WO2013065573A1 - 有機光電変換素子およびこれを用いた太陽電池 - Google Patents

有機光電変換素子およびこれを用いた太陽電池 Download PDF

Info

Publication number
WO2013065573A1
WO2013065573A1 PCT/JP2012/077593 JP2012077593W WO2013065573A1 WO 2013065573 A1 WO2013065573 A1 WO 2013065573A1 JP 2012077593 W JP2012077593 W JP 2012077593W WO 2013065573 A1 WO2013065573 A1 WO 2013065573A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
photoelectric conversion
carbon atoms
substituted
unsubstituted
Prior art date
Application number
PCT/JP2012/077593
Other languages
English (en)
French (fr)
Inventor
宏司 高木
大久保 康
伊藤 博英
伊東 宏明
晃矢子 和地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2013541736A priority Critical patent/JP6090166B2/ja
Publication of WO2013065573A1 publication Critical patent/WO2013065573A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3246Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing nitrogen and sulfur as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic photoelectric conversion element and a solar cell using the same.
  • this invention relates to the means for improving the photoelectric conversion efficiency of an organic photoelectric conversion element.
  • a photoelectric conversion element In solar power generation, light energy is directly converted into electric power by using a photoelectric conversion element (for example, a solar cell) utilizing the photovoltaic effect.
  • a photoelectric conversion element has a structure in which a photoelectric conversion layer (light absorption layer) is sandwiched between a pair of electrodes, and light energy is converted into electric energy in the photoelectric conversion layer.
  • the photoelectric conversion element is a silicon-based photoelectric conversion element using single-crystal / polycrystalline / amorphous Si, GaAs, CIGS (copper (Cu), indium (In), depending on the material used for the photoelectric conversion layer and the form of the element.
  • Compound-based photoelectric conversion elements using a compound semiconductor such as gallium (Ga) and selenium (Se)), dye-sensitized photoelectric conversion elements (Gretzel cells), and the like have been proposed and put to practical use.
  • this bulk heterojunction organic photoelectric conversion element is lightweight and flexible, it is expected to be applied to various products.
  • the structure is relatively simple and the photoelectric conversion layer can be formed by applying a p-type organic semiconductor material and an n-type organic semiconductor material, it is suitable for mass production and for the early diffusion of solar cells due to cost reduction. Is also considered to contribute.
  • the electrodes (anode and cathode), the metal oxide layer constituting the hole transport layer, and the like can be formed by a method other than the coating process (for example, a vacuum deposition method or the like). ).
  • other layers can be formed using a coating process.
  • the production of the bulk heterojunction photoelectric conversion element can be performed at high speed and at low cost, and it is considered that there is a possibility that the above-described problem of power generation cost can be solved. Further, unlike the production of conventional silicon-based photoelectric conversion elements, compound-based photoelectric conversion elements, dye-sensitized photoelectric conversion elements, etc., it does not necessarily involve a manufacturing process at a temperature higher than 160 ° C. It is expected that it can be formed on a lightweight plastic substrate.
  • an organic photoelectric conversion element using a heat conversion organic semiconductor layer using a precursor of a benzotetraporphyrin compound and a fullerene derivative has also been proposed (see, for example, Patent Document 4). .
  • the organic photoelectric conversion element has improved photoelectric conversion efficiency and durability because the photoelectric conversion efficiency and durability against heat and light are not sufficient as compared with other types of photoelectric conversion elements.
  • An organic photoelectric conversion element has been desired.
  • an intermediate layer also referred to as an electron transport layer or a hole blocking layer
  • the charge separation efficiency is improved and the conversion efficiency is improved.
  • a layer made of bathocuproine (BCP) for example, see Patent Document 3
  • a layer made of a compound having a side chain having an ammonium salt in the main chain of a conjugated polymer compound for example, Non-Patent Document 2, Non-Patent Document) Reference 3 and Non-Patent Document 4
  • compounds having a side chain having two dimethylamino groups in the main chain of a conjugated polymer compound for example, see Non-Patent Documents 5 and 6) and the like have been proposed.
  • the dipole layer forms a shift of the vacuum level between the electrode and the power generation layer, and when viewed from the power generation layer, the metal having an effective shallower work function. It is expected that an effect similar to that used as an electrode can be obtained, and studies are underway.
  • the conventionally proposed technique using the intermediate layer still has low charge transport performance and insufficient conversion efficiency.
  • the conventional technique since the conventional technique has little effect of shallowing the work function of the cathode, it is necessary to use a metal (for example, aluminum) having a shallow work function and a small ionization potential (that is, easily oxidized) as a constituent material of the cathode. .
  • a metal for example, aluminum
  • a small ionization potential that is, easily oxidized
  • organic photoelectric conversion elements are stacked in the reverse order, and electrons are extracted from the transparent electrode side, and holes are extracted from the stable metal electrode side having a deep work function.
  • An organic photoelectric conversion element having a so-called reverse layer configuration has been proposed.
  • organic photoelectric conversion elements are also expected to have high productivity in a roll-to-roll coating process on plastic substrates. Even when manufactured by such a process, organic photoelectric conversion elements with excellent conversion efficiency and durability are expected. A conversion element is also desired.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element. .
  • the present inventors have conducted intensive research to solve the above problems. As a result, it has been found that the above problem can be solved by including a polymer compound having a side chain having a specific structure in an intermediate layer other than the photoelectric conversion layer, and the present invention has been completed.
  • the above-described problems of the present invention include a cathode, an anode, a photoelectric conversion layer including a p-type organic semiconductor material and an n-type organic semiconductor material interposed between the cathode and the anode, the cathode, and the anode.
  • An organic photoelectric conversion element having an intermediate layer other than the photoelectric conversion layer interposed between and wherein at least one of the intermediate layers has a structure represented by the following general formula (1) as a side chain It solves by the organic photoelectric conversion element containing the high molecular compound to contain.
  • Example 7 it is a figure which shows the absorption spectrum before and behind overcoating the coating film of the compound 3 with o-dichlorobenzene, and the absorption spectrum before and after being immersed in o-dichlorobenzene for 1 minute.
  • a first aspect of the present invention includes a cathode, an anode, a photoelectric conversion layer including a p-type organic semiconductor material and an n-type organic semiconductor material interposed between the cathode and the anode, the cathode, and the anode.
  • an organic photoelectric conversion element having high photoelectric conversion efficiency and excellent durability, and a solar cell using the organic photoelectric conversion element are provided.
  • FIG. 1 is a schematic cross-sectional view schematically showing a normal layer type organic photoelectric conversion element according to an embodiment of the present invention.
  • the organic photoelectric conversion element 10 in FIG. 1 corresponds to the configuration of, for example, the organic photoelectric conversion element 105 manufactured in Example 1 described later.
  • the organic photoelectric conversion element 10 of FIG. 1 includes an anode (first electrode) 11, a hole transport layer 26, a photoelectric conversion layer 14, an electron transport layer 27, and a cathode (second electrode) on a substrate 25.
  • Electrode) 12 is laminated in this order.
  • the electron transport layer 27 contains a polymer compound (preferably a conjugated polymer compound) including the structure represented by the general formula (1) as a side chain.
  • the organic photoelectric conversion element 10 shown in FIG. 1 When the organic photoelectric conversion element 10 shown in FIG. 1 is operated, light is irradiated from the substrate 25 side.
  • the anode 11 is made of a transparent electrode material (for example, ITO) so that the irradiated light reaches the photoelectric conversion layer 14.
  • the light irradiated from the substrate 25 side reaches the photoelectric conversion layer 14 through the transparent anode 11 and the hole transport layer 26.
  • the photoelectric conversion layer 14 includes a p-type organic semiconductor material and an n-type organic semiconductor material.
  • HOMO highest occupied orbit
  • LUMO lowest unoccupied orbit
  • the photoelectric conversion layer 14 when light is incident on the photoelectric conversion layer 14, holes generated at the HOMO level of the p-type organic semiconductor material pass through the hole transport layer 26 and the anode 11 and then pass through an external circuit to be n-type. Move to the valence band of organic semiconductor materials. In this way, a photocurrent flows in the photoelectric conversion layer 14 and power generation is performed. Since it is considered that such photoelectric charge separation is promoted as the contact interface between the p-type organic semiconductor material and the n-type organic semiconductor material increases, in the present invention, the p-type organic semiconductor material and the n-type organic semiconductor material are used. It is particularly preferable to use a bulk heterojunction photoelectric conversion layer 14 in which are uniformly mixed. However, it is not limited only to such a form.
  • the hole transport layer 26 is formed of a material having a high hole mobility, and has a function of efficiently transporting holes generated at the pn junction interface of the photoelectric conversion layer 14 to the anode 11.
  • the electron transport layer 27 contains a polymer compound (preferably a conjugated polymer compound) including the structure represented by the general formula (1) as a side chain. . Since the polymer compound containing the structure represented by the general formula (1) as a side chain is a material having a high electron mobility, the electron transport layer 27 is an electron generated at the pn junction interface of the photoelectric conversion layer 14. Can be efficiently transported to the cathode 12.
  • FIG. 2 is a schematic cross-sectional view schematically showing a reverse layer type organic photoelectric conversion device according to another embodiment of the present invention.
  • the organic photoelectric conversion element 20 in FIG. 2 corresponds to the configuration of, for example, the organic photoelectric conversion element 305 manufactured in Example 3 described later.
  • the organic photoelectric conversion element 20 in FIG. 2 has the anode 11 and the cathode 12 disposed at opposite positions as compared with the organic photoelectric conversion element 10 in FIG. 1, and the hole transport layer 26, the electron transport layer 27, and the like. Are different in that they are arranged at the opposite positions. 2 has a configuration in which the cathode 12, the electron transport layer 27, the photoelectric conversion layer 14, the hole transport layer 26, and the anode 11 are laminated on the substrate 25 in this order. ing.
  • the electron transport layer 27 contains a polymer compound (preferably a conjugated polymer compound) containing the structure represented by the general formula (1) as a side chain. Preferably it is.
  • FIG. 3 is a schematic cross-sectional view schematically showing an organic photoelectric conversion element including a normal layer tandem type (multi-junction type) photoelectric conversion layer according to another embodiment of the present invention.
  • the organic photoelectric conversion element 30 in FIG. 3 corresponds to the configuration of, for example, the organic photoelectric conversion element 403 manufactured in Example 4 described later.
  • the organic photoelectric conversion element 30 in FIG. 3 replaces the photoelectric conversion layer 14 with a first photoelectric conversion layer 14 a, a second photoelectric conversion layer 14 b, and these The difference is that a laminate with the charge recombination layer 38 interposed between the two photoelectric conversion layers (14a, 14b) is disposed.
  • the charge recombination layer 38 includes a second electron transport layer 38a disposed on the first photoelectric conversion layer 14a side and a second hole disposed on the second photoelectric conversion layer 14b side. It consists of two layers, the transport layer 38b.
  • photoelectric conversion materials p-type organic semiconductor material and n-type having different absorption wavelengths
  • photoelectric conversion materials are respectively formed in the first photoelectric conversion layer 14 a and the second photoelectric conversion layer 14 b.
  • the anode 11 and the cathode 12 are disposed at opposite positions, and the hole transport layer 26 and the electron transport layer 27 are disposed at opposite positions. If the electron transport layer 38a and the second hole transport layer 38b are disposed at opposite positions, a reverse layer tandem type (multi-junction type) photoelectric conversion element is obtained.
  • the reverse layer tandem type (multi-junction type) photoelectric conversion element corresponds to the configuration of, for example, the organic photoelectric conversion element 503 manufactured in Example 5 described later.
  • the organic photoelectric conversion element of the present invention is preferably a normal layer type organic photoelectric conversion element shown in FIG. 1 or a reverse layer type organic photoelectric conversion element shown in FIG. It is particularly preferable that the organic layer is a normal layer type organic photoelectric conversion element.
  • the electron transport layer contains a polymer compound containing a structure represented by the general formula (1) as a side chain. That is, in these forms, the intermediate layer is an electron transport layer.
  • the “intermediate layer” refers to an arbitrary layer interposed between one electrode and the photoelectric conversion layer, or when there are a plurality of photoelectric conversion layers, the plurality of photoelectric conversion layers are connected to each other. Means any layer interposed between the two. Therefore, in the present invention, at least one of the intermediate layers satisfying the above definition only needs to contain a polymer compound containing a structure represented by the general formula (1) as a side chain, and only the above-described embodiments. It is not limited to the interpretation.
  • the intermediate layer such as the electron transport layer described above contains the polymer compound containing the structure represented by the general formula (1) as a side chain, so that the photoelectric conversion efficiency is high and the durability is excellent.
  • An organic photoelectric conversion device can be provided.
  • a polymer compound preferably a conjugated polymer compound in which the electron transport layer of a normal layer type organic photoelectric conversion element as shown in FIG. 1 has a structure represented by the general formula (1) as a side chain as an intermediate layer.
  • the mechanism by adjusting the work function of the constituent material of an electrode appropriately is estimated. That is, in the normal layer type organic photoelectric conversion element as shown in FIG. 1, when the electron transport layer in contact with the cathode contains a polymer compound having a structure represented by the general formula (1) as a side chain, the structure of the cathode The compound acts so that the work function of the material becomes shallow, which makes it excellent in durability and photoelectric conversion efficiency even when using a metal such as silver or gold having a higher ionization potential and a deep work function than aluminum. An organic photoelectric conversion element maintained at a high value can be provided.
  • the organic photoelectric conversion element of this form can contain an electron carrying layer as needed.
  • the electron transport layer has a function of transporting electrons and has a property of extremely small ability to transport holes (for example, 1/100 or less of the mobility of electrons).
  • the electron transport layer is provided between the photoelectric conversion layer and the cathode, and prevents the recombination of electrons and holes by blocking the movement of holes while transporting electrons to the cathode. it can. As a result, a photoelectric conversion element having a high open circuit voltage and a high fill factor can be obtained.
  • the electron transport layer contains a polymer compound containing a structure represented by the following general formula (1) as a side chain.
  • the intermediate layer is an electron transport layer that exists between the photoelectric conversion layer and the second electrode, particularly, between the photoelectric conversion layer and the cathode (anode).
  • the polymer compound forms a dipole layer and has an effect of making the work function of the electrode viewed from the power generation layer pseudo-shallow, so that carriers can be extracted more easily. If the work function is too deep and functions as a trap when transporting holes from the photoelectric conversion layer, it is formed on the hole transport layer between the hole transport layer and the power generation layer (photoelectric conversion layer). It is also possible to improve the electrical connection.
  • L1 represents a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon atom number.
  • L 1 ′ represents a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon atom number of 6 Represents an arylene group of 1 to 30 or a single bond;
  • L 1 ′ is preferably a single bond, a linear or branched alkylene group having 1 to 15 carbon atoms, or an arylene group having 6 to 18 carbon atoms, and is preferably a single bond, 1 to 1 carbon atoms. More preferably, they are 8 linear or branched alkylene groups, o-, m-, and p-phenylene groups.
  • R represents an ethylene group, a trimethylene group or a propylene group.
  • R preferably represents an ethylene group or a propylene group, and more preferably represents an ethylene group.
  • p represents the number of repeating alkylene oxide groups (—OR—) in — (L 1 ′ ) — (OR) p —, an integer of 1 to 5, and preferably an integer of 1 to 3, More preferably, it is 1 or 2.
  • the “alkylene group having 1 to 20 carbon atoms” is not particularly limited, and is a linear or branched alkylene group having 1 to 20 carbon atoms.
  • Examples include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a propylene group, an ethylethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, and an octamethylene group.
  • a linear or branched alkylene group having 1 to 15 carbon atoms is preferable, and a linear or branched alkylene group having 1 to 8 carbon atoms is more preferable.
  • cycloalkylene group having 3 to 20 carbon atoms is not particularly limited, and examples thereof include a cyclopentylene group, a cyclohexylene group, and a cycloheptylene group.
  • alkynylene group having 2 to 20 carbon atoms is not particularly limited.
  • the “arylene group having 6 to 30 carbon atoms” is not particularly limited, and examples thereof include o-phenylene group, m-phenylene group, p-phenylene group, naphthalenediyl group, anthracenediyl group, and naphthacenediyl group.
  • the “heteroarylene group having 1 to 30 carbon atoms” is not particularly limited, but for example, a carbazole ring, a carboline ring, a diazacarbazole ring (also referred to as a monoazacarboline ring, which constitutes a carboline ring) A ring structure in which one of the carbon atoms is replaced with a nitrogen atom), triazole ring, pyrrole ring, pyridine ring, pyrazine ring, quinoxaline ring, thiophene ring, oxadiazole ring, dibenzofuran ring, dibenzothiophene ring, indole ring And divalent groups derived from the group consisting of
  • alkyleneoxy group having 1 to 20 carbon atoms means “—O-alkylene-” or “-alkylene-O—”, in which the alkylene group has 1 to 20 carbon atoms.
  • the alkylene group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include the same alkylene groups described for L 1 above.
  • a linear or branched alkylene group having 1 to 15 carbon atoms is preferable, and a linear or branched alkylene group having 1 to 8 carbon atoms is more preferable.
  • the alkylene group, cycloalkylene group, alkynylene group, arylene group, heteroarylene group, and alkyleneoxy group as L 1 may be substituted with the following appropriate substituents.
  • an alkylene group as L 1 a cycloalkylene group, an alkynylene group, an arylene group, (especially if L 1 is "substituted alkylene") heteroarylene group, alkyleneoxy group
  • the substituent for substituting the alkylene group may be a structure represented by the general formula (1) (see exemplary compound 53 described later).
  • the alkylene group, cycloalkylene group, alkynylene group, arylene group, heteroarylene group, and alkyleneoxy group as L 1 may have a substituent at any position.
  • substituents include alkyl groups (eg, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, dodecyl).
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, vinyl group, allyl group, 1-propenyl group, 2-butenyl group, 1, 3-butadienyl group, 2-pentenyl group, isopropenyl group, etc.
  • alkynyl group for example, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon group aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group
  • phenyl group, p-chlorophenyl group mesityl group, tolyl group, xylyl group, naphthyl group, Enthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenan
  • the same substituent is not substituted. That is, a substituted alkyl group is not substituted with an alkyl group.
  • the substituent is preferably a halogen atom, a cyano group, a hydroxy group or a nitro group, more preferably a fluorine atom, a cyano group, a hydroxy group or a nitro group.
  • substituents may be further substituted with the above substituents.
  • a plurality of these substituents may be bonded to each other to form a ring.
  • L 1 is preferably a substituted or unsubstituted linear or branched alkylene group having 1 to 20 carbon atoms, — (L 1 ′ ) — (OR) p — [where L 1 ′ is a single bond , A linear or branched alkylene group having 1 to 15 carbon atoms or an arylene group having 6 to 18 carbon atoms; R represents an ethylene group or a propylene group; p is an integer of 1 to 3 ], A substituted or unsubstituted arylene group.
  • L 1 is more preferably a substituted or unsubstituted linear or branched alkylene group having 1 to 15 carbon atoms, — (L 1 ′ ) — (OR) p — [where L 1 ′ is a single A bond, a linear or branched alkylene group having 1 to 15 carbon atoms, or an arylene group having 6 to 18 carbon atoms; R represents an ethylene group or a propylene group; p is an integer of 1 to 3 A substituted or unsubstituted arylene group.
  • L 1 is more preferably a linear or branched alkylene group substituted or unsubstituted with a substituent having the formula of 1 to 8 carbon atoms: -L 1 -N (L 2 ) (L 3 ),- (L 1 ′ ) — (OR) p — [wherein L 1 ′ represents a single bond, a linear or branched alkylene group having 1 to 8 carbon atoms, or an o-, m-, p-phenylene group. Yes; R represents an ethylene group; p is 1 or 2].
  • a form in which L 1 is an unsubstituted alkylene group having 1 to 6 carbon atoms is also a preferred form.
  • L 2 is:
  • L 2 may be in the form of a salt (ammonium salt) in which the nitrogen atom (N) is positively charged and an ion pair is formed with the counter ion (anion).
  • L 1 has the same definition as described above. Further, L 1 in L 2 may be the same as each other as L 1 in the general formula (1), may be different. Further, even when L 2 is repeatedly used, L 1 may be the same as or different from each other.
  • L 4 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon atom having 6 to 30 represents an aryl group, a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, or L 2 .
  • the two L 4 bonded to the nitrogen atom (N) are not both hydrogen atoms.
  • N nitrogen atom
  • L 4 may be the same as each other or may be different.
  • L 2 may be the same original L 2 and as L 4, may be different.
  • L 4 is preferably a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, an amino group (but not —NH 2 ), or an alkylamino group.
  • an unsubstituted alkyl group having 1 to 8 carbon atoms and a dialkylamino group are more preferable.
  • L 2 is in the form of a salt (ammonium salt), for example, a form in which a nitrogen atom (N) is positively charged and forms an ion pair with a counter ion (anion) as in Compound 30 below.
  • a counter ion (anion) that forms an ion pair is not particularly limited, but a halogen atom (fluorine atom, chlorine atom, bromine atom), sulfate ion, nitrate ion, Tetrafluoroborate ion, hexafluorophosphoric acid and the like can be mentioned.
  • the “alkyl group having 1 to 20 carbon atoms” is not particularly limited, and is a linear or branched alkyl group having 1 to 20 carbon atoms.
  • an alkyl group having 1 to 12 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
  • the alkyl group is particularly preferably a methyl group, an ethyl group, or a propyl group.
  • the “cycloalkyl group having 3 to 20 carbon atoms” is not particularly limited, and examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a norbornyl group, an adamantyl group, and the like. Of these, a cycloalkyl group having 4 to 8 carbon atoms is preferable from the viewpoint of improving solubility.
  • the “aryl group having 6 to 30 carbon atoms” is not particularly limited, and examples thereof include non-condensed hydrocarbon groups such as a phenyl group, a biphenyl group, and a terphenyl group; a pentarenyl group, an indenyl group, Naphtyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group, acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceanthrylenyl group , Condensed polycyclic hydrocarbon groups such as triphenylenyl group, pyrenyl group, chrycenyl group, naphthacenyl group and the like.
  • the “heteroaryl group having 1 to 20 carbon atoms” is not particularly limited.
  • pyridyl group, pyrimidyl group, pyrazinyl group, triazinyl group, furanyl group, pyrrolyl group, thiophenyl group (thienyl group) Group) quinolyl group, furyl group, piperidyl group, coumarinyl group, silafluorenyl group, benzofuranyl group, benzimidazolyl group, benzoxazolyl group, benzthiazolyl group, dibenzofuranyl group, benzothiophenyl group, dibenzothiophenyl group, indolyl Group, carbazolyl group, pyrazolyl group, imidazolyl group, oxazolyl group, isoxazolyl group, thiazolyl group, indazolyl group, benzothiazolyl group, pyridazinyl group,
  • alkyl group, cycloalkyl group, aryl group, and heteroaryl group as L 4 may be substituted with an appropriate substituent.
  • substituent in this case the groups described above as the substituent in L 1 can be similarly employed.
  • L 3 has the same definition as L 4 described above.
  • L 2 is:
  • the upper limit of the number of nitrogen atoms (N) in the chain having the largest number of nitrogen atoms (N) is prohibited and expressed by the general formula (1)
  • the range of structures to be performed can be determined.
  • the lower limit of the number of nitrogen atoms (N) is theoretically two. Therefore, it is essential that the number of nitrogen atoms (N) is 2 to 5.
  • the number of nitrogen atoms (N) is preferably 2 to 4, more preferably 2 to 3, and most preferably 2.
  • the structure represented by the general formula (1) is bonded as a side chain to the main chain of the polymer compound.
  • the polymer compound main chain is classified into two types, a non-conjugated polymer and a conjugated polymer, which function in both, but are conjugated polymer main chains in order to obtain higher carrier transportability. Is preferred.
  • conjugated polymer examples include polythiophenes (including basic polythiophenes (hereinafter the same)), polypyrroles, polyindoles, polycarbazoles, polyanilines, polyacetylenes, polyfurans, polyparaphenylene vinylenes, polyazulenes. , Polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes, polythiazyls, polyfluorenes, polysilafluorenes, polyphosphafluorenes, polycyclopentadithiophenes, polydithienosylols, and Conjugated polymer compounds containing these copolymers can be used.
  • polythiophenes including basic polythiophenes (hereinafter the same)
  • polypyrroles polyindoles
  • polycarbazoles polyanilines
  • polyacetylenes polyfurans
  • polyparaphenylene vinylenes poly
  • non-conjugated polymer for example, polymer compounds including poly (meth) acrylates, polystyrenes, polyalkyl ethers, polyalkylene terephthalates, polyamines, and copolymers thereof can be used.
  • the main chain of the polymer compound may be composed of a single conjugated polymer or a single non-conjugated polymer, or from a plurality of types of conjugated polymers or a plurality of types of non-conjugated polymers. It may be constituted, or may be a mixture of single or plural kinds of non-conjugated polymers and single or plural kinds of conjugated polymers.
  • the main chain is preferably a polymer compound (preferably a conjugated polymer compound) having a structural unit represented by the following general formula (2).
  • M 1 and M 2 each independently represent an aryl group or a heteroaryl group which is a monocyclic ring or a condensed ring
  • Z represents a structure represented by the general formula (1).
  • N represents the number of Z bonded to M 1 and is 1 , 2 or 3.
  • conjugated polymer compound represented by M 1 and M 2 in the general formula (2) examples include conjugated polymer compounds including pentadithiophenes, polydithienosilols, and copolymers thereof.
  • the structure represented by the general formula (1) when the structure represented by the general formula (1) is bonded as a side chain of the polymer compound, one or more side chains (general formula) with respect to one atom of the main chain to which the side chain is bonded. (The structure represented by (1)) can be bonded.
  • the plurality of side chains when a plurality of side chains are bonded to one atom of the main chain, the plurality of side chains may be the same as or different from each other.
  • it is preferable that one or more amino groups contained in the structure represented by the general formula (1) are contained per one aromatic ring of the main chain, and more preferably 1.5 or more.
  • the polymer compound according to the present invention includes an aromatic ring in the main chain and a primary to quaternary amino group as a substituent in an amount of 1.5 per aromatic ring. Have more than one.
  • the work function of the electrode in contact with the intermediate layer containing the polymer compound is preferably ⁇ 4.5 eV or less as measured by photoelectron spectroscopy.
  • the polymer compound has a structure in which primary to quaternary amino groups that are highly polar side chains are arranged at high density around the polymer compound main chain.
  • the intermediate layer functions as a dipole layer, so that a built-in electric field between the other electrode can be sufficiently secured. Is done. Therefore, an organic photoelectric conversion element having an intermediate layer containing the polymer compound between the photoelectric conversion layer and the electrode exhibits a sufficient built-in electric field improvement effect even for a conductive substance that is stable against oxidation.
  • An organic photoelectric conversion element excellent in photoelectric conversion efficiency and durability can be provided.
  • the aromatic ring constituting the main chain of the polymer compound is not particularly limited, and examples thereof include an aromatic ring main chain represented by the following formula.
  • R represents a substituent.
  • the polymer compound has at least 1.5 primary to quaternary amino groups as substituents per aromatic ring.
  • “the number of amino groups per aromatic ring” means that a 5-membered ring or 6-membered ring having 6 ⁇ electrons is counted as one, and the number of amino groups present per one aromatic ring. Number (average number). For example, benzene, pyridine, pyridazine, pyrimidine, pyrazine, thiophene, furan, pyrrole and the like are counted as one.
  • Biphenyl, bithiophene and the like in which they are linked, and naphthalene, thienothiophene, benzothiophene and the like in which they are condensed are counted as two.
  • the fluorene ring is counted as two because the central cyclopentane ring is not aromatic, but the carbazole ring is counted as three because the central pyrrole ring is aromatic. That is, in the present specification, the aromatic ring is counted as follows.
  • the hydrogen atom of these aromatic ring main chains may be substituted directly or through a divalent linking group.
  • any of a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary amino group (ammonium group) may be used, but at least one of the amino groups is a tertiary amino group.
  • at least 30% of all amino groups are tertiary amino groups, more preferably at least 40% of all amino groups are tertiary amino groups, and at least 50% of all amino groups are 3
  • a tertiary amino group is more preferred, and all amino groups are particularly preferably tertiary amino groups.
  • a polymer compound having many tertiary amino groups is excellent in solubility, coatability, and durability of the resulting organic photoelectric conversion element.
  • the amino group being a quaternary amino group means that the amino group is in the form of a salt as shown in the following compound 14, for example. That is, the structural unit constituting the main chain of the polymer compound according to the present invention includes the case where the amino group in the structural unit is in the form of a salt.
  • examples of the anion that forms a salt with a quaternary amino group are not particularly limited, but include a halogen atom (fluorine atom, chlorine atom, bromine atom), sulfate ion, nitrate ion, tetrafluoroborate ion. And hexafluorophosphoric acid.
  • a halogen atom fluorine atom, chlorine atom, bromine atom
  • sulfate ion nitrate ion
  • tetrafluoroborate ion hexafluorophosphoric acid.
  • a halogen atom is preferable, and a bromine atom is particularly preferable.
  • the amino group is present as a substituent of 1.5 or more per aromatic ring in the main chain of the polymer compound.
  • the amino group is preferably present as a substituent in the order of 2 or more, 3 or more, 4 or more per aromatic ring in the main chain of the polymer compound.
  • the upper limit of the number of amino groups present per aromatic ring is not particularly limited, but is preferably 15 or less, and more preferably 7 or less, from a synthetic viewpoint.
  • An organic photoelectric conversion element having an intermediate layer containing a polymer compound having an aromatic ring having an amino group in such a range in its main chain between the photoelectric conversion layer and the electrode has a stable conductivity against oxidation. It also exhibits a sufficient built-in electric field improvement effect for substances, and has excellent photoelectric conversion efficiency and durability.
  • the intermediate layer is easily formed by a direct coating method on a photoelectric conversion layer that does not dissolve in a highly polar solvent. it can.
  • the main chain of the polymer compound preferably has a structural unit represented by the following general formula (3).
  • X 1 represents a nitrogen atom, a carbon atom, a silicon atom or a phosphorus atom (including a trivalent phosphorus atom and a pentavalent phosphorus atom; in the case of a pentavalent phosphorus atom, X 1 is , P ( ⁇ O) —R is preferably a group derived from a phosphine oxide compound.
  • X 1 in each structural unit may be the same or different.
  • X 1 is a carbon atom.
  • X 1 is a carbon atom
  • a polymer compound having an amino group with a uniform and high-density surface can be obtained with the polymer compound as the center, and the polarization of the dipole layer can be further increased.
  • the stability of the organic photoelectric conversion element to be obtained can be increased.
  • Z represents the structure represented by the general formula (1).
  • n represents the number of Z couple
  • a and B each independently represent a 6-membered aromatic hydrocarbon ring, a 5-membered aromatic heterocycle, or a 6-membered aromatic heterocycle.
  • the 6-membered aromatic hydrocarbon ring includes a benzene ring.
  • the 5-membered aromatic heterocycle or 6-membered aromatic heterocycle include oxazole ring, oxadiazole ring, oxatriazole ring, isoxazole ring, tetrazole ring, thiadiazole ring, thiatriazole ring, and isothiazole.
  • Each of these rings may have a substituent at any position.
  • the substituent in ring A and ring B in the general formula (3) the groups exemplified in the column of (substituent) as the substituent for L 1 in the general formula (1) can be similarly employed.
  • the polymer compound has a structural unit (including a salt form) represented by the following general formula (4).
  • L 1, L 2, and L 3 are the same as defined in the general formula (1).
  • L 1 in each structural unit may be the same or different.
  • n is 2 or more (when X 1 is a carbon atom, a silicon atom or a phosphorus atom), each L 1 may be the same or different.
  • X 1 represents a nitrogen atom, a carbon atom, a silicon atom, or a phosphorus atom (including a trivalent phosphorus atom and a pentavalent phosphorus atom; in the case of a pentavalent phosphorus atom, X 1 Represents a group derived from a phosphine oxide compound of P ( ⁇ O) —R).
  • X 1 in each structural unit may be the same or different.
  • X 1 is a carbon atom.
  • X 1 is a carbon atom
  • a polymer compound having an amino group with a uniform and high-density surface can be obtained with the polymer compound as the center, and the polarization of the dipole layer can be further increased.
  • the stability of the organic photoelectric conversion element to be obtained can be increased.
  • n represents the number of substituents: -L 1 -N (L 2 ) (L 3 ) bonded to X 1 and is 1 , 2 or 3. That is, when X 1 represents a phosphorus atom, n is 1 or 3, when X 1 represents a carbon atom or a silicon atom, n is 2, and when X 1 represents a nitrogen atom. In the formula, n is 1.
  • Y 1 and Y 2 represent —C (R 3 ) ⁇ C (R 4 ) —, —C (R 5 ) ⁇ N—, —O— or —S—.
  • Y 1 and Y 2 may be the same or different.
  • Y 1 and Y 2 in each structural unit may be the same or different.
  • Y 1 and Y 2 are each independently —CH ⁇ CH—, —CH ⁇ N— or —S—. More preferably, Y 1 and Y 22 are each independently —CH ⁇ CH— or —S—, and particularly preferably Y 1 and Y 2 are —S—.
  • Y 1 and Y 2 are —S—, that is, by introducing a polythiophene system into the polymer main chain, the carrier transport ability is improved, and the power generation layer and the p-type semiconductor material have a similar structure. Since the affinity between the layers is increased, high efficiency and durability can be obtained.
  • R 3 to R 5 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted group Alternatively, it represents an unsubstituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms.
  • R 3 to R 5 are each independently a hydrogen atom, an alkyl group, and an amino group, more preferably a hydrogen atom.
  • the polymer compound has a structural unit (including a salt form) represented by the following general formula (5).
  • Such a polymer compound having an amino group having two or more generations of branches is a polymer compound having an amino group with a uniform and high-density surface centering on the polymer compound, and further dipolarizing the dipole layer.
  • the stability (durability) of the obtained organic photoelectric conversion element can be further increased.
  • Y 3 and Y 4 represent —C (R 10 ) ⁇ C (R 11 ) —, —C (R 12 ) ⁇ N—, —O— or —S—.
  • Y 3 and Y 4 may be the same or different.
  • Y 3 and Y 4 in each structural unit may be the same or different.
  • Y 3 and Y 4 have the same definition as Y 1 and Y 2 in the general formula (4), and thus the description thereof is omitted here.
  • Y 3 and Y 4 are each independently —CH ⁇ CH—, —CH ⁇ N— or —S—.
  • Y 3 and Y 4 are each independently —CH ⁇ CH— or —S—, and particularly preferably, Y 3 and Y 4 are —S—.
  • Z 3 and Z 4 are —S—, that is, by introducing a polythiophene system into the polymer compound main chain, the carrier transport capability is improved, and the power generation layer and the p-type semiconductor material have a similar structure. Since the affinity between the layers is increased, high efficiency and durability can be obtained.
  • X 2 represents a nitrogen atom, a carbon atom or a silicon atom.
  • X 2 in each structural unit may be the same or different.
  • X 2 is carbon atom.
  • the polymer compound can have a uniform and high-density amino group centered on the polymer compound, and the polarization of the dipole layer can be further increased.
  • the stability of the organic photoelectric conversion element to be obtained can be increased.
  • n represents the number of substituents: -L 5 -N (L 6 -N (R 8 ) (R 9 )) (L 7 -N (R 6 ) (R 7 )) bonded to X 2 ; 2 or 3. That is, when X 2 represents a phosphorus atom, n is 3, when X 2 represents a carbon atom or a silicon atom, n is 2, and when X 2 represents a nitrogen atom. , N is 1.
  • L 5 to L 7 each independently represents a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, or a substituted or unsubstituted carbon atom.
  • a divalent linking group selected from-(L 1 ' )-(OR) p- .
  • L 5 to L 7 may be the same or different.
  • L 5 to L 7 in each structural unit may be the same or different.
  • n is 2 (when X 2 is a carbon atom or a silicon atom)
  • each of L 5 to L 7 may be the same or different. Since L 5 to L 7 have the same definition as L 1 in the general formula (1), description thereof is omitted here.
  • L 5 represents a substituted or unsubstituted linear or branched alkylene group having 1 to 15 carbon atoms, — (L 1 ′ ) — (OR) p —
  • L 1 ′ represents a single bond, carbon A linear or branched alkylene group having 1 to 15 atoms or an arylene group having 6 to 18 carbon atoms
  • R represents an ethylene group or a propylene group
  • p is an integer of 1 to 3
  • It is preferably a substituted or unsubstituted arylene group, and is substituted or unsubstituted linear or branched with a substituent having the formula of 1 to 8 carbon atoms: -L 1 -N (L 2 ) (L 3 )
  • L 6 and L 7 are each a substituted or unsubstituted linear or branched alkylene group having 1 to 8 carbon atoms, — (L 1 ′ ) — (OR) p — [where L 1 ′ is A single bond, a linear or branched alkylene group having 1 to 8 carbon atoms or an o-, m-, p-phenylene group; R represents an ethylene group; p is 1 or 2] And a straight or branched alkylene group having 1 to 6 carbon atoms (for example, methylene group, ethylene group, trimethylene group, tetramethylene group, propylene group, ethylethylene group, pentamethylene group, hexamethylene group) Group) and the above-described alkylene group substituted with a substituent of the formula: -L 1 -N (L 2 ) (L 3 ).
  • R 6 to R 9 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted group. Or an aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, or L 2 described above.
  • R 6 to R 92 may be the same or different.
  • R 6 to R 9 in each structural unit may be the same or different.
  • the alkyl group, cycloalkyl group, aryl group, and heteroaryl group in R 6 to R 9 have the same definition as L 4 in the general formula (1), and L 2 represents the general formula (1). Since the definition is the same as L 2 in FIG.
  • R 10 to R 12 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, substituted or unsubstituted And an aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms.
  • R 6 to R 12 may be the same or different.
  • R 6 to R 12 in each structural unit may be the same or different. Since R 6 to R 12 have the same definition as L 4 in the general formula (1), description thereof is omitted here.
  • At least one of R 6 to R 9 may be an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group substituted with an amino group.
  • at least one of R 6 to R 9 is preferably a group represented by the formula: — [LN (R)] p ′ -LN (R) (R ′).
  • each of L, R and R ′ may be the same or different.
  • L is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, substituted Or a divalent linkage selected from an unsubstituted heteroarylene group having 1 to 30 carbon atoms, a substituted or unsubstituted alkyleneoxy group having 1 to 20 carbon atoms, and — (L 1 ′ ) — (OR) p —. Represents a group.
  • L is preferably a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms, and includes a methylene group, an ethylene group, a trimethylene group or a tetramethylene group, and a formula: -L 1 -N (L 2 ) (L It is more preferable that it is the said alkylene group substituted by the substituent of 3 ).
  • R and R ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted group.
  • a substituted aryl group having 6 to 30 carbon atoms or a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, or the formula: — [LN (R)] p ′ -LN (R) ( R ′) represents a group represented by
  • the substituents of R and R ′ are the same as those in the general formula (1) and the like, description thereof is omitted here.
  • R and R ′ are preferably an alkyl group having 1 to 8 carbon atoms or a group represented by the formula: — [LN (R)] p ′ -LN (R) (R ′).
  • p ′ represents the number of repetitions of the formula: -LN (R) — and can be appropriately selected depending on the desired number of amino groups present in the main chain of the polymer compound.
  • p ′ is preferably an integer of 0 to 5, more preferably an integer of 1 to 4, and particularly preferably an integer of 2 to 3.
  • the polymer compound according to the present invention preferably has a structural unit represented by the general formula (2) or (3) or (4) or (5).
  • the polymer compound according to the present invention may be a homopolymer composed of a structural unit represented by the general formula (2) or (3) or (4) or (5).
  • the copolymer (copolymer) comprised from the 2 or more types of structural unit shown by the said General formula (2) or (3) or (4) or (5) may be sufficient.
  • the polymer compound according to the present invention may have another structural unit having no amino group (hereinafter, (It may also be simply referred to as “another structural unit”) to form a copolymer.
  • Y represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms, a substituted or unsubstituted carbon. It represents an aryl group having 6 to 30 atoms, a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms, or — (L 1 ′ ) — (OR) p H.
  • the definition of each substituent is the same as the definition in the above general formula (1), the description is omitted here.
  • each Y may be the same or different.
  • the content of the other structural units is not particularly limited as long as the effect of the polymer compound according to the present invention is not impaired, but other structures are not limited.
  • the content of the monomer derived from the unit is preferably 10 to 75 mol%, more preferably 20 to 50 mol% in the monomer derived from all the structural units.
  • the polymer compound according to the present invention includes those having the following structure.
  • the present invention is not limited to these.
  • a compound is prescribed
  • N / A represents the number of primary to quaternary amino groups per aromatic ring present in each polymer compound.
  • the bonding form of the plurality of structural units is not particularly limited, and may be bonded randomly or alternately.
  • the blocks for each structural unit may be combined.
  • these polymer compounds may be used alone or in combination of two or more.
  • the molecular weight of the polymer compound according to the present invention is not particularly limited, but when defining by practical molecular weight, the polymer compound containing the structure represented by the general formula (1) according to the present invention as a side chain is:
  • the weight average molecular weight is preferably 3000 or more, more preferably 4000 or more, and still more preferably 5000 or more.
  • the upper limit of the weight average molecular weight of a high molecular compound is not specifically limited, From a viewpoint of ensuring solubility, it is preferable that it is 50000 or less, and it is more preferable that it is 30000 or less.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC), but some compounds do not dissolve in THF, so the molecular weight of the main chain is one step before the compound according to the present invention.
  • the molecular weight may be confirmed by measurement with a precursor of (a compound in which the substituent is an ⁇ -bromoalkyl group).
  • the polymer compound according to the present invention is obtained from the precursor by a polymer reaction, and the length of the main chain does not change greatly. Therefore, the weight average molecular weight of the polymer compound is the weight average molecular weight of the precursor. Can be easily guessed from.
  • the weight average molecular weight (Mw) of the polymer compound containing the structure represented by the general formula (1) according to the present invention as a side chain is measured by GPC (gel permeation chromatography) using THF (tetrahydrofuran) as a column solvent. Can be used for molecular weight measurement.
  • GPC measurement conditions are measured by stabilizing the column at 40 ° C., flowing THF (tetrahydrofuran) at a flow rate of 1 ml / min, and injecting about 100 ⁇ l of a sample having a concentration of 1 mg / ml.
  • the column it is preferable to use a combination of commercially available polystyrene gel columns.
  • a refractive index detector (RI detector) or a UV detector is preferably used.
  • the molecular weight distribution of the sample is calculated using a calibration curve created using monodisperse polystyrene standard particles. About 10 points are preferably used as polystyrene for preparing a calibration curve.
  • the molecular weight is measured under the following measurement conditions.
  • the electron transport layer may be used in combination with other electron transport materials generally used for the electron transport layer.
  • the main component is a polymer compound containing the structure represented by the general formula (1) as a side chain.
  • the proportion of the polymer compound containing the structure represented by the general formula (1) as a side chain with respect to 100% by mass of the material constituting the electron transport layer is preferably 50% by mass or more. More preferably, it is 80 mass% or more, More preferably, it is 90 mass% or more, Especially preferably, it is 95 mass% or more, Most preferably, it is 100 mass%.
  • the electron transporting material as described above, materials that can be used in this technical field can be appropriately employed.
  • octaazaporphyrin a perfluoro body of a p-type semiconductor (perfluoropentacene, perfluorophthalocyanine, etc.) can be used.
  • the HOMO level of the p-type organic semiconductor material used for the photoelectric conversion layer The electron transport layer having a deep HOMO level is provided with a hole blocking function having a rectifying effect so that holes generated in the photoelectric conversion layer do not flow to the cathode side. Therefore, more preferably, a material deeper than the HOMO level of the n-type semiconductor is used as the electron transport material.
  • electron transport materials examples include phenanthrene compounds such as bathocuproine, n-type semiconductor materials such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and oxidation N-type inorganic oxides such as titanium, zinc oxide, and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • the n-type organic-semiconductor material used for the photoelectric converting layer may be contained in an electron carrying layer.
  • nitro-substituted fluorene derivatives diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like may be used.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group are also included in electron transport. It can be used as a material.
  • a polymer material in which a structural unit contained in the compound is introduced into a polymer chain, or a polymer material having the compound as a main chain of the polymer can be used as an electron transport material.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metal of these metal complexes is In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free phthalocyanine or metal phthalocyanine, or a compound in which the terminal of these compounds is substituted with an alkyl group or a sulfonic acid group can be preferably used as an electron transporting material.
  • an electron transport material having high n property doped with impurities can also be used.
  • TPD N, N′-bis (3-methylphenyl)-(1,1′
  • xazizazole derivatives imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, annealed amine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, etc.
  • polymers such as phenylene vinylene, fluorene, carbazole, indole, pyrene, pyrrole, picoline, thiophene, acetylene, diacetylene, and derivatives thereof can be preferably used.
  • these electron transport materials may be used alone or in combination of two or more. It is also possible to form an electron transport layer by stacking two or more layers made of each material.
  • the electron transport layer containing the polymer compound according to the present invention is preferably adjacent to the cathode (anode).
  • the thickness of the electron transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further improving the leak prevention effect, the thickness is preferably 3 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 1000 nm or less, and more preferably 200 nm or less. More preferably, it is in the range of 5 to 20 nm.
  • the conductivity of the electron transport layer is preferably as high as possible. However, if the conductivity is too high, the ability to prevent holes from moving may be reduced, and rectification may be reduced. Therefore, the conductivity of the electron transport layer is preferably 10 ⁇ 5 to 1 S / cm, more preferably 10 ⁇ 4 to 10 ⁇ 2 S / cm.
  • the organic photoelectric conversion element of this embodiment essentially includes an anode (cathode) 11 and a cathode (anode) 12. As described above, the carriers (holes / electrons) generated in the photoelectric conversion layer 14 drift between the electrodes, and the holes reach the anode 11 and the electrons reach the cathode 12.
  • an electrode through which holes mainly flow is called an anode
  • an electrode through which electrons mainly flow is called a cathode.
  • a tandem configuration can be achieved by using a charge recombination layer (also referred to as an intermediate electrode).
  • the translucent electrode is sometimes referred to as a transparent electrode
  • the non-translucent electrode is sometimes referred to as a counter electrode.
  • the anode is usually a transparent electrode having a light transmitting property and the cathode is a counter electrode having no light transmitting property.
  • the material used for the electrode of this embodiment is not particularly limited, and an electrode material that can be used in this technical field can be appropriately adopted.
  • the intermediate layer for example, the electron transport layer 27
  • the anode 11 in the normal layer type organic photoelectric conversion element 10 shown in FIG. 1 has a relatively large absolute value of the work function (for example, the work function is ⁇ 4.5 eV or less, preferably ⁇ 4.7 eV or less), It can be made of a transparent electrode material (which can transmit light of 380 to 800 nm).
  • the negative value of the work function of the cathode 12 is relatively small (for example, the work function is ⁇ when the pseudo shift (0.2 to 0.7 eV) of the work function by the intermediate layer of the present invention is taken into account.
  • an electrode material that is substantially stable to oxidation can be used.
  • examples of the electrode material used for the anode (first electrode, transparent electrode) 11 include metals such as gold, silver, platinum, and nickel; indium tin oxide Examples thereof include transparent conductive metal oxides such as an object (ITO), SnO 2 , ZnO, and indium zinc oxide (IZO); carbon materials such as metal nanowires and carbon nanotubes. It is also possible to use a conductive polymer as the anode electrode material.
  • Examples of the conductive polymer that can be used for the anode include polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene. , Polynaphthalene, and derivatives thereof. Among these, it is preferable to use an inorganic substance such as a metal from the viewpoint of hole extraction performance and durability. These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material.
  • the thickness of the anode (transparent electrode) is not particularly limited, but is usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the cathode (second electrode, counter electrode) 12 As an electrode material used for the cathode (second electrode, counter electrode) 12, a metal, an alloy, an electronic conductive compound, and these having a small absolute value of work function Can be used. If a metal is used among these materials, light incident from the anode (transparent electrode) side and transmitted without being absorbed by the photoelectric conversion layer can be reflected by the cathode (counter electrode) and reused for photoelectric conversion. It is possible to improve the photoelectric conversion efficiency.
  • silver, gold, platinum, nickel, aluminum, sodium, sodium-potassium alloy magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture, indium, lithium / aluminum mixture, rare earth metal and the like.
  • the electron transport layer 27 contains the polymer compound including the structure represented by the general formula (1) as a side chain, the ionization potential is small as a constituent material of the cathode.
  • the anode is a transparent electrode, and the constituent material of the cathode contains a metal that is equivalent to aluminum or has a higher ionization potential than aluminum. More preferably, the anode is a transparent electrode, and the constituent material of the cathode contains a metal having a higher ionization potential than aluminum.
  • the first ionization potential of aluminum is 138 kcal / mol.
  • the ionization potential of calcium is 140 kcal / mol.
  • metals that have a larger ionization potential and are more stable than these easily oxidized metals include silver (174 kcal / mol), gold (212 kcal / mol), platinum (208 kcal / mol), nickel (176 kcal / mol), copper (178 kcal). / Mol), zinc (216 kcal / mol) and the like.
  • a highly durable organic photoelectric conversion element can be obtained.
  • the constituent material of the cathode preferably contains silver, gold or copper. More preferably, it is silver or copper, and conversion efficiency and durability can be improved by using silver or copper as a cathode.
  • the work function of a single electrode in contact with the intermediate layer containing the conjugated polymer compound of the present invention is ⁇ 4.5 eV or less as measured by photoelectron spectroscopy.
  • the intermediate layer containing the polymer compound according to the present invention is an electron transport layer, and the electrode in contact with the intermediate layer corresponds to a cathode.
  • the cathode when measured by photoelectron spectroscopy, the cathode has low conductivity due to oxidation due to oxygen intrusion or the work function becomes deep. There is a risk that the contact resistance of the element will greatly increase, the electrical characteristics of the element will deteriorate, and the durability will decrease significantly.
  • the work function of the electrode in contact with the intermediate layer is more preferably less than ⁇ 4.5 eV, and still more preferably ⁇ 4.7 eV or less.
  • the lower limit of the work function of the electrode in contact with the intermediate layer is not particularly limited, but is preferably ⁇ 5.5 eV or more, more preferably ⁇ 5.0 eV or more.
  • the work function varies slightly depending on the measurement method, but the “work function” used in this specification is a sufficiently high vacuum using a photoelectron spectrometer (PHI1800, manufactured by ULVAC-PHI). It means the average value of 3 to 5 samples measured by photoelectron spectroscopy.
  • one embodiment of the present invention is characterized in that a metal material having the same work function as zinc or deeper than zinc is used. Thereby, it can prevent that a counter electrode is oxidized and deteriorates with time.
  • gold (-5.1 eV), silver (-4.7 eV), copper (-4.7 eV), zinc (-4.5 eV), platinum (-6.3 eV), nickel (-5.
  • Metals such as 0 eV); indium tin oxide (ITO) ( ⁇ 4.8 eV), ZnO ( ⁇ 4.5 eV), molybdenum oxide ( ⁇ 5.4 eV), indium zinc oxide (IZO) ( ⁇ 5.3 eV), etc.
  • the conductive metal oxides include nanowires and nanoparticles of the above metals.
  • the inside of () shows the work function of each material.
  • indium tin oxide (ITO), molybdenum oxide, copper, silver, and gold are preferable
  • indium tin oxide (ITO), molybdenum oxide, copper, and silver are more preferable
  • silver is particularly preferable.
  • the counter electrode is prevented from being oxidized and deteriorated with time, the stability (durability) of the electrode is improved, and the organic photoelectric conversion element has a sufficient built-in electric field improving effect. Can exhibit excellent photoelectric conversion efficiency and durability.
  • the material used for the electrode in contact with the intermediate layer is not particularly limited as long as the work function is ⁇ 4.5 eV or less (deep).
  • limiting in particular in the material used for the other electrode The electrode material which can be used in this technical field can be employ
  • the work function may vary by about ⁇ 0.3 eV depending on the measurement method and the surface treatment state of the thin film (with or without ozone oxidation, etc.). It can also be determined (however, it can be applied only to metal elements).
  • the thickness of the cathode is not particularly limited, but is usually 5 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the cathode 12 is located on the substrate 25 side on which light is incident, and the anode 11 is located on the opposite side. Therefore, the anode 11 in the reverse layer type shown in FIG. 2 has a relatively large absolute value of the work function, and is usually composed of an electrode material having low translucency. On the other hand, the cathode 12 has a relatively small absolute value of the work function and is made of a transparent electrode material.
  • examples of the electrode material used for the anode (counter electrode) include gold, silver, platinum, and nickel.
  • silver is preferably used from the viewpoints of hole extraction performance, light reflectance, and durability against oxidation and the like.
  • These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material.
  • the thickness of the anode (counter electrode) is not particularly limited, but is usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • examples of the electrode material used for the cathode include metals such as gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium and indium, and metals. Compounds, and alloys; carbon materials such as carbon nanoparticles, carbon nanowires, and carbon nanostructures. These electrode materials may be used alone or as a mixture of two or more materials. It is also possible to form an electrode by laminating two or more layers made of each material. Among these, it is preferable to use carbon nanowires because a transparent and highly conductive cathode can be formed by a coating method.
  • an auxiliary electrode having a thickness of about 1 to 20 nm is formed on the side facing the anode (counter electrode) using, for example, aluminum, aluminum alloy, silver, silver compound, or the like.
  • a cathode (transparent electrode) can be obtained by providing a conductive polymer film exemplified as the anode (transparent electrode) material of the above-mentioned normal layer type organic photoelectric conversion element.
  • the thickness of the cathode (transparent electrode) is not particularly limited, but is usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the intermediate layer containing the polymer compound according to the present invention is an electron transport layer, and the electrode in contact with the intermediate layer corresponds to an anode. Therefore, as an electrode material used for the anode (counter electrode), it is preferable to use metals, alloys, electronic conductive compounds, and mixtures thereof having a work function of ⁇ 4.5 eV or less.
  • the organic photoelectric conversion element 10 of the present embodiment essentially includes a photoelectric conversion layer 14 between the cathode 12 and the anode 11 described above.
  • the photoelectric conversion layer has a function of converting light energy into electric energy using the photovoltaic effect.
  • the photoelectric conversion layer essentially includes a p-type organic semiconductor material and an n-type organic semiconductor material as a photoelectric conversion material. When light is absorbed by these photoelectric conversion materials, excitons are generated, which are separated into holes and electrons at the pn junction interface.
  • Examples of the p-type organic semiconductor material used for the photoelectric conversion layer according to the present invention include various condensed polycyclic aromatic low-molecular compounds and conjugated polymers (p-type conjugated polymer compounds).
  • condensed polycyclic aromatic low molecular weight compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthanthene, bisanthene, zeslene.
  • TTF tetrathiafulvalene
  • TCNQ tetracyanoquinodimethane
  • BEDTTTTF bisethylenetetrathiafulvalene
  • Examples of the derivative having the above-mentioned condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer examples include polythiophene such as poly-3-hexylthiophene (P3HT) and oligomers thereof, or a polymerizable group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, P1225. Polythiophene, Nature Material, (2006) vol. 5, the polythiophene-thienothiophene copolymer described in p328, the polythiophene-diketopyrrolopyrrole copolymer described in International Publication No. 2008/000664, Adv. Mater. , 2007, p4160, a polythiophene-thiazolothiazole copolymer, Nature Mat. , Vol.
  • P3HT poly-3-hexylthiophene
  • polypyrrole and its oligomer polyaniline, polyphenylene and its oligomer, polyphenylene vinylene and its oligomer, polythienylene vinylene and its oligomer, polyacetylene, polydiacetylene, Examples thereof include polymer materials such as ⁇ -conjugated polymers such as polysilane and polygermane.
  • oligomeric materials not polymer materials, include thiophene hexamer ⁇ -seccithiophene ⁇ , ⁇ -dihexyl- ⁇ -sexualthiophene, ⁇ , ⁇ -dihexyl- ⁇ -kinkethiophene, ⁇ , ⁇ -bis (3 Oligomers such as -butoxypropyl) - ⁇ -sexithiophene can be preferably used.
  • the p-type conjugated polymer has a structure in which donor units and acceptor units are alternately arranged.
  • the absorption region of the p-type organic semiconductor can be expanded to a long wavelength region. That is, the p-type conjugated polymer can absorb light in a long wavelength region (for example, 700 to 1000 nm) in addition to the absorption region (for example, 400 to 700 nm) of a conventional p-type organic semiconductor. It becomes possible to efficiently absorb radiant energy over a wide range of the optical spectrum.
  • the donor unit that can be included in the p-type conjugated polymer is a unit in which the LUMO level or the HOMO level is shallower than a hydrocarbon aromatic ring (benzene, naphthalene, anthracene, etc.) having the same number of ⁇ electrons. If there is, it can be used without restriction.
  • fluorene examples include fluorene, silafluorene, carbazole, dithienocyclopentadiene, dithienosilacyclopentadiene, dithienopyrrole, and benzodithiophene.
  • acceptor units that can be included in the p-type conjugated polymer include, for example, quinoxaline skeleton, pyrazinoquinoxaline skeleton, benzothiadiazole skeleton, benzooxadiazole skeleton, benzoselenadiazole skeleton, benzotriazole skeleton, pyrido Thiadiazole skeleton, thienopyrazine skeleton, phthalimide skeleton, 3,4-thiophenedicarboxylic acid imide skeleton, isoindigo skeleton, thienothiophene skeleton, diketopyrrolopyrrole skeleton, 4-acyl-thieno [3,4-b] thiophene skeleton, thienopyrrole A dione skeleton, a thiazolothiazole skeleton described in WO 2011/085004, a pyrazolo [5,1-c] [1,2,4] triazole
  • the donor unit or acceptor unit contained in the p-type conjugated polymer of the present embodiment may be used alone or in combination of two or more.
  • preferable p-type conjugated polymers include Nature Material, (2006) vol. 5, a polythiophene-thienothiophene copolymer described in p328, a polythiophene-diketopyrrolopyrrole copolymer described in WO08 / 000664, a thiazolothiazole derivative described in WO2011 / 085004, an Adv . Mater. , 2007, p4160, a polythiophene-thiazolothiazole copolymer, Nature Mat. vol. 6 (2007), p497, the dithienocyclopentadiene derivative described in PCPDTBT and the like; Am. Chem. Soc. , 2011, 133 (25), pp9638, dithienocyclopentadiene derivatives such as US Patent No. 8008421, dithienosilole derivatives described in US Patent No. 8008421, and the like.
  • the material has a high mobility and can form a thick power generation layer as described in Non-Patent Document 2 (Appl. Phys. Lett. Vol. 98, p043301).
  • a material that can form a thick power generation layer it is possible to obtain high external quantum efficiency in all spectral regions, and because the mobility is high even when the power generation layer is thick (the built-in electric field is reduced), the fill factor is Since it does not decrease, both high external quantum efficiency and fill factor can be achieved, and a highly efficient device can be obtained.
  • the p-type organic semiconductor material has a structure represented by the following general formula (6).
  • X 3 represents a carbon atom, a silicon atom, or a germanium atom.
  • a compound in which X 3 is a silicon atom is preferable because synthesis is easy and a crystal having high mobility and high mobility can be easily obtained.
  • R 13 and R 14 each independently represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms.
  • R 13 and R 14 may be the same or different.
  • R 13 and R 14 in each structural unit may be the same or different.
  • the substituted or unsubstituted alkyl group has the same definition as the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in the general formula (1). Omitted.
  • the cycloalkyl group, aryl group, and heteroaryl group in the general formula (6) are each a substituted or unsubstituted cycloalkyl group having 3 to 20 carbon atoms in the general formula (1).
  • the definition is the same as that of a substituted or unsubstituted aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heteroaryl group having 1 to 30 carbon atoms.
  • the p-type organic semiconductor material preferably has a structure represented by the following general formula (9).
  • R 18 and R 19 are each independently a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms ( Alkyl ether group), a substituted or unsubstituted alkyl ester group having 1 to 20 carbon atoms, or an alkylcarbonyl group, and R 18 and R 19 may be bonded to each other to form a ring.
  • R 18 and R 19 may be the same or different.
  • R 18 and R 19 in each structural unit may be the same or different.
  • the substituted or unsubstituted alkyl group has the same definition as the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in the general formula (1). Omitted.
  • examples of the substituent optionally present in the alkyl group, cycloalkyl group, aryl group, heteroaryl group, or alkylsilyl group include a halogen atom (fluorine atom).
  • the alkoxy group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, n-decyloxy group, and n-hexa
  • a decyloxy group, 2-ethylhexyloxy group, 2-hexyldecyloxy group and the like can be mentioned.
  • the alkyl ester group having 1 to 20 carbon atoms is a group in which “—COO—” or “—OCO—” is bonded to an alkyl group having 1 to 19 carbon atoms (represented by alkyl-COO— or alkyl-OCO—).
  • the alkylcarbonyl group having 1 to 20 carbon atoms is a group in which “—CO—” is bonded to an alkyl group having 1 to 19 carbon atoms (a group represented by alkyl-CO—). And a group in which “—CO—” is bonded to the alkyl group.
  • the structures represented by the general formulas (6) and (9) function as a donor unit, and a thiophene structure with high mobility condenses to have a large ⁇ -conjugated plane, but the solubility is imparted by a substituent. Has been. Since such a donor unit is excellent in both solubility and mobility, the photoelectric conversion efficiency can be further improved.
  • the p-type organic semiconductor material preferably has a structure represented by the following general formula (7).
  • a P-type organic semiconductor material having these units has high mobility, high open-circuit voltage, and can absorb a wide absorption wavelength.
  • the p-type organic semiconductor material preferably has a structure represented by the following general formula (8).
  • a P-type organic semiconductor material having these units has a high mobility and an open circuit voltage can be increased.
  • Y 5 and Y 6 each independently represent —C (R 17 ) ⁇ or —N ⁇ .
  • Y 5 and Y 6 may be the same or different.
  • Y 5 and Y 6 in each structural unit may be the same or different.
  • Y 5 and Y 6 are preferably the same from the viewpoint of improving mobility (improving crystallinity and symmetry).
  • the general formula (8) represents a thienothiophene ring structure
  • General formula 2 represents a thiazolothiazole ring structure.
  • R 15 to R 17 are each independently a hydrogen atom (H), a halogen atom (F, Cl, Br, or I), a substituted or unsubstituted carbon
  • R 15 and R 16 in the general formula (7) may be the same or different. Further, R 15 and R 16 in each structural unit may be the same or different. However, R 15 and R 16 are preferably the same from the viewpoint of improving mobility (improving crystallinity and symmetry).
  • the substituted or unsubstituted alkyl group, cycloalkyl group, aryl group, and heteroaryl group have the same definition as L 4 in the general formula (1). The description is omitted here.
  • the halogen atom is not particularly limited and may be any of a fluorine atom (F), a chlorine atom (Cl), a bromine atom (Br), and an iodine atom (I). Also good. Among these, a fluorine atom (F) or a chlorine atom is preferable and a fluorine atom (F) is preferable from the viewpoint that side reactions hardly occur during polymerization (Br and I may react with tin). More preferred.
  • the fluorinated alkyl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the alkyl group exemplified above is substituted with a fluorine atom.
  • the carbon atom closest to the bonding site with the ring (naphthobisbenzothiadiazole ring, thiazolothiazole ring, thienothiophene ring) (that is, in the alkyl group) It is preferable that only the 1st-position carbon atom is a group substituted with a fluorine atom.
  • fluoromethyl group 1-fluoroethyl group, 1-fluoropropyl group, 1-fluorobutyl group, 1-fluorooctyl group, 1-fluorodecyl group, 1-fluorohexadecyl group, 1-fluoro- Monofluoroalkyl groups such as 2-ethylhexyl group and 1-fluoro-2-hexyldecyl group; difluoromethyl group, 1,1-difluoroethyl group, 1,1-difluoropropyl group, 1,1-difluorobutyl group, 1 Difluoroalkyl such as 1,1-difluorooctyl group, 1,1-difluorodecyl group, 1,1-difluorohexadecyl group, 1,1-difluoro-2-ethylhexyl group, 1,1-difluoro-2-hexyldecyl group
  • a fluorinated alkyl group having 1 to 3 carbon atoms is preferable. Such a number of carbon atoms is sufficiently shorter than other soluble groups (substituents for imparting solubility generally use C6 or more) and have little influence on the upper layer coating property. It is. Of these, a trifluoromethyl group having 1 carbon atom is more preferable.
  • the fluorinated cycloalkyl group having 3 to 20 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the cycloalkyl group exemplified above is substituted with a fluorine atom. .
  • a fluorine atom from the viewpoint of achieving higher V oc (deep HOMO level), it is preferable that all the hydrogen atoms contained in the cycloalkyl group exemplified above are groups substituted with fluorine atoms.
  • the number and position of fluorine atoms are preferably adjusted appropriately.
  • it is preferably a fluorinated cycloalkyl group having 4 to 8 carbon atoms.
  • the fluorinated aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a group in which at least one hydrogen atom contained in the aryl group exemplified above is substituted with a fluorine atom.
  • a fluorine atom it is preferable that all the hydrogen atoms contained in the aryl group exemplified above are groups substituted with fluorine atoms.
  • the number and position of fluorine atoms are preferably adjusted appropriately.
  • the fluorinated heteroaryl group having 1 to 20 carbon atoms is not particularly limited, and examples thereof include groups in which at least one hydrogen atom contained in the heteroaryl group exemplified above is substituted with a fluorine atom. .
  • groups in which at least one hydrogen atom contained in the heteroaryl group exemplified above is substituted with a fluorine atom. from the viewpoint of achieving higher V oc (deep HOMO level), it is preferable that all of the hydrogen atoms contained in the heteroaryl group exemplified above are groups substituted with fluorine atoms. In view of this, the number and position of fluorine atoms are preferably adjusted appropriately.
  • the substituent optionally present in the above R 15 to R 17 is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an acyl group, and an alkoxycarbonyl group.
  • the structure represented by the general formula (7) or (8) functions as an acceptor unit.
  • the p-type organic semiconductor material contained in the photoelectric conversion layer is preferably a structure represented by the following general formula (6), a structure represented by the following general formula (7), and a structure represented by the following general formula (8). At least one of the following.
  • Such a p-type organic semiconductor material includes a second charge transport layer formed on the power generation layer (an electron transport layer / hole blocking layer in a normal layer configuration, a hole transport layer / in a reverse layer configuration, Even if the polar solvent (water, alcohol solvent) used for forming the electronic block layer is formed under extremely dry conditions such as in a glove box, it does not repel during application. Can be formed.
  • the molecular weight of the conjugated polymer is not particularly limited, but the number average molecular weight is preferably 5,000 to 500,000, more preferably 10,000 to 100,000, and 15,000 to 50,000. More preferably it is.
  • the number average molecular weight is 5000 or more, the effect of improving the fill factor becomes more remarkable.
  • the number average molecular weight is 500,000 or less, the solubility of the p-type conjugated polymer is improved, so that productivity can be increased.
  • the value measured by gel permeation chromatography (GPC) is employ
  • the photoelectric conversion layer in the present invention preferably contains the above-described p-type conjugated polymer, but may contain other p-type organic semiconductor materials.
  • examples of such other p-type organic semiconductor materials include triarylamine compounds, benzidine compounds, pyrazoline compounds, styrylamine compounds, hydrazone compounds, triphenylmethane compounds, carbazole compounds, polysilane compounds, thiophene compounds, phthalocyanine compounds, Cyanine compounds, merocyanine compounds, oxonol compounds, polyamine compounds, indole compounds, pyrrole compounds, pyrazole compounds, polyarylene compounds, condensed aromatic carbocyclic compounds (naphthalene derivatives, anthracene derivatives, phenanthrene derivatives, tetracene derivatives, pyrene derivatives, perylene derivatives, Fluoranthene derivatives) and metal complexes having a nitrogen-containing heterocyclic compound as a ligand.
  • the mass ratio of the conjugated polymer (p-type conjugated polymer compound) in the p-type organic semiconductor material contained in the photoelectric conversion layer is preferably 5 More preferably, it is 10 mass% or more, More preferably, it is 50 mass% or more, Especially preferably, it is 90 mass% or more, Most preferably, it is 100 mass%.
  • the band gap of the p-type organic semiconductor material contained in the photoelectric conversion layer is preferably 1.8 eV or less, more preferably 1.6 to 1.1 eV.
  • the band gap is 1.8 eV or less, sunlight can be widely absorbed.
  • the band gap is 1.1 eV or more, the open circuit voltage Voc (V) is easily generated, and the conversion efficiency can be improved.
  • only one p-type organic semiconductor may be used alone, or two or more p-type organic semiconductors may be used in combination.
  • n-type organic semiconductor material used for the photoelectric conversion layer of this embodiment is not particularly limited as long as it is an acceptor (electron-accepting) organic compound, and materials that can be used in this technical field can be appropriately employed. .
  • a perfluoro product in which a hydrogen atom of the p-type organic semiconductor material is substituted with a fluorine atom such as fullerene, carbon nanotube, and octaazaporphyrin (for example, perfluoropentacene or perfluorophthalocyanine)
  • a fluorine atom such as fullerene, carbon nanotube, and octaazaporphyrin (for example, perfluoropentacene or perfluorophthalocyanine)
  • aromatic carboxylic acid anhydrides such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and polymer compounds containing an imidized product thereof as a skeleton.
  • fullerenes, carbon nanotubes, or derivatives thereof are preferably used from the viewpoint that charge separation can be efficiently performed with a p-type organic semiconductor material at high speed (up to 50 fs). More specifically, fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotube, multi-walled carbon nanotube, single-walled carbon nanotube, carbon nanohorn (conical type), etc.
  • halogen atoms fluorine atoms, chlorine atoms, bromine atoms, iodine atoms
  • substituted or unsubstituted alkyl groups alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, And a fullerene derivative substituted with a cycloalkyl group, a silyl group, an ether group, a thioether group, an amino group, or the like.
  • PCBM -phenyl C61-butyric acid methyl ester
  • PCBnB [6,6] -phenyl C61-butyric acid-n-butyl ester
  • PCBiB [6,6] -phenyl C61-butyric acid-isobutyl ester
  • PCBH [6,6] -phenyl C61-butyric acid-n-hexyl ester
  • PC71BM -phenyl C71-butyric acid methyl ester
  • the n-type organic semiconductor material may be used alone or in combination of two or more.
  • the junction form of the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment is not particularly limited, and may be a planar heterojunction or a bulk heterojunction.
  • a planar heterojunction is a junction in which a p-type organic semiconductor layer containing a p-type organic semiconductor and an n-type organic semiconductor layer containing an n-type organic semiconductor are stacked, and the surface where these two layers contact is the pn junction interface. It is a form.
  • a bulk heterojunction (bulk heterojunction) is formed by applying a mixture of a p-type organic semiconductor and an n-type organic semiconductor, and the domain of the p-type organic semiconductor and the n-type organic semiconductor in this single layer. And have a microphase separation structure. Therefore, in a bulk heterojunction, as compared with a planar heterojunction, many pn junction interfaces exist throughout the layer. Therefore, most of the excitons generated by light absorption can reach the pn junction interface, and the efficiency leading to charge separation can be increased. For these reasons, the junction between the p-type organic semiconductor and the n-type organic semiconductor in the photoelectric conversion layer of this embodiment is preferably a bulk heterojunction.
  • the mixing ratio of the p-type organic semiconductor material and the n-type organic semiconductor material contained in the photoelectric conversion layer is preferably in the range of 2: 8 to 8: 2, more preferably 3: 7 to 7 in terms of mass ratio. : 3 range.
  • the film thickness of the photoelectric conversion layer is preferably 50 to 400 nm, more preferably 80 to 300 nm.
  • the photoelectric conversion layer may include an inorganic p-type semiconductor material and an n-type semiconductor material as necessary.
  • the organic photoelectric conversion element of this form can contain a positive hole transport layer as needed.
  • the hole transport layer has a function of transporting holes and a property of extremely small ability to transport electrons (for example, 1/10 or less of the mobility of holes).
  • the hole transport layer is provided between the photoelectric conversion layer and the anode and prevents recombination of electrons and holes by blocking the movement of electrons while transporting holes to the anode. Can do.
  • the hole transport material used for the hole transport layer is not particularly limited, and materials that can be used in this technical field can be appropriately employed.
  • triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, and pyrazolone derivatives phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the hole transport layer may be formed using an inorganic compound such as a metal oxide such as molybdenum, vanadium, or tungsten, or a mixture thereof.
  • vanadium oxide, molybdenum oxide, and the like are preferable in that the work function is appropriate.
  • these high oxidation number metals, especially molybdenum oxide have a significant change in work function after deposition (Appl. Phys. Lett. 96, p243307, 2010), which is good immediately after deposition ( ⁇ It is known that the work function which has been 5.4 eV) suddenly becomes deeper ( ⁇ 6.0 eV) when it comes into contact with oxygen or the like, and becomes a trap for carrier transport.
  • a polymer material in which a structural unit contained in the above compound is introduced into a polymer chain, or a polymer material having the above compound as a polymer main chain can be used as a hole transport material.
  • a p-type hole transport material as described in 139 can also be used.
  • a hole transport material having a high p property doped with impurities can also be used.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PSS polystyrene sulfonic acid
  • polyaniline are preferable.
  • hole transport materials may be used alone or in combination of two or more. It is also possible to form a hole transport layer by laminating two or more layers made of each material.
  • the method for forming the hole transport layer is not particularly limited, and a known production method can be applied in the same manner or appropriately modified.
  • the thickness (dry film thickness) of the hole transport layer is not particularly limited, but is usually 1 to 2000 nm. From the viewpoint of further improving the leak prevention effect, the thickness is preferably 5 nm or more. Further, from the viewpoint of maintaining high transmittance and low resistance, the thickness is preferably 1000 nm or less, and more preferably 200 nm or less.
  • the conductivity of the hole transport layer is preferably as high as possible. However, if the conductivity is too high, the ability to prevent electrons from moving may be reduced, and rectification may be reduced. Accordingly, the conductivity of the hole transport layer is preferably 10 ⁇ 5 to 1 S / cm, and more preferably 10 ⁇ 4 to 10 ⁇ 2 S / cm.
  • the charge recombination layer 38 is disposed on the first photoelectric conversion layer 14a side.
  • the second electron transport layer 38a and the second hole transport layer 38b disposed on the second photoelectric conversion layer 14b side are preferable.
  • the charge recombination layer (intermediate electrode) 38 preferably contains a polymer compound containing a structure represented by the general formula (1) as a side chain. That is, in one embodiment of the present invention, at least two photoelectric conversion layers are disposed via the intermediate layer, and the intermediate layer interposed between the two photoelectric conversion layers is represented by the general formula ( A polymer compound containing the structure represented by 1) as a side chain is contained. Furthermore, the charge recombination layer (intermediate electrode) 38 has a layer containing the polymer compound according to the present invention, and is preferably used as an electron transport layer.
  • the intermediate layer (charge recombination layer (intermediate electrode) 38) interposed between the two photoelectric conversion layers has at least a hole transport layer and an electron transport layer, and the electron transport layer of the intermediate layer includes A polymer compound containing the structure represented by the general formula (1) as a side chain is contained.
  • the electron transport layer is represented by the general formula (1). It is preferable to contain the high molecular compound which contains the structure made as a side chain.
  • the hole transport layer of the intermediate layer interposed between two photoelectric conversion layers contains a p-type conductive polymer material.
  • a p-type conductive polymer material with high conductivity and high acidity examples thereof include conductive polymers such as PEDOT (poly-3,4-ethylenedioxythiophene) -PSS (polystyrene sulfonic acid) and polyaniline.
  • a hole transport layer containing a p-type conductive polymer material having high conductivity and high acidity and an electron transport layer containing a polymer compound represented by the general formula (1) are usually a normal layer tandem.
  • the hole transport layer is stacked and then the electron transport layer is manufactured by stacking.
  • the reverse layer tandem type the electron transport layer is stacked and then the hole transport layer is stacked.
  • the coating liquid containing the p-type conductive polymer material having high conductivity and high acidity for forming the hole transport layer usually has a relatively low pH. Therefore, the film surface pH of the formed hole transport layer is also relatively small.
  • the film surface pH of the second hole transport layer 38b constituting the charge recombination layer 38 is preferably 4 or less, more preferably 3 or less, Particularly preferably, it is 2.5 or less.
  • it is 1.0 or more, More preferably, it is 1.5 or more.
  • the pH of the hole transport layer forming coating solution and the film surface pH of the hole transport layer can be measured by known methods.
  • the film surface pH of the hole transport layer is, for example, after forming the hole transport layer, dropping a certain amount of pure water on the film surface, destroying the film surface, and allowing to stand for 30 minutes, then dropping to one drop type pH
  • the pH can also be measured with pHBOY-P2 (manufactured by Shindengen Electric Co., Ltd.).
  • the preferred embodiment of the present invention has been described with reference to FIG. 3 by taking as an example the case where the charge recombination layer 38 includes the second electron transport layer 38a and the second hole transport layer 38b.
  • the present invention is not limited to such a form, and a form in which the charge recombination layer 38 made of a single layer is interposed between two adjacent photoelectric conversion layers can also be adopted.
  • the material constituting the charge recombination layer is not particularly limited as long as it is a material having both conductivity and translucency, and ITO, AZO, FTO, and titanium oxide exemplified as the above electrode materials.
  • Transparent metal oxides such as Ag, Al and Au, carbon materials such as carbon nanoparticles and carbon nanowires, and conductive polymers such as PEDOT: PSS and polyaniline can be used. These materials may be used alone or in combination of two or more. It is also possible to form a charge recombination layer by laminating two or more layers made of each material.
  • the electrical conductivity of the charge recombination layer is preferably high from the viewpoint of charge transport. Specifically, it is preferably 5 to 50000 S / cm, more preferably 100 to 10,000 S / cm.
  • the thickness of the charge recombination layer is not particularly limited, but is preferably 1 to 1000 nm, and preferably 5 to 50 nm. Leakage can be suppressed by setting the thickness to 1 nm or more. On the other hand, the transparency can be increased by setting the thickness to 1000 nm or less.
  • the organic photoelectric conversion element according to the present invention may include a substrate as necessary.
  • the substrate has a role as a member to be coated with a coating solution when the electrode is formed by a coating method.
  • the substrate is preferably a member that can transmit the light that is photoelectrically converted, that is, a member that is transparent to the wavelength of the light to be photoelectrically converted.
  • a transparent resin film is preferably mentioned, but it is desirable to use a transparent resin film from the viewpoint of light weight and flexibility.
  • the transparent resin film that can be preferably used as the transparent substrate in the present invention is not particularly limited, and the material, shape, structure, thickness and the like can be appropriately selected from known ones.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) modified polyester, polyethylene (PE) resin film, polypropylene (PP) resin film, polystyrene resin film, polyolefin resins such as cyclic olefin resin Film, vinyl resin film such as polyvinyl chloride, polyvinylidene chloride, polyether ether ketone (PEEK) resin film, polysulfone (PSF) resin film, polyether sulfone (PES) resin film, polycarbonate (PC) resin film, A polyamide resin film, a polyimide resin film, an acrylic resin film, a triacetyl cellulose (TAC) resin film, and the like can be given.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthal
  • the resin film transmittance of 80% or more in ⁇ 800 nm can be preferably applied to a transparent resin film according to the present invention.
  • a transparent resin film according to the present invention it is preferably a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film, or a polycarbonate film, and biaxially stretched.
  • a polyethylene terephthalate film and a biaxially stretched polyethylene naphthalate film are more preferable.
  • the transparent substrate used in the present invention can be subjected to a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a surface treatment or an easy adhesion layer in order to ensure the wettability and adhesion of the coating solution.
  • a conventionally well-known technique can be used about a surface treatment or an easily bonding layer.
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • a barrier coat layer may be formed in advance on the transparent substrate, or a hard coat layer may be formed in advance on the opposite side to which the transparent conductive layer is transferred. Good.
  • the organic photoelectric conversion device of this embodiment may further include other members (other layers) in addition to the above-described members (each layer) in order to improve photoelectric conversion efficiency and improve the lifetime of the device.
  • other members include a hole injection layer, an electron injection layer, an exciton block layer, a UV absorption layer, a light reflection layer, and a wavelength conversion layer.
  • a layer such as a silane coupling agent may be provided in order to make the metal oxide fine particles unevenly distributed in the upper layer more stable.
  • a metal oxide layer may be laminated adjacent to the photoelectric conversion layer of the present invention.
  • the organic photoelectric conversion element of the present invention may have various optical function layers for the purpose of more efficient light reception of sunlight.
  • the optical functional layer include a light condensing layer such as an antireflection film and a microlens array, and a light diffusion layer that can scatter light reflected by the cathode and enter the power generation layer again.
  • the antireflection layer can be provided as the antireflection layer.
  • the refractive index of the easy adhesion layer adjacent to the film is 1.57. It is more preferable to set it to ⁇ 1.63 because the transmittance can be improved by reducing the interface reflection between the film substrate and the easy adhesion layer.
  • the method for adjusting the refractive index can be carried out by appropriately adjusting the ratio of the oxide sol having a relatively high refractive index such as tin oxide sol or cerium oxide sol and the binder resin.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the light scattering layer examples include various antiglare layers, layers in which nanoparticles or nanowires such as metals or various inorganic oxides are dispersed in a colorless and transparent polymer, and the like.
  • ⁇ Film forming method / Surface treatment method> There is no restriction
  • the method include a casting method and a spin coating method.
  • coating method a cast method and a spin coat method are included) etc. are illustrated preferably.
  • the coating method is preferable in order to increase the area of the interface where holes and electrons are separated by charge and to produce a device having high photoelectric conversion efficiency.
  • the coating method is also excellent in production speed.
  • the intermediate layer hole transport layer, electron transport layer, charge recombination layer
  • a coating method is preferable.
  • the high molecular compound which contains the structure represented by General formula (1) contained in an intermediate layer as a side chain is soluble in a solvent, it is suitable for forming an intermediate layer by the apply
  • the coating method used in this case is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating. Furthermore, patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • the photoelectric conversion layer After coating, it is preferable to perform heating in order to cause removal of residual solvent, moisture and gas, and increase mobility and absorption longwave by crystallization of the semiconductor material.
  • annealing is performed at a predetermined temperature during the manufacturing process, a part of the particles is microscopically aggregated or crystallized and the photoelectric conversion layer can have an appropriate phase separation structure. As a result, the carrier mobility of the photoelectric conversion layer is improved and high efficiency can be obtained.
  • the photoelectric conversion layer may be composed of a layer in which a p-type semiconductor material and an n-type semiconductor material are mixed, but may be a multi-layer or a gradation composition with a mixture ratio different in the film thickness direction.
  • Examples of the method for forming the electron transport layer containing the polymer compound of the present invention include a vapor deposition method and a coating method (including a casting method and a spin coating method). Of these, the coating method is preferred. The coating method is also excellent in production speed.
  • Examples of the method for forming the electron transport layer when forming the electron transport layer by a coating method include, for example, dissolving the polymer compound according to the present invention and, if necessary, another electron transport material in an appropriate solvent to transport the electron. A layer forming solution is prepared. Next, there is a method in which this solution is applied on a substrate, dried, and then heat-treated.
  • the solvent for dissolving the polymer compound according to the present invention and, if necessary, other electron transport materials is not particularly limited as long as it can dissolve these materials, but alcohols such as isopropanol and n-butanol. Alcohols substituted with halogen atoms such as hexafluoroisopropanol and tetrafluoropropanol; dimethyl sulfoxide, dimethylformamide and the like. Of these, alcohols substituted with halogen atoms, particularly alcohols substituted with fluorine atoms are preferably used in consideration of coating properties due to surface tension, drying speed, and the like.
  • the intermediate layer (particularly, the electron transport layer) is preferably formed by a coating process using a solvent containing an alcohol substituted with a fluorine atom.
  • the concentration of the polymer compound and, if necessary, the other electron transporting material is not particularly limited.
  • the concentration in the solution is 0.5 to 0.005% by mass.
  • the coating method is not limited, and examples thereof include spin coating, casting from a solution, dip coating, blade coating, wire bar coating, gravure coating, and spray coating.
  • patterning can also be performed by a printing method such as an ink jet method, a screen printing method, a relief printing method, an intaglio printing method, an offset printing method, or a flexographic printing method.
  • the heat treatment conditions after coating are not particularly limited as long as the electron transport layer can be formed.
  • the heat treatment temperature is preferably room temperature (25 ° C.) to 180 ° C., more preferably 60 to 120 ° C. It is.
  • the heat treatment time is preferably 10 seconds to 10 minutes, more preferably 30 seconds to 5 minutes.
  • the polymer compound according to the present invention may be used in combination with a crosslinking agent since the molecular weight increases and the charge transport property increases by crosslinking in the coating film formation or after formation by using the crosslinking agent in combination.
  • a crosslinking agent include known crosslinking agents such as an epoxy crosslinking agent, an oxetane crosslinking agent, an isocyanate crosslinking agent, an alkoxysilane crosslinking agent, and a vinyl crosslinking agent.
  • the electrode, photoelectric conversion layer, and intermediate layer may be patterned as necessary.
  • a well-known method can be applied suitably. For example, if it is a soluble material such as a photoelectric conversion layer and a transport layer, only unnecessary portions may be wiped after the entire surface application such as die coating or dip coating, or it is applied using a method such as an ink jet method or a screen printing method. Sometimes direct patterning may be used.
  • mask evaporation can be performed when the electrode is vacuum-deposited, or patterning can be performed by a known method such as etching or lift-off.
  • the pattern may be formed by transferring a pattern formed on another substrate.
  • the organic photoelectric conversion element can be sealed not only by the organic photoelectric conversion element but also by a technique known in the technical field such as an organic electroluminescence element.
  • a method of sealing a cap made of aluminum or glass by bonding with an adhesive, a plastic film on which a gas barrier layer such as aluminum, silicon oxide, or aluminum oxide is formed and an organic photoelectric conversion element are pasted with an adhesive.
  • the solar cell which has the above-mentioned organic photoelectric conversion element is provided. Since the organic photoelectric conversion element used for this form has the outstanding photoelectric conversion efficiency and durability (heat resistance, light resistance), it can be used suitably for the solar cell which uses this as an electric power generation element.
  • an optical sensor array in which the above-described organic photoelectric conversion elements are arranged in an array. That is, the organic photoelectric conversion element of this embodiment can also be used as an optical sensor array that converts an image projected on the optical sensor array into an electrical signal using the photoelectric conversion function.
  • Exemplified compound 48 was obtained by using the obtained compound G in place of compound A in Synthesis Example 1 (Synthesis of Exemplified Compound 3) described above.
  • Example 1 ⁇ Preparation of bulk heterojunction organic photoelectric conversion element with normal layer configuration ⁇ (Synthesis of p-type organic semiconductor material A) The following p-type organic semiconductor material A was synthesized with reference to US Pat. The number average molecular weight was 35000.
  • ITO indium tin oxide
  • sheet resistance 12 ⁇ / ⁇ sheet resistance 12 ⁇ / ⁇
  • An electrode was formed.
  • the patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • a liquid was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Thereafter, heat treatment was performed with 120 ° C. hot air for 20 seconds to form a hole transport layer.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
  • Electrode transport layer (Electron transport layer) Subsequently, the compound shown in Table 2 was dissolved in hexafluoroisopropanol so as to be 0.02% by mass, a solution was prepared, and the coating film was dried using a blade coater so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed with warm air at 100 ° C. for 2 minutes to form an electron transport layer.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing with a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it was taken out into the atmosphere, and organic photoelectric conversion elements 101 to 107 having a light receiving portion of about 10 ⁇ 10 mm size were produced. .
  • Organic photoelectric conversion elements 108 to 119 were produced in the same manner as the organic photoelectric conversion elements 101 to 107 except that the second electrode was changed from Al metal to the following Ag metal.
  • Organic photoelectric conversion elements 120 to 126 were produced in the same manner as the organic photoelectric conversion elements 101 to 107 except that the second electrode was changed from Al metal to the following Au metal.
  • Organic photoelectric conversion elements 120 to 126 were produced in the same manner as the organic photoelectric conversion elements 101 to 107 except that the second electrode was changed from Al metal to the following Cu metal.
  • the organic photoelectric conversion element for which the photoelectric conversion efficiency was evaluated was heated to 80 ° C. with a resistor connected between the anode and the cathode, and 100 mW / cm of a solar simulator (AM1.5G filter). After continuing to be exposed for 1000 h with light of 2 intensity, the organic photoelectric conversion element was cooled to room temperature, and the four light receiving parts formed on the organic photoelectric conversion element in the same manner as the evaluation of the photoelectric conversion efficiency, The photoelectric conversion efficiency ⁇ (%) was determined according to the above formula (1). Subsequently, the relative efficiency reduction rate of the conversion efficiency was calculated by the following formula (2) to obtain an average value, and this was used as a measure of the durability of the photoelectric conversion efficiency.
  • Table 2 shows the results obtained as described above.
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example, and is excellent in durability of photoelectric conversion efficiency. I understand that. It can also be seen that even when Ag or Au having a large ionization potential is used for the second electrode, it has a higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example and is excellent in durability of the photoelectric conversion efficiency.
  • the patterned transparent electrode was cleaned in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • the film was spin-coated at 140 ° C. in the air for 10 minutes to form a hole transport layer.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 180 ° C. for 3 minutes in a nitrogen atmosphere.
  • a solution prepared by dissolving 0.6% by weight of compound (P1) and 1.4% by weight of fullerene derivative 1 in a 1: 1 mixed solvent (weight) of chloroform / monochlorobenzene was prepared and filtered. Under a nitrogen atmosphere, the obtained filtrate was spin-coated on the p-type semiconductor layer at 1500 rpm and heated at 180 ° C. for 20 minutes. Thus, a mixture layer containing tetrabenzoporphyrin (compound (P2)) of about 100 nm and fullerene derivative 1 was formed on the p-type semiconductor layer.
  • the mass ratio of the P-type semiconductor (P2) and the n-type semiconductor (fullerene derivative 1) in the photoelectric conversion layer was 3: 7.
  • the obtained organic photoelectric conversion element was sealed with an aluminum cap and a UV curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1) in a nitrogen atmosphere, and then taken out into the atmosphere.
  • Organic photoelectric conversion elements 201 to 207 having a size of 2 mm square were produced.
  • Organic photoelectric conversion elements 208 to 215 were produced in the same manner as the organic photoelectric conversion elements 201 to 207 except that the second electrode was changed from Al metal to the following Ag metal.
  • Second electrodes of organic photoelectric conversion elements 208 to 215 The substrate on which the electron transport layer was formed was placed in a vacuum evaporation apparatus. Then, the device was set so that the shadow mask with a width of 2 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • an organic photoelectric conversion material prepared by mixing 0.6% by mass of p-type organic semiconductor material A and 1.2% by mass of n-type organic semiconductor material PC71BM (frontier carbon nanom spectra E110) in o-dichlorobenzene. After preparing the composition solution and stirring (60 minutes) while heating to 100 ° C. in an oven to dissolve the p-type organic semiconductor material A and PC71BM, the dry film thickness is reduced while filtering through a 0.45 ⁇ m filter. It apply
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • a liquid containing the mixture was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Thereafter, heat treatment was performed with 120 ° C. hot air for 20 seconds to form a hole transport layer.
  • the substrate on which the hole transport layer was formed was placed in a vacuum evaporation apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing using a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it was taken out into the atmosphere, and organic photoelectric conversion elements 301 to 308 having a light receiving portion of about 10 ⁇ 10 mm size were produced. .
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example even in the reverse layer configuration, and durability of the photoelectric conversion efficiency. It turns out that it is excellent in property.
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • a liquid was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm.
  • a first hole transport layer was formed by heat treatment with warm air of 120 ° C. for 20 seconds.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
  • an organic photoelectric conversion material prepared by mixing 0.6% by mass of p-type organic semiconductor material A and 1.2% by mass of n-type organic semiconductor material PC71BM (frontier carbon nanom spectra E110) in o-dichlorobenzene.
  • PC71BM frontier carbon nanom spectra E110
  • the dry film thickness is reduced while filtering through a 0.45 ⁇ m filter.
  • the film was applied using a blade coater so as to have a thickness of about 100 nm and dried at 95 ° C. for 2 minutes to form a first organic photoelectric conversion layer.
  • first electron transport layer (Formation of first electron transport layer) Subsequently, the compound described in Table 5 was dissolved in hexafluoroisopropanol so as to be 0.02% by mass, a solution was prepared, and coating and drying were performed using a blade coater so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with 100 ° C. warm air to form a first electron transport layer.
  • a solution containing HIL691 solution manufactured by Plextronics, trade name Plexcore HIL691
  • isopropanol was prepared, and applied and dried using a blade coater so that the dry film thickness was about 30 nm.
  • a second hole transport layer was formed by heat treatment with warm air of 120 ° C. for 20 seconds.
  • the film surface pH of this second hole transport layer was 7.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing using a cured resin (manufactured by Nagase ChemteX Corp., UV RESIN XNR5570-B1), it was taken out into the atmosphere, and organic photoelectric conversion elements 401 to 403 having a light receiving portion of about 10 ⁇ 10 mm size were produced. .
  • organic photoelectric conversion element 404 was produced in the same manner as the organic photoelectric conversion element 403 except that the second electrode was changed from Al metal to the following Ag metal.
  • Second electrode of organic photoelectric conversion element 404 The substrate on which the electron transport layer was formed was placed in a vacuum evaporation apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • An organic photoelectric conversion element 405 was produced in the same manner as the organic photoelectric conversion element 404 except that the first electron transport layer was changed to the following TiOx layer.
  • the substrate on which the first photoelectric conversion layer is formed is once returned to the atmosphere, and a solution obtained by diluting titania sol (PASOL HPW-10R manufactured by Catalytic Chemical Industry Co., Ltd.) four times with water so that the dry film thickness is about 30 nm.
  • the film was applied using a blade coater and heated in the atmosphere at 120 ° C. for 10 minutes to obtain a first electron transport layer made of TiOx. Thereafter, the substrate was brought back into the glove box, and thereafter, the work was performed in a nitrogen atmosphere.
  • organic photoelectric conversion elements 406 to 410 An organic photoelectric conversion device was prepared in the same manner as the organic photoelectric conversion devices 404 to 405 except that the compounds shown in Table 5 were used for forming the first electron transport layer and the second hole transport layer was changed as follows. 406 to 410 were produced.
  • a hole transport layer As a hole transport layer, a liquid containing PEDOT-PSS (CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm) composed of a conductive polymer and a polyanion, and isopropanol. It was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Thereafter, a second hole transport layer was formed by heat treatment with warm air of 120 ° C. for 20 seconds. The film surface pH of this hole transport layer was 2.
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example even in the tandem type of the normal layer configuration, and photoelectric conversion. It turns out that the durability of efficiency is excellent. Further, it can be seen that even when Ag having a large ionization potential is used for the second electrode, it has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example and is excellent in durability of photoelectric conversion efficiency. Moreover, even when used for the second electron transport layer constituting the charge recombination layer between the photoelectric conversion layers, and even when the film surface pH of the second hole transport layer is low, high photoelectric conversion efficiency (energy) It can be seen that the conversion efficiency is excellent and the photoelectric conversion efficiency is excellent.
  • a transparent electrode layer coating solution having the following composition was applied on a substrate provided with an auxiliary electrode so as to have a wet film thickness of 10 ⁇ m, and dried at 90 ° C. for 1 minute. Then, the heat processing for 30 minutes were performed at 120 degreeC using the electric furnace, and the transparent electrode layer was formed.
  • Transparent electrode layer coating liquid Conductive polymer dispersion (Clevios TH510; manufactured by HC Starck, solid content 1.7% by mass) 17.6 g Water-soluble binder WP-1 aqueous solution (number average molecular weight 33700, molecular weight distribution 2.4, solid content 20% by mass) 3.5 g Dimethyl sulfoxide 1.0g
  • first electron transport layer A compound described in Table 6 was dissolved in hexafluoroisopropanol so as to be 0.02% by mass, a solution was prepared, and dried using a blade coater so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with 100 ° C. warm air to form a first electron transport layer.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • p-type organic semiconductor material P3HT (manufactured by BASF: regioregular poly-3-hexylthiophene) is added to o-dichlorobenzene by 1.0 mass%, and n-type organic semiconductor material PCBM (manufactured by Frontier Carbon Corporation) E100H: 6,6-phenyl-C61-butyric acid methyl ester) was mixed at 0.8% by mass, and an organic photoelectric conversion material composition solution was prepared and stirred (60 minutes) while heating to 100 ° C. in an oven.
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • a liquid was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Thereafter, heat treatment was performed with warm air of 120 ° C. for 20 seconds to form a first hole transport layer.
  • Second electron transport layer (Formation of second electron transport layer) Then, the compound of Table 6 was melt
  • an organic photoelectric conversion material prepared by mixing 0.6% by mass of p-type organic semiconductor material A and 1.2% by mass of n-type organic semiconductor material PC71BM (frontier carbon nanom spectra E110) in o-dichlorobenzene. After preparing the composition solution and stirring (60 minutes) while heating to 100 ° C. in an oven to dissolve the p-type organic semiconductor material A and PC71BM, the dry film thickness is reduced while filtering through a 0.45 ⁇ m filter. It apply
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • isopropanol A liquid was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm.
  • the second hole transport layer was formed by heat treatment with warm air of 120 ° C. for 20 seconds.
  • the substrate on which the electron transport layer was formed was placed in a vacuum deposition apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing using a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it was taken out in the atmosphere, and an organic photoelectric conversion element 501 having a light receiving portion of about 10 ⁇ 10 mm size was produced.
  • a curable resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • An organic photoelectric conversion element 502 was produced in the same manner as the organic photoelectric conversion element 404 except that the first and second electron transport layers were changed to the following TiOx layers.
  • the substrate on which the first hole transport layer is formed is once returned to the atmosphere, and a solution obtained by diluting titania sol (PASOL HPW-10R manufactured by Catalytic Chemical Industry Co., Ltd.) four times with water has a dry film thickness of about 30 nm.
  • the coating was performed using a blade coater and heated in the atmosphere at 120 ° C. for 10 minutes to obtain a first electron transporting layer. Thereafter, the substrate was brought back into the glove box, and thereafter, the work was performed in a nitrogen atmosphere.
  • Organic photoelectric conversion elements 503 to 505 were prepared in the same manner as the organic photoelectric conversion element 501 except that the compounds shown in Table 6 were used for forming the first and second electron transport layers.
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example even in the tandem type of the reverse layer configuration, and photoelectric conversion. It turns out that the durability of efficiency is excellent.
  • Example 6 ⁇ Preparation of bulk heterojunction organic photoelectric conversion element with normal layer configuration ⁇
  • organic photoelectric conversion elements 601 to 607 (Formation of transparent electrode) An indium tin oxide (ITO) transparent conductive film deposited on a PET substrate with a thickness of 150 nm (sheet resistance 12 ⁇ / ⁇ ) is patterned to a width of 10 mm using a normal photolithography technique and wet etching. An electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • ITO indium tin oxide
  • this transparent substrate was placed in a vacuum deposition apparatus. After reducing the pressure in the vacuum evaporator to 10 ⁇ 3 Pa or less, MoO 3 was deposited at a deposition rate of 0.5 nm / second by 15 nm to form a first hole transport layer.
  • a compound described in Table 7 was dissolved in hexafluoroisopropanol so as to be 0.02% by mass, and a solution was prepared. The solution was applied and dried using a blade coater so that the dry film thickness was about 30 nm. Thereafter, heat treatment was performed with warm air at 100 ° C. for 2 minutes to form a second hole transport layer.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • an organic photoelectric conversion material prepared by mixing 0.6% by mass of p-type organic semiconductor material A and 1.2% by mass of n-type organic semiconductor material PC71BM (frontier carbon nanom spectra E110) in o-dichlorobenzene. After preparing the composition solution and stirring (60 minutes) while heating to 100 ° C. in an oven to dissolve the p-type organic semiconductor material A and PC71BM, the dry film thickness is reduced while filtering through a 0.45 ⁇ m filter. It apply
  • the substrate on which the electron transport layer was formed was placed in a vacuum evaporation apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing with a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it was taken out into the atmosphere, and organic photoelectric conversion elements 601 to 607 having a light receiving portion of about 10 ⁇ 10 mm size were produced. .
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example even when used in the hole transport layer, and photoelectric It can be seen that the conversion efficiency is excellent.
  • the compound 3 synthesized in Synthesis Example 1 was dissolved in hexafluoroisopropanol so as to be 0.1% by mass to prepare a solution. This solution was applied and dried on the quartz glass substrate using a blade coater adjusted to 65 ° C. so that the dry film thickness was about 20 nm. Then, the coating film of the compound 3 was formed by heat-processing for 2 minutes with 100 degreeC warm air.
  • the spectrum of the coating film is a blue dotted line (immediately after coating).
  • a spectrum in which only o-dichlorobenzene is applied again on this coating film is a spectrum of a yellow broken line (application of oDCB 65C), and a film in which this coating film is immersed in o-dichlorobenzene for 1 minute is a red solid line (oDCB). (Immersion) spectrum.
  • the results shown in FIG. 4 show that the coating film of the conjugated polymer compound (compound 3) according to the present invention does not dissolve in o-dichlorobenzene generally used for coating a photoelectric conversion layer. It is. Therefore, it is considered that a photoelectric conversion layer can be easily formed on the photoelectric conversion layer on the coating film without correlation mixing on the photoelectric conversion layer by a coating method.
  • ITO indium tin oxide
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • An isopropanol solution containing by mass% was prepared, and the substrate was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 30 nm. Thereafter, heat treatment was carried out with warm air of 120 ° C. for 20 seconds to form a hole transport layer on the first electrode.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV Sealing was performed using a cured resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), and then taken out into the atmosphere to prepare organic photoelectric conversion elements 801 to 816 having a light receiving portion of about 10 ⁇ 10 mm size. .
  • Table 8 shows the results obtained as described above.
  • the organic photoelectric conversion element of the present invention has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example, and is excellent in durability of photoelectric conversion efficiency. I understand. Further, it can be seen that even when Ag having a large ionization potential is used for the second electrode, it has higher photoelectric conversion efficiency (energy conversion efficiency) than the comparative example and is excellent in durability of photoelectric conversion efficiency.
  • the organic photoelectric conversion elements 6 to 16 of the present invention using the conjugated polymer compound according to the present invention and a metal having a work function of ⁇ 4.5 or less as the cathode show the initial photoelectric conversion efficiency. It can be seen that it is also excellent in durability.
  • the organic photoelectric conversion elements 801 to 803 and 805 using the comparative compounds 1 to 4 in which the number of amino groups per aromatic ring is less than 1.5 are stable because the work function is deep in the electrodes.
  • Electrode transport layer (Electron transport layer) Subsequently, the compound 3 was dissolved in hexafluoroisopropanol so that it might become 0.02 mass%, and the solution was prepared. This solution was applied and dried using a blade coater so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed for 2 minutes with 100 ° C. warm air to form an electron transport layer on the first electrode.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • p-type organic semiconductor material KP115 p-type organic semiconductor material B
  • n-type organic semiconductor material PC61BM frontier carbon nanom spectra E100H
  • An organic photoelectric conversion material composition solution in which 2% by mass was mixed was prepared and stirred (60 minutes) while heating to 100 ° C. in an oven to dissolve KP115 (p-type organic semiconductor material B) and PC61BM. While filtering with a .45 ⁇ m filter, it was applied using a blade coater so that the dry film thickness was about 100 nm, and dried at 95 ° C. for 2 minutes to form a photoelectric conversion layer on the electron transport layer. .
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • An isopropanol solution containing 0% by mass was prepared and applied and dried using a blade coater so that the dry film thickness was about 30 nm. Then, it heat-processed for 20 second with a 120 degreeC warm air, and formed the positive hole transport layer on the said photoelectric converting layer.
  • the substrate on which the hole transport layer was formed was placed in a vacuum deposition apparatus. Then, the device was set so that the 10 mm wide shadow mask was orthogonal to the transparent electrode, and the inside of the vacuum deposition apparatus was depressurized to 10 ⁇ 3 Pa or less, and then Ag metal was deposited at a deposition rate of 0.5 nm / second to 100 nm. Then, a second electrode was formed on the hole transport layer.
  • the obtained organic photoelectric conversion element was moved to a nitrogen chamber and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV curing was performed. After sealing using a resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it was taken out into the atmosphere, and an organic photoelectric conversion element 817 having a light receiving portion of about 10 ⁇ 10 mm size was produced.
  • a resin manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1
  • Table 9 shows that the conjugated polymer compound 15 according to the present invention has both high photoelectric conversion efficiency and durability even in the reverse layer configuration in which electrons are extracted from the transparent electrode (ITO) side.
  • the organic photoelectric conversion element 817 is slightly inferior in photoelectric conversion efficiency and durability as compared with the organic photoelectric conversion element 11 using silver as an electrode. From this, it is considered that the normal layer type organic photoelectric conversion element is superior in photoelectric conversion efficiency and durability to the reverse layer type organic photoelectric conversion element.
  • the compound X (310 mg, 0.25 mmol) and the compound U (256 mg, 0.25 mmol) were dissolved in 20 ml of anhydrous toluene. After purging the solution with nitrogen, 6.3 mg (0.007 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 16.7 mg (0.055 mmol) of tris (o-tolyl) phosphine were added. It was. This solution was purged with argon for an additional 15 minutes. Thereafter, the solution was heated to 110 to 120 ° C. and reacted for 72 hours.
  • ITO indium tin oxide
  • PEDOT-PSS CLEVIOS (registered trademark) PVP AI 4083, manufactured by Helios Co., Ltd., conductivity 1 ⁇ 10 ⁇ 3 S / cm
  • An isopropanol solution containing by mass% was prepared, and the substrate was applied and dried using a blade coater whose temperature was adjusted to 65 ° C. so that the dry film thickness was about 30 nm. Thereafter, heat treatment was carried out with warm air of 120 ° C. for 20 seconds to form a hole transport layer on the first electrode.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • the substrate was heat-treated at 120 ° C. for 3 minutes in a nitrogen atmosphere.
  • the substrate on which the electron transport layer was formed was placed in a vacuum evaporation apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing with a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it is taken out into the atmosphere, and the light receiving part is an organic photoelectric conversion element 901, 903, 905 having a size of about 10 ⁇ 10 mm. Produced.
  • ITO indium tin oxide
  • sheet resistance 12 ⁇ / ⁇ sheet resistance 12 ⁇ / ⁇
  • An electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried by nitrogen blowing, and finally subjected to ultraviolet ozone cleaning.
  • Electrode transport layer Next, the compound shown in Table 10 was dissolved in hexafluoroisopropanol so as to be 0.02% by mass, a solution was prepared, and coating and drying were performed using a blade coater so that the dry film thickness was about 5 nm. Thereafter, heat treatment was performed with warm air at 100 ° C. for 2 minutes to form an electron transport layer.
  • the substrate was brought into the glove box and worked in a nitrogen atmosphere.
  • this transparent substrate was placed in a vacuum deposition apparatus. After reducing the pressure in the vacuum evaporator to 10 ⁇ 3 Pa or less, MoO 3 was deposited by 15 nm at a deposition rate of 0.5 nm / second to form a hole transport layer on the photoelectric conversion layer.
  • the substrate on which the electron transport layer was formed was placed in a vacuum evaporation apparatus. Then, the element was set so that the shadow mask with a width of 10 mm was orthogonal to the transparent electrode, the pressure inside the vacuum vapor deposition machine was reduced to 10 ⁇ 3 Pa or less, and then 100 nm of Ag metal was deposited at a deposition rate of 0.5 nm / second. Thus, the second electrode was formed.
  • the obtained organic photoelectric conversion element was transferred to a nitrogen chamber, and sandwiched between two 3M Ultra Barrier Solar Film UBL-9L (water vapor transmission rate ⁇ 5 ⁇ 10 ⁇ 4 g / m 2 / d), and UV After sealing using a curable resin (manufactured by Nagase ChemteX Corporation, UV RESIN XNR5570-B1), it is taken out into the atmosphere, and the organic photoelectric conversion elements 902, 904, and 906 having a light receiving portion of about 10 ⁇ 10 mm size are attached. Produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 光電変換効率が高く、耐久性に優れた有機光電変換素子、およびその有機光電変換素子を用いた太陽電池を提供する。本発明の有機光電変換素子は、陰極と、陽極と、陰極と前記陽極との間に介在する、p型有機半導体材料およびn型有機半導体材料を含む光電変換層と、陰極と陽極との間に介在する、前記光電変換層以外の中間層とを有する。そして、中間層の少なくとも1つが、下記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する点に特徴を有する。

Description

有機光電変換素子およびこれを用いた太陽電池
 本発明は、有機光電変換素子およびこれを用いた太陽電池に関する。より詳しくは、本発明は、有機光電変換素子の光電変換効率を向上させるための手段に関する。
 近年、地球温暖化に対処するため、二酸化炭素排出量の削減が切に望まれている。また、近い将来、石油、石炭、および天然ガスなどの化石燃料が枯渇することが予想されており、これらに替わる地球に優しいエネルギー資源の確保が急務となっている。そこで、太陽光、風力、地熱、原子力など利用した発電技術の開発が盛んに行われているが、なかでも太陽光発電技術は、安全性の高さから特に注目されている。
 太陽光発電では、光起電力効果を利用した光電変換素子(例えば、太陽電池)を用いて、光エネルギーを直接電力に変換する。光電変換素子は、一般的に、一対の電極の間に光電変換層(光吸収層)が挟持されてなる構造を有し、当該光電変換層において光エネルギーが電気エネルギーに変換される。光電変換素子は、光電変換層に用いられる材料や、素子の形態により、単結晶・多結晶・アモルファスのSiを用いたシリコン系光電変換素子、GaAsやCIGS(銅(Cu)、インジウム(In)、ガリウム(Ga)、セレン(Se)からなる半導体材料)等の化合物半導体を用いた化合物系光電変換素子、色素増感型光電変換素子(グレッツェルセル)などが提案・実用化されている。
 しかしながら、これらの光電変換素子を用いて発電するコストは、依然として化石燃料を用いて発電・送電される電気の価格よりも高いものとなっており、普及の妨げとなっていた。また、基板に重いガラスを用いなければならないため、設置時に補強工事が必要であり、これらも発電コストを高騰させる一因であった。
 このような状況に対し、化石燃料による発電コストよりも低い発電コストを達成しうる技術として、透明電極と対電極との間に電子供与体層(p型半導体層)と電子受容体層(n型半導体層)とが混合されてなる光電変換層を挟んだバルクへテロジャンクション型光電変換素子が提案され、5%を超える光電変換効率が報告されている(例えば、非特許文献1を参照)。なお、光電変換素子としての耐久性を向上させることを目的として、通常の有機薄膜型光電変換素子とは逆順に各層を積層し、透明電極側から電子を取り出し、仕事関数の深い安定な金属電極側から正孔を取り出す、いわゆる逆層構成の有機薄膜型光電変換素子も提案されている(例えば、特許文献1を参照)。
 このバルクへテロジャンクション型有機光電変換素子は、軽量で柔軟性に富むことから、様々な製品への応用が期待されている。また、構造が比較的単純であり、p型有機半導体材料およびn型有機半導体材料を塗布することによって光電変換層を形成できることから、大量生産に好適であり、コストダウンによる太陽電池の早期普及にも寄与するものと考えられる。より具体的には、バルクへテロジャンクション型光電変換素子において、電極(陽極および陰極)や、正孔輸送層等を構成する金属酸化物層は、塗布プロセス以外の手法(例えば、真空蒸着法など)により形成される。その一方で、これら以外の層は塗布プロセスを用いて形成されうる。したがって、バルクへテロジャンクション型光電変換素子の製造は高速でかつ安価に行うことが可能であると期待され、上述した発電コストの課題を解決できる可能性があると考えられるのである。さらに、従来のシリコン系光電変換素子、化合物系光電変換素子、色素増感型光電変換素子などの製造とは異なり、160℃よりも高温の製造プロセスを必須に伴うものではないため、安価でかつ軽量なプラスチック基板上への形成も可能であると期待される。
 また、有機光電変換素子としては、ベンゾテトラポルフィリン化合物の前駆体等とフラーレン誘導体を用いた加熱変換系有機半導体層を使用する有機光電変換素子も提案されている(例えば、特許文献4を参照)。
 さらに、光電変換素子において、紫外線から可視光、赤外線まで広く分布する太陽光の有効に活用するために、複数の光電変換層を積層するタンデム素子構成も広く知られており、有機光電変換素子においても、タンデム素子構成が提案されている(例えば、特許文献2参照)。
 しかしながら、有機光電変換素子は、他のタイプの光電変換素子と比較して、光電変換効率や、熱や光に対する耐久性が十分とはいえないことから、光電変換効率および耐久性を向上させた有機光電変換素子が望まれていた。
 これまで、いわゆる順層型の有機光電変換素子において、陰極と有機光電変換層との間に陰極の仕事関数を調整するための中間層(電子輸送層または正孔ブロック層ともいう)を挿入することで電荷の分離効率が向上し変換効率が向上することが多く報告されている。例えば、バソキュプロイン(BCP)からなる層(例えば、特許文献3を参照)、共役系高分子化合物の主鎖にアンモニウム塩を有する側鎖を有する化合物からなる層(例えば、非特許文献2、非特許文献3、非特許文献4を参照)、共役系高分子化合物の主鎖にジメチルアミノ基を2つ有する側鎖を有する化合物(例えば、非特許文献5、6を参照)等が提案されている。これらの非特許文献2~6で開示されているように、双極子層は電極と発電層の間で真空準位のシフトを形成し、発電層からみた場合、実効的により浅い仕事関数の金属を電極として用いたような効果を得られると期待され、検討が進められている。
特開2009-146981号公報 国際公開第2007/076427号 米国特許第6580027B2号明細書 特開2008-016834号公報
Nature Mat.,vol.6(2007),p.497 J.Am.Chem.Soc.2011,133,p.8416-8419 Appl.Phys.Lett.vol.95,p.043301(2009) Adv. Funct. Mat.,2010,p.1977 Adv.Mater.2011,23,p.3086-3089 Advanced Materials,2011(Vol 23,no.40), p.4636-4643
 しかしながら、従来提案されている中間層を用いた技術では、依然として電荷輸送性能が低く変換効率が不十分である。また、従来の技術では陰極の仕事関数を浅くする効果が少ないため、陰極の構成材料として、仕事関数が浅くイオン化ポテンシャルが小さい(すなわち、酸化されやすい)金属(例えば、アルミニウム)を用いる必要がある。このため、陰極の酸化によって導電性が低下したり、仕事関数が深くなって界面の接触抵抗が大幅に増加したりすることで素子の電気特性が劣化し、耐久性に課題があった。
 なお、このような耐久性の課題に対して、通常の有機光電変換素子を逆の順番に積層し、透明電極側から電子を取り出し、仕事関数の深い安定な金属電極側から正孔を取り出す、いわゆる逆層構成の有機光電変換素子が提案されている。逆層構成の有機光電変換素子では、上述のような構成とすることで、不安定で酸化されやすい仕事関数の浅い金属を使用する必要がなくなり、電極起因の劣化が抑制され、大幅に寿命を向上できる。しかしながら、逆層構成の光電変換素子では仕事関数の深い金属を使用することに起因して、透明電極と対電極との間の仕事関数差である内蔵電界が小さくなり、順層構成に比べると変換効率が低くなるという課題があった。
 また、有機光電変換素子においては、プラスチック基板へのロールツーロール塗布プロセスでの高い生産性も期待されており、このようなプロセスで製造した場合であっても変換効率および耐久性に優れる有機光電変換素子も望まれている。
 本発明は、上記課題に鑑みなされたものであり、その目的は、光電変換効率が高く耐久性に優れた有機光電変換素子、およびその有機光電変換素子を用いた太陽電池を提供することにある。
 本発明者らは、上記課題を解決するために、鋭意研究を行った。その結果、特定構造の側鎖を有する高分子化合物を光電変換層以外の中間層に含ませることで、上記課題が解決されうることを見出し、本発明を完成させるに至った。
 すなわち、本発明の上記課題は、陰極と、陽極と、前記陰極と前記陽極との間に介在する、p型有機半導体材料およびn型有機半導体材料を含む光電変換層と、前記陰極と前記陽極との間に介在する、前記光電変換層以外の中間層と、を有する有機光電変換素子であって、前記中間層の少なくとも1つが、下記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する、有機光電変換素子により解決される。
本発明の他の一実施形態に係る、順層型の有機光電変換素子を模式的に表した断面概略図である。 本発明の他の一実施形態に係る、逆層型の有機光電変換素子を模式的に表した断面概略図である。 本発明の他の一実施形態に係る、タンデム型の光電変換層を備えた有機光電変換素子を模式的に表した断面概略図である。 実施例7において、化合物3の塗布膜をo-ジクロロベンゼンをオーバーコートした前後での吸収スペクトル、およびo-ジクロロベンゼン中に1分間浸漬した前後での吸収スペクトルおよびを示す図である。
 以下、本発明の好ましい形態を説明する。本発明の第1の形態は、陰極と、陽極と、前記陰極と前記陽極との間に介在する、p型有機半導体材料およびn型有機半導体材料を含む光電変換層と、前記陰極と前記陽極との間に介在する、前記光電変換層以外の中間層とを有する有機光電変換素子であって、前記中間層の少なくとも1つが、上述した一般式(1)で表される構造を側鎖として含む高分子化合物を含有することを特徴とする、有機光電変換素子である。
 本発明によれば、光電変換効率が高く、耐久性に優れた有機光電変換素子、およびその有機光電変換素子を用いた太陽電池が提供される。
 以下、添付した図面を参照しながら本形態を説明するが、本発明の技術的範囲は、特許請求の範囲の記載により定められるべきものであり、以下の形態のみに制限されない。なお、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。
 <有機光電変換素子>
 図1は、本発明の一実施形態に係る、順層型の有機光電変換素子を模式的に表した断面概略図である。図1の有機光電変換素子10は、後述する実施例1で作製される、例えば有機光電変換素子105等の構成に対応している。具体的には、図1の有機光電変換素子10は、基板25上に、陽極(第1の電極)11、正孔輸送層26、光電変換層14、電子輸送層27、および陰極(第2の電極)12がこの順に積層されてなる構成を有する。一例として、電子輸送層27は、上述した一般式(1)で表される構造を側鎖として含む高分子化合物(好ましくは共役系高分子化合物)を含有している。
 図1に示す有機光電変換素子10の作動時において、光は基板25側から照射される。本実施形態において、陽極11は、照射された光が光電変換層14へと届くようにするため、透明な電極材料(例えば、ITO)で構成される。基板25側から照射された光は、透明な陽極11および正孔輸送層26を経て光電変換層14へと届く。
 光電変換層14はp型有機半導体材料およびn型有機半導体材料を含むが、この光電変換層14に光が入射されると、p型有機半導体材料の電子が最高被占軌道(以下、「HOMO」とも称する)から最低空軌道(以下、「LUMO」とも称する)に励起され、次いでこの電子はn型有機半導体材料の伝導帯に移動する。その後、当該電子は、電子輸送層27および陰極12を経た後、外部回路を経由してp型有機半導体材料の伝導帯に移動する。そして、p型有機半導体材料の伝導帯で生じた電子は、LUMOのレベルに移動する。
 一方、光電変換層14に光が入射されると、p型有機半導体材料のHOMOのレベルに発生した正孔は、正孔輸送層26および陽極11を経た後、外部回路を経由してn型有機半導体材料の価電子帯に移動する。こうして光電変換層14において光電流が流れ、発電が行われるのである。このような光電荷分離はp型有機半導体材料とn型有機半導体材料の接触界面が大きいほど促進されると考えられていることから、本発明では、p型有機半導体材料とn型有機半導体材料とが一様に混合されたバルクへテロジャンクション型の光電変換層14が用いられることが特に好ましい。ただし、かような形態のみには限定されない。
 なお、正孔輸送層26は、正孔の移動度が高い材料で形成されており、光電変換層14のpn接合界面で生成した正孔を効率よく陽極11へと輸送する機能を担っている。一方、本実施形態において、電子輸送層27は、上述したように、一般式(1)で表される構造を側鎖として含む高分子化合物(好ましくは共役系高分子化合物)を含有している。この一般式(1)で表される構造を側鎖として含む高分子化合物は電子の移動度が高い材料であることから、電子輸送層27は、光電変換層14のpn接合界面で生成した電子を効率よく陰極12へと輸送する機能を発揮することができる。
 図2は、本発明の他の一実施形態に係る、逆層型の有機光電変換素子を模式的に表した断面概略図である。図2の有機光電変換素子20は、後述する実施例3で作製される、例えば有機光電変換素子305等の構成に対応している。図2の有機光電変換素子20は、図1の有機光電変換素子10と比較して、陽極11と陰極12とが逆の位置に配置され、また、正孔輸送層26と電子輸送層27とが逆の位置に配置されている点が異なる。すなわち、図2の有機光電変換素子20は、基板25上に、陰極12、電子輸送層27、光電変換層14、正孔輸送層26、および陽極11がこの順に積層されてなる構成を有している。このような構成を有することにより、光電変換層14のpn接合界面で生成される電子は電子輸送層27を経て陰極12へと輸送され、正孔は正孔輸送層26を経て陽極11へと輸送される。なお、図2に示す実施形態においても、電子輸送層27は、上述した一般式(1)で表される構造を側鎖として含む高分子化合物(好ましくは共役系高分子化合物)を含有していることが好ましい。
 図3は、本発明の他の一実施形態に係る、順層タンデム型(多接合型)の光電変換層を備えた有機光電変換素子を模式的に表した断面概略図である。図3の有機光電変換素子30は、後述する実施例4で作製される、例えば有機光電変換素子403等の構成に対応している。図3の有機光電変換素子30は、図1の有機光電変換素子10と比較して、光電変換層14に代えて、第1の光電変換層14aと、第2の光電変換層14bと、これら2つの光電変換層(14a,14b)の間に介在する電荷再結合層38との積層体が配置されている点が異なる。ここで、電荷再結合層38は、第1の光電変換層14aの側に配置される第2の電子輸送層38aと、第2の光電変換層14bの側に配置される第2の正孔輸送層38bの2層からなっている。なお、図3に示すタンデム型の有機光電変換素子30では、第1の光電変換層14aおよび第2の光電変換層14bに、それぞれ吸収波長の異なる光電変換材料(p型有機半導体材料およびn型有機半導体材料)を用いることにより、より広い波長域の光を効率よく電気に変換することが可能となる。
 なお、図3に示す有機光電変換素子30において、陽極11と陰極12とが逆の位置に配置され、また、正孔輸送層26と電子輸送層27とが逆の位置に配置され、第2の電子輸送層38aと第2の正孔輸送層38bとが逆の位置に配置されていれば逆層タンデム型(多接合型)の光電変換素子となる。逆層タンデム型(多接合型)の光電変換素子は、後述する実施例5で作製される、例えば有機光電変換素子503等の構成に対応している。
 上記実施形態のうち、本願発明の有機光電変換素子は、図1に示される順層型の有機光電変換素子または図2に示される逆層型の有機光電変換素子であることが好ましく、図1に示される順層型の有機光電変換素子であることが特に好ましい。
 上述した図1~図3に示す形態では、電子輸送層が一般式(1)で表される構造を側鎖として含む高分子化合物を含有している。すなわち、これらの形態において、中間層は電子輸送層である。ただし、本発明において、「中間層」とは、一方の電極と光電変換層との間に介在する任意の層、または、光電変換層が複数存在する場合には、当該複数の光電変換層どうしの間に介在する任意の層を意味する。したがって、本発明では、上記の定義を満たす中間層のうち少なくとも1つが、一般式(1)で表される構造を側鎖として含む高分子化合物を含有していればよく、上述した実施形態のみに限定して解釈されるわけではない。
 本発明によれば、上述した電子輸送層のような中間層が一般式(1)で表される構造を側鎖として含む高分子化合物を含有することで、光電変換効率が高く耐久性に優れた有機光電変換素子が提供されうる。特に、図1に示すような順層型の有機光電変換素子の電子輸送層が中間層として一般式(1)で表される構造を側鎖として含む高分子化合物(好ましくは共役系高分子化合物)を含むことが特に好適である。これは、かような形態によれば、一般式(1)で表される構造を側鎖として含む高分子化合物における側鎖が、主鎖の周りに効率よく配置されることで、当該側鎖と電極との接触効率が増大し、界面における抵抗が低減されることによるものと考えられる。また、当該実施形態では、電極の構成材料の仕事関数が適切に調整されることによるメカニズムも推定されている。すなわち、図1に示すような順層型の有機光電変換素子において、陰極に接する電子輸送層が一般式(1)で表される構造を側鎖として含む高分子化合物を含むと、陰極の構成材料の仕事関数が浅くなるように当該化合物が作用し、これにより、アルミニウムよりもイオン化ポテンシャルが大きく仕事関数が深い銀や金といった金属を用いても、耐久性に優れ、かつ、光電変換効率も高い値に維持される有機光電変換素子が提供されうるのである。
 以下、本発明に係る有機光電変換素子の各構成について詳細に説明する。
 [電子輸送層(正孔防止層またはホールブロック層(HBL)とも言う)]
 本形態の有機光電変換素子は、必要に応じて電子輸送層を含みうる。電子輸送層は、電子を輸送する機能を有し、かつ正孔を輸送する能力が著しく小さい(例えば、電子の移動度の100分の1以下)という性質を有する。電子輸送層は、光電変換層と陰極との間に設けられ、電子を陰極へと輸送しつつ、正孔の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。その結果、高い開放電圧や高い曲線因子を有する光電変換素子を得ることができる。
 図1~図3に示す実施形態において、電子輸送層は、上述したように、下記の一般式(1)で表される構造を側鎖として含む高分子化合物を含有している。
Figure JPOXMLDOC01-appb-C000010
すなわち、中間層が、光電変換層と第2電極との間に存在する、特に光電変換層と陰極(アノード)との間に存在する電子輸送層であることが好ましい。これは、当該高分子化合物は双極子層を形成し、発電層からみた電極の仕事関数を疑似的に浅くする作用があり、キャリアをより容易に抽出できるからである。なお、仕事関数が深すぎて光電変換層からの正孔輸送時にトラップとして機能するような場合には、正孔輸送層上に形成して正孔輸送層と発電層(光電変換層)の間の電気的接合を改善することもできる。
 (一般式(1)で表される構造を側鎖として含む高分子化合物)
 以下、本発明の特徴的な構成である「一般式(1)で表される構造を側鎖として含む高分子化合物」について、詳細に説明する。本発明の一形態によれば、上記一般式(1)で表される構造を側鎖として含む高分子化合物も提供される。
 上記一般式(1)において、L1は、置換または無置換の炭素原子数1~20のアルキレン基、置換または無置換の炭素原子数3~20のシクロアルキレン基、置換または無置換の炭素原子数2~20のアルキニレン基、置換または無置換の炭素原子数6~30のアリーレン基、置換または無置換の炭素原子数1~30のヘテロアリーレン基、炭素原子数1~20のアルキレンオキシ基、および-(L1’)-(OR)-からなる群から選択される2価の連結基を表す。
 また、Lが-(L1’)-(OR)-である場合、L1’は、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、または単結合を表す。好ましくは、L1’は、単結合、炭素原子数1~15の直鎖または分岐鎖のアルキレン基または炭素原子数6~18のアリーレン基であることが好ましく、単結合、炭素原子数1~8の直鎖または分岐鎖のアルキレン基、o-、m-、p-フェニレン基であることがより好ましい。また、Rは、エチレン基、トリメチレン基またはプロピレン基を表す。Rは、好ましくはエチレン基またはプロピレン基を表し、より好ましくはエチレン基を表す。pは、-(L1’)-(OR)-中のアルキレンオキサイド基(-OR-)の繰り返し数を表し、1~5の整数であり、1~3の整数であることが好ましく、1または2であることがより好ましい。
 本明細書において、「炭素原子数1~20のアルキレン基」としては、特に制限されず、炭素原子数1~20の直鎖または分岐鎖のアルキレン基である。例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等が挙げられる。これらのうち、炭素原子数1~15の直鎖または分岐鎖のアルキレン基が好ましく、炭素原子数1~8の直鎖または分岐鎖のアルキレン基がより好ましい。
 本明細書において、「炭素原子数3~20のシクロアルキレン基」としては、特に制限されないが、例えば、シクロペンチレン基、シクロヘキシレン基、シクロヘプチレン基等が挙げられる。
 本明細書において、「炭素原子数2~20のアルキニレン基」としては、特に制限されないが、例えば、エチニレン基、1-プロピニレン基、1-ブチニレン基、1-ペンチニレン基、1-ヘキシニレン基、2-ブチニレン基、2-ペンチニレン基、1-メチルエチニレン基、3-メチル-1-プロピニレン基、3-メチル-1-ブチニレン基等が挙げられる。
 本明細書において、「炭素原子数6~30のアリーレン基」としては、特に制限されないが、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、ナフタレンジイル基、アントラセンジイル基、ナフタセンジイル基、ピレンジイル基、ナフチルナフタレンジイル基、ビフェニルジイル基(例えば、[1,1’-ビフェニル]-4,4’-ジイル基、3,3’-ビフェニルジイル基、3,6-ビフェニルジイル基等)、テルフェニルジイル基、クアテルフェニルジイル基、キンクフェニルジイル基、セキシフェニルジイル基、セプチフェニルジイル基、オクチフェニルジイル基、ノビフェニルジイル基、デシフェニルジイル基等が挙げられる。
 本明細書において、「炭素原子数1~30のヘテロアリーレン基」としては、特に制限されないが、例えば、カルバゾール環、カルボリン環、ジアザカルバゾール環(モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す)、トリアゾール環、ピロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジベンゾフラン環、ジベンゾチオフェン環、インドール環からなる群から導出される2価の基等が挙げられる。
 本明細書において、「炭素原子数1~20のアルキレンオキシ基」は、「-O-アルキレン-」または「-アルキレン-O-」を意味し、この際のアルキレン基が炭素原子数1~20のアルキレン基である。ここで、炭素原子数1~20のアルキレン基としては、特に制限されないが、例えば、上記Lで記載したのと同様のアルキレン基が例示される。炭素原子数1~15の直鎖または分岐鎖のアルキレン基が好ましく、炭素原子数1~8の直鎖または分岐鎖のアルキレン基がより好ましい。より具体的には、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2-メトキシエチルオキシ基等のアルキルオキシ基から水素原子を1個除いた2価の基が挙げられる。
 Lとしてのアルキレン基、シクロアルキレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基、アルキレンオキシ基は、適当な以下の置換基によって置換されたものであってもよい。なお、下記置換基に加えて、Lとしてのアルキレン基、シクロアルキレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基、アルキレンオキシ基は(特にLが「置換されたアルキレン基」である場合)、当該アルキレン基を置換する置換基は、上述したもののほか、前記一般式(1)で表される構造であってもよい(後述する例示化合物53を参照)。
 (置換基)
 Lとしてのアルキレン基、シクロアルキレン基、アルキニレン基、アリーレン基、ヘテロアリーレン基、アルキレンオキシ基は、それぞれ任意の位置に、置換基を有しうる。かような置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等、重合性の基(例えば、アクリロイル基、メタクリロイル基、エポキシ基、オキセタン基、イソシアネート基、アルコキシシラン基等)が挙げられる。なお、上記において、同じ置換基で置換されることはない。すなわち、置換のアルキル基は、アルキル基で置換されることはない。これらのうち、置換基は、ハロゲン原子、シアノ基、ヒドロキシ基、ニトロ基であることが好ましく、フッ素原子、シアノ基、ヒドロキシ基、ニトロ基であることがより好ましい。これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 Lは、好ましくは置換もしくは無置換の炭素原子数1~20の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~15の直鎖または分岐鎖のアルキレン基または炭素原子数6~18のアリーレン基であり;Rは、エチレン基またはプロピレン基を表し;pは、1~3の整数である]、置換もしくは無置換のアリーレン基である。Lは、より好ましくは置換もしくは無置換の炭素原子数1~15の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~15の直鎖または分岐鎖のアルキレン基または炭素原子数6~18のアリーレン基であり;Rは、エチレン基またはプロピレン基を表し;pは、1~3の整数である]、置換もしくは無置換のアリーレン基である。Lは、さらに好ましくは炭素原子数1~8の式:-L-N(L)(L)の置換基で置換されたまたは無置換の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~8の直鎖または分岐鎖のアルキレン基またはo-、m-、p-フェニレン基であり;Rは、エチレン基を表し;pは、1または2である]である。また、Lが無置換の炭素原子数1~6のアルキレン基(メチレン基、エチレン基、トリメチレン基、プロピレン基等)である形態も好ましい一形態である。
 一般式(1)において、Lは:
Figure JPOXMLDOC01-appb-C000011
で表される基である。また、Lは、窒素原子(N)が正に荷電し、対イオン(アニオン)との間でイオン対を形成した塩(アンモニウム塩)の形態であってもよい。
 ここで、Lは、上記と同様の定義である。また、LにおけるLは、一般式(1)におけるLと互いに同一であってもよいし、異なっていてもよい。さらには、Lが繰り返し用いられる場合においても、L同士は互いに同一であってもよいし、異なっていてもよい。
 また、Lは、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基、またはLを表す。ただし、窒素原子(N)に結合した2つのLがともに水素原子となることはない。また、2つのLは互いに同一であってもよいし、異なっていてもよい。さらに、LがLである場合、LとしてのLはもともとのLと同一であってもよいし、異なっていてもよい。これらのうち、Lは、水素原子、置換もしくは無置換の炭素原子数1~12のアルキル基、アミノ基(ただし-NHではない)、アルキルアミノ基であることが好ましく、水素原子、置換もしくは無置換の炭素原子数1~8のアルキル基、およびジアルキルアミノ基であることがより好ましい。
 なお、Lが塩(アンモニウム塩)の形態であるとは、例えば下記化合物30のように窒素原子(N)が正に荷電し、対イオン(アニオン)との間でイオン対を形成する形態を意味する。ここで、Lがアンモニウム塩の形態である場合にイオン対を形成する対イオン(アニオン)は、特に制限されないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子)、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸などが挙げられる。
 本明細書において、「炭素原子数1~20のアルキル基」は、特に制限されず、炭素原子数1~20の直鎖または分岐鎖のアルキル基である。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、1,3-ジメチルブチル基、1-イソプロピルプロピル基、1,2-ジメチルブチル基、n-ヘプチル基、1,4-ジメチルペンチル基、3-エチルペンチル基、2-メチル-1-イソプロピルプロピル基、1-エチル-3-メチルブチル基、n-オクチル基、2-エチルヘキシル基、3-メチル-1-イソプロピルブチル基、2-メチル-1-イソプロピル基、1-t-ブチル-2-メチルプロピル基、n-ノニル基、3,5,5-トリメチルヘキシル基、n-デシル基、イソデシル基、n-ウンデシル基、1-メチルデシル基、n-ドデシル基、n-ヘキサデシル基、2-ヘキシルデシル基などが挙げられる。このうち、溶解性を向上させるという観点から、好ましくは炭素原子数1~12のアルキル基であり、より好ましくは炭素原子数1~8のアルキル基であり、例えば、メチル、エチル、iso-プロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、2-エチルヘキシル、2-ヘキシルデシル等が挙げられる。アルキル基は、特に好ましくはメチル基、エチル基、プロピル基である。
 本明細書において、「炭素原子数3~20のシクロアルキル基」としては、特に制限はないが、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などが挙げられる。このうち、溶解性を向上させるという観点から、炭素原子数4~8のシクロアルキル基であることが好ましい。
 本明細書において、「炭素原子数6~30のアリール基」としては、特に制限はないが、例えば、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。
 本明細書において、「炭素原子数1~20のヘテロアリール基」としては、特に制限はないが、例えば、ピリジル基、ピリミジル基、ピラジニル基、トリアジニル基、フラニル基、ピロリル基、チオフェニル基(チエニル基)、キノリル基、フリル基、ピペリジル基、クマリニル基、シラフルオレニル基、ベンゾフラニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、ジベンゾフラニル基、ベンゾチオフェニル基、ジベンゾチオフェニル基、インドリル基、カルバゾリル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、インダゾリル基、ベンゾチアゾリル基、ピリダジニル基、シンノリル基、キナゾリル基、キノキサリル基、フタラジニル基、フタラジンジオニル基、フタルアミジル基、クロモニル基、ナフトラクタミル基、キノロニル基、ナフタリジニル基、ベンズイミダゾロニル基、ベンズオキサゾロニル基、ベンゾチアゾロニル基、ベンゾチアゾチオニル基、キナゾロニル基、キノキサロニル基、フタラゾニル基、ジオキソピリミジニル基、ピリドニル基、イソキノロニル基、イソキノリニル基、イソチアゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、インダジロニル基、アクリジニル基、アクリドニル基、キナゾリンジオニル基、キノキサリンジオニル基、ベンゾオキサジンジオニル基、ベンゾキサジノニル基、ナフタルイミジル基、ジチエノシクロペンタジエニル基、ジチエノシラシクロペンタジエニル基、ジチエノピロリル基、ベンゾジチオフェニル基などが挙げられる。
 Lとしてのアルキル基、シクロアルキル基、アリール基、ヘテロアリール基は、適当な置換基によって置換されたものであってもよい。この場合の置換基としては、上記Lにおける置換基として上述した基が同様に採用されうる。
 一般式(1)において、Lは、上述したLと同様の定義である。
 本発明において、一般式(1)は:
Figure JPOXMLDOC01-appb-C000012
である。そして、一般式(1)において、Lは:
Figure JPOXMLDOC01-appb-C000013
で表される基である。したがって、一般式(1)は:
Figure JPOXMLDOC01-appb-C000014
と表すことができる。そして、例えば上記2つのLの少なくとも一方がLである場合、一般式(1)は:
Figure JPOXMLDOC01-appb-C000015
と表すことができる。ここでも、例えば上記2つのLの少なくとも一方がLである場合、一般式(1)は:
Figure JPOXMLDOC01-appb-C000016
 つまり、「Lの少なくとも一方がLである」場合を繰り返すと、一般式(1)で表される構造の範囲は無限に発散してしまい、確定できない。したがって、本発明では、一般式(1)で表される構造:
Figure JPOXMLDOC01-appb-C000017
における窒素原子(N)を最も多く有する鎖の有する窒素原子(N)の数の上限値を5個以下に規定することで、側鎖の構造の発散を禁止し、一般式(1)で表される構造の範囲を確定することができる。一方、上記窒素原子(N)の数の下限値は、理論上2個である。したがって、上記窒素原子(N)の数は、2~5個であることが必須である。なお、上記窒素原子(N)の数は、好ましくは2~4個であり、より好ましくは2~3個であり、最も好ましくは2個である。
 一般式(1)で表される構造は、高分子化合物の主鎖に対して、側鎖として結合している。ここで、高分子化合物の主鎖の具体的な形態について特に制限はなく、本技術分野における従来公知の知見が適宜参照されうる。
 なお、高分子化合物主鎖は非共役系高分子と共役系高分子との2つに分類され、どちらにおいても機能するが、より高いキャリア輸送性を得る上では共役系高分子主鎖である方が好ましい。
 前記共役系高分子としては、例えばポリチオフェン(基本のポリチオフェンを含む(以下同様))類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類、ポリチアジル類、ポリフルオレン類、ポリシラフルオレン類、ポリホスファフルオレン類、ポリシクロペンタジチオフェン類、ポリジチエノシロール類、およびこれらのコポリマーを含む共役高分子化合物を利用することができる。
 また、非共役系高分子としては、例えば、ポリ(メタ)アクリレート類、ポリスチレン類、ポリアルキルエーテル類、ポリアルキレンテレフタレート類、ポリアミン類およびこれらのコポリマーを含む高分子化合物を利用することができる。
 高分子化合物の主鎖は、単一の共役系高分子または単一の非共役系高分子から構成されていてもよいし、複数種類の共役系高分子または複数種類の非共役系高分子から構成されていてもよいし、単一または複数種の非共役系高分子と単一または複数種の共役系高分子との混合であってもよい。
 本発明の一実施形態において、主鎖が下記一般式(2)で表される構造単位を有する高分子化合物(好ましくは共役系高分子化合物)であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 上記一般式(2)において、MおよびMは、それぞれ独立して、単環または縮合環であるアリール基またはヘテロアリール基を表し、Zは、前記一般式(1)で表される構造を表し、aおよびbは、それぞれ独立して、a>0、b≧0、a+b=1.0の関係を満たす正の実数を表す。また、nは、Mに結合しているZの数を表し、1、2または3である。
 一般式(2)においてMおよびMで表される共役高分子化合物の例を以下に挙げるが、この限りではない。例えば、ポリチオフェン類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリフラン類、ポリアズレン類、ポリパラフェニレン類、ポリイソチアナフテン類、ポリフルオレン類、ポリシラフルオレン類、ポリホスファフルオレン類、ポリシクロペンタジチオフェン類、ポリジチエノシロール類、およびこれらのコポリマーを含む共役高分子化合物が挙げられる。
 なお、一般式(1)で表される構造が高分子化合物の側鎖として結合する場合、当該側鎖が結合する主鎖の1つの原子に対して、1つまたは複数の側鎖(一般式(1)で表される構造)が結合することができる。ここで、主鎖の1つの原子に対して複数の側鎖が結合する場合、当該複数の側鎖は、互いに同一であってもよいし、異なっていてもよい。また、主鎖の芳香族環1つに対して、一般式(1)で表される構造に含まれるアミノ基を1個以上含むことが好ましく、より好ましくは1.5個以上である。すなわち、本発明の好ましい一実施形態において、本願発明に係る高分子化合物は、主鎖に芳香族環を含み、かつ置換基として1級~4級のアミノ基を前記芳香族環あたり1.5個以上有する。そして、後述するように、当該高分子化合物を含む中間層と接する電極の仕事関数が、光電子分光法で測定した際に-4.5eV以下であることが好ましい。これにより、有機光電変換素子は、光電変換効率および耐久性に優れる。ここで、本実施形態の有機光電変換素子が上記効果を奏するメカニズムは明らかではないが、以下のように推測される。ただし、本願発明は下記推測に限定されるものではない。すなわち、高分子化合物は、極性の高い側鎖である1級~4級のアミノ基が高分子化合物主鎖の周りに高密度に配置する構造を有する。これにより、仕事関数が深く酸化に安定な金属を電極に使用しても、中間層は双極子層として機能して、他方の電極との間の内蔵電界を十分確保できるためであると、推定される。ゆえに、当該高分子化合物を含む中間層を光電変換層と電極との間に有する有機光電変換素子は、酸化に対して安定な導電性物質に対しても十分な内蔵電界向上効果を発揮して、光電変換効率および耐久性に優れた有機光電変換素子を提供できる。
 ここで、高分子化合物の主鎖を構成する芳香族環は、特に制限されないが、例えば、下記式で表される芳香族環主鎖が挙げられる。なお、下記式において、Rは、置換基を表す。
Figure JPOXMLDOC01-appb-C000019
 本実施形態において、高分子化合物は、置換基として1級~4級のアミノ基を前記芳香族環あたり1.5個以上有する。ここで、「芳香族環のあたりのアミノ基の数」は、π電子が6個である5員環または6員環を1つとして数え、当該芳香族環1個当たりに存在するアミノ基の数(平均個数)とする。例えば、ベンゼン、ピリジン、ピリダジン、ピリミジン、ピラジン、チオフェン、フラン、ピロール等を1個として数える。これらが連結したビフェニル、ビチオフェンなど、およびこれらが縮合したナフタレン、チエノチオフェン、ベンゾチオフェンなどは2つと数える。なおフルオレン環は中央のシクロペンタン環は芳香族でないため、2つと数えるが、カルバゾール環は中央のピロール環は芳香族であるため、3つと数える。すなわち、本願明細書中では、芳香族環は、下記のとおりに数えられる。
Figure JPOXMLDOC01-appb-C000020
 アミノ基は、これらの芳香族環主鎖の水素原子を、直接または2価の連結基を介して置換されていればよい。この際、1級アミノ基、2級アミノ基、3級アミノ基、4級アミノ基(アンモニウム基)のいずれであってもよいが、アミノ基の少なくとも1個が3級アミノ基であることが好ましく、全アミノ基の3割以上が3級アミノ基であることがより好ましく、全アミノ基の4割以上が3級アミノ基であることがさらにより好ましく、全アミノ基の5割以上が3級アミノ基であることがさらに好ましく、アミノ基すべてが3級アミノ基であることが特に好ましい。3級アミノ基が多く存在する高分子化合物は、溶解性、塗布性、および得られる有機光電変換素子の耐久性に優れている。なお、アミノ基が4級アミノ基(アンモニウム基)であるとは、例えば、下記化合物14に示されるように、アミノ基が塩の形態であることを意味する。すなわち、本願発明に係る高分子化合物の主鎖を構成する構造単位は、当該構造単位中のアミノ基が塩の形態である場合も含む。ここで、4級アミノ基(アンモニウム基)と塩を形成するアニオンの例は、特に制限されないが、ハロゲン原子(フッ素原子、塩素原子、臭素原子)、硫酸イオン、硝酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロリン酸などが挙げられる。これらの中でもハロゲン原子が好ましく、中でも臭素原子であることが好ましい。
 また、本実施形態において、アミノ基は、高分子化合物の主鎖中に、芳香族環1個あたり1.5個以上置換基として存在する。好ましくは、アミノ基は、高分子化合物の主鎖中に、芳香族環1個あたり、2個以上、3個以上、4個以上、の順で置換基として存在することが好ましい。このような範囲のアミノ基の数(密度)であれば、良好な溶解性、塗布性、および得られる有機光電変換素子の耐久性を改善することができる。また、高い耐久性を得るには、塗布を水分・酸素のない窒素下で行うことが効果的であるが、窒素下での塗布はハジキが発生しやすくなるという課題がある。しかし、本発明のようにアミノ基の数(密度)を高めることで、窒素下の塗布でもハジキの発生を抑制することができる。ここで、芳香族環1個あたりに存在するアミノ基数の上限は、特に制限されないが、合成的な観点からは15個以下であることが好ましく、7個以下であることがより好ましい。このような範囲のアミノ基が存在する芳香族環を主鎖に有する高分子化合物を含む中間層を光電変換層と電極との間に有する有機光電変換素子は、酸化に対して安定な導電性物質に対しても十分な内蔵電界向上効果を発揮して、光電変換効率をおよび耐久性に優れる。また、このような高分子化合物はアルコール、フッ化アルコール等の極性の高い有機溶媒に溶解するため、中間層を極性の高い溶媒には溶解しない光電変換層の上に直接塗布法により容易に形成できる。
 さらに好ましくは、当該高分子化合物の主鎖は、下記一般式(3)で表される構造単位を有することが好ましい。
Figure JPOXMLDOC01-appb-C000021
 一般式(3)において、Xは、窒素原子、炭素原子、ケイ素原子またはリン原子(3価のリン原子および5価のリン原子を含む;5価のリン原子の場合には、Xは、P(=O)-Rのホスフィンオキシド系化合物由来の基であることが好ましい)を表す。ここで、各構造単位中のXは、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、Xは、炭素原子である。Xが炭素原子であることで、高分子化合物を中心として、表面が均一かつ高密度にアミノ基を有する高分子化合物とすることができ、双極子層の分極をさらに高めることができ、得られる有機光電変換素子の安定性を高めることができる。
 また、一般式(3)において、Zは、前記一般式(1)で表される構造を表す。
 さらに、一般式(3)において、nは、Xに結合しているZの数を表し、1、2または3である。すなわち、Xがリン原子を表す場合には、nは1または3であり、Xが炭素原子またはケイ素原子を表す場合には、nは2であり、Xが窒素原子を表す場合には、nは1である。
 また、一般式(3)において、AおよびBは、それぞれ独立して、6員の芳香族炭化水素環、5員の芳香族複素環または6員の芳香族複素環を表す。これらの定義を満たすものの例として、6員の芳香族炭化水素環としてはベンゼン環が挙げられる。また、5員の芳香族複素環または6員の芳香族複素環としては、例えば、オキサゾール環、オキサジアゾール環、オキサトリアゾール環、イソオキサゾール環、テトラゾール環、チアジアゾール環、チアトリアゾール環、イソチアゾール環、チオフェン環、フラン環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、トリアゾール環等が挙げられる。なお、これらの環は、それぞれ任意の位置に、置換基を有していてもよい。一般式(3)における環Aおよび環Bにおける置換基としては、上記一般式(1)におけるLの置換基として(置換基)の欄で例示した基が同様に採用されうる。
 さらに好ましくは、高分子化合物が下記一般式(4)で表わされる構造単位(塩の形態を含む)を有する。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(4)において、L、L、およびLは、上記一般式(1)と同様の定義である。ここで、各構造単位中のLは、それぞれ、同じであってもあるいは異なるものであってもよい。また、nが2以上の場合(Xが炭素原子、ケイ素原子またはリン原子の場合)には、各Lは、それぞれ、同じであってもあるいは異なるものであってもよい。
 上記一般式(4)において、Xは、窒素原子、炭素原子、ケイ素原子またはリン原子(3価のリン原子および5価のリン原子を含む;5価のリン原子の場合には、Xは、P(=O)-Rのホスフィンオキシド系化合物由来の基であることが好ましい)を表す。ここで、各構造単位中のXは、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、Xは、炭素原子である。Xが炭素原子であることで、高分子化合物を中心として、表面が均一かつ高密度にアミノ基を有する高分子化合物とすることができ、双極子層の分極をさらに高めることができ、得られる有機光電変換素子の安定性を高めることができる。
 上記一般式(4)において、nは、置換基:-L-N(L)(L)がXに結合する数を表わし、1、2または3である。すなわち、Xがリン原子を表す場合には、nは1または3であり、Xが炭素原子またはケイ素原子を表す場合には、nは2であり、Xが窒素原子を表す場合には、nは1である。
 上記一般式(4)において、YおよびYは、-C(R)=C(R)-、-C(R)=N-、-O-または-S-を表す。ここで、YおよびYは、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、YおよびYは、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、YおよびYは、それぞれ独立して、-CH=CH-、-CH=N-または-S-である。より好ましくは、YおよびY22は、それぞれ独立して、-CH=CH-または-S-であり、特に好ましくは、YおよびYは、-S-である。YおよびYが-S-である、即ち、高分子化合物主鎖にポリチオフェン系を導入することで、キャリア輸送能が向上し、また、発電層とp型半導体材料とが類似の構造となり、層間の親和性が高まるため、高い効率と耐久性を得ることができる。ここで、R~Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表す。好ましくは、R~Rは、それぞれ独立して、水素原子、アルキル基、およびアミノ基であり、より好ましくは水素原子である。
 さらに好ましくは、高分子化合物が、下記一般式(5)で表わされる構造単位(塩の形態を含む)を有する。
Figure JPOXMLDOC01-appb-C000023
このような2世代以上の分岐を有するアミノ基を有する高分子化合物は、当該高分子化合物を中心として、表面が均一かつ高密度にアミノ基を有する高分子化合物となり、双極子層の分極をさらに高めることができ、得られる有機光電変換素子の安定性(耐久性)をさらに高めることができる。
 上記一般式(5)において、YおよびYは、-C(R10)=C(R11)-、-C(R12)=N-、-O-または-S-を表す。ここで、YおよびYは、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、YおよびYは、それぞれ、同じであってもあるいは異なるものであってもよい。YおよびYは、上記一般式(4)中のYおよびYと同様の定義であるため、ここでは説明を省略する。好ましくは、YおよびYは、それぞれ独立して、-CH=CH-、-CH=N-または-S-である。より好ましくは、YおよびYは、それぞれ独立して、-CH=CH-または-S-であり、特に好ましくは、YおよびYは、-S-である。ZおよびZが-S-である、即ち、高分子化合物主鎖にポリチオフェン系を導入することで、キャリア輸送能が向上し、また、発電層とp型半導体材料とが類似の構造となり、層間の親和性が高まるため、高い効率と耐久性を得ることができる。
 また、Xは、窒素原子、炭素原子またはケイ素原子を表す。ここで、各構造単位中のXは、それぞれ、同じであってもあるいは異なるものであってもよい。好ましくは、Xは、炭素原子である。Xが炭素原子であることで、高分子化合物を中心として、表面が均一かつ高密度にアミノ基を有する高分子化合物とすることができ、双極子層の分極をさらに高めることができ、得られる有機光電変換素子の安定性を高めることができる。nは、置換基:-L-N(L-N(R)(R))(L-N(R)(R))がXに結合する数を表わし、1、2または3である。すなわち、Xがリン素原子を表す場合には、nは3であり、Xが炭素原子またはケイ素原子を表す場合には、nは2であり、Xが窒素原子を表す場合には、nは1である。
 L~Lは、それぞれ独立して、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数3~20のシクロアルキレン基、置換または無置換の炭素原子数2~20のアルキニレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、置換もしくは無置換の炭素原子数1~30のヘテロアリーレン基、置換もしくは無置換の炭素原子数1~20のアルキレンオキシ基および-(L1’)-(OR)-から選ばれる2価の連結基を表す。ここで、L~Lは、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、L~Lは、それぞれ、同じであってもあるいは異なるものであってもよい。nが2の場合(Xが炭素原子またはケイ素原子の場合)には、各L~Lは、それぞれ、同じであってもあるいは異なるものであってもよい。なお、L~Lは、上記一般式(1)中のLと同様の定義であるため、ここでは説明を省略する。
 Lは、置換もしくは無置換の炭素原子数1~15の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~15の直鎖または分岐鎖のアルキレン基または炭素原子数6~18のアリーレン基であり;Rは、エチレン基またはプロピレン基を表し;pは、1~3の整数である]、置換もしくは無置換のアリーレン基であることが好ましく、炭素原子数1~8の式:-L-N(L)(L)の置換基で置換されたまたは無置換の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~8の直鎖または分岐鎖のアルキレン基またはo-、m-、p-フェニレン基であり;Rは、エチレン基を表し;pは、1または2である]であることがより好ましい。また、LおよびLは、置換もしくは無置換の炭素原子数1~8の直鎖または分岐鎖のアルキレン基、-(L1’)-(OR)-[ここで、L1’は、単結合、炭素原子数1~8の直鎖または分岐鎖のアルキレン基またはo-、m-、p-フェニレン基であり;Rは、エチレン基を表し;pは、1または2である]であることが好ましく、炭素原子数1~6の直鎖または分岐鎖のアルキレン基(例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基)、および式:-L-N(L)(L)の置換基で置換された上記アルキレン基であることがより好ましい。
 R~Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基、または上記Lを表す。ここで、R~R92は、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、R~Rは、それぞれ、同じであってもあるいは異なるものであってもよい。なお、R~Rにおけるアルキル基、シクロアルキル基、アリール基、ヘテロアリール基は、上記一般式(1)中のLと同様の定義であり、Lは上記一般式(1)中のLと同様の定義であるため、ここでは説明を省略する。
 R10~R12は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表す。ここで、R~R12は、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、R~R12は、それぞれ、同じであってもあるいは異なるものであってもよい。なお、R~R12は、上記一般式(1)中のLと同様の定義であるため、ここでは説明を省略する。
 上記したように、本願発明の好ましい実施形態では、アミノ基が、高分子化合物の主鎖中に、芳香族環1個あたり1.5個以上置換基として存在する。このため、下記化合物28や29に示されるように、R~Rの少なくとも一が、アミノ基で置換されたアルキル基、シクロアルキル基、アリール基またはヘテロアリール基であってもよい。例えば、R~Rの少なくとも一が、式:-[L-N(R)]p’-L-N(R)(R’)で表される基であることが好ましい。上記式中、各L、RおよびR’は、それぞれ、同じであってもあるいは異なるものであってもよい。Lは、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数3~20のシクロアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、置換もしくは無置換の炭素原子数1~30のヘテロアリーレン基、置換もしくは無置換の炭素原子数1~20のアルキレンオキシ基および-(L1’)-(OR)-から選ばれる2価の連結基を表す。上記アルキレン基、シクロアルキレン基、アリーレン基、ヘテロアリーレン基、アルキレンオキシ基および-(L1’)-(OR15-は、上記一般式(1)における定義と同様であるため、説明を省略する。Lは、炭素原子数1~8の置換若しくは無置換のアルキレン基であることが好ましく、メチレン基、エチレン基、トリメチレン基もしくはテトラメチレン基、および式:-L-N(L)(L)の置換基で置換された上記アルキレン基であることがより好ましい。また、RおよびR’は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基、または式:-[L-N(R)]p’-L-N(R)(R’)で表される基を表す。ここで、RおよびR’の置換基は、一般式(1)などと同様であるため、ここでは説明を省略する。RおよびR’は、炭素原子数1~8のアルキル基または式:-[L-N(R)]p’-L-N(R)(R’)で表される基であることが好ましく、炭素原子数1~3のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基)または式:-[L-N(R)]p’-L-N(R)(R’)で表される基であることがより好ましい。p’は、式:-L-N(R)-の繰り返し数を表わし、高分子化合物の主鎖中に存在するアミノ基の所望の数によって適宜選択されうる。本発明の一実施形態において、例えば、p’は、0~5の整数であることが好ましく、1~4の整数であることがより好ましく、2~3の整数であることが特に好ましい。
 本願発明に係る高分子化合物は、上記一般式(2)または(3)または(4)または(5)で示される構造単位を有することが好ましい。ここで、本願発明に係る高分子化合物は、上記一般式(2)または(3)または(4)または(5)で示される構造単位から構成される単独重合体(ホモポリマー)であってもあるいは上記一般式(2)または(3)または(4)または(5)で示される2種以上の構造単位から構成される共重合体(コポリマー)であってもよい。また、本願発明に係る高分子化合物は、上記一般式(2)または(3)または(4)または(5)で示される構造単位に加えて、アミノ基を持たない他の構造単位(以下、単に「他の構造単位」とも称する)をさらに有し、共重合体(コポリマー)を形成していてもよい。ここで、他の構造単位は、特に制限されないが、例えば、下記構造単位が挙げられる。なお、下記構造単位中、Yは、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基または-(L1’)-(OR)Hを表す。ここで、各置換基の定義が、上記一般式(1)における定義と同様であるため、ここでは説明を省略する。また、Yが複数存在する場合には、各Yは、同一であってもあるいは異なるものであってもよい。本願発明に係る高分子化合物が他の構造単位を有する場合の、他の構造単位の含有量は、本願発明に係る高分子化合物による効果を損なわない程度であれば特に制限されないが、他の構造単位由来の単量体の含有量が、全構造単位由来の単量体中、好ましくは10~75モル%、より好ましくは20~50モル%である。
Figure JPOXMLDOC01-appb-C000024
 より具体的には、本願発明に係る高分子化合物は下記構造を有するものが挙げられる。なお、本発明はこれらに限定されない。なお、本明細書では、化合物を、下記化合物番号にて規定する。また、下記構造中、「N/A」は、各高分子化合物に存在する芳香族環1個あたり1級~4級のアミノ基の数を表す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 なお、高分子化合物の主鎖が複数の構造単位を含む場合、当該複数の構造単位の結合形態について特に制限はなく、ランダムに結合していてもよいし、交互に結合していてもよいし、構造単位ごとのブロックが結合した形態となっていてもよい。また、これらの高分子化合物は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。
 本発明に係る一般式(1)で表される構造を側鎖として含む高分子化合物の製造方法について特に制限はなく、従来公知の知見(例えば、ADVANCED MATERIALS 2007、19、2010等)や、後述する実施例の欄における合成例に記載の知見などを適宜参照して、当業者であれば容易に合成可能である。
 (高分子化合物(重合体または共重合体)の分子量)
 本願発明に係る前記高分子化合物の分子量は、特に制限されないが、実用上分子量によって定義をする際、本発明に係る一般式(1)で表される構造を側鎖として含む高分子化合物は、好ましくは重量平均分子量が3000以上、より好ましくは4000以上、さらに好ましくは5000以上である。ここで、高分子化合物の重量平均分子量の上限は特に限定されないが、溶解性確保の観点から50000以下であることが好ましく、30000以下であることがより好ましい。
 なお、重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)で測定することができるが、化合物によってはTHFに溶解しないものもあるため、主鎖の分子量に関しては、本発明に係る化合物の1工程前の前駆体(置換基がω-ブロモアルキル基である化合物)で測定することで、分子量を確認してもよい。なお、前駆体から本発明に係る高分子化合物を得るのは高分子反応であり、主鎖の長さが大きく変わることはないため、高分子化合物の重量平均分子量は、前駆体の重量平均分子量から容易に推測できる。
 本発明に係る一般式(1)で表される構造を側鎖として含む高分子化合物の重量平均分子量(Mw)の測定は、THF(テトラヒドロフラン)をカラム溶媒として用いるGPC(ゲルパーミエーションクロマトグラフィー)を用いて分子量測定を行うことができる。
 具体的には、測定試料を1mgに対してTHF(脱気処理を行ったものを用いる)を1ml加え、室温下にてマグネチックスターラーを用いて撹拌を行い、充分に溶解させる。ついで、ポアサイズ0.45μm~0.50μmのメンブランフィルターで処理した後に、GPC(ゲルパーミエーションクロマトグラフ)装置に注入する。
 GPC測定条件は、40℃にてカラムを安定化させ、THF(テトラヒドロフラン)を毎分1mlの流速で流し、1mg/mlの濃度の試料を約100μl注入して測定する。
 カラムとしては、市販のポリスチレンジェルカラムを組み合わせて使用することが好ましい。例えば、昭和電工社製のShodex GPC KF-801、802、803、804、805、806、807の組合せや、東ソー社製のTSKgelG1000H、G2000H、G3000H、G4000H、G5000H、G6000H、G7000H、TSK guard column等の組合せ等が好ましい。
 検出器としては、屈折率検出器(RI検出器)、あるいはUV検出器が好ましく用いられる。試料の分子量測定では、試料の有する分子量分布を単分散のポリスチレン標準粒子を用いて作成した検量線を用いて算出する。検量線作成用のポリスチレンとしては10点程度用いることが好ましい。本発明では、下記の測定条件にて分子量測定を行うものとする。
 (測定条件)
  装置:東ソー高速GPC装置 HLC-8220GPC
  カラム:TOSOH TSKgel Super HM-M
  検出器:RI及び/またはUV
  溶出液流速:0.6ml/分
  試料濃度:0.1質量%
  試料量:100μl
  検量線:標準ポリスチレンにて作製:標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=1000000~500迄の13サンプルを用いて検量線(校正曲線ともいう)を作成、分子量の算出に使用した。13サンプルは、ほぼ等間隔にすることが好ましい。
 また、電子輸送層は、本願発明に係る高分子化合物に加えて、電子輸送層に一般的に用いられる他の電子輸送材料を併用しても良い。ただし、本発明の作用効果を十分に発揮させるという観点からは、電子輸送層を構成する材料において、一般式(1)で表される構造を側鎖として含む高分子化合物が主成分であることが好ましい。具体的には、電子輸送層を構成する材料100質量%に対して、一般式(1)で表される構造を側鎖として含む高分子化合物の占める割合は、好ましくは50質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは95質量%以上であり、最も好ましくは100質量%である。
 ここで、上述したような他の電子輸送材料としては、本技術分野で使用されうる材料を適宜採用することができる。例えば、オクタアザポルフィリン、p型半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)を用いることができるが、同様に、光電変換層に用いられるp型有機半導体材料のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔を陰極側には流さないような整流効果を有する、正孔ブロック機能が付与される。よって、より好ましくは、n型半導体のHOMO準位よりも深い材料が電子輸送材料として用いられる。このような電子輸送材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体材料、および酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物およびフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等が用いられうる。また、光電変換層に用いたn型有機半導体材料が電子輸送層に含まれてもよい。
 この他、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体などを用いてもよい。
 また、上記正孔輸送材料で例示したオキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらに上記化合物に含まれる構造単位を高分子鎖に導入した、あるいは、上記化合物を高分子の主鎖とした高分子材料を電子輸送材料として用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq3)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)など、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーフタロシアニンもしくはメタルフタロシアニン、またはそれらの化合物の末端がアルキル基やスルホン酸基などで置換されてなる化合物も、電子輸送材料として好ましく用いることができる。
 また、不純物をドープしたn性の高い電子輸送材料も用いることもできる。一例を挙げると、特開平4-297076号公報、特開平10-270172号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載されたものが挙げられる。具体例としては、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)などの芳香族ジアミン化合物やその誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、4,4’,4’’-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイドなどのポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレンなどの重合体や、その誘導体などを好ましく用いることができる。
 なお、これらの電子輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電子輸送層を構成することも可能である。ただし、本願発明に係る高分子化合物を含有する電子輸送層が陰極(アノード)に隣接していることが好ましい。
 電子輸送層の厚さ(乾燥時の厚さ)は、特に制限はないが、通常1~2000nmである。リーク防止効果をより高める観点からは、厚さは3nm以上であることが好ましい。また、高い透過率と低い抵抗とを維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。より好ましくは、5~20nmの範囲である。
 電子輸送層の導電率は、一般的に高い方が好ましいが、高くなりすぎると正孔が移動するのを阻止する能力が低下し、整流性が低くなりうる。したがって、電子輸送層の導電率は、10-5~1S/cmであることが好ましく、10-4~10-2S/cmであることがより好ましい。
 [電極]
 本形態の有機光電変換素子は、陽極(カソード)11および陰極(アノード)12を必須に含む。上述したように、光電変換層14で生成されるキャリア(正孔・電子)は、電極間をドリフトし、正孔は陽極11へ、電子は陰極12へと到達する。なお、本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。また、タンデム構成をとる場合には電荷再結合層(中間電極ともいう)を用いることでタンデム構成を達成することができる。さらに、電極が透光性を有するものであるか否かという機能面から、透光性を有する電極を透明電極と呼び、透光性のない電極を対電極と呼び分ける場合もある。順層型の有機光電変換素子の場合、通常、陽極は透光性のある透明電極であり、陰極は透光性のない対電極である。
 本形態の電極に使用される材料は、特に制限はなく、本技術分野で使用されうる電極材料を適宜採用することができる。なお、本発明では、中間層(例えば、電子輸送層27)に一般式(1)で表される構造を側鎖として含む高分子化合物を含有していることで、中間層と接する電極(例えば陰極)として、イオン化ポテンシャルが小さく酸化されやすいアルミニウムに代えて、イオン化ポテンシャルが大きく仕事関数が深い金属を使用することが可能となる。
 以下では、本願発明の好ましい実施形態である順層型の有機光電変換素子の場合について説明するが、逆層型の有機光電変換素子の場合には、逆の電極構成となる以外は同様であり、また、タンデム型の有機光電変換素子の場合には、下記と同様である。
 上述の図1に示す順層型の有機光電変換素子10における陽極11は、比較的仕事関数の絶対値が大きく(例えば、仕事関数が-4.5eV以下、好ましくは-4.7eV以下)、透明な(380~800nmの光を透過可能な)電極材料から構成されうる。一方、陰極12は、本発明の中間層による仕事関数の疑似的なシフト(0.2~0.7eV)を加味した中で、比較的仕事関数の絶対値が小さく(例えば、仕事関数が-4.5eV以下、好ましくは-4.5eV未満)、実質的に酸化に対して安定な電極材料を用いることができる。たとえば本発明の例示化合物3をITOおよび銀の上に5nmの膜厚で塗布した電極の場合、前記仕事関数の疑似的なシフトにより発電層からみた場合、-4.1~-4.3eVの電極とみなされ、陽極(-4.7~-5.1eV)、および正孔輸送層(-5.2~-5.5eV)とは十分な内蔵電界の電位差を稼ぐことができる。
 このような、順層型の有機光電変換素子10において、陽極(第1電極、透明電極)11に使用される電極材料としては、例えば、金、銀、白金、ニッケルなどの金属;インジウムスズ酸化物(ITO)、SnO、ZnO、酸化インジウム亜鉛(IZO)などの透明な導電性金属酸化物;金属ナノワイヤー、カーボンナノチューブなどの炭素材料などが挙げられる。また、陽極の電極材料として導電性高分子を用いることも可能である。陽極に使用されうる導電性高分子としては、例えば、ポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン、ポリナフタレン、およびこれらの誘導体などが挙げられる。このうち、正孔の取り出し性能、耐久性の観点から、金属などの無機物を用いることが好ましい。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陽極(透明電極)の厚さは特に制限はないが、通常10nm~5μm、好ましくは50~200nmである。
 一方、順層型の有機光電変換素子において、陰極(第2電極、対電極)12に使用される電極材料としては、仕事関数の絶対値が小さい、金属、合金、電子電導性化合物、およびこれらの混合物が使用されうる。これらの材料のうち金属を用いると、陽極(透明電極)側から入射し光電変換層で吸収されずに透過した光を、陰極(対電極)で反射させて光電変換に再利用することができ、光電変換効率を向上させることが可能である。
 具体的には、銀、金、白金、ニッケル、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属などが挙げられる。
 なお、本実施形態によれば、電子輸送層27が一般式(1)で表される構造を側鎖として含む高分子化合物を含有していることで、陰極の構成材料として、イオン化ポテンシャルが小さく酸化されやすいアルミニウムに代えて、イオン化ポテンシャルが大きく仕事関数が深い金属を使用することが可能となる。すなわち、本発明の一実施形態において、陽極が透明電極であり、陰極の構成材料がアルミニウムと同等またはアルミニウムよりもイオン化ポテンシャルの大きい金属を含有する。より好ましくは、陽極が透明電極であり、陰極の構成材料がアルミニウムよりもイオン化ポテンシャルの大きい金属を含有する。ここで、アルミニウムの第1イオン化ポテンシャルは138kcal/molである。また、カルシウムのイオン化ポテンシャルは140kcal/molである。これらの酸化されやすい金属よりイオン化ポテンシャルが大きく安定な金属としては、例えば、銀(174kcal/mol)、金(212kcal/mol)、白金(208kcal/mol)、ニッケル(176kcal/mol)、銅(178kcal/mol)、亜鉛(216kcal/mol)などが挙げられる。このような、約170kcal/molよりも高い第1イオン化ポテンシャルを有する金属を用いると、耐久性の高い有機光電変換素子とすることができる。特に、正孔の取り出し性能、および導電率の観点から、陰極の構成材料は銀、金または銅を含有することが好ましい。さらに好ましくは銀または銅であり、陰極として銀または銅を使用することにより変換効率および耐久性を向上することができる。
 なお、ITOなどの化合物系電極の場合はイオン化エネルギーが測定できないため、仕事関数で好ましい電極材料を選ぶこともできる。好ましくは、電極のうち、本発明の共役高分子化合物を含む中間層と接する電極単体の仕事関数が、光電子分光法で測定した際に-4.5eV以下である。図1に示す順層型の有機光電変換素子において、本願発明に係る高分子化合物を含む中間層が電子輸送層であり、当該中間層と接する電極は陰極に相当する。ここで、中間層と接する電極の仕事関数が光電子分光法で測定した際に-4.5eVを超えると、陰極では酸素の侵入による酸化により導電性が低くなったり、仕事関数が深くなって界面の接触抵抗が大幅に増加して素子の電気特性が劣化して耐久性が大幅に低下するおそれがある。中間層と接する電極の仕事関数は、より好ましくは-4.5eV未満であり、さらに好ましくは-4.7eV以下である。ここで、中間層と接する電極の仕事関数の下限は、特に制限されないが、-5.5eV以上であることが好ましく、-5.0eV以上であることがより好ましい。このような仕事関数の電極を中間層と接するように配置することによって、有機光電変換素子は十分な内蔵電界向上効果を発揮して、光電変換効率をおよび耐久性に優れる。
 ここで、仕事関数は、測定法によって多少値が異なるが、本明細書中で使用される「仕事関数」は、光電子分光計(ULVAC-PHI製、PHI1800)を用いて十分な高真空下で光電子分光法によって測定された3~5点サンプルの平均値を意味する。
 上記測定法による、各電極材料の仕事関数を下記表1に示す。
Figure JPOXMLDOC01-appb-T000034
 上記表に示されるように、本発明の一形態は、亜鉛と同じまたは亜鉛よりも深い仕事関数を有する金属材料を用いることを特徴とする。これにより、対電極が酸化されて経時劣化することを防ぐことができる。
 具体的には、金(-5.1eV)、銀(-4.7eV)、銅(-4.7eV)、亜鉛(-4.5eV)、白金(-6.3eV)、ニッケル(-5.0eV)などの金属;インジウムスズ酸化物(ITO)(-4.8eV)、ZnO(-4.5eV)、酸化モリブデン(-5.4eV)、酸化インジウム亜鉛(IZO)(-5.3eV)などの導電性金属酸化物;上記金属のナノワイヤー、ナノ粒子などが挙げられる。なお、上記において、()内は各材料の仕事関数を示す。これらのうち、インジウム・スズ酸化物(ITO)、酸化モリブデン、銅、銀、金が好ましく、インジウム・スズ酸化物(ITO)、酸化モリブデン、銅、銀がより好ましく、銀が特に好ましい。このような材料を電極に使用されることにより、対電極が酸化されて経時劣化することを防止し、電極の安定性(耐久性)が向上し、有機光電変換素子は十分な内蔵電界向上効果を発揮して、優れた光電変換効率をおよび耐久性を発揮できる。なお、本形態において、中間層と接する電極に使用される材料は、仕事関数が-4.5eV以下(深い)のものであれば特に制限されない。一方、他方の電極に使用される材料は、特に制限はなく、本技術分野で使用されうる電極材料を適宜採用することができる。
 なお前述のように、仕事関数は測定方法や薄膜の表面処理状態(オゾン酸化のあり・なし等)により±0.3eV程度は変動することがあるため、別の指標としては上述したイオン化ポテンシャルによって判定することもできる(但し、金属元素だけに場合に適用可能)。
 これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陰極(対電極)の厚さは特に制限はないが、通常5nm~5μm、好ましくは50~200nmである。
 また、図2に示す逆層型の有機光電変換素子では、光が入射する基板25側に陰極12が位置し、反対側に陽極11が位置する。したがって、図2に示す逆層型の形態における陽極11は、比較的仕事関数の絶対値が大きく、通常、透光性の低い電極材料から構成される。一方、陰極12は、比較的仕事関数の絶対値が小さく、透明な電極材料から構成される。
 このような、逆層型の有機光電変換素子において、陽極(対電極)に使用される電極材料としては、例えば、金、銀、白金、ニッケル、などが挙げられる。このうち、正孔の取り出し性能、光の反射率、および酸化等に対する耐久性の観点から、銀を用いることが好ましい。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。なお、陽極(対電極)の厚さは特に制限はないが、通常10nm~5μm、好ましくは50~200nmである。
 一方、逆層型の有機光電変換素子において、陰極(透明電極)に使用される電極材料としては、例えば、金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウムなどの金属、金属化合物、および合金;カーボンナノ粒子、カーボンナノワイヤー、カーボンナノ構造体などの炭素材料;が挙げられる。これらの電極材料は、1種のみを単独で使用してもよいし、2種以上の材料を混合して使用してもよい。また、各材料からなる層を2種以上積層させて電極を構成することも可能である。このうち、カーボンナノワイヤーを用いることにより、透明で導電性の高い陰極を塗布法により形成できるため好ましい。また、金属系の材料を使用する場合、陽極(対電極)と対向する側に、例えば、アルミニウム、アルミニウム合金、銀、銀化合物などを用いて、1~20nm程度の厚さの補助電極を作製した後、上述の順層型の有機光電変換素子の陽極(透明電極)材料として例示した導電性高分子の膜を設けることで、陰極(透明電極)とすることができる。なお、陰極(透明電極)の厚さは特に制限はないが、通常10nm~5μm、好ましくは50~200nmである。
 なお、図2に示す逆層型の有機光電変換素子において、本願発明に係る高分子化合物を含む中間層が電子輸送層であり、当該中間層と接する電極は陽極に相当する。したがって、陽極(対電極)に使用される電極材料として、仕事関数が-4.5eV以下の金属、合金、電子電導性化合物、およびこれらの混合物が使用されることが好ましい。
 [光電変換層]
 本形態の有機光電変換素子10は、上述の陰極12と陽極11との間に、光電変換層14を必須に含む。光電変換層は、光起電力効果を利用して光エネルギーを電気エネルギーに変換する機能を有する。光電変換層は、光電変換材料として、p型有機半導体材料およびn型有機半導体材料を必須に含む。これらの光電変換材料に光が吸収されると、励起子が発生し、これがpn接合界面において、正孔と電子とに電荷分離される。
 〈p型半導体材料〉
 本発明に係る光電変換層に用いられるp型有機半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマー(p型共役系高分子化合物)が挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、へプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基を持ったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol.127,No.14,p4986、J.Amer.Chem.Soc.,vol.123,p9482、J.Amer.Chem.Soc.,vol.130(2008),No.9,p2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。または、米国特許出願公開第2003/136964号明細書、及び特開2008-16834号公報等に記載されているような、熱等のエネルギーを加えることによって可溶性置換基が反応して不溶化する(顔料化する)材料等を挙げることができる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17,Fukuoka,Japan,2007,P1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、国際公開第2008/000664号に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv.Mater.,2007,p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,Nature Mat.,vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体、ポリピロール及びそのオリゴマー、ポリアニリン、ポリフェニレン及びそのオリゴマー、ポリフェニレンビニレン及びそのオリゴマー、ポリチエニレンビニレン及びそのオリゴマー、ポリアセチレン、ポリジアセチレン、ポリシラン、ポリゲルマン等のσ共役系ポリマー、等のポリマー材料が挙げられる。
 また、ポリマー材料ではなくオリゴマー材料としては、チオフェン6量体であるα-セクシチオフェンα,ω-ジヘキシル-α-セクシチオフェン、α,ω-ジヘキシル-α-キンケチオフェン、α,ω-ビス(3-ブトキシプロピル)-α-セクシチオフェン、等のオリゴマーが好適に用いることができる。
 より好ましくは、p型共役系高分子として主鎖に電子供与性基(ドナー性ユニット)および電子吸引性基(アクセプター性ユニット)を有する共重合体である。より具体的には、p型共役系高分子は、ドナー性ユニットとアクセプター性ユニットとが交互に配列するように重合された構造を有する。このように、ドナー性ユニットとアクセプター性ユニットとが交互に配列することにより、p型有機半導体の吸収域を長波長域に拡大することができる。すなわち、p型共役系高分子は、従来のp型有機半導体の吸収域(例えば、400~700nm)に加え、長波長域(例えば、700~1000nm)の光も吸収することができるため、太陽光スペクトルの広い範囲にわたる放射エネルギーを効率よく吸収させることが可能となる。
 p型共役系高分子に含まれうるドナー性ユニットとしては、同じπ電子数を有する炭化水素芳香環(ベンゼン、ナフタレン、アントラセンなど)よりもLUMO準位またはHOMO準位が浅くなるようなユニットであれば、制限なく使用できる。例えば、チオフェン環、フラン環、ピロール環、シクロペンタジエン、シラシクロペンタジエンなどの複素5員環、およびこれらの縮合環を含むユニットである。
 具体的には、フルオレン、シラフルオレン、カルバゾール、ジチエノシクロペンタジエン、ジチエノシラシクロペンタジエン、ジチエノピロール、ベンゾジチオフェンなどを挙げることができる。
 一方、p型共役系高分子に含まれうるアクセプター性ユニットとしては、例えば、キノキサリン骨格、ピラジノキノキサリン骨格、ベンゾチアジアゾール骨格、ベンゾオキサジアゾール骨格、ベンゾセレナジアゾール骨格、ベンゾトリアゾール骨格、ピリドチアジアゾール骨格、チエノピラジン骨格、フタルイミド骨格、3,4-チオフェンジカルボン酸イミド骨格、イソインディゴ骨格、チエノチオフェン骨格、ジケトピロロピロール骨格、4-アシル-チエノ[3,4-b]チオフェン骨格、チエノピロールジオン骨格、国際公開第2011/085004号に記載のチアゾロチアゾール骨格、ピラゾロ[5,1-c][1,2,4]トリアゾール骨格、およびJ.Am.Chem.Soc.,2011,133(25),pp9638に記載のナフトビスベンゾチアジアゾールなどが挙げられる。
 なお、本形態のp型共役系高分子に含まれるドナー性ユニットまたはアクセプター性ユニットは、それぞれ、1種のみを単独で使用してもよいし、2種以上を併用してもよい。
 本形態において、好ましいp型共役系高分子としては、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、国際公開第08/000664号に記載のポリチオフェン-ジケトピロロピロール共重合体、国際公開第2011/085004号に記載のチアゾロチアゾール誘導体、Adv.Mater.,2007,p4160に記載のポリチオフェン-チアゾロチアゾール共重合体、Nature Mat.vol.6(2007),p497に記載のPCPDTBTなどに記載のジチエノシクロペンタジエン誘導体、J.Am.Chem.Soc.,2011,133(25),pp9638に記載のナフトビスベンゾチアジアゾール誘導体、米国特許第8008421号などのジチエノシクロペンタジエン誘導体、米国特許第8008421号、などに記載のジチエノシロール誘導体などが挙げられる。
 これらの中でも、非特許文献2(Appl.Phys.Lett.Vol.98,p043301)に記載されているような、移動度が高く厚い発電層を形成することのできる材料であることが好ましい。厚い発電層を形成できる材料を用いることで、すべてのスペクトル領域において高い外部量子効率を得ることができ、かつ発電層が厚い(内蔵電界が減少)しても移動度が高いために曲線因子が低下しないため、高い外部量子効率と曲線因子を両立でき、高い効率の素子を得ることができる。
 すなわち具体的には、p型有機半導体材料が、下記一般式(6)で表わされる構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000035
 上記一般式(6)において、Xは、炭素原子、ケイ素原子、またはゲルマニウム原子を表す。上記一般式(6)において、合成が容易であり、結晶性が高く移動度の高いものが得やすいことから、Xがケイ素原子である化合物であることが好ましい。
 上記一般式(6)において、R13およびR14は、それぞれ独立して、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表す。ここで、R13およびR14は、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、R13およびR14は、それぞれ、同じであってもあるいは異なるものであってもよい。上記一般式(6)において、置換もしくは無置換のアルキル基は、一般式(1)中の置換もしくは無置換の炭素原子数1~20のアルキル基と同様の定義であるため、ここでは説明を省略する。同様にして、上記一般式(6)中の、シクロアルキル基、アリール基およびヘテロアリール基は、それぞれ、上記一般式(1)中の置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基および置換もしくは無置換の炭素原子数1~30のヘテロアリール基と同様の定義であるため、ここでは説明を省略する。
 また、他の一実施形態において、p型有機半導体材料が、下記一般式(9)で表わされる構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000036
 上記一般式(9)において、R18およびR19は、それぞれ独立して、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数1~20のアルコキシ基(アルキルエーテル基)、置換もしくは無置換の炭素原子数1~20のアルキルエステル基、またはアルキルカルボニル基を表し、R18およびR19は互いに結合して環を形成してもよい。ここで、R18およびR19は、同じであってもあるいは異なるものであってもよい。また、各構造単位中の、R18およびR19は、それぞれ、同じであってもあるいは異なるものであってもよい。上記一般式(9)において、置換もしくは無置換のアルキル基は、一般式(1)中の置換もしくは無置換の炭素原子数1~20のアルキル基と同様の定義であるため、ここでは説明を省略する。
 なお、上記一般式(6)および化学式(9)において、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、またはアルキルシリル基に場合によって存在する置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アシル基、アルキル基、フェニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルコキシ基、ニトロ基、アミノ基、アルキルアミノ基、アルキルカルボニルアミノ基、アリールアミノ基、アリールカルボニルアミノ基、カルボニル基、アルコキシカルボニル基、アルキルアミノカルボニル基、アルコキシスルホニル基、アルキルチオ基、カルバモイル基、アリールオキシカルボニル基、オキシアルキルエーテル基、シアノ基などが例示できるが、これらに限定されるものではない。
 上記炭素原子数1~20のアルコキシ基としては、特に制限はないが、例えば、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ヘキサデシルオキシ基、2-エチルヘキシルオキシ基、2-ヘキシルデシルオキシ基などが挙げられる。
 上記炭素原子数1~20のアルキルエステル基は、炭素原子数1~19のアルキル基に「-COO-」または「-OCO-」が結合した基(アルキル-COO-またはアルキル-OCO-で表される基)であり、例えば上記で例示したアルキル基に「-COO-」または「-OCO-」が結合した基が挙げられる。
 上記炭素原子数1~20のアルキルカルボニル基は、炭素原子数1~19のアルキル基に「-CO-」が結合した基(アルキル-CO-で表される基)であり、例えば上記で例示したアルキル基に「-CO-」が結合した基が挙げられる。
 上記一般式(6)および(9)で表される構造はドナー性ユニットとして機能し、移動度の高いチオフェン構造が縮合して大きなπ共役平面を有しつつも、置換基により溶解性が付与されている。このようなドナー性ユニットは、溶解性と移動度が共に優れているため、より一層、光電変換効率を向上させることが可能となる。
 また、他の一実施形態において、p型有機半導体材料が、下記一般式(7)で表わされる構造を有することが好ましい。これらのユニットを有するP型有機半導体材料は、移動度が高く、開放電圧が高く、また広い吸収波長を吸収することができる。
Figure JPOXMLDOC01-appb-C000037
 また、さらに他の一実施形態において、p型有機半導体材料が、下記一般式(8)で表わされる構造を有することが好ましい。これらのユニットを有するP型有機半導体材料は、移動度が高く、開放電圧が高くすることができる。
Figure JPOXMLDOC01-appb-C000038
 上記一般式(8)において、YおよびYは、それぞれ独立して、-C(R17)=または-N=を表す。ここでYおよびYは同じであってもあるいは異なるものであってもよい。また、各構造単位中の、YおよびYは、それぞれ、同じであってもあるいは異なるものであってもよい。ただし、移動度向上(結晶性・対称性向上)の観点からYおよびYは同一であることが好ましい。-Y=および-Y=が-C(R17)=である場合、一般式(8)はチエノチオフェン環構造を表し、-Y=および-Y=が-N=である場合、一般式2はチアゾロチアゾール環構造を表す。このうち、-Y=および-Y=は、-N=であることが好ましい。これは、-Y=および-Y=が-N=である場合の方が、-C(R)=である場合よりも、平面性が高いため、高い移動度が得られやすく、光電変換効率および耐久性をより向上させることが可能となるためである。また、HOMO準位もより深いものとすることができ、好ましい。
 上記一般式(7)または(8)において、R15~R17は、それぞれ独立して、水素原子(H)、ハロゲン原子(F、Cl、Br、もしくはI)、置換もしくは無置換の、炭素原子数1~20のアルキル基、炭素原子数1~20のフッ化アルキル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のフッ化シクロアルキル基、炭素原子数1~20のアルコキシ基、炭素原子数1~20のフッ化アルコキシ基、炭素原子数1~20のフッ化アルキルチオ基、炭素原子数6~30のアリール基、炭素原子数6~30のフッ化アリール基、炭素原子数1~20のヘテロアリール基、または炭素原子数1~20のフッ化ヘテロアリール基を表す。一般式(7)におけるR15およびR16は同じであってもあるいは異なるものであってもよい。また、各構造単位中の、R15およびR16は、それぞれ、同じであってもあるいは異なるものであってもよい。ただし、移動度向上(結晶性・対称性向上)の観点からR15およびR16は同一であることが好ましい。
 上記一般式(7)または(8)において、置換もしくは無置換の、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基は、一般式(1)中のLと同様の定義であるため、ここでは説明を省略する。
 上記一般式(7)または(8)において、ハロゲン原子としては、特に制限はなく、フッ素原子(F)、塩素原子(Cl)、臭素原子(Br)、ヨウ素原子(I)のいずれであってもよい。このうち、重合時に副反応を起こしにくい(Br,Iはスズと反応する可能性がある)という観点からフッ素原子(F)または塩素原子であることが好ましく、フッ素原子(F)であることがより好ましい。
 上記炭素原子数1~20のフッ化アルキル基としては、特に制限はないが、例えば、上記で例示したアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、環(ナフトビスベンゾチアジアゾール環、チアゾロチアゾール環、チエノチオフェン環)との結合部位に最も近い炭素原子(すなわちアルキル基中の1位の炭素原子)のみがフッ素原子で置換された基であることが好ましい。具体的には、フルオロメチル基、1-フルオロエチル基、1-フルオロプロピル基、1-フルオロブチル基、1-フルオロオクチル基、1-フルオロデシル基、1-フルオロヘキサデシル基、1-フルオロ-2-エチルヘキシル基、1-フルオロ-2-ヘキシルデシル基などのモノフルオロアルキル基;ジフルオロメチル基、1,1-ジフルオロエチル基、1,1-ジフルオロプロピル基、1,1-ジフルオロブチル基、1,1-ジフルオロオクチル基、1,1-ジフルオロデシル基、1,1-ジフルオロヘキサデシル基、1,1-ジフルオロ-2-エチルヘキシル基、1,1-ジフルオロ-2-ヘキシルデシル基などのジフルオロアルキル基;トリフルオロメチル基等のトリフルオロアルキル基などが挙げられる。また、上層の塗布性を維持するという観点から、炭素原子数1~3のフッ化アルキル基であることが好ましい。このような炭素原子数であれば、他の溶解性基に比して十分短く(溶解性を付与するための置換基は、一般にC6以上を用いている)、上層塗布性に対する影響が少ないためである。なかでも、炭素原子数が1であるトリフルオロメチル基であることがより好ましい。
 上記炭素原子数3~20のフッ化シクロアルキル基としては、特に制限はないが、例えば、上記で例示したシクロアルキル基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したシクロアルキル基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。また、溶解性を向上させるという観点から、炭素原子数4~8のフッ化シクロアルキル基であることが好ましい。
 上記炭素原子数6~30のフッ化アリール基としては、特に制限はないが、例えば、上記で例示したアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切調節されることが好ましい。
 上記炭素原子数1~20のフッ化ヘテロアリール基としては、特に制限はないが、例えば、上記で例示したヘテロアリール基に含まれる水素原子の少なくとも1つがフッ素原子で置換された基が挙げられる。このうち、より高いVoc(深いHOMO準位)を達成する観点から、上記で例示したヘテロアリール基に含まれる全ての水素原子がフッ素原子で置換された基であることが好ましいが、塗布性との兼ね合いからフッ素原子の個数・位置は適切に調節されることが好ましい。
 また、上記R15~R17に場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アシル基、アルコキシカルボニル基、アミノ基、アルコキシ基、シクロアルキルオキシ基、アリールオキシ基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、シリル基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ハロゲン原子、ヒドロキシル基、メルカプト基、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基などを挙げることができる。
 上記一般式(7)または(8)で表される構造はアクセプター性ユニットとして機能する。これらの構造を有する共役系高分子化合物を有機光電変換素子の光電変換層に有することで、光電変換層に隣接する層の製膜性を向上させることが可能となる。
 中でも好ましくは、光電変換層に含まれるp型有機半導体材料が、下記一般式(6)で表わされる構造、下記一般式(7)で表わされる構造、および下記一般式(8)で表わされる構造の少なくとも1つを有する。
 さらに好ましくは、一般式(7)および(8)で表わされる構造を共に含むp型有機半導体材料である。このようなp型有機半導体材料は、発電層の上に形成する第2の電荷輸送層(順層構成であれば電子輸送層/正孔ブロック層、逆層構成であれば正孔輸送層/電子ブロック層)を塗布製膜する形成する際に使用する極性溶媒(水、アルコール系溶媒)をグローブボックス内などの非常に乾燥した条件下で塗布する際にも塗布時に弾くことがなく、特性の良好な素子を形成することができる。
 上記共役系ポリマー(p型共役系高分子化合物)の分子量は、特に制限はないが、数平均分子量が5000~500000であることが好ましく、10000~100000であることがより好ましく、15000~50000であることがさらに好ましい。数平均分子量が5000以上であると、曲線因子向上の効果がより一層顕著になる。一方、数平均分子量が500000以下であると、p型共役系高分子の溶解性が向上するため、生産性を上げることができる。なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した値を採用する。
 なお、本発明における光電変換層は、上述したp型共役系高分子を必須に含むことが好ましいが、その他のp型有機半導体材料を含んでもよい。かようなその他のp型有機半導体材料としては、例えば、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、縮合芳香族炭素環化合物(ナフタレン誘導体、アントラセン誘導体、フェナントレン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体)、含窒素ヘテロ環化合物を配位子として有する金属錯体などが挙げられる。ただし、本発明の作用効果を顕著に発現させるという観点からは、光電変換層に含まれるp型有機半導体材料に占める共役系ポリマー(p型共役系高分子化合物)の質量割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、さらに好ましくは50質量%以上であり、特に好ましくは90質量%以上であり、最も好ましくは100質量%である。
 本発明において、光電変換層に含まれるp型有機半導体材料のバンドギャップは、1.8eV以下であることが好ましく、1.6~1.1eVであることがより好ましい。バンドギャップが1.8eV以下であると、幅広く太陽光を吸収できる。一方、バンドギャップが1.1eV以上であると、開放電圧Voc(V)が出やすくなり、変換効率が向上しうる。なお、本形態において、p型有機半導体は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。
 〈n型半導体材料〉
 本形態の光電変換層に使用されるn型有機半導体材料は、アクセプター性(電子受容性)の有機化合物であれば特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。このような化合物としては、例えば、フラーレン、カーボンナノチューブ、オクタアザポルフィリンなど、上記p型有機半導体材料の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニンなど)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミドなどの芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物などが挙げられる。
 このうち、p型有機半導体材料と高速(~50fs)かつ効率的に電荷分離を行うことができるという観点から、フラーレンもしくはカーボンナノチューブまたはこれらの誘導体を用いることが好ましい。より具体的には、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層カーボンナノチューブ、単層カーボンナノチューブ、カーボンナノホーン(円錐型)など、およびこれらの一部が水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、置換されたまたは非置換の、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基などによって置換されたフラーレン誘導体が挙げられる。
 特に、[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM;PC61BM)、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、[6,6]-フェニルC71-ブチリックアシッドメチルエステル(略称PC71BM)、Adv.Mater.,vol.20(2008),p2116に記載のbis-PCBM、特開2006-199674号公報に記載のアミノ化フラーレン、特開2008-130889号公報に記載のメタロセン化フラーレン、米国特許第7,329,709号明細書に記載の環状エーテル基を有するフラーレン、J.Am.Chem.Soc.2009,131,16048.に記載のアルキルシリル化フラーレン、などのような、置換基により溶解性が向上されてなるフラーレン誘導体を用いることが好ましい。なお、本形態において、n型有機半導体材料は、1種のみを単独で使用してもよいし、2種以上を併用しても構わない。
 本形態の光電変換層における、p型有機半導体およびn型有機半導体の接合形態は、特に制限はなく、平面へテロ接合であってもよいし、バルクへテロ接合であってもよい。平面ヘテロ接合とは、p型有機半導体を含むp型有機半導体層と、n型有機半導体を含むn型有機半導体層とが積層され、これら2つの層が接触する面がpn接合界面となる接合形態である。一方、バルクヘテロ接合(バルクヘテロジャンクション)とは、p型有機半導体とn型有機半導体との混合物を塗布することにより形成され、この単一の層中において、p型有機半導体のドメインとn型有機半導体のドメインとがミクロ相分離構造をとっている。したがって、バルクヘテロ接合では、平面へテロ接合と比較して、pn接合界面が層全体に亘って数多く存在することになる。よって、光吸収により生成した励起子の多くがpn接合界面に到達できることになり、電荷分離に至る効率を高めることができる。このような理由から、本形態の光電変換層における、p型有機半導体とn型有機半導体との接合は、バルクへテロ接合であることが好ましい。
 本発明において、光電変換層に含まれるp型有機半導体材料とn型有機半導体材料との混合比は、質量比で2:8~8:2の範囲が好ましく、より好ましくは3:7~7:3の範囲である。また、光電変換層の膜厚は、好ましくは50~400nmであり、より好ましくは80~300nmである。
 また、光電変換層は、必要に応じて無機のp型半導体材料およびn型半導体材料を含んでもよい。
 [正孔輸送層(電子ブロック層とも言う)]
 本形態の有機光電変換素子は、必要に応じて正孔輸送層を含みうる。正孔輸送層は、正孔を輸送する機能を有し、かつ電子を輸送する能力が著しく小さい(例えば、正孔の移動度の10分の1以下)という性質を有する。正孔輸送層は、光電変換層と陽極との間に設けられ、正孔を陽極へと輸送しつつ、電子の移動を阻止することで、電子と正孔とが再結合するのを防ぐことができる。
 正孔輸送層に用いられる正孔輸送材料は、特に制限はなく、本技術分野で使用されうる材料を適宜採用することができる。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。
 また、これ以外にも、ポルフィリン化合物、芳香族第3級アミン化合物、およびスチリルアミン化合物などが使用可能であり、このうち、芳香族第3級アミン化合物を用いることが好ましい。なお、場合によっては、モリブデン、バナジウム、タングステンなどの金属酸化物やその混合物などの無機化合物を用いて正孔輸送層を形成してもよい。
 なお、これらの金属酸化物の中でも、仕事関数が適切であるという点で酸化バナジウム、酸化モリブデン等が好ましい。ただし、一般にこれらの酸化数の大きい金属、特に酸化モリブデンは蒸着後に仕事関数が大きく変わることが知られており(Appl. Phys. Lett. 96, p243307, 2010)、蒸着直後には良好(~-5.4eV)であった仕事関数が、酸素等に触れることで急激に仕事関数が深くなり(~-6.0eV)、キャリア輸送のトラップとなることが知られている。このような経時変化が激しい不安定な正孔輸送層に対しても、本発明の共役高分子化合物の薄膜を形成すると、上記の急激な仕事関数の変化が抑制され、正孔輸送層として金属酸化物を用いた有機薄膜光電変換素子の耐久性を高めることができる。
 さらに上記化合物に含まれる構造単位を高分子鎖に導入した、あるいは、上記化合物を高分子の主鎖とした高分子材料を正孔輸送材料として用いることもできる。また、特開平11-251067号公報、J.Huang et.al.,Applied Physics Letters,80(2002),p.139に記載されているような、p型正孔輸送材料を用いることもできる。
 また、不純物をドープしたp性の高い正孔輸送材料を用いることもできる。一例を挙げると、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)などに記載された材料が挙げられる。それらの中でもPEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)、ポリアニリンが好ましい。
 なお、これらの正孔輸送材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて正孔輸送層を構成することも可能である。正孔輸送層の形成方法は、特に制限されず、公知の製造方法が同様にしてあるいは適宜修飾して適用できる。
 正孔輸送層の厚さ(乾燥膜厚)は、特に制限はないが、通常1~2000nmである。リーク防止効果をより高める観点からは、厚さは5nm以上であることが好ましい。また、高い透過率と低い抵抗を維持する観点からは、厚さは1000nm以下であることが好ましく、200nm以下であることがより好ましい。
 正孔輸送層の導電率は、一般的に高い方が好ましいが、高くなりすぎると電子が移動するのを阻止する能力が低下し、整流性が低くなりうる。したがって、正孔輸送層の導電率は、10-5~1S/cmであることが好ましく、10-4~10-2S/cmであることがより好ましい。
 [電荷再結合層;中間電極]
 図3で示すような、2以上(図3では2つ)の光電変換層を有するタンデム型(多接合型)の有機光電変換素子において、光電変換層間には、電荷再結合層(中間電極)38が配置される。
 本発明に係る光電変換素子がこのような電荷再結合層38を有する場合には、図3に示すように、当該電荷再結合層38が第1の光電変換層14aの側に配置される第2の電子輸送層38aと、第2の光電変換層14bの側に配置される第2の正孔輸送層38bの2層からなることが好ましい。
 かような形態において、第2の電子輸送層38aおよび第2の正孔輸送層38bを構成する材料の具体的な形態について特に制限はないが、上述した正孔輸送層および電子輸送層のそれぞれの構成材料が適切に組み合わされて用いられうる。
 本発明の一実施形態では、電荷再結合層(中間電極)38が一般式(1)で表される構造を側鎖として含む高分子化合物を含有することが好ましい。すなわち、本発明の一実施形態では、少なくとも2層の前記光電変換層が前記中間層を介して配置されてなり、当該2層の光電変換層の間に介在する前記中間層が前記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する。さらには、電荷再結合層(中間電極)38が本願発明に係る高分子化合物を含有する層を有し、更には電子輸送層として用いることが好ましい。すなわち、2層の光電変換層の間に介在する中間層(電荷再結合層(中間電極)38)が少なくとも正孔輸送層および電子輸送層を有し、当該中間層の有する前記電子輸送層が前記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する。具体的には、図3に示すように電荷再結合層(中間電極)38が正孔輸送層と電子輸送層との積層構造を有する場合において、当該電子輸送層が一般式(1)で表される構造を側鎖として含む高分子化合物を含有することが好ましい。
 一方、図3に示す実施形態において、正孔輸送層の構成材料としては、導電性が高く酸性度の高いp型導電性高分子材料を使用することが好ましい。すなわち、本発明の一実施形態において、2層の光電変換層の間に介在する前記中間層の有する前記正孔輸送層がp型導電性高分子材料を含有する。導電性が高く酸性度の高いp型導電性高分子材料としては。例えば、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)-PSS(ポリスチレンスルホン酸)、ポリアニリンなどの導電性高分子などが挙げられる。これらの導電性が高く酸性度の高いp型導電性高分子材料を含有する正孔輸送層と、一般式(1)で表わされる高分子化合物を含有する電子輸送層は、通常、順層タンデム型では正孔輸送層を積層した後電子輸送層を積層により製造され、逆層タンデム型では電子輸送層を積層した後正孔輸送層を積層することにより製造される。ここで、正孔輸送層を形成するための、導電性が高く酸性度の高いp型導電性高分子材料を含有する塗布液は、通常、pHが比較的小さめである。したがって、形成された正孔輸送層の膜面pHもまた、比較的小さめである。したがって、このような正孔輸送層は、通常、隣接する電子輸送層の劣化を引き起こしうるが、一般式(1)で表わされる高分子化合物は酸に対しての耐性が強く、このような構成のタンデム型の有機光電変換素子における電荷再結合層(中間電極)として用いても劣化しにくいことから、(特に電荷再結合層における電子輸送層として用いると)好適である。具体的には、本発明の好ましい実施形態において、電荷再結合層38を構成する第2の正孔輸送層38bの膜面pHは、好ましくは4以下であり、より好ましくは3以下であり、特に好ましくは2.5以下である。なお、当該膜面pHの下限値について特に制限はないが、耐久性の観点からは、好ましくは1.0以上であり、より好ましくは1.5以上である。
 なお、正孔輸送層形成用塗布液のpHおよび正孔輸送層の膜面pHは、既知の方法で測定することができる。正孔輸送層の膜面pHは、例えば、正孔輸送層を製膜後、膜表面に一定量の純水を滴下した後、膜面を破壊し、30分静置後に、1滴型pH計であるpHBOY-P2(新電元工業(株)製)にてpHを測定することもできる。
 以上、図3を参照して、電荷再結合層38が第2の電子輸送層38aおよび第2の正孔輸送層38bとからなる場合を例に挙げて本発明の好ましい実施形態を説明したが、本発明はかような形態のみには限定されず、単層からなる電荷再結合層38が2つの隣接する光電変換層の間に介在する形態もまた、採用されうる。このような形態において、電荷再結合層を構成する材料としては、導電性および透光性を併せ持つ材料であれば特に制限はなく、上述の電極材料として例示した、ITO、AZO、FTO、酸化チタンなどの透明金属酸化物、Ag、Al、Auなどの金属、およびカーボンナノ粒子、カーボンナノワイヤーなどの炭素材料、PEDOT:PSS、ポリアニリンなどの導電性高分子などが用いられうる。これらの材料は、1種のみを単独で使用してもよいし、2種以上を併用してもよい。また、各材料からなる層を2種以上積層させて電荷再結合層を構成することも可能である。
 電荷再結合層の導電率は、電荷輸送の観点から、高いことが好ましく、具体的には、5~50000S/cmであることが好ましく、100~10,000S/cmであることがより好ましい。また、電荷再結合層の厚さは、特に制限はないが、1~1000nmであることが好ましく、5~50nmであることが好ましい。厚さを1nm以上とすることにより、リークを抑制できる。一方、厚さを1000nm以下とすることにより、透過性を高くすることができる。
 [基板]
 本発明に係る有機光電変換素子は、必要に応じて基板を含みうる。基板は、電極を塗布方式で形成する場合における、塗布液の被塗布部材としての役割を有する。
 基板側から光電変換される光が入射する場合、基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材であることが好ましい。基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。
 本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
 [その他の層]
 本形態の有機光電変換素子は、上記の各部材(各層)の他に、光電変換効率の向上や、素子の寿命の向上のために、他の部材(他の層)をさらに設けてもよい。その他の部材としては、例えば、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層などが挙げられる。また、上層に偏在した金属酸化物微粒子をより安定にするため等にシランカップリング剤等の層を設けてもよい。さらに本発明の光電変換層に隣接して金属酸化物の層を積層してもよい。
 また、本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していてもよい。光学機能層としては、例えば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層等が挙げられる。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物等のナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層等を挙げることができる。
 <製膜方法・表面処理方法>
 本発明に係る有機光電変換素子の製造方法について、特に制限はない。例えば、p型有機半導体材料およびn型有機半導体材料を含有する光電変換層や、中間層(正孔輸送層、電子輸送層、電荷再結合層)、電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、光電変換層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等が好ましく例示される。このうち、正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。また塗布法は、製造速度にも優れている。
 また中間層(正孔輸送層、電子輸送層、電荷再結合層)の形成方法としては塗布法が好ましい。なお、中間層に含まれる一般式(1)で表される構造を側鎖として含む高分子化合物は溶媒に可溶であることから、塗布法により中間層を形成するのに好適である。
 この際に使用する塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
 塗布後は残留溶媒および水分、ガスの除去、および半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、光電変換層を適切な相分離構造とすることができる。その結果、光電変換層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 光電変換層は、p型半導体材料とn型半導体材料とが混在した層で構成してもよいが、それぞれ混合比が膜厚方向で異なる複数層または混合比のグラデーション構成でもよい。
 本発明の高分子化合物を含む電子輸送層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、塗布法が好ましい。塗布法は、製造速度にも優れている。電子輸送層を塗布法により形成する際の電子輸送層の形成方法としては、例えば、本願発明に係る高分子化合物および必要であれば他の電子輸送材料を、適当な溶媒に溶解して電子輸送層形成用溶液を調製する。次に、この溶液を基板上に塗布し、乾燥した後、加熱処理する方法がある。ここで、本願発明に係る高分子化合物および必要であれば他の電子輸送材料を溶解するための溶媒は、これらの材料を溶解できるものであれば特に制限されないが、イソプロパノール、nブタノール等のアルコール;ヘキサフルオロイソプロパノール、テトラフルオロプロパノール等のハロゲン原子で置換されたアルコール;ジメチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらのうち、表面張力による塗布性や乾燥速度等も考慮すると、ハロゲン原子で置換されたアルコール、特にフッ素原子で置換されたアルコールが好ましく使用される。すなわち、中間層(特に、電子輸送層)は、フッ素原子で置換されたアルコールを含む溶媒を用いた塗布プロセスによって形成されることが好ましい。この際の高分子化合物および必要であれば他の電子輸送材料の濃度は、特に制限されないが、例えば、溶液中の濃度が0.5~0.005質量%である。本実施形態において、塗布方法に制限はないが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。また、塗布後の加熱処理条件は、電子輸送層を形成できる条件であれば特に制限されないが、例えば、加熱処理温度が、好ましくは室温(25℃)~180℃、より好ましくは60~120℃である。また、加熱処理時間が、好ましくは10秒~10分、より好ましくは30秒~5分である。
 また、本発明に係る高分子化合物は、架橋剤を併用することにより塗膜形成時または形成後に架橋することにより、分子量が増大し電荷輸送性が増加するため架橋剤を併用してもよい。架橋剤としてはエポキシ系架橋剤、オキセタン系架橋剤、イソシアネート系架橋剤、アルコキシシラン系架橋剤、ビニル系架橋剤等、公知の架橋剤を挙げることができる。また、反応を促進するために多価アルコール化合物、多価アミン化合物、多価チオール化合物等を併用することが好ましい。
 (パターニング)
 本発明に係る有機光電変換素子において、電極や光電変換層、中間層(正孔輸送層、電子輸送層等)は必要に応じてパターニングされていてもよいが、これらの層をパターニングする手法について特に制限はなく、公知の手法を適宜適用することができる。例えば、光電変換層、輸送層等の可溶性の材料であれば、ダイコーティング、ディップコーティング等の全面塗布後に不要部だけ拭き取ってもよいし、インクジェット法やスクリーン印刷法等の方法を使用して塗布時に直接パターニングしてもよい。一方、電極材料等の不溶性の材料の場合は、電極を真空蒸着する際にマスク蒸着を行ったり、エッチングまたはリフトオフ等の公知の方法によってパターニングすることができる。また、別の基板上に形成したパターンを転写することによってパターンを形成してもよい。
 (封止)
 また、作製した有機光電変換素子が環境中の酸素、水分等で劣化しないようにするために、有機光電変換素子だけでなく有機エレクトロルミネッセンス素子等の技術分野で公知の手法によって封止することが好ましい。例えば、アルミニウムまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をスピンコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、およびこれらを複合的に積層する方法等が挙げられる。
 (有機光電変換素子の用途)
 本発明の他の形態によれば、上述の有機光電変換素子を有する太陽電池が提供される。本形態に用いられる有機光電変換素子は、優れた光電変換効率、耐久性(耐熱性、耐光性)を有するため、これを発電素子とする太陽電池に好適に使用されうる。
 また、本発明のさらに他の形態によれば、上述した有機光電変換素子がアレイ状に配列されてなる光センサアレイが提供される。すなわち、本形態の有機光電変換素子は、その光電変換機能を利用して、光センサアレイ上に投影された画像を電気的な信号に変換する光センサアレイとして利用することもできる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。
 [合成例1:例示化合物3の合成]
 Adv. Mater. 2007, 19, 2010を参考として、化合物Aを合成した。化合物Aの重量平均分子量は4400であった。
 この化合物A 1.0gと、アルドリッチ社製3,3’-イミノビス(N,N-ジメチルプロピルアミン)9.0gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物3を1.3g得た(収率90%)。得られた化合物について、H-NMRによって構造を特定した。結果を下記に示す。
7.6~8.0ppm(br), 2.88ppm(br), 2.18ppm(m), 2.08ppm(s), 1.50ppm(m), 1.05ppm(br).
Figure JPOXMLDOC01-appb-C000039
 [合成例2:例示化合物34の合成]
 化合物Bを、Eur. J. Org. Chem. 2011, p.1482を参考として合成した。
 化合物A 1.0gと、化合物B 8.0gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物34を1.65g得た(収率80%)。
Figure JPOXMLDOC01-appb-C000040
 [合成例3:例示化合物7の合成]
 Synthesis, 1978, p.155を参考として、シアノ基の還元を行った。例示化合物34 1.0gと、塩化コバルト(II)6水和物 480mgとをメタノール100mlに溶解したのち、水素化ホウ素ナトリウム6.0gを少量ずつ加え、添加終了後室温で2時間撹拌した。反応終了後、濃塩酸で中和し、溶媒を留去したのち、固形物をアンモニア水溶液とテトラヒドロフランを加えて有機層を抽出し、硫酸マグネシウムで乾燥後に溶媒を留去し、化合物Cを0.8g得た(収率80%)。
Figure JPOXMLDOC01-appb-C000041
 続いて、J. Med. Chem. 2011, 54, p.2183を参考として、化合物C 0.5gのホルムアルデヒド水溶液50mlにギ酸5.0mlを加え、100℃で3時間反応した。反応終了後、溶媒を留去したのち、水に再沈殿を行うことで例示化合物7を0.5g得た(収率83%)。
Figure JPOXMLDOC01-appb-C000042
 [合成例4:例示化合物25の合成]
 Macromolecules 2003, 36, p.61を参考として、化合物Lを合成した。化合物Lの重量平均分子量は12000であった。この化合物L 0.5gと、アルドリッチ社製3,3’-イミノビス(N,N-ジメチルプロピルアミン)4.5gとをテトラヒドロフラン50mlおよびN,N-ジメチルホルムアミド50mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物25を0.65g得た(収率90%)。
Figure JPOXMLDOC01-appb-C000043
 [合成例5:例示化合物48の合成]
 J. Am. Chem. Soc. 2005, 127, p.7662を参考として化合物Dを、Chemische Berichte;vol. 122; (1989); p.2413を参考として化合物Eを合成した。
 化合物D 1.4g(2.5mmol)を脱水テトラヒドロフラン100mlに溶解し、-78℃に冷却後、1.4M tBuLi溶液7.0ml(10mmol)を加え1時間撹拌後、化合物Eを2.6g(7.5mmol)添加し、そのまま室温で一昼夜撹拌を行った。反応終了後、炭酸水素ナトリウム水溶液および酢酸エチルを加えて抽出し、有機層を乾燥・留去したのち、シリカゲルカラムクロマトグラフィーで精製を行い、化合物Fを0.62g得た(収率40%)。
 化合物F 0.62gを脱水トルエンに溶解し、ビス(トリメチル錫)0.32g、テトラヒドロフラン(THF)20ml、N-メチル-2-ピロリドン(NMP)10ml、Pd(PPh 100mg、ヨウ化銅(I)0.02g、をシュレンク管に入れて内部を窒素置換し、80℃で48時間に加熱して重合を行った。反応終了後、室温へ冷却した後、5%フッ化カリウム水溶液に反応溶液を投入するとポリマー固体が析出し、濾過回収後に水、メタノール及びアセトンで洗浄して減圧乾燥を行なうことにより、化合物Gを360mg得た(収率90%)。
 得られた化合物Gを、上述した合成例1(例示化合物3の合成)における化合物Aに代えて用いることで、例示化合物48を得た。
Figure JPOXMLDOC01-appb-C000044
 [合成例6:例示化合物52の合成]
 化合物A 1.0gと、アルドリッチ社製ジエタノールアミン2.5gと、3,3’-イミノビス(N,N-ジメチルプロピルアミン)4.5gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物52を1.1g得た(収率85%)。
Figure JPOXMLDOC01-appb-C000045
 [合成例7:例示化合物27の合成]
Figure JPOXMLDOC01-appb-C000046
 化合物A 1.0gと、アルドリッチ社製N,N,N’-トリメチルエチレンジアミン5.5gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物27を1.0g得た(収率90%)。
 [合成例8:例示化合物53の合成]
Figure JPOXMLDOC01-appb-C000047
 特開平2-108688号公報を参照し、3-ヒドロキシ-1,5-ジブロモペンタン(化合物X)を合成した。さらにこの化合物Xを9-ヒドロキシヘプタデカンの代わりに使用した以外はAdv. Mater. 2007, 19, p.2295と同様にして化合物YおよびY’を合成した。
 化合物Y 550mg、化合物Y’ 720mg、Pd(dba) 4.5mg、およびトリス(p-トリル)ホスフィン 6.1mgを脱水トルエン10mlに溶解し、これに3.4mlの脱気した20%テトラメチルアンモニウム水溶液を加え、窒素下、100℃にて72時間反応を行った。
 反応終了後、メタノール:水=10:1の混合溶媒に再沈殿することで、化合物Zを660mg得た(収率85%)。なお、化合物Zの数平均分子量は5100であった。
 得られた化合物Z 660mgと、アルドリッチ社製3,3’-イミノジプロピオニトリル4.0gとをテトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlに溶解し、室温で48時間撹拌を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物53を0.90g得た(収率90%)。
 [合成例9:比較化合物2の合成]
 J.Am.Chem.Soc.2011,133,p.8416-8419(非特許文献2)に従って、芳香族環あたり1.0個のアミノ基を有する下記比較化合物2を合成した。なお、比較化合物2の重量平均分子量は8900であった。
Figure JPOXMLDOC01-appb-C000048
 [合成例10:比較化合物3の合成]
 Adv. Funct. Mat.,2010,p.1977(非特許文献4)に従って、芳香族環あたり1/2個のアミノ基を有する下記比較化合物3を合成した。なお、比較化合物3の重量平均分子量は6400であった。
Figure JPOXMLDOC01-appb-C000049
 [合成例11:比較化合物4の合成]
 Adv.Mater.2011,23,p.3086-3089(非特許文献5)に従って、芳香族環あたり1/2個のアミノ基を有する下記比較化合物4を合成した。なお、比較化合物4の重量平均分子量は6200であった。
Figure JPOXMLDOC01-appb-C000050
 [合成例12:化合物9の合成]
 下記反応により、化合物9を合成した。
Figure JPOXMLDOC01-appb-C000051
 Macromolecules 2007,40,p.1981を参考として、化合物Hを合成した。
 この化合物H 1.8g、1,6-ジブロモヘキサン 9.6gおよび水酸化カリウム 2.5gを、ジメチルスルホキシド 50mlに溶解し、60℃で6時間反応させた。反応終了後、反応物に酢酸エチルと食塩水とを加えて水洗し、有機層を乾燥・留去し、シリカゲルカラムクロマトグラフィーおよび日本分析工業製分取用GPC(LC-91XX NEXT)で精製することにより、化合物Iを1.8gで得た(収率50%)。
 得られた化合物I 1.8gをクロロホルム20ml、酢酸20mlおよびN-ブロモスクシンイミド(NBS) 1.57gに加え、室温(25℃)で6時間撹拌して、反応を行った。反応終了後、食塩水およびクロロホルムを加えて水洗し、有機層を乾燥・留去し、シリカゲルカラムクロマトグラフィーで精製することにより、化合物Jを2.1g得た(収率90%)。
 合成例5において、化合物Fの代わりに、ここで得られた化合物Jを用いる以外は、合成例5と同様の方法に従って、化合物9を得た。
 [合成例13:比較化合物5の合成]
 Appl.Phys.Lett.vol.95,p.043301(非特許文献3)に従って、芳香族環あたり2/3個のアミノ基を有する下記比較化合物5を合成した。なお、比較化合物5の重量平均分子量は4900であった。
Figure JPOXMLDOC01-appb-C000052
 [合成例13:化合物61の合成]
Figure JPOXMLDOC01-appb-C000053
 アルドリッチ社製のポリ(ビニルベンジルクロライド)、60/40 3,4異性体混合物(数平均分子量55000)を1.0g、および3,3’-イミノビス(N,N-ジメチルプロピルアミン)(アルドリッチ社製)9.0gを、テトラヒドロフラン100mlおよびN,N-ジメチルホルムアミド100mlの混合溶媒に溶解し、室温(25℃)で48時間撹拌して、反応を行った。反応終了後、溶媒を減圧留去し、さらに水に再沈殿を行うことで、例示化合物41を1.8g得た(収率95%)。
 [実施例1]
 《順層構成のバルクヘテロジャンクション型有機光電変換素子の作製》
 (p型有機半導体材料Aの合成)
 米国特許第8008421号明細書を参考として、下記p型有機半導体材料Aを合成した。数平均分子量は35000であった。
Figure JPOXMLDOC01-appb-C000054
 〔有機光電変換素子101~107の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理し正孔輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。
 (有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料Aを0.6質量%、n型有機半導体材料であるPC71BM(フロンティアカーボン製nanom spectra E110)を1.2質量%、1,8-オクタンジチオールを3.0質量%とを混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、p型有機半導体材料A及びPC71BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、有機光電変換層を製膜した。
 (電子輸送層)
 続いて、表2に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調整し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で2nm/秒でAlメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子101~107を作製した。
 〔有機光電変換素子108~119の作製〕
 第2電極をAlメタルから下記Agメタルに変更した以外は有機光電変換素子101~107と同様にして有機光電変換素子108~119を作製した。
 (有機光電変換素子108~119の第2電極の形成)
 電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 〔有機光電変換素子120~126の作製〕
 第2電極をAlメタルから下記Auメタルに変更した以外は有機光電変換素子101~107と同様にして有機光電変換素子120~126を作製した。
 (有機光電変換素子120~126の第2電極の形成)
 電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAuメタルを100nm蒸着して、第2の電極を形成した。
 〔有機光電変換素子127~133の作製〕
 第2電極をAlメタルから下記Cuメタルに変更した以外は有機光電変換素子101~107と同様にして有機光電変換素子120~126を作製した。
 (有機光電変換素子127~133の第2電極の形成)
 電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でCuメタルを100nm蒸着して、第2の電極を形成した。
 《有機光電変換素子の評価》
 (光電変換効率の評価)
 上記で作製した各有機光電変換素子に、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、短絡電流密度Jsc(mA/cm)および開放電圧Voc(V)、曲線因子(フィルファクター)FFを、同素子上に形成した4箇所の受光部についてそれぞれ測定し、平均値を求めた。また、求めた短絡電流密度Jsc、開放電圧Voc、及び曲線因子FFから式(1)に従って、光電変換効率η(%)を求めた。ここで、光電変換効率η(%)の数字が大きい程、エネルギー変換効率(光電変換効率)が良好であることを示す。
Figure JPOXMLDOC01-appb-M000055
 光電変換効率η(%)の数字が大きい程、エネルギー変換効率(光電変換効率)が良好であることを示す。
 (光電変換効率の耐久性の評価)
 上記光電変換効率の評価を行った有機光電変換素子を、陽極と陰極の間に抵抗を接続したまま、有機光電変換素子を80℃に加熱し、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光で1000h暴露し続けた後、有機光電変換素子を室温に冷却し、上記光電変換効率の評価と同様の方法で、有機光電変換素子上に形成した4箇所の受光部について、それぞれ上記式(1)に従って光電変換効率η(%)を求めた。次いで、下記式(2)により変換効率の相対効率低下率を算出して平均値を求め、これを光電変換効率の耐久性の尺度とした。
Figure JPOXMLDOC01-appb-M000056
 変換効率の相対効率低下率(%)が小さい程、エネルギー変換効率の耐久性(光電変換効率の耐久性)に優れていることを表す。
 以上により得られた結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-C000058
 表2に記載の結果より明らかなように、本発明の有機光電変換素子は、比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。またイオン化ポテンシャルの大きいAg、Auを第2電極に使用した場合でも比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例2]
 《順層構成の加熱変換型有機光電変換素子の作製》
 〔有機光電変換素子201~207の作製〕
 (透明電極の形成)
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を110nm堆積したもの(シート抵抗13Ω/□)を、通常のフォトリソグラフィ技術と塩酸エッチングとを用いて2mm幅にパターニングして、透明電極を形成した。
 パターン形成した透明電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)を40nm膜厚でスピンコートした後、140℃で大気中10分間加熱乾燥して、正孔輸送層を形成した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を180℃で3分間加熱処理した。
 (有機光電変換層の形成)
 クロロホルム/モノクロロベンゼンの1:2混合溶媒(重量)に下記化合物(P1)を0.5重量%溶解した液をろ過し、得られたろ液を1500rpmでスピンコートし、180℃で20分間加熱した。これによって、正孔取り出し層の上に約25nmのテトラベンゾポルフィリン下記化合物(P2)の層(p型半導体層)を形成した。
Figure JPOXMLDOC01-appb-C000059
 クロロホルム/モノクロロベンゼンの1:1混合溶媒(重量)に、化合物(P1)を0.6重量%とフラーレン誘導体1を1.4重量%溶解した液を調製し、ろ過した。窒素雰囲気下で、得られたろ液をp型半導体層上に1500rpmでスピンコートし、180℃で20分間加熱した。これによって、p型半導体の層上に約100nmのテトラベンゾポルフィリン(化合物(P2))と、フラーレン誘導体1とを含む混合物層を形成した。
Figure JPOXMLDOC01-appb-C000060
 次に、トルエンにフラーレン誘導体1を1.2重量%溶解した液を調製し、ろ過し、窒素雰囲気下で得られたろ液を3000rpmでスピンコートし、120℃で5分間加熱処理を施した。これによって、混合物層上に約50nmのフラーレン誘導体1の層を形成した。
 なお、光電変換層におけるP型半導体(P2)とn型半導体(フラーレン誘導体1)との質量比は3:7であった。
 (電子輸送層)
 続いて、表3に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で2nm/秒でAlメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を、窒素雰囲気下でアルミニウムキャップとUV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後に大気下に取り出し、受光部が2mm角のサイズの有機光電変換素子201~207を作製した。
 〔有機光電変換素子208~215の作製〕
 第2電極をAlメタルから下記Agメタルに変更した以外は有機光電変換素子201~207と同様にして有機光電変換素子208~215を作製した。
 (有機光電変換素子208~215の第2電極の形成)
 電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、2mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 《有機光電変換素子の評価》
 有効面積を1cmにしたマスクを4.0mmにしたマスクに変更した以外は実施例1と同様にして光電変換効率の評価、及び光電変換効率の耐久性の評価を行った。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000061
 表3に記載の結果より明らかなように、本発明の有機光電変換素子は、塗布変換型においても比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。またイオン化ポテンシャルの大きいAgを第2電極に使用した場合でも比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例3]
 《逆層構成のバルクヘテロジャンクション型有機光電変換素子の作製》
 〔有機光電変換素子301~308の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (電子輸送層)
 次いで、表4に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調整し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 (有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料Aを0.6質量%、n型有機半導体材料であるPC71BM(フロンティアカーボン製nanom spectra E110)を1.2質量%を混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、p型有機半導体材料AおよびPC71BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、有機光電変換層を製膜した。
 (正孔輸送層の形成)
 続いて、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理し正孔輸送層を製膜した。
 (第2電極の形成)
 次に、上記正孔輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子301~308を作製した。
 《有機光電変換素子の評価》
 実施例1と同様にして光電変換効率の評価、および光電変換効率の耐久性の評価を行った。得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000062
 表4に記載の結果より明らかなように、本発明の有機光電変換素子は、逆層構成においても比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例4]
 《順層構成のタンデム型有機光電変換素子の作製》
 〔有機光電変換素子401から403の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (第1の正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理し第1の正孔輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。
 (第1の有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料Aを0.6質量%、n型有機半導体材料であるPC71BM(フロンティアカーボン製nanom spectra E110)を1.2質量%を混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、p型有機半導体材料AおよびPC71BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、第1の有機光電変換層を製膜した。
 (第1の電子輸送層の形成)
 続いて、表5に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調整し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し第1の電子輸送層を製膜した。
 (第2の正孔輸送層の形成)
 次いで、正孔輸送層として、HIL691溶液(Plextronics社製、商品名Plexcore HIL691)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理し第2の正孔輸送層を製膜した。この第2の正孔輸送層の膜面pHは7であった。
 (第2の有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料であるP3HT(BASF社製:レジオレギュラー ポリ-3-ヘキシルチオフェン)を1.0質量%、n型有機半導体材料であるPCBM(フロンティアカーボン社製E100H:6,6-フェニル-C61-ブチリックアシッドメチルエステル)を0.8質量%で混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)してP3HTとPCBMを溶解した後、0.45μmのフィルタでろ過しながら乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、第2の有機光電変換層を製膜した。
 (第2の電子輸送層の形成)
 続いて、表5に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し第2の電子輸送層を製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で2nm/秒でAlメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子401~403を作製した。
 〔有機光電変換素子404の作製〕
 第2電極をAlメタルから下記Agメタルに変更した以外は有機光電変換素子403と同様にして有機光電変換素子404作製した。
 (有機光電変換素子404の第2電極の形成)
 電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 〔有機光電変換素子405の作製〕
 第1の電子輸送層を下記TiOx層に変更した以外は有機光電変換素子404と同様にして有機光電変換素子405作製した。
〔有機光電変換素子405の第1の電子輸送層の形成〕
 第1の光電変換層を形成した基板を一度大気中に戻し、チタニアゾル(触媒化成工業(株)製PASOL HPW-10R)を水で4倍に希釈した溶液を乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布し、大気中で120℃、10分の条件で加熱し、TiOxからなる第1の電子輸送層を得た。その後基板を再度グローブボックス中に持ち込み、以降は窒素雰囲気下で作業した。
 〔有機光電変換素子406~410の作製〕
 第1の電子輸送層の形成に表5に記載の化合物を使用し、第2の正孔輸送層を下記に変更した以外は有機光電変換素子404~405の作製と同様にして有機光電変換素子406~410を作製した。
 〔有機光電変換素子406~410の第2の正孔輸送層の形成〕
 正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理し第2の正孔輸送層を製膜した。この正孔輸送層の膜面pHは2であった。
 《有機光電変換素子の評価》
 実施例1と同様にして光電変換効率の評価、及び光電変換効率の耐久性の評価を行った。得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000063
 表5に記載の結果より明らかなように、本発明の有機光電変換素子は、順層構成のタンデム型においても比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。またイオン化ポテンシャルの大きいAgを第2電極に使用した場合でも比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。また光電変換層の間の電荷再結合層を構成する第2の電子輸送層に使用した場合でも、さらには第2の正孔輸送層の膜面pHが低い場合でも、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例5]
 《逆層構成のタンデム型有機光電変換素子の作製》
 〔有機光電変換素子501の作製〕
 (透明電極の形成)
 大気下で、PET基板上に、銀ナノ粒子ペースト1(M-Dot SLP 三ツ星ベルト製)をRK Print Coat Instruments Ltd製グラビア印刷試験機K303MULTICOATERを用いて、線幅50μm、高さ0.8μm、間隔1.0mmの細線格子を印刷した後、110℃、5分の乾燥処理を行い、補助電極を作製した。補助電極を設けた基板上に、下記組成の透明電極層層塗布液をウェット膜厚10μmになるように塗布し、90℃、1分間乾燥した。その後、電気炉を用いて120℃で30分の加熱処理を行い、透明電極層を形成した。
 透明電極層塗布液
 導電性ポリマー分散液(Clevios TH510;H.C.Starck社製、固形分1.7質量%)              17.6g
 水溶性バインダーWP-1水溶液(数平均分子量33700、分子量分布2.4、固形分20質量%)                 3.5g
 ジメチルスルホキシド                   1.0g
Figure JPOXMLDOC01-appb-C000064
 (第1の電子輸送層の形成)
 表6に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し第1の電子輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 (第1の有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料であるP3HT(BASF社製:レジオレギュラー ポリ-3-ヘキシルチオフェン)を1.0質量%、n型有機半導体材料であるPCBM(フロンティアカーボン社製E100H:6,6-フェニル-C61-ブチリックアシッドメチルエステル)を0.8質量%で混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)してP3HTとPCBMを溶解した後、0.45μmのフィルタでろ過しながら乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、第1の有機光電変換層を製膜した。
 (第1の正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子およびポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、第1の正孔輸送層を製膜した。
 (第2の電子輸送層の形成)
 続いて、表6に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、第2の電子輸送層を製膜した。
 (第2の有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料Aを0.6質量%、n型有機半導体材料であるPC71BM(フロンティアカーボン製nanom spectra E110)を1.2質量%を混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、p型有機半導体材料AおよびPC71BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、第2の有機光電変換層を製膜した。
 (第2の正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子およびポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)、イソプロパノールを含む液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、第2の正孔輸送層を製膜した。
 (第2電極の形成)
 電子輸送層を製膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子501を作製した。
 〔有機光電変換素子502の作製〕
 第1および第2の電子輸送層を下記TiOx層に変更した以外は有機光電変換素子404と同様にして、有機光電変換素子502を作製した。
 〔有機光電変換素子502の第1の電子輸送層の形成〕
 透明電極を形成した基板に、チタニアゾル(触媒化成工業(株)製PASOL HPW-10R)を水で4倍に希釈した溶液を乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布し、大気中で120℃、10分の条件で加熱し、第1の電子輸送層を得た。その後基板をグローブボックス中に持ち込み、以降は窒素雰囲気下で作業した。
 〔有機光電変換素子502の第2の電子輸送層の形成〕
 第1の正孔輸送層を形成した基板を一度大気中に戻し、チタニアゾル(触媒化成工業(株)製PASOL HPW-10R)を水で4倍に希釈した溶液を乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布し、大気中で120℃、10分の条件で加熱し、第1の電子輸送層を得た。その後基板を再度グローブボックス中に持ち込み、以降は窒素雰囲気下で作業した。
 〔有機光電変換素子503~505の作製〕
 第1および第2の電子輸送層の形成に表6に記載の化合物を使用した以外は有機光電変換素子501の作製と同様にして、有機光電変換素子503~505を作製した。
 《有機光電変換素子の評価》
 実施例1と同様にして光電変換効率の評価、および光電変換効率の耐久性の評価を行った。得られた結果を表6に示す。
Figure JPOXMLDOC01-appb-T000065
 表6に記載の結果より明らかなように、本発明の有機光電変換素子は、逆層構成のタンデム型においても比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例6]
 《順層構成のバルクヘテロジャンクション型有機光電変換素子の作製》
 〔有機光電変換素子601~607の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (正孔輸送層の形成)
 次に、この透明基板を真空蒸着装置内に設置した。10-3Pa以下にまで真空蒸着機内を減圧した後、MoOを蒸着速度0.5nm/秒の速度で15nm蒸着して、第一の正孔輸送層を形成した。
 続いて、表7に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し第2の正孔輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 (有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料Aを0.6質量%、n型有機半導体材料であるPC71BM(フロンティアカーボン製nanom spectra E110)を1.2質量%を混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、p型有機半導体材料AおよびPC71BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるようにブレードコーターを用いて塗布し、95℃で2分間乾燥して、有機光電変換層を製膜した。
 (電子輸送層)
 続いて、表7に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子601~607を作製した。
 《有機光電変換素子の評価》
 実施例1と同様にして光電変換効率の評価、および光電変換効率の耐久性の評価を行った。得られた結果を表7に示す。
Figure JPOXMLDOC01-appb-T000066
 表7に記載の結果より明らかなように、本発明の有機光電変換素子は、正孔輸送層に用いた場合でも比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 [実施例7]
 《本発明の化合物の積層塗布性の確認》
 石英ガラス基板を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 洗浄した基板上に、合成例1で合成した化合物3を0.1質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、乾燥膜厚が約20nmになるように、上記石英ガラス基板上に、65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、化合物3の塗布膜を形成した。
 図4において、この塗布膜のスペクトルは青色点線(塗布直後)のスペクトルである。また、この塗布膜上にo-ジクロロベンゼンのみを再度塗布したものが黄色破線(oDCB 65C塗布)のスペクトルであり、この塗布膜を1分間o-ジクロロベンゼン中に浸漬したものが赤色実線(oDCB 浸漬)のスペクトルである。図4に示す結果から、本発明に係る共役系高分子化合物(化合物3)の塗布膜は、光電変換層を塗布するのに一般的に使用されるo-ジクロロベンゼンには溶解しないことが示される。ゆえに、この塗布膜上に光電変換層を塗布法によって、光電変換層上に相関混合なくかつ容易に形成できることが考察される。
 [実施例8]
 《順層型のバルクヘテロジャンクション型有機光電変換素子の作製》
 〔有機光電変換素子1~16の作製〕
 (p型半導体材料)
 非特許文献2(Appl.Phys.Lett.Vol.98、p.043301)、および国際公開第2011/085004号を参考として、p型有機半導体材料Bを合成した。なお、下記p型有機半導体材料Bの数平均分子量は43000であった。
Figure JPOXMLDOC01-appb-C000067
 (透明電極の形成)
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記第1の電極上に製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。
 (光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料であるKP115(p型有機半導体材料B)を0.8質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.6質量%を混合した有機光電変換材料組成物溶液を調製し、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した後、乾燥膜厚が約170nmになるように、基板を80℃に調温したブレードコーターを用いて塗布し、2分間乾燥して、光電変換層を上記正孔輸送層上に製膜した。
 (電子輸送層)
 続いて、表8に記載の化合物および比較化合物を、それぞれ、0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記光電変換層上に製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を製膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着機内を減圧した後、蒸着速度で2nm/秒で表8に記載の第2電極材料を、それぞれ、100nm蒸着して、第2の電極を上記電子輸送層上に形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子801~816を作製した。
 《有機光電変換素子の評価》
 (光電変換効率の評価)
 実施例1と同様にして光電変換効率の評価を行った。得られた結果を表8に示す。
 (光電変換効率の耐久性の評価)
 実施例1と同様にして光電変換効率の耐久性の評価を行った。この相対効率低下率が80%となる時間をLT80として素子の耐久性を評価した。
 以上により得られた結果を、表8に示す。
Figure JPOXMLDOC01-appb-T000068
 表8に記載の結果より明らかなように、本発明の有機光電変換素子は、比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、光電変換効率の耐久性に優れていることが分かる。またイオン化ポテンシャルの大きいAgを第2電極に使用した場合でも比較例に対し、高い光電変換効率(エネルギー変換効率)を有し、かつ光電変換効率の耐久性に優れていることが分かる。
 さらに、表8から、本発明に係る共役系高分子化合物を用いかつ仕事関数が-4.5以下の金属を陰極に用いた本願発明の有機光電変換素子6~16は、初期の光電変換効率も高く、耐久性にも優れていることが分かる。
 これに対して、電極として仕事関数が浅くて内部電界が高い反面、安定性の低いアルミニウムを電極として用いる、有機光電変換素子804、809は、初期効率は高いものの、耐久性が低いことが分かる。また、1個の芳香族環あたりのアミノ基の数が1.5個未満である比較化合物1~4を用いた有機光電変換素子801~803、805は、電極に仕事関数が深くて安定である反面、内部電界が小さくなる銀を電極に用いても、光電変換効率が低く、耐久性も不十分であることが分かる。
 [実施例9]
 《逆層型のバルクヘテロジャンクション型有機光電変換素子の作製》
 〔有機光電変換素子17の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (電子輸送層)
 次いで、化合物3を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、ブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記第1の電極上に製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 (光電変換層の形成)
 次いで、o-ジクロロベンゼンに、p型有機半導体材料であるKP115(p型有機半導体材料B)を0.6質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.2質量%を混合した有機光電変換材料組成物溶液を調製し、オーブンで100℃に加熱しながら撹拌(60分間)して、KP115(p型有機半導体材料B)及びPC61BMを溶解した後、0.45μmのフィルタでろ過しながら、乾燥膜厚が約100nmになるように、ブレードコーターを用いて塗布し、95℃で2分間乾燥して、光電変換層を上記電子輸送層上に製膜した。
 (正孔輸送層の形成)
 続いて、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるようにブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記光電変換層上に製膜した。
 (第2の電極の形成)
 次に、上記正孔輸送層を製膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまでに真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を上記正孔輸送層上に形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m2/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子817を作製した。
 《有機光電変換素子の評価》
 このようにして得られた有機光電変換素子817について、実施例8と同様にして光電変換効率の評価、及び光電変換効率の耐久性の評価を行った。得られた結果を表9に示す。なお、下記表9では、比較のために、同様の化合物3を使用した実施例8の有機光電変換素子809~812の結果を併せて記載する。
Figure JPOXMLDOC01-appb-T000069
 表9から、透明電極(ITO)側から電子を取り出す逆層構成においても、本発明に係る共役系高分子化合物15は高い光電変換効率と耐久性を兼ね備えていることが分かる。ただし、表9から、有機光電変換素子817は、銀を電極として使用する有機光電変換素子11と比べると、光電変換効率および耐久性に若干劣ることも分かる。これから、順層型の有機光電変換素子の方が、逆層型の有機光電変換素子より、光電変換効率及び耐久性に優れることが考察される。
 [実施例10]
 《順層構成のバルクヘテロジャンクション型有機光電変換素子の作製》
 〔有機光電変換素子801、803、805の作製〕
 (p型有機半導体材料Cの合成)
Figure JPOXMLDOC01-appb-C000070
 J.AM.CHEM.SOC.2009,131,7514を参考として、化合物Qを合成した。化合物Qを1.40g(2.4mmol)と,化合物Rを363mg(1.1mmol)とをトルエン50mlに溶解し、95mgのトリス(ジベンジリデンアセトン)ジパラジウム(0)と、126mgのトリス(o-トリル)ホスフィンとを加えた。この溶液をさらに15分間、窒素でパージした。その後、110~120℃まで溶液を加熱し、4時間反応させた。放冷後、トルエンを留去し、トルエン:ヘプタン=100:0~100:10の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物Sを370mg(収率34%)得た。
Figure JPOXMLDOC01-appb-C000071
 370mg(0.37mmol)の化合物SをTHF20mlに溶解し、Nブロモスクシンイミド(NBS)145mg(0.82mmol)を加え、50℃で3時間半撹拌を行った。反応終了後、溶媒を留去し、トルエン:ヘプタン=100:0~100:10の溶離液でシリカゲルカラムクロマトグラフィーで精製を行うことにより、化合物Tを350mg(収率81%)得た。HNMR(CDCl3) = 8.34ppm, 2H, d, 7.09ppm, 2H, d, 1.49ppm, 4H, m, 1.2-1.4ppm, 32H, br, 1.0-1.1ppm, 8H, m, 0.84ppm, 12H, t。
Figure JPOXMLDOC01-appb-C000072
 上記化合物Tを175mg(0.15mmol)と、化合物Uを153mg(0.15mmol)を20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、3.9mg(0.0042mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、10mg(0.033mmol)のトリス(o-トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110~120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで290mgの純粋なポリマー(p型有機半導体材料C;Mn=26000)を得た。
 (p型有機半導体材料Dの合成)
 前記p型有機半導体材料Cの合成において、化合物Qのかわりに下記化合物Vを用いた以外は同様にしてモノマーである化合物W(HNMR(CDCl3) = 7.95ppm(2H),s, 2.62ppm (4H),d, 1.84ppm (2H),m, 1.35-1.25ppm (48H),br, 0.85ppm(12H), m。)を合成し、さらに化合物Wと化合物Uとの共重合によって、p型有機半導体材料Dを得た(収量250mg、Mn=37000)。
Figure JPOXMLDOC01-appb-C000073
 (p型有機半導体材料Eの合成)
Figure JPOXMLDOC01-appb-C000074
 J.Am.Chem.Soc.,2011,133(25),pp9638を参考として化合物Xを合成した。HNMR(CDCl3) = 9.01ppm(2H),s, 7.95ppm(2H),s, 2.62ppm (4H),d, 1.84ppm (2H),m, 1.35-1.25ppm (80H),br, 0.85ppm(12H), m。
 上記化合物Xを310mg(0.25mmol)と、化合物Uを256mg(0.25mmol)とを20mlの無水トルエンに溶解させた。この溶液を窒素でパージした後、6.3mg(0.007mmol)のトリス(ジベンジリデンアセトン)ジパラジウム(0)と、16.7mg(0.055mmol)のトリス(o-トリル)ホスフィンとを加えた。この溶液をさらに15分間、アルゴンでパージした。その後、110~120℃まで溶液を加熱し、72時間反応させた。さらにエンドキャップを行うため、2-トリブチル錫チオフェン(11mg、0.03mmol)を添加し、10時間還流した。さらに2-ブロモチオフェン(10mg、0.06mmol)を添加し、10時間還流した。反応完了後、メタノール(500ml)に再沈殿し、ろ取したポリマー生成物を、メタノール、アセトン、ヘプタン、クロロホルム、次いでオルトジクロロベンゼンを用いてソックスレー抽出により可溶成分を抽出し、メタノールに再沈殿を行うことで220mgの純粋なポリマー(p型有機半導体材料E;Mn=29000)を得た。
 (透明電極の形成)
 ガラス基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (正孔輸送層の形成)
 次いで、正孔輸送層として、導電性高分子及びポリアニオンからなるPEDOT-PSS(CLEVIOS(登録商標) P VP AI 4083、ヘレオス株式会社製、導電率1×10-3S/cm)を2.0質量%で含むイソプロパノール溶液を調製し、乾燥膜厚が約30nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、120℃の温風で20秒間加熱処理して、正孔輸送層を上記第1の電極上に製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 まず、窒素雰囲気下で上記基板を120℃で3分間加熱処理した。
 (光電変換層の形成)
 次いで、o-ジクロロベンゼンに、表10に示すp型有機半導体材料を0.72質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.08質量%を混合した有機光電変換材料組成物溶液を調製し、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した後、乾燥膜厚が約150nmになるように、基板を80℃に調温したブレードコーターを用いて塗布し、2分間乾燥して、光電変換層を上記正孔輸送層上に製膜した。
 (電子輸送層)
 続いて、表10に記載の化合物を、それぞれ、0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調製した。この溶液を、乾燥膜厚が約5nmになるように、基板を65℃に調温したブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理して、電子輸送層を上記光電変換層上に製膜した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子901、903、905を作製した。
 〔有機光電変換素子901、903、905の作製〕
 (透明電極の形成)
 PET基板上に、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗12Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて10mm幅にパターニングし、第1電極を形成した。パターン形成した第1電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 (電子輸送層)
 次いで、表10に記載の化合物を0.02質量%になるようにヘキサフルオロイソプロパノールに溶解して溶液を調整し、乾燥膜厚が約5nmになるようにブレードコーターを用いて塗布乾燥した。その後、100℃の温風で2分間加熱処理し電子輸送層を製膜した。
 これ以降は基板をグローブボックス中に持ち込み、窒素雰囲気下で作業した。
 (有機光電変換層の形成)
 次いで、o-ジクロロベンゼンに、表10に示すp型有機半導体材料を0.72質量%、n型有機半導体材料であるPC61BM(フロンティアカーボン製nanom spectra E100H)を1.08質量%を混合した有機光電変換材料組成物溶液を調製し、ホットプレートで100℃に加熱しながら撹拌(60分間)して完全に溶解した後、乾燥膜厚が約150nmになるように、基板を80℃に調温したブレードコーターを用いて塗布し、2分間乾燥して、光電変換層を上記電子輸送層上に製膜した。
 (正孔輸送層の形成)
 次に、この透明基板を真空蒸着装置内に設置した。10-3Pa以下にまで真空蒸着機内を減圧した後、MoOを蒸着速度0.5nm/秒の速度で15nm蒸着して、正孔輸送層を上記光電変換層上に形成した。
 (第2電極の形成)
 次に、上記電子輸送層を成膜した基板を真空蒸着装置内に設置した。そして、10mm幅のシャドウマスクが透明電極と直交するように素子をセットし、10-3Pa以下にまで真空蒸着機内を減圧した後、蒸着速度で0.5nm/秒でAgメタルを100nm蒸着して、第2の電極を形成した。
 (有機光電変換素子の封止)
 得られた有機光電変換素子を窒素チャンバーに移動し、2枚の3M製Ultra Barrier Solar Film UBL-9L(水蒸気透過率<5×10-4g/m/d)の間に挟みこみ、UV硬化樹脂(ナガセケムテックス株式会社製、UV RESIN XNR5570-B1)を用いて封止を行った後、大気下に取り出し、受光部が約10×10mmサイズの有機光電変換素子902、904、906を作製した。
 《有機光電変換素子の評価》
 実施例1と同様にして光電変換効率の評価を行った。得られた結果を表10に示す。
Figure JPOXMLDOC01-appb-T000075
 表10から、P型半導体材料としてチアゾロチアゾール基やナフトビスベンゾチアゾール基を有する(より好ましくはチアゾロチアゾール基を有し、特に好ましくはこれらの基を両方有する)化合物を用いた場合には、一層高い光電変換効率を達成しうることが確認される。
10、20、30 有機光電変換素子、
11 陽極、
12 陰極、
14 光電変換層、
14a 第1の光電変換層、
14b 第2の光電変換層、
25 基板
26 正孔輸送層、
26a 無機材料層、
26b 有機材料層、
27 電子輸送層、
38 電荷再結合層、
38a 第2の電子輸送層、
38b 第2の正孔輸送層。

Claims (24)

  1.  陰極と、
     陽極と、
     前記陰極と前記陽極との間に介在する、p型有機半導体材料およびn型有機半導体材料を含む光電変換層と、
     前記陰極と前記陽極との間に介在する、前記光電変換層以外の中間層と、
    を有する有機光電変換素子であって、
     前記中間層の少なくとも1つが、下記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する、有機光電変換素子:
    Figure JPOXMLDOC01-appb-C000001
     式中、
     Lは、置換または無置換の炭素原子数1~20のアルキレン基、置換または無置換の炭素原子数3~20のシクロアルキレン基、置換または無置換の炭素原子数2~20のアルキニレン基、置換または無置換の炭素原子数6~30のアリーレン基、置換または無置換の炭素原子数1~30のヘテロアリーレン基、炭素原子数1~20のアルキレンオキシ基、および-(L1’)-(OR)-からなる群から選択される2価の連結基を表し(この際、L1’は、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、または単結合を表し、Rは、エチレン基、トリメチレン基またはプロピレン基を表し、pは1~5の整数である)、
     Lは:
    Figure JPOXMLDOC01-appb-C000002
     式中、
     Lは、上記と同様の定義であり、
     Lは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基、またはLを表す(ただし、Nに結合した2つのLがともに水素原子となることはない)、
    で表される基(塩の形態も含む)であり、
     Lは、上記Lと同様の定義であり、
    かつ、一般式(1)で表される構造における窒素原子(N)を最も多く有する鎖の有する窒素原子(N)の数が2~5個である。
  2.  前記高分子化合物の主鎖が、下記一般式(2)で表される構造単位を有する、請求項1に記載の有機光電変換素子:
    Figure JPOXMLDOC01-appb-C000003
     式中、
     MおよびMは、それぞれ独立して、単環または縮合環であるアリール基またはヘテロアリール基を表し、
     Zは、前記一般式(1)で表される構造を表し、
     aおよびbは、それぞれ独立して、a>0、b≧0、a+b=1.0の関係を満たす正の実数を表し、
     nは、Mに結合しているZの数を表し、1、2または3である。
  3.  前記中間層が、主鎖に芳香族環を含みかつ置換基として1級~4級のアミノ基を前記芳香族環あたり1.5個以上有する高分子化合物を含み、
     前記中間層と接する電極の仕事関数が、光電子分光法で測定した際に-4.5eV以下である、請求項1または2に記載の有機光電変換素子。
  4.  前記高分子化合物の主鎖が、下記一般式(3)で表される構造単位(塩の形態を含む)を有する、請求項1~3のいずれか1項に記載の有機光電変換素子:
    Figure JPOXMLDOC01-appb-C000004
     式中、
     Xは、窒素原子、炭素原子、ケイ素原子またはリン原子を表し、
     Zは、前記一般式(1)で表される構造を表し、
     nは、Xに結合しているZの数を表し、1、2または3であり、
     AおよびBは、それぞれ独立して、6員の芳香族炭化水素環、5員の芳香族複素環または6員の芳香族複素環を表す。
  5.  前記高分子化合物が、下記一般式(4)で表わされる構造単位(塩の形態を含む)を有する、請求項1~4のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
     式中、
     L、L、およびLは、上記と同様の定義であり、
     Xは、窒素原子、炭素原子、ケイ素原子またはリン原子を表し、
     YおよびYは、それぞれ独立して、-C(R)=C(R)-、-C(R)=N-、-O-または-S-を表し、
     R~Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表し;および
     nは、1、2または3である。
  6.  前記中間層に含まれる高分子化合物は、主鎖の芳香族環あたり2個以上のアミノ基を有する、請求項3~5のいずれか1項に記載の有機光電変換素子。
  7.  前記アミノ基の少なくとも1個が、3級アミノ基である、請求項3~6のいずれか1項に記載の有機光電変換素子。
  8.  前記高分子化合物が、下記一般式(5)で表わされる構造単位(塩の形態を含む)を有する、請求項1~7のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
     式中、
     L~Lは、それぞれ独立して、置換または無置換の炭素原子数1~20のアルキレン基、置換または無置換の炭素原子数3~20のシクロアルキレン基、置換または無置換の炭素原子数2~20のアルキニレン基、置換または無置換の炭素原子数6~30のアリーレン基、置換または無置換の炭素原子数1~30のヘテロアリーレン基、炭素原子数1~20のアルキレンオキシ基、および-(L1’)-(OR)-からなる群から選択される2価の連結基を表し(この際、L1’は、置換または無置換の炭素原子数1~20のアルキレン基、置換または無置換の炭素原子数6~30のアリーレン基、または単結合を表し、Rは、エチレン基、トリメチレン基またはプロピレン基を表し、pは1~5の整数である);
     Xは、窒素原子、炭素原子またはケイ素原子を表し;
     YおよびYは、それぞれ独立して、-C(R10)=C(R11)-、-C(R12)=N-、-O-または-S-を表し;
     R~Rは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基、または上記Lを表し、
     R10~R12は、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表し、および
     nは、1、2または3である。
  9.  前記一般式(3)または(4)または(5)において、XまたはXが炭素原子である、請求項4または5または8に記載の有機光電変換素子。
  10.  前記一般式(4)または(5)において、YおよびY、または、YおよびYが、それぞれ独立して、-CH=CH-、-CH=N-または-S-である、請求項5または8に記載の有機光電変換素子。
  11.  前記中間層に含まれる高分子化合物は、主鎖の芳香族環あたり3個以上のアミノ基を有する、請求項1~10のいずれか1項に記載の有機光電変換素子。
  12.  前記中間層が電子輸送層であることを特徴とする、請求項1~11のいずれか1項に記載の有機光電変換素子。
  13.  前記中間層と接する電極が、インジウム・スズ酸化物(ITO)、酸化モリブデン、銅または銀を含む、請求項1~12のいずれか1項に記載の有機光電変換素子。
  14.  前記中間層と接する電極が、銀を含む、請求項1~13のいずれか1項に記載の有機光電変換素子。
  15.  前記陽極が透明電極であり、
     前記陰極の構成材料がアルミニウムと同等またはアルミニウムよりもイオン化ポテンシャルの大きい金属を含有する、請求項1~14のいずれか1項に記載の有機光電変換素子。
  16.  前記陰極の構成材料が銀、金または銅を含有する、請求項1~15のいずれか1項に記載の有機光電変換素子。
  17.  前記光電変換層に含まれるp型有機半導体材料が、下記一般式(6)で表わされる構造、下記一般式(7)で表わされる構造、および下記一般式(8)で表わされる構造の少なくとも1つを有する、請求項1~16のいずれか1項に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
     式中、
     Xは、炭素原子、ケイ素原子、またはゲルマニウム原子を表し、
     R13およびR14は、それぞれ独立して、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基または置換もしくは無置換の炭素原子数1~30のヘテロアリール基を表し、
     YおよびYは、それぞれ独立して、-C(R17)=または-N=を表し、
     R15~R17は、それぞれ独立して、水素原子、ハロゲン原子、置換もしくは無置換の、炭素原子数1~20のアルキル基、炭素原子数1~20のフッ化アルキル基、炭素原子数3~20のシクロアルキル基、炭素原子数3~20のフッ化シクロアルキル基、炭素原子数1~20のアルコキシ基、炭素原子数1~20のフッ化アルコキシ基、炭素原子数1~20のフッ化アルキルチオ基、炭素原子数6~30のアリール基、炭素原子数6~30のフッ化アリール基、炭素原子数1~20のヘテロアリール基、または炭素原子数1~20のフッ化ヘテロアリール基を表す。
  18.  少なくとも2層の前記光電変換層が前記中間層を介して配置されてなり、
     当該2層の光電変換層の間に介在する前記中間層が前記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する、請求項1~17のいずれか1項に記載の有機光電変換素子。
  19.  2層の光電変換層の間に介在する前記中間層が少なくとも正孔輸送層および電子輸送層を有し、
     前記中間層の有する前記電子輸送層が前記一般式(1)で表される構造を側鎖として含む高分子化合物を含有する、請求項18に記載の有機光電変換素子。
  20.  2層の光電変換層の間に介在する前記中間層の有する前記正孔輸送層がp型導電性高分子材料を含有する、請求項18または19に記載の有機光電変換素子。
  21.  2層の光電変換層の間に介在する前記中間層の有する前記正孔輸送層の膜面pHが4以下である、請求項20に記載の有機光電変換素子。
  22.  前記中間層が、フッ素原子で置換されたアルコールを含む溶媒を用いた塗布プロセスによって形成される、請求項1~21のいずれか1項に記載の有機光電変換素子。
  23.  請求項1~22のいずれか1項に記載の有機光電変換素子を有する、太陽電池。
  24.  下記一般式(1)で表される構造を側鎖として含む高分子化合物:
    Figure JPOXMLDOC01-appb-C000008
     式中、
     Lは、置換または無置換の炭素原子数1~20のアルキレン基、置換または無置換の炭素原子数3~20のシクロアルキレン基、置換または無置換の炭素原子数2~20のアルキニレン基、置換または無置換の炭素原子数6~30のアリーレン基、置換または無置換の炭素原子数1~30のヘテロアリーレン基、炭素原子数1~20のアルキレンオキシ基、および-(L1’)-(OR)-からなる群から選択される2価の連結基を表し(この際、L1’は、置換もしくは無置換の炭素原子数1~20のアルキレン基、置換もしくは無置換の炭素原子数6~30のアリーレン基、または単結合を表し、Rは、エチレン基、トリメチレン基またはプロピレン基を表し、pは1~5の整数である)、
     Lは:
    Figure JPOXMLDOC01-appb-C000009
     式中、
     Lは、上記と同様の定義であり、
     Lは、それぞれ独立して、水素原子、置換もしくは無置換の炭素原子数1~20のアルキル基、置換もしくは無置換の炭素原子数3~20のシクロアルキル基、置換もしくは無置換の炭素原子数6~30のアリール基、置換もしくは無置換の炭素原子数1~30のヘテロアリール基、またはLを表す(ただし、Nに結合した2つのLがともに水素原子となることはない)、
    で表される基(塩の形態も含む)であり、
     Lは、上記Lと同様の定義であり、
    かつ、一般式(1)で表される構造における窒素原子(N)を最も多く有する鎖の有する窒素原子(N)の数が2~5個である。
PCT/JP2012/077593 2011-10-31 2012-10-25 有機光電変換素子およびこれを用いた太陽電池 WO2013065573A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013541736A JP6090166B2 (ja) 2011-10-31 2012-10-25 有機光電変換素子およびこれを用いた太陽電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-239561 2011-10-31
JP2011239560 2011-10-31
JP2011239561 2011-10-31
JP2011-239560 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065573A1 true WO2013065573A1 (ja) 2013-05-10

Family

ID=48191922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077593 WO2013065573A1 (ja) 2011-10-31 2012-10-25 有機光電変換素子およびこれを用いた太陽電池

Country Status (2)

Country Link
JP (1) JP6090166B2 (ja)
WO (1) WO2013065573A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011057A (ko) * 2014-07-21 2016-01-29 한국과학기술연구원 낮은 밴드갭을 갖는 고분자 화합물, 그 제조 방법 및 이를 포함하는 유기태양전지
WO2016073052A1 (en) * 2014-11-03 2016-05-12 Life Technologies Corporation Dibenzosilole monomers and polymers and methods for their preparation and use
KR101927463B1 (ko) * 2017-07-31 2018-12-11 이화여자대학교 산학협력단 광전 소자
US10793584B2 (en) 2016-12-27 2020-10-06 Osaka University Naphthobischalcogenadiazole derivative and production method therefor
CN116887652A (zh) * 2023-09-07 2023-10-13 南开大学 一种两端钙钛矿有机叠层太阳电池及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549434B2 (ja) * 2015-07-15 2019-07-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503196A (ja) * 1995-04-12 1999-03-23 イーストマン ケミカル カンパニー 水性コーティング組成物
JP2004162059A (ja) * 2002-10-24 2004-06-10 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
WO2006080553A1 (en) * 2005-01-31 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Hole-injecting material, material for light-emitting element, light-emitting element, organic compound, monomer, and monomer mixture
JP2007103921A (ja) * 2005-09-06 2007-04-19 Canon Inc 半導体素子
WO2007071957A1 (en) * 2005-12-22 2007-06-28 Cambridge Display Technology Limited Electronic devices with aryl amine polymers
WO2008122027A2 (en) * 2007-04-02 2008-10-09 Konarka Technologies, Inc. Novel electrode
WO2008134492A1 (en) * 2007-04-27 2008-11-06 Konarka Technologies, Inc. Organic photovoltaic cells
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法
JP2011082421A (ja) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 有機光電変換素子の製造方法及び有機光電変換素子
JP2011124470A (ja) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc 有機光電変換素子、太陽電池、及び光センサアレイ
JP2011155104A (ja) * 2010-01-27 2011-08-11 Konica Minolta Holdings Inc 有機光電変換素子、太陽電池及び光センサアレイ

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503196A (ja) * 1995-04-12 1999-03-23 イーストマン ケミカル カンパニー 水性コーティング組成物
JP2004162059A (ja) * 2002-10-24 2004-06-10 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
WO2006080553A1 (en) * 2005-01-31 2006-08-03 Semiconductor Energy Laboratory Co., Ltd. Hole-injecting material, material for light-emitting element, light-emitting element, organic compound, monomer, and monomer mixture
JP2007103921A (ja) * 2005-09-06 2007-04-19 Canon Inc 半導体素子
WO2007071957A1 (en) * 2005-12-22 2007-06-28 Cambridge Display Technology Limited Electronic devices with aryl amine polymers
WO2008122027A2 (en) * 2007-04-02 2008-10-09 Konarka Technologies, Inc. Novel electrode
WO2008134492A1 (en) * 2007-04-27 2008-11-06 Konarka Technologies, Inc. Organic photovoltaic cells
WO2009063850A1 (ja) * 2007-11-12 2009-05-22 Konica Minolta Holdings, Inc. 有機エレクトロニクス素子の製造方法
JP2011082421A (ja) * 2009-10-09 2011-04-21 Konica Minolta Holdings Inc 有機光電変換素子の製造方法及び有機光電変換素子
JP2011124470A (ja) * 2009-12-14 2011-06-23 Konica Minolta Holdings Inc 有機光電変換素子、太陽電池、及び光センサアレイ
JP2011155104A (ja) * 2010-01-27 2011-08-11 Konica Minolta Holdings Inc 有機光電変換素子、太陽電池及び光センサアレイ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160011057A (ko) * 2014-07-21 2016-01-29 한국과학기술연구원 낮은 밴드갭을 갖는 고분자 화합물, 그 제조 방법 및 이를 포함하는 유기태양전지
KR101636687B1 (ko) * 2014-07-21 2016-07-06 한국과학기술연구원 낮은 밴드갭을 갖는 고분자 화합물, 그 제조 방법 및 이를 포함하는 유기태양전지
US9735365B2 (en) 2014-07-21 2017-08-15 Korea Institute Of Science And Technology Low band gap polymer compound, synthesis of thereof, and organic photovoltaic cell containing the same
WO2016073052A1 (en) * 2014-11-03 2016-05-12 Life Technologies Corporation Dibenzosilole monomers and polymers and methods for their preparation and use
US10087280B2 (en) 2014-11-03 2018-10-02 Life Technologies Corporation Dibenzosilole monomers and polymers and methods for their preparation and use
US10570250B2 (en) 2014-11-03 2020-02-25 Life Technologies Corporation Dibenzosilole monomers and polymers and methods for their preparation and use
US10793584B2 (en) 2016-12-27 2020-10-06 Osaka University Naphthobischalcogenadiazole derivative and production method therefor
KR101927463B1 (ko) * 2017-07-31 2018-12-11 이화여자대학교 산학협력단 광전 소자
CN116887652A (zh) * 2023-09-07 2023-10-13 南开大学 一种两端钙钛矿有机叠层太阳电池及其制备方法
CN116887652B (zh) * 2023-09-07 2023-11-24 南开大学 一种两端钙钛矿有机叠层太阳电池及其制备方法

Also Published As

Publication number Publication date
JP6090166B2 (ja) 2017-03-08
JPWO2013065573A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6149856B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5928469B2 (ja) 有機光電変換素子、およびそれを用いた有機太陽電池
JP5742705B2 (ja) 有機光電変換素子
JP6015672B2 (ja) 有機光電変換素子
JP5360197B2 (ja) 有機光電変換素子、それを用いた太陽電池及び光センサアレイ
JP6090166B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
WO2012111811A1 (ja) 有機光電変換素子および太陽電池
JP5845937B2 (ja) 有機光電変換素子
JP5920341B2 (ja) 有機光電変換素子、その製造方法及び太陽電池
JP5853805B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5839033B2 (ja) 共役系高分子およびこれを用いた有機光電変換素子
JP6135668B2 (ja) タンデム型有機光電変換素子およびこれを用いた太陽電池
JP5853852B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
WO2012099000A1 (ja) 有機光電変換素子および太陽電池
JP5891924B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5825134B2 (ja) 有機光電変換素子ならびにこれを用いた太陽電池および光センサアレイ
JP5867987B2 (ja) 有機光電変換素子、該素子を用いた太陽電池
JP5790404B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP2012018958A (ja) 有機光電変換素子、それを用いた太陽電池
JP2011060998A (ja) 有機光電変換素子、その製造方法、有機光電変換素子を用いた太陽電池及び光センサアレイ
JP5930090B2 (ja) 有機光電変換素子
JP6194982B2 (ja) 有機光電変換素子
JP2011124361A (ja) 有機光電変換素子、太陽電池及び光センサアレイ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844971

Country of ref document: EP

Kind code of ref document: A1