JP2017084495A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2017084495A
JP2017084495A JP2015209032A JP2015209032A JP2017084495A JP 2017084495 A JP2017084495 A JP 2017084495A JP 2015209032 A JP2015209032 A JP 2015209032A JP 2015209032 A JP2015209032 A JP 2015209032A JP 2017084495 A JP2017084495 A JP 2017084495A
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
holes
positive electrode
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015209032A
Other languages
Japanese (ja)
Other versions
JP6629039B2 (en
Inventor
中西 利明
Toshiaki Nakanishi
利明 中西
龍祐 岡
Ryuyu Oka
龍祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2015209032A priority Critical patent/JP6629039B2/en
Publication of JP2017084495A publication Critical patent/JP2017084495A/en
Application granted granted Critical
Publication of JP6629039B2 publication Critical patent/JP6629039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery that can suppress irregularity of the activity of an active material in a layer of the active material of one electrode of positive and negative electrodes, which is parallel to a current collector of the other electrode.SOLUTION: A secondary battery includes a positive electrode 21a having a plate-like positive electrode current collector and negative electrodes 22a, 22b having plate-like negative electrode current collectors 25a, 25b. A plurality of positive and negative electrodes are alternately laminated one by one. The negative electrode current collectors 25a and 25b are formed of metal plates having through-holes 15a to 15d. The through-holes 15a to 15d are provided on the metal plate at a predetermined interval with respect to a predetermined alignment direction 20. In the secondary battery, the through-holes 15a to 15d provided to each of the negative electrodes 22a, 22b are arranged to be staggered in the alignment direction 20 in the pair of the adjacent negative electrodes 22a, 22b between which the positive electrode 21a is sandwiched.SELECTED DRAWING: Figure 1

Description

本発明は二次電池に関する。   The present invention relates to a secondary battery.

特許文献1−3には二次電池の集電体が記載されている。かかる集電体はメッシュ板からなる。メッシュ板は穿孔された金属板からなる。   Patent Documents 1-3 describe a current collector for a secondary battery. Such a current collector is made of a mesh plate. The mesh plate is a perforated metal plate.

特開平06−041055号公報Japanese Patent Laid-Open No. 06-041055 特開平09−120819号公報Japanese Patent Application Laid-Open No. 09-120819 特開2003−317723号公報JP 2003-317723 A

発明者らは以下の課題を見出した。すなわち上記集電体に設けられた孔は隣の孔との間に間隔を有する。このため孔に対向する活物質は、孔の周囲の残余の金属板に対向する活物質に比べて、集電体からの距離が遠くなる。集電体からの距離は活物質の働きに影響を与える。このため、集電体に並行する活物質の層において活物質の働きにむらが生じる。   The inventors have found the following problems. That is, the hole provided in the current collector has a space between the adjacent hole. Therefore, the active material facing the hole is farther from the current collector than the active material facing the remaining metal plate around the hole. The distance from the current collector affects the function of the active material. For this reason, in the layer of the active material parallel to the current collector, the function of the active material is uneven.

本発明は貫通孔を有する金属板からなる正極集電体及び負極集電体の少なくともいずれか一方を備える二次電池を提供する。本発明は、正極及び負極の少なくともいずれか一方の電極の集電体に並行する他方の電極の活物質の層において活物質の働きのむらを抑制することを目的とする。   The present invention provides a secondary battery comprising at least one of a positive electrode current collector and a negative electrode current collector made of a metal plate having a through hole. An object of the present invention is to suppress unevenness of the function of the active material in the active material layer of the other electrode parallel to the current collector of at least one of the positive electrode and the negative electrode.

本発明の一態様はプレート状の正極集電体を有する正極と、プレート状の負極集電体を有する負極と、を備える二次電池である。複数の前記正極及び複数の前記負極が一枚ずつ交互に積層されている。前記正極集電体及び前記負極集電体の少なくともいずれか一方は貫通孔を有する金属板からなる。前記貫通孔は前記金属板上で所定の整列方向に対して、一定の間隔で設けられている。   One embodiment of the present invention is a secondary battery including a positive electrode having a plate-like positive electrode current collector and a negative electrode having a plate-like negative electrode current collector. The plurality of positive electrodes and the plurality of negative electrodes are alternately stacked one by one. At least one of the positive electrode current collector and the negative electrode current collector is made of a metal plate having a through hole. The through holes are provided at regular intervals on the metal plate with respect to a predetermined alignment direction.

前記二次電池では少なくとも以下のいずれか一方を満たす;前記正極を挟んで互いに隣接する前記負極の組において、各前記負極に前記設けられている前記貫通孔は、前記整列方向において互い違いになっている;及び前記負極を挟んで互いに隣接する前記正極の組において、各前記正極に前記設けられている前記貫通孔は、前記整列方向において互い違いになっている。   In the secondary battery, at least one of the following is satisfied; in the set of the negative electrodes adjacent to each other across the positive electrode, the through-holes provided in the negative electrodes are staggered in the alignment direction. And in the set of positive electrodes adjacent to each other across the negative electrode, the through holes provided in each positive electrode are staggered in the alignment direction.

本発明により、正極及び負極の少なくともいずれか一方の電極の集電体に並行する他方の電極の活物質の層において活物質の働きのむらを抑制することを目的とする。   According to the present invention, an object of the present invention is to suppress unevenness of the active material in the active material layer of the other electrode parallel to the current collector of at least one of the positive electrode and the negative electrode.

実施形態に係る正極及び負極の拡大断面図である。It is an expanded sectional view of the positive electrode and negative electrode which concern on embodiment. 実施形態に係る正極及び負極の断面図である。It is sectional drawing of the positive electrode and negative electrode which concern on embodiment. 実施例1に係る二次電池の斜視図である。1 is a perspective view of a secondary battery according to Example 1. FIG. 実施例1に係る金属板の平面図である。3 is a plan view of a metal plate according to Example 1. FIG. 比較例に係る正極及び負極の拡大断面図である。It is an expanded sectional view of the positive electrode and negative electrode which concern on a comparative example. 実施例2に係る金属板の平面図である。6 is a plan view of a metal plate according to Embodiment 2. FIG. 実施例3に係る金属板の平面図である。6 is a plan view of a metal plate according to Embodiment 3. FIG. 実施例4に係る金属板の平面図である。6 is a plan view of a metal plate according to Example 4. FIG. 実施例5に係る金属板の平面図である。10 is a plan view of a metal plate according to Embodiment 5. FIG. 実施例6に係る金属板の平面図である。10 is a plan view of a metal plate according to Example 6. FIG. 実施例7に係る金属板の平面図である。10 is a plan view of a metal plate according to Example 7. FIG. シミュレーション解析に係る要素分割図である。It is an element division figure concerning simulation analysis. シミュレーション解析で導き出した抵抗値を表すグラフである。It is a graph showing the resistance value derived | led-out by simulation analysis.

以下の説明において同等の構成要素には同一の符号を付し、重複する説明を省略する。   In the following description, the same components are denoted by the same reference numerals, and redundant description is omitted.

図1は正極21a及び負極22a,bの拡大断面図である。本実施形態に係る二次電池は正極21a及び負極22a,bを備える。負極22a,bの組は正極21aを挟んで互いに向かい合う。負極22a,bの組は正極21aを挟んで互いに隣接する。   FIG. 1 is an enlarged cross-sectional view of the positive electrode 21a and the negative electrodes 22a and 22b. The secondary battery according to the present embodiment includes a positive electrode 21a and negative electrodes 22a and 22b. The pair of negative electrodes 22a and 22b face each other across the positive electrode 21a. The pair of negative electrodes 22a and 22b are adjacent to each other with the positive electrode 21a interposed therebetween.

図1に示す二次電池はさらにセパレータ23a,bを備える。セパレータ23aは正極21a及び負極22aを隔離する。セパレータ23bは正極21a及び負極22aを隔離する。   The secondary battery shown in FIG. 1 further includes separators 23a and 23b. The separator 23a isolates the positive electrode 21a and the negative electrode 22a. The separator 23b isolates the positive electrode 21a and the negative electrode 22a.

図1に示す正極21aの有する正極集電体は金属多孔体からなる。正極21a,bは正極活物質17a,bに代表される正極活物質を有する。正極活物質17a,bは金属多孔体の空孔に充填されている。正極活物質17a,bは例えば水酸化ニッケルでもよいがこれに限定されない。   The positive electrode current collector which the positive electrode 21a shown in FIG. 1 has is made of a metal porous body. The positive electrodes 21a and 21b have positive electrode active materials represented by the positive electrode active materials 17a and 17b. The positive electrode active materials 17a and 17b are filled in the pores of the metal porous body. The positive electrode active materials 17a and 17b may be nickel hydroxide, for example, but are not limited thereto.

図1に示す負極22a,bはそれぞれ負極集電体25a,bを有する。負極集電体25a,bはそれぞれ貫通孔15a−dを有する金属板からなる。金属板は例えばニッケルでメッキした鉄の板でもよいがこれに限定されない。貫通孔15a−dはパンチング加工により形成してもよいがこれに限定されない。貫通孔15a−dは角型でも丸型でもよい。   Negative electrodes 22a and 22b shown in FIG. 1 have negative electrode current collectors 25a and 25b, respectively. The negative electrode current collectors 25a and 25b are each made of a metal plate having through holes 15a-d. The metal plate may be, for example, an iron plate plated with nickel, but is not limited thereto. The through holes 15a-d may be formed by punching, but are not limited thereto. The through holes 15a-d may be square or round.

図1に示す負極22aには貫通孔15a,bに代表される貫通孔が設けられている。金属板上で、貫通孔15a,bは、図中の上下方向を表す、整列方向20に対して、一定の間隔で設けられている。金属板の残余部分16a−cは、負極22aの有する貫通孔15a,bの周囲に位置する。   The negative electrode 22a shown in FIG. 1 is provided with through holes typified by through holes 15a and 15b. On the metal plate, the through holes 15a and 15b are provided at regular intervals with respect to the alignment direction 20, which represents the vertical direction in the figure. The remaining portions 16a-c of the metal plate are located around the through holes 15a, 15b of the negative electrode 22a.

図1に示す負極22bには貫通孔15c,dに代表される貫通孔が設けられている。金属板上で、貫通孔15c,dは、整列方向20に対して、一定の間隔で設けられている。金属板の残余部分16d−fは、負極22bの有する貫通孔15c,dの周囲に位置する。   The negative electrode 22b shown in FIG. 1 is provided with through holes typified by through holes 15c and 15d. On the metal plate, the through-holes 15 c and 15 d are provided at regular intervals with respect to the alignment direction 20. The remaining portions 16d-f of the metal plate are located around the through holes 15c, d of the negative electrode 22b.

図1に示す負極活物質24a,bはそれぞれ負極集電体25a,bを被覆する。負極活物質24a,bはそれぞれ貫通孔15a―d内に充填されている。負極活物質24a,bは水素吸蔵合金であることが好ましい。   The negative electrode active materials 24a and 24b shown in FIG. 1 cover the negative electrode current collectors 25a and 25b, respectively. The negative electrode active materials 24a and 24b are filled in the through holes 15a-d, respectively. The negative electrode active materials 24a and 24b are preferably hydrogen storage alloys.

図2は正極21a,bに代表される正極及び負極22a,bに代表される負極の断面図である。正極及び負極は互いに平行に積層されている。複数の正極及び複数の負極が一枚ずつ交互に積層されている。正極と負極の間にはセパレータ23a,bに代表されるセパレータが配置されている。   FIG. 2 is a cross-sectional view of a positive electrode represented by the positive electrodes 21a and 21b and a negative electrode represented by the negative electrodes 22a and 22b. The positive electrode and the negative electrode are stacked in parallel with each other. A plurality of positive electrodes and a plurality of negative electrodes are alternately stacked one by one. Separators represented by separators 23a and 23b are disposed between the positive electrode and the negative electrode.

図3は本実施形態の二次電池40を示す。図中において電解液やケースなどは記載が省略されている。二次電池40の各負極はプレート状の負極集電体25a,b及びその他のプレート状の負極集電体でそれぞれ構成される。図示されえていない正極集電体もプレート状である。これらの集電体の厚みは特に制限されない。負極及び正極ともにプレート状である。これらの電極の厚みは特に制限されない。   FIG. 3 shows the secondary battery 40 of the present embodiment. In the figure, the description of the electrolytic solution and the case is omitted. Each negative electrode of the secondary battery 40 is composed of a plate-shaped negative electrode current collector 25a, b and other plate-shaped negative electrode current collectors. The positive electrode current collector not shown is also plate-shaped. The thickness of these current collectors is not particularly limited. Both the negative electrode and the positive electrode are plate-shaped. The thickness of these electrodes is not particularly limited.

図3に示すように二次電池40はプレート状の電極を積層してなるものであることが好ましい。本実施形態に二次電池は捲回型の電池ではないことが好ましい。また二次電池は一枚の正極集電体と一枚の負極集電体を重ね合わせただけの単層シート型の電池ではないことが好ましい。   As shown in FIG. 3, the secondary battery 40 is preferably formed by laminating plate-like electrodes. In the present embodiment, the secondary battery is preferably not a wound battery. The secondary battery is preferably not a single-layer sheet type battery in which a single positive electrode current collector and a single negative electrode current collector are superposed.

図1に戻る。図1に示すように負極22a,bの組において、貫通孔15a,bと貫通孔15c,dとは、整列方向20において互い違いになっている。図2,3に示す他の負極の組において同様であることが好ましい。例えば奇数番目の負極と偶数番目の負極との間で貫通孔が互いに違いになっていてもよい。   Returning to FIG. As shown in FIG. 1, in the set of negative electrodes 22 a and b, the through holes 15 a and b and the through holes 15 c and d are staggered in the alignment direction 20. The same applies to the other negative electrode sets shown in FIGS. For example, the through holes may be different from each other between the odd-numbered negative electrode and the even-numbered negative electrode.

図1に示すように一方の負極22aの有する貫通孔15a,bは、他方の負極22bの有する残余部分16e,fにそれぞれ対向する。同様に貫通孔15c,dは、残余部分16a,bにそれぞれ対向する。   As shown in FIG. 1, the through holes 15a, 15b of one negative electrode 22a face the remaining portions 16e, f of the other negative electrode 22b, respectively. Similarly, the through holes 15c and d face the remaining portions 16a and 16b, respectively.

図1に示す負極22a,bのそれぞれにおいて、貫通孔15a,bに代表される貫通孔の間隔と、貫通孔15c,dに代表される貫通孔の間隔とは互いに等しい。一方の負極22aの有する貫通孔15a,bと、他方の負極22bの有する貫通孔15c,dとのずれは、かかる間隔の半分であることが好ましい。   In each of the negative electrodes 22a and 22b shown in FIG. 1, the interval between the through holes typified by the through holes 15a and 15b is equal to the interval between the through holes typified by the through holes 15c and 15d. The deviation between the through holes 15a, b of the one negative electrode 22a and the through holes 15c, d of the other negative electrode 22b is preferably half of the interval.

図2,3に示す他の負極の組において同様であることが好ましい。例えば奇数番目の負極と偶数番目の負極との間で貫通孔の間隔が等しくてもよい。また貫通孔のずれは、かかる間隔の半分であってもよい。また貫通孔の間隔を位相360°と見立てた場合、貫通孔のずれは位相180°と考えることができる。   The same applies to the other negative electrode sets shown in FIGS. For example, the interval between the through holes may be equal between the odd-numbered negative electrode and the even-numbered negative electrode. Further, the displacement of the through hole may be half of the interval. Further, when the interval between the through holes is assumed to be 360 °, the displacement of the through holes can be considered to be 180 °.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

図2に示す正極21a,bの有する正極集電体は、負極集電体25a,bと同様に、貫通孔を有する金属板からなっていてもよい。したがって正極集電体及び負極集電体の少なくともいずれか一方が貫通孔を有する金属板からなっていてもよい。正極21a,bの組は負極22bを挟んで互いに隣接する。かかる組において、正極の貫通孔は、図1に示す貫通孔15a−dと同様に、上下方向において互い違いになっていてもよい。   The positive electrode current collectors of the positive electrodes 21a and 21b shown in FIG. 2 may be made of a metal plate having through holes, similarly to the negative electrode current collectors 25a and 25b. Therefore, at least one of the positive electrode current collector and the negative electrode current collector may be formed of a metal plate having a through hole. The pair of the positive electrodes 21a and b is adjacent to each other with the negative electrode 22b interposed therebetween. In such a set, the through holes of the positive electrode may be staggered in the vertical direction, similar to the through holes 15a-d shown in FIG.

本実施形態では、正極及び負極のいずれか一方で集電体の貫通孔を互い違いにすることで、これに並行する他方の電極の活物質の層において活物質の働きのむらが抑制される。   In this embodiment, by making the through-holes of the current collector alternate in one of the positive electrode and the negative electrode, unevenness of the function of the active material is suppressed in the active material layer of the other electrode parallel to the current collector.

[実施例1]
図3は実施例1に係る二次電池40の斜視図である。二次電池40は正極、負極及びセパレータを備える。図中では負極集電体25a,bに代表される負極集電体のみ描かれている。二次電池40はさらに正極の集電部29及び負極の集電部30を備える。集電部30は負極集電体と接続される。集電部は集電体に比べてより厚くなっており、集電部には集電体を流れる電流が集約される。
[Example 1]
FIG. 3 is a perspective view of the secondary battery 40 according to the first embodiment. The secondary battery 40 includes a positive electrode, a negative electrode, and a separator. In the drawing, only the negative electrode current collector represented by the negative electrode current collectors 25a and 25b is depicted. The secondary battery 40 further includes a positive current collector 29 and a negative current collector 30. The current collector 30 is connected to the negative electrode current collector. The current collector is thicker than the current collector, and the current flowing through the current collector is concentrated in the current collector.

図3に示す貫通孔15a,bに代表される貫通孔は縦横に規則的に配列されている。これらの貫通孔によりメッシュ18が形成される。メッシュ18は格子状である。メッシュ18は後述するように千鳥状でもよい。負極集電体25aは長方形である。   The through holes represented by the through holes 15a and 15b shown in FIG. 3 are regularly arranged in the vertical and horizontal directions. The mesh 18 is formed by these through holes. The mesh 18 has a lattice shape. The mesh 18 may be zigzag as described later. The negative electrode current collector 25a is rectangular.

図4は負極集電体25a,bを構成する金属板26a,27aを示す。上段左側に示す金属板26aは負極集電体25aを構成する。上段右側に示す金属板27aは負極集電体25bを構成する。下段は金属板26a,27aの重ね合わせを表す。   FIG. 4 shows metal plates 26a and 27a constituting the negative electrode current collectors 25a and 25b. The metal plate 26a shown on the upper left side constitutes the negative electrode current collector 25a. The metal plate 27a shown on the upper right side constitutes the negative electrode current collector 25b. The lower row represents the superposition of the metal plates 26a and 27a.

図4に示す負極集電体25a,bの一端には集電部30が設けられる。金属板26a,27aは長方形であることが好ましい。かかる長方形の一辺に集電部30が設けられる。集電部30は帯状であることが好ましい。集電部30はニッケルからなるものでもよいがこれに限定されない。   A current collector 30 is provided at one end of each of the negative electrode current collectors 25a and 25b shown in FIG. The metal plates 26a and 27a are preferably rectangular. A current collector 30 is provided on one side of the rectangle. The current collecting unit 30 is preferably strip-shaped. The current collector 30 may be made of nickel, but is not limited thereto.

図4に示す集電部30から遠ざかる方向と平行な軸をX軸とする。X軸と直交する軸をY軸とする。以下においてX軸は集電部30の延在方向と直交する。Y軸は集電部30の延在方向と平行である。   An axis parallel to the direction away from the current collector 30 shown in FIG. The axis orthogonal to the X axis is taken as the Y axis. In the following, the X axis is orthogonal to the extending direction of the current collector 30. The Y axis is parallel to the extending direction of the current collector 30.

図4に示すように貫通孔が互い違いになっている整列方向20はX軸と平行な方向である。集電部30は整列方向20と平行であることが好ましい。貫通孔15a,bと貫通孔15c,dとは整列方向20に沿って互いにずれている。各貫通孔はY軸方向に細長い長方形である。   As shown in FIG. 4, the alignment direction 20 in which the through holes are staggered is a direction parallel to the X axis. The current collector 30 is preferably parallel to the alignment direction 20. The through holes 15 a and 15 b and the through holes 15 c and 15 d are shifted from each other along the alignment direction 20. Each through hole is a rectangle elongated in the Y-axis direction.

[比施例1]
図5は正極21a及び負極52a,bの拡大断面図である。負極52a,bの組は正極21aを挟んで互いに隣接する。図1と異なり、負極52a,bはいずれも同等の負極集電体25aを有する。負極52a,bの組において、各貫通孔は互いに正対している。さらに負極集電体25aを他の負極においても用いる。このため全ての負極間において各貫通孔は互いに正対している。
[Specific application example 1]
FIG. 5 is an enlarged cross-sectional view of the positive electrode 21a and the negative electrodes 52a and 52b. The pair of negative electrodes 52a and 52b are adjacent to each other with the positive electrode 21a interposed therebetween. Unlike FIG. 1, the negative electrodes 52a and 52b both have the same negative electrode current collector 25a. In the set of negative electrodes 52a and 52b, the through holes face each other. Further, the negative electrode current collector 25a is also used in other negative electrodes. Therefore, the through holes face each other between all the negative electrodes.

[実施例1と比較例1との対比]
図5に示すように比較例1に係る正極活物質17bは正極活物質17aに比べて負極52a,bの各残余部分16aに対して遠い。したがって正極活物質17bは正極活物質17aに比べて反応しづらい。
[Contrast between Example 1 and Comparative Example 1]
As shown in FIG. 5, the positive electrode active material 17b according to Comparative Example 1 is farther from the remaining portions 16a of the negative electrodes 52a and 52b than the positive electrode active material 17a. Therefore, the positive electrode active material 17b is less likely to react than the positive electrode active material 17a.

図1に示すように、実施例1に係る正極活物質17bは、正極活物質17aに比べて、負極22aの各残余部分16aに対して遠い。しかしながら正極活物質17bは、正極活物質17aに比べて、負極22bの各残余部分16eに対して近い。これは負極集電体25a,bの貫通孔が互い違いに配置されていることによる。   As shown in FIG. 1, the positive electrode active material 17b according to Example 1 is farther from the remaining portions 16a of the negative electrode 22a than the positive electrode active material 17a. However, the positive electrode active material 17b is closer to each remaining portion 16e of the negative electrode 22b than the positive electrode active material 17a. This is because the through holes of the negative electrode current collectors 25a and 25b are alternately arranged.

図1に示すように貫通孔15a−dが互い違いであるから、残余部分16a−dも互い違いとなる。結果として、任意の地点の正極活物質は負極集電体25a,bのいずれかに対して近くなる。したがって正極活物質17aと正極活物質17bとの間で反応のしやすさに違いが出にくい。このため正極活物質の働きのムラを抑制することができる。   Since the through holes 15a-d are staggered as shown in FIG. 1, the remaining portions 16a-d are also staggered. As a result, the positive electrode active material at an arbitrary point is close to either of the negative electrode current collectors 25a and 25b. Accordingly, it is difficult for the positive electrode active material 17a and the positive electrode active material 17b to be easily reacted. For this reason, the nonuniformity of the function of the positive electrode active material can be suppressed.

[実施例2]
以下の実施例2〜7では負極集電体25a,bの構成が実施例1のものと異なる二次電池を説明する。図6は実施例2に係る負極集電体25a,bを構成する金属板26b,27bを示す。金属板26bは負極集電体25aを構成する。金属板27bは負極集電体25bを構成する。金属板26b,27bは千鳥状配置になっている点が金属板26a,27a(図4)と異なる。
[Example 2]
In the following Examples 2 to 7, a secondary battery in which the configuration of the negative electrode current collectors 25a and 25b is different from that of Example 1 will be described. FIG. 6 shows metal plates 26b and 27b constituting the negative electrode current collectors 25a and 25b according to the second embodiment. The metal plate 26b constitutes the negative electrode current collector 25a. The metal plate 27b constitutes the negative electrode current collector 25b. The metal plates 26b and 27b are different from the metal plates 26a and 27a (FIG. 4) in that they are arranged in a staggered manner.

[実施例3]
図7は実施例3に係る負極集電体25a,bを構成する金属板26c,27cを示す。左側上段の金属板26cは負極集電体25aを構成する。左側下段の金属板27cは負極集電体25bを構成する。右側は金属板26c,27cの重ね合わせを表す。
[Example 3]
FIG. 7 shows metal plates 26c and 27c constituting the negative electrode current collectors 25a and 25b according to the third embodiment. The upper left metal plate 26c constitutes the negative electrode current collector 25a. The lower left metal plate 27c constitutes the negative electrode current collector 25b. The right side shows the overlap of the metal plates 26c and 27c.

図7に示すように貫通孔が互い違いになっている整列方向20はY軸と平行な方向である。集電部30は整列方向20に対して直角であることが好ましい。貫通孔15a,bと貫通孔15c,dとは整列方向20に沿って互いにずれている。   As shown in FIG. 7, the alignment direction 20 in which the through holes are staggered is a direction parallel to the Y axis. The current collector 30 is preferably perpendicular to the alignment direction 20. The through holes 15 a and 15 b and the through holes 15 c and 15 d are shifted from each other along the alignment direction 20.

[実施例4]
図8は実施例3に係る負極集電体25a,bを構成する金属板26d,27dを示す。左側上段の金属板26dは負極集電体25aを構成する。右側下段の金属板27dは負極集電体25bを構成する。
[Example 4]
FIG. 8 shows metal plates 26d and 27d constituting the negative electrode current collectors 25a and 25b according to the third embodiment. The upper left metal plate 26d constitutes the negative electrode current collector 25a. The lower right metal plate 27d constitutes the negative electrode current collector 25b.

図8に示す金属板26dと金属板27dとの間で、貫通孔はX方向にもY方向にもずれている。言い換えれば本実施例において貫通孔が互い違いになっている整列方向はX軸と平行な方向及びY軸と平行な方向の両方である。金属板27a,27cは、金属板27dの貫通孔のずれがX方向にもY方向に生じていることを理解しやすくするために便宜的に描かれている。   Between the metal plate 26d and the metal plate 27d shown in FIG. 8, the through holes are shifted in both the X direction and the Y direction. In other words, the alignment direction in which the through holes are staggered in this embodiment is both a direction parallel to the X axis and a direction parallel to the Y axis. The metal plates 27a and 27c are drawn for convenience in order to easily understand that the displacement of the through hole of the metal plate 27d occurs in the X direction as well as the Y direction.

実施例1,3及び4に示されるように貫通孔が互い違いになっている整列方向は、X軸と平行な方向及びY軸と平行な方向の内、少なくともいずれか一方であることが好ましい。   As shown in Examples 1, 3 and 4, the alignment direction in which the through holes are staggered is preferably at least one of a direction parallel to the X axis and a direction parallel to the Y axis.

[実施例5] [Example 5]

図9は負極集電体を構成する金属板31,32を示す。上段左側に示す金属板31は整列方向20と平行に並ぶ貫通孔33a,bを備える。上段右側に示す金属板32は整列方向20と平行に並ぶ貫通孔34a,bを備える。下段に示す負極集電体の組は金属板31と金属板32とを重ね合わせてなるものである。   FIG. 9 shows the metal plates 31 and 32 constituting the negative electrode current collector. The metal plate 31 shown on the upper left side includes through holes 33 a and 33 b that are arranged in parallel with the alignment direction 20. The metal plate 32 shown on the upper right side includes through holes 34 a and 34 b that are arranged in parallel with the alignment direction 20. The set of negative electrode current collectors shown in the lower part is formed by superimposing a metal plate 31 and a metal plate 32.

図9に示すように、本実施例も実施例1と同様、貫通孔が互い違いになっている整列方向20がY軸と平行な方向である。本実施例ではX軸と平行な方向に対して、集電部30から遠くなるにつれて、貫通孔が前記金属板に占める割合が大きくなる。   As shown in FIG. 9, in the present embodiment as well as the first embodiment, the alignment direction 20 in which the through holes are staggered is a direction parallel to the Y axis. In the present embodiment, the proportion of the through holes in the metal plate increases as the distance from the current collector 30 increases in the direction parallel to the X axis.

図9は集電部30からの距離が小さいほど貫通孔に係る開口が疎になることを示している。また集電部30からの距離が大きいほど貫通孔に係る開口が密になることを示している。集電体では一般的に集電部30に近いほど電流が過密化するが、本実施例では集電部近傍での電流の過密化を抑制できることから、電池出力を増加させることが容易である。   FIG. 9 shows that the opening related to the through hole becomes sparser as the distance from the current collector 30 is smaller. Moreover, it has shown that the opening which concerns on a through-hole becomes dense, so that the distance from the current collection part 30 is large. In the current collector, the current is generally denser as it is closer to the current collector 30, but in this embodiment, the current density in the vicinity of the current collector can be suppressed, so that it is easy to increase the battery output. .

[実施例6]
図10は負極集電体を構成する金属板36,37を示す。上段左側に示す金属板36は整列方向20と平行に並ぶ貫通孔38a,bを備える。上段右側に示す金属板37は整列方向20と平行に並ぶ貫通孔39a,bを備える。下段に示す負極集電体の組は金属板36と金属板37とを重ね合わせてなるものである。
[Example 6]
FIG. 10 shows metal plates 36 and 37 constituting the negative electrode current collector. The metal plate 36 shown on the upper left side includes through holes 38 a and 38 b that are arranged in parallel with the alignment direction 20. The metal plate 37 shown on the upper right side includes through holes 39a and 39b arranged in parallel with the alignment direction 20. The set of negative electrode current collectors shown in the lower part is formed by superimposing a metal plate 36 and a metal plate 37.

図10に示すように、実施例1と同様、貫通孔が互い違いになっている整列方向20がY軸と平行な方向である。実施例6ではX軸と平行な方向に対して、金属板36,37の両側から、金属板36,37の中央に向かうにつれて、貫通孔が金属板36,37に占める割合が大きくなる。言い換えればX軸方向において、金属板の両端から金属板の中心に向かうほど貫通孔の開口面積が金属板36,37の表面積に占める割合が大きくなる。   As shown in FIG. 10, the alignment direction 20 in which the through holes are staggered is a direction parallel to the Y-axis, as in the first embodiment. In Example 6, the ratio of the through holes to the metal plates 36 and 37 increases from both sides of the metal plates 36 and 37 toward the center of the metal plates 36 and 37 with respect to the direction parallel to the X axis. In other words, in the X-axis direction, the ratio of the opening area of the through hole to the surface area of the metal plates 36 and 37 increases from both ends of the metal plate toward the center of the metal plate.

図10に示すように正極の集電部29を、負極の集電部30に対して、正極及び負極の積層部分を挟んで反対側に配置する場合がある。本実施例では正極及び負極の双方の集電部からの距離が小さいほど開口が疎になる。また双方の集電部からの距離が大きいほど開口が密になる。本実施例では正負双方の集電部近傍での電流の過密化を抑制できることから、電池出力や電池容量を増加させることが容易である。   As shown in FIG. 10, the positive current collector 29 may be disposed on the opposite side of the negative current collector 30 with the positive electrode and negative electrode laminate portions interposed therebetween. In this embodiment, the smaller the distance from the current collector of both the positive electrode and the negative electrode, the smaller the opening. Also, the larger the distance from both current collectors, the denser the opening. In the present embodiment, since current congestion in the vicinity of both positive and negative current collectors can be suppressed, it is easy to increase battery output and battery capacity.

[実施例7]
図11は負極集電体を構成する金属板41,42の重ね合わせを示す。表側に示す金属板41はそれぞれ貫通孔43に代表される貫通孔からなる複数の列を備える。隣り合う列は金属板41の中心で互いに交わる。交わる角度は角度Aで表される。
[Example 7]
FIG. 11 shows the superposition of the metal plates 41 and 42 constituting the negative electrode current collector. The metal plate 41 shown on the front side includes a plurality of rows of through holes represented by the through holes 43. Adjacent rows intersect each other at the center of the metal plate 41. The intersecting angle is represented by angle A.

金属板41に隠れている金属板42は貫通孔44に代表される貫通孔からなる複数の列を備える。隣り合う列は金属板42の中心で互いに交わる。交わる角度は金属板41と同一である。金属板41,42のそれぞれの貫通孔の列は所定の角度Bだけずれている。角度Bは0より大きく、角度Aより小さい。角度Bは角度Aの半分であることが好ましい。   The metal plate 42 hidden behind the metal plate 41 includes a plurality of rows of through holes represented by the through holes 44. Adjacent rows intersect each other at the center of the metal plate 42. The intersecting angle is the same as that of the metal plate 41. The rows of the through holes of the metal plates 41 and 42 are shifted by a predetermined angle B. Angle B is greater than 0 and less than angle A. The angle B is preferably half of the angle A.

[シミュレーション解析]
実施例1及び3並びに比較例1に係る二次電池の抵抗値をコンピュータシミュレーションで解析した。シミュレーションと解析モデルの詳細は後述する。
[Simulation analysis]
The resistance values of the secondary batteries according to Examples 1 and 3 and Comparative Example 1 were analyzed by computer simulation. Details of the simulation and the analysis model will be described later.

図12は解析モデルの要素分割図を示す。かかる要素分割図は、負極集電体25a,bを初めとする負極集電体及び、これらと接続する一の集電部30を複数の要素に分割したものである。要素分割図は節点も表す。各例における節点数及び要素数を表1に表す。   FIG. 12 shows an element division diagram of the analysis model. In this element division diagram, the negative electrode current collectors 25a and 25b and other negative electrode current collectors and one current collector 30 connected thereto are divided into a plurality of elements. The element division diagram also represents nodes. Table 1 shows the number of nodes and the number of elements in each example.

表1はさらに抵抗値を表す。抵抗値とは正極集電体及び負極集電体を、セパレータを介して積層したものに集電部を接続して電解液とともにケースに収容し単電池を作製した時の、かかる単電池の直流内部抵抗(DCIR)の値である。また比較例1の内部抵抗を100としたときの抵抗値の比(抵抗比)を表1の最下段に表す。   Table 1 further shows the resistance values. The resistance value is the direct current of such a unit cell when a positive electrode current collector and a negative electrode current collector are stacked via a separator, and the current collector is connected to the case together with the electrolytic solution to produce a unit cell. It is the value of internal resistance (DCIR). Further, the ratio of resistance values (resistance ratio) when the internal resistance of Comparative Example 1 is 100 is shown in the lowest stage of Table 1.

図13は抵抗比を表すグラフである。表及び図に示されるように比較例に比べて実施例では抵抗値が低下していた。かかる解析結果は貫通孔を互い違いにすることが電流の過密化を抑制し、電池出力の向上をもたらすことを示す。これらの結果は負極間で貫通孔を互い違いにすることで、負極集電体に並行する正極の活物質の層において活物質の働きのむらが抑制されることを示唆する。   FIG. 13 is a graph showing the resistance ratio. As shown in the tables and figures, the resistance value in the example was lower than that in the comparative example. Such analysis results show that staggering the through-holes suppresses current crowding and improves battery output. These results suggest that staggering the through-holes between the negative electrodes suppresses the unevenness of the active material in the active material layer of the positive electrode parallel to the negative electrode current collector.

また実施例3では実施例1に比べてさらに抵抗値が低下していた。このことは、集電部に対して平行な方向に貫通孔を互い違いにするよりも、集電部に対して直角な方向に貫通孔を互い違いにする方が電流密度の向上の効果が高いことを示す。   Further, in Example 3, the resistance value was further reduced as compared with Example 1. This means that the effect of improving the current density is higher when the through holes are staggered in the direction perpendicular to the current collector than when the through holes are staggered in the direction parallel to the current collector. Indicates.

Figure 2017084495
Figure 2017084495

シミュレーションについて詳細を説明する。上記シミュレーションはパンチングメタルからなる負極導電体における貫通孔の開口分布、すなわち開口の部位が、貫通孔の残余部分における電流の分布に与える影響をシミュレートするものである。有限要素法シミュレーションにより開口分布の好ましい態様を導き出す。ソフトウェアとしてScryu/tetra(登録商標)を用いた。   Details of the simulation will be described. The above simulation simulates the influence of the distribution of through-holes on the negative electrode conductor made of punching metal, that is, the position of the openings on the current distribution in the remaining part of the through-holes. A preferred embodiment of the aperture distribution is derived by finite element method simulation. Scryu / tetra (registered trademark) was used as software.

解析モデルについて詳細を説明する。解析モデルにおける、負極集電体の幅W(図3)は25.5mmとした。図3に示すように負極集電体を6枚とした結果、負極集電体に挟まれた正極の数は5枚とした。したがって負極−正極−負極の組は5個ある。二次電池を構成する各部材の物性値を表2に示す。   Details of the analysis model will be described. The width W (FIG. 3) of the negative electrode current collector in the analysis model was 25.5 mm. As a result of using six negative electrode current collectors as shown in FIG. 3, the number of positive electrodes sandwiched between the negative electrode current collectors was five. Therefore, there are five negative electrode-positive electrode-negative electrode pairs. Table 2 shows the physical property values of each member constituting the secondary battery.

Figure 2017084495
Figure 2017084495

セパレータはポリプロピレン(PP)とした。   The separator was polypropylene (PP).

解析モデルに対応する現物モデルの負極集電体の幅を80mmとした。負極−正極−負極の組は12個とした。 (80/25.5)×(5/12)=1.31を抵抗値の換算倍率(現物モデル/解析モデル)とした。なお表1の抵抗値は解析モデルの抵抗値に基づき計算された現物モデルの抵抗値を表す。   The width of the negative electrode current collector of the actual model corresponding to the analysis model was 80 mm. There were 12 negative electrode-positive electrode-negative electrode pairs. (80 / 25.5) × (5/12) = 1.31 was used as the conversion factor of resistance value (actual model / analysis model). The resistance value in Table 1 represents the resistance value of the actual model calculated based on the resistance value of the analysis model.

解析モデルの負極活物質の導電率を3.0×105(S/m)としたところ、上記換算倍率で抵抗値(mΩ)を換算した時1.96(mΩ)となり、現物モデルの負極活物質の抵抗値約2.0mΩに近かった。これに基づき表2に示すように負極活物質の導電率を3.0×105(S/m)とした。 When the conductivity of the negative electrode active material in the analysis model is 3.0 × 10 5 (S / m), the resistance value (mΩ) is 1.96 (mΩ) when the resistance value (mΩ) is converted with the above conversion factor, and the resistance of the negative electrode active material in the actual model The value was close to about 2.0 mΩ. Based on this, as shown in Table 2, the conductivity of the negative electrode active material was set to 3.0 × 10 5 (S / m).

正極集電体は金属多孔体であり、正極集電体中に正極活物質が分散している。解析モデルでは正極集電体及び正極活物質からなる正極を一様なものとして捉えている。また正極自体の電気抵抗値及び導電率を負極活物質と同一として解析している。   The positive electrode current collector is a metal porous body, and the positive electrode active material is dispersed in the positive electrode current collector. In the analysis model, the positive electrode made of the positive electrode current collector and the positive electrode active material is regarded as uniform. In addition, the electrical resistance value and conductivity of the positive electrode itself are analyzed as being the same as those of the negative electrode active material.

15a−d 貫通孔、16a−f 残余部分、17a,b 正極活物質、18 メッシュ、20 整列方向、21a,b 正極、22a,b 負極、23a,b セパレータ、24a,b 負極活物質、25a,b 負極集電体、26a−d,27a−d 金属板、29,30 集電部、31,32 金属板、33a,b,34a,b 貫通孔、36,37 金属板、38,39 金属板、40 二次電池、41,42 金属板、43,44 貫通孔、52a 負極 15a-d through-hole, 16a-f remaining portion, 17a, b positive electrode active material, 18 mesh, 20 alignment direction, 21a, b positive electrode, 22a, b negative electrode, 23a, b separator, 24a, b negative electrode active material, 25a, b Negative current collector, 26a-d, 27a-d Metal plate, 29, 30 Current collector, 31, 32 Metal plate, 33a, b, 34a, b Through hole, 36, 37 Metal plate, 38, 39 Metal plate , 40 Secondary battery, 41, 42 Metal plate, 43, 44 Through hole, 52a Negative electrode

Claims (8)

プレート状の正極集電体を有する正極と、
プレート状の負極集電体を有する負極と、を備え、
複数の前記正極及び複数の前記負極が一枚ずつ交互に積層されており、
前記正極集電体及び前記負極集電体の少なくともいずれか一方は貫通孔を有する金属板からなり、
前記貫通孔は前記金属板上で所定の整列方向に対して、一定の間隔で設けられており、
少なくとも以下のいずれか一方を満たす;
前記正極を挟んで互いに隣接する前記負極の組において、各前記負極に前記設けられている前記貫通孔は、前記整列方向において互い違いになっている;及び
前記負極を挟んで互いに隣接する前記正極の組において、各前記正極に前記設けられている前記貫通孔は、前記整列方向において互い違いになっている;
二次電池。
A positive electrode having a plate-shaped positive electrode current collector;
A negative electrode having a plate-like negative electrode current collector,
A plurality of the positive electrodes and a plurality of the negative electrodes are alternately stacked one by one,
At least one of the positive electrode current collector and the negative electrode current collector is formed of a metal plate having a through hole,
The through holes are provided at regular intervals on the metal plate with respect to a predetermined alignment direction,
Satisfy at least one of the following:
In the set of negative electrodes adjacent to each other across the positive electrode, the through holes provided in each negative electrode are staggered in the alignment direction; and the positive electrodes adjacent to each other across the negative electrode In the set, the through holes provided in each positive electrode are staggered in the alignment direction;
Secondary battery.
前記正極は正極活物質を有し、
前記正極集電体は金属多孔体からなり
前記正極活物質は前記金属多孔体の空孔に充填されており、
前記負極集電体は前記金属板からなり、
前記正極を挟んで互いに隣接する前記負極がそれぞれ有する前記貫通孔は、前記整列方向において互い違いになっている、
請求項1に記載の二次電池。
The positive electrode has a positive electrode active material,
The positive electrode current collector is made of a metal porous body, and the positive electrode active material is filled in pores of the metal porous body,
The negative electrode current collector is made of the metal plate,
The through holes of the negative electrodes adjacent to each other across the positive electrode are staggered in the alignment direction,
The secondary battery according to claim 1.
一方の前記負極の有する前記貫通孔は、他方の前記負極の有する前記貫通孔の周囲の残余の金属板に対向する、
請求項2に記載の二次電池。
The through hole of one of the negative electrodes is opposed to the remaining metal plate around the through hole of the other negative electrode,
The secondary battery according to claim 2.
前記負極の前記組において前記貫通孔の前記間隔は互いに等しく、
一方の前記負極が有する前記貫通孔と、他方の前記負極が有する前記貫通孔との間のずれは、前記間隔の半分である、
請求項2又は3に記載の二次電池。
In the set of negative electrodes, the intervals of the through holes are equal to each other,
The deviation between the through hole of one of the negative electrodes and the through hole of the other negative electrode is half of the interval.
The secondary battery according to claim 2 or 3.
前記負極集電体の一端に設けられた集電部を有し、
前記集電部から遠ざかる方向と平行な軸をX軸とし、
前記X軸と直交する軸をY軸としたとき、
前記貫通孔が互い違いになっている前記整列方向は、前記X軸と平行な方向及び前記Y軸と平行な方向の内、少なくともいずれか一方である、
請求項2〜4のいずれかに記載の二次電池。
A current collector provided at one end of the negative electrode current collector;
The axis parallel to the direction away from the current collector is the X axis,
When the axis perpendicular to the X axis is the Y axis,
The alignment direction in which the through holes are staggered is at least one of a direction parallel to the X axis and a direction parallel to the Y axis.
The secondary battery in any one of Claims 2-4.
前記貫通孔が互い違いになっている前記整列方向は前記Y軸と平行な方向である、
請求項5に記載の二次電池。
The alignment direction in which the through holes are staggered is a direction parallel to the Y axis.
The secondary battery according to claim 5.
前記X軸と平行な方向に対して、前記集電部から遠くなるにつれて、前記貫通孔が前記金属板に占める割合が大きくなる、
請求項6に記載の二次電池。
With respect to the direction parallel to the X axis, as the distance from the current collector increases, the proportion of the through hole in the metal plate increases.
The secondary battery according to claim 6.
前記X軸と平行な方向において、前記金属板の両側から、前記金属板の中央に向かうにつれて、前記貫通孔が前記金属板に占める割合が大きくなる、
請求項6に記載の二次電池。
In the direction parallel to the X axis, the proportion of the through hole in the metal plate increases from both sides of the metal plate toward the center of the metal plate.
The secondary battery according to claim 6.
JP2015209032A 2015-10-23 2015-10-23 Rechargeable battery Active JP6629039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015209032A JP6629039B2 (en) 2015-10-23 2015-10-23 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015209032A JP6629039B2 (en) 2015-10-23 2015-10-23 Rechargeable battery

Publications (2)

Publication Number Publication Date
JP2017084495A true JP2017084495A (en) 2017-05-18
JP6629039B2 JP6629039B2 (en) 2020-01-15

Family

ID=58711271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015209032A Active JP6629039B2 (en) 2015-10-23 2015-10-23 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP6629039B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059117A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Current collector and battery using same
CN112542570A (en) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 Silicon negative pole piece, preparation method thereof and lithium ion battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103838A (en) * 2008-03-28 2009-10-01 후지 쥬코교 가부시키가이샤 Method of manufacturing electrode, electrical storage device, and intermediate laminated material
JP2010205769A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Wound-type storage device
US20110244307A1 (en) * 2010-04-02 2011-10-06 Tsinghua University Lithium-ion battery and method for making the same
JP2011216576A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Electric storage device
WO2013065575A1 (en) * 2011-10-31 2013-05-10 株式会社村田製作所 Electricity storage device
JP2013211189A (en) * 2012-03-30 2013-10-10 Tdk Corp Electrochemical element
JP2014032759A (en) * 2012-08-01 2014-02-20 Nissan Motor Co Ltd Electrode and method for manufacturing electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090103838A (en) * 2008-03-28 2009-10-01 후지 쥬코교 가부시키가이샤 Method of manufacturing electrode, electrical storage device, and intermediate laminated material
JP2010205769A (en) * 2009-02-27 2010-09-16 Fuji Heavy Ind Ltd Wound-type storage device
JP2011216576A (en) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd Electric storage device
US20110244307A1 (en) * 2010-04-02 2011-10-06 Tsinghua University Lithium-ion battery and method for making the same
WO2013065575A1 (en) * 2011-10-31 2013-05-10 株式会社村田製作所 Electricity storage device
JP2013211189A (en) * 2012-03-30 2013-10-10 Tdk Corp Electrochemical element
JP2014032759A (en) * 2012-08-01 2014-02-20 Nissan Motor Co Ltd Electrode and method for manufacturing electrode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019059117A1 (en) * 2017-09-21 2019-03-28 日本電気株式会社 Current collector and battery using same
US11837689B2 (en) 2017-09-21 2023-12-05 Nec Corporation Current collector including opening formation portion and battery using same
CN112542570A (en) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 Silicon negative pole piece, preparation method thereof and lithium ion battery
CN112542570B (en) * 2019-09-23 2022-08-09 北京小米移动软件有限公司 Silicon negative pole piece, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP6629039B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
CA2722712C (en) Reserve power supply with electrode plates clipping with auxiliary conductors
JP5397436B2 (en) Secondary battery
JP6701514B2 (en) Redox flow battery electrode and redox flow battery
JP2012199037A (en) Separator and method for manufacturing separator
DE112014001987T5 (en) accumulator
JP2017084495A (en) Secondary battery
JP2012204305A (en) Battery cell
JP2015207437A (en) battery module
JPH08236127A (en) Dipole board for fuel cell
JP2015170413A (en) battery unit
JP2017216111A (en) Battery module and manufacturing method of battery module
JP2013214456A (en) Power storage device, secondary battery, power storage device manufacturing method, and power storage device electrode manufacturing method
JP2014160614A (en) Power storage device
JP2008103593A (en) Multilayered plane type electricity storage device and manufacturing method therefor
US519602A (en) Per elieson
WO2022074707A1 (en) Current collector and lead acid battery
KR101666433B1 (en) Secondary battery and manufacturing method thereof
JP7297037B2 (en) Secondary battery module
JP2022151010A (en) Bipolar storage battery
JP2022060989A (en) Bipolar lead storage battery
JP3900024B2 (en) A cell unit composed of multiple tab-type cells
JPH05121091A (en) Double-electrode partition plate and double-electrode type laminate battery
JP6893457B2 (en) Current collector plate arrangement structure of bipolar solid-state battery
JP2016136504A (en) Cell module
KR20130071462A (en) Electrode assembly of novel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191204

R150 Certificate of patent or registration of utility model

Ref document number: 6629039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250