JP2006081338A - Rotor of rotary electric machine - Google Patents

Rotor of rotary electric machine Download PDF

Info

Publication number
JP2006081338A
JP2006081338A JP2004263955A JP2004263955A JP2006081338A JP 2006081338 A JP2006081338 A JP 2006081338A JP 2004263955 A JP2004263955 A JP 2004263955A JP 2004263955 A JP2004263955 A JP 2004263955A JP 2006081338 A JP2006081338 A JP 2006081338A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
rotor core
slit
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004263955A
Other languages
Japanese (ja)
Inventor
Minoru Arimitsu
稔 有満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004263955A priority Critical patent/JP2006081338A/en
Publication of JP2006081338A publication Critical patent/JP2006081338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the rotor of a rotary electric machine through which demagnetization of a permanent magnet is avoided and high temperature operation is realized. <P>SOLUTION: The rotor of a rotary electric machine comprises a disc-like rotor core 11, a plurality of permanent magnets 13 and 14 arranged on the rotor core 11 along the circumferential direction while changing the polarity alternately, and a plurality of first slits 15 formed in the rotor core 11 substantially in parallel with the flux of each permanent magnet 13, 14 while spaced apart from each other. Each permanent magnet 13, 14 has IPM (Interior Permanent Magnet) structure buried in the rotor core 11 and the plurality of first slits 15 are provided only on the outer circumferential side of each permanent magnet 13, 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、回転電機のロータに関し、特に、永久磁石モータとして用いられる回転電機のロータに関する。   The present invention relates to a rotor of a rotating electrical machine, and more particularly to a rotor of a rotating electrical machine used as a permanent magnet motor.

従来、電気自動車用走行モータに用いられる回転電機が知られている。この回転電機は、ロータが磁気突極型ロータ部とマグネット型ロータ部を軸方向直列に結合した構造を持ち、磁気突極型ロータ部の磁気突極型界磁極の磁束とマグネット型ロータ部の永久磁石型界磁極の磁束とは、共通の多相電機子コイルと鎖交する構成を有している(特許文献1参照)。   2. Description of the Related Art Conventionally, a rotating electrical machine used for an electric vehicle traveling motor is known. This rotating electric machine has a structure in which a rotor is coupled in series in the axial direction with a magnetic salient pole type rotor part and a magnet type rotor part, and the magnetic salient pole type magnetic pole of the magnetic salient pole type rotor part and the magnetic rotor part The magnetic flux of the permanent magnet type field pole has a configuration that is linked to a common multiphase armature coil (see Patent Document 1).

つまり、ロータを複数に分割し、その内の一つを表面磁石構造(SPM:Surface Permanent Magnet)に近い永久磁石モータ、その他のものをリラクタンスモータとして、これら分割したロータをお互いにずらすことにより、全体として強め界磁でトルクを出す構造に近いものを実現している。
特開2001−119875号公報
In other words, the rotor is divided into a plurality of parts, one of which is a permanent magnet motor close to the surface magnet structure (SPM), the other is a reluctance motor, and the divided rotors are shifted from each other. As a whole, a structure close to a structure that produces torque with a strong field is realized.
Japanese Patent Laid-Open No. 2001-11985

しかしながら、従来の回転電機の構成では、永久磁石モータとするロータに加わる磁界はq軸か−d軸であり、より一層、磁石を高温で使うことは不可能である。つまり、永久磁石、特に汎用されている高BHmaxのNeFeBr系のものは、高温状態にあると、また、強い反磁界が加わると減磁が発生し、本来持っていた磁束を出すことができない。このため、永久磁石モータにおいては、永久磁石温度が減磁する温度を超えない範囲で、また、永久磁石に強い反磁界が加わらない状態で使用している。特に、永久磁石温度が減磁する温度を超えない範囲で使用することを考慮して、モータ冷却系の強化や、永久磁石を分割して可能な限り磁石が発熱しないようにする等の対策を必要とするため、コストが非常に高くなることが避けられなかった。   However, in the configuration of the conventional rotating electric machine, the magnetic field applied to the rotor serving as the permanent magnet motor is q-axis or −d-axis, and it is impossible to use the magnet at a higher temperature. That is, permanent magnets, especially those of the high FeHBr type with high BHmax, are demagnetized when a high demagnetizing field is applied, and the original magnetic flux cannot be produced. For this reason, in the permanent magnet motor, it is used in a range where the permanent magnet temperature does not exceed the demagnetizing temperature and a strong demagnetizing field is not applied to the permanent magnet. Considering that the permanent magnet temperature should not exceed the demagnetizing temperature, take measures such as strengthening the motor cooling system and dividing the permanent magnet to prevent the magnet from generating heat as much as possible. It was inevitable that the cost would be very high because of the necessity.

この発明の目的は、永久磁石が減磁するのを回避して高温動作が可能となる回転電機のロータを提供することである。   An object of the present invention is to provide a rotor of a rotating electrical machine that can operate at a high temperature while avoiding demagnetization of a permanent magnet.

上記目的を達成するため、この発明に係る回転電機のロータは、円盤状のロータコアと、前記ロータコアに、交互に極性を変え周方向に沿って配置した複数の永久磁石と、前記ロータコアに、前記各永久磁石の磁束と略平行に、且つ、相互に離間して位置するように形成した複数のスリットとを有する。   In order to achieve the above object, a rotor of a rotating electrical machine according to the present invention includes a disk-shaped rotor core, a plurality of permanent magnets that are alternately changed in polarity along the circumferential direction on the rotor core, and the rotor core, It has a plurality of slits formed so as to be positioned substantially parallel to the magnetic flux of each permanent magnet and separated from each other.

この発明に係る回転電機のロータにより、q軸の磁気抵抗を大きくすることができるので、d軸インダクタンスLdがq軸インダクタンスLqよりも大きくなる(Ld>Lq)ことを実現する順凸極型のモータとなって、永久磁石が減磁するのを回避することができる。これにより、高温動作が可能となるので、冷却構造を簡素化することができ、コストを低減することができる。   Since the q-axis magnetic resistance can be increased by the rotor of the rotating electrical machine according to the present invention, a forward convex pole type that realizes that the d-axis inductance Ld is larger than the q-axis inductance Lq (Ld> Lq). It becomes a motor and it can avoid demagnetizing a permanent magnet. As a result, high-temperature operation is possible, so that the cooling structure can be simplified and the cost can be reduced.

以下、この発明を実施するための最良の形態について図面を参照して説明する。
図1は、この発明の一実施の形態に係る回転電機のロータの平面図である。図1に示すように、回転電機のロータ10は、円盤状のロータコア11と、ロータコア11の回転軸となるシャフト12を有する。ロータコア11は、例えば、電磁鋼板を積層して形成されており、ロータコア11の外周縁近傍には、複数の永久磁石N極13と永久磁石S極14が交互に極性を変え周方向に沿って配置されている。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a plan view of a rotor of a rotating electrical machine according to an embodiment of the present invention. As shown in FIG. 1, the rotor 10 of the rotating electrical machine includes a disk-shaped rotor core 11 and a shaft 12 that serves as a rotation axis of the rotor core 11. The rotor core 11 is formed, for example, by laminating electromagnetic steel plates, and in the vicinity of the outer peripheral edge of the rotor core 11, a plurality of permanent magnet N poles 13 and permanent magnet S poles 14 alternately change the polarity along the circumferential direction. Has been placed.

永久磁石N極13と永久磁石S極14のそれぞれの両端には、長軸方向を半径方向としてロータコア11の外周縁側に長方形の第1スリット15が開けられている。更に、永久磁石N極13と永久磁石S極14のそれぞれの外周側(ロータコア11外周縁側)には、長軸方向をロータコア11の半径方向とする幅が狭く細長い溝状の第2スリット16が、各永久磁石13,14から離間して複数個開けられている。各第2スリット16は、各永久磁石13,14の両第1スリット15の間に、各永久磁石13,14の磁束と略平行になるように、それぞれの隣接間隔がほぼ等しく並ぶ放射状に配置されている。   At both ends of the permanent magnet N pole 13 and the permanent magnet S pole 14, rectangular first slits 15 are formed on the outer peripheral edge side of the rotor core 11 with the major axis direction as the radial direction. Furthermore, on each outer peripheral side (outer peripheral edge side of the rotor core 11) of the permanent magnet N pole 13 and the permanent magnet S pole 14, a narrow and narrow groove-like second slit 16 whose long axis direction is the radial direction of the rotor core 11 is formed. A plurality of permanent magnets 13 and 14 are opened apart from each other. The second slits 16 are radially arranged between the first slits 15 of the permanent magnets 13 and 14 so that their adjacent intervals are substantially equally arranged so as to be substantially parallel to the magnetic flux of the permanent magnets 13 and 14. Has been.

この第2スリット16は幅が狭く、隣接する第2スリット16同士はスリット幅よりも広いい間隔を有するため、各永久磁石13,14が作る磁束と同一方向のd軸の磁気抵抗は、第2スリット16を設けていない場合に比べ大きな変化はない。即ち、ロータ10のd軸方向のインダクタンスLdは殆ど変化しない。一方、d軸と直交する方向のq軸の磁気抵抗は、複数の第2スリット16がq軸磁束に対する磁気抵抗となるため、第2スリット16を設けていない場合に比べ大きくなる。即ち、ロータ10のq軸方向のインダクタンスLqは低下することになる。従って、d軸インダクタンスLdをq軸インダクタンスLqより大きくする(Ld>Lq)ことが可能となり、順凸極の特性を有するロータ10とすることができる。   Since the second slit 16 is narrow and the adjacent second slits 16 are spaced apart from each other by a width larger than the slit width, the d-axis magnetoresistance in the same direction as the magnetic flux generated by the permanent magnets 13 and 14 is There is no significant change compared to the case where the two slits 16 are not provided. That is, the inductance Ld in the d-axis direction of the rotor 10 hardly changes. On the other hand, the q-axis magnetoresistance in the direction orthogonal to the d-axis is larger than that in the case where the second slits 16 are not provided because the plurality of second slits 16 serve as magnetoresistance to the q-axis magnetic flux. That is, the inductance Lq in the q-axis direction of the rotor 10 decreases. Therefore, the d-axis inductance Ld can be made larger than the q-axis inductance Lq (Ld> Lq), and the rotor 10 having the forward convex pole characteristic can be obtained.

このロータ10(図1参照)において、第2スリット16の数をm、第2スリット16の半径方向長さをM、第2スリット16の回転方向長さをN、ロータコア11の積層厚さをL、電磁鋼板部の透磁率をμとし、第2スリット16を開けない場合のd軸方向の軸磁気抵抗をRmd、q軸方向の磁気抵抗をRmq、第2スリット16を開けた場合のd軸方向の磁気抵抗をRmd’、q軸方向の磁気抵抗をRmq’とすれば、第2スリット16を開けた場合を以下のように近似することができる。なお、第2スリット16を開けない場合のd軸方向の軸磁気抵抗Rmd、q軸方向の磁気抵抗Rmqは、略エアギャップと永久磁石で決まる磁気抵抗と考えられる。 In this rotor 10 (see FIG. 1), the number of the second slits 16 is m, the length of the second slits 16 in the radial direction is M, the length of the second slits 16 in the rotational direction is N, and the lamination thickness of the rotor core 11 is set. L, the magnetic permeability of the magnetic steel sheet portion is μ 0 , the axial magnetic resistance in the d-axis direction when the second slit 16 cannot be opened is Rmd, the magnetic resistance in the q-axis direction is Rmq, and the second slit 16 is opened If the magnetic resistance in the d-axis direction is Rmd ′ and the magnetic resistance in the q-axis direction is Rmq ′, the case where the second slit 16 is opened can be approximated as follows. Note that the axial magnetic resistance Rmd in the d-axis direction and the magnetic resistance Rmq in the q-axis direction when the second slit 16 cannot be opened are considered to be magnetic resistances that are substantially determined by the air gap and the permanent magnet.

Rmd’≒Rmd…(1)
Rmq’=Rmq+m×N/(μ×M×L)…(2)
Rmd′≈Rmd (1)
Rmq ′ = Rmq + m × N / (μ 0 × M × L) (2)

式(1)において、ロータコア11を構成する電磁鋼板部とスリット部の磁気抵抗が並列配置となり、電磁鋼板部の透磁率μはエアギャップ部の透磁率に比べ非常に大きいことから、結果として、d軸方向の磁気抵抗Rmdとq軸方向の磁気抵抗Rmqが第2スリット16の形成前後で変化することはないとした。上記式(1),(2)は、第2スリット16の形成によって凸極比を変更することができることを意味する。 In the formula (1), the magnetic steel plate portion and the slit portion constituting the rotor core 11 are arranged in parallel, and the magnetic permeability μ 0 of the magnetic steel plate portion is very large compared to the magnetic permeability of the air gap portion. The magnetoresistance Rmd in the d-axis direction and the magnetoresistance Rmq in the q-axis direction do not change before and after the formation of the second slit 16. The above formulas (1) and (2) mean that the convex pole ratio can be changed by forming the second slit 16.

また、第2スリット16の幅(短軸方向)Hと、第2スリット16の数N、各永久磁石13,14の厚さT、及び各永久磁石13,14の面積に対する第2スリット16の面積の比をkとして、
2T<N×L×k
の関係を満足することにより、d軸インダクタンスLdをq軸インダクタンスLqより大きくする(Ld>Lq)ことができる。
In addition, the width (short axis direction) H of the second slit 16, the number N of the second slits 16, the thickness T of each permanent magnet 13, 14, and the area of each permanent magnet 13, 14, If the area ratio is k,
2T <N × L × k
By satisfying this relationship, the d-axis inductance Ld can be made larger than the q-axis inductance Lq (Ld> Lq).

図2は、この発明の他の実施の形態に係る回転電機のロータの平面図である。図2に示すように、回転電機のロータ20は、第2スリット16の内部に、磁性体21を装着している。その他の構成及び作用は、ロータ10と同様である。   FIG. 2 is a plan view of a rotor of a rotating electrical machine according to another embodiment of the present invention. As shown in FIG. 2, the rotor 20 of the rotating electrical machine has a magnetic body 21 mounted inside the second slit 16. Other configurations and operations are the same as those of the rotor 10.

磁性体21は、例えば、複数枚の電磁鋼板22により形成されている。複数枚の電磁鋼板22は、板厚方向に密着させて積み重ねた積層状態にすると共に重ね合わせ面がロータコア11の半径方向と一致するように、即ち、各永久磁石13,14の磁束を通し易い方向性を有するように磁束と略平行に、隙間なく挿入配置されている。これにより、d軸の磁気抵抗は、第2スリット16の有無に拘わらず略不変となる。   The magnetic body 21 is formed by, for example, a plurality of electromagnetic steel plates 22. The plurality of electromagnetic steel plates 22 are stacked in close contact with each other in the plate thickness direction, and the overlapping surface coincides with the radial direction of the rotor core 11, that is, the magnetic fluxes of the permanent magnets 13 and 14 can be easily passed. In order to have directionality, it is inserted and arranged substantially parallel to the magnetic flux without a gap. As a result, the d-axis magnetic resistance is substantially unchanged regardless of the presence or absence of the second slit 16.

一方、q軸の磁気抵抗は、第2スリット16の内部に挿入配置した磁性体21がq軸方向に対し略直交しているため、第2スリット16を形成しないロータに比べ大きくなる。   On the other hand, the magnetic resistance of the q axis is larger than that of the rotor that does not form the second slit 16 because the magnetic body 21 inserted and arranged inside the second slit 16 is substantially orthogonal to the q axis direction.

従って、d軸の磁気抵抗を大きくすることなくq軸の磁気抵抗のみを大きくすることができるので、ロータ20は、ロータ10(図1参照)より、更に順凸極性を高めることができる。   Accordingly, since only the q-axis magnetic resistance can be increased without increasing the d-axis magnetic resistance, the rotor 20 can further increase the forward convex polarity as compared with the rotor 10 (see FIG. 1).

なお、回転電機が、永久磁石N極13と永久磁石S極14がロータコア11内に埋め込んで配置した、IPM(Interior Permanent Magnet)構造を有する場合、各永久磁石13,14のそれぞれの外周側(ロータ外周縁側)のみに第2スリット16を入れると、q軸磁束は各永久磁石13,14の外周側となるので、d軸インダクタンスLdをq軸インダクタンスLqより大きくする(Ld>Lq)ことが可能となり、順凸極の特性を有するロータ10とすることができる。また、高回転に伴う各永久磁石13,14の左右両端コア部の応力集中を緩和することができる。   When the rotating electrical machine has an IPM (Interior Permanent Magnet) structure in which the permanent magnet N pole 13 and the permanent magnet S pole 14 are embedded in the rotor core 11, the outer peripheral side of each permanent magnet 13, 14 ( If the second slit 16 is inserted only in the outer peripheral edge of the rotor), the q-axis magnetic flux is on the outer peripheral side of the permanent magnets 13 and 14, so the d-axis inductance Ld can be made larger than the q-axis inductance Lq (Ld> Lq). Thus, the rotor 10 having the characteristics of forward convex poles can be obtained. Moreover, the stress concentration of the left and right end core portions of the permanent magnets 13 and 14 accompanying high rotation can be reduced.

このように、この発明によれば、永久磁石13,14の磁束と略平行になるように第2スリット16を設けたので、q軸の磁気抵抗を大きくすることができ、これによって、d軸インダクタンスLdがq軸インダクタンスLqより大きく(Ld>Lq)なり順凸極型のモータとなる。この順凸極構造により、永久磁石の減磁を回避することができるので、高温動作が可能となって冷却構造を簡素化することができ、コストを低減することができる。   As described above, according to the present invention, since the second slit 16 is provided so as to be substantially parallel to the magnetic flux of the permanent magnets 13 and 14, the q-axis magnetic resistance can be increased, and thereby the d-axis. The inductance Ld is larger than the q-axis inductance Lq (Ld> Lq), and a forward convex motor is obtained. With this forward convex pole structure, demagnetization of the permanent magnet can be avoided, so that a high temperature operation is possible, the cooling structure can be simplified, and the cost can be reduced.

なお、上記実施の形態において、第2スリット16は、永久磁石N極13と永久磁石S極14のそれぞれの外周側(ロータ外周縁側)に形成しているが、これに限るものではなく、第2スリット16を、永久磁石N極13と永久磁石S極14のそれぞれの内周側(シャフト12側)に、或いは外周側(ロータ外周縁側)と内周側(シャフト12側)の両方に、形成してもよい。   In the above embodiment, the second slit 16 is formed on the outer peripheral side (rotor outer peripheral side) of each of the permanent magnet N pole 13 and the permanent magnet S pole 14, but the present invention is not limited to this. 2 slits 16 on the inner peripheral side (shaft 12 side) of each of the permanent magnet N pole 13 and the permanent magnet S pole 14, or on both the outer peripheral side (rotor outer peripheral side) and the inner peripheral side (shaft 12 side), It may be formed.

この発明の一実施の形態に係る回転電機のロータの平面図である。It is a top view of the rotor of the rotary electric machine which concerns on one embodiment of this invention. この発明の他の実施の形態に係る回転電機のロータの平面図である。It is a top view of the rotor of the rotary electric machine which concerns on other embodiment of this invention.

符号の説明Explanation of symbols

10,20 ロータ
11 ロータコア
12 シャフト
13 永久磁石N極
14 永久磁石S極
15 第1スリット
16 第2スリット
21 磁性体
22 電磁鋼板
DESCRIPTION OF SYMBOLS 10,20 Rotor 11 Rotor core 12 Shaft 13 Permanent magnet N pole 14 Permanent magnet S pole 15 1st slit 16 2nd slit 21 Magnetic body 22 Electrical steel plate

Claims (5)

円盤状のロータコアと、
前記ロータコアに、交互に極性を変え周方向に沿って配置した複数の永久磁石と、
前記ロータコアに、前記各永久磁石の磁束と略平行に、且つ、相互に離間して位置するように形成した複数のスリットと
を有する回転電機のロータ。
A disk-shaped rotor core;
In the rotor core, a plurality of permanent magnets alternately changing the polarity and arranged along the circumferential direction, and
A rotor of a rotating electrical machine having a plurality of slits formed in the rotor core so as to be positioned substantially parallel to the magnetic flux of each permanent magnet and spaced apart from each other.
前記各永久磁石が前記ロータコアに埋め込まれたIPM(Interior Permanent Magnet)構造を有し、前記複数のスリットを、前記各永久磁石の外周側のみに設けた請求項1に記載の回転電機のロータ。   2. The rotor of a rotating electrical machine according to claim 1, wherein each permanent magnet has an IPM (Interior Permanent Magnet) structure embedded in the rotor core, and the plurality of slits are provided only on an outer peripheral side of each permanent magnet. 前記スリットの内部に、前記各永久磁石の磁束を通し易い方向性を有して配置された磁性体を有する請求項1または2に記載の回転電機のロータ。   The rotor for a rotating electrical machine according to claim 1 or 2, further comprising a magnetic body arranged in the slit so as to easily pass the magnetic flux of each permanent magnet. 前記磁性体は、重ね合わせ面が前記ロータコアの半径方向と一致するように積層した複数の電磁鋼板である請求項3に記載の回転電機のロータ。   4. The rotor of a rotating electrical machine according to claim 3, wherein the magnetic body is a plurality of electromagnetic steel plates laminated so that an overlapping surface coincides with a radial direction of the rotor core. 前記スリットの幅をH、前記スリットの数をN、前記各永久磁石の厚さをT、及び前記各永久磁石の面積に対する前記スリットの面積比をkとするとき、2T<N×L×kの関係を有する請求項1から4のいずれかに記載の回転電機のロータ。   When the width of the slit is H, the number of the slits is N, the thickness of each permanent magnet is T, and the area ratio of the slit to the area of each permanent magnet is k, 2T <N × L × k The rotor for a rotating electrical machine according to any one of claims 1 to 4, wherein the rotor has the following relationship.
JP2004263955A 2004-09-10 2004-09-10 Rotor of rotary electric machine Pending JP2006081338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263955A JP2006081338A (en) 2004-09-10 2004-09-10 Rotor of rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263955A JP2006081338A (en) 2004-09-10 2004-09-10 Rotor of rotary electric machine

Publications (1)

Publication Number Publication Date
JP2006081338A true JP2006081338A (en) 2006-03-23

Family

ID=36160332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263955A Pending JP2006081338A (en) 2004-09-10 2004-09-10 Rotor of rotary electric machine

Country Status (1)

Country Link
JP (1) JP2006081338A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167583A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
JP2008187778A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Rotator for permanent magnet embedded motor, blower, and compressor
EP1995849A2 (en) 2007-05-22 2008-11-26 Nissan Motor Co., Ltd. Motor
DE102009049600A1 (en) * 2009-10-16 2011-04-21 Minebea Co., Ltd. Electrical machine i.e. external rotor-electric motor, has opening formed between pole shoes that lie in interval, where interval is calculated from diameter of stator, multiple of number of rotor and stator poles and correction factor
JP2011101595A (en) * 2011-02-25 2011-05-19 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor
JP2012095474A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Permanent magnet embedded type electric motor and hermetically sealed type compressor
WO2013179375A1 (en) * 2012-05-28 2013-12-05 株式会社日立産機システム Composite torque rotating electric machine
US8810168B2 (en) 2011-01-07 2014-08-19 Denso Corporation Rotating machine controller
EP2611001A4 (en) * 2010-08-27 2018-01-24 Mitsubishi Electric Corporation Rotor of permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
CN108604840A (en) * 2016-02-12 2018-09-28 三菱电机株式会社 Motor, compressor and refrigerating air conditioning device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709132B2 (en) * 2006-12-28 2011-06-22 三菱電機株式会社 Rotor of permanent magnet embedded motor, motor for blower and motor for compressor
JP2008167583A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor, electric motor for blower and electric motor for compressor
JP2008187778A (en) * 2007-01-29 2008-08-14 Mitsubishi Electric Corp Rotator for permanent magnet embedded motor, blower, and compressor
EP1995849A2 (en) 2007-05-22 2008-11-26 Nissan Motor Co., Ltd. Motor
US7795772B2 (en) 2007-05-22 2010-09-14 Nissan Motor Co., Ltd. Motor
DE102009049600A1 (en) * 2009-10-16 2011-04-21 Minebea Co., Ltd. Electrical machine i.e. external rotor-electric motor, has opening formed between pole shoes that lie in interval, where interval is calculated from diameter of stator, multiple of number of rotor and stator poles and correction factor
EP2611001A4 (en) * 2010-08-27 2018-01-24 Mitsubishi Electric Corporation Rotor of permanent magnet embedded motor, compressor, and refrigeration and air conditioning device
JP2012095474A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Permanent magnet embedded type electric motor and hermetically sealed type compressor
US8810168B2 (en) 2011-01-07 2014-08-19 Denso Corporation Rotating machine controller
JP2011101595A (en) * 2011-02-25 2011-05-19 Mitsubishi Electric Corp Rotor of permanent magnet embedded motor
WO2013179375A1 (en) * 2012-05-28 2013-12-05 株式会社日立産機システム Composite torque rotating electric machine
JPWO2013179375A1 (en) * 2012-05-28 2016-01-14 株式会社日立産機システム Compound torque type rotating electrical machine
US9853509B2 (en) 2012-05-28 2017-12-26 Aida Engineering, Ltd. Composite torque rotating electric machine
CN104106198A (en) * 2012-05-28 2014-10-15 株式会社日立产机系统 Composite torque rotating electric machine
CN108604840A (en) * 2016-02-12 2018-09-28 三菱电机株式会社 Motor, compressor and refrigerating air conditioning device
CN108604840B (en) * 2016-02-12 2020-12-01 三菱电机株式会社 Motor, compressor, and refrigeration and air-conditioning apparatus

Similar Documents

Publication Publication Date Title
JP6508168B2 (en) Electric rotating machine
JP5259927B2 (en) Permanent magnet rotating electric machine
JP5305887B2 (en) Permanent magnet rotating electric machine
CN112838693B (en) Rotary electric machine
JP4816522B2 (en) Rotating electric machine and its rotor
US7405504B2 (en) Rotor for rotary electric machine
JP5752272B2 (en) Rotor and motor
JP5159171B2 (en) Permanent magnet rotating electric machine
JP4784345B2 (en) Rotating electric machine
US20070057589A1 (en) Interior permanent magnet rotor and interior permanent magnet motor
JP2003339128A (en) Motor, stator core and rotor core, and manufacturing methods of motor, stator core and rotor core
JP2008228523A (en) Rotary electric machine and its rotor
JP2010004671A (en) Permanent magnet type electric rotating machine
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP2000333389A (en) Permanent magnet motor
JP2006081338A (en) Rotor of rotary electric machine
WO2001097363A1 (en) Permanent magnet synchronous motor
JP2013132124A (en) Core for field element
JP2002186244A (en) Permanent magnet linear motor
US10056792B2 (en) Interior permanent magnet electric machine
JP2011193627A (en) Rotor core and rotary electric machine
JP4666726B2 (en) Permanent magnet motor rotor
JP5089325B2 (en) Electric motor
JP2007288838A (en) Embedded magnet type motor
JP2012235608A (en) Synchronous motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729