WO2013065575A1 - Electricity storage device - Google Patents

Electricity storage device Download PDF

Info

Publication number
WO2013065575A1
WO2013065575A1 PCT/JP2012/077602 JP2012077602W WO2013065575A1 WO 2013065575 A1 WO2013065575 A1 WO 2013065575A1 JP 2012077602 W JP2012077602 W JP 2012077602W WO 2013065575 A1 WO2013065575 A1 WO 2013065575A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
current collector
electrode member
storage device
Prior art date
Application number
PCT/JP2012/077602
Other languages
French (fr)
Japanese (ja)
Inventor
大塚正博
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2013541738A priority Critical patent/JP5614567B2/en
Publication of WO2013065575A1 publication Critical patent/WO2013065575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/74Terminals, e.g. extensions of current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • LiPF 6 as an electrolyte is dissolved in this mixed solvent so as to have a concentration of 1 mol / l, and vinylene carbonate (VC) and lithium difluoro (bisoxalato) phosphate are mixed at a 0.5% weight ratio as additives. This produced a non-aqueous electrolyte.

Abstract

Provided is an electricity storage device which is capable of suppressing reaction distribution between a positive electrode member and a negative electrode member even in cases where collectors having through holes are used as main collectors that constitute the positive electrode member and the negative electrode member, said electricity storage device having excellent electricity storage characteristics and excellent safety. An electricity storage device which is provided with: (a) an electricity storage element that is provided with an electrolyte (51) and a laminate structure (40) wherein positive electrode members (11, 12) and a negative electrode member (21) are laminated respectively with a separator member (30) interposed therebetween; (b) an outer package (50) that contains the electricity storage element; (c) a positive electrode lead terminal (61) that is connected to positive electrode collectors (101, 102) and partially led out to the outside from the outer package (50); and (d) a negative electrode lead terminal (62) that is connected to a negative electrode collector (201) and partially lead out to the outside from the outer package (50). In this electricity storage device, the collector (102), which is not provided with through holes, is used as the outermost collector of the laminate structure, and the collectors (101, 201), which are provided with through holes, are used as the other collectors.

Description

蓄電デバイスElectricity storage device
 本発明は、蓄電デバイスに関し、詳しくは、正極活物質を含む正極合材を正極集電体上に配設してなる正極部材と、負極活物質を含む負極合材を負極集電体上に配設してなる負極部材とを、セパレータ部材を介して積層した積層構造体と、電解質とを備えた蓄電要素を、外装体内に収容した構造を有する蓄電デバイスに関する。 The present invention relates to an electricity storage device, and more specifically, a positive electrode member in which a positive electrode mixture containing a positive electrode active material is disposed on a positive electrode current collector, and a negative electrode mixture containing a negative electrode active material on the negative electrode current collector. The present invention relates to a power storage device having a structure in which a power storage element including a laminated structure in which a negative electrode member formed is stacked via a separator member and an electrolyte is contained in an exterior body.
 リチウムイオン二次電池、電気二重層キャパシタ、リチウムイオンキャパシタなどに代表される高エネルギー密度の蓄電デバイスは、集電体(例えば、シート状の集電箔(アルミニウム箔または銅箔など))に、活物質(活性炭、リチウム複合酸化物、炭素など)を含む合材(正極合材および負極合材)を塗工することにより形成されたシート状の正極部材および負極部材を、両者間の接触による短絡を防ぐためのシート状のセパレータ部材を介して積層することにより構成された蓄電要素と、電解質(例えば、電解液)とが、外装体内に収容された構造を有している。 High energy density power storage devices represented by lithium ion secondary batteries, electric double layer capacitors, lithium ion capacitors, etc. are used as current collectors (for example, sheet-like current collector foils (aluminum foil or copper foil)), A sheet-like positive electrode member and negative electrode member formed by coating a composite material (positive electrode composite material and negative electrode composite material) containing an active material (activated carbon, lithium composite oxide, carbon, etc.), by contact between them. A power storage element configured by stacking via a sheet-like separator member for preventing a short circuit and an electrolyte (for example, an electrolytic solution) are housed in an exterior body.
 そのような蓄電デバイスの1つとして、シート状の正極と負極とがセパレータを介して対向配置されてなる1単位の発電要素が1単位以上積層されてなる電極積層体が、電解液とともに外装体内に密封封止されてなる蓄電素子であって、正極と負極を構成する集電体として、シート状の多孔体に導電体をメッキしてなる集電体を用いた蓄電素子(蓄電デバイス)が提案されている(特許文献1参照)。 As one of such power storage devices, an electrode laminate in which one or more units of a power generation element in which a sheet-like positive electrode and a negative electrode are opposed to each other with a separator interposed therebetween is laminated together with an electrolyte in an outer package. A storage element (storage device) using a current collector formed by plating a conductor on a sheet-like porous body as a current collector constituting a positive electrode and a negative electrode It has been proposed (see Patent Document 1).
 この蓄電デバイスにおいては、正極部材および負極部材を構成する集電体に、多孔体に導電体をメッキしてなる集電体が用いられていることから、その表裏両主面に塗布される活物質との接触面積の増大、イオン伝導パスの増加などで、低抵抗化を図ることが可能になる。 In this electricity storage device, a current collector made by plating a porous body with a conductor is used as the current collector constituting the positive electrode member and the negative electrode member. Therefore, the active material applied to both the front and back main surfaces is used. The resistance can be reduced by increasing the contact area with the substance and increasing the ion conduction path.
 しかしながら、複数の正極部材と負極部材をセパレータを介して交互に積層して積層構造とした場合、最外層の電極(正極部材あるいは負極部材)においては、集電体の両主面に電極材料(正極合材あるいは負極合材)が塗工されており、表裏の電極材料が貫通孔を経て通じているため、最外層の正極部材あるいは負極部材と、該正極部材あるいは負極部材が対向する積層構造体の内側の層とでは、電極容量(正極容量あるいは負極容量)に差異が生じ、結果として、リチウムの析出や、それによるサイクル特性(耐用性)の劣化などを生じるという問題点がある。 However, when a plurality of positive electrode members and negative electrode members are alternately laminated via a separator to form a laminated structure, in the outermost layer electrode (positive electrode member or negative electrode member), electrode materials ( (A positive electrode composite or a negative electrode composite) is coated, and the electrode materials on the front and back are passed through through-holes, so that the outermost positive electrode member or negative electrode member and the positive electrode member or negative electrode member face each other. There is a problem in that the electrode capacity (positive electrode capacity or negative electrode capacity) differs from the inner layer of the body, and as a result, lithium is precipitated, resulting in deterioration of cycle characteristics (durability).
特開2010-9971号公報JP 2010-9971 A
 本発明は、上記課題を解決するものであり、正極部材および負極部材を構成する主要な集電体に、貫通孔を有する集電体を用いた場合にも、正極部材と負極部材の反応分布を抑えることが可能で、蓄電特性や安全性に優れた蓄電デバイスを提供することを目的とする。 The present invention solves the above problems, and even when a current collector having a through hole is used as a main current collector constituting the positive electrode member and the negative electrode member, the reaction distribution of the positive electrode member and the negative electrode member It is an object of the present invention to provide an electricity storage device that can suppress power consumption and has excellent electricity storage characteristics and safety.
 上記課題を解決するため、本発明の蓄電デバイスは、
 正極活物質を含む正極合材を、貫通孔を有する正極用集電体上に形成してなる正極部材と、負極活物質を含む負極合材を、貫通孔を有する負極用集電体上に形成してなる負極部材とが、セパレータ部材を介して積層された積層構造体と、電解質とを備えた蓄電要素と、
 前記蓄電要素を収容する外装体と、
 前記正極用集電体に接続され、一部が前記外装体から外部に引き出された正極リード端子と、
 前記負極用集電体に接続され、一部が前記外装体から外部に引き出された負極リード端子と
 を備えた蓄電デバイスにおいて、
 前記積層構造体を構成する前記正極部材および前記負極部材に用いられている前記正極用集電体および前記負極用集電体のうち、積層方向の最も外側に位置する集電体として、貫通孔が形成されていない集電体が用いられていること
 を特徴としている。
In order to solve the above problems, the electricity storage device of the present invention is:
A positive electrode member formed by forming a positive electrode mixture containing a positive electrode active material on a positive electrode current collector having a through hole and a negative electrode mixture containing a negative electrode active material on a negative electrode current collector having a through hole An electricity storage element comprising a laminated structure in which a negative electrode member formed is laminated via a separator member, and an electrolyte;
An exterior body that houses the electricity storage element;
A positive electrode lead terminal connected to the positive electrode current collector and partially drawn out from the exterior body;
In an electricity storage device comprising: a negative electrode lead terminal connected to the negative electrode current collector, and a part of the negative electrode lead terminal pulled out from the exterior body;
Among the positive electrode current collector and the negative electrode current collector used in the positive electrode member and the negative electrode member constituting the multilayer structure, a through-hole is used as a current collector positioned on the outermost side in the stacking direction. It is characterized by the use of a current collector that is not formed with.
 また、本発明の蓄電デバイスにおいては、前記積層構造体の一方側および他方側の最外層の両方を、貫通孔が形成されていない前記集電体が用いられた正極部材とすることができる。 In the electricity storage device of the present invention, both the outermost layer on one side and the other side of the laminated structure can be a positive electrode member using the current collector in which no through hole is formed.
 また、本発明の蓄電デバイスにおいては、前記積層構造体の一方側および他方側の最外層の両方を、貫通孔が形成されていない前記集電体が用いられた負極部材とすることができる。 In the electricity storage device of the present invention, both the outermost layer on one side and the other side of the laminated structure can be a negative electrode member using the current collector in which no through hole is formed.
 また、前記積層構造体の一方側の最外層を、貫通孔が形成されていない前記集電体が用いられた正極部材とし、他方側の最外層を、貫通孔が形成されていない前記集電体が用いられた負極部材とすることも可能である。 The outermost layer on one side of the laminated structure is a positive electrode member using the current collector in which no through-hole is formed, and the current collector in which no through-hole is formed on the other outermost layer. It is also possible to make a negative electrode member using the body.
 また、前記正極用集電体として、アルミニウム箔が用いられていることが好ましい。 Further, it is preferable that an aluminum foil is used as the positive electrode current collector.
 また、前記負極用集電体として、銅箔が用いられていることが好ましい。 Moreover, it is preferable that a copper foil is used as the negative electrode current collector.
 また、前記負極部材を構成する負極活物質が、グラファイト、ソフトカーボン、およびハードカーボンからなる群より選ばれる少なくとも1種の炭素系材料を主たる成分とするものであることが好ましい。 Further, it is preferable that the negative electrode active material constituting the negative electrode member is mainly composed of at least one carbon-based material selected from the group consisting of graphite, soft carbon, and hard carbon.
 本発明の蓄電デバイスは、正極部材と負極部材を構成する集電体としてイオンを通過させる貫通孔を備えた正極用集電体および負極用集電体を用いる一方で、積層方向の最も外側に位置する集電体として、貫通孔が形成されていない集電体(最外層集電体)を用いるようにしているので、最外層集電体に貫通孔を有する集電体を用いた場合に生じるような、最外層の正極部材または負極部材を構成する活物質が、集電体に形成された貫通孔を経由して反応に寄与し、正極負極間のバランスを崩し、特性劣化やリチウムの析出(例えば、蓄電デバイスがリチウムイオン二次電池である場合)などが生じることを防止することが可能になる。 The electricity storage device of the present invention uses a positive electrode current collector and a negative electrode current collector having through-holes through which ions pass as current collectors constituting the positive electrode member and the negative electrode member, on the outermost side in the stacking direction. Since the current collector (outermost layer current collector) in which no through hole is formed is used as the current collector located, when the current collector having a through hole is used as the outermost layer current collector, The active material constituting the positive electrode member or negative electrode member of the outermost layer contributes to the reaction via the through-hole formed in the current collector, destroys the balance between the positive electrode and the negative electrode, and deteriorates characteristics and lithium. It is possible to prevent the occurrence of precipitation (for example, when the electricity storage device is a lithium ion secondary battery).
 このように、本発明によれば、主たる集電体として、貫通孔を有するものを用いることにより、その表裏両主面に塗布される活物質と集電体との接触面積の増大、イオン伝導パスの増加などにより、低抵抗化、高特性化を図ることが可能になる一方、最外層となる正極部材あるいは負極部材と、内側の電極部材との間での反応分布を抑えることが可能になり、サイクル特性などに優れた信頼性の高い蓄電デバイスを提供することが可能になる。 Thus, according to the present invention, the use of a main current collector having through holes increases the contact area between the active material applied to both the front and back main surfaces and the current collector, ion conduction. While it is possible to achieve low resistance and high characteristics by increasing the number of paths, it is possible to suppress reaction distribution between the outermost positive electrode member or negative electrode member and the inner electrode member Accordingly, it is possible to provide a highly reliable power storage device having excellent cycle characteristics and the like.
 また、本発明の蓄電デバイスにおいては、
 (a)積層構造体の一方側および他方側の最外層の両方に、貫通孔が形成されていない集電体を用いた正極部材を配設した構成、
 (b)積層構造体の一方側および他方側の最外層の両方に、貫通孔が形成されていない集電体を用いた負極部材を配設した構成、
 (c)積層構造体の一方側の最外層に、貫通孔が形成されていない集電体を用いた正極部材を配設し、他方側の最外層を、貫通孔が形成されていない集電体を用いた負極部材を配設した構成
 のいずれの構成とすることも可能であり、蓄電デバイスの用途や、仕様などに応じた、構成の自由度の高い蓄電デバイスを提供することができる。
In the electricity storage device of the present invention,
(a) a configuration in which a positive electrode member using a current collector in which a through hole is not formed is disposed on both the outermost layer on one side and the other side of the laminated structure;
(b) a configuration in which a negative electrode member using a current collector in which a through hole is not formed is disposed on both the outermost layer on one side and the other side of the laminated structure;
(c) A positive electrode member using a current collector in which no through-hole is formed is disposed on the outermost layer on one side of the laminated structure, and a current collector in which no through-hole is formed on the other outermost layer. Any configuration can be adopted in which a negative electrode member using a body is disposed, and an electricity storage device having a high degree of freedom in configuration can be provided in accordance with the use and specifications of the electricity storage device.
 また、正極部材を構成する正極用集電体として、アルミニウム箔を用いることが可能であり、また、負極部材を構成する負極用集電体として、銅箔を用いることが可能であり、その場合、特性に優れた信頼性の高い蓄電デバイスを提供することができる。 In addition, an aluminum foil can be used as the positive electrode current collector constituting the positive electrode member, and a copper foil can be used as the negative electrode current collector constituting the negative electrode member. Thus, a highly reliable power storage device having excellent characteristics can be provided.
 また、負極部材を構成する負極活物質として、グラファイト、ソフトカーボン、およびハードカーボンからなる群より選ばれる少なくとも1種の炭素系材料を主たる成分とするものを用いることにより、蓄電特性や安全性に優れた蓄電デバイスを提供することが可能になり、好ましい。 Further, as a negative electrode active material constituting the negative electrode member, by using a material mainly composed of at least one carbon-based material selected from the group consisting of graphite, soft carbon, and hard carbon, it is possible to improve power storage characteristics and safety. It becomes possible to provide an excellent electricity storage device, which is preferable.
本発明の一実施形態にかかる蓄電デバイス(電池1)の構成を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the structure of the electrical storage device (battery 1) concerning one Embodiment of this invention. 本発明の要件を備えていない比較用の電池(電池2)の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the battery (battery 2) for a comparison which is not provided with the requirements of this invention. 本発明の他の実施形態にかかる蓄電デバイス(電池3)の構成を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the structure of the electrical storage device (battery 3) concerning other embodiment of this invention. 本発明の要件を備えていない他の比較用の電池(電池4)の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the other battery (battery 4) for a comparison which is not provided with the requirements of this invention. 本発明のさらに他の実施形態にかかる蓄電デバイス(電池5)の構成を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the structure of the electrical storage device (battery 5) concerning other embodiment of this invention. 本発明のさらに他の実施形態にかかる蓄電デバイス(電池6)の構成を模式的に示す概略断面図である。It is a schematic sectional drawing which shows typically the structure of the electrical storage device (battery 6) concerning further another embodiment of this invention.
 以下に本発明の実施形態を示して、本発明の特徴とするところを詳しく説明する。 Hereinafter, embodiments of the present invention will be shown, and features of the present invention will be described in detail.
 [1]正極部材の作製
 (1)貫通孔を有する集電体を用いた正極部材(第1の正極部材)の作製
 正極活物質としてLiFePO4で表されるリン酸鉄リチウムを用い、この正極活物質と、導電助剤の炭素材料と、結着剤のポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)溶液とを、正極活物質と導電助剤と結着剤との重量比が86:10:4になるように配合した。そして、この配合材料を混練して正極合材スラリーを作製した。
[1] Production of positive electrode member (1) Production of positive electrode member (first positive electrode member) using current collector having through-holes This positive electrode was prepared using lithium iron phosphate represented by LiFePO 4 as a positive electrode active material. An active material, a carbon material as a conductive aid, and an N-methyl-2-pyrrolidone (NMP) solution in which polyvinylidene fluoride (PVDF) as a binder is dissolved are bound to the positive electrode active material and the conductive aid. The weight ratio to the agent was 86: 10: 4. And this compounding material was knead | mixed and the positive mix slurry was produced.
 それから、この正極合材スラリーを、貫通孔を有するアルミニウム箔からなる正極集電体の両面に塗布し、乾燥させた後、圧延ローラーにより圧延して、第1の正極部材を作製した。貫通孔を有するアルミニウム箔としては、アルミニウム箔にパンチングにより直径が約100μmの孔を形成した、開口率が約20%のものを用いた。これは、以下の電池2~6において用いた貫通孔を有するアルミニウム箔の場合も同様である。
 なお、この第1の正極部材においては、単位面積あたりの正極合材の目付け量を、4.8mg/cm2、充填密度を1.85g/cm3とした。
Then, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having through holes, dried, and then rolled with a rolling roller to produce a first positive electrode member. As the aluminum foil having a through hole, an aluminum foil having an opening ratio of about 20% in which holes having a diameter of about 100 μm were formed by punching was used. The same applies to the aluminum foil having through holes used in the following batteries 2 to 6.
In the first positive electrode member, the basis weight of the positive electrode mixture per unit area was 4.8 mg / cm 2 and the packing density was 1.85 g / cm 3 .
 (2)貫通孔を有さない集電体を用いた正極部材(第2の正極部材)の作製
 正極活物質としてLiFePO4で表されるリン酸鉄リチウムを用い、この正極活物質と、導電助剤の炭素材料と、結着剤のポリフッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロリドン(NMP)溶液とを、正極活物質と導電助剤と結着剤との重量比が86:10:4になるように配合した。そして、この配合材料を混練して正極合材スラリーを作製した。
(2) Production of positive electrode member (second positive electrode member) using current collector having no through-holes Using lithium iron phosphate represented by LiFePO 4 as a positive electrode active material, The weight ratio of the positive electrode active material, the conductive auxiliary agent, and the binder to the carbon material of the auxiliary agent and the N-methyl-2-pyrrolidone (NMP) solution in which the polyvinylidene fluoride (PVDF) binder is dissolved. Was 86: 10: 4. And this compounding material was knead | mixed and the positive mix slurry was produced.
 それから、作製した正極合材スラリーを、貫通孔を有さないアルミニウム箔からなる正極集電体の両面に塗布し、乾燥させた後、圧延ローラーにより圧延して、第2の正極部材を作製した。なお、この第2の正極部材においても、単位面積あたりの正極合材の目付け量を、上記第1の正極部材と同様に、4.8mg/cm2、充填密度を1.85g/cm3とした。 Then, the prepared positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of an aluminum foil having no through holes, dried, and then rolled with a rolling roller to produce a second positive electrode member. . Also in the second positive electrode member, the basis weight of the positive-electrode mixture per unit area, as in the first positive electrode member, 4.8 mg / cm 2, and 1.85 g / cm 3 the packing density did.
 [2]負極部材の作製
 (1)貫通孔を有する集電体を用いた負極部材(第1の負極部材)の作製
 負極活物質であるグラファイトとソフトカーボンの混合物と、結着剤であるPVDFを溶解させたNMP溶液とを、負極活物質と結着剤との重量比が95:5になるように配合した。このとき、グラファイトとソフトカーボンの混合比が重量比で85:15になるように配合した。そして、この配合材料を混練して負極合材スラリーを作製した。
[2] Production of negative electrode member (1) Production of negative electrode member (first negative electrode member) using current collector having through-holes A mixture of graphite and soft carbon as a negative electrode active material, and PVDF as a binder Was mixed so that the weight ratio of the negative electrode active material to the binder was 95: 5. At this time, the mixture ratio was such that the mixing ratio of graphite and soft carbon was 85:15 by weight. And this compounding material was knead | mixed and the negative mix slurry was produced.
 それから、作製した負極合材スラリーを、貫通孔を有する銅箔からなる負極集電体の両面に塗布し、乾燥させた後、圧延ローラーにより圧延して、第1の負極部材を作製した。貫通孔を有する銅箔としては、銅箔にパンチングにより直径が 約100μmの孔を形成した、開口率が約20%のものを用いた。これは、以下の電池2~6において用いた貫通孔を有する銅箔の場合も同様である。
 なお、この第1の負極部材においては、単位面積あたりの負極合材の目付け量を、2.7mg/cm2、充填密度を1.35g/cm3とした。
Then, the prepared negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having through holes, dried, and then rolled with a rolling roller to prepare a first negative electrode member. As the copper foil having a through hole, a copper foil having a diameter of about 100% formed by punching a copper foil and having an opening ratio of about 20% was used. The same applies to the copper foil having through holes used in the following batteries 2 to 6.
In the first negative electrode member, the basis weight of the negative electrode mixture per unit area was 2.7 mg / cm 2 and the packing density was 1.35 g / cm 3 .
 (2)貫通孔を有さない集電体を用いた負極部材(第2の負極部材)の作製
 負極活物質であるグラファイトとソフトカーボンの混合物と、結着剤であるPVDFを溶解させたNMP溶液とを、負極活物質と結着剤との重量比が95:5になるように配合した。このとき、グラファイトとソフトカーボンの混合比が重量比で85:15になるように配合した。そして、この配合材料を混練して負極合材スラリーを作製した。
(2) Production of negative electrode member (second negative electrode member) using current collector having no through hole NMP in which graphite and soft carbon as negative electrode active material and PVDF as binder are dissolved The solution was blended so that the weight ratio of the negative electrode active material to the binder was 95: 5. At this time, the mixture ratio was such that the mixing ratio of graphite and soft carbon was 85:15 by weight. And this compounding material was knead | mixed and the negative mix slurry was produced.
 それから、作製した負極合材スラリーを、貫通孔を有さない銅箔からなる負極集電体の両面に塗布し、乾燥させた後、圧延ローラーにより圧延して、第2の負極部材を作製した。なお、この第2の負極部材においては、単位面積あたりの負極合材の目付け量を、2.7mg/cm2、充填密度を1.35g/cm3とした。 Then, the prepared negative electrode mixture slurry was applied to both sides of a negative electrode current collector made of a copper foil having no through holes, dried, and then rolled with a rolling roller to produce a second negative electrode member. . In the second negative electrode member, the basis weight of the negative electrode mixture per unit area was 2.7 mg / cm 2 and the packing density was 1.35 g / cm 3 .
 (3)貫通孔を有さない集電体を用いた負極部材(第3の負極部材)の作製
 負極活物質であるグラファイトとソフトカーボンの混合物と、結着剤であるPVDFを溶解させたNMP溶液とを、負極活物質と結着剤との重量比が95:5になるように配合した。このとき、グラファイトとソフトカーボンの混合比が重量比で85:15になるように配合した。そして、この配合材料を混練して負極合材スラリーを作製した。
(3) Production of negative electrode member (third negative electrode member) using current collector having no through-hole NMP in which a mixture of graphite and soft carbon as a negative electrode active material and PVDF as a binder are dissolved The solution was blended so that the weight ratio of the negative electrode active material to the binder was 95: 5. At this time, the mixture ratio was such that the mixing ratio of graphite and soft carbon was 85:15 by weight. And this compounding material was knead | mixed and the negative mix slurry was produced.
 それから、作製した負極合材スラリーを、貫通孔を有さない銅箔からなる負極集電体の片面に塗布し、乾燥させた後、圧延ローラーにより圧延して、第3の負極部材を作製した。なお、この第3の負極部材においても、単位面積あたりの負極合材の目付け量を、2.7mg/cm2、充填密度を1.35g/cm3とした。 Then, the prepared negative electrode mixture slurry was applied to one side of a negative electrode current collector made of a copper foil having no through holes, dried, and then rolled with a rolling roller to prepare a third negative electrode member. . Also in this third negative electrode member, the basis weight of the negative electrode mixture per unit area was 2.7 mg / cm 2 and the packing density was 1.35 g / cm 3 .
 [3]非水系電解液の作製
 まず、環状カーボネートであるエチレンカーボネート(EC)と鎖状カーボネートであるエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)を1:1:1の体積比で混合して混合溶媒を作製した。
[3] Preparation of non-aqueous electrolyte First, ethylene carbonate (EC), which is a cyclic carbonate, ethyl methyl carbonate (EMC), which is a chain carbonate, and dimethyl carbonate (DMC) are mixed at a volume ratio of 1: 1: 1. Thus, a mixed solvent was prepared.
 それから、この混合溶媒に、電解質のLiPF6を1mol/lの濃度になるように溶解させ、添加剤としてビニレンカーボネート(VC)とジフルオロ(ビスオキサラト)リン酸リチウムを0.5%重量比で混合することにより、非水電解液を作製した。 Then, LiPF 6 as an electrolyte is dissolved in this mixed solvent so as to have a concentration of 1 mol / l, and vinylene carbonate (VC) and lithium difluoro (bisoxalato) phosphate are mixed at a 0.5% weight ratio as additives. This produced a non-aqueous electrolyte.
 [4]セパレータ(部材)の準備
 セパレータ(部材)として、リチウムイオン透過性のポリプロピレン製の微多孔膜を準備した。
[4] Preparation of Separator (Member) As a separator (member), a lithium ion permeable polypropylene microporous membrane was prepared.
 [5]電池の作製
 上述のようにして準備した、第1および第2の正極部材、第1~第3の負極部材、およびセパレータ(部材)を用いて、以下に説明するような電池(電池1~電池6)を作製した。
[5] Production of Battery A battery (battery) described below using the first and second positive electrode members, the first to third negative electrode members, and the separator (member) prepared as described above. 1 to battery 6) were produced.
 (1)本発明の要件を備えた電池1の作製
 (a)まず、図1に示すように、アルミニウム箔からなり、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11の上下両側に、リチウムイオン透過性のポリプロピレン製の微多孔膜であるセパレータ30を介して、銅箔からなり、貫通孔201pを有する負極用集電体201を用いた第1の負極部材21が配置された3層構造の積層体が形成され、この積層体の上下に、さらに、セパレータ30を介して、アルミニウム箔からなり、貫通孔を有さない正極用集電体102を用いた第2の正極部材12が配設された構造を有する積層構造体40を形成する。
 すなわち、この積層構造体40は、上述のように、1枚の第1の正極部材11と、2枚の第1の負極部材21と、2枚の第2の正極部材12とを組み合わせることにより形成されている。
 また、積層構造体40は、正極用集電体101、102に接続され、一部が外装体50から外部に引き出される正極リード端子61と、負極用集電体201に接続され、一部が外装体50から外部に引き出される負極リード端子62を備えている。
 この電池1においては、正極と負極の対向部の面積は18cm2となるようにした。なお、正極と負極の対向部の面積は、以下の電池2~6の場合も同様に18cm2となるようにした。
(1) Production of Battery 1 with Requirements of the Present Invention (a) First, as shown in FIG. 1, a first positive electrode member using a positive electrode current collector 101 made of aluminum foil and having a through hole 101p First negative electrode member 21 using negative electrode current collector 201 made of copper foil and having through-holes 201p on both upper and lower sides of 11, via separator 30 that is a microporous membrane made of lithium ion-permeable polypropylene. A laminate having a three-layer structure is formed, and a positive electrode current collector 102 made of aluminum foil and having no through-holes is formed above and below the laminate with a separator 30 interposed therebetween. A laminated structure 40 having a structure in which two positive electrode members 12 are disposed is formed.
That is, this laminated structure 40 is obtained by combining one first positive electrode member 11, two first negative electrode members 21, and two second positive electrode members 12 as described above. Is formed.
In addition, the laminated structure 40 is connected to the positive electrode current collectors 101 and 102, and a part thereof is connected to the positive electrode lead terminal 61 that is drawn out from the exterior body 50 and the negative electrode current collector 201, and a part thereof. A negative electrode lead terminal 62 drawn out from the exterior body 50 is provided.
In this battery 1, the area of the facing portion between the positive electrode and the negative electrode was 18 cm 2 . It should be noted that the area of the facing portion between the positive electrode and the negative electrode was set to 18 cm 2 in the following batteries 2 to 6 as well.
 (b)そして、この積層構造体40を、アルミニウムを中間層として含むラミネートフィルムからなる外装体50の内部に収納する。 (B) Then, the laminated structure 40 is housed in an exterior body 50 made of a laminate film containing aluminum as an intermediate layer.
 (c)その後、上述のように作製した非水系電解液(電解質)51を外装体50の内部に注入した後、外装体50の開口部を封止することにより非水電解液系二次電池である電池1を得た。この電池1は、本発明の要件を備えた本発明の実施形態にかかる電池である。 (c) Thereafter, the nonaqueous electrolyte solution (electrolyte) 51 produced as described above is injected into the exterior body 50, and then the opening of the exterior body 50 is sealed to thereby seal the nonaqueous electrolyte secondary battery. A battery 1 was obtained. This battery 1 is a battery according to an embodiment of the present invention having the requirements of the present invention.
 (2)本発明の要件を備えていない比較用の電池2の作製
 図2に示すように、アルミニウム箔からなり、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11の上下両側に、リチウムイオン透過性のポリプロピレン製の微多孔膜であるセパレータ30を介して、銅箔からなり、貫通孔201pを有する負極用集電体201を用いた第1の負極部材21が配置された3層構造の積層体が形成され、この積層体の上下にさらに、セパレータ30を介して、アルミニウム箔からなり、貫通孔を有する正極用集電体101を用いた第1の正極部材11が配設された構造を有する積層構造体40を形成する。
 すなわち、この積層構造体40は、上述のように、3枚の第1の正極部材11と、2枚の第1の負極部材21とを組み合わせることにより形成されている。
 この電池2は、上述のように、最外層に、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11が配設されている点を除いて、上記の電池1と同じ構成とされている。
(2) Manufacture of Comparative Battery 2 Not Having the Requirements of the Present Invention As shown in FIG. 2, a first positive electrode member 11 using a positive electrode current collector 101 made of an aluminum foil and having a through hole 101p. A first negative electrode member 21 using a negative electrode current collector 201 made of copper foil and having a through hole 201p is disposed on both the upper and lower sides of a separator 30 which is a microporous membrane made of polypropylene permeable to lithium ions. A laminated body having a three-layer structure is formed, and a first positive electrode member using a positive electrode current collector 101 having a through hole made of an aluminum foil with a separator 30 interposed between upper and lower portions of the laminated body. A laminated structure 40 having a structure in which 11 is disposed is formed.
That is, the laminated structure 40 is formed by combining the three first positive electrode members 11 and the two first negative electrode members 21 as described above.
As described above, the battery 2 is the same as the battery 1 except that the first positive electrode member 11 using the positive electrode current collector 101 having the through hole 101p is disposed in the outermost layer. It is the same composition.
 (3)本発明の要件を備えた電池3の作製
 (a)まず、図3に示すように、銅箔からなり貫通孔201pを有する負極用集電体201を用いた第1の負極部材21の上下両側に、リチウムイオン透過性のポリプロピレン製の微多孔膜であるセパレータ30を介して、アルミニウム箔からなり、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11が配置された3層構造の積層体が形成され、この積層体の上下にさらに、セパレータ30を介して、銅箔からなり、貫通孔を有さない負極用集電体202を用いた第2の負極部材22が配設された構造を有する積層構造体40を形成する。
 すなわち、この積層構造体40は、上述のように、1枚の第1の負極部材21と、2枚の第1の正極部材11と、2枚の第2の負極部材22とを組み合わせることにより形成されている。
 また、積層構造体40は、正極用集電体101に接続され、一部が外装体50から外部に引き出される正極リード端子61と、負極用集電体201,202に接続され、一部が外装体50から外部に引き出される負極リード端子62を備えている。
(3) Production of Battery 3 with Requirements of the Present Invention (a) First, as shown in FIG. 3, a first negative electrode member 21 using a negative electrode current collector 201 made of a copper foil and having a through hole 201p. The first positive electrode member 11 using the positive electrode current collector 101 made of an aluminum foil and having a through hole 101p is disposed on both the upper and lower sides of the separator 30 which is a microporous membrane made of polypropylene permeable to lithium ions. A laminated body having a three-layer structure is formed, and a second current collector using a negative electrode current collector 202 made of copper foil and having no through-holes is further provided above and below the laminated body with a separator 30 interposed therebetween. A laminated structure 40 having a structure in which the negative electrode member 22 is disposed is formed.
That is, the laminated structure 40 is obtained by combining one first negative electrode member 21, two first positive electrode members 11, and two second negative electrode members 22 as described above. Is formed.
The laminated structure 40 is connected to the positive electrode current collector 101, and a part of the laminated structure 40 is connected to the positive electrode lead terminal 61 that is drawn out from the exterior body 50 and the negative electrode current collectors 201 and 202. A negative electrode lead terminal 62 drawn out from the exterior body 50 is provided.
 (b)そして、この積層構造体40を、アルミニウムを中間層として含むラミネートフィルムからなる外装体50の内部に収納する。 (B) Then, the laminated structure 40 is housed in an exterior body 50 made of a laminate film containing aluminum as an intermediate layer.
 (c)その後、上述のように作製した非水系電解液(電解質)51を外装体50の内部に注入した後、外装体50の開口部を封止することにより非水電解液系二次電池である電池3を得た。この電池3は、本発明の要件を備えた本発明の実施形態にかかる電池である。 (c) Thereafter, the nonaqueous electrolyte solution (electrolyte) 51 produced as described above is injected into the exterior body 50, and then the opening of the exterior body 50 is sealed to thereby seal the nonaqueous electrolyte secondary battery. A battery 3 was obtained. This battery 3 is a battery according to an embodiment of the present invention having the requirements of the present invention.
 (4)本発明の要件を備えていない比較用の電池4の作製
 図4に示すように、銅箔からなり貫通孔201pを有する負極用集電体201を用いた第1の負極部材21の上下両側に、リチウムイオン透過性のポリプロピレン製の微多孔膜であるセパレータ30を介して、アルミニウム箔からなり、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11が配置された3層構造の積層体が形成され、この積層体の上下にさらに、セパレータ30を介して、銅箔からなり貫通孔201pを有する負極用集電体201を用いた第1の負極部材21が配設された構造を有する積層構造体40を形成する。
 すなわち、この積層構造体40は、上述のように、2枚の第1の正極部材11と、3枚の第1の負極部材21とを組み合わせることにより形成されている。
 この電池4は、上述のように、最外層に、貫通孔201pを有する負極用集電体201を用いた第1の負極部材21が配設されている点を除いて、上記の電池3と同じ構成とされている。
(4) Production of Comparative Battery 4 Not Comprising the Requirements of the Present Invention As shown in FIG. 4, the first negative electrode member 21 using the negative electrode current collector 201 made of copper foil and having a through hole 201p is used. A first positive electrode member 11 using a positive electrode current collector 101 made of an aluminum foil and having a through hole 101p is disposed on both the upper and lower sides through a separator 30 that is a microporous membrane made of lithium ion-permeable polypropylene. A laminated body having a three-layer structure is formed, and a first negative electrode member 21 using a negative electrode current collector 201 made of copper foil and having a through-hole 201p is further provided above and below the laminated body via a separator 30. A laminated structure 40 having a structure in which is disposed is formed.
That is, the laminated structure 40 is formed by combining the two first positive electrode members 11 and the three first negative electrode members 21 as described above.
As described above, the battery 4 is the same as the battery 3 except that the first negative electrode member 21 using the negative electrode current collector 201 having the through hole 201p is disposed in the outermost layer. It is the same composition.
 (5)本発明の要件を備えた電池5の作製
 (a)図5に示すように、アルミニウム箔からなり、貫通孔101pを有する正極用集電体101を用いた第1の正極部材11と、銅箔からなり貫通孔201pを有する負極用集電体201を用いた第1の負極部材21が、セパレータ30を介して積層された2層構造の積層体の上面側に、セパレータ30を介して、貫通孔を有さない負極用集電体202を用いた第2の正極部材22が配設され、下面側に、セパレータ30を介して、アルミニウム箔からなり、貫通孔を有しない正極用集電体102を用いた第2の正極部材12が配設された構造を有する積層構造体40を形成する。
 また、積層構造体40は、正極用集電体101,102に接続され、一部が外装体50から外部に引き出される正極リード端子61と、負極用集電体201,202に接続され、一部が外装体50から外部に引き出される負極リード端子62を備えている。
(5) Production of Battery 5 with Requirements of the Present Invention (a) As shown in FIG. 5, a first positive electrode member 11 using a positive electrode current collector 101 made of aluminum foil and having a through hole 101p; The first negative electrode member 21 using the negative electrode current collector 201 made of copper foil and having the through-hole 201p is disposed on the upper surface side of the two-layer structure laminated with the separator 30 interposed therebetween. The second positive electrode member 22 using the negative electrode current collector 202 having no through hole is disposed, and the lower surface side is made of aluminum foil via the separator 30 and has no through hole. A laminated structure 40 having a structure in which the second positive electrode member 12 using the current collector 102 is disposed is formed.
In addition, the laminated structure 40 is connected to the positive electrode current collectors 101 and 102, and is connected to the positive electrode lead terminal 61 and a negative electrode current collector 201 and 202 that are partly drawn out from the exterior body 50. The portion is provided with a negative electrode lead terminal 62 that is pulled out from the exterior body 50.
 (b)そして、この積層構造体40を、アルミニウムを中間層として含むラミネートフィルムからなる外装体50の内部に収納する。 (B) Then, the laminated structure 40 is housed in an exterior body 50 made of a laminate film containing aluminum as an intermediate layer.
 (c)その後、上述のように作製した非水系電解液(電解質)51を外装体50の内部に注入した後、外装体50の開口部を封止することにより非水電解液系二次電池である電池5を得た。この電池5は、本発明の要件を備えた本発明の実施形態にかかる電池である。 (c) Thereafter, the nonaqueous electrolyte solution (electrolyte) 51 produced as described above is injected into the exterior body 50, and then the opening of the exterior body 50 is sealed to thereby seal the nonaqueous electrolyte secondary battery. A battery 5 was obtained. This battery 5 is a battery according to an embodiment of the present invention having the requirements of the present invention.
 (6)本発明の要件を備えた電池6の作製
 (a)図6に示すように、アルミニウム箔からなり、貫通孔201pを有する負極用集電体201を用いた第1の負極部材21の上下両側に、リチウムイオン透過性のポリプロピレン製の微多孔膜であるセパレータ30を介して、アルミニウム箔からなり貫通孔101pを有する負極用集電体101を用いた第1の正極部材11が配置された3層構造の積層体が形成され、この積層体の上下にさらに、セパレータ30を介して、銅箔からなり、貫通孔を有さない負極用集電体202の一方の主面(内側主面)にのみ負極合材が配設された第3の負極部材23が、負極合材が配設されていない方の面が外側になるようにして配設された構造を有する積層構造体40を形成する。
 すなわち、この積層構造体40は、上述のように、1枚の第1の負極部材21と、2枚の第1の正極部材11と、2枚の第3の負極部材23とを組み合わせることにより形成されている。
 また、積層構造体40は、正極用集電体101に接続され、一部が外装体50から外部に引き出される正極リード端子61と、負極用集電体201,202に接続され、一部が外装体50から外部に引き出される負極リード端子62を備えている。
(6) Production of battery 6 having requirements of the present invention (a) As shown in FIG. 6, the first negative electrode member 21 using the negative electrode current collector 201 made of an aluminum foil and having a through hole 201p is used. A first positive electrode member 11 using a negative electrode current collector 101 made of an aluminum foil and having a through hole 101p is disposed on both the upper and lower sides through a separator 30 that is a microporous membrane made of lithium ion-permeable polypropylene. A laminated body having a three-layer structure is formed, and one main surface (inner main body) of the negative electrode current collector 202 made of copper foil and having no through-holes is further provided above and below the laminated body with a separator 30 interposed therebetween. Layer structure 40 having a structure in which the third negative electrode member 23 in which the negative electrode mixture is disposed only on the surface) is disposed such that the surface on which the negative electrode mixture is not disposed is on the outside. Form.
That is, the laminated structure 40 is obtained by combining one first negative electrode member 21, two first positive electrode members 11, and two third negative electrode members 23 as described above. Is formed.
The laminated structure 40 is connected to the positive electrode current collector 101, and a part of the laminated structure 40 is connected to the positive electrode lead terminal 61 that is drawn out from the exterior body 50 and the negative electrode current collectors 201 and 202. A negative electrode lead terminal 62 drawn out from the exterior body 50 is provided.
 (b)そして、この積層構造体40を、アルミニウムを中間層として含むラミネートフィルムからなる外装体50の内部に収納する。 (B) Then, the laminated structure 40 is housed in an exterior body 50 made of a laminate film containing aluminum as an intermediate layer.
 (c)その後、上述のように作製した非水系電解液(電解質)51を外装体50の内部に注入した後、外装体50の開口部を封止することにより非水電解液系二次電池である電池6を得た。この電池6は、本発明の要件を備えた本発明の実施形態にかかる電池である。 (c) Thereafter, the nonaqueous electrolyte solution (electrolyte) 51 produced as described above is injected into the exterior body 50, and then the opening of the exterior body 50 is sealed to thereby seal the nonaqueous electrolyte secondary battery. A battery 6 was obtained. This battery 6 is a battery according to an embodiment of the present invention having the requirements of the present invention.
 [6]特性の評価
 (1)最外層の正極部材へのリチウムの析出について
 (a)最外層に貫通孔を有さない集電体を用いた正極部材(第2の正極部材)が配設された構造を有する、本発明の要件を満たす電池1と、
 (b)最外層に貫通孔を有する集電体を用いた正極部材(第1の正極部材)が配設された構造を有する、本発明の要件を満たさない電池2
 について、最外層の正極部材へのリチウム(リチウムデンドライド)の析出の状態を調べた。
[6] Evaluation of characteristics (1) Lithium deposition on the positive electrode member of the outermost layer (a) A positive electrode member (second positive electrode member) using a current collector not having a through hole in the outermost layer is disposed. A battery 1 having the above-described structure and satisfying the requirements of the present invention;
(b) Battery 2 that does not satisfy the requirements of the present invention, having a structure in which a positive electrode member (first positive electrode member) using a current collector having a through hole in the outermost layer is disposed
The state of precipitation of lithium (lithium dendride) on the outermost positive electrode member was examined.
 具体的には、上記の電池1および電池2について、10mA、上限電圧3.8Vの条件で定電流低電圧充電を10hr行った。
 その後、セルをグローブボックス中で解体し、負極部材の表面を観察することにより、リチウム(Li)を主成分とする析出物の有無を目視で確認した。
 その結果を表1に示す。
Specifically, the battery 1 and the battery 2 were subjected to constant current and low voltage charging for 10 hours under conditions of 10 mA and an upper limit voltage of 3.8V.
Thereafter, the cell was disassembled in a glove box, and the surface of the negative electrode member was observed to visually confirm the presence or absence of precipitates mainly composed of lithium (Li).
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 その結果、表1に示すように、最外層に貫通孔を有する集電体を用いた、本発明の要件を満たさない電池2の場合、最外層の正極部材へのリチウム(リチウムデンドライド)の析出が認められたが、最外層に貫通孔を有さない集電体を用いた正極部材が配設された、本発明の要件を満たす電池1の場合、リチウム(リチウムデンドライド)の析出は認められなかった。 As a result, as shown in Table 1, in the case of the battery 2 that does not satisfy the requirements of the present invention using the current collector having a through hole in the outermost layer, lithium (lithium dendriide) to the positive electrode member of the outermost layer In the case of the battery 1 satisfying the requirements of the present invention in which the positive electrode member using the current collector having no through-hole was disposed in the outermost layer, although precipitation was observed, the precipitation of lithium (lithium dendride) I was not able to admit.
 (2)容量維持率について
 上述のようにして作製した電池1~6について、10mA、上限電圧3.8Vの条件で定電流定電圧充電を10hr行った後、10mAの定電流で2.5Vまで放電した後、以下のサイクル試験に供した。
(2) Capacity maintenance rate The batteries 1 to 6 manufactured as described above were subjected to constant current and constant voltage charging for 10 hours under conditions of 10 mA and an upper limit voltage of 3.8 V, and then up to 2.5 V at a constant current of 10 mA. After discharging, it was subjected to the following cycle test.
 サイクル試験においては、以下の条件で、200サイクルの充放電を行った。
 (a)充電条件:
 上限電圧3.8V、50mA、停止条件1mAで定電流定電圧充電
 (b)放電条件:
 下限電圧2.5V、50mA定電流放電
In the cycle test, 200 cycles of charge and discharge were performed under the following conditions.
(a) Charging conditions:
Constant current and constant voltage charge with upper limit voltage of 3.8V, 50mA, stop condition 1mA (b) Discharge condition:
Lower limit voltage 2.5V, 50mA constant current discharge
 そして、電池1~6について、容量維持率を調べた。容量維持率は、最初の1サイクルの容量:Aに対する、200サイクルの充放電試験を行った後の1サイクルの容量:Bの割合であり、下記の式(1)で求められる値である。
 容量維持率(%)=(B/A)×100   ……(1)
Then, the capacity maintenance rates of the batteries 1 to 6 were examined. The capacity retention ratio is a ratio of capacity: B in one cycle after performing a charge / discharge test of 200 cycles to capacity: A in the first one cycle, and is a value obtained by the following formula (1).
Capacity maintenance rate (%) = (B / A) × 100 (1)
 各電池1~6の容量維持率を表2に示す。 Table 2 shows the capacity maintenance rates of the batteries 1 to 6.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、最外層の正極部材あるいは負極部材に、貫通孔を有する集電体を用いた、本発明の要件を満たさない電池2および電池4の場合、200サイクル経過後の容量維持率が84%(電池2)、89%(電池4)と低くなっており、サイクル特性が劣化することが確認された。 As shown in Table 2, in the case of the battery 2 and the battery 4 that do not satisfy the requirements of the present invention using a current collector having a through-hole as the positive electrode member or the negative electrode member of the outermost layer, the capacity is maintained after 200 cycles. The rates were as low as 84% (Battery 2) and 89% (Battery 4), and it was confirmed that the cycle characteristics deteriorated.
 正極(正極部材)が最外層に位置する電池2の場合、充電時に過剰のリチウム(Li)イオンが、最外層より内側にある負極(負極部材)に充填され、充填できなかったリチウムが最外層である正極(正極部材)上に析出することにより、サイクル特性に劣化が生じる。 In the case of the battery 2 in which the positive electrode (positive electrode member) is located in the outermost layer, excessive lithium (Li) ions are charged in the negative electrode (negative electrode member) inside the outermost layer during charging, and lithium that cannot be filled is the outermost layer. Deposition on the positive electrode (positive electrode member) causes deterioration in cycle characteristics.
 また、負極(負極部材)が最外層に位置する電池4の場合、充電時に負極間でリチウムイオンの充填量にばらつきが生じる(最外層の充填量が減少する)ため、電界にむらが生じ、サイクル特性に劣化が生じる。 In addition, in the case of the battery 4 in which the negative electrode (negative electrode member) is located in the outermost layer, the amount of lithium ion filling varies between the negative electrodes during charging (the outermost layer filling amount is reduced), resulting in uneven electric field, Deterioration occurs in cycle characteristics.
 これに対し、最外層の正極(正極部材)または最外層の負極(負極部材)に、貫通孔を有さない集電体を用いた電池1,3,5,6の場合、上述のようなリチウムの析出やリチウムイオンの充填量のばらつきなどが抑制され、サイクル特性の劣化が抑えられることが確認された。 On the other hand, in the case of the batteries 1, 3, 5, and 6 in which the outermost positive electrode (positive electrode member) or the outermost negative electrode (negative electrode member) uses a current collector that does not have a through-hole, It was confirmed that the precipitation of lithium and the variation in the filling amount of lithium ions were suppressed, and the deterioration of cycle characteristics was suppressed.
 上記の結果より、
 (a)上下の最外層の両方が正極である場合(電池1)、
 (b)上下の最外層の両方が負極である場合(電池3)、および、
 (c)最外層の一方が正極で他方が負極である場合(電池5)、
 のいずれの場合にも、最外層を構成する集電体として、貫通孔を備えていない集電体を用いることにより、サイクル特性の向上を実現できることが確認された。
From the above results,
(a) When both upper and lower outermost layers are positive electrodes (battery 1),
(b) When both upper and lower outermost layers are negative electrodes (battery 3), and
(c) When one of the outermost layers is a positive electrode and the other is a negative electrode (battery 5),
In any of these cases, it was confirmed that improvement of cycle characteristics can be realized by using a current collector that does not have a through-hole as a current collector constituting the outermost layer.
 また、電池6のように、最外層の外側の面に電極合材(正極合材または負極合材)を塗布しない構成とした場合にも、同様の効果が得られることが確認された。 Further, it was confirmed that the same effect can be obtained when the electrode mixture (positive electrode mixture or negative electrode mixture) is not applied to the outer surface of the outermost layer as in the battery 6.
 なお、本発明において、正極部材と負極部材の積層数に特別の制約はなく、用途などを考慮して、適切な積層数を決定することができる。 In the present invention, there are no particular restrictions on the number of stacked positive electrode members and negative electrode members, and an appropriate number of stacked layers can be determined in consideration of applications and the like.
 また、本発明において、正極活物質、負極活物質の種類に制約はなく、上記実施形態で用いたリン酸鉄リチウム(正極活物質)や、グラファイトとソフトカーボンの混合物(負極活物質)以外の他の物質を用いることも可能である。
 また、セパレータ部材を構成する材料についても特に制約はなく、公知の種々の材料から適宜選択して用いることが可能である。
 また、上記実施形態では、正極用集電体としてアルミニウム箔を用い、負極用集電体として銅箔を用いたが、正極用および負極用集電体の構成材料についても、アルミニウム箔や銅箔以外の材料を用いることが可能である。
Moreover, in this invention, there is no restriction | limiting in the kind of positive electrode active material and a negative electrode active material, Other than lithium iron phosphate (positive electrode active material) used in the said embodiment, and the mixture of graphite and soft carbon (negative electrode active material). Other materials can also be used.
Moreover, there is no restriction | limiting in particular also about the material which comprises a separator member, It is possible to select from a well-known various material suitably, and to use.
Moreover, in the said embodiment, although aluminum foil was used as the collector for positive electrodes, and copper foil was used as the collector for negative electrodes, about the constituent material of the collector for positive electrodes and negative electrodes, aluminum foil and copper foil are also used. It is possible to use other materials.
 また、本発明において用いられる貫通孔を有する集電体は、貫通孔を経て、Liイオンが集電体を通過することができるものであればよいので、例えば、金属箔にパンチングにより貫通孔を形成したもの、エッチングにより貫通孔を形成したもの、メッシュ状のものなど、種々の構成のものを用いることが可能である。 In addition, the current collector having a through hole used in the present invention may be any material as long as Li ions can pass through the current collector through the through hole. For example, the through hole is formed by punching a metal foil. It is possible to use a variety of configurations such as those formed, through-holes formed by etching, and mesh-shaped.
 また、上記実施形態では、リチウムイオン二次電池を例にとって説明したが、本発明は、例えば、電気二重層キャパシタや、リチウムイオンキャパシタなどにも適用することができる。
 なお、例えば、電気二重層キャパシタとしては、以下のような構成のものが例示される。
Moreover, in the said embodiment, although demonstrated taking the case of the lithium ion secondary battery, this invention is applicable also to an electrical double layer capacitor, a lithium ion capacitor, etc., for example.
For example, as an electric double layer capacitor, the thing of the following structures is illustrated.
 電気二重層キャパシタの場合、正極用集電体として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に炭素材料、例えば活性炭を含む合材層を正極活物質層として設けた電極を正極部材として用いる。
 また、負極用集電体として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に炭素材料、例えば活性炭を含む合材層を設けた電極を負極部材とする。
 そして、正極部材と負極部材をセパレータ部材を介して積層することにより積層構造体を作製するとともに、正極部材および負極部材に用いられている正極用集電体および負極用集電体のうち、積層構造体の最も外側に位置する集電体以外の集電体として、貫通孔が形成された集電体を用い、最も外側に位置する集電体として、貫通孔が形成されていない集電体を用いる。
 そして、この積層構造体を、電解液(電解質)とともに外装体に収納することにより、電気二重層キャパシタを得ることができる。なお、電解液(電解質)としては、例えば、プロピレンカーボネートに1mol/lのトリエチルメチルアンモニウムテトラフルオロボレートを溶解させたものなどが用いられる。
In the case of an electric double layer capacitor, for example, an aluminum foil is used as a positive electrode current collector, and an electrode in which a composite material layer containing a carbon material, for example, activated carbon, is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode member. .
Further, as the negative electrode current collector, for example, an aluminum foil is used, and an electrode in which a composite material layer containing a carbon material such as activated carbon is provided on the aluminum foil is used as the negative electrode member.
And while producing a laminated structure by laminating | stacking a positive electrode member and a negative electrode member via a separator member, it is laminated | stacked among the collectors for positive electrodes and the collectors for negative electrodes currently used for the positive electrode member and the negative electrode member. A current collector having a through hole is used as a current collector other than the current collector located on the outermost side of the structure, and a current collector having no through hole is formed as the current collector located on the outermost side. Is used.
And an electrical double layer capacitor can be obtained by accommodating this laminated structure in an exterior body with electrolyte solution (electrolyte). As the electrolytic solution (electrolyte), for example, a solution obtained by dissolving 1 mol / l triethylmethylammonium tetrafluoroborate in propylene carbonate is used.
 また、リチウムイオンキャパシタの場合、正極用集電体として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に活性炭を含む合材層を正極活物質層として設けた電極を正極部材として用いる。
 また、負極用集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合材層を負極活物質層として設けた電極を負極部材とし、その負極部材にさらにリチウムイオンをプレドープする。
 そして、正極部材と負極部材をセパレータ部材を介して積層することにより積層構造体を作製するとともに、正極部材および負極部材に用いられている正極用集電体および負極用集電体のうち、積層構造体の最も外側に位置する集電体以外の集電体として、貫通孔が形成された集電体を用い、最も外側に位置する集電体として、貫通孔が形成されていない集電体を用いる。
 そして、この積層構造体を、電解液(電解質)とともに外装体に収納することにより、リチウムイオンキャパシタを得ることができる。なお、電解液(電解質)としては、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPF6を溶解させたものなどが用いられる。
In the case of a lithium ion capacitor, for example, an aluminum foil is used as a positive electrode current collector, and an electrode in which a composite material layer containing activated carbon is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode member.
In addition, as the current collector layer for the negative electrode, for example, a copper foil is used, and an electrode provided with a composite layer containing graphite on the copper foil as a negative electrode active material layer is used as the negative electrode member, and lithium ions are further added to the negative electrode member. Pre-dope.
And while producing a laminated structure by laminating | stacking a positive electrode member and a negative electrode member via a separator member, it is laminated | stacked among the collectors for positive electrodes and the collectors for negative electrodes currently used for the positive electrode member and the negative electrode member. A current collector having a through hole is used as a current collector other than the current collector located on the outermost side of the structure, and a current collector having no through hole is formed as the current collector located on the outermost side. Is used.
And this lithium-ion capacitor can be obtained by accommodating this laminated structure in an exterior body with electrolyte solution (electrolyte). As the electrolytic solution (electrolyte), for example, a solution obtained by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate is used.
 本発明は、さらにその他の点においても上記の実施形態に限定されるものではなく、蓄電要素の具体的な構成(正極部材、負極部材の積層態様や積層数など)、電解質の種類、外包材の構成や構造材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above-described embodiment in other respects as well, and the specific configuration of the power storage element (the positive electrode member, the negative electrode member lamination mode, the number of laminations, etc.), the type of electrolyte, and the outer packaging material Various applications and modifications can be made within the scope of the invention with respect to the structure and the structural material.
 1~6    電池
 11     貫通孔を有する正極用集電体を用いた第1の正極部材
 12     貫通孔を有さない正極用集電体を用いた第2の正極部材
 21     貫通孔を有する負極用集電体を用いた第1の負極部材
 22     貫通孔を有さない負極用集電体を用いた第2の負極部材
 23     第3の負極部材
 30     セパレータ
 40     積層構造体
 50     外装体
 51     非水系電解液(電解質)
 61     正極リード端子
 62     負極リード端子
 101p   正極用集電体の貫通孔
 101    貫通孔を有する正極用集電体
 102    貫通孔を有さない正極用集電体
 201p   負極用集電体の貫通孔
 201    貫通孔を有する負極用集電体
 202    貫通孔を有さない正極用集電体負極用集電体
1 to 6 Batteries 11 First positive electrode member using positive electrode current collector having through holes 12 Second positive electrode member using positive electrode current collector not having through holes 21 Negative electrode current collector having through holes First negative electrode member 22 using electric body 22 Second negative electrode member using negative electrode current collector having no through hole 23 Third negative electrode member 30 Separator 40 Laminated structure 50 Exterior body 51 Non-aqueous electrolyte (Electrolytes)
61 Positive electrode lead terminal 62 Negative electrode lead terminal 101p Positive electrode current collector through hole 101 Positive electrode current collector with through hole 102 Positive electrode current collector without through hole 201p Negative electrode current collector through hole 201 Through hole Current collector for negative electrode having hole 202 Current collector for positive electrode having no through hole Current collector for negative electrode

Claims (7)

  1.  正極活物質を含む正極合材を、貫通孔を有する正極用集電体上に形成してなる正極部材と、負極活物質を含む負極合材を、貫通孔を有する負極用集電体上に形成してなる負極部材とが、セパレータ部材を介して積層された積層構造体と、電解質とを備えた蓄電要素と、
     前記蓄電要素を収容する外装体と、
     前記正極用集電体に接続され、一部が前記外装体から外部に引き出された正極リード端子と、
     前記負極用集電体に接続され、一部が前記外装体から外部に引き出された負極リード端子と
     を備えた蓄電デバイスにおいて、
     前記積層構造体を構成する前記正極部材および前記負極部材に用いられている前記正極用集電体および前記負極用集電体のうち、積層方向の最も外側に位置する集電体として、貫通孔が形成されていない集電体が用いられていること
     を特徴とする蓄電デバイス。
    A positive electrode member formed by forming a positive electrode mixture containing a positive electrode active material on a positive electrode current collector having a through hole and a negative electrode mixture containing a negative electrode active material on a negative electrode current collector having a through hole An electricity storage element comprising a laminated structure in which a negative electrode member formed is laminated via a separator member, and an electrolyte;
    An exterior body that houses the electricity storage element;
    A positive electrode lead terminal connected to the positive electrode current collector and partially drawn out from the exterior body;
    In an electricity storage device comprising: a negative electrode lead terminal connected to the negative electrode current collector, and a part of the negative electrode lead terminal pulled out from the exterior body;
    Among the positive electrode current collector and the negative electrode current collector used in the positive electrode member and the negative electrode member constituting the multilayer structure, a through-hole is used as a current collector positioned on the outermost side in the stacking direction. A power storage device characterized by using a current collector in which is not formed.
  2.  前記積層構造体の一方側および他方側の最外層の両方が、貫通孔が形成されていない前記集電体が用いられた正極部材であることを特徴とする請求項1記載の蓄電デバイス。 The electric storage device according to claim 1, wherein both of the outermost layers on one side and the other side of the laminated structure are positive electrode members using the current collector in which no through-hole is formed.
  3.  前記積層構造体の一方側および他方側の最外層の両方が、貫通孔が形成されていない前記集電体が用いられた負極部材であることを特徴とする請求項1記載の蓄電デバイス。 2. The electric storage device according to claim 1, wherein both of the outermost layers on one side and the other side of the laminated structure are negative electrode members using the current collector in which no through-hole is formed.
  4.  前記積層構造体の一方側の最外層が、貫通孔が形成されていない前記集電体が用いられた正極部材であり、他方側の最外層が、貫通孔が形成されていない前記集電体が用いられた負極部材であることを特徴とする請求項1記載の蓄電デバイス。 The outermost layer on one side of the laminated structure is a positive electrode member using the current collector in which no through hole is formed, and the current collector in which the outermost layer on the other side is not formed with a through hole The electricity storage device according to claim 1, wherein the electricity storage device is a negative electrode member in which is used.
  5.  前記正極用集電体として、アルミニウム箔が用いられていることを特徴とする請求項1~4のいずれかに記載の蓄電デバイス。 The electricity storage device according to any one of claims 1 to 4, wherein an aluminum foil is used as the positive electrode current collector.
  6.  前記負極用集電体として、銅箔が用いられていることを特徴とする請求項1~5のいずれかに記載の蓄電デバイス。 6. The electricity storage device according to claim 1, wherein a copper foil is used as the negative electrode current collector.
  7.  前記負極部材を構成する負極活物質が、グラファイト、ソフトカーボン、およびハードカーボンからなる群より選ばれる少なくとも1種の炭素系材料を主たる成分とするものであることを特徴とする請求項1~6のいずれかに記載の蓄電デバイス。 The negative electrode active material constituting the negative electrode member is mainly composed of at least one carbon-based material selected from the group consisting of graphite, soft carbon, and hard carbon. The electrical storage device in any one of.
PCT/JP2012/077602 2011-10-31 2012-10-25 Electricity storage device WO2013065575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541738A JP5614567B2 (en) 2011-10-31 2012-10-25 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011238453 2011-10-31
JP2011-238453 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065575A1 true WO2013065575A1 (en) 2013-05-10

Family

ID=48191924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077602 WO2013065575A1 (en) 2011-10-31 2012-10-25 Electricity storage device

Country Status (2)

Country Link
JP (1) JP5614567B2 (en)
WO (1) WO2013065575A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140525A (en) * 2015-07-04 2015-12-09 广东烛光新能源科技有限公司 Flexible device and manufacturing method thereof
JP2017084495A (en) * 2015-10-23 2017-05-18 プライムアースEvエナジー株式会社 Secondary battery
CN108550774A (en) * 2018-05-02 2018-09-18 中国航发北京航空材料研究院 A kind of hole connection structure of combination stratiform solid-state thin-film battery group
EP3499533A1 (en) * 2017-12-12 2019-06-19 Korea JCC Co., Ltd. Electric double layer capacitor
WO2020070990A1 (en) * 2018-10-04 2020-04-09 株式会社村田製作所 Solid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009971A (en) * 2008-06-27 2010-01-14 Fdk Corp Current collector for electricity storage element and electricity storage element
JP2010205769A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Wound-type storage device
JP2011146157A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Battery
JP2011216576A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Electric storage device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963538B2 (en) * 1997-03-12 2007-08-22 三洋電機株式会社 Square battery
JP4152084B2 (en) * 2001-02-27 2008-09-17 三洋電機株式会社 Square alkaline storage battery
JP2005085823A (en) * 2003-09-04 2005-03-31 Murata Mfg Co Ltd Laminated ceramic capacitor
JP2008059765A (en) * 2006-08-29 2008-03-13 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2011154784A (en) * 2010-01-26 2011-08-11 Hitachi Maxell Energy Ltd Flat nonaqueous secondary battery
JP2012059396A (en) * 2010-09-06 2012-03-22 Mitsubishi Electric Corp Negative electrode for power storage device and power storage device, and method of manufacturing them

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010009971A (en) * 2008-06-27 2010-01-14 Fdk Corp Current collector for electricity storage element and electricity storage element
JP2010205769A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Wound-type storage device
JP2011146157A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Battery
JP2011216576A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Electric storage device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140525A (en) * 2015-07-04 2015-12-09 广东烛光新能源科技有限公司 Flexible device and manufacturing method thereof
JP2017084495A (en) * 2015-10-23 2017-05-18 プライムアースEvエナジー株式会社 Secondary battery
EP3499533A1 (en) * 2017-12-12 2019-06-19 Korea JCC Co., Ltd. Electric double layer capacitor
JP2019106520A (en) * 2017-12-12 2019-06-27 コリア・ジェイシーシー・カンパニー・リミテッド Electric double layer capacitor
CN108550774A (en) * 2018-05-02 2018-09-18 中国航发北京航空材料研究院 A kind of hole connection structure of combination stratiform solid-state thin-film battery group
WO2020070990A1 (en) * 2018-10-04 2020-04-09 株式会社村田製作所 Solid battery
JPWO2020070990A1 (en) * 2018-10-04 2021-09-02 株式会社村田製作所 Solid state battery
JP7120318B2 (en) 2018-10-04 2022-08-17 株式会社村田製作所 solid state battery

Also Published As

Publication number Publication date
JP5614567B2 (en) 2014-10-29
JPWO2013065575A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP7461877B2 (en) Compositions and methods for multilayer electrode films
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP2011081931A (en) Lithium ion secondary battery
KR101862433B1 (en) Lithium-ion capacitor
JP5855893B2 (en) Method for producing non-aqueous lithium storage element
JP5614567B2 (en) Lithium ion secondary battery
US11302954B2 (en) Nonaqueous electrolyte secondary battery
US20230282949A1 (en) Three-tab laminated composite battery
US20190081319A1 (en) Nonaqueous electrolyte secondary battery
WO2015068680A1 (en) Non-aqueous electrolyte secondary cell, and electric storage circuit using same
JP7136092B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP6911655B2 (en) A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element.
JP2017059538A (en) Laminated battery
US10263294B2 (en) Lithium ion secondary battery
JP6769334B2 (en) Method for manufacturing negative electrode for non-aqueous electrolyte storage element, negative electrode for non-aqueous electrolyte storage element and non-aqueous electrolyte storage element
JP2010062299A (en) Electricity storage device
WO2018043369A1 (en) Nonaqueous electrolyte power storage device
JP5840429B2 (en) Lithium ion capacitor
JP2019169346A (en) Lithium ion secondary battery
JP2019102231A (en) Power storage element
JP7378032B2 (en) lithium secondary battery
JP2018206642A (en) Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and manufacturing method of nonaqueous electrolyte power storage element
JP2018078029A (en) Negative electrode and nonaqueous electrolyte power storage device
JP6100473B2 (en) Electrochemical devices
JP4196196B2 (en) Secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541738

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12846648

Country of ref document: EP

Kind code of ref document: A1