WO2013065257A1 - 無線端末 - Google Patents

無線端末 Download PDF

Info

Publication number
WO2013065257A1
WO2013065257A1 PCT/JP2012/006806 JP2012006806W WO2013065257A1 WO 2013065257 A1 WO2013065257 A1 WO 2013065257A1 JP 2012006806 W JP2012006806 W JP 2012006806W WO 2013065257 A1 WO2013065257 A1 WO 2013065257A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
circuit board
terminal
wavelength
conductor
Prior art date
Application number
PCT/JP2012/006806
Other languages
English (en)
French (fr)
Inventor
祐希 安部
宇野 博之
崇士 渡邊
吉川 嘉茂
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280053277.XA priority Critical patent/CN104025378B/zh
Priority to EP15177068.2A priority patent/EP2950389B1/en
Priority to EP12845378.4A priority patent/EP2775566B1/en
Priority to JP2013541609A priority patent/JP5950236B2/ja
Priority to ES12845378T priority patent/ES2879455T3/es
Publication of WO2013065257A1 publication Critical patent/WO2013065257A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2233Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in consumption-meter devices, e.g. electricity, gas or water meters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present invention relates to a small wireless terminal which is mounted on a meter device having a metal casing and has high antenna performance.
  • an automatic meter reading system has been introduced in which a wireless terminal is mounted on a meter for measuring the amount of gas, electricity, etc. installed in a building such as a house or building, and data is collected by wireless communication.
  • a wireless terminal is mounted on a meter for measuring the amount of gas, electricity, etc. installed in a building such as a house or building, and data is collected by wireless communication.
  • the communication range is determined by the performance of the antenna of the wireless terminal attached to the meter, securing a highly efficient antenna performance becomes a major issue.
  • the antenna is required to be miniaturized and built-in for ease of installation in the meter.
  • a board-mounted plate antenna using a ground conductor plate as an antenna ground has been proposed (see Patent Document 1).
  • This antenna uses the ground conductor plate as the antenna ground by connecting the ground conductor plate and the short-circuit conductor of the plate-like antenna via the wiring pattern of the printed circuit board.
  • the grounding conductor plate is provided between the radiating conductor plate and the printed circuit board, and the wireless circuit can be arranged on the surface of the printed circuit board between the grounding conductor plate and the printed circuit board.
  • high antenna performance can be realized by arranging a reflective conductor plate in the wireless terminal or using a metal housing such as a meter as the reflective conductor.
  • the plate antenna described in Patent Document 1 requires a reflective conductor plate in order to realize high antenna performance, resulting in an increase in the number of components. Further, when the metal casing of the meter is used instead of the reflective conductor plate, there is a problem that the improvement amount of the antenna performance is small because the distance between the ground conductor plate and the metal casing becomes large.
  • the present invention has been made to solve the above-described problems, and provides a wireless terminal having a simple and small structure that can realize high antenna performance when a metal housing such as a gas meter is installed.
  • the purpose is to do.
  • a first wireless terminal is a wireless terminal for wireless communication, and has a peripheral length of 1/2 wavelength or more and 1 wavelength or less at an operating frequency.
  • An antenna element arranged on one side of the radio circuit board so as to face the radio circuit board, and a ground conductor arranged on the other side of the radio circuit board so as to face the radio circuit board
  • a plurality of ground terminals that electrically connect the radio circuit board and the ground conductor, and a first ground terminal of the plurality of ground terminals is connected from the radio circuit board to the antenna element.
  • the second ground terminal of the plurality of ground terminals is disposed in the vicinity of the power supply unit, and is separated from the first ground terminal by a distance of 1/4 wavelength or more at the operating frequency. It is arranged at the edge.
  • a second wireless terminal is a wireless terminal for wireless communication, and has a wireless circuit board having a peripheral length of 1/2 wavelength or more and 1 wavelength or less at an operating frequency, and the wireless circuit First and second antenna elements disposed on one side of the board so as to face the radio circuit board, and ground conductors arranged on the other side of the radio circuit board so as to face the radio circuit board And a plurality of ground terminals that electrically connect the radio circuit board and the ground conductor, and the first ground terminal of the plurality of ground terminals is connected to the first antenna from the radio circuit board. It arrange
  • a ground conductor is arranged in parallel with the radio circuit board. Then, by electrically connecting the radio circuit board and the ground conductor at a predetermined position, a radio terminal having a highly efficient and small antenna configuration can be realized.
  • FIG. 1 shows a radio terminal 100 according to the first embodiment of the present invention.
  • a wireless terminal 100 shown in FIG. 1 includes a first resin casing 101, a second resin casing 102, a circuit board 103, a radiation conductor 104, a power supply terminal 105, a short-circuit terminal 106, and a ground conductor 107. And a first ground terminal 108 and a second ground terminal 109.
  • the first resin casing 101 and the second resin casing 102 are concave casings formed of a resin material such as polypropylene and ABS, which are low-loss materials, for example.
  • a box-shaped casing is formed by screwing or welding.
  • the circuit board 103 is, for example, a double-sided copper-clad board having a length Lr1 and a width Lr2, and a radio circuit, a control circuit, and the like are mounted on the surface of the board. At this time, the length Lr1 and the width Lr2 are set so that the peripheral length of the circuit board 103 is 1 ⁇ 2 wavelength or more and 1 wavelength or less at the operating frequency.
  • the radiation conductor 104 is, for example, a planar sheet metal made of a conductor such as copper, and is disposed in parallel to face the circuit board 103.
  • the power feeding terminal 105 is arranged orthogonal to the surface direction of the radiation conductor 104, one end is electrically connected to the radio circuit arranged on the circuit board 103, and the other end is electrically connected to the radiation conductor 104. Is done.
  • the short-circuit terminal 106 is disposed orthogonal to the surface direction of the radiating conductor 104, and one end is electrically connected to the ground formed by the copper foil pattern on the circuit board 103. The end is electrically connected to the radiation conductor 104.
  • the radiation conductor 104, the electric power feeding terminal 105, and the short circuit terminal 106 comprise a plate-shaped inverted F antenna.
  • the widths of the power supply terminal 105 and the short-circuit terminal 106 and the interval between the power supply terminal 105 and the short-circuit terminal 106 are set to values that allow impedance matching.
  • the ground conductor 107 is a sheet metal having a length Ls1 and a width Ls2 made of a conductor such as copper, for example, and is opposite to the back surface of the circuit board 103, that is, the surface on which the radiation conductor 104 is disposed. It is arranged on the side surface in parallel with the circuit board 103.
  • the ground conductor 107 is set to have a larger planar dimension than the circuit board 103.
  • the first ground terminal 108 is disposed orthogonal to the surface direction of the ground conductor 107, one end is electrically connected to the ground formed by the copper foil pattern on the circuit board 103, and the other end is the ground conductor. 107 is electrically connected.
  • the first ground terminal 108 is disposed at the edge of the circuit board 103 at a distance S1 from the position where the power supply terminal 105 is connected to the circuit board 103.
  • the distance S1 is desirably 1/16 wavelength or less at the operating frequency, for example. That is, the first ground terminal 108 is located in the vicinity of the power feeding portion to the radiation conductor 104.
  • the second ground terminal 109 is disposed orthogonal to the surface direction of the ground conductor 107, and one end is electrically connected to the ground formed by the copper foil pattern on the circuit board 103. The other end is electrically connected to the ground conductor 107.
  • the second ground terminal 109 is arranged at the edge of the circuit board 103 at a distance S2 from the position where the first ground terminal 108 is connected to the circuit board 103. At this time, it is desirable that the distance S2 is, for example, a quarter wavelength or more at the operating frequency.
  • the performance of the plate-like inverted F antenna in the radio apparatus 100 of FIG. 1 configured as described above will be described.
  • the operating frequency is 868 MHz, and therefore one wavelength is 345 mm.
  • the specific dimensions of the wireless device 100 of FIG. 1 will be described.
  • the length Lr1 of the circuit board 103 is 28.5 mm (0.082 wavelength), the width Lr2 is 69.5 mm (0.2 wavelength), and the ground conductor 107
  • the length Ls1 is 60 mm (0.173 wavelength)
  • the width Ls2 is 67.5 mm (0.195 wavelength)
  • the distance S1 between the power supply terminal 105 and the first ground terminal 108 is 7 mm (0.02 wavelength)
  • the first The distance S2 between the ground terminal 108 and the second ground terminal 109 is 89 mm (0.257 wavelength)
  • the distance between the ground conductor 107 and a metal housing such as a gas meter is 2 mm (0.005 wavelength).
  • the peripheral length of the circuit board 103 is 196 mm (0.564 wavelength), which is not less than 1 ⁇ 2 wavelength and not more than 1 wavelength.
  • the distance S2 between the first ground terminal 108 and the second ground terminal 109 is 89 mm (0.257 wavelength), which is equal to or greater than 1 ⁇ 4 wavelength.
  • FIG. 2 shows the radiation efficiency of the wireless terminal 100 of FIG. 1 together with three comparative examples.
  • the condition (1) is that radiation efficiency in the case of the first comparative example in which the peripheral length of the circuit board 103 is less than 1 ⁇ 2 wavelength and only the first ground terminal 108 in the vicinity of the feeding point is mounted. Is shown.
  • Condition (2) is that the peripheral length of the circuit board 103 is 1 ⁇ 2 wavelength or more and 1 wavelength or less, and only the first ground terminal 108 in the vicinity of the feeding point is mounted. Is shown.
  • Condition (3) is that the peripheral length of the circuit board 103 is 1 ⁇ 2 wavelength or more and 1 wavelength or less, and the distance S2 between the first ground terminal 108 and the second ground terminal 109 is less than 1 ⁇ 4 wavelength.
  • Condition (4) is that the peripheral length of the circuit board 103 is 1 ⁇ 2 wavelength or more and 1 wavelength or less, and the distance S2 between the first ground terminal 108 and the second ground terminal 109 is 1 ⁇ 4 wavelength or more. The radiation efficiency in the case of this embodiment is shown.
  • the peripheral length of the circuit board 103 is not less than 1 ⁇ 2 wavelength and not more than 1 wavelength
  • a plurality of circuit boards 103 and the ground conductor 107 are connected.
  • the circuit board 103 and the ground conductor 107 operate as one large ground, thereby realizing antenna performance with high radiation efficiency. I understand that I can do it.
  • the wireless terminal 100 when the wireless terminal 100 is disposed in a metal housing such as a gas meter, for example, the ground conductor 107 and the metal housing are placed in an electromagnetic field by being disposed so that the ground conductor 107 and the metal housing are close to each other. Therefore, the metal casing operates as an antenna ground, and the radiation efficiency can be further improved, so that high antenna performance can be realized.
  • the radiating conductor 104 and the ground conductor 107 are each made of a sheet metal made of a conductor, but the same effect can be obtained even if the radiating conductor 104 and the ground conductor 107 are made of a copper foil pattern on a printed board.
  • FIG. 4 shows a radio terminal 400 according to the second embodiment of the present invention.
  • 4 includes a circuit board 403, a first radiation conductor 404, a second radiation conductor 405, a ground conductor 406, a first ground terminal 407, and a second ground terminal 408. And a third ground terminal 409.
  • casing is abbreviate
  • the circuit board 403 is, for example, a double-sided copper-clad board having a length Lf1 and a width Lf2, and a radio circuit, a control circuit, and the like are mounted on the surface of the board. At this time, the length Lf1 and the width Lf2 are set so that the peripheral length of the circuit board 403 is 1 ⁇ 2 wavelength or more and 1 wavelength or less at the operating frequency.
  • the first radiating conductor 404 is, for example, a linear conductor configured in an L shape, and is arranged orthogonal to the surface direction of the circuit board 403, and one end is a wireless that is arranged on the circuit board 403. It is electrically connected to the circuit, and the other end is disposed in parallel to face the circuit board 403.
  • the second radiating conductor 405 is, for example, a linear conductor configured in an L shape, like the first radiating conductor 404, and is disposed orthogonal to the surface direction of the circuit board 403. Is electrically connected to a wireless circuit disposed on the circuit board 403, and the other end is disposed in parallel to face the circuit board 403.
  • the ground conductor 406 is, for example, a sheet metal having a length Lg1 and a width Lg2 made of a conductor such as copper, and the back surface of the circuit board 403, that is, the first radiation conductor 404 and the second radiation conductor 405. Are arranged in parallel to the circuit board 403 on the side of the surface opposite to the surface on which the circuit board 403 is arranged.
  • the first ground terminal 407 is disposed orthogonal to the surface direction of the ground conductor 406, one end is electrically connected to the ground formed by the copper foil pattern on the circuit board 403, and the other end is the ground conductor. 406 is electrically connected. Moreover, the first ground terminal 407 is disposed at the edge of the circuit board 403 at a distance S3 from the position where the first radiation conductor 404 is connected to the circuit board 403. At this time, the distance S3 is desirably 1/16 wavelength or less at the operating frequency, for example. That is, the first ground terminal 407 is located in the vicinity of the power feeding portion to the first radiation conductor 404.
  • the second ground terminal 408 is disposed perpendicular to the surface direction of the ground conductor 406, and one end thereof is electrically connected to the ground formed by the copper foil pattern on the circuit board 403. And the other end is electrically connected to the ground conductor 406. Moreover, the second ground terminal 408 is disposed at the edge of the circuit board 403 at a distance S4 away from the position where the second radiation conductor 405 is connected to the circuit board 403. At this time, for example, the distance S4 is desirably 1/16 wavelength or less at the operating frequency. That is, the second ground terminal 408 is located in the vicinity of the power feeding portion to the second radiation conductor 405.
  • the third ground terminal 409 is disposed orthogonal to the surface direction of the ground conductor 406, and one end is a copper foil pattern on the circuit board 403. The other end is electrically connected to the ground conductor 406.
  • the third ground terminal 409 is separated from one of the first ground terminal 407 and the second ground terminal 408, for example, the second ground terminal 408 by a distance S5, and the edge of the circuit board 403. Placed in the section.
  • the distance S5 is preferably, for example, 1/8 wavelength or more and 1/4 wavelength or less at the operating frequency.
  • the performance of the linear inverted L antenna having the diversity antenna configuration in the radio apparatus 400 of FIG. 4 configured as described above will be described.
  • the operating frequency is 868 MHz, and therefore one wavelength is 345 mm.
  • the specific dimensions of the wireless device 400 of FIG. 4 will be described.
  • the length Lf1 of the circuit board 403 is 56 mm (0.162 wavelength), the width Lf2 is 93 mm (0.269 wavelength), and the length Lg1 of the ground conductor 406 is 80 mm (0.231 wavelength), width Lg2 is 89.5 mm (0.259 wavelength), the distance S3 between the first radiation conductor 404 and the first ground terminal 407 is 7 mm (0.02 wavelength), the second The distance S4 between the radiation conductor 405 and the second ground terminal 408 is 7 mm (0.02 wavelength), the distance S5 between the second ground terminal 408 and the third ground terminal 409 is 54 mm (0.156 wavelength), and the ground.
  • the distance between the conductor 406 and a metal housing such as a gas meter is 2 mm (0.005 wavelength).
  • the peripheral length of the circuit board 403 is 298 mm (0.862 wavelength), which is not less than 1 ⁇ 2 wavelength and not more than 1 wavelength.
  • the distance S5 between the second ground terminal 408 and the third ground terminal 409 is 54 mm (0.156 wavelength), which is 1/8 wavelength or more and 1/4 wavelength or less.
  • FIG. 5 shows the radiation efficiency of the wireless terminal 400 of FIG. 4 together with a modification example.
  • the condition (5) is the radiation in the case of the modified example in which the peripheral length of the circuit board 403 is 1 ⁇ 2 wavelength and 1 wavelength or less, and the mounting of the third ground terminal 409 in FIG. 4 is omitted. Shows efficiency.
  • Condition (6) is that the peripheral length of the circuit board 403 is 1/2 wavelength and 1 wavelength or less, and the distance S5 between the second ground terminal 408 and the third ground terminal 409 is 1/8 wavelength or more and 1 / The radiation efficiency in the case of this embodiment with four or less wavelengths is shown.
  • the circuit board 403 and the second radiation conductors 404 and 405 are adjacent to each other. It can be seen that by providing a plurality of ground terminals 407 and 408 for connecting to the ground conductor 406, antenna performance having high radiation efficiency equivalent to that of the first embodiment can be realized.
  • the circuit board 403 and the ground conductor 406 are connected to each other.
  • the second and third ground terminals 407, 408, and 409 are provided, and the third and third ground terminals 409 are disposed outside the vicinity of the first and second radiation conductors 404 and 405, and the first and second ground terminals.
  • the wireless terminal 400 when the wireless terminal 400 is disposed in a metal housing such as a gas meter, for example, the ground conductor 406 and the metal housing are placed in an electromagnetic field by being disposed so that the ground conductor 406 and the metal housing are close to each other. Therefore, the metal casing operates as an antenna ground, and the radiation efficiency can be further improved, so that high antenna performance can be realized.
  • the first and second radiating conductors 404 and 405 are composed of linear antenna elements, but the same efficiency can be obtained even if each is composed of a plate antenna element.
  • ground conductor 406 is made of a sheet metal made of a conductor, the same effect can be obtained even if it is made of a copper foil pattern on a printed board.
  • the wireless terminal of the present invention has an effect that high radiation efficiency is obtained in spite of a small structure when installed in a metal housing such as a gas meter, and is used as a wireless terminal for an automatic meter reading system such as a gas meter. Useful.

Landscapes

  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

 放射導体(104)への給電端子(105)を回路基板(103)に接続し、給電端子(105)の近傍にて第1の接地端子(108)を介して回路基板(103)上のグラウンドを接地導体(107)に電気的に接続するとともに、第1の接地端子(108)から大きく離れた位置にて第2の接地端子(109)を介して回路基板(103)上のグラウンドを接地導体(107)に電気的に接続する。また、接地導体(107)がガスメータの金属筐体に近接するように無線端末(100)を設置する。これにより、動作周波数にて1波長に対して十分に小さな無線端末(100)でありながら、高い放射効率を得る。

Description

無線端末
 本発明は、金属筐体で構成されたメータ機器類に搭載され、高いアンテナ性能を有する小型の無線端末に関するものである。
 近年、家屋、ビル等の建造物に設置されたガス、電気等の使用量を計測するメータに無線端末を搭載して、無線通信によってデータを収集する自動検針システムが導入されている。このような自動検針システムではメータに取り付けられる無線端末のアンテナの性能によって通信範囲が決定されるため、高効率なアンテナの性能の確保が大きな課題となる。また、メータへの設置のしやすさからアンテナの小型化と内蔵化が求められている。
 このような無線端末に搭載されるアンテナとして、接地導体板をアンテナのグラウンドとして利用した基板実装形の板状アンテナが提案されている(特許文献1参照)。このアンテナは、接地導体板と板状アンテナの短絡導体とをプリント回路基板の配線パターンを介して接続することにより、接地導体板をアンテナのグラウンドとして利用するものである。接地導体板は放射導体板とプリント回路基板との間に設けられ、接地導体板とプリント回路基板との間のプリント回路基板の面上に無線回路が配置できることから無線端末の小型化が可能となる。また、無線端末内に反射導体板を配置したり、あるいは反射導体としてメータ等の金属筐体を利用したりすることにより、高いアンテナ性能を実現することができる。
特開平10-313212号公報
 しかしながら、上記特許文献1に記載の板状アンテナでは、高いアンテナ性能を実現するために、反射導体板が必要となり、部品点数が増加するという課題があった。また、メータの金属筐体を反射導体板の代わりに利用する場合には、接地導体板と金属筐体との間隔が大きくなるために、アンテナ性能の改善量が小さいという問題があった。
 本発明は、上述した問題を解決するためになされたものであり、ガスメータ等の金属筐体を設置した場合において高いアンテナ性能を実現することができる、簡易かつ小型の構造を有する無線端末を提供することを目的とする。
 上記目的を達成するため、本発明に係る第1の無線端末は、無線通信のための無線端末であって、動作周波数にて1/2波長以上かつ1波長以下の周囲長を有する無線回路基板と、前記無線回路基板の一方の面側に前記無線回路基板と対向して配置されたアンテナ素子と、前記無線回路基板の他方の面側に前記無線回路基板と対向して配置された接地導体と、前記無線回路基板と前記接地導体とを電気的に接続する複数の接地端子とを備え、前記複数の接地端子のうちの第1の接地端子を、前記無線回路基板から前記アンテナ素子への給電部の近傍に配置し、前記複数の接地端子のうちの第2の接地端子を、前記第1の接地端子から前記動作周波数にて1/4波長以上の距離を隔てて前記無線回路基板の縁部に配置したものである。
 また、本発明に係る第2の無線端末は、無線通信のための無線端末であって、動作周波数にて1/2波長以上かつ1波長以下の周囲長を有する無線回路基板と、前記無線回路基板の一方の面側に前記無線回路基板と対向に配置された第1及び第2のアンテナ素子と、前記無線回路基板の他方の面側に前記無線回路基板と対向して配置された接地導体と、前記無線回路基板と前記接地導体とを電気的に接続する複数の接地端子とを備え、前記複数の接地端子のうちの第1の接地端子を、前記無線回路基板から前記第1のアンテナ素子への給電部の近傍に配置し、前記複数の接地端子のうちの第2の接地端子を、前記無線回路基板から前記第2のアンテナ素子への給電部の近傍に配置したものである。
 本発明によれば、動作周波数にて1/2波長以上かつ1波長以下の周囲長を有する無線回路基板上に配置されるアンテナ構成を有する無線端末において、無線回路基板と平行に接地導体を配置し、無線回路基板と接地導体とを所定の位置で電気的に接続することにより、高効率で小型のアンテナ構成を有する無線端末を実現することができる。
本発明の第1の実施形態に係る無線端末の構成を示す分解斜視図である。 図1の無線端末の放射効率を3つの比較例の場合とともに示す図である。 図1の無線端末の変形例を示す斜視図である。 本発明の第2の実施形態に係る無線端末の構成を示す斜視図である。 図4の無線端末の放射効率を変形例の場合とともに示す図である。
 以下、本発明に係る好適な実施形態を図面に基づいて詳細に説明する。
 《第1の実施形態》
 図1は、本発明の第1の実施形態に係る無線端末100を示している。図1に示す無線端末100は、第1の樹脂筐体101と、第2の樹脂筐体102と、回路基板103と、放射導体104と、給電端子105と、短絡端子106と、接地導体107と、第1の接地端子108と、第2の接地端子109とから構成される。
 第1の樹脂筐体101及び第2の樹脂筐体102は、例えば、低損失材料であるポリプロピレン、ABS等の樹脂材料で形成された凹形状の筐体であり、お互いの開口を重ね合わせ、ビス止め、溶着等することによりボックス形状の筐体が構成される。
 回路基板103は、例えば、長さLr1で、幅Lr2の両面銅張基板であり、基板表面には無線回路、制御回路等が実装されている。このとき、長さLr1と幅Lr2とは、回路基板103の周囲長が動作周波数にて1/2波長以上かつ1波長以下となるように設定される。放射導体104は、例えば、銅等の導体で構成された面状の板金であり、回路基板103と対向して平行に配置される。給電端子105は、放射導体104の面方向と直交して配置されており、一端は回路基板103上に配置された無線回路と電気的に接続され、他端は放射導体104と電気的に接続される。短絡端子106は、給電端子105と同様に、放射導体104の面方向と直交して配置されており、一端は回路基板103上の銅箔パターンで形成されたグラウンドと電気的に接続され、他端は放射導体104と電気的に接続される。このような構成とすることにより、放射導体104、給電端子105及び短絡端子106は、板状逆Fアンテナを構成する。ここで、給電端子105及び短絡端子106の各々の幅と、給電端子105と短絡端子106との間隔とは、インピーダンス整合が取れるような値に設定される。
 接地導体107は、例えば、銅等の導体で構成された長さLs1で、幅Ls2の面状の板金であり、回路基板103の裏面、すなわち放射導体104が配置されている面に対して逆側の面に回路基板103と平行に配置される。この接地導体107は、回路基板103よりも平面寸法が大きく設定される。
 第1の接地端子108は、接地導体107の面方向と直交して配置されており、一端は回路基板103上の銅箔パターンで形成されたグラウンドと電気的に接続され、他端は接地導体107と電気的に接続される。しかも、第1の接地端子108は、給電端子105が回路基板103に接続される位置から距離S1だけ離して回路基板103の縁部に配置される。このとき、距離S1は、例えば、動作周波数にて1/16波長以下であることが望ましい。すなわち、第1の接地端子108は、放射導体104への給電部の近傍に位置する。
 第2の接地端子109は、第1の接地端子108と同様に、接地導体107の面方向と直交して配置されており、一端が回路基板103上の銅箔パターンで形成されたグラウンドに電気的に接続され、他端は接地導体107と電気的に接続される。しかも、第2の接地端子109は、第1の接地端子108が回路基板103に接続される位置から距離S2だけ離して回路基板103の縁部に配置される。このとき、距離S2は、例えば、動作周波数にて1/4波長以上であることが望ましい。
 次に、上記のように構成された図1の無線装置100における板状逆Fアンテナの性能について説明する。ここでは、動作周波数が868MHzであり、したがって1波長が345mmであるものとする。図1の無線装置100の具体的な寸法について説明すると、回路基板103の長さLr1を28.5mm(0.082波長)、幅Lr2を69.5mm(0.2波長)、接地導体107の長さLs1を60mm(0.173波長)、幅Ls2を67.5mm(0.195波長)、給電端子105と第1の接地端子108との距離S1を7mm(0.02波長)、第1の接地端子108と第2の接地端子109との距離S2を89mm(0.257波長)、接地導体107とガスメータ等の金属筐体との距離を2mm(0.005波長)とする。ここに、回路基板103の周囲長は、196mm(0.564波長)であって、1/2波長以上かつ1波長以下である。また、第1の接地端子108と第2の接地端子109との距離S2は、89mm(0.257波長)であって、1/4波長以上である。
 図2は、図1の無線端末100の放射効率を3つの比較例の場合とともに示している。図2において、条件(1)は、回路基板103の周囲長を1/2波長未満とし、かつ給電点近傍の第1の接地端子108のみを実装した、第1の比較例の場合の放射効率を示している。条件(2)は、回路基板103の周囲長を1/2波長以上かつ1波長以下とし、かつ給電点近傍の第1の接地端子108のみを実装した、第2の比較例の場合の放射効率を示している。条件(3)は、回路基板103の周囲長を1/2波長以上かつ1波長以下とし、かつ第1の接地端子108と第2の接地端子109との距離S2を1/4波長未満とした、第3の比較例の場合の放射効率を示している。条件(4)は、回路基板103の周囲長を1/2波長以上かつ1波長以下とし、かつ第1の接地端子108と第2の接地端子109との距離S2を1/4波長以上とした、本実施形態の場合の放射効率を示している。
 条件(1)及び(2)より、回路基板103の周囲長が1/2波長未満の場合には、接地端子が1つでも高い放射効率が得られるが、周囲長が1/2波長以上かつ1波長以下とした場合には、接地端子が1つでは放射効率が低下することが分かる。
 また、条件(2)、(3)及び(4)より、回路基板103の周囲長が1/2波長以上かつ1波長以下の場合には、回路基板103と接地導体107とを接続する複数の接地端子108,109を設け、かつその距離S2を1/4波長以上に設定することにより、回路基板103と接地導体107とが1つの大きなグラウンドとして動作し、高い放射効率を有するアンテナ性能を実現できることが分かる。
 また、無線端末100が、例えば、ガスメータ等の金属筐体に配置される場合、接地導体107と金属筐体とが近接するように配置することで、接地導体107と金属筐体とが電磁界的に容量結合し、金属筐体がアンテナのグラウンドとして動作することになり、更に放射効率を改善することができ、高いアンテナ性能を実現することができる。
 なお、本実施形態では、放射導体104及び接地導体107を各々導体による板金で構成したが、プリント基板上の銅箔パターンで構成しても同様の効果を得ることができる。
 また、図3に変形例を示すように、放射導体304を線状素子とした線状逆Lアンテナ構成を採用した無線端末300においても、図1に示す板状逆Fアンテナの場合と同様に、高い放射効率を得ることができる。なお、ここでは樹脂筐体の図示を省略している。
 《第2の実施形態》
 図4は、本発明の第2の実施形態に係る無線端末400を示している。図4に示す無線端末400は、回路基板403と、第1の放射導体404と、第2の放射導体405と、接地導体406と、第1の接地端子407と、第2の接地端子408と、第3の接地端子409とから構成される。なお、ここでは樹脂筐体の図示を省略している。
 回路基板403は、例えば、長さLf1で、幅Lf2の両面銅張基板であり、基板表面には無線回路、制御回路等が実装されている。このとき、長さLf1と幅Lf2とは、回路基板403の周囲長が動作周波数にて1/2波長以上かつ1波長以下となるように設定される。第1の放射導体404は、例えば、L字型に構成された線状の導体であり、回路基板403の面方向と直交して配置されており、一端は回路基板403上に配置された無線回路と電気的に接続され、他端は回路基板403と対向して平行に配置される。第2の放射導体405は、第1の放射導体404と同様に、例えば、L字型に構成された線状の導体であり、回路基板403の面方向と直交して配置されており、一端は回路基板403上に配置された無線回路と電気的に接続され、他端は回路基板403と対向して平行に配置される。
 接地導体406は、例えば、銅等の導体で構成された長さLg1で、幅Lg2の面状の板金であり、回路基板403の裏面、すなわち第1の放射導体404と第2の放射導体405とが配置されている面と対向する面側に回路基板403と平行に配置される。
 第1の接地端子407は、接地導体406の面方向と直交して配置されており、一端は回路基板403上の銅箔パターンで形成されたグラウンドと電気的に接続され、他端は接地導体406と電気的に接続される。しかも、第1の接地端子407は、第1の放射導体404が回路基板403に接続される位置から距離S3だけ離して回路基板403の縁部に配置される。このとき、距離S3は、例えば、動作周波数にて1/16波長以下であることが望ましい。すなわち、第1の接地端子407は、第1の放射導体404への給電部の近傍に位置する。
 第2の接地端子408は、第1の接地端子407と同様に、接地導体406の面方向と直交して配置されており、一端は回路基板403上の銅箔パターンで形成されたグラウンドに電気的に接続され、他端は接地導体406と電気的に接続される。しかも、第2の接地端子408は、第2の放射導体405が回路基板403に接続される位置から距離S4だけ離して回路基板403の縁部に配置される。このとき、距離S4は、例えば、動作周波数にて1/16波長以下であることが望ましい。すなわち、第2の接地端子408は、第2の放射導体405への給電部の近傍に位置する。
 第3の接地端子409は、第1の接地端子407及び第2の接地端子408と同様に、接地導体406の面方向と直交して配置されており、一端は回路基板403上の銅箔パターンで形成されたグラウンドに電気的に接続され、他端は接地導体406と電気的に接続される。しかも、第3の接地端子409は、第1の接地端子407又は第2の接地端子408のいずれか一方の接地端子、例えば第2の接地端子408から、距離S5だけ離して回路基板403の縁部に配置される。このとき、距離S5は、例えば、動作周波数にて1/8波長以上、1/4波長以下であることが望ましい。
 次に、上記のように構成された図4の無線装置400におけるダイバーシチアンテナ構成の線状逆Lアンテナの性能について説明する。ここでは、動作周波数が868MHzであり、したがって1波長が345mmであるものとする。図4の無線装置400の具体的な寸法について説明すると、回路基板403の長さLf1を56mm(0.162波長)、幅Lf2を93mm(0.269波長)、接地導体406の長さLg1を80mm(0.231波長)、幅Lg2を89.5mm(0.259波長)、第1の放射導体404と第1の接地端子407との距離S3を7mm(0.02波長)、第2の放射導体405と第2の接地端子408との距離S4を7mm(0.02波長)、第2の接地端子408と第3の接地端子409との距離S5を54mm(0.156波長)、接地導体406とガスメータ等の金属筐体との距離を2mm(0.005波長)とする。ここに、回路基板403の周囲長は、298mm(0.862波長)であって、1/2波長以上かつ1波長以下である。また、第2の接地端子408と第3の接地端子409との距離S5は、54mm(0.156波長)であって、1/8波長以上かつ1/4波長以下である。
 図5は、図4の無線端末400の放射効率を変形例の場合とともに示している。図5において、条件(5)は、回路基板403の周囲長を1/2波長かつ1波長以下とし、かつ図4中の第3の接地端子409の実装を省略した、変形例の場合の放射効率を示している。条件(6)は、回路基板403の周囲長を1/2波長かつ1波長以下とし、かつ第2の接地端子408と第3の接地端子409との距離S5を1/8波長以上かつ1/4波長以下とした、本実施形態の場合の放射効率を示している。
 条件(5)より、ダイバーシチアンテナ構成において回路基板403の周囲長が1/2波長以上かつ1波長以下の場合には、第1及び第2の放射導体404,405の近傍にて回路基板403と接地導体406とを接続する複数の接地端子407,408を設けることにより、第1の実施形態の場合と同等の高い放射効率を有するアンテナ性能を実現できることが分かる。
 また、条件(5)及び(6)より、ダイバーシチアンテナ構成において回路基板403の周囲長が1/2波長以上かつ1波長以下の場合には、回路基板403と接地導体406とを接続する第1、第2及び第3の接地端子407,408,409を設け、第1及び第2の放射導体404,405の近傍以外に配置される第3の接地端子409と、第1及び第2の接地端子407,408のうちのいずれか一方の接地端子(例えば、第2の接地端子408)との距離S5を1/8波長以上かつ1/4波長以下に設定することにより、回路基板403と接地導体406とが大きなグラウンドとして動作し、高い放射効率を有するアンテナ性能を実現できることが分かる。
 また、無線端末400が、例えば、ガスメータ等の金属筐体に配置される場合、接地導体406と金属筐体とが近接するように配置することで、接地導体406と金属筐体とが電磁界的に容量結合し、金属筐体がアンテナのグラウンドとして動作することになり、更に放射効率を改善することができ、高いアンテナ性能を実現することができる。
 なお、本実施形態では、第1及び第2の放射導体404,405を線状アンテナ素子で構成したが、各々を板状アンテナ素子で構成しても同様の効率を得ることができる。
 また、接地導体406を導体による板金で構成したが、プリント基板上の銅箔パターンで構成しても同様の効果を得ることができる。
 本発明の無線端末は、ガスメータ等の金属筐体に設置された状態において、小型の構造にも関わらず高い放射効率が得られるという効果を有し、ガスメータ等の自動検針システム用の無線端末として有用である。
100 無線端末
101 第1の樹脂筐体
102 第2の樹脂筐体
103 回路基板
104 放射導体
105 給電端子
106 短絡端子
107 接地導体
108 第1の接地端子
109 第2の接地端子
300 無線端末
304 放射導体
400 無線端末
403 回路基板
404 第1の放射導体
405 第2の放射導体
406 接地導体
407 第1の接地端子
408 第2の接地端子
409 第3の接地端子

Claims (3)

  1.  無線通信のための無線端末であって、
     動作周波数にて1/2波長以上かつ1波長以下の周囲長を有する無線回路基板と、
     前記無線回路基板の一方の面側に前記無線回路基板と対向して配置されたアンテナ素子と、
     前記無線回路基板の他方の面側に前記無線回路基板と対向して配置された接地導体と、
     前記無線回路基板と前記接地導体とを電気的に接続する複数の接地端子とを備え、
     前記複数の接地端子のうちの第1の接地端子を、前記無線回路基板から前記アンテナ素子への給電部の近傍に配置し、
     前記複数の接地端子のうちの第2の接地端子を、前記第1の接地端子から前記動作周波数にて1/4波長以上の距離を隔てて前記無線回路基板の縁部に配置したことを特徴とする無線端末。
  2.  無線通信のための無線端末であって、
     動作周波数にて1/2波長以上かつ1波長以下の周囲長を有する無線回路基板と、
     前記無線回路基板の一方の面側に前記無線回路基板と対向に配置された第1及び第2のアンテナ素子と、
     前記無線回路基板の他方の面側に前記無線回路基板と対向して配置された接地導体と、
     前記無線回路基板と前記接地導体とを電気的に接続する複数の接地端子とを備え、
     前記複数の接地端子のうちの第1の接地端子を、前記無線回路基板から前記第1のアンテナ素子への給電部の近傍に配置し、
     前記複数の接地端子のうちの第2の接地端子を、前記無線回路基板から前記第2のアンテナ素子への給電部の近傍に配置したことを特徴とする無線端末。
  3.  請求項2記載の無線端末において、
     前記複数の接地端子のうちの第3の接地端子を、前記第1又は第2の接地端子から前記動作周波数にて1/8波長以上かつ1/4波長以下の距離を隔てて前記無線回路基板の縁部に配置したことを特徴とする無線端末。
PCT/JP2012/006806 2011-10-31 2012-10-24 無線端末 WO2013065257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280053277.XA CN104025378B (zh) 2011-10-31 2012-10-24 无线终端
EP15177068.2A EP2950389B1 (en) 2011-10-31 2012-10-24 Wireless terminal unit
EP12845378.4A EP2775566B1 (en) 2011-10-31 2012-10-24 Wireless terminal
JP2013541609A JP5950236B2 (ja) 2011-10-31 2012-10-24 無線端末
ES12845378T ES2879455T3 (es) 2011-10-31 2012-10-24 Terminal inalámbrico

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011238359 2011-10-31
JP2011-238359 2011-10-31

Publications (1)

Publication Number Publication Date
WO2013065257A1 true WO2013065257A1 (ja) 2013-05-10

Family

ID=48191635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006806 WO2013065257A1 (ja) 2011-10-31 2012-10-24 無線端末

Country Status (5)

Country Link
EP (2) EP2950389B1 (ja)
JP (1) JP5950236B2 (ja)
CN (1) CN104025378B (ja)
ES (2) ES2879455T3 (ja)
WO (1) WO2013065257A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311993B2 (ja) * 2012-07-18 2018-04-18 パナソニックIpマネジメント株式会社 無線装置
CN110463372A (zh) * 2017-03-30 2019-11-15 日立汽车系统株式会社 电子控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313212A (ja) 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd 基板実装形板状アンテナ
JPH11355022A (ja) * 1998-06-03 1999-12-24 Nec Saitama Ltd 携帯電話機の内臓アンテナ
JP2008533934A (ja) * 2005-03-23 2008-08-21 キョウセラ ワイヤレス コープ. 電磁シールドカウンターポイズを有するパッチアンテナ
WO2010073454A1 (ja) * 2008-12-24 2010-07-01 パナソニック株式会社 携帯無線機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709878B1 (fr) * 1993-09-07 1995-11-24 Univ Limoges Antenne fil-plaque monopolaire.
US6768460B2 (en) * 2000-03-29 2004-07-27 Matsushita Electric Industrial Co., Ltd. Diversity wireless device and wireless terminal unit
US7002519B2 (en) * 2001-12-18 2006-02-21 Nokia Corporation Antenna
BRPI0410106A (pt) * 2003-05-12 2006-05-09 Nokia Corp método para modificar idependentemente a freqüência de ressonáncia de 1/4 e/ou 3/4 de comprimento de onda em uma antena de ranhura aberta, e, antena pifa de ranhura aberta
US6980154B2 (en) * 2003-10-23 2005-12-27 Sony Ericsson Mobile Communications Ab Planar inverted F antennas including current nulls between feed and ground couplings and related communications devices
US7109923B2 (en) * 2004-02-23 2006-09-19 Nokia Corporation Diversity antenna arrangement
CN1773773A (zh) * 2004-11-10 2006-05-17 智捷科技股份有限公司 一种平面倒f型天线
CN100385806C (zh) * 2005-01-28 2008-04-30 联发科技股份有限公司 移动通信装置
CN201063610Y (zh) * 2007-06-29 2008-05-21 富港电子(东莞)有限公司 无线装置
CN201966972U (zh) * 2011-02-24 2011-09-07 惠州卡美欧通讯有限公司 可提高天线性能的翻盖手机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313212A (ja) 1997-05-12 1998-11-24 Matsushita Electric Ind Co Ltd 基板実装形板状アンテナ
JPH11355022A (ja) * 1998-06-03 1999-12-24 Nec Saitama Ltd 携帯電話機の内臓アンテナ
JP2008533934A (ja) * 2005-03-23 2008-08-21 キョウセラ ワイヤレス コープ. 電磁シールドカウンターポイズを有するパッチアンテナ
WO2010073454A1 (ja) * 2008-12-24 2010-07-01 パナソニック株式会社 携帯無線機

Also Published As

Publication number Publication date
CN104025378A (zh) 2014-09-03
EP2775566A1 (en) 2014-09-10
EP2950389A1 (en) 2015-12-02
ES2883292T3 (es) 2021-12-07
ES2879455T3 (es) 2021-11-22
CN104025378B (zh) 2016-03-30
EP2950389B1 (en) 2021-07-21
JP5950236B2 (ja) 2016-07-13
JPWO2013065257A1 (ja) 2015-04-02
EP2775566B1 (en) 2021-06-02
EP2775566A4 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP5983760B2 (ja) アレーアンテナ
EP0546601B1 (en) Planar antenna
JP2006352871A (ja) 隔離素子を含む平板型mimoアレーアンテナ
JP2007049674A (ja) アンテナ構造体
US8648762B2 (en) Loop array antenna system and electronic apparatus having the same
JP5093230B2 (ja) アンテナおよび無線通信機
JP5950236B2 (ja) 無線端末
CN104185926A (zh) 天线装置
WO2013187013A1 (ja) 無線装置
JP4378884B2 (ja) アンテナ装置
JP5078732B2 (ja) アンテナ装置
JP2007335981A (ja) 偏波ダイバーシチアンテナ装置
JP3998598B2 (ja) 平面アンテナ
US20090303151A1 (en) Low profile gps antenna assembly
CN201345415Y (zh) 芯片型天线
US20110254737A1 (en) Slotted antenna device
US9160066B2 (en) Unipolar antenna, wireless access apparatus and wireless router
JP2531075B2 (ja) スロットアンテナ
EP3648244B1 (en) Antenna unit
TWI784678B (zh) 支援寬頻操作之行動裝置
WO2015008483A1 (ja) 無線装置
JP7247614B2 (ja) アンテナ装置、及び、無線通信装置
CN106684565B (zh) 天线模组及应用该天线模组的无线通信装置
EP2760078B1 (en) Monopole antenna, wireless access device, and wireless router
CN118676600A (zh) 一种缝隙天线及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280053277.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845378

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541609

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012845378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE