WO2013065369A1 - 軸流流体機械、及びその可変静翼駆動装置 - Google Patents
軸流流体機械、及びその可変静翼駆動装置 Download PDFInfo
- Publication number
- WO2013065369A1 WO2013065369A1 PCT/JP2012/069370 JP2012069370W WO2013065369A1 WO 2013065369 A1 WO2013065369 A1 WO 2013065369A1 JP 2012069370 W JP2012069370 W JP 2012069370W WO 2013065369 A1 WO2013065369 A1 WO 2013065369A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roller
- movable ring
- axis
- variable stator
- ring
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/52—Casings; Connections of working fluid for axial pumps
- F04D29/54—Fluid-guiding means, e.g. diffusers
- F04D29/56—Fluid-guiding means, e.g. diffusers adjustable
- F04D29/563—Fluid-guiding means, e.g. diffusers adjustable specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/10—Final actuators
- F01D17/12—Final actuators arranged in stator parts
- F01D17/14—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
- F01D17/16—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
- F01D17/162—Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/059—Roller bearings
Definitions
- the present invention relates to an axial flow fluid machine provided with a rotor provided with a plurality of moving blades and a variable vane, and the variable vane driving device thereof.
- a rotor provided with a plurality of moving blades and a variable vane
- the variable vane driving device thereof.
- axial compressors which are a type of axial fluid machine, are used to compress gas.
- Some axial flow fluid machines of this type include variable vanes arranged in a plurality of rings around a rotor, and variable vane drives for changing the direction of the variable vanes.
- the variable stator vane drive device includes a movable ring, a ring support mechanism, and an actuator.
- the movable ring is disposed on the outer peripheral side of the casing and is annular.
- the ring support mechanism rotatably supports the movable ring.
- the actuator rotates the movable ring.
- the ring support mechanism has two first rollers and one second roller.
- the first roller is disposed on the outer peripheral side of the movable ring and at the lower side of the casing at an interval in the circumferential direction of the movable ring.
- the second roller is disposed on the inner peripheral side of the movable ring and at the lower side of the casing at an interval in the circumferential direction of the movable ring with respect to the two first rotors.
- Patent Document 1 has a problem that the blade angles of the plurality of variable stator blades may become nonuniform in the process of changing the operating state of the axial flow fluid machine.
- the present invention focuses on such problems of the prior art, and allows an axial flow fluid machine capable of making the blade angles of a plurality of variable stator blades uniform at all times regardless of operating conditions, and variable stator blade drive thereof It aims at providing an apparatus.
- a variable stator of an axial flow fluid machine comprising: a rotor having a plurality of moving blades; a casing rotatably covering the rotor; and a plurality of variable stator vanes annularly arranged around the rotor in the casing.
- an annular movable ring disposed on the outer peripheral side of the casing, and a plurality of annular movable supports spaced apart in the circumferential direction of the movable ring, and supporting the movable ring rotatably around the rotor
- the plurality of ring support mechanisms include an inner roller disposed on the inner circumferential side of the movable ring, and an outer roller disposed on the outer circumferential side of the movable ring and sandwiching the movable ring with the inner roller.
- a roller support base rotatably supporting the inner roller and the outer roller around an axis parallel to the rotor in a state where the inner roller and the outer roller sandwich the movable ring.
- variable stator vane drive device In the process of starting and stopping the axial flow fluid machine, the temperature difference between the casing and the movable ring in direct contact with the gas causes a thermal elongation difference between the casing and the movable ring.
- the movable ring In the variable stator vane drive device (hereinafter referred to as the variable stator vane drive device of the present invention) which is one aspect of the present invention, the movable ring is sandwiched between the inner roller and the outer roller for each of a plurality of ring support mechanisms.
- variable stator vane drive device of the present invention it is possible to prevent the positional deviation of the axis line of the movable ring with respect to the axis line of the casing, and a plurality of variable stator vanes are always The wing angle can be made uniform.
- a plurality of the ring support mechanisms adjust the distance between the axes of the inner roller and the axis of the outer roller. It is preferable to have
- the inter-axis distance adjustment mechanism is a mechanism that changes the position of the axis of at least one of the axis of the inner roller and the axis of the outer roller, and the one roller can be rotated. It has a rotation axis to support, and the rotation axis has a roller mounting portion on which the one roller is rotatably mounted about the axis of the one roller, and an eccentric axis which is offset from the axis.
- a cylindrical portion may be formed, and a supported portion rotatably supported by the roller support around the eccentric axis may be provided.
- the movable ring can be firmly and firmly held between the inner roller and the outer roller by having the inter-axial distance adjustment mechanism. Therefore, according to the variable stationary blade drive device of the present invention, positional deviation of the axis of the movable ring with respect to the axis of the casing can be prevented more reliably.
- the rotary drive mechanism has an actuator whose drive end linearly reciprocates, and a link mechanism which connects the drive end and the movable ring.
- variable stator driving device As described above, even if thermal expansion difference occurs between the casing and the movable ring, in order to prevent positional deviation of the axis of the movable ring with respect to the axis of the casing, The movable ring is held between the inner roller and the outer roller of each ring support mechanism. For this reason, when a difference in thermal expansion occurs between the casing and the movable ring, a portion of the movable ring which is not pinched by the inner roller and the outer roller is bent according to the operating condition of the axial flow fluid machine. Well.
- variable vane driving device of the present invention If the drive end of the actuator is directly connected to the portion not pinched by the inner roller and the outer roller, the drive end will try to follow this deflection and an unnecessary load will be applied to the actuator.
- the drive end of the actuator and the movable ring are connected via the link mechanism, and the deflection of the drive ring can be absorbed by the link mechanism. Therefore, according to the variable stationary blade drive device of the present invention, it is possible to prevent an unnecessary load from being applied to the actuator.
- variable stator vane drive system of the axial flow fluid machine four or five of the ring support mechanisms may be provided.
- the deflection of the movable ring increases the reaction force of each roller.
- the stiffness of the beam is inversely proportional to the cube of the distance between the two points supporting this beam, so as shown in the present invention, the number of ring support mechanisms increases.
- the reaction force of each roller increases in proportion to the cube of this distance. Therefore, as the number of ring support mechanisms increases, the reaction force of each roller increases dramatically, and the rigidity and strength of the rotation shaft of each roller, the roller support, etc. must also be dramatically increased. For this reason, four or five ring support mechanisms for the movable ring are desirable.
- variable stator vane drive device the rotor provided with the plurality of moving blades, a casing rotatably covering the rotor, and a plurality of variable stator vanes annularly arranged around the rotor in the casing And.
- variable stator vane drive device since the variable stator vane drive device is provided, displacement of the axis of the movable ring with respect to the axis of the casing can be prevented, and the operating condition of the axial flow fluid machine Therefore, it is possible to make the blade angles of the plurality of variable stator blades uniform at all times.
- the movable ring is held between the inner roller and the outer roller of each of the plurality of ring support mechanisms, so the movable ring can move relative to the axis of the casing. It is possible to prevent positional deviation of the ring axis.
- the axial flow fluid machine of the present embodiment is an axial flow compressor C, as shown in FIG. 1, and includes a rotor 10, a casing 20, and stator blades 16 and 18.
- the rotor 10 has a plurality of moving blades 12.
- the casing 20 rotatably covers the rotor 10.
- a plurality of vanes 16 and 18 are annularly arranged around the rotor 10.
- the rotor 10 has a rotor body 11 and a plurality of moving blades 12.
- the rotor body 11 is configured by laminating a plurality of rotor disks.
- the plurality of moving blades 12 extend radially from the rotor disk for each of the plurality of rotor disks. That is, the rotor 10 has a multistage moving blade configuration.
- the rotor 10 is rotatably supported by a casing 20 around an axis of the rotor body 11 (hereinafter referred to as a rotor axis Ar).
- a suction port 21 for sucking outside air is formed on one side of the casing 20 in the rotor axial direction, and a discharge port (not shown) for discharging compressed gas is formed on the other side.
- the plurality of moving blades 12 fixed to the rotor disk closest to the suction port 21 among the plurality of moving blades 12 form the first moving blade stage 12 a and are adjacent to the discharge port side of the rotor disk
- a plurality of moving blades 12 fixed to the rotor disk constitute a second moving blade stage 12 b.
- a plurality of moving blades 12 fixed to each rotor disk provided on the discharge port side constitute a third moving blade stage 12 c, a fourth moving blade stage 12 d,.
- a plurality of stationary blades 16, 18 are disposed annularly around the rotor 10.
- the plurality of stationary blades 16 disposed on the suction port 21 side of the first moving blade stage 12a form the first stationary blade stage 16a, and are disposed on the suction port 21 side of the second moving blade stage 12b.
- the plurality of stationary vanes 16 constitute a second stationary vane stage 16 b.
- a plurality of stator blades 16 disposed on the suction port 21 side of the respective blade stages 12c, 12d,... Provided on the discharge port 22 side are the third stator blade stage 16c and the fourth stator blade stage 16d. , ... are made.
- each of the stator blades 16 constituting the first stator blade stage 16a to the fourth stator blade stage 16d is referred to as a variable stator blade 16
- the first stator blade stage 16a to the fourth stator blade stage 16d are variable stator blades It is called stages 16a-16d.
- Each variable stator blade 16 is fixed to the stator blade rotation shaft 17 which penetrates the casing 20 from the inner peripheral side to the outer peripheral side, and is fixed along the surface formed by the stator blade rotation shaft 17. Therefore, the direction (angle) of the variable stationary blade 16 changes as the variable stationary blade 16 rotates with the stationary blade rotation shaft 17.
- each variable stator vane drive unit 30 is provided.
- Each variable stator vane drive device 30 includes a movable ring 31, a ring support mechanism 40, a rotational drive mechanism 60, and a ring-wing link mechanism 70.
- the movable ring 31 is disposed on the outer peripheral side of the casing 20 and is annular.
- a plurality of ring support mechanisms 40 are arranged at intervals in the circumferential direction of the movable ring 31, and rotatably support the movable ring 31 around the rotor axis Ar.
- the rotation drive mechanism 60 rotates the movable ring 31 around the rotor axis Ar.
- the ring-wing link mechanism 70 connects the movable ring 31 and the variable vane 16 so that the direction of the variable vane 16 changes with the rotation of the movable ring 31.
- the rotary drive mechanism 60 has an actuator 61 and a drive-ring link mechanism 63.
- the actuator 61 is provided such that the drive end 62 linearly reciprocates.
- the drive-ring link mechanism 63 connects the drive end 62 and the movable ring 31.
- the drive-ring link mechanism 63 has a link rotation shaft 64, a first link piece 65, a second link piece 66, and a third link piece 67.
- the link rotation shaft 64 is parallel to the rotor axis Ar.
- One end of the first link piece 65 is coupled to the drive end 62 of the actuator 61 by a pin, and the other end is rotatably provided around the link rotation axis 64.
- One end of the second link piece 66 is rotatably provided around the link rotation axis 64.
- One end of the third link piece 67 is coupled to the other end of the second link piece 66 by a pin, and the other end is coupled to a portion of the movable ring 31 by a pin.
- the second link piece 66 is connected to the first link piece 65 so as to integrally rotate as the first link piece 65 rotates about the link rotation axis 64 by the movement of the drive end 62 of the actuator 61. .
- the rotary drive mechanism 60 for each of the variable stator blade stages 16a to 16d may include an actuator 61 for each of the variable stator blade stages 16a to 16d, but two or more of the plurality of variable stator blade stages 16a to 16d may be provided.
- One set of actuators 61 may be provided for one set of variable stator vane stages.
- each rotary drive mechanism 60 for one set of variable stator vane stages shares one actuator 61, one first link piece 65 and one link rotary shaft 64, and forms a plurality of variable stators constituting a set.
- the second link piece 66 and the third link piece 67 for each wing stage will be provided.
- the ring-wing link mechanism 70 for each of the variable stator vane stages 16a to 16d has a first link piece 71 and a second link piece 72, as shown in FIGS.
- the first link pieces 71 are provided so as not to be rotatable relative to the stationary blade rotation shaft 17 of each variable stationary blade 16.
- One end of the second link piece 72 is connected to the first link piece 71 by a pin, and the other end is connected to the movable ring 31 by a pin.
- the variable stator vane drive device 30 has four ring support mechanisms 40 arranged at equal intervals in the circumferential direction of the movable ring 31.
- Each ring support mechanism 40 has an inner roller 41i, an outer roller 41o, and a roller support 43.
- the inner roller 41 i is disposed on the inner peripheral side of the movable ring 31.
- the outer roller 41o is disposed on the outer peripheral side of the movable ring 31, and sandwiches the movable ring 31 with the inner roller 41i.
- the roller support base 43 rotatably supports the inner roller 41i and the outer roller 41o around axes Ai and Ao parallel to the rotor axis Ar while the inner roller 41i and the outer roller 41o sandwich the movable ring 31. .
- each ring support mechanism 40 has an inner roller position adjustment mechanism 44i and an outer roller position adjustment mechanism 44o.
- the inner roller position adjusting mechanism 44i changes the position of the axis Ai of the inner roller 41i in the radial direction around the rotor axis Ar.
- the outer roller position adjusting mechanism 44o changes the position of the axis Ao of the outer roller 41o in the radial direction with reference to the rotor axis Ar.
- the movable ring 31 has an annular movable ring main body 32, an inner liner 32i, and an outer liner 32o, as shown in the figure.
- the inner liner 32i is fixed to the inner periphery of the movable ring main body 32, and the inner roller 41i contacts.
- the outer liner 32o is fixed to the outer periphery of the movable ring main body 32, and the outer roller 41o contacts.
- the inner roller position adjustment mechanism 44i and the outer roller position adjustment mechanism 44o have a rotation shaft 45 and a fixing nut 47, as shown in FIG.
- the rotating shaft 45 rotatably supports the roller 41 o (41 i) via the bearing 42.
- the fixing nut 47 is provided as a fixing means for restricting the rotation shaft 45 against the roller support 43 in a non-rotatable manner.
- the rotating shaft 45 has a roller mounting portion 45a, a supported portion 45b, and a screw portion 45c.
- the roller mounting portion 45a is rotatably mounted via a bearing 42 about the axis Ao (Ai) of the roller 41o (41i).
- the supported portion 45b has a cylindrical shape about an eccentric axis Ae shifted from the axis Ao (Ai), and is supported by the roller support 43 so as to be rotatable about the eccentric axis Ae.
- the screw portion 45c is provided on the opposite side of the roller attachment portion 45a with respect to the supported portion 45b, and the above-mentioned fixing nut 47 is screwed.
- the roller support 43 supports the inner roller 41i and the outer roller 41o rotatably about the rotor axis Ar, as described above, via the bearing 42 and the rotation shaft 45.
- the eccentricity of the roller is adjusted with the fixing nut 47 of the roller position adjusting mechanism 44o (44i) loosened.
- the rotation shaft 45 is rotated with respect to the roller support 43 around the axis Ae. Since the axis Ao (Ai) of the roller 41o (41i) is offset from the eccentric axis Ae, this rotation changes the position in the radial direction about the rotor axis Ar.
- the fixing nut 47 is screwed into the screw portion 45c of the rotating shaft 45, and the rotating shaft 45 is rotated relative to the roller support 43 And restrain them from rotating. That is, the position of the axis Ao (Ai) of the roller 41 o (41 i) is fixed.
- the positions of the inner roller 41i and the outer roller 41o are adjusted using the inner roller position adjusting mechanism 44i and the outer roller position adjusting mechanism 44o for each of the four ring support mechanisms 40. Do.
- the positions of the respective inner rollers 41i are adjusted such that all the four inner rollers 41i are inscribed in the movable ring 31.
- the outer roller position adjusting mechanism 44 o for each of the four ring support mechanisms 40 is used to adjust the position of each outer roller 41 o such that all the four outer rollers 41 o circumscribe the movable ring 31.
- the position adjustment of the inner roller 41i and the outer roller 41o is performed not only at the final stage of installation of the variable vane driving device 30, but also after inspection of the axial compressor C is completed after installation of the axial compressor C is completed. It is preferable to carry out the
- the first variable stator blade stage 16a to the fourth variable stator blade stage 16d The wing angle is suitably changed.
- the pressure of the gas gradually increases toward the downstream side, and the temperature of the gas increases. Therefore, in the process of starting and stopping the axial flow compressor C, the temperature difference between the casing 20 and the movable ring 31 in direct contact with the gas causes a difference in thermal elongation between the casing 20 and the movable ring 31. . Specifically, in the process of starting up the axial flow compressor C, the temperature rise of the portion supporting the movable ring 31 in the casing 20 is quicker than that of the movable ring 31. The casing diameter of the portion supporting the ring 31 becomes relatively large.
- the position of the axis of the movable ring 31 shifts with respect to the axis of the casing 20, and the blade angles of the plurality of variable stator blades 16 are not correct. Become uniform.
- the axis of the casing 20 basically overlaps the rotor axis Ar.
- the movable ring 31 is sandwiched between the inner roller 41i and the outer roller 41o of each of the four ring support mechanisms 40, regardless of the operating state of the axial flow compressor C, the movable ring 31 is movable. The contact between the ring 31 and all the inner rollers 41i and all the outer rollers 41o with respect to the movable ring 31 is maintained. Therefore, the position of the axis of the movable ring 31 does not shift with respect to the axis of the casing 20.
- the temperature rise of the portion supporting the movable ring 31 in the casing 20 relative to the movable ring 31 is rapid, so this portion relative to the movable ring 31
- the amount of extension of the casing 20 is increased.
- the amount of extension of the movable ring 31 relative to the casing 20 is relatively small. Therefore, in the start-up process of the axial flow compressor C, a portion of the movable ring 31 which is not pinched by the inner roller 41i and the outer roller 41o is bent toward the casing 20 as shown in FIG. become.
- the portion of the movable ring 31 which is not pinched by the inner roller 41i and the outer roller 41o is bent according to the operating condition of the axial flow compressor C, so the drive end 62 of the actuator 61 If the drive end 62 tries to follow this deflection, an unnecessary load is applied to the actuator 61. Therefore, in the present embodiment, the drive end 62 of the actuator 61 and the movable ring 31 for the second stage are connected via the drive-ring link mechanism 63, and the deflection of the movable ring 31 is realized by the drive-ring link mechanism 63. So that it can be absorbed.
- the reaction force of each roller 41i, 41o will increase by the bending of the movable ring 31.
- the rigidity of the beam is inversely proportional to the cube of the distance between two points supporting the beam, so the number of ring support mechanisms 40 is increased as shown in this embodiment.
- the reaction force of each of the rollers 41i and 41o increases in proportion to the cube of this distance.
- the number of ring support mechanisms 40 for the movable ring 31 be four or five as in this embodiment.
- the movable ring 31 is sandwiched by the inner roller 41i and the outer roller 41o at a plurality of locations, regardless of the operating state of the axial flow compressor C, On the other hand, the axial position of the movable ring 31 can be prevented from shifting, and the blade angles of the plurality of variable stationary blades 16 can be made uniform at all times.
- one inner roller 41i and one outer roller 41o are provided for one roller support 43, As shown in FIG. 6A and FIG. 6B, a plurality of inner rollers 41i and a plurality of outer rollers 41o may be provided in such a manner that the movable ring 31 can be held.
- two or more inner rollers 41i may be provided for one roller support stand 43, and further, two or more outer rollers 41o may be provided.
- the inner roller position adjusting mechanism 44i and the outer roller position adjusting mechanism 44o constitute an inter-axial distance adjusting mechanism for adjusting the distance between the axis of the inner roller 41i and the axis of the outer roller 41o.
- this inter-axial distance adjustment mechanism may be configured of only one of the inner roller position adjustment mechanism 44i and the outer roller position adjustment mechanism 44o.
- variable stator vane drive device 30 for each of the variable stator vane stages 16a to 16d is the same as each other
- the variable stator vane drive device of the first variable stator vane stage 16a has another configuration You may Specifically, the portion supporting the movable ring 31 in the casing 20 with respect to the movable ring 31 of the first variable stator vane stage 16a is not compressed regardless of the operating state of the axial flow compressor C. It is almost the same temperature as the outside air temperature because the outside air passes.
- the temperature difference between the movable ring 31 of the first variable stator blade stage 16a and the portion supporting the movable ring 31 in the casing 20 is almost the same. There is no difference in thermal elongation between the two. For this reason, even if the movable ring 31 of the first variable stator vane stage 16a is supported only by the plurality of inner rollers 41i or the outer rollers 41o, the first variable stator vane stage 16a is movable before the axial flow compressor C is activated.
- the state of contact with the outer roller 41o is maintained. Therefore, the position of the axis of the movable ring 31 does not shift with respect to the axis of the casing 20. Therefore, as for the variable vane drive device of the first variable vane stage 16a, a configuration may be adopted in which the movable ring 31 of the first variable vane stage 16a is supported only by the plurality of inner rollers 41i or the outer rollers 41o. .
- the axial flow compressor C is illustrated as an axial flow fluid machine, but the present invention is not limited to this, and is applied to other axial flow fluid machines such as a turbine. It is also good.
- Reference Signs List 10 rotor 11 rotor main body 12 moving blades 16 variable stationary blades (stationary blades) Reference Signs List 20 casing 30 variable vane drive 31 movable ring 40 ring support mechanism 41i inner roller 41o outer roller 43 roller support base 44i inner roller position adjustment mechanism 44o outer roller position adjustment mechanism 44 rotation shaft 45a roller mounting portion 45b supported portion 45c screw Part 47 Fixed nut 60 Rotary drive mechanism 61 Actuator 62 Drive end 63 Drive-ring link mechanism 70 Ring-wing link mechanism
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
本発明の可変静翼駆動装置(30)は、軸流圧縮機のケーシング(20)の外周側に配置された環状の可動環(31)と、可動環の周方向に間隔をあけて4個配置され、可動環をロータ回りに回転可能に支持する環支持機構(40)と、可動環の回転で可変静翼の向きが変わるよう、可動環と可変静翼とを連結するリンク機構(70)と、を備えている。環支持機構(40)は、内側ローラ(41i)と、外側ローラ(41o)と、内側ローラと外側ローラとが可動環を挟み込んでいる状態で、内側ローラ及び外側ローラを回転可能に支持するローラ支持台(43)と、を有する。
Description
本発明は、複数の動翼が設けられているロータ及び可変静翼を備えている軸流流体機械、及びその可変静翼駆動装置に関する。
本願は、2011年11月02日に日本に出願された特願2011-241390について優先権を主張し、その内容をここに援用する。
本願は、2011年11月02日に日本に出願された特願2011-241390について優先権を主張し、その内容をここに援用する。
ガスタービンやターボ冷凍機では、気体を圧縮するために軸流流体機械の一種である軸流圧縮機が用いられている。この種の軸流流体機械では、ロータの周りに環状に複数配置された可変静翼と、この可変静翼の向きを変える可変静翼駆動装置と、を備えているものがある。
可変静翼駆動装置は、例えば、以下の特許文献1に記載されているように、可動環と、環支持機構と、アクチュエータと、を備えている。可動環は、ケーシングの外周側に配置され、環状である。環支持機構は、可動環を回転可能に支持する。アクチュエータは、可動環を回転させる。環支持機構は、2個の第一ローラと、1個の第二ローラとを有している。第一ローラは、可動環の外周側であってケーシングの下側に、可動環の周方向に間隔をあけて配置されている。第二ローラは、可動環の内周側であってケーシングの下側に、2個の第一ロータに対して可動環の周方向に間隔をあけて配置されている。
軸流圧縮機では、下流側に向うに連れて次第に気体の圧力が増し、この気体の温度が高くなる。このため、軸流圧縮機の起動過程や停止過程で、気体に直接接触するケーシングと可動環との間の温度差により、ケーシングと可動環との間に熱伸び差が生じる。具体的には、軸流圧縮機の起動過程では、可動環に対してケーシングの温度上昇が早いため、可動環に対してケーシングの径が相対的に大きくなる。
仮に、特許文献1に記載の技術において、起動前の時点で、可動環の軸線とケーシングの軸線とが一致していたとしても、軸流圧縮機の起動過程で、可動環に対してケーシングの径が相対的に大きくなるため、可動環の下側の部分とケーシングの下側の部分との相対位置が変化しなくても、可動環の上側の部分とケーシングの上側の部分との相対位置が変化してしまう。つまり、ケーシングの軸線に対して可動環の軸線の位置がズレてしまう。
ケーシングの軸線に対して可動環の軸線の位置がズレてしまうと、このズレ量に応じて、複数の可変静翼の翼角度が不均一になる。
ケーシングの軸線に対して可動環の軸線の位置がズレてしまうと、このズレ量に応じて、複数の可変静翼の翼角度が不均一になる。
すなわち、特許文献1に記載の技術では、軸流流体機械の運転状態が変化する過程において、複数の可変静翼の翼角度が不均一になることがあるという、問題点がある。
そこで、本発明は、このような従来技術の問題点に着目し、運転状態に関わらず常に複数の可変静翼の翼角度を均一にすることができる軸流流体機械、及びその可変静翼駆動装置を提供することを目的とする。
上記目的を達成するための発明に係る軸流流体機械の可変静翼駆動装置は、
複数の動翼を有するロータと、前記ロータを回転可能に覆うケーシングと、前記ケーシング内に前記ロータを中心として環状に複数配置された可変静翼と、を備えている軸流流体機械の可変静翼駆動装置において、前記ケーシングの外周側に配置された環状の可動環と、前記可動環の周方向に間隔をあけて複数配置され、前記可動環を前記ロータ回りに回転可能に支持する環支持機構と、前記可動環を前記ロータ回りに回転させる回転駆動機構と、前記可動環の回転で前記可変静翼の向きが変わるよう、前記可動環と前記可変静翼とを連結するリンク機構と、を備え、
複数の前記環支持機構は、前記可動環の内周側に配置されている内側ローラと、前記可動環の外周側に配置されて前記内側ローラとの間で前記可動環を挟み込む外側ローラと、前記内側ローラと前記外側ローラとが前記可動環を挟み込んでいる状態で、前記内側ローラ及び前記外側ローラを前記ロータと平行な軸線回りに回転可能に支持するローラ支持台と、を有することを特徴とする。
複数の動翼を有するロータと、前記ロータを回転可能に覆うケーシングと、前記ケーシング内に前記ロータを中心として環状に複数配置された可変静翼と、を備えている軸流流体機械の可変静翼駆動装置において、前記ケーシングの外周側に配置された環状の可動環と、前記可動環の周方向に間隔をあけて複数配置され、前記可動環を前記ロータ回りに回転可能に支持する環支持機構と、前記可動環を前記ロータ回りに回転させる回転駆動機構と、前記可動環の回転で前記可変静翼の向きが変わるよう、前記可動環と前記可変静翼とを連結するリンク機構と、を備え、
複数の前記環支持機構は、前記可動環の内周側に配置されている内側ローラと、前記可動環の外周側に配置されて前記内側ローラとの間で前記可動環を挟み込む外側ローラと、前記内側ローラと前記外側ローラとが前記可動環を挟み込んでいる状態で、前記内側ローラ及び前記外側ローラを前記ロータと平行な軸線回りに回転可能に支持するローラ支持台と、を有することを特徴とする。
軸流流体機械の起動過程や停止過程では、気体に直接接触するケーシングと可動環との間の温度差により、ケーシングと可動環との間に熱伸び差が生じる。本発明の一態様である可変静翼駆動装置(以降、本発明の可変静翼駆動装置と呼ぶ。)では、可動環が複数の環支持機構毎の内側ローラと外側ローラとに挟持されているため、軸流流体機械の運転状態に関わらず、可動環とこの可動環に対する全内側ローラ及び全外側ローラとの接触状態が維持される。したがって、本発明の可変静翼駆動装置によれば、ケーシングの軸線に対して可動環の軸線の位置ズレを防ぐことができ、軸流流体機械の運転状態に関わらず常に複数の可変静翼の翼角度を均一にすることができる。
ここで、前記軸流流体機械の可変静翼駆動装置において、複数の前記環支持機構は、前記内側ローラの前記軸線と前記外側ローラの前記軸線との間の距離を調節する軸間距離調節機構を有することが好ましい。
この場合、前記軸間距離調節機構は、前記内側ローラの前記軸線と前記外側ローラの前記軸線とのうち、少なくとも一方のローラの軸線の位置を変える機構であり、前記一方のローラを回転可能に支持する回転軸を有し、前記回転軸は、前記一方のローラの軸線を中心として前記一方のローラが回転可能に取り付けられているローラ取付部と、前記軸線からズレた偏芯軸線を中心として円柱状を成し、前記偏芯軸線を中心として回転可能に前記ローラ支持台に支持されている被支持部と、を有してもよい。
このように、軸間距離調節機構を有することにより、内側ローラと外側ローラとの間で可動環をしっかりと確実に挟持することができる。よって、本発明の可変静翼駆動装置によれば、ケーシングの軸線に対して可動環の軸線の位置ズレをより確実に防ぐことができる。
また、前記軸流流体機械の可変静翼駆動装置において、前記回転駆動機構は、駆動端が直線的に往復移動するアクチュエータと、前記駆動端と前記可動環とを連結するリンク機構と、を有してもよい。
本発明の可変静翼駆動装置では、前述したように、ケーシングと可動環との間に熱伸び差が生じても、ケーシングの軸線に対して可動環の軸線の位置ズレを防ぐために、複数の環支持機構毎の内側ローラと外側ローラとで可動環を挟持している。このため、ケーシングと可動環との間に熱伸び差が生じている際、可動環中で、内側ローラと外側ローラとで挟まれていない部分は、軸流流体機械の運転状態に応じて撓む。仮に、アクチュエータの駆動端を内側ローラと外側ローラとで挟まれていない部分に直接連結した場合には、この撓みに駆動端が追従しようとして、アクチュエータに不要な負荷がかかってしまう。これに対して、本発明の可変静翼駆動装置では、リンク機構を介して、アクチュエータの駆動端と可動環とを連結し、この駆動環の撓みをリンク機構で吸収できるようにしている。よって、本発明の可変静翼駆動装置によれば、アクチュエータに不要な負荷がかかることを回避することができる。
また、前記軸流流体機械の可変静翼駆動装置において、前記環支持機構を4個又は5個備えてもよい。
可動環に対する環支持機構の数量が非常に多くなると、可動環の撓みにより、各ローラの反力が増大する。具体的には、構造的な観点において、梁の剛性はこの梁を支持する二点間の距離の3乗に反比例するため、本発明に示されるように、環支持機構の数量が増加して環支持機構相互間の距離が小さくなると、この距離の3乗に比例して各ローラの反力が増加する。したがって、環支持機構の数量が増加すると、各ローラの反力が飛躍的に増加し、各ローラの回転軸やローラ支持台等の剛性及び強度も飛躍的に高めなければならない。このため、可動環に対する環支持機構は、4又は5個が望ましい。
また、前記問題点を解決するための発明に係る軸流流体機械は、
前記可変静翼駆動装置と、複数の前記動翼が設けられている前記ロータと、前記ロータを回転可能に覆うケーシングと、前記ケーシング内に前記ロータを中心として環状に複数配置された可変静翼と、を備えていることを特徴とする。
前記可変静翼駆動装置と、複数の前記動翼が設けられている前記ロータと、前記ロータを回転可能に覆うケーシングと、前記ケーシング内に前記ロータを中心として環状に複数配置された可変静翼と、を備えていることを特徴とする。
本発明に係わる軸流流体機械では、前記可変静翼駆動装置を備えているので、ケーシングの軸線に対して可動環の軸線の位置ズレを防ぐことができ、軸流流体機械の運転状態に関わらず常に複数の可変静翼の翼角度を均一にすることができる。
本発明では、ケーシングと可動環との間に熱伸び差が生じても、可動環が複数の環支持機構毎の内側ローラと外側ローラとに挟持されているため、ケーシングの軸線に対して可動環の軸線の位置ズレを防ぐことができる。
よって、本発明によれば、軸流流体機械の運転状態に関わらず常に複数の可変静翼の翼角度を均一にすることができる。
以下、本発明に係る軸流流体機械の実施形態について、図面を参照して詳細に説明する。
本実施形態の軸流流体機械は、図1に示すように、軸流圧縮機Cであり、ロータ10と、ケーシング20と、静翼16,18と、を備えている。ロータ10は、複数の動翼12を有している。ケーシング20は、このロータ10を回転可能に覆っている。静翼16,18は、ロータ10の周りに環状に複数配置される。
ロータ10は、ロータ本体11と、複数の動翼12と、を有している。ロータ本体11は、複数のロータディスクが積層されて構成されている。複数の動翼12は、複数のロータディスク毎にそのロータディスクから放射方向に延びている。すなわち、このロータ10は、多数段動翼構成である。このロータ10は、ロータ本体11の軸線(以下、ロータ軸線Arとする)を中心としてケーシング20により回転可能に支持されている。
ケーシング20のロータ軸線方向の一方の側には、外気を吸い込む吸込口21が形成され、他方の側には圧縮気体を吐き出す吐出口(図示されていない)が形成されている。
複数の動翼12のうち、最も吸込口21側のロータディスクに固定されている複数の動翼12が、第一動翼段12aを成し、このロータディスクの吐出口側に隣接しているロータディスクに固定されている複数の動翼12が、第二動翼段12bを成している。以下、吐出口側に設けられている各ロータディスクに固定されている複数の動翼12が、第三動翼段12c、第四動翼段12d、…を成している。
各動翼段12a,12b,…の吸込口21側には、それぞれ、ロータ10の周りに環状に複数の静翼16,18が配置されている。ここで、第一動翼段12aの吸込口21側に配置されている複数の静翼16が、第一静翼段16aを成し、第二動翼段12bの吸込口21側に配置されている複数の静翼16が、第二静翼段16bを成している。以下、吐出口22側に設けられている各動翼段12c,12d,…の吸込口21側に配置されている複数の静翼16が、第三静翼段16c、第四静翼段16d、…を成している。
本実施形態では、各静翼段のうち、第一静翼段16aから第四静翼段16dを構成する各静翼16が、可変静翼を成し、第五段目以降を構成する各静翼18が、固定静翼を成している。よって、以下では、第一静翼段16aから第四静翼段16dを構成する各静翼16を可変静翼16と言い、第一静翼段16aから第四静翼段16dを可変静翼段16a~16dと言う。
各可変静翼16は、ケーシング20を内周側から外周側に貫通している静翼回転軸17に固定されており、静翼回転軸17が形成する面に沿って固定されている。よって、この静翼回転軸17と共に可変静翼16が回転することで、可変静翼16の向き(角度)が変わる。
本実施形態の軸流圧縮機Cは、図1~図3に示すように、可変静翼段16a~16d毎の可変静翼16の向きを変えるために、さらに、可変静翼段16a~16d毎の可変静翼駆動装置30を備えている。各可変静翼駆動装置30は、可動環31と、環支持機構40と、回転駆動機構60と、環-翼リンク機構70と、を備えている。可動環31は、ケーシング20の外周側に配置され、環状である。環支持機構40は、可動環31の周方向に間隔をあけて複数配置され、可動環31をロータ軸線Arを中心として回転可能に支持する。回転駆動機構60は、可動環31をロータ軸線Ar回りに回転させる。環-翼リンク機構70は、可動環31の回転で可変静翼16の向きが変わるよう、可動環31と可変静翼16とを連結する。
回転駆動機構60は、図2に示すように、アクチュエータ61と、駆動-環リンク機構63と、を有している。アクチュエータ61は、駆動端62が直線的に往復移動するように設けられている。駆動-環リンク機構63は、この駆動端62と可動環31とを連結する。駆動-環リンク機構63は、リンク回転軸64と、第一リンク片65と、第二リンク片66と、第三リンク片67と、を有している。リンク回転軸64は、ロータ軸線Arと平行である。第一リンク片65は、アクチュエータ61の駆動端62に一方の端部がピンで結合され、他方の端部がリンク回転軸64回りに回転可能に設けられている。第二リンク片66は、一方の端部がリンク回転軸64回りに回転可能に設けられている。第三リンク片67は、一方の端部が第二リンク片66の他方の端部にピンで結合され、他方の端部が可動環31の一部とピンで結合されている。第二リンク片66は、アクチュエータ61の駆動端62の移動による第一リンク片65のリンク回転軸64回りの回転に伴って、一体的に回転するよう、第一リンク片65と連結されている。
なお、可変静翼段16a~16d毎の回転駆動機構60は、可変静翼段16a~16d毎のアクチュエータ61を備えてもよいが、複数の可変静翼段16a~16dのうち2つ以上の可変静翼段を一組として、この一組に対して1台のアクチュエータ61を備えているようにしてもよい。この場合、1組の可変静翼段に対する各回転駆動機構60は、1台のアクチュエータ61、一個の第一リンク片65及び一個のリンク回転軸64を共有し、組を構成する複数の可変静翼段毎の第二リンク片66及び第三リンク片67を備えることになる。
可変静翼段16a~16d毎の環-翼リンク機構70は、図3及び図4に示すように、第一リンク片71と、第二リンク片72と、を有している。第一リンク片71は、各可変静翼16の静翼回転軸17に相対回転不能に設けられている。第二リンク片72は、一方の端部がピンで第一リンク片71に連結され、他方の端部がピンで可動環31に連結されている。
可変静翼駆動装置30は、図2に示すように、可動環31の周方向に等間隔に配置されている4個の環支持機構40を有している。各環支持機構40は、内側ローラ41iと、外側ローラ41oと、ローラ支持台43と、を有する。内側ローラ41iは、可動環31の内周側に配置されている。外側ローラ41oは、可動環31の外周側に配置されて、内側ローラ41iとの間で可動環31を挟み込む。ローラ支持台43は、内側ローラ41iと外側ローラ41oとが可動環31を挟み込んでいる状態で、内側ローラ41i及び外側ローラ41oをロータ軸線Arと平行な軸線Ai,Ao回りに回転可能に支持する。
さらに、各環支持機構40は、図3に示すように、内側ローラ位置調節機構44iと、外側ローラ位置調節機構44oと、を有している。内側ローラ位置調節機構44iは、ロータ軸線Arを中心にして放射方向における内側ローラ41iの軸線Aiの位置を変える。外側ローラ位置調節機構44oは、ロータ軸線Arを基準にして放射方向における外側ローラ41oの軸線Aoの位置を変える。なお、可動環31は、同図に示すように、環状の可動環本体32と、内側ライナー32iと、外側ライナー32oと、を有している。内側ライナー32iは、この可動環本体32の内周に固定され、内側ローラ41iが接する。外側ライナー32oは、この可動環本体32の外周に固定され、外側ローラ41oが接する。
内側ローラ位置調節機構44i及び外側ローラ位置調節機構44oは、図5に示すように、回転軸45と、固定ナット47と、を有している。回転軸45は、ローラ41o(41i)を軸受42を介して回転可能に支持する。固定ナット47は、この回転軸45をローラ支持台43に対して回転不能に拘束する固定手段として設けられている。回転軸45は、ローラ取付部45aと、被支持部45bと、ネジ部45cと、を有している。ローラ取付部45aは、ローラ41o(41i)の軸線Ao(Ai)を中心として、このローラ41o(41i)が軸受42を介して回転可能に取り付けられている。被支持部45bは、軸線Ao(Ai)からズレた偏芯軸線Aeを中心として円柱状を成し、偏芯軸線Aeを中心として回転可能にローラ支持台43に支持されている。ネジ部45cは、被支持部45bに対してローラ取付部45aの反対側に設けられ、前述の固定ナット47が捩じ込まれる。なお、ローラ支持台43は、軸受42及び回転軸45を介して、前述したように、内側ローラ41i及び外側ローラ41oをロータ軸線Ar回りに回転可能に支持している。
ロータ軸線Arを基準にして放射方向におけるローラ41o(41i)の軸線Ao(Ai)の位置を変える際には、ローラ位置調節機構44o(44i)の固定ナット47が緩んでいる状態で、偏芯軸線Aeを中心として回転軸45をローラ支持台43に対して回転させる。ローラ41o(41i)の軸線Ao(Ai)は、偏芯軸線Aeからズレているため、この回転により、ロータ軸線Arを中心にして放射方向における位置が変化する。そして、ローラ41o(41i)の軸線Ao(Ai)が目的の位置になった時点で、固定ナット47を回転軸45のネジ部45cに捩じ込み、この回転軸45をローラ支持台43に対して回転不能に拘束する。すなわち、ローラ41o(41i)の軸線Ao(Ai)の位置を固定する。
可変静翼駆動装置30の設置の最終段階では、4個の環支持機構40毎の内側ローラ位置調節機構44i及び外側ローラ位置調節機構44oを用いて、内側ローラ41i及び外側ローラ41oの位置を調節する。
具体的には、4個の環支持機構40毎の内側ローラ位置調節機構44iを用いて、4個全ての内側ローラ41iが可動環31に内接するように、各内側ローラ41iの位置を調節する。さらに、4個の環支持機構40毎の外側ローラ位置調節機構44oを用いて、4個全ての外側ローラ41oが可動環31に外接するように、各外側ローラ41oの位置を調節する。なお、これら内側ローラ41i及び外側ローラ41oの位置調節は、可変静翼駆動装置30の設置の最終段階のみならず、軸流圧縮機Cの設置完了後、この軸流圧縮機Cの点検等の際にも行うことが好ましい。
この軸流圧縮機Cでは、軸流圧縮機Cの起動開始時から停止時までの間での吸込流量等を調節するために、第一可変静翼段16aから第四可変静翼段16dの翼角度が適宜変更される。
軸流圧縮機Cでは、下流側に向うに連れて次第に気体の圧力が増し、この気体の温度が高くなる。このため、軸流圧縮機Cの起動過程および停止過程で、気体に直接接触するケーシング20と可動環31との間の温度差により、ケーシング20と可動環31との間に熱伸び差が生じる。具体的には、軸流圧縮機Cの起動過程では、可動環31に対して、ケーシング20中でこの可動環31を支持している部分の温度上昇が早いため、可動環31に対して可動環31を支持している部分のケーシング径が相対的に大きくなる。また、軸流圧縮機Cの停止過程では、可動環31に対してケーシング20中でこの可動環31を支持している部分の温度下降が早いため、可動環31に対して可動環31を支持している部分のケーシング径が相対的に小さくなる。
可動環31の径に対してケーシング径の大きさが相対的に変化すると、ケーシング20の軸線に対して可動環31の軸線の位置がズレてしまい、複数の可変静翼16の翼角度が不均一になる。なお、ケーシング20の軸線は、基本的にロータ軸線Arに重なっている。
しかしながら、本実施形態では、可動環31が、4個の環支持機構40毎の内側ローラ41iと外側ローラ41oとに挟持されているため、軸流圧縮機Cの運転状態に関わらず、この可動環31とこの可動環31に対する全内側ローラ41i及び全外側ローラ41oとの接触状態が維持される。したがって、ケーシング20の軸線に対して可動環31の軸線の位置がズレることはない。
以上のように、本実施形態では、可動環31に対して、ケーシング20中で可動環31を支持している部分の熱伸び差が生じるものの、ケーシング20の軸線に対して可動環31の軸線の位置がズレることはない。但し、この熱伸び差があるため、本実施形態では、可動環31中で内側ローラ41iと外側ローラ41oとで挟まれていない部分は、図2に示すように撓むことになる。
具体的に、軸流圧縮機Cの起動過程では、可動環31に対して、ケーシング20中でこの可動環31を支持している部分の温度上昇が早いため、可動環31に対してこの部分のケーシング20の伸び量が大きくなる。言い換えると、軸流圧縮機Cの起動過程では、ケーシング20に対して、可動環31の伸び量が相対的に小さくなる。このため、軸流圧縮機Cの起動過程では、可動環31中で内側ローラ41iと外側ローラ41oとで挟まれていない部分は、図2に示すように、ケーシング20に近づく向きに撓むことになる。
また、軸流圧縮機Cの停止過程では、可動環31に対して、ケーシング20中でこの可動環31を支持している部分の温度下降が早いため、可動環31に対してこの部分のケーシング20の縮み量が大きくなる。このため、軸流圧縮機Cの停止過程では、可動環31中で内側ローラ41iと外側ローラ41oとで挟まれていない部分は、ケーシング20から遠ざかる向きに撓むことになる。
以上のように、可動環31中で内側ローラ41iと外側ローラ41oとで挟まれていない部分は、軸流圧縮機Cの運転状態に応じて撓むため、アクチュエータ61の駆動端62をこの部分に直接連結した場合には、この撓みに駆動端62が追従しようとして、アクチュエータ61に不要な負荷がかかってしまう。そこで、本実施形態では、駆動-環リンク機構63を介して、アクチュエータ61の駆動端62と第二段用の可動環31とを連結し、この可動環31の撓みを駆動-環リンク機構63で吸収できるようにしている。
ところで、可動環31に対する環支持機構40の数量が非常に多くなると、可動環31の撓みにより、各ローラ41i,41oの反力が増大する。具体的には、構造的な観点において、梁の剛性はこの梁を支持する二点間の距離の3乗に反比例するため、本実施形態に示されるように、環支持機構40の数量が増加して、環支持機構40相互間の距離が小さくなると、この距離の3乗に比例して各ローラ41i,41oの反力が増加する。したがって、環支持機構40の数量が増加すると、各ローラ41i,41oの反力が飛躍的に増加し、各ローラ41i,41oの回転軸45及び軸受42、さらにローラ支持台43の剛性も飛躍的に高めなければならない。このため、可動環31に対する環支持機構40は、5個以下が望ましい。
したがって、可動環31に対する環支持機構40は、本実施形態のように、4個であるか、5個であることが望ましい。
以上のように、本実施形態では、可動環31が、複数個所で内側ローラ41iと外側ローラ41oとによって挟持されているため、軸流圧縮機Cの運転状態に関わらず、ケーシング20の軸線に対して可動環31の軸線の位置がズレることを防ぐことができ、常に複数の可変静翼16の翼角度を均一にすることができる。
また、本実施形態では、内側ローラ41iと外側ローラ41oとを有する環支持機構40を4個設けているので、環支持機構40の回転軸45や軸受42、さらにローラ支持台43等の剛性及び強度を極端に高める必要性を回避することができる。
なお、以上の実施形態において、可動環31に対する環支持機構40では、1個のローラ支持台43に対して、1個の内側ローラ41i及び1個の外側ローラ41oが設けられているが、図6Aおよび図6Bに示すように、可動環31を挟持できる形態で複数の内側ローラ41i及び複数の外側ローラ41oが設けられていればよい。例えば、1個のローラ支持台43に対して、2個以上の内側ローラ41iを設けてもよく、さらに、2個以上の外側ローラ41oを設けてもよい。
また、以上の実施形態では、内側ローラ位置調節機構44iと外側ローラ位置調節機構44oとで、内側ローラ41iの軸線と外側ローラ41oの軸線との間の距離を調節する軸間距離調節機構を構成しているが、この軸間距離調節機構は、内側ローラ位置調節機構44iと外側ローラ位置調節機構44oとのうち、一方の位置調節機構のみで構成してもよい。
また、以上の実施形態では、可変静翼段16a~16d毎の可変静翼駆動装置30の構成は、互いに同じであるが、第一可変静翼段16aの可変静翼駆動装置は、別構成にしてもよい。具体的に、第一可変静翼段16aの可動環31に対して、ケーシング20中でこの可動環31を支持している部分は、軸流圧縮機Cの運転状態に関わらず、未圧縮の外気が通過するため、ほぼ外気温と同じ温度である。すなわち、第一可変静翼段16aの可動環31とケーシング20中でこの可動環31を支持している部分との間には、軸流圧縮機Cの運転状態に関わらず、温度差がほとんどなく、両者間に熱伸び差が生じない。このため、第一可変静翼段16aの可動環31を複数の内側ローラ41i又は外側ローラ41oのみで支持しても、軸流圧縮機Cの起動前に、第一可変静翼段16aの可動環31がこれに対する全内側ローラ41i又は全外側ローラ41oに接していれば、軸流圧縮機Cの運転状態に関わらず、第一可変静翼段16aの可動環31と全内側ローラ41i又は全外側ローラ41oとの接触状態が維持される。よって、ケーシング20の軸線に対して可動環31の軸線の位置がズレることはない。そこで、第一可変静翼段16aの可変静翼駆動装置に関しては、第一可変静翼段16aの可動環31を複数の内側ローラ41i又は外側ローラ41oのみで支持する構成を採用してもよい。
また、以上の実施形態では、軸流流体機械として軸流圧縮機Cを例示しているが、本発明はこれに限定されるものではなく、タービン等、その他の軸流流体機械に適用してもよい。
10 ロータ
11 ロータ本体
12 動翼
16 可変静翼(静翼)
20 ケーシング
30 可変静翼駆動装置
31 可動環
40 環支持機構
41i 内側ローラ
41o 外側ローラ
43 ローラ支持台
44i 内側ローラ位置調節機構
44o 外側ローラ位置調節機構
44 回転軸
45a ローラ取付部
45b 被支持部
45c ネジ部
47 固定ナット
60 回転駆動機構
61 アクチュエータ
62 駆動端
63 駆動-環リンク機構
70 環-翼リンク機構
11 ロータ本体
12 動翼
16 可変静翼(静翼)
20 ケーシング
30 可変静翼駆動装置
31 可動環
40 環支持機構
41i 内側ローラ
41o 外側ローラ
43 ローラ支持台
44i 内側ローラ位置調節機構
44o 外側ローラ位置調節機構
44 回転軸
45a ローラ取付部
45b 被支持部
45c ネジ部
47 固定ナット
60 回転駆動機構
61 アクチュエータ
62 駆動端
63 駆動-環リンク機構
70 環-翼リンク機構
Claims (6)
- 複数の動翼を有するロータと、
前記ロータを回転可能に覆うケーシングと、
前記ケーシング内に、前記ロータを中心として環状に複数配置された可変静翼と、を備えている軸流流体機械の可変静翼駆動装置において、
前記ケーシングの外周側に配置された環状の可動環と、
前記可動環の周方向に間隔をあけて複数配置され、前記可動環を前記ロータ回りに回転可能に支持する環支持機構と、
前記可動環を前記ロータ回りに回転させる回転駆動機構と、
前記可動環の回転で前記可変静翼の向きが変わるよう、前記可動環と前記可変静翼とを連結するリンク機構と、
を備え、
複数の前記環支持機構は、前記可動環の内周側に配置されている内側ローラと、
前記可動環の外周側に配置されて前記内側ローラとの間で前記可動環を挟み込む外側ローラと、
前記内側ローラと前記外側ローラとが前記可動環を挟み込んでいる状態で、前記内側ローラ及び前記外側ローラを前記ロータと平行な軸線回りに回転可能に支持するローラ支持台と、
を有する軸流流体機械の可変静翼駆動装置。 - 請求項1に記載の軸流流体機械の可変静翼駆動装置において、
複数の前記環支持機構は、前記内側ローラの前記軸線と前記外側ローラの前記軸線との間の距離を調節する軸間距離調節機構、
を有する軸流流体機械の可変静翼駆動装置。 - 請求項2に記載の軸流流体機械の可変静翼駆動装置において、
前記軸間距離調節機構は、前記内側ローラの前記軸線と前記外側ローラの前記軸線とのうち、少なくとも一方のローラの軸線の位置を変える機構であり、前記一方のローラを回転可能に支持する回転軸を有し、
前記回転軸は、前記一方のローラの軸線を中心として前記一方のローラが回転可能に取り付けられているローラ取付部と、
前記軸線からズレた偏芯軸線を中心として円柱状を成し、前記偏芯軸線を中心として回転可能に前記ローラ支持台に支持されている被支持部と、
を有する軸流流体機械の可変静翼駆動装置。 - 請求項1から3のいずれか一項に記載の軸流流体機械の可変静翼駆動装置において、
前記回転駆動機構は、駆動端が直線的に往復移動するアクチュエータと、
前記駆動端と前記可動環とを連結するリンク機構と、
を有する軸流流体機械の可変静翼駆動装置。 - 請求項1から4のいずれか一項に記載の軸流流体機械の可変静翼駆動装置において、
前記環支持機構を4個又は5個備えている、
軸流流体機械の可変静翼駆動装置。 - 請求項1から5のいずれか一項に記載の可変静翼駆動装置と、
複数の前記動翼が設けられている前記ロータと、
前記ロータを回転可能に覆うケーシングと、
前記ケーシング内に前記ロータを中心として環状に複数配置された可変静翼と、
を備えている軸流流体機械。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280047221.3A CN103827508B (zh) | 2011-11-02 | 2012-07-30 | 轴流式流体机械及其可变静叶片驱动装置 |
KR1020147007998A KR101626684B1 (ko) | 2011-11-02 | 2012-07-30 | 축류 유체 기계 및 그 가변 고정익 구동 장치 |
EP12845065.7A EP2752583B1 (en) | 2011-11-02 | 2012-07-30 | Axial-flow fluid machine, and variable vane drive device therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-241390 | 2011-11-02 | ||
JP2011241390A JP5716918B2 (ja) | 2011-11-02 | 2011-11-02 | 軸流流体機械、及びその可変静翼駆動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013065369A1 true WO2013065369A1 (ja) | 2013-05-10 |
Family
ID=48172634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/069370 WO2013065369A1 (ja) | 2011-11-02 | 2012-07-30 | 軸流流体機械、及びその可変静翼駆動装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9309897B2 (ja) |
EP (1) | EP2752583B1 (ja) |
JP (1) | JP5716918B2 (ja) |
KR (1) | KR101626684B1 (ja) |
CN (1) | CN103827508B (ja) |
WO (1) | WO2013065369A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104343541A (zh) * | 2013-07-23 | 2015-02-11 | 三菱日立电力系统株式会社 | 轴流压缩机 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9284851B2 (en) * | 2012-02-21 | 2016-03-15 | Mitsubishi Heavy Industries, Ltd. | Axial-flow fluid machine, and variable vane drive device thereof |
JP5736443B1 (ja) | 2013-12-19 | 2015-06-17 | 川崎重工業株式会社 | 可変静翼機構 |
JP6298529B2 (ja) * | 2014-07-10 | 2018-03-20 | 三菱日立パワーシステムズ株式会社 | 可変静翼装置のメンテナンス方法及び可変静翼装置 |
CN104533540B (zh) * | 2014-11-14 | 2016-04-20 | 沈阳黎明航空发动机(集团)有限责任公司 | 一种保证作动环与压气机机匣同心度的装置 |
CN105090066B (zh) * | 2015-09-25 | 2018-02-23 | 钟世杰 | 一种轴流式压缩机 |
JP6674763B2 (ja) * | 2015-11-04 | 2020-04-01 | 川崎重工業株式会社 | 可変静翼操作装置 |
KR102027199B1 (ko) * | 2018-01-08 | 2019-10-01 | 두산중공업 주식회사 | 가변 베인 구동장치 및 이를 포함하는 가스터빈 |
CN114251305B (zh) * | 2020-09-24 | 2024-09-13 | 中国航发商用航空发动机有限责任公司 | 压气机及联动环支撑机构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3990809A (en) * | 1975-07-24 | 1976-11-09 | United Technologies Corporation | High ratio actuation linkage |
US4130375A (en) * | 1975-10-14 | 1978-12-19 | Westinghouse Canada Ltd. | Vane rotator assembly for a gas turbine engine |
JPS63151999U (ja) * | 1987-03-26 | 1988-10-05 | ||
JP2007332970A (ja) * | 2006-06-16 | 2007-12-27 | Snecma | 自動的に調心された回転リングによって作動されるステータ翼の段を含むターボ機械ステータ |
JP2010001821A (ja) | 2008-06-20 | 2010-01-07 | Mitsubishi Heavy Ind Ltd | 軸流圧縮機の可変静翼駆動方法及び装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3504952A (en) * | 1968-05-01 | 1970-04-07 | Raritan Bearing Corp | Roller block assembly with overall height adjustment |
CH558477A (de) | 1972-11-27 | 1975-01-31 | Bbc Sulzer Turbomaschinen | Verstellvorrichtung fuer drehbare leitschaufeln. |
US4035101A (en) | 1976-03-24 | 1977-07-12 | Westinghouse Electric Corporation | Gas turbine nozzle vane adjusting mechanism |
JPH05199704A (ja) | 1991-08-08 | 1993-08-06 | General Electric Co <Ge> | 電気アクチュエータ・モータ |
GB2301867A (en) | 1995-06-05 | 1996-12-18 | Rolls Royce Plc | Supporting unison rings in pivotable vane actuating mechanisms |
JP2002005096A (ja) | 2000-06-20 | 2002-01-09 | Mitsubishi Heavy Ind Ltd | 軸流圧縮機、及び、ガスタービン |
FR2879686B1 (fr) * | 2004-12-16 | 2007-04-06 | Snecma Moteurs Sa | Turbomachine a stator comportant un etage d'aubes de redresseur actionnees par une couronne rotative a centrage automatique |
JP2010196550A (ja) * | 2009-02-24 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | 回転軸とレバーの取付構造、回転軸とレバーの取付方法、及び、流体機械 |
-
2011
- 2011-11-02 JP JP2011241390A patent/JP5716918B2/ja active Active
-
2012
- 2012-07-27 US US13/559,972 patent/US9309897B2/en active Active
- 2012-07-30 CN CN201280047221.3A patent/CN103827508B/zh active Active
- 2012-07-30 EP EP12845065.7A patent/EP2752583B1/en active Active
- 2012-07-30 KR KR1020147007998A patent/KR101626684B1/ko active IP Right Grant
- 2012-07-30 WO PCT/JP2012/069370 patent/WO2013065369A1/ja unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3990809A (en) * | 1975-07-24 | 1976-11-09 | United Technologies Corporation | High ratio actuation linkage |
US4130375A (en) * | 1975-10-14 | 1978-12-19 | Westinghouse Canada Ltd. | Vane rotator assembly for a gas turbine engine |
JPS63151999U (ja) * | 1987-03-26 | 1988-10-05 | ||
JP2007332970A (ja) * | 2006-06-16 | 2007-12-27 | Snecma | 自動的に調心された回転リングによって作動されるステータ翼の段を含むターボ機械ステータ |
JP2010001821A (ja) | 2008-06-20 | 2010-01-07 | Mitsubishi Heavy Ind Ltd | 軸流圧縮機の可変静翼駆動方法及び装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2752583A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104343541A (zh) * | 2013-07-23 | 2015-02-11 | 三菱日立电力系统株式会社 | 轴流压缩机 |
Also Published As
Publication number | Publication date |
---|---|
CN103827508B (zh) | 2016-11-02 |
EP2752583A1 (en) | 2014-07-09 |
US9309897B2 (en) | 2016-04-12 |
EP2752583A4 (en) | 2015-04-01 |
US20130108415A1 (en) | 2013-05-02 |
JP5716918B2 (ja) | 2015-05-13 |
KR20140066736A (ko) | 2014-06-02 |
EP2752583B1 (en) | 2016-05-18 |
KR101626684B1 (ko) | 2016-06-01 |
CN103827508A (zh) | 2014-05-28 |
JP2013096341A (ja) | 2013-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013065369A1 (ja) | 軸流流体機械、及びその可変静翼駆動装置 | |
US8376693B2 (en) | Variable vane assembly | |
EP2659096B1 (en) | Variable vane for gas turbine engine | |
EP1318309B1 (en) | Vacuum pump | |
JP4935527B2 (ja) | 固定翼の製造方法、およびその固定翼を備えたターボ分子ポンプ | |
US20100260591A1 (en) | Spanwise split variable guide vane and related method | |
EP2484916B1 (en) | Centrifugal compressor having variable geometry diffuser and method thereof | |
JP5769865B2 (ja) | 軸流流体機械、及びその可変静翼駆動装置 | |
JP5689607B2 (ja) | 軸流圧縮機 | |
JP2015036539A (ja) | 軸流回転機械 | |
JP6433812B2 (ja) | アダプタ及び真空ポンプ | |
JP3135312U (ja) | ターボ分子ポンプ | |
EP3346138B1 (en) | Rotor balance adjustment method | |
EP3521632B1 (en) | Rotary machine | |
JP7088355B2 (ja) | ターボ分子ポンプ | |
US20210332824A1 (en) | Turbo-molecular pump and stator | |
CN101978170A (zh) | 改变叶轮/推进器的叶片间距的装置及包括该装置的扇 | |
JP2013092063A (ja) | ターボ分子ポンプおよびターボ分子ポンプ用の翼構造 | |
JP2017145935A (ja) | 軸受装置、回転機械 | |
WO2023074155A1 (ja) | 軸受装置、及び回転機械 | |
JP7424007B2 (ja) | 真空ポンプ | |
JP2012184714A (ja) | 軸流圧縮機及びその改造方法 | |
RU2561514C2 (ru) | Высоковакуумный гибридный насос | |
JP2011001825A (ja) | ターボ分子ポンプ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845065 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20147007998 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |