WO2013065110A1 - Interior permanent magnet motor and compressor - Google Patents

Interior permanent magnet motor and compressor Download PDF

Info

Publication number
WO2013065110A1
WO2013065110A1 PCT/JP2011/075103 JP2011075103W WO2013065110A1 WO 2013065110 A1 WO2013065110 A1 WO 2013065110A1 JP 2011075103 W JP2011075103 W JP 2011075103W WO 2013065110 A1 WO2013065110 A1 WO 2013065110A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rare earth
ferrite
ferrite magnet
rotor
Prior art date
Application number
PCT/JP2011/075103
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 仁吾
馬場 和彦
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2013541500A priority Critical patent/JP5755338B2/en
Priority to PCT/JP2011/075103 priority patent/WO2013065110A1/en
Priority to CN201180074492.3A priority patent/CN103891103B/en
Publication of WO2013065110A1 publication Critical patent/WO2013065110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Definitions

  • the present invention relates to a permanent magnet embedded motor and a compressor equipped with this motor.
  • a ferrite magnet or a rare earth magnet is adopted as a permanent magnet constituting the magnetic pole of the rotor.
  • a ferrite magnet When a ferrite magnet is used, it is inexpensive and various shapes of permanent magnets can be obtained with ease of molding.
  • the magnetic flux density is small, it is difficult to reduce the size of the motor.
  • a rare earth magnet when a rare earth magnet is used, it is easy to miniaturize the motor because the magnetic flux density is large, but it is expensive and the shape of the permanent magnet is limited due to the difficulty of molding.
  • the conventional general permanent magnet embedded type electric motor employs either a ferrite magnet or a rare earth magnet in consideration of the use and cost of the motor, and therefore there is a trade-off relationship between the magnetic flux density and the cost. There was a problem that there was.
  • the magnets constituting the field magnetic poles are arranged in a number corresponding to the number of poles in the rotor rotation direction along the circumference of the rotor core inner diameter.
  • a rare earth magnet and a ferrite magnet arranged along the boundary between the magnetic poles of the rare earth magnet are included.
  • Each of the magnetic poles is composed of at least three permanent magnets using the ferrite magnet as a shared adjacent magnetic pole. An effect of reducing the cost is shown by using an expensive rare earth magnet and an inexpensive ferrite magnet in combination.
  • the rare earth magnet is arranged closer to the shaft center hole than the ferrite magnet in order to prevent both magnets from becoming magnetic resistance on each other's magnetic circuit. Therefore, the amount of the iron core on the magnetic pole surface of the rotor, that is, the iron core area between the rare earth magnet and the rotor outer peripheral surface is larger than when the rare earth magnet and the ferrite magnet are arranged on the same circumference.
  • the magnetic attraction force (rotating direction in the radial direction of the rotor) increases in proportion to the noise and the sound and vibration increase.
  • the present invention has been made in view of the above, and an object thereof is to obtain an embedded permanent magnet electric motor and a compressor capable of reducing sound and vibration.
  • the present invention is a permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel plates is disposed in a stator, Magnets constituting the magnetic poles of the rotor core are provided between the ferrite magnets and ferrite magnets provided on the outer peripheral side of the rotor core and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core.
  • the ferrite magnet is disposed so that the center of the ferrite magnet is located between the poles of the magnetic pole, and is magnetized so that the magnetization direction is reversed with respect to the gap between the poles. It is characterized by.
  • FIG. 1 is a cross-sectional view of an embedded permanent magnet electric motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG.
  • FIG. 3 is a cross-sectional view centering on the magnet insertion hole.
  • FIG. 4 is a cross-sectional view of a rotor using a ferrite magnet whose magnetization direction is radially oriented.
  • FIG. 5 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet and the magnetic circuit of the rare earth magnet shown in FIG.
  • FIG. 6 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is parallel.
  • FIG. 1 is a cross-sectional view of an embedded permanent magnet electric motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG.
  • FIG. 3 is a cross-
  • FIG. 7 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is polar.
  • FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor using only rare earth magnets.
  • FIG. 9 is a diagram for explaining the relationship between the thickness and width of the ferrite magnet.
  • FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening of the rare earth magnet and the tooth width.
  • FIG. 1 is a cross-sectional view of an embedded permanent magnet electric motor (hereinafter referred to as “motor”) 100 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the structure of the rotor 1 shown in FIG. It is.
  • FIG. 3 is a cross-sectional view centering on the magnet insertion hole
  • FIG. 4 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 having a radial magnetization direction
  • FIG. 5 is a ferrite shown in FIG.
  • FIG. 6 is a cross-sectional view for explaining the relationship between the magnetic circuit of the magnet 4 and the magnetic circuit of the rare earth magnet 3, and FIG.
  • FIG. 6 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is parallel.
  • FIG. 7 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is polar.
  • an electric motor 100 includes a stator 2 and a rotor 1.
  • a plurality of teeth are formed at equiangular pitches in the circumferential direction on the inner peripheral portion of the stator 2.
  • the rotor 1 includes a magnet embedded rotor core 7, a rare earth magnet 3, and a ferrite magnet 4 as main components.
  • the shaft hole side surface 4 a of the ferrite magnet 4 is arranged on the same circumference as the shaft hole side surface 3 a of the rare earth magnet 3.
  • the rotor core 7 is manufactured by laminating electromagnetic steel plates, and the outer peripheral surface of the rotor is formed in a cylindrical shape.
  • the rotor core 7 includes, for example, six magnetic poles 21, and each magnetic pole 21 is composed of one Nd—Fe—B rare earth magnet 3. And one side of the two ferrite magnets 4.
  • the ferrite magnet 4 has a plate shape in which the shaft hole side surface 4a is formed in a substantially arc shape.
  • the rare earth magnet 3 has a flat plate shape magnetized in parallel in the thickness direction (radial direction of the rotor 1).
  • the residual magnetic flux density of the Nd—Fe—B rare earth magnet 3 is about three times the residual magnetic flux density of the wet ferrite magnet 4.
  • the thickness of the rare earth magnet 3 is formed thinner than the thickness of the ferrite magnet 4. In the rotor 1 of the present embodiment, for example, the thickness of the rare earth magnet 3 is about 2 mm and the thickness of the ferrite magnet 4 is about 4 mm. .
  • a shaft hole 8 for connecting a shaft (not shown) for transmitting rotational energy and the rotor core 7 is provided at the center of the rotor 1.
  • the rotor core 7 and the shaft are connected by shrink fitting, press fitting, or the like.
  • a hole 9 is provided between the shaft hole 8 and the magnets (3, 4) for allowing refrigerant and refrigerating machine oil to pass through.
  • a ferrite magnet insertion hole 22 formed between the shaft hole 8 and the rotor outer peripheral surface by the number corresponding to the number of poles in the rotor rotation direction on the rotor outer peripheral surface side.
  • a rare earth magnet insertion hole 23 formed on the same circumference as the ferrite magnet insertion hole 22 is provided therebetween.
  • the rare earth magnet 3 is accommodated in the rare earth magnet insertion hole 23, and the ferrite magnet 4 is accommodated in the ferrite magnet insertion hole 22.
  • the ferrite magnet insertion hole 22 is referred to as the insertion hole 22
  • the rare earth magnet insertion hole 23 is referred to as the insertion hole 23.
  • an inter-magnet thin portion 14 is provided, and between the insertion hole 22 and the rotor outer peripheral surface, a ferrite magnet outer peripheral thin portion 15 is provided.
  • the thicknesses of the inter-magnet thin portion 14 and the ferrite magnet outer peripheral thin portion 15 are, for example, 0.35 mm, which is about the same as the thickness of the electromagnetic steel plate (not shown) forming the rotor core 7.
  • the inter-magnet thin portion 14 is referred to as a thin portion 14
  • the ferrite magnet outer peripheral thin portion 15 is referred to as a thin portion 15.
  • This air hole 19 is formed by cutting the rotor outer peripheral surface side of the insertion hole 22, for example.
  • the iron core portion 7 a formed to be thicker than the thin portion 15. That is, in the rotor 1 of the present embodiment, the iron core area between the rare earth magnet 3 and the rotor outer peripheral surface (the thickness of the iron core portion 7a) is the same as the iron core area between the insertion hole 22 and the rotor outer peripheral surface (of the thin portion 15). It is configured to be larger than (thickness).
  • the iron core portion 7a is provided with a slit 6 for relaxing magnetic flux density imbalance and magnetic saliency.
  • the ferrite magnet 4 is disposed between the poles 20. It arrange
  • the ferrite magnet 4 disposed between the poles 20 is composed of at least one, and is magnetized so that the magnetization direction is reversed with respect to the poles 20.
  • the magnetization direction will be described.
  • the magnetization direction of the rare earth magnet 3 is parallel, and the magnetization direction of the ferrite magnet 4 is radial orientation.
  • the magnetization direction of the ferrite magnet 4 is magnetized so as to be reversed between the poles 20.
  • FIG. 4 shows a focal point 17 having a radial orientation as a position where the magnetization direction is reversed.
  • the magnetization direction of the ferrite magnet 4 is substantially the same as the direction of the rare earth magnet 3 with the inter-electrode 20 as a boundary.
  • the rare earth magnet 3 and the ferrite magnet 4 are used in combination, when both magnets are arranged so as to have a magnetic resistance on the magnetic circuit of the other magnet, the effective magnetic flux amount linked to the stator 2 is reduced. This is not preferable.
  • the rare earth magnet 3 exists in the magnetization direction of the ferrite magnet 4. Therefore, the rare earth magnet 3 becomes a magnetic resistance when viewed from the ferrite magnet 4, and the magnetic flux of the ferrite magnet 4 cannot be used effectively.
  • the rare earth magnet 3 is arranged on the inner peripheral side (the shaft hole 8 side) of the ferrite magnet 4 in order to effectively use the magnetic flux of the ferrite magnet 4.
  • FIG. 5 schematically shows a magnetic circuit (flow of magnetic flux) by the rare earth magnet 3 disposed on the rotor 1 and a magnetic circuit by the ferrite magnet 4.
  • the magnetic flux generated from each magnet constitutes a magnetic circuit as indicated by a broken line through the stator 2 shown in FIG.
  • the rotor 1 according to the present embodiment is a parallel circuit in which both magnetic circuits do not interfere with each other. Therefore, the rotor 1 can make maximum use of the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4.
  • the rotor 1 of the present embodiment can reduce the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. it can.
  • the magnetic flux of the ferrite magnet 4 is easily short-circuited because the magnetization direction is switched between the poles 20.
  • the magnetization direction of the ferrite magnet 4 is nearly perpendicular to the gap 20 ( It is preferably oriented in a direction that is not completely vertical.
  • the effective magnetic flux linked to the stator 2 is obtained by setting the magnetization direction of the ferrite magnet 4 to the radial orientation as shown in FIG. 4 or the polar orientation as shown in FIG. Is increasing.
  • the magnetization direction of the ferrite magnet 4 is not limited to the radial orientation and the polar orientation, and may be a parallel orientation as shown in FIG. In this case, although the amount of effective magnetic flux linked to the stator 2 is lower than that in the case of radial orientation or polar orientation, it is possible to avoid the above-described configuration of the magnetic resistance.
  • FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor 110 using only the rare earth magnet 3.
  • the conventional permanent magnet embedded motor 110 has a problem that the short-circuit magnetic flux between the adjacent rare earth magnets 3 (adjacent N pole and S pole) is large. More specifically, for example, when the magnetic flux emitted from the magnetic pole 21 shown in FIG. 2 is linked to the coil of the stator 2 shown in FIG. 1, this magnetic flux is effectively used as the magnet torque. However, when the magnetic flux emitted from the magnetic pole 21 is short-circuited without passing through the coil of the stator 2, this magnetic flux cannot be used as magnet torque.
  • the rotor 1 As shown in FIG. 2, the rotor 1 according to the present embodiment includes a ferrite magnet 4 having a large magnetic resistance between adjacent rare earth magnets 3. . As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
  • the short circuit of the magnetic flux between the adjacent rare earth magnets 3 tries to pass through the thin portion 15 shown in FIG.
  • the thin portion 15 is thinned, and the magnet outer peripheral thin wall of the permanent magnet embedded electric motor 110 of the single rare earth magnet 3 is thin.
  • the magnetic resistance can be made larger than that of the thin portion 15a.
  • the thin part 15 of this Embodiment is magnetically saturated with the magnetic flux of the ferrite magnet 4, it becomes difficult to produce a short circuit magnetic flux. As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
  • the rare earth magnet 3 and the ferrite magnet 4 are used in combination, a thin portion 14 as shown in FIG. 2 is required, but this thin portion 14 creates a short-circuit path of magnetic flux from the front to the back of the magnet, and the stator.
  • the effective magnetic flux amount linked to 2 is reduced.
  • the magnetic flux of the rare earth magnet 3 and the magnetic flux of the ferrite magnet 4 are However, since the thin part 14 is short-circuited (short-circuited from the front to the back of the magnet), the thin part 14 is easily magnetically saturated. Accordingly, the amount of short-circuit magnetic flux can be reduced as compared with the case where the rare earth magnet 3 alone or the ferrite magnet 4 alone is configured. As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
  • the iron core on the surface of the magnetic pole 21 causes an increase in sound and vibration associated with the magnetic attraction force when the rotor 1 is eccentric. Therefore, a design that reduces the iron core area on the surface of the magnetic pole 21 is preferable.
  • the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, so that the area of the iron core portion 7a existing on the rotor outer circumferential surface side of the rare earth magnet 3 can be reduced. . Therefore, it is possible to reduce the sound and vibration described above.
  • the residual magnetic flux density of the rare earth magnet 3 is about three times that of the ferrite magnet 4. Therefore, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, the energy change amount of the magnetic flux density at the boundary surface between the rare earth magnet 3 and the ferrite magnet 4 on the outer peripheral surface of the rotor is large, and this energy change increases sound and vibration.
  • the rotor 1 of the present embodiment is configured such that the iron core portion 7 a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is larger than the iron core (thin wall portion 15) existing on the rotor outer peripheral surface side of the ferrite magnet 4. Yes.
  • the concentration of the magnetic flux density on the surface of the rare earth magnet 3 having a high magnetic flux density is alleviated, and the amount of energy change of the magnetic flux density described above becomes small. As a result, the electric motor 100 with low sound and vibration can be realized.
  • the magnetic attraction force can be reduced while relaxing the energy change of the magnetic flux density described above by adjusting the width and position of the slit 6, and sound and It is effective in reducing vibration.
  • the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, it is possible to secure a wide space in the inner circumference of the rotor 1 having a small influence on the magnetic characteristics. Therefore, it is easy to provide caulking and air holes (holes 9) in this space, and the manufacturability and cooling performance of the rotor 1 can be improved.
  • the circulation amount of the refrigerant or oil is increased by opening the holes 9, and the effect of performance improvement is great.
  • an air hole 19 is formed between the ferrite magnet 4 and the thin portion 15.
  • the ferrite magnet 4 becomes difficult to demagnetize, and the reliability of the rotor 1 against demagnetization is improved. Can do.
  • FIG. 9 is a diagram for explaining the relationship between the thickness and the width of the ferrite magnet 4.
  • the ferrite magnet 4 shown in FIG. 9 is such that W> T, where T is the thickness in the magnetization direction (length in the radial direction) and W is the width (length in the rotation direction) of the ferrite magnet 4. It is configured.
  • the magnetic flux of the rare earth magnet 3 becomes difficult to be short-circuited, and the effective magnetic flux amount linked to the stator 2 is reduced. Can be increased. And since the magnetic resistance between the adjacent rare earth magnets 3 can be increased as the width W of the ferrite magnet 4 is increased, the effect of reducing the short-circuit magnetic flux can be enhanced by configuring W> T. Is possible. Further, the smaller the thickness T, the closer the rare earth magnet 3 can be to the vicinity of the rotor outer peripheral surface, so that the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface can be reduced. Can be further reduced.
  • FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening A and the teeth width B of the rare earth magnet 3.
  • the electric motor 100 shown in FIG. 10 has a tooth width of the teeth 18 (the end face of the teeth 18 facing the outer peripheral surface of the rotor), where A is the width of the magnetic pole opening on the surface of the rare earth magnet 3 (the length between adjacent ferrite magnets 4).
  • B is (width)
  • B> A is (width).
  • the rare earth magnet 3 In the rotor 120 of the rare earth magnet 3 alone as shown in FIG. 8, in order to effectively use the magnet space of the rotor 120, the rare earth magnet 3 is widely arranged on the rotor surface, and the magnetic pole on the surface of the rare earth magnet 3 is larger than the teeth width B. In many cases, the width of the opening (corresponding to the width A) is wide. In that case, the magnetic flux of the rare earth magnet 3 is easily short-circuited to the adjacent magnet through the teeth 18.
  • the electric motor 100 of the present embodiment can be configured to reduce the width A of the magnetic pole opening on the surface of the rare earth magnet 3 by using the rare earth magnet 3 and the ferrite magnet 4 in combination. Therefore, it is possible to prevent the magnetic flux of the rare earth magnet 3 having a width A smaller than the tooth width B and having a high magnetic flux density from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18. It is possible to obtain.
  • the electric motor 100 of the present embodiment since the rare earth magnet 3 is surrounded by the ferrite magnet 4 having a large magnetic resistance, by configuring the width A to be smaller than the teeth width B, the magnetic flux of the rare earth magnet 3 is It becomes easy to flow to the teeth 18 having a small magnetic resistance.
  • the configuration example in which the shaft hole side surface 4a of the ferrite magnet 4 and the shaft hole side surface 3a of the rare earth magnet 3 are arranged on the same circumference has been described.
  • the rare earth magnet 3 is replaced with the ferrite magnet 4
  • the rare earth magnet 3 may be disposed closer to the slit 6 than the shaft hole 8.
  • the electric motor 100 includes a permanent magnet embedded in which a rotor core (rotor core 7) formed by laminating a plurality of electromagnetic steel plates is disposed in a stator (stator 2).
  • the magnet constituting the magnetic pole 21 of the rotor core 7 is a ferrite magnet 4 provided on the outer peripheral side of the rotor core 7 and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core 7, and the ferrite magnet 4
  • the ferrite magnet 4 is arranged so that the center of the ferrite magnet 4 is located between the poles 20 of the magnetic pole 21, and the magnetization direction is reversed with respect to the poles 20.
  • the magnetic circuit of both the rare earth magnet 3 and the ferrite magnet 4 is a parallel circuit that does not interfere with each other, and the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4 is It is possible to take full advantage. Further, when compared with the conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment can reduce the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. it can. As a result, the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 can be reduced, and cost reduction, high efficiency, low noise, and low vibration can be realized.
  • the electric motor 100 since the ferrite magnet 4 having a large magnetic resistance exists between the rare earth magnets 3, the magnetic flux between the adjacent rare earth magnets 3 is difficult to be short-circuited, and the front and back of the magnets are reversed. Short-circuit magnetic flux is hardly generated. Therefore, when considering the rare earth magnet 3 per unit volume, the effective magnetic flux amount linked to the stator 2 is increased, the magnet torque is increased, the applied current can be reduced, and the output can be increased. It is also possible to direct the increased amount of magnetic flux to reduce the amount of rare earth magnets.
  • the rare earth magnet 3 does not become magnetoresistive when viewed from the ferrite magnet 4,
  • the magnetization direction of the ferrite magnet 4 is oriented in a direction nearly perpendicular to the gap 20, so that the amount of effective magnetic flux linked to the stator 2 can be increased. Therefore, when compared with the conventional motor using only the rare earth magnet 3 with the same rotor magnetic flux, the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4 can be reduced, and the cost can be further reduced. High efficiency can be achieved.
  • the rare earth magnet 3 according to the present embodiment is arranged on the same circumference as the ferrite magnet 4, the iron core portion that is the cause of increasing the sound and vibration associated with the magnetic attraction force when the rotor 1 is eccentric.
  • the area of 7a can be reduced. Therefore, compared with the case where the rare earth magnet 3 is not arranged on the same circumference as the ferrite magnet 4, it is possible to reduce noise and vibration.
  • the rotor core 7 is formed with an insertion hole 22 that is provided on the outer peripheral side of the rotor core 7 and into which the ferrite magnet 4 is inserted, and there is a gap between the outer peripheral surface of the ferrite magnet 4 and the insertion hole 22. Since the (air hole 19) is formed, it is possible to eliminate a portion that is easily demagnetized at the design stage, to prevent a change in the amount of magnetic flux due to demagnetization, and to improve the reliability. It is possible to improve the quality of the finished product.
  • the ferrite magnet 4 according to the present embodiment is configured such that W> T, where T is the thickness in the radial direction of the rotor core 7 and W is the length in the rotational direction of the rotor core 7. Therefore, the magnetic resistance between the rare earth magnets 3 is increased as W is increased, and the effect of reducing the short-circuit magnetic flux can be enhanced. Further, as T is smaller, the shaft hole side surface 4a can be closer to the rotor outer peripheral surface, and the shaft hole side surface 3a can be closer to the rotor outer peripheral surface accordingly. The iron core area (thickness of the iron core portion 7a) can be reduced, and sound and vibration can be further reduced.
  • a plurality of teeth 18 formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator 2 according to the present embodiment, and the width of the magnetic pole opening on the surface of the rare earth magnet 3 is A.
  • the width of the teeth 18 is B, since B> A, the magnetic flux of the rare earth magnet 3 can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18. It is possible to obtain the electric motor 100 having a high magnetic flux utilization rate.
  • the electric motor 100 according to the present embodiment is used in a compressor such as an air conditioner, the circulation amount of the refrigerant and oil increases, and the performance can be improved.
  • the permanent magnet embedded electric motor and the compressor according to the embodiment of the present invention show an example of the content of the present invention, and can be combined with another known technique. Of course, it is possible to change and configure such as omitting a part without departing from the gist of the present invention.
  • the present invention can be applied to a permanent magnet embedded electric motor and a compressor, and is particularly useful as an invention capable of reducing sound and vibration.

Abstract

This interior permanent magnet motor is constructed by installing a rotor core (7), which is created by laminating multiple electromagnetic steel plates together, inside a stator. Magnets that constitute magnetic poles of the rotor core (7) comprise: ferrite magnets (4) which are provided on the outer periphery side of the rotor core (7) in the circumferential direction of the rotor core (7) only in a number corresponding to the number of the poles; and rare-earth magnets (3) which are provided between the ferrite magnets (4). Each of the ferrite magnets (4) is arranged such that the center of the ferrite magnet (4) is placed at an inter-polar position (20) between the magnetic poles (21), and is magnetized such that the magnetization direction is changed at the inter-polar position (20).

Description

永久磁石埋込型電動機および圧縮機Permanent magnet embedded electric motor and compressor
 本発明は、永久磁石埋込型電動機およびこの電動機を搭載した圧縮機に関するものである。 The present invention relates to a permanent magnet embedded motor and a compressor equipped with this motor.
 一般的な永久磁石埋込型電動機には、ロータの磁極を構成する永久磁石としてフェライト磁石と希土類磁石との何れか一方が採用されている。フェライト磁石を用いた場合、安価であり、成形の容易性により種々の形状の永久磁石を得ることができるものの、磁束密度が小さいためモータの小型化が困難である。一方、希土類磁石を用いた場合、磁束密度が大きいためモータの小型化が容易であるものの、高価であり、成形の困難性により永久磁石の形状が限られる。したがって、従来の一般的な永久磁石埋込型電動機は、モータの用途やコストを考慮してフェライト磁石と希土類磁石との何れか一方を採用しているため、磁束密度とコストがトレードオフの関係にあるという問題点があった。 In a general embedded permanent magnet electric motor, either a ferrite magnet or a rare earth magnet is adopted as a permanent magnet constituting the magnetic pole of the rotor. When a ferrite magnet is used, it is inexpensive and various shapes of permanent magnets can be obtained with ease of molding. However, since the magnetic flux density is small, it is difficult to reduce the size of the motor. On the other hand, when a rare earth magnet is used, it is easy to miniaturize the motor because the magnetic flux density is large, but it is expensive and the shape of the permanent magnet is limited due to the difficulty of molding. Therefore, the conventional general permanent magnet embedded type electric motor employs either a ferrite magnet or a rare earth magnet in consideration of the use and cost of the motor, and therefore there is a trade-off relationship between the magnetic flux density and the cost. There was a problem that there was.
 このような問題を解決するため、下記特許文献1に示される従来技術では、界磁磁極を構成する磁石に、ロータコア内径の周囲に沿ってロータ回転方向に極数に相当する数だけ配置される希土類磁石とこの希土類磁石による磁極の境界に沿って配置されるフェライト磁石とが含まれ、フェライト磁石を隣接磁極の共有として、各磁極が少なくとも3つの永久磁石により構成されている。高価な希土類磁石と安価なフェライト磁石を併用することで、低コスト化を図る効果が示されている。 In order to solve such a problem, in the prior art disclosed in Patent Document 1 below, the magnets constituting the field magnetic poles are arranged in a number corresponding to the number of poles in the rotor rotation direction along the circumference of the rotor core inner diameter. A rare earth magnet and a ferrite magnet arranged along the boundary between the magnetic poles of the rare earth magnet are included. Each of the magnetic poles is composed of at least three permanent magnets using the ferrite magnet as a shared adjacent magnetic pole. An effect of reducing the cost is shown by using an expensive rare earth magnet and an inexpensive ferrite magnet in combination.
特許第3832530号公報(図1など)Japanese Patent No. 3832530 (FIG. 1 etc.)
 しかしながら、上記特許文献1の従来技術では、双方の磁石が互いの磁気回路上の磁気抵抗になることを避けるため、希土類磁石がフェライト磁石よりもシャフト用中心孔側に配置されている。そのため、ロータの磁極表面の鉄心量、すなわち希土類磁石とロータ外周面との間における鉄心面積が、希土類磁石とフェライト磁石とを同一円周上に配置した場合に比べて多くなるため、この鉄心面積に比例して磁気吸引力(ロータの半径方向加振力)が増して音および振動が大きくなるという課題があった。 However, in the prior art disclosed in Patent Document 1, the rare earth magnet is arranged closer to the shaft center hole than the ferrite magnet in order to prevent both magnets from becoming magnetic resistance on each other's magnetic circuit. Therefore, the amount of the iron core on the magnetic pole surface of the rotor, that is, the iron core area between the rare earth magnet and the rotor outer peripheral surface is larger than when the rare earth magnet and the ferrite magnet are arranged on the same circumference. The magnetic attraction force (rotating direction in the radial direction of the rotor) increases in proportion to the noise and the sound and vibration increase.
 本発明は、上記に鑑みてなされたものであって、音および振動を低減可能な永久磁石埋込型電動機および圧縮機を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain an embedded permanent magnet electric motor and a compressor capable of reducing sound and vibration.
 上述した課題を解決し、目的を達成するために、本発明は、複数の電磁鋼板を積層してなる回転子鉄心を固定子内に配置して成る永久磁石埋込型電動機であって、前記回転子鉄心の磁極を構成する磁石は、前記回転子鉄心の外周側に設けられ前記回転子鉄心の円周方向へ極数に相当する数だけ配置されるフェライト磁石と、前記フェライト磁石の間に配置された希土類磁石と、から成り、前記フェライト磁石は、前記磁極の極間に前記フェライト磁石の中心が位置するように配置され、前記極間に対して磁化方向が反転するように着磁されていることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel plates is disposed in a stator, Magnets constituting the magnetic poles of the rotor core are provided between the ferrite magnets and ferrite magnets provided on the outer peripheral side of the rotor core and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core. The ferrite magnet is disposed so that the center of the ferrite magnet is located between the poles of the magnetic pole, and is magnetized so that the magnetization direction is reversed with respect to the gap between the poles. It is characterized by.
 この発明によれば、音および振動を低減することができるという効果を奏する。 According to the present invention, there is an effect that sound and vibration can be reduced.
図1は、本発明の実施の形態にかかる永久磁石埋込型電動機の断面図である。FIG. 1 is a cross-sectional view of an embedded permanent magnet electric motor according to an embodiment of the present invention. 図2は、図1に示されるロータの構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG. 図3は、磁石挿入孔を中心に示す断面図である。FIG. 3 is a cross-sectional view centering on the magnet insertion hole. 図4は、磁化方向がラジアル配向のフェライト磁石を用いたロータの断面図である。FIG. 4 is a cross-sectional view of a rotor using a ferrite magnet whose magnetization direction is radially oriented. 図5は、図4に示されるフェライト磁石の磁気回路と希土類磁石の磁気回路との関係を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet and the magnetic circuit of the rare earth magnet shown in FIG. 図6は、磁石の磁化方向が平行配向のフェライト磁石を用いたロータの断面図である。FIG. 6 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is parallel. 図7は、磁石の磁化方向が極配向のフェライト磁石を用いたロータの断面図である。FIG. 7 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is polar. 図8は、希土類磁石のみ用いた従来の永久磁石埋込型電動機の断面図である。FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor using only rare earth magnets. 図9は、フェライト磁石の厚さと幅の関係を説明するための図である。FIG. 9 is a diagram for explaining the relationship between the thickness and width of the ferrite magnet. 図10は、希土類磁石の磁極開口部とティース幅との関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening of the rare earth magnet and the tooth width.
 以下に、本発明にかかる永久磁石埋込型電動機および圧縮機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of an embedded permanent magnet electric motor and a compressor according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる永久磁石埋込型電動機(以下「電動機」と称する)100の断面図であり、図2は、図1に示されるロータ1の構造を示す断面図である。図3は、磁石挿入孔を中心に示す断面図であり、図4は、磁化方向がラジアル配向のフェライト磁石4を用いたロータ1の断面図であり、図5は、図4に示されるフェライト磁石4の磁気回路と希土類磁石3の磁気回路との関係を説明するための断面図であり、図6は、磁石の磁化方向が平行配向のフェライト磁石4を用いたロータ1の断面図であり、図7は、磁石の磁化方向が極配向のフェライト磁石4を用いたロータ1の断面図である。
Embodiment.
FIG. 1 is a cross-sectional view of an embedded permanent magnet electric motor (hereinafter referred to as “motor”) 100 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of the rotor 1 shown in FIG. It is. FIG. 3 is a cross-sectional view centering on the magnet insertion hole, FIG. 4 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 having a radial magnetization direction, and FIG. 5 is a ferrite shown in FIG. FIG. 6 is a cross-sectional view for explaining the relationship between the magnetic circuit of the magnet 4 and the magnetic circuit of the rare earth magnet 3, and FIG. 6 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is parallel. FIG. 7 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is polar.
 図1において、本発明の実施の形態にかかる電動機100は、ステータ2およびロータ1を有して構成されている。ステータ2の内周部には、複数のティースが円周方向に等角ピッチで形成されている。 In FIG. 1, an electric motor 100 according to an embodiment of the present invention includes a stator 2 and a rotor 1. A plurality of teeth are formed at equiangular pitches in the circumferential direction on the inner peripheral portion of the stator 2.
 図2において、ロータ1は、主たる構成として、磁石埋め込み式のロータコア7、希土類磁石3、およびフェライト磁石4を有して構成されている。図2では、一例として、フェライト磁石4のシャフト孔側面4aが、希土類磁石3のシャフト孔側面3aと同一円周上に配置されている。 In FIG. 2, the rotor 1 includes a magnet embedded rotor core 7, a rare earth magnet 3, and a ferrite magnet 4 as main components. In FIG. 2, as an example, the shaft hole side surface 4 a of the ferrite magnet 4 is arranged on the same circumference as the shaft hole side surface 3 a of the rare earth magnet 3.
 ロータコア7は、電磁鋼板を積層して製作されロータ外周面が円筒状に形成され、例えば6極の磁極21で構成され、各磁極21は、1枚のNd-Fe-B系の希土類磁石3と2枚のフェライト磁石4の片側とで構成される。 The rotor core 7 is manufactured by laminating electromagnetic steel plates, and the outer peripheral surface of the rotor is formed in a cylindrical shape. The rotor core 7 includes, for example, six magnetic poles 21, and each magnetic pole 21 is composed of one Nd—Fe—B rare earth magnet 3. And one side of the two ferrite magnets 4.
 フェライト磁石4は、シャフト孔側面4aが略円弧形状に形成された板状を成す。希土類磁石3は、厚さ方向(ロータ1の半径方向)へ平行に磁化された平板状を成す。なお、Nd-Fe-B系の希土類磁石3の残留磁束密度は、湿式フェライト磁石4の残留磁束密度の約3倍である。希土類磁石3の厚さは、フェライト磁石4の厚さよりも薄く形成され、本実施の形態のロータ1では、例えば希土類磁石3の厚さが2mm程度、フェライト磁石4の厚さが4mm程度である。 The ferrite magnet 4 has a plate shape in which the shaft hole side surface 4a is formed in a substantially arc shape. The rare earth magnet 3 has a flat plate shape magnetized in parallel in the thickness direction (radial direction of the rotor 1). The residual magnetic flux density of the Nd—Fe—B rare earth magnet 3 is about three times the residual magnetic flux density of the wet ferrite magnet 4. The thickness of the rare earth magnet 3 is formed thinner than the thickness of the ferrite magnet 4. In the rotor 1 of the present embodiment, for example, the thickness of the rare earth magnet 3 is about 2 mm and the thickness of the ferrite magnet 4 is about 4 mm. .
 ロータ1の中心部には、回転エネルギーを伝達するためのシャフト(図示せず)とロータコア7とを連結するためのシャフト孔8が設けられている。ロータコア7とシャフトは、焼嵌、圧入等により連結される。そして、シャフト孔8と磁石(3、4)との間には、冷媒や冷凍機油が通過するための穴9が設けられている。 A shaft hole 8 for connecting a shaft (not shown) for transmitting rotational energy and the rotor core 7 is provided at the center of the rotor 1. The rotor core 7 and the shaft are connected by shrink fitting, press fitting, or the like. A hole 9 is provided between the shaft hole 8 and the magnets (3, 4) for allowing refrigerant and refrigerating machine oil to pass through.
 図3において、シャフト孔8とロータ外周面との間には、ロータ外周面側にてロータ回転方向へ極数に相当する数だけ形成されたフェライト磁石挿入孔22と、フェライト磁石挿入孔22の間にてフェライト磁石挿入孔22と同一円周上に形成された希土類磁石挿入孔23とが設けられている。希土類磁石3は、希土類磁石挿入孔23に収納され、フェライト磁石4は、フェライト磁石挿入孔22に収納される。なお、以下の説明では、フェライト磁石挿入孔22は挿入孔22と称し、希土類磁石挿入孔23は挿入孔23と称する。 In FIG. 3, a ferrite magnet insertion hole 22 formed between the shaft hole 8 and the rotor outer peripheral surface by the number corresponding to the number of poles in the rotor rotation direction on the rotor outer peripheral surface side. A rare earth magnet insertion hole 23 formed on the same circumference as the ferrite magnet insertion hole 22 is provided therebetween. The rare earth magnet 3 is accommodated in the rare earth magnet insertion hole 23, and the ferrite magnet 4 is accommodated in the ferrite magnet insertion hole 22. In the following description, the ferrite magnet insertion hole 22 is referred to as the insertion hole 22, and the rare earth magnet insertion hole 23 is referred to as the insertion hole 23.
 挿入孔22と挿入孔23との間には、磁石間薄肉部14が設けられ、挿入孔22とロータ外周面との間には、フェライト磁石外周薄肉部15が設けられている。磁石間薄肉部14およびフェライト磁石外周薄肉部15の各々の厚みは、例えば、ロータコア7を形成している電磁鋼板(図示せず)の厚さと同程度の0.35mmである。なお、以下の説明では、磁石間薄肉部14は薄肉部14と称し、フェライト磁石外周薄肉部15は薄肉部15と称する。 Between the insertion hole 22 and the insertion hole 23, an inter-magnet thin portion 14 is provided, and between the insertion hole 22 and the rotor outer peripheral surface, a ferrite magnet outer peripheral thin portion 15 is provided. The thicknesses of the inter-magnet thin portion 14 and the ferrite magnet outer peripheral thin portion 15 are, for example, 0.35 mm, which is about the same as the thickness of the electromagnetic steel plate (not shown) forming the rotor core 7. In the following description, the inter-magnet thin portion 14 is referred to as a thin portion 14, and the ferrite magnet outer peripheral thin portion 15 is referred to as a thin portion 15.
 図2に示されるフェライト磁石4と薄肉部15との間には、フェライト磁石4のロータ外周面側に空気孔19が形成されている。この空気孔19は、例えば挿入孔22のロータ外周面側を切削加工することで形成されている。 2 is formed between the ferrite magnet 4 and the thin wall portion 15 shown in FIG. This air hole 19 is formed by cutting the rotor outer peripheral surface side of the insertion hole 22, for example.
 希土類磁石3のロータ外周面側には、薄肉部15の厚さよりも厚く形成された鉄心部7aが存在する。すなわち、本実施の形態のロータ1は、希土類磁石3とロータ外周面の間の鉄心面積(鉄心部7aの厚み)が、挿入孔22とロータ外周面との間の鉄心面積(薄肉部15の厚み)よりも大きくなるように構成されている。 On the rotor outer peripheral surface side of the rare earth magnet 3, there is an iron core portion 7 a formed to be thicker than the thin portion 15. That is, in the rotor 1 of the present embodiment, the iron core area between the rare earth magnet 3 and the rotor outer peripheral surface (the thickness of the iron core portion 7a) is the same as the iron core area between the insertion hole 22 and the rotor outer peripheral surface (of the thin portion 15). It is configured to be larger than (thickness).
 この鉄心部7aには、磁束密度のアンバランスおよび磁気突極性を緩和するためのスリット6が設けられている。 The iron core portion 7a is provided with a slit 6 for relaxing magnetic flux density imbalance and magnetic saliency.
 図2に示される極間20は、隣接する磁極21(N極とS極)が切り替わる境界線を表し、磁極21の中心には希土類磁石3が配置され、フェライト磁石4は、極間20にフェライト磁石4の中心が位置するように配置されている。極間20に配置されたフェライト磁石4は、少なくとも1枚で構成され、極間20に対して磁化方向が反転するように着磁される。以下、磁化方向に関して説明する。 2 represents a boundary line where adjacent magnetic poles 21 (N pole and S pole) are switched. The rare earth magnet 3 is disposed at the center of the magnetic pole 21, and the ferrite magnet 4 is disposed between the poles 20. It arrange | positions so that the center of the ferrite magnet 4 may be located. The ferrite magnet 4 disposed between the poles 20 is composed of at least one, and is magnetized so that the magnetization direction is reversed with respect to the poles 20. Hereinafter, the magnetization direction will be described.
 図4において、希土類磁石3の磁化方向は平行であり、フェライト磁石4の磁化方向はラジアル配向である。フェライト磁石4の磁化方向は、極間20で反転するように着磁されている。図4には、磁化方向が反転する位置としてラジアル配向の焦点17が示されている。フェライト磁石4の磁化方向は、極間20を境界とし希土類磁石3の方向と略同じ向きとなる。 In FIG. 4, the magnetization direction of the rare earth magnet 3 is parallel, and the magnetization direction of the ferrite magnet 4 is radial orientation. The magnetization direction of the ferrite magnet 4 is magnetized so as to be reversed between the poles 20. FIG. 4 shows a focal point 17 having a radial orientation as a position where the magnetization direction is reversed. The magnetization direction of the ferrite magnet 4 is substantially the same as the direction of the rare earth magnet 3 with the inter-electrode 20 as a boundary.
 ここで、希土類磁石3とフェライト磁石4とを併用する場合において、双方の磁石が他方の磁石の磁気回路上の磁気抵抗になるように配置されたとき、ステータ2に鎖交する有効磁束量が低減し、好ましくない。例えば、フェライト磁石4の磁化方向が極間20に対して垂直の場合、フェライト磁石4の磁化方向に希土類磁石3が存在することになる。そのため、フェライト磁石4からみて希土類磁石3が磁気抵抗となり、フェライト磁石4の磁束を有効に利用することができない。上記従来技術では、フェライト磁石4の磁束を有効利用するため、希土類磁石3がフェライト磁石4よりも内周側(シャフト孔8側)に配置されている。 Here, in the case where the rare earth magnet 3 and the ferrite magnet 4 are used in combination, when both magnets are arranged so as to have a magnetic resistance on the magnetic circuit of the other magnet, the effective magnetic flux amount linked to the stator 2 is reduced. This is not preferable. For example, when the magnetization direction of the ferrite magnet 4 is perpendicular to the gap 20, the rare earth magnet 3 exists in the magnetization direction of the ferrite magnet 4. Therefore, the rare earth magnet 3 becomes a magnetic resistance when viewed from the ferrite magnet 4, and the magnetic flux of the ferrite magnet 4 cannot be used effectively. In the above prior art, the rare earth magnet 3 is arranged on the inner peripheral side (the shaft hole 8 side) of the ferrite magnet 4 in order to effectively use the magnetic flux of the ferrite magnet 4.
 一方、フェライト磁石4の磁化方向を平行配向、ラジアル配向、あるいは極配向にした場合、希土類磁石3およびフェライト磁石4が互いの磁気回路上の磁気抵抗になりにくい。図5には、ロータ1に配置された希土類磁石3による磁気回路(磁束の流れ)とフェライト磁石4による磁気回路とが模式的に示されている。各磁石から発生した磁束は、図1に示されるステータ2を介して、およそ破線に示すような磁気回路を構成する。本実施の形態のロータ1では、双方の磁気回路が互いに干渉しあわないような並列回路となっている。そのため、ロータ1は、希土類磁石3およびフェライト磁石4の磁束を最大限利用することができる。 On the other hand, when the magnetization direction of the ferrite magnet 4 is parallel, radial, or polar, the rare earth magnet 3 and the ferrite magnet 4 are unlikely to have a magnetic resistance on each other's magnetic circuit. FIG. 5 schematically shows a magnetic circuit (flow of magnetic flux) by the rare earth magnet 3 disposed on the rotor 1 and a magnetic circuit by the ferrite magnet 4. The magnetic flux generated from each magnet constitutes a magnetic circuit as indicated by a broken line through the stator 2 shown in FIG. The rotor 1 according to the present embodiment is a parallel circuit in which both magnetic circuits do not interfere with each other. Therefore, the rotor 1 can make maximum use of the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4.
 また、希土類磁石3のみ用いた従来の電動機に対して同一のロータ磁束で比較した場合、本実施の形態のロータ1は、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができる。 Further, when compared with the conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment can reduce the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. it can.
 なお、フェライト磁石4の磁束は、極間20で磁化方向が切り替わるため短絡し易いが、この短絡磁束を低減するためには、フェライト磁石4の磁化方向が極間20に対して垂直に近い(完全に垂直ではない)方向に向くことが好ましい。 The magnetic flux of the ferrite magnet 4 is easily short-circuited because the magnetization direction is switched between the poles 20. However, in order to reduce the short-circuit magnetic flux, the magnetization direction of the ferrite magnet 4 is nearly perpendicular to the gap 20 ( It is preferably oriented in a direction that is not completely vertical.
 そこで、本実施の形態にかかるロータ1は、フェライト磁石4の磁化方向を図4に示すようなラジアル配向や図7に示すような極配向にすることによって、ステータ2に鎖交する有効磁束量を増加させている。なお、フェライト磁石4の磁化方向は、ラジアル配向および極配向に限定されるものではなく、図6に示すような平行配向でもよい。この場合、ステータ2に鎖交する有効磁束量は、ラジアル配向や極配向の場合に比べて低下するものの、上述した磁気抵抗となる構成を回避することは可能である。 Therefore, in the rotor 1 according to the present embodiment, the effective magnetic flux linked to the stator 2 is obtained by setting the magnetization direction of the ferrite magnet 4 to the radial orientation as shown in FIG. 4 or the polar orientation as shown in FIG. Is increasing. The magnetization direction of the ferrite magnet 4 is not limited to the radial orientation and the polar orientation, and may be a parallel orientation as shown in FIG. In this case, although the amount of effective magnetic flux linked to the stator 2 is lower than that in the case of radial orientation or polar orientation, it is possible to avoid the above-described configuration of the magnetic resistance.
 図8は、希土類磁石3のみ用いた従来の永久磁石埋込型電動機110の断面図である。従来の永久磁石埋込型電動機110では、隣接する希土類磁石3間(隣接するN極とS極)における短絡磁束が大きいという課題があった。具体的に説明すると、例えば図2に示される磁極21から出た磁束が図1に示されるステータ2のコイルに鎖交した場合には、この磁束がマグネットトルクとして有効に利用される。しかしながら、磁極21から出た磁束がステータ2のコイルを介さずに短絡した場合、この磁束はマグネットトルクとして利用することができない。 FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor 110 using only the rare earth magnet 3. The conventional permanent magnet embedded motor 110 has a problem that the short-circuit magnetic flux between the adjacent rare earth magnets 3 (adjacent N pole and S pole) is large. More specifically, for example, when the magnetic flux emitted from the magnetic pole 21 shown in FIG. 2 is linked to the coil of the stator 2 shown in FIG. 1, this magnetic flux is effectively used as the magnet torque. However, when the magnetic flux emitted from the magnetic pole 21 is short-circuited without passing through the coil of the stator 2, this magnetic flux cannot be used as magnet torque.
 本実施の形態のロータ1は、図2に示すように、隣接する希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、希土類磁石3の磁束が短絡しにくい構成となっている。その結果、ステータ2に鎖交する有効磁束量を増加させることができる。 As shown in FIG. 2, the rotor 1 according to the present embodiment includes a ferrite magnet 4 having a large magnetic resistance between adjacent rare earth magnets 3. . As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
 隣接する希土類磁石3間の磁束の短絡は、図2に示される薄肉部15を通過しようとする。本実施の形態のロータ1は、フェライト磁石4がロータ外周面側に配置されているため、薄肉部15が薄肉化されており、希土類磁石3単体の永久磁石埋込型電動機110の磁石外周薄肉薄肉部15aよりも磁気抵抗を大きくすることができる。また、本実施の形態の薄肉部15はフェライト磁石4の磁束で磁気飽和するため、短絡磁束が生じにくくなる。その結果、ステータ2に鎖交する有効磁束量を増加させることができる。 The short circuit of the magnetic flux between the adjacent rare earth magnets 3 tries to pass through the thin portion 15 shown in FIG. In the rotor 1 of the present embodiment, since the ferrite magnet 4 is arranged on the rotor outer peripheral surface side, the thin portion 15 is thinned, and the magnet outer peripheral thin wall of the permanent magnet embedded electric motor 110 of the single rare earth magnet 3 is thin. The magnetic resistance can be made larger than that of the thin portion 15a. Moreover, since the thin part 15 of this Embodiment is magnetically saturated with the magnetic flux of the ferrite magnet 4, it becomes difficult to produce a short circuit magnetic flux. As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
 また、希土類磁石3とフェライト磁石4を併用する場合、図2に示すような薄肉部14が必要となるが、この薄肉部14によって磁石の表から裏への磁束の短絡経路が生じて、ステータ2に鎖交する有効磁束量が低下する。本実施の形態のロータ1では、希土類磁石3とフェライト磁石4とが同一円周上に配置され、さらに薄肉部14が薄肉化されているため、希土類磁石3の磁束とフェライト磁石4の磁束とが薄肉部14を短絡(磁石の表から裏に短絡)するため、薄肉部14が磁気飽和し易い。従って、希土類磁石3単体もしくはフェライト磁石4単体で構成した場合に比べて、短絡磁束量を低減することができる。その結果、ステータ2に鎖交する有効磁束量を増加させることができる。 Further, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, a thin portion 14 as shown in FIG. 2 is required, but this thin portion 14 creates a short-circuit path of magnetic flux from the front to the back of the magnet, and the stator. The effective magnetic flux amount linked to 2 is reduced. In the rotor 1 of the present embodiment, since the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference and the thin portion 14 is further thinned, the magnetic flux of the rare earth magnet 3 and the magnetic flux of the ferrite magnet 4 are However, since the thin part 14 is short-circuited (short-circuited from the front to the back of the magnet), the thin part 14 is easily magnetically saturated. Accordingly, the amount of short-circuit magnetic flux can be reduced as compared with the case where the rare earth magnet 3 alone or the ferrite magnet 4 alone is configured. As a result, the amount of effective magnetic flux linked to the stator 2 can be increased.
 また、電動機100において、磁極21表面の鉄心は、ロータ1の偏心時の磁気吸引力に伴う音および振動を増加させる原因となる。従って、磁極21表面の鉄心面積を小さくする設計が好ましい。本実施の形態のロータ1は、希土類磁石3とフェライト磁石4とを同一円周上に配置することで、希土類磁石3のロータ外周面側に存在する鉄心部7aの面積を小さくすることができる。従って、上述した音および振動を軽減することが可能である。 Also, in the electric motor 100, the iron core on the surface of the magnetic pole 21 causes an increase in sound and vibration associated with the magnetic attraction force when the rotor 1 is eccentric. Therefore, a design that reduces the iron core area on the surface of the magnetic pole 21 is preferable. In the rotor 1 according to the present embodiment, the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, so that the area of the iron core portion 7a existing on the rotor outer circumferential surface side of the rare earth magnet 3 can be reduced. . Therefore, it is possible to reduce the sound and vibration described above.
 また、希土類磁石3の残留磁束密度は、フェライト磁石4の残留磁束密度に対して約3倍である。そのため、希土類磁石3とフェライト磁石4とを併用する場合、ロータ外周面の希土類磁石3とフェライト磁石4との境界面における磁束密度のエネルギー変化量が大きく、このエネルギー変化が音および振動を増加させる原因となる。本実施の形態のロータ1は、希土類磁石3のロータ外周面側に存在する鉄心部7aがフェライト磁石4のロータ外周面側に存在する鉄心(薄肉部15)よりも多くなるように構成されている。そのため、磁束密度の高い希土類磁石3の表面の磁束密度の集中が緩和され、上述した磁束密度のエネルギー変化量が小さくなり、その結果、音および振動の小さい電動機100を実現可能である。 Further, the residual magnetic flux density of the rare earth magnet 3 is about three times that of the ferrite magnet 4. Therefore, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, the energy change amount of the magnetic flux density at the boundary surface between the rare earth magnet 3 and the ferrite magnet 4 on the outer peripheral surface of the rotor is large, and this energy change increases sound and vibration. Cause. The rotor 1 of the present embodiment is configured such that the iron core portion 7 a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is larger than the iron core (thin wall portion 15) existing on the rotor outer peripheral surface side of the ferrite magnet 4. Yes. Therefore, the concentration of the magnetic flux density on the surface of the rare earth magnet 3 having a high magnetic flux density is alleviated, and the amount of energy change of the magnetic flux density described above becomes small. As a result, the electric motor 100 with low sound and vibration can be realized.
 なお、希土類磁石3の表面の鉄心部7aにスリット6を設けた場合、スリット6の幅、位置を調整することで上述した磁束密度のエネルギー変化を緩和しつつ、磁気吸引力も低減でき、音および振動の低減に効果的である。 In addition, when the slit 6 is provided in the iron core part 7a on the surface of the rare earth magnet 3, the magnetic attraction force can be reduced while relaxing the energy change of the magnetic flux density described above by adjusting the width and position of the slit 6, and sound and It is effective in reducing vibration.
 また、希土類磁石3とフェライト磁石4とを同一円周上に配置することで、磁気特性への影響が小さいロータ1の磁石内周部に、広いスペースを確保することが可能である。そのため、このスペースにカシメや風穴(穴9)を設け易く、ロータ1の製作性、冷却性能を改善することができる。冷媒や油が電動機中を通過する圧縮機の場合、穴9を開けたことにより冷媒や油の循環量が多くなり、性能改善の効果も大きい。 Also, by arranging the rare earth magnet 3 and the ferrite magnet 4 on the same circumference, it is possible to secure a wide space in the inner circumference of the rotor 1 having a small influence on the magnetic characteristics. Therefore, it is easy to provide caulking and air holes (holes 9) in this space, and the manufacturability and cooling performance of the rotor 1 can be improved. In the case of a compressor in which refrigerant or oil passes through the electric motor, the circulation amount of the refrigerant or oil is increased by opening the holes 9, and the effect of performance improvement is great.
 また、本実施の形態のロータ1には、フェライト磁石4と薄肉部15との間に空気孔19が形成されている。空気孔19を設けることによって以下のような効果を得ることができる。ステータ2に減磁位相の電流を流した場合、磁石の磁化方向と反対方向の磁界(反磁界)が発生する。希土類磁石3に対する反磁界は、希土類磁石3がシャフト孔8側に多少埋め込まれているため、薄肉部14を通過して逃げていく。ただし、フェライト磁石4に対する反磁界は、ロータ外周面近傍にフェライト磁石4が配置されているため、フェライト磁石4を減磁させ易い。そこで、本実施の形態のロータ1は、フェライト磁石4のロータ外周面側に空気孔19を設けることによって、フェライト磁石4が減磁し難くなり、減磁に対するロータ1の信頼性を改善することができる。 In the rotor 1 of the present embodiment, an air hole 19 is formed between the ferrite magnet 4 and the thin portion 15. By providing the air holes 19, the following effects can be obtained. When a current having a demagnetization phase is passed through the stator 2, a magnetic field (demagnetizing field) in a direction opposite to the magnetization direction of the magnet is generated. The demagnetizing field with respect to the rare earth magnet 3 escapes through the thin portion 14 because the rare earth magnet 3 is somewhat embedded in the shaft hole 8 side. However, the demagnetizing field with respect to the ferrite magnet 4 is easy to demagnetize the ferrite magnet 4 because the ferrite magnet 4 is disposed in the vicinity of the rotor outer peripheral surface. Therefore, in the rotor 1 of the present embodiment, by providing the air hole 19 on the rotor outer peripheral surface side of the ferrite magnet 4, the ferrite magnet 4 becomes difficult to demagnetize, and the reliability of the rotor 1 against demagnetization is improved. Can do.
 図9は、フェライト磁石4の厚さと幅の関係を説明するための図である。図9に示されるフェライト磁石4は、磁化方向厚さ(半径方向の長さ)をTとし、フェライト磁石4の幅(回転方向の長さ)をWとした場合、W>Tとなるように構成されている。 FIG. 9 is a diagram for explaining the relationship between the thickness and the width of the ferrite magnet 4. The ferrite magnet 4 shown in FIG. 9 is such that W> T, where T is the thickness in the magnetization direction (length in the radial direction) and W is the width (length in the rotation direction) of the ferrite magnet 4. It is configured.
 本実施の形態の電動機100は、隣接する希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、希土類磁石3の磁束が短絡しにくくなり、ステータ2に鎖交する有効磁束量を増加させることができる。そして、フェライト磁石4の幅Wが広いほど、隣接する希土類磁石3間の磁気抵抗を増加させることができるため、W>Tとなるように構成することによって、短絡磁束低減の効果を高めることが可能である。また、厚さTが小さいほど、希土類磁石3をロータ外周面近傍に近づけることができため、希土類磁石3とロータ外周面の間の鉄心面積(鉄心部7aの厚み)を低減でき、音および振動をより一層軽減することが可能である。 In the electric motor 100 according to the present embodiment, since the ferrite magnet 4 having a large magnetic resistance exists between the adjacent rare earth magnets 3, the magnetic flux of the rare earth magnet 3 becomes difficult to be short-circuited, and the effective magnetic flux amount linked to the stator 2 is reduced. Can be increased. And since the magnetic resistance between the adjacent rare earth magnets 3 can be increased as the width W of the ferrite magnet 4 is increased, the effect of reducing the short-circuit magnetic flux can be enhanced by configuring W> T. Is possible. Further, the smaller the thickness T, the closer the rare earth magnet 3 can be to the vicinity of the rotor outer peripheral surface, so that the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface can be reduced. Can be further reduced.
 図10は、希土類磁石3の磁極開口部Aとティース幅Bとの関係を説明するための図である。図10に示される電動機100は、希土類磁石3表面の磁極開口部の幅(隣接するフェライト磁石4間の長さ)をAとして、ティース18のティース幅(ロータ外周面に対向するティース18の端面幅)をBとした場合、B>Aとなるように構成されている。 FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening A and the teeth width B of the rare earth magnet 3. The electric motor 100 shown in FIG. 10 has a tooth width of the teeth 18 (the end face of the teeth 18 facing the outer peripheral surface of the rotor), where A is the width of the magnetic pole opening on the surface of the rare earth magnet 3 (the length between adjacent ferrite magnets 4). When B is (width), B> A.
 図8に示されるような希土類磁石3単体のロータ120は、ロータ120の磁石スペースを有効に利用するため、ロータ表面に希土類磁石3を幅広く配置し、ティース幅Bよりも希土類磁石3表面の磁極開口部の幅(幅Aに相当)が広い場合が多い。その場合、希土類磁石3の磁束が、ティース18を伝って隣接磁石に短絡し易い。 In the rotor 120 of the rare earth magnet 3 alone as shown in FIG. 8, in order to effectively use the magnet space of the rotor 120, the rare earth magnet 3 is widely arranged on the rotor surface, and the magnetic pole on the surface of the rare earth magnet 3 is larger than the teeth width B. In many cases, the width of the opening (corresponding to the width A) is wide. In that case, the magnetic flux of the rare earth magnet 3 is easily short-circuited to the adjacent magnet through the teeth 18.
 本実施の形態の電動機100は、希土類磁石3とフェライト磁石4を併用することによって、希土類磁石3表面の磁極開口部の幅Aを小さく構成できる。従って、幅Aがティース幅Bよりも小さなり、磁束密度の高い希土類磁石3の磁束がティース18を伝って隣接希土類磁石3に短絡することを抑制でき、磁石の磁束利用率の高い電動機100を得ることが可能である。特に、本実施の形態の電動機100では、希土類磁石3が磁気抵抗の大きいフェライト磁石4に囲まれているため、幅Aをティース幅Bよりも小さく構成することによって、希土類磁石3の磁束は、磁気抵抗の小さいティース18に流れ易くなる。 The electric motor 100 of the present embodiment can be configured to reduce the width A of the magnetic pole opening on the surface of the rare earth magnet 3 by using the rare earth magnet 3 and the ferrite magnet 4 in combination. Therefore, it is possible to prevent the magnetic flux of the rare earth magnet 3 having a width A smaller than the tooth width B and having a high magnetic flux density from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18. It is possible to obtain. In particular, in the electric motor 100 of the present embodiment, since the rare earth magnet 3 is surrounded by the ferrite magnet 4 having a large magnetic resistance, by configuring the width A to be smaller than the teeth width B, the magnetic flux of the rare earth magnet 3 is It becomes easy to flow to the teeth 18 having a small magnetic resistance.
 なお、本実施の形態では、フェライト磁石4のシャフト孔側面4aと希土類磁石3のシャフト孔側面3aとが同一円周上に配置された構成例を説明したが、例えば希土類磁石3をフェライト磁石4よりもシャフト孔8側に配置し、あるいは希土類磁石3をスリット6側に配置してもよい。 In the present embodiment, the configuration example in which the shaft hole side surface 4a of the ferrite magnet 4 and the shaft hole side surface 3a of the rare earth magnet 3 are arranged on the same circumference has been described. For example, the rare earth magnet 3 is replaced with the ferrite magnet 4 Alternatively, the rare earth magnet 3 may be disposed closer to the slit 6 than the shaft hole 8.
 以上に説明したように、本実施の形態にかかる電動機100は、複数の電磁鋼板を積層してなる回転子鉄心(ロータコア7)を固定子(ステータ2)内に配置して成る永久磁石埋込型電動機であって、ロータコア7の磁極21を構成する磁石は、ロータコア7の外周側に設けられロータコア7の円周方向へ極数に相当する数だけ配置されるフェライト磁石4と、フェライト磁石4の間に配置された希土類磁石3と、から成り、フェライト磁石4は、磁極21の極間20にフェライト磁石4の中心が位置するように配置され、極間20に対して磁化方向が反転するように着磁されているので、希土類磁石3およびフェライト磁石4の双方の磁気回路が互いに干渉しあわないような並列回路となり、希土類磁石3およびフェライト磁石4の磁束を最大限利用することができる。また、希土類磁石3のみ用いた従来の電動機に対して同一のロータ磁束で比較した場合、本実施の形態のロータ1は、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができる。その結果、希土類磁石3のロータ外周面側に存在する鉄心部7aの面積を小さくすることができ、低コスト化、高効率化、低騒音化、および低振動化を実現可能である。 As described above, the electric motor 100 according to the present embodiment includes a permanent magnet embedded in which a rotor core (rotor core 7) formed by laminating a plurality of electromagnetic steel plates is disposed in a stator (stator 2). The magnet constituting the magnetic pole 21 of the rotor core 7 is a ferrite magnet 4 provided on the outer peripheral side of the rotor core 7 and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core 7, and the ferrite magnet 4 The ferrite magnet 4 is arranged so that the center of the ferrite magnet 4 is located between the poles 20 of the magnetic pole 21, and the magnetization direction is reversed with respect to the poles 20. Thus, the magnetic circuit of both the rare earth magnet 3 and the ferrite magnet 4 is a parallel circuit that does not interfere with each other, and the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4 is It is possible to take full advantage. Further, when compared with the conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment can reduce the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. it can. As a result, the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 can be reduced, and cost reduction, high efficiency, low noise, and low vibration can be realized.
 また、本実施の形態にかかる電動機100は、希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、隣接する希土類磁石3間の磁束が短絡しにくくなり、また磁石の表から裏への短絡磁束も生じにくい。そのため、単位体積あたりの希土類磁石3で考えた場合、ステータ2に鎖交する有効磁束量が増加し、マグネットトルクが大きくなり、印加電流の低減、高出力化を図ることが可能であり、もしくは、磁束量の増加分を希土類磁石量の削減に振り向けることも可能である。 Further, in the electric motor 100 according to the present embodiment, since the ferrite magnet 4 having a large magnetic resistance exists between the rare earth magnets 3, the magnetic flux between the adjacent rare earth magnets 3 is difficult to be short-circuited, and the front and back of the magnets are reversed. Short-circuit magnetic flux is hardly generated. Therefore, when considering the rare earth magnet 3 per unit volume, the effective magnetic flux amount linked to the stator 2 is increased, the magnet torque is increased, the applied current can be reduced, and the output can be increased. It is also possible to direct the increased amount of magnetic flux to reduce the amount of rare earth magnets.
 また、本実施の形態にかかるフェライト磁石4は、磁化方向が平行配向、ラジアル配向、または極配向となるように構成されているので、フェライト磁石4からみて希土類磁石3が磁気抵抗とならず、特にラジアル配向または極配向の場合、フェライト磁石4の磁化方向が極間20に対して垂直に近い方向に向くため、ステータ2に鎖交する有効磁束量を増加させることができる。従って、希土類磁石3のみ用いた従来の電動機に対して同一のロータ磁束で比較した場合、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができ、より一層の低コスト化と高効率化を図ることができる。 In addition, since the ferrite magnet 4 according to the present embodiment is configured such that the magnetization direction is parallel orientation, radial orientation, or polar orientation, the rare earth magnet 3 does not become magnetoresistive when viewed from the ferrite magnet 4, In particular, in the case of radial orientation or polar orientation, the magnetization direction of the ferrite magnet 4 is oriented in a direction nearly perpendicular to the gap 20, so that the amount of effective magnetic flux linked to the stator 2 can be increased. Therefore, when compared with the conventional motor using only the rare earth magnet 3 with the same rotor magnetic flux, the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4 can be reduced, and the cost can be further reduced. High efficiency can be achieved.
 また、本実施の形態にかかる希土類磁石3は、フェライト磁石4と同一円周上に配置されているので、ロータ1の偏心時の磁気吸引力に伴う音および振動を増加させる原因である鉄心部7aの面積を小さくすることができる。従って、希土類磁石3がフェライト磁石4と同一円周上に配置されていない場合に比べて、低騒音化および低振動化音を図ることが可能である。 Further, since the rare earth magnet 3 according to the present embodiment is arranged on the same circumference as the ferrite magnet 4, the iron core portion that is the cause of increasing the sound and vibration associated with the magnetic attraction force when the rotor 1 is eccentric. The area of 7a can be reduced. Therefore, compared with the case where the rare earth magnet 3 is not arranged on the same circumference as the ferrite magnet 4, it is possible to reduce noise and vibration.
 また、本実施の形態にかかるロータコア7には、ロータコア7の外周側に設けられフェライト磁石4を挿入する挿入孔22が形成され、フェライト磁石4の外周面と挿入孔22との間には隙間(空気孔19)が形成されているので、減磁し易い箇所を設計段階で排除し、減磁による磁束量の変化を防止し、信頼性を向上させることが可能であり、電動機100を搭載した製品の品質を向上させることが可能である。 In addition, the rotor core 7 according to the present embodiment is formed with an insertion hole 22 that is provided on the outer peripheral side of the rotor core 7 and into which the ferrite magnet 4 is inserted, and there is a gap between the outer peripheral surface of the ferrite magnet 4 and the insertion hole 22. Since the (air hole 19) is formed, it is possible to eliminate a portion that is easily demagnetized at the design stage, to prevent a change in the amount of magnetic flux due to demagnetization, and to improve the reliability. It is possible to improve the quality of the finished product.
 また、本実施の形態にかかるフェライト磁石4が、ロータコア7の半径方向における厚さをTとし、ロータコア7の回転方向における長さをWとした場合、W>Tとなるように構成されているので、Wが広いほど希土類磁石3間の磁気抵抗が増加され、短絡磁束低減の効果を高めることが可能である。また、Tが小さいほどシャフト孔側面4aがロータ外周面近傍に近づけることができ、それに伴ってシャフト孔側面3aもロータ外周面近傍に近づけることができるため、希土類磁石3とロータ外周面の間の鉄心面積(鉄心部7aの厚み)を低減でき、音および振動をより一層軽減することが可能である。 The ferrite magnet 4 according to the present embodiment is configured such that W> T, where T is the thickness in the radial direction of the rotor core 7 and W is the length in the rotational direction of the rotor core 7. Therefore, the magnetic resistance between the rare earth magnets 3 is increased as W is increased, and the effect of reducing the short-circuit magnetic flux can be enhanced. Further, as T is smaller, the shaft hole side surface 4a can be closer to the rotor outer peripheral surface, and the shaft hole side surface 3a can be closer to the rotor outer peripheral surface accordingly. The iron core area (thickness of the iron core portion 7a) can be reduced, and sound and vibration can be further reduced.
 また、本実施の形態にかかるステータ2の内周部側には、周方向に互いに間隔をおいて形成された複数のティース18が形成され、希土類磁石3表面の磁極開口部の幅をAとして、ティース18の幅をBとした場合、B>Aとなるように構成されているので、希土類磁石3の磁束がティース18を伝って隣接する希土類磁石3に短絡することを抑制でき、磁石の磁束利用率の高い電動機100を得ることが可能である。 A plurality of teeth 18 formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator 2 according to the present embodiment, and the width of the magnetic pole opening on the surface of the rare earth magnet 3 is A. When the width of the teeth 18 is B, since B> A, the magnetic flux of the rare earth magnet 3 can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18. It is possible to obtain the electric motor 100 having a high magnetic flux utilization rate.
 また、本実施の形態にかかる電動機100を空調機などの圧縮機に用いた場合、冷媒や油の循環量が多くなり、性能を改善することが可能である。 Further, when the electric motor 100 according to the present embodiment is used in a compressor such as an air conditioner, the circulation amount of the refrigerant and oil increases, and the performance can be improved.
 なお、本発明の実施の形態にかかる永久磁石埋込型電動機および圧縮機は、本発明の内容の一例を示すものであり、更なる別の公知技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 Note that the permanent magnet embedded electric motor and the compressor according to the embodiment of the present invention show an example of the content of the present invention, and can be combined with another known technique. Of course, it is possible to change and configure such as omitting a part without departing from the gist of the present invention.
 以上のように、本発明は、永久磁石埋込型電動機および圧縮機に適用可能であり、特に、音および振動を低減することができる発明として有用である。 As described above, the present invention can be applied to a permanent magnet embedded electric motor and a compressor, and is particularly useful as an invention capable of reducing sound and vibration.
 1、120 ロータ
 2 ステータ(固定子)
 3 希土類磁石
 3a、4a シャフト孔側面
 4 フェライト磁石
 6 スリット
 7 ロータコア(回転子鉄心)
 7a 鉄心部
 8 シャフト孔
 9 穴
 14 磁石間薄肉部
 15 フェライト磁石外周薄肉部
 15a 磁石外周薄肉部
 17 ラジアル配向の焦点
 18 ティース
 19 空気孔(隙間)
 20 極間
 21 磁極
 22 フェライト磁石挿入孔
 23 希土類磁石挿入孔
 100、110 永久磁石埋込型電動機
1, 120 rotor 2 stator (stator)
3 Rare earth magnet 3a, 4a Shaft hole side surface 4 Ferrite magnet 6 Slit 7 Rotor core (rotor core)
7a Iron core portion 8 Shaft hole 9 Hole 14 Thin portion between magnets 15 Ferrite magnet outer thin portion 15a Magnet outer thin portion 17 Focal point of radial orientation 18 Teeth 19 Air hole (gap)
20 Between poles 21 Magnetic pole 22 Ferrite magnet insertion hole 23 Rare earth magnet insertion hole 100, 110 Permanent magnet embedded type electric motor

Claims (7)

  1.  複数の電磁鋼板を積層してなる回転子鉄心を固定子内に配置して成る永久磁石埋込型電動機であって、
     前記回転子鉄心の磁極を構成する磁石は、
     前記回転子鉄心の外周側に設けられ前記回転子鉄心の円周方向へ極数に相当する数だけ配置されるフェライト磁石と、前記フェライト磁石の間に配置された希土類磁石と、から成り、
     前記フェライト磁石は、
     前記磁極の極間に前記フェライト磁石の中心が位置するように配置され、前記極間に対して磁化方向が反転するように着磁されていることを特徴とする永久磁石埋込型電動機。
    A permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel sheets is arranged in a stator,
    The magnet constituting the magnetic pole of the rotor core is
    A ferrite magnet provided on the outer peripheral side of the rotor core and disposed in a number corresponding to the number of poles in the circumferential direction of the rotor core, and a rare earth magnet disposed between the ferrite magnets,
    The ferrite magnet is
    A permanent magnet embedded type electric motor, wherein the ferrite magnet is disposed so that a center of the ferrite magnet is located between poles of the magnetic pole, and is magnetized so that a magnetization direction is reversed with respect to the gap between the poles.
  2.  前記フェライト磁石は、前記磁化方向が平行配向、ラジアル配向、または極配向であることを特徴とする請求項1に記載の永久磁石埋込型電動機。 The embedded permanent magnet electric motor according to claim 1, wherein the magnetization direction of the ferrite magnet is parallel, radial, or polar.
  3.  前記希土類磁石は、前記フェライト磁石と同一円周上に配置されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 2. The embedded permanent magnet motor according to claim 1, wherein the rare earth magnet is disposed on the same circumference as the ferrite magnet.
  4.  前記回転子鉄心には、前記回転子鉄心の外周側に設けられ前記フェライト磁石を挿入する挿入孔が形成され、
     前記フェライト磁石の外周面と前記挿入孔との間には、隙間が形成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。
    The rotor core is provided with an insertion hole for inserting the ferrite magnet provided on the outer peripheral side of the rotor core,
    The embedded permanent magnet motor according to claim 1, wherein a gap is formed between an outer peripheral surface of the ferrite magnet and the insertion hole.
  5.  前記フェライト磁石は、前記回転子鉄心の半径方向における厚さをTとし、前記回転子鉄心の回転方向における長さをWとした場合、W>Tとなるように構成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 The ferrite magnet is configured such that W> T, where T is the thickness in the radial direction of the rotor core and W is the length in the rotational direction of the rotor core. The embedded permanent magnet electric motor according to claim 1.
  6.  前記固定子の内周部側には、周方向に互いに間隔をおいて形成された複数のティースが形成され、
     前記希土類磁石表面の磁極開口部の幅をAとして、前記ティースの幅をBとした場合、B>Aとなるように構成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。
    A plurality of teeth formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator,
    2. The permanent magnet embedding according to claim 1, wherein B is greater than A when the width of the magnetic pole opening on the surface of the rare earth magnet is A and the width of the teeth is B. 3. Type electric motor.
  7.  請求項1から請求項6に記載の永久磁石埋込型電動機を搭載した圧縮機。 A compressor equipped with the interior permanent magnet motor according to claim 1.
PCT/JP2011/075103 2011-10-31 2011-10-31 Interior permanent magnet motor and compressor WO2013065110A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013541500A JP5755338B2 (en) 2011-10-31 2011-10-31 Permanent magnet embedded electric motor and compressor
PCT/JP2011/075103 WO2013065110A1 (en) 2011-10-31 2011-10-31 Interior permanent magnet motor and compressor
CN201180074492.3A CN103891103B (en) 2011-10-31 2011-10-31 Permanent magnet embedded type motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075103 WO2013065110A1 (en) 2011-10-31 2011-10-31 Interior permanent magnet motor and compressor

Publications (1)

Publication Number Publication Date
WO2013065110A1 true WO2013065110A1 (en) 2013-05-10

Family

ID=48191506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075103 WO2013065110A1 (en) 2011-10-31 2011-10-31 Interior permanent magnet motor and compressor

Country Status (3)

Country Link
JP (1) JP5755338B2 (en)
CN (1) CN103891103B (en)
WO (1) WO2013065110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381538A (en) * 2020-03-09 2021-09-10 丰田自动车株式会社 Rotating electrical machine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105529865B (en) * 2016-01-08 2019-02-05 清华大学 Fractional-slot concentratred winding memory electrical machine
DE102017105138A1 (en) * 2017-03-10 2018-09-13 MS-Schramberg Holding GmbH Electromechanical component
CN108631468A (en) * 2018-05-15 2018-10-09 合肥工业大学 Combine the surface-mounted permanent magnet machine of the mode of magnetization
CN109742878B (en) * 2019-01-30 2021-07-02 广东工业大学 Built-in permanent magnet synchronous motor and rotor structure thereof
JP2020150627A (en) * 2019-03-12 2020-09-17 日本電産株式会社 Laminated iron core, stator, and rotor
CN110212667A (en) * 2019-06-14 2019-09-06 安徽大学 A kind of permanent magnet machine rotor core construction
CN112865365B (en) * 2021-01-07 2022-04-01 珠海格力电器股份有限公司 Rotor core assembly, motor and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231589A (en) * 1994-02-16 1995-08-29 Yaskawa Electric Corp Rotor for permanent magnet electric rotating machine
JP2002084722A (en) * 2000-09-06 2002-03-22 Fujitsu General Ltd Permanent magnet motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4310611B2 (en) * 2002-06-06 2009-08-12 株式会社安川電機 Permanent magnet motor
JP2005045984A (en) * 2003-07-25 2005-02-17 Yaskawa Electric Corp Rotor for permanent magnet synchronous motor
JP4602958B2 (en) * 2006-10-04 2010-12-22 三菱電機株式会社 Permanent magnet motor, hermetic compressor and fan motor
JP4962870B2 (en) * 2007-06-29 2012-06-27 日産自動車株式会社 Method for manufacturing field pole magnet body, method for manufacturing permanent magnet type rotary electric motor, and field pole magnet body
JP4844570B2 (en) * 2008-01-16 2011-12-28 三菱電機株式会社 Permanent magnet type motor
JP2009303307A (en) * 2008-06-10 2009-12-24 Toyota Motor Corp Motor rotor and fuel battery system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07231589A (en) * 1994-02-16 1995-08-29 Yaskawa Electric Corp Rotor for permanent magnet electric rotating machine
JP2002084722A (en) * 2000-09-06 2002-03-22 Fujitsu General Ltd Permanent magnet motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113381538A (en) * 2020-03-09 2021-09-10 丰田自动车株式会社 Rotating electrical machine
CN113381538B (en) * 2020-03-09 2024-04-12 丰田自动车株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2013065110A1 (en) 2015-04-02
JP5755338B2 (en) 2015-07-29
CN103891103A (en) 2014-06-25
CN103891103B (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5755338B2 (en) Permanent magnet embedded electric motor and compressor
JP4485225B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP5268711B2 (en) Electric motor and compressor, air conditioner and vacuum cleaner
JP4784345B2 (en) Rotating electric machine
JP5752260B2 (en) Rotor of embedded permanent magnet electric motor, electric motor using this rotor, compressor using this electric motor, and air conditioner using this compressor
WO2014046228A1 (en) Permanent magnet-embedded electric motor
JP5259927B2 (en) Permanent magnet rotating electric machine
WO2013018245A1 (en) Electric motor
JPWO2011096094A1 (en) Rotor, blower and compressor of embedded permanent magnet motor
JPWO2012105656A1 (en) Permanent magnet embedded rotary electric machine for vehicles
JP2001178045A (en) Permanent magnet embedded motor
JP2010183800A (en) Rotor of electric motor, electric motor, air blower and compressor
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2008092715A (en) Permanent magnet motor
KR100680201B1 (en) Permanent magnet type motor
JP5954279B2 (en) Rotating electric machine
WO2013114541A1 (en) Embedded permanent magnet electric motor and compressor
JP4299391B2 (en) Permanent magnet rotor
JP2006081338A (en) Rotor of rotary electric machine
JP6440349B2 (en) Rotating electric machine
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2006340507A (en) Stator of rotary electric machine
JP2012213269A (en) Rotary electric machine
JP2011172432A (en) Rotor of embedded magnet synchronous motor
KR102515118B1 (en) A rotor for interior permanent magnet motors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11875089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11875089

Country of ref document: EP

Kind code of ref document: A1