000-12-23 2002-07-31 吴燕平 轮胎电子防爆系统
CN1617806A (zh) * 2001-12-04 2005-05-18 达纳公司 目标轮胎压力学习方法
CN2803779Y (zh) * 2005-06-28 2006-08-09 李树林 轮胎内气压传感器
CN201261362Y (zh) * 2008-08-04 2009-06-24 高志 智能轮胎气压控制仪
CN101628529A (zh) * 2008-07-15 2010-01-20 中国北方车辆研究所 具有轮胎保护功能的轮胎中央充放气系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742857A (en) * 1986-10-07 1988-05-10 Techni Guidance, Inc. Tire pressure sensor and air supply to maintain desired tire pressure
CN1070878A (zh) * 1991-09-03 1993-04-14 易通公司 车辆轮胎充气系统的排气
US5452753A (en) * 1993-04-22 1995-09-26 Hughes Aircraft Company Vehicle tire management system including wheel with self-contained tire inflation/deflation apparatus
CN2204734Y (zh) * 1994-11-08 1995-08-09 李育森 轮胎压力信号采集与发射装置
CN1361024A (zh) * 2000-12-23 2002-07-31 吴燕平 轮胎电子防爆系统
CN1617806A (zh) * 2001-12-04 2005-05-18 达纳公司 目标轮胎压力学习方法
CN2803779Y (zh) * 2005-06-28 2006-08-09 李树林 轮胎内气压传感器
CN101628529A (zh) * 2008-07-15 2010-01-20 中国北方车辆研究所 具有轮胎保护功能的轮胎中央充放气系统
CN201261362Y (zh) * 2008-08-04 2009-06-24 高志 智能轮胎气压控制仪

Also Published As

Publication number Publication date
CN103237668B (zh) 2015-08-19
CN103237668A (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
CN100567036C (zh) 智能可变轮胎附着力机构
US20220144016A1 (en) Fuel efficiency system for a vehicle
US20150239309A1 (en) Tire inflation apparatus
JPH05238216A (ja) 中央タイヤ空気圧制御装置およびその空気圧を制御する方法
CN109334705B (zh) 一种无轨电车制动系统及无轨电车
CN103879242A (zh) 车辆及其轮胎自动充气系统
WO2013067707A1 (zh) 轮胎气压调节与防止爆胎装置以及安装了所述装置的车辆
CN110509727A (zh) 一种自动调节附着系数的轮胎控制系统
CN110549797A (zh) 一种轮胎胎压自动平衡装置
CN102632776A (zh) 一种车辆轮胎气压监测及自动充气装置
CN102139607A (zh) 轮胎自充气系统
CN106585281A (zh) 智能网络防爆胎装置的使用方法
CN106585283A (zh) 智能网络防爆胎装置
CN201501259U (zh) 一种轮胎压力无线监测与自动控制装置
CN107512141A (zh) 一种胎压检测系统
CN201961109U (zh) 一种汽车轮胎智能压力控制系统
CN107962914B (zh) 用于车辆的车轮组件及具有其的车辆
CN210062583U (zh) 带放气功能的轮胎自动充气系统
CN202782530U (zh) 一种车辆轮胎气压监测及自动充气装置
CN209141811U (zh) 一种用于汽车减震的防爆轮胎
CN104648364B (zh) 用于车辆的提升桥的升降‑制动控制系统及汽车
JPH04321405A (ja) タイヤ空気圧調整装置
CN111231587B (zh) 一种自充气恒压防爆胎系统
CN201151332Y (zh) 新型轮胎充气装置
CN2923391Y (zh) 一种安全轮胎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875342

Country of ref document: EP

Kind code of ref document: A1