JP7193422B2 - Rotating electric machine and manufacturing method of rotating electric machine - Google Patents

Rotating electric machine and manufacturing method of rotating electric machine Download PDF

Info

Publication number
JP7193422B2
JP7193422B2 JP2019121979A JP2019121979A JP7193422B2 JP 7193422 B2 JP7193422 B2 JP 7193422B2 JP 2019121979 A JP2019121979 A JP 2019121979A JP 2019121979 A JP2019121979 A JP 2019121979A JP 7193422 B2 JP7193422 B2 JP 7193422B2
Authority
JP
Japan
Prior art keywords
teeth
permanent magnet
electric machine
stator
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019121979A
Other languages
Japanese (ja)
Other versions
JP2021010211A (en
Inventor
正文 坂本
功隆 藤井
重善 佐藤
正宏 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Priority to JP2019121979A priority Critical patent/JP7193422B2/en
Publication of JP2021010211A publication Critical patent/JP2021010211A/en
Application granted granted Critical
Publication of JP7193422B2 publication Critical patent/JP7193422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電動機や発電機として用いられるアキシャルギャップ式回転電機及びこのアキシャルギャップ式回転電機の製造方法に関する。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial gap type rotating electric machine used as an electric motor or a generator, and a method for manufacturing the axial gap type rotating electric machine.

回転電機は、市場より軽薄短小化の要求が強く、また最近は地球温暖化対策として、省エネルギー化や高効率化の要求も増加してきている。更に、低振動化、低騒音化、そして安価であることも強く要求される。その中で、回転軸方向にエアギャップを有するアキシャルギャップ式回転電機は扁平で薄型に構成するのに有利な構造であり、回転子を円盤状にすれば慣性も小さくできるので、一定速度運転にも、可変速度運転にも適した回転電機であることから、近年注目された回転電機の形態である。 There is a strong demand from the market for rotating electric machines to be lighter, thinner, shorter, and smaller, and recently, as a countermeasure against global warming, there is an increasing demand for energy saving and high efficiency. Furthermore, low vibration, low noise, and low cost are also strongly required. Among them, the axial gap type rotary electric machine, which has an air gap in the direction of the rotation axis, has an advantageous structure for being flat and thin. This type of rotating electric machine has been attracting attention in recent years because it is also suitable for variable speed operation.

しかし、ラジアルギャップ式回転電機に比べると、エアギャップが小さく出来にくい等から高トルク化、高効率化の観点から問題を有したものでもあった。 However, compared to the radial gap type electric rotating machine, it is difficult to make the air gap small, and thus there are problems from the viewpoint of high torque and high efficiency.

ここで、回転電機はラジアルギャップ式とアキシャルギャップ式に大別される。従来の一般的なラジアルギャップ式の回転電機において、回転子に永久磁石を用いるブラシレスDCモータ(以下BLDCモータ)や同期発電機、あるいは回転子に永久磁石を用いないで磁性体の歯を有したスイッチドレラクタンスモータ(以下「SRモータ」という)は、固定子鉄心を珪素鋼鈑で積層して構成しており、低コストと組立効率を重視する場合は巻き線に集中巻き方式を採用する。その理由は、分布巻き方式ではトルク発生に寄与しないコイルエンド部が大きくなることから銅損が増大し、効率が低下するためであり、また、集中巻きの場合は巻き線がシンプルであることから、スロットへの直接巻き込が可能となり、巻き線が安価となるためである。 Here, rotary electric machines are roughly classified into radial gap type and axial gap type. In the conventional general radial gap type rotary electric machine, a brushless DC motor (hereinafter referred to as a BLDC motor) using a permanent magnet for the rotor, a synchronous generator, or a rotor having magnetic teeth without using a permanent magnet Switched reluctance motors (hereinafter referred to as "SR motors") are constructed by laminating a stator iron core with silicon steel plates, and when emphasizing low cost and assembly efficiency, a concentrated winding system is adopted for the windings. . The reason for this is that with the distributed winding method, the coil ends that do not contribute to torque generation become large, which increases copper loss and reduces efficiency. , the wire can be wound directly into the slot, and the cost of the wire can be reduced.

そして回転機の高効率化を追求したものとして固定子と回転子のエアギャップ部の対向面積を増大する手段による以下の先行技術である特許文献1が知られている。特許文献1に記載された回転電機は、前述したSRモータをラジアルギャップ式に構成し、高トルク化を図った例が開示されているが、回転軸方向にエアギャップが直線的展開でなく、凹凸がかみ合うようにして、回転電機を構成している。このため実質的なエアギャップの対向面積が増大して、回転電機の高効率化及び高トルク化を図ることができる。 As a method for pursuing high efficiency of a rotating machine, the following prior art, Japanese Patent Application Laid-Open No. 2002-200302, is known, which uses means for increasing the facing area of the air gap portion between the stator and the rotor. The rotary electric machine described in Patent Document 1 discloses an example in which the SR motor described above is configured as a radial gap type to achieve high torque. A rotary electric machine is configured by meshing the unevenness. Therefore, the substantial opposing area of the air gap is increased, and the efficiency and torque of the rotating electrical machine can be increased.

一方、軸方向にエアギャップを有するアキシャルギャップ式の回転電機で、エアギャップに同心的な凹凸を設けて、組み立てを容易にしたものとして、特許文献2に記載された回転電機が知られている。特許文献2に記載された回転電機は安価で、高トルクを得ることが可能となる。 On the other hand, a rotating electrical machine of the axial gap type having an air gap in the axial direction, in which concentric unevenness is provided in the air gap to facilitate assembly, is known as the rotating electrical machine described in Patent Document 2. . The rotating electric machine described in Patent Literature 2 is inexpensive and can obtain high torque.

国際公開第2010/116921号WO2010/116921 特開2013-150543号公報JP 2013-150543 A

しかし、上述した特許文献1に記載された回転電機はエアギャップが直線でないので、固定子と回転子を別々に完成させて固定子に回転子を挿入して組み立てることはできないものである。そのため巻き線作業を含めてその組み立て完成には通常の軸方向に直線のエアギャップ式の回転電機と比較して時間を要し、製造コストの高いものとなる。またSRモータは永久磁石を使用するBLDCモータと比較すると、回転子界磁を固定子の巻き線電流で作るため、BLDCモータより電流を多く消費し、その分、力率が悪くなり、またトルクが電流の自乗に比例して、電流に比例するBLDCモータと比較して制御がしづらい回転電機となってしまう。 However, since the air gap of the rotating electric machine described in Patent Document 1 is not linear, it is not possible to complete the stator and rotor separately and insert the rotor into the stator to assemble. Therefore, it takes more time to complete the assembly, including the winding work, compared to a normal air-gap rotating electric machine that is linear in the axial direction, resulting in a high manufacturing cost. In addition, compared with a BLDC motor that uses permanent magnets, an SR motor consumes more current than a BLDC motor because the rotor field is created by the winding current of the stator. is proportional to the square of the current, resulting in a rotating electric machine that is more difficult to control than a BLDC motor that is proportional to the current.

また、特許文献2に記載されているように、永久磁石を使用するものは、回転子を構成する要素として、回転軸と共に、回転子鉄心、永久磁石及びバックヨークの3部品を必要とし、コストが高くなるという問題を有していた。 In addition, as described in Patent Document 2, those using permanent magnets require three parts, a rotor core, permanent magnets, and a back yoke, as well as a rotating shaft, as elements constituting a rotor, which increases the cost. had the problem of increasing

さらに、図9は従来の回転電機アキシャルギャップ式の回転電機に用いられる回転子を示した図であるが、図9に示すように、従来の回転子は、同心円弧状の歯が形成された磁性体歯部25が磁性体より構成され、永久磁石26、バックヨーク27を備えているので、磁化手段を考慮すると磁性体より構成される同心磁性体歯部25が不可欠となることから、その構成が複雑となり高価な回転電機となっていた。これは、磁性体歯部25を用いない場合、磁束が凹凸ギャップでラジアル方向に通過しないため磁性体歯部25が不可欠となっている。 Furthermore, FIG. 9 is a diagram showing a rotor used in a conventional rotating electric machine of the axial gap type. As shown in FIG. Since the body tooth portion 25 is made of a magnetic material and has a permanent magnet 26 and a back yoke 27, the concentric magnetic tooth portion 25 made of a magnetic material is indispensable in consideration of the magnetizing means. has become complicated and the rotating electric machine has become expensive. This is because the magnetic tooth portion 25 is indispensable because the magnetic flux does not pass in the radial direction in the concave-convex gap when the magnetic tooth portion 25 is not used.

さらに、図10に示すように、従来技術の単極性磁石回転子で両側に固定子を設けた構成では、磁性体歯部25が2個必要であり、更に回転軸7の材料は非磁性体であることが必要であることから、その分高価となっていた。 Furthermore, as shown in FIG. 10, in the configuration of the conventional unipolar magnet rotor provided with stators on both sides, two magnetic tooth portions 25 are required, and the rotating shaft 7 is made of a non-magnetic material. Since it is necessary to be, it has become expensive by that much.

そこで、本発明は上記問題に鑑みてなされたものであり、エアギャップが凹凸噛み合い構成のアキシャルギャップ式の回転電機で永久磁石を使用するBLDCモータであるが、その回転子は、基本的には、回転軸以外では、永久磁石のみで構成すると共に組立時間の短縮を図り、従来の回転電機と比較して、大幅に、安価とすることができるアキシャルギャップ式の回転電機及び回転電機の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and is a BLDC motor that uses permanent magnets in an axial gap type rotating electric machine in which the air gap has a concavo-convex mesh configuration. , Axial-gap type electric rotating machine, which is composed only of permanent magnets except for the rotating shaft, shortens the assembly time, and can be significantly less expensive than conventional electric rotating machines, and a manufacturing method of the rotating electric machine. intended to provide

本発明に係る回転電機は、軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有するアキシャルギャップ式の回転電機であって、前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向したことを特徴とする。但しmは2以上の整数。 A rotary electric machine according to the present invention includes a stator having a winding axis in the axial direction and having winding core portions having m salient poles distributed in the circumferential direction, and a rotor having a rotating shaft. and an axial gap type rotary electric machine having a gap in a rotation axis direction between the stator and the rotor, wherein the winding iron core portion is concentrically arc-shaped on a surface facing the rotor with an air gap. The rotor has one or more stator teeth in the axial direction, and the rotor is composed of permanent magnets having magnetic flux in the axial direction and magnetic flux split in the radial direction in portions facing the stator teeth, and one or more permanent magnet teeth concentrically and axially corresponding to the stator teeth in a portion facing the stator teeth via an air gap, and the stator teeth and the permanent magnet teeth mutually The concave and convex are arranged so as to mesh with each other and are rotatably opposed to each other. However, m is an integer of 2 or more.

また、本発明に係る回転電機において、前記永久磁石は、保持力が2000エールステッド以下の磁石材料で構成すると好適である。 Moreover, in the rotating electric machine according to the present invention, it is preferable that the permanent magnet is made of a magnetic material having a coercive force of 2000 Oersted or less.

また、本発明に係る回転電機において、前記永久磁石は、アルニコ磁石、鉄クロームコバルト磁石あるいはボンド磁石のいずれかで構成され、前記回転軸に直接固着されていると好適である。 Also, in the rotating electric machine according to the present invention, it is preferable that the permanent magnets are composed of alnico magnets, iron-chromium-cobalt magnets, or bond magnets, and are directly fixed to the rotating shaft.

また、本発明に係る回転電機の製造方法は、軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有
し、前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、前記永久磁石は、前記永久磁石歯に対応する同心円弧的で軸方向に凹凸を有した磁性体ヨークが前記永久磁石歯と噛み合うように対向して、ラジアル方向とアキシャル方向のパーミアンスのバランスを考慮した着磁とすることを特徴とする。但しmは2以上の整数。
Further, a method for manufacturing a rotating electric machine according to the present invention includes a stator having a winding shaft in an axial direction and having winding core portions having m salient poles distributed in a circumferential direction, and a rotating shaft. A gap is provided between the stator and the rotor in the rotation axis direction, and the winding iron core portion is concentrically arcuate and axially spaced on the surface facing the air gap with the rotor. The rotor has one or more stator teeth in the rotor, and the rotor is composed of permanent magnets having magnetic flux in the axial direction and magnetic flux shunted in the radial direction in the portion facing the stator teeth, and through an air gap and has one or more permanent magnet teeth concentrically corresponding to the stator teeth in the portion facing the stator teeth, and the stator teeth and the permanent magnet teeth are concave and convex with respect to each other. are arranged so as to engage with each other and rotatably face each other, wherein the permanent magnet includes a magnetic yoke having concentric arcuate concavities and convexities in the axial direction corresponding to the permanent magnet teeth. It is characterized in that it is magnetized in consideration of the balance of permeance in the radial direction and the axial direction, facing each other so as to mesh with the magnet teeth. However, m is an integer of 2 or more.

また、本発明に係る回転電機の他の製造方法は、軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、前記永久磁石は、前記永久磁石歯に対応した同心円弧的で軸方向に凹凸を有した磁性体ヨークが、前記永久磁石の製造過程で前記永久磁石歯と噛み合うように対向成形して、異方性化磁場配向したことを特徴とする。但しmは2以上の整数。 Another method for manufacturing a rotating electric machine according to the present invention includes a stator having a winding axis in the axial direction and having winding core portions having m salient poles distributed in the circumferential direction; A gap is provided between the stator and the rotor in the direction of the rotation axis, and the winding iron core is concentrically arc-shaped on the surface facing the rotor with the air gap The rotor has one or more stator teeth in the axial direction, and the rotor is composed of permanent magnets having a magnetic flux in the axial direction and a magnetic flux split in the radial direction at portions facing the stator teeth, and an air gap. has one or more permanent magnet teeth concentrically and axially corresponding to the stator teeth in a portion facing the stator teeth, and the stator teeth and the permanent magnet teeth are recessed from each other A method of manufacturing a rotating electric machine, wherein the permanent magnets are concentric arc-shaped magnetic yokes having unevenness in the axial direction corresponding to the permanent magnet teeth. 2. In the manufacturing process of the permanent magnets, the permanent magnets are molded so as to mesh with the teeth of the permanent magnets, and are oriented in an anisotropic magnetic field. However, m is an integer of 2 or more.

また、本発明に係る回転電機の他の製造方法は、軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、前記永久磁石の磁化方向が、軸方向に単極磁化であり、前記回転電機を組み立て後に、軸方向に、外部から着磁することを特徴とする。但しmは2以上の整数。 Another method for manufacturing a rotating electric machine according to the present invention includes a stator having a winding axis in the axial direction and having winding core portions having m salient poles distributed in the circumferential direction; A gap is provided between the stator and the rotor in the direction of the rotation axis, and the winding iron core is concentrically arc-shaped on the surface facing the rotor with the air gap The rotor has one or more stator teeth in the axial direction, and the rotor is composed of permanent magnets having a magnetic flux in the axial direction and a magnetic flux split in the radial direction at portions facing the stator teeth, and an air gap. has one or more permanent magnet teeth concentrically and axially corresponding to the stator teeth in a portion facing the stator teeth, and the stator teeth and the permanent magnet teeth are recessed from each other and rotatably opposed to each other, wherein the magnetization direction of the permanent magnet is unipolar magnetization in the axial direction, and after assembling the rotating electrical machine, , is magnetized from the outside. However, m is an integer of 2 or more.

本発明に係るアキシャルギャップ式の回転電機及びこの回転電機の製造方法によれば、固定子歯と永久磁石歯の間のエアギャップ対向面がかみ合い対向のため対向面積が増大しエアギャップ部パーミアンスの大きな高効率の回転電機が実現することができる。 According to the axial gap type rotating electrical machine and the manufacturing method of the rotating electrical machine according to the present invention, the opposing surfaces of the air gap between the stator teeth and the permanent magnet teeth mesh and face each other. A large and highly efficient rotary electric machine can be realized.

また、本発明に係るアキシャルギャップ式の回転電機及びこの回転電機の製造方法によれば、固定子歯と永久磁石歯が同心円弧状にかみ合っているため、回転子に磁性体の回転子歯が不要となることから安価で製造可能となり、回転子は回転軸を固定子の軸受けに挿入して簡単に組み立て出来るので、製造コストを低減して高効率な回転電機が実現することができる。また固定子と回転子間に凹凸部のラジアル方向エアギャップを介して磁束の磁路ができるので、固定子と回転子の間のアキシャル方向吸引力も大幅に低減でき、軸受けへのストレスの少ない、長寿命の回転電機とすることができる。 Further, according to the axial gap type rotating electric machine and the manufacturing method of the rotating electric machine according to the present invention, since the stator teeth and the permanent magnet teeth are concentrically meshed with each other, the rotor does not need magnetic rotor teeth. Therefore, the rotor can be manufactured at low cost, and the rotor can be easily assembled by inserting the rotating shaft into the bearing of the stator. In addition, since a magnetic path of magnetic flux is formed between the stator and rotor through the radial air gap of the concave and convex portions, the axial attraction force between the stator and rotor can be greatly reduced, resulting in less stress on the bearings. A long-life rotary electric machine can be obtained.

また、本発明に係るアキシャルギャップ式の回転電機及びこの回転電機の製造方法によれば、回転子の両側に固定子を配置又は、固定子の両側に回転子を配置することで小型で高効率な回転電機とすることができる。 Further, according to the axial gap type rotating electric machine and the manufacturing method of the rotating electric machine according to the present invention, the stator is arranged on both sides of the rotor, or by arranging the rotor on both sides of the stator, a small size and high efficiency can be achieved. rotating electric machine.

また、本発明に係るアキシャルギャップ式の回転電機及びこの回転電機の製造方法によれば、回転子の永久磁石に直接凹凸を設けるため、従来のような磁性体の歯部が不要であり、保持力の小さな永久磁石を使用すればバックヨークも不要となりより安価な回転電機を実現することができる。 Further, according to the axial gap type rotating electric machine and the manufacturing method of the rotating electric machine according to the present invention, since the permanent magnets of the rotor are directly provided with unevenness, there is no need for the teeth of a magnetic material as in the conventional art, and the magnetic teeth are not required. If a permanent magnet with a small force is used, a back yoke becomes unnecessary and a more inexpensive rotating electric machine can be realized.

本発明の実施形態に係る回転電機の回転軸を含んだ断面図1 is a cross-sectional view including a rotary shaft of a rotary electric machine according to an embodiment of the present invention; 図1の回転子を軸方向から見た図A view of the rotor in FIG. 1 viewed from the axial direction 本発明の実施形態に係る回転電機の回転子用の永久磁石を磁化する原理図Principle diagram of magnetizing a permanent magnet for a rotor of a rotary electric machine according to an embodiment of the present invention 本発明の実施形態に係る回転電機の単極性磁石を用いた回転子で両側に固定子を設けた図FIG. 2 is a diagram of a rotor using a unipolar magnet of a rotary electric machine according to an embodiment of the present invention, in which stators are provided on both sides; 本発明の実施形態に係る他の回転電機の回転子の図FIG. 4 is a diagram of a rotor of another rotating electrical machine according to an embodiment of the present invention; 本発明の実施形態に係る他の回転電機の変形例である両面ギャップ構成を示す図A diagram showing a double-sided gap configuration that is a modification of another rotating electrical machine according to an embodiment of the present invention. 本発明の実施形態に係る回転電機の仮想磁路法による磁束の流れの図FIG. 2 is a diagram of the flow of magnetic flux by the virtual magnetic path method of the rotary electric machine according to the embodiment of the present invention; 本発明の実施形態に係る回転電機の分解斜視図1 is an exploded perspective view of a rotary electric machine according to an embodiment of the present invention; 従来技術の回転子を示す図Diagram showing a prior art rotor 従来技術の単極性磁石回転子で両側に固定子を設けた図Prior art unipolar magnet rotor with stators on both sides

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Preferred embodiments for carrying out the present invention will be described below with reference to the drawings. In addition, the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the solution of the invention. .

図1は、本発明の実施形態に係る回転電機の回転軸を含んだ断面図であり、図2は、図1の回転子を軸方向から見た図であり、図3は、本発明の実施形態に係る回転電機の回転子用の永久磁石を磁化する原理図であり、図4は、本発明の実施形態に係る回転電機の単極性磁石を用いた回転子で両側に固定子を設けた図であり、図5は、本発明の実施形態に係る他の回転電機の回転子の図であり、図6は、本発明の実施形態に係る他の回転電機の変形例である両面ギャップ構成を示す図であり、図7は、本発明の実施形態に係る回転電機の仮想磁路法による磁束の流れの図であり、図8は、本発明の実施形態に係る回転電機の分解斜視図である。 1 is a cross-sectional view including a rotating shaft of a rotary electric machine according to an embodiment of the present invention, FIG. 2 is a view of the rotor in FIG. 1 as seen from the axial direction, and FIG. FIG. 4 is a principle diagram of magnetizing a permanent magnet for a rotor of a rotary electric machine according to an embodiment, and FIG. FIG. 5 is a diagram of a rotor of another rotating electric machine according to the embodiment of the present invention; FIG. 7 is a diagram showing the flow of magnetic flux by the virtual magnetic path method of the rotating electric machine according to the embodiment of the present invention; FIG. 8 is an exploded perspective view of the rotating electric machine according to the embodiment of the present invention; It is a diagram.

図1、図2を参照して本発明の実施形態に係る回転電機の一例を説明する。なお、図1において軸中心線から下半図は、省略して記載している。固定子1は磁性体より構成され、m個の軸方向に突き出た突極を有する巻き線用鉄心部1-1を持ち、その先端部には同心円弧状で軸方向に3個の歯を有した固定子歯2が形成されている。固定子歯2の歯数は3に限定せず任意に変更可能である。コイル3は、固定子1のm個の軸方向に突き出た巻き線用鉄心部1-1に、固定子歯2より軸方向で左側に配備されている。 An example of a rotating electrical machine according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. In addition, in FIG. 1, the lower half of the figure from the axis center line is omitted. The stator 1 is made of a magnetic material and has a winding iron core 1-1 having m salient poles protruding in the axial direction. A fixed stator tooth 2 is formed. The number of teeth of the stator teeth 2 is not limited to 3 and can be changed arbitrarily. The coils 3 are arranged on the axially left side of the stator teeth 2 on m winding core portions 1-1 protruding in the axial direction of the stator 1. As shown in FIG.

回転子4は永久磁石よりなる部材であり、永久磁石鍔6等で回転軸7に固着されて、軸受け8で回転可能に支持されている。回転子4の軸方向で固定子1と対向する部分は永久磁石歯5が形成され、該永久磁石歯5は、同心円弧状で軸方向に3個の歯を有し、同じく同心円弧的に設けられた固定子歯2とかみ合うようにしてエアギャップを保って対向している。 The rotor 4 is a member made of a permanent magnet, fixed to a rotating shaft 7 by a permanent magnet flange 6 or the like, and rotatably supported by a bearing 8 . Permanent magnet teeth 5 are formed in a portion of the rotor 4 facing the stator 1 in the axial direction. They are opposed to each other while maintaining an air gap so as to mesh with the stator teeth 2 which are mounted.

図2は4極磁化の例であり、永久磁石歯5は垂直部と水平部の4か所に設けられ、周方向に、順にN、S,N,Sの4極に磁化されている。この場合、図1や図8は3相機として示せば、典型的な例としては、m=6として、周方向に6個の巻き線用鉄心部1-1、1-2、1-3、1-4、1-5及び1-6を設けて、順次U,V,W、U,V,W相に巻き線すればよい。 FIG. 2 shows an example of quadrupole magnetization, in which the permanent magnet teeth 5 are provided at four positions, vertical and horizontal, and are magnetized to N, S, N, and S in order in the circumferential direction. In this case, if FIG. 1 and FIG. 8 show a three-phase machine, as a typical example, m=6 and six winding core portions 1-1, 1-2, 1-3, 1-4, 1-5 and 1-6 are provided, and the windings are sequentially wound to the U, V, W, U, V, W phases.

ブラケット22は、固定子1に固定されて、固定子1と共に軸受け8で回転軸7を支持する。本実施形態における回転電機はこの様な構成でアキシャルギャップ式回転電機を形成している。尚、図1及び図2では回転子4は1個の永久磁石で構成する図で示したが、図示は省略するが、例えば、図2で永久磁石からなる回転子4を永久磁石歯5が設けてない部分、即ち垂直と水平線間の45°線で4分割して、前述のN、S、N、Sの略扇形の4部を磁性体円盤に接着あるいは締結して回転軸7に固着してもよい。即ち、固定子1の固定子歯2と回転子4の永久磁石歯5が凹凸噛み合いであればよい。 The bracket 22 is fixed to the stator 1 and supports the rotating shaft 7 with the bearing 8 together with the stator 1 . The rotary electric machine in this embodiment forms an axial gap type rotary electric machine with such a configuration. In FIGS. 1 and 2, the rotor 4 is shown as being composed of a single permanent magnet. Although illustration is omitted, for example, in FIG. The non-provided part, ie, the 45° line between the vertical and horizontal lines divides the four parts into four, and the above-mentioned four substantially fan-shaped parts N, S, N, S are adhered or fastened to the magnetic disk and fixed to the rotating shaft 7. You may That is, it is sufficient that the stator teeth 2 of the stator 1 and the permanent magnet teeth 5 of the rotor 4 are engaged with each other.

このような構成にすれば次のような長所を有した回転電機が実現する。即ち固定子歯2と永久磁石歯5間のエアギャップ対向面がかみ合い対向となっているため対向面積が増大する。この結果、エアギャップ部パーミアンスを大きくできるので高効率な回転電機となる。これは、磁束を通す起磁力はその大部分がエアギャップで消費されるが本実施形態に係る回転電機によれば、エアギャップ部におけるパーミアンスが大きくできるのでこの部分での起磁力の消費が少なくて済むためである。 Such a configuration realizes a rotating electric machine having the following advantages. That is, since the air gap facing surfaces between the stator teeth 2 and the permanent magnet teeth 5 are meshed and facing each other, the facing area increases. As a result, the permeance of the air gap can be increased, resulting in a highly efficient rotary electric machine. This is because most of the magnetomotive force through which the magnetic flux passes is consumed in the air gap, but according to the rotary electric machine according to the present embodiment, since the permeance in the air gap can be increased, the consumption of the magnetomotive force in this portion is small. This is because

また、本実施形態に係る回転電機は、アキシャルギャップ式回転電機で、固定子1の固定子歯2と回転子4の永久磁石歯5が同心円弧状のかみ合いのため、回転子4は軸を固定子の軸受けに挿入して簡単に組み立て出来るので、安価で高効率な回転電機が実現する。このような構成によれば、所謂立体エアギャップ式アキシャルギャップBLDCモータが実現する。この場合、エアギャップ部の磁束は、アキシャル方向の他に凹凸噛み合う部はラジアル方向に磁束が通過することが必要である。このための手段は後述する。 In addition, the rotating electric machine according to the present embodiment is an axial gap type rotating electric machine, and since the stator teeth 2 of the stator 1 and the permanent magnet teeth 5 of the rotor 4 mesh concentrically, the rotor 4 has its shaft fixed. Since it can be easily assembled by inserting it into the bearing of the child, an inexpensive and highly efficient rotary electric machine is realized. With such a configuration, a so-called three-dimensional air gap type axial gap BLDC motor is realized. In this case, it is necessary for the magnetic flux in the air gap to pass not only in the axial direction but also in the radial direction in the portion where the concave and convex portions are meshed. Means for this will be described later.

一般にアキシャルギャップモータはラジアルギャップモータと比較して、アキシャル方向の磁気吸引力が大きく、軸受けにストレスを与える欠点があるが、本実施形態に係る回転電機の構成では、ラジアル方向に磁束が分流するので、この欠点であるアキシャル方向の磁気吸引力が大幅に改善される。 In general, axial gap motors have a larger magnetic attraction force in the axial direction than radial gap motors, and have the drawback of applying stress to the bearings. Therefore, the magnetic attraction force in the axial direction, which is the drawback, is greatly improved.

この場合、かみ合う歯形は図示した矩形に限定されず、三角形や円弧曲線でもよく、平面対向よりその対向面性が増大してしかも周方向に回転可能な形状であればよい。この場合、固定子1や固定子歯2の製作は珪素鋼鈑の積層式ではかなり困難であるが、圧粉によれば容易に製作できる。また固定子1のm個の軸方向に突き出た巻き線用鉄心部1-1は3相機では簡単な構造では6極が多い。実用的には2相では2極、4極、8極、12極、3相では3極、6極、9極、12極、18極、5相では5極、10極に適したものである。一般的には固定子極数mは2以上の正の整数であればよい。回転子極数は図1~図2の例では、前述したように、m=6を想定して、4極で示してある。 In this case, the meshing tooth profile is not limited to the illustrated rectangular shape, but may be a triangular shape or an arcuate curve, as long as the opposing surface property is increased compared to the planar opposing shape and the shape is rotatable in the circumferential direction. In this case, manufacturing of the stator 1 and the stator teeth 2 is considerably difficult with the lamination type of silicon steel plates, but it can be easily manufactured with compacted powder. In addition, the winding core portions 1-1 protruding in the axial direction of the stator 1 are often 6 poles in a simple structure in a 3-phase machine. Practically, it is suitable for 2, 4, 8 and 12 poles in 2 phases, 3, 6, 9, 12 and 18 poles in 3 phases, and 5 and 10 poles in 5 phases. be. In general, the number of stator poles m should be a positive integer of 2 or more. In the examples of FIGS. 1 and 2, the number of rotor poles is shown as 4 on the assumption that m=6, as described above.

図3は本発明の回転子用磁石を磁化する原理図の一例であり、図1~図2、図5、図6等に記載した各回転電機の実施例に適応可能である。図3に記載されているように、着磁ヨーク9は磁性体であり、同心円弧的に凹凸が設けられた歯12-1を有している。永久磁石10は本実施形態に係る回転電機に用いられる永久磁石であり、永久磁石歯5と同様の凹凸が同心円弧的に設けられた歯部11を有している。そして、着磁ヨーク9に永久磁石10の歯部11をかみ合わせて永久磁石10を挿入した場合、永久磁石10と歯12-1の先端との間に適切な大きさのエアギャップ12ができるよう配置される。 FIG. 3 is an example of a principle diagram of magnetizing the rotor magnet of the present invention, which is applicable to the embodiments of the rotary electric machines shown in FIGS. 1 to 2, 5, 6, and the like. As shown in FIG. 3, the magnetizing yoke 9 is made of a magnetic material and has teeth 12-1 that are concentrically provided with concavities and convexities. The permanent magnet 10 is a permanent magnet used in the rotating electric machine according to the present embodiment, and has a tooth portion 11 in which unevenness similar to that of the permanent magnet tooth 5 is provided concentrically. When the tooth portion 11 of the permanent magnet 10 is engaged with the magnetizing yoke 9 and the permanent magnet 10 is inserted, an air gap 12 of an appropriate size is formed between the permanent magnet 10 and the tip of the tooth 12-1. placed.

着磁ヨーク9の外周には着磁コイル13が巻回されており、短時間で大電流を流して、永久磁石10を磁化する。しかし、永久磁石10を磁化する磁束は、パーミアンスの大きい部分を通過することで、永久磁石が磁化されるため、エアギャップ12が無いと、永久磁石10の歯部11は磁化されない。しかし、着磁ヨーク9と永久磁石10との間にエアギャップ12が設けてあれば、エアギャップ12の磁気抵抗が大きくなり、図3の点線矢印線に示すように歯部11にも、磁束Φ、Φ以外の磁束Φ~Φ及び磁束Φ~Φが通過して、磁化されることになる。即ち、適宜エアギャップ等を設けて、着磁時のラジアル方向とアキシャル方向のパーミアンスのバランスを考慮した着磁をすることを特徴としたものである。永久磁石10の保持力が小さなアルニコ磁石や鉄ニッケルコバルト磁石等を用いた場合には、磁化が更に容易となる。さらに、エアギャップ12に銅等の反磁性体を挿入すれば、その効果は更に増す。 A magnetizing coil 13 is wound around the outer periphery of the magnetizing yoke 9, and the permanent magnet 10 is magnetized by passing a large current in a short period of time. However, since the magnetic flux that magnetizes the permanent magnet 10 passes through a portion with a large permeance, the permanent magnet is magnetized. However, if an air gap 12 is provided between the magnetizing yoke 9 and the permanent magnet 10, the magnetic resistance of the air gap 12 increases, and as shown by the dotted arrow in FIG. Magnetic fluxes Φ 2 to Φ 4 and magnetic fluxes Φ 6 to Φ 7 other than Φ 1 and Φ 5 pass through and are magnetized. That is, it is characterized by appropriately providing an air gap or the like and performing magnetization in consideration of the balance of permeance in the radial direction and the axial direction at the time of magnetization. If an alnico magnet, an iron-nickel-cobalt magnet, or the like with a small coercive force of the permanent magnet 10 is used, the magnetization becomes even easier. Furthermore, if a diamagnetic material such as copper is inserted into the air gap 12, the effect is further enhanced.

このような着磁方法によれば、歯部11を通過する磁束は、アキシャル方向(Φ、ΦΦ及びΦ)の他に歯部11と歯12-1の噛み合う部分のラジアル方向(Φ、Φ及びΦ)にも磁束が通過するため、永久磁石10を通過する磁束の総量が増加することで、高トルク化が実現する。 According to such a magnetization method, the magnetic flux passing through the tooth portion 11 is generated not only in the axial direction (Φ 1 , Φ 3 Φ 5 and Φ 7 ) but also in the radial direction of the meshing portion between the tooth portion 11 and the tooth 12-1. Since the magnetic flux also passes through (Φ 2 , Φ 4 and Φ 6 ), the total amount of magnetic flux passing through the permanent magnet 10 increases, thereby achieving high torque.

図3は着磁の手段として述べたが、永久磁石10を製造する過程で、異方性に磁場配向する場合にも応用可能である。例えば、図3のエアギャップ12を非磁性体や銅などの反磁性体で構成し、着磁コイル13に電流を流し、着磁ヨーク9を金型と兼用することで永久磁石10を磁石粉末や流体から成形すればよい。またインジェション方式やコンプレッション方式の樹脂成型磁石所謂ボンド磁石を用いても構わない。即ち、永久磁石10の歯部11にラジアル方向の磁場配向が施されていれば、歯部11のラジアル方向にも磁化されて、本実施形態に係る回転電機の機能が発揮されることになる。また本実施形態に係る回転電機に用いられる永久磁石には保持力が2000エールステッド以下のアルニコ鋳造磁石や鉄クロームコバルト磁石が適している。特に鉄クロームコバルト磁石を用いた場合には、永久磁石10の歯部11を冷間鍛造で製作可能であり、堅牢かつ安価となる。また回転軸7との固着は接着の他に圧入も可能となる。 Although FIG. 3 has been described as a means of magnetization, it can also be applied to the case of anisotropically orienting the magnetic field in the process of manufacturing the permanent magnet 10 . For example, the air gap 12 shown in FIG. or fluid. Injection type or compression type resin-molded magnets, so-called bond magnets, may also be used. That is, if the teeth 11 of the permanent magnet 10 are magnetically oriented in the radial direction, the teeth 11 are also magnetized in the radial direction, and the function of the electric rotating machine according to the present embodiment is exhibited. . Alnico cast magnets and iron-chromium-cobalt magnets having a coercive force of 2000 Oersted or less are suitable for the permanent magnets used in the rotating electric machine according to the present embodiment. In particular, when iron-chromium-cobalt magnets are used, the teeth 11 of the permanent magnet 10 can be manufactured by cold forging, resulting in robustness and low cost. In addition, fixing to the rotary shaft 7 can be performed by press fitting instead of adhesion.

なお、永久磁石の着磁は、永久磁石10に着磁ヨーク9を嵌め合わせて着磁する場合に限らず、所謂アッセイ着磁を行っても構わない。詳述すると、回転子4に使用する永久磁石の磁化方向が、軸方向に、例えば、ハイブリッド型ステッピングモータのように、単極磁化の場合は、例えば、永久磁石は、保持力が2000エールステッド以下の磁石材料で構成して、永久磁石は未着磁状態で、回転電機を組み立て後に、軸方向に、外部から着磁すれば、前述の固定子1と回転子4の永久磁石歯5はエアギャップを介して凹凸噛み合いとなっているため、対向部面積とギャップ長とから定まるパーミアンスに従い、磁化の磁力線がエアギャップのアキシャル方向の他にラジアル方向にも通り、永久磁石歯5はアキシャル方向とラジアル方向に磁化される。 The magnetization of the permanent magnet is not limited to magnetization by fitting the magnetization yoke 9 to the permanent magnet 10, and so-called assay magnetization may be performed. More specifically, in the case where the magnetization direction of the permanent magnet used in the rotor 4 is unipolar magnetization in the axial direction, for example, as in a hybrid stepping motor, the permanent magnet has a coercive force of 2000 Oersted. The permanent magnet teeth 5 of the stator 1 and the rotor 4 are magnetized from the outside in the axial direction after the rotating electric machine is assembled. Because of the uneven meshing through the air gap, according to the permeance determined by the facing area and the gap length, the magnetic lines of force of magnetization pass not only in the axial direction of the air gap, but also in the radial direction, and the permanent magnet teeth 5 move in the axial direction. and radially magnetized.

図4は本実施形態に係る回転電機の変形例を示すものであり、単極性磁石回転子で両側に固定子を設けた図である。図1と同様な固定子1とコイル3を永久磁石回転子14の両側に設け、永久磁石回転子14の固定子1との対向する面それぞれに固定子歯を形成して、固定子1と永久磁石回転子14に凹凸をダブルギャップ式で設けたアキシャルギャップ回転電機である。この場合、ハイブリッド形ステッピングモータの回転子の如く、単極磁化回転子も本構成で可能である。即ち永久磁石回転子14は軸方向に、例えば左サイドがN、右サイドがS極性に磁化する。この場合、回転子単体で磁化しないで、モータを組み立て後に、軸方向に磁化すれば、そしてラジアル方向とアキシャル方向のエアギャップを適切な値に選び、ギャップパーミアンスを調整することで自動的に、ラジアル方向にも磁化されることになる。なお、本実施形態に係る回転電機は、図1に記載した回転電機と同様に回転軸7、軸受け8を有しており、永久磁石回転子14の両サイドに配置された固定子1,1を軸方向に連絡する単極磁化回転子のバックヨーク兼ハウジング15を備えている。この場合、本実施形態に係る回転電機を示す図4は、図10に示される従来技術の進歩した構成に当るが、図10に示される回転電機が、永久磁石28の他に、2個の磁性体歯25を必要とし、更に回転軸7の材質は、永久磁石28の磁気短絡を防止するために、非磁性体であることが必要であった。これに対し、本実施形態に係る回転電機の構成によれば、図4に示される回転軸7の材質は非磁性体である必要はない。これにより材料選択の自由度が広がると共に、コスト低減を図ることが可能となる。 FIG. 4 shows a modification of the rotary electric machine according to the present embodiment, in which a unipolar magnet rotor is provided with stators on both sides. A stator 1 and coils 3 similar to those shown in FIG. This is an axial gap rotary electric machine in which a permanent magnet rotor 14 is provided with unevenness in a double gap manner. In this case, a unipolar magnetization rotor is also possible with this configuration, like the rotor of a hybrid stepping motor. That is, the permanent magnet rotor 14 is magnetized in the axial direction, for example, with N polarity on the left side and S polarity on the right side. In this case, instead of magnetizing the rotor alone, if the motor is assembled and then magnetized in the axial direction, the air gaps in the radial and axial directions are selected to appropriate values, and the gap permeance is adjusted to automatically It will also be magnetized in the radial direction. The rotating electric machine according to the present embodiment has a rotating shaft 7 and bearings 8 as in the rotating electric machine shown in FIG. and a back yoke/housing 15 of a unipolar magnetized rotor axially communicating with the . In this case, FIG. 4 showing the rotating electrical machine according to the present embodiment corresponds to the advanced configuration of the prior art shown in FIG. 10, but the rotating electrical machine shown in FIG. The magnetic teeth 25 are required, and the material of the rotating shaft 7 must be non-magnetic in order to prevent magnetic short-circuiting of the permanent magnets 28 . In contrast, according to the configuration of the rotary electric machine according to the present embodiment, the material of the rotating shaft 7 shown in FIG. 4 need not be non-magnetic. As a result, the degree of freedom in material selection is increased, and costs can be reduced.

図5は本実施形態に係る他の回転電機の変形例を示すものであり、前述した回転子とは、構造の異なる回転子を示した図である。前述した回転電機では、図2において、回転子4について、4極を一体磁石で構成した場合について説明を行ったが、図5に示すように、永久磁石17をNSNSに磁化した4個の分割体として、バックヨーク16で固着し、当該バックヨーク16を回転軸7に固定するように構成しても構わない。さらに、図5に記載されているように、バックヨーク16を有した構成としても構わない。 FIG. 5 shows another modification of the rotary electric machine according to the present embodiment, and shows a rotor having a structure different from that of the rotor described above. In the rotating electrical machine described above, the rotor 4 has been described in FIG. 2 for the case where the four poles are formed by integral magnets, but as shown in FIG. As a body, the back yoke 16 may be fixed, and the back yoke 16 may be fixed to the rotating shaft 7 . Furthermore, as shown in FIG. 5, a configuration having a back yoke 16 may be employed.

図6は本実施形態に係る回転電機の他の変形例を説明するものであり、両面ギャップ構成を構成した回転電機の断面図であり、図4と対比して、共通の固定子20とそのコイル部21を、両サイドに凹凸エアギャップを設けて、図2あるいは図5に記載された回転子を両側に配置したものである。この場合、m個の巻き線用鉄心部20はm個に分離しているので、非磁性体例えば樹脂等で注型したりして一体的に合体構成する。 FIG. 6 illustrates another modification of the rotating electrical machine according to the present embodiment, and is a cross-sectional view of the rotating electrical machine having a double-sided gap structure. The coil portion 21 is provided with uneven air gaps on both sides, and the rotors shown in FIG. 2 or FIG. 5 are arranged on both sides. In this case, since the m winding core portions 20 are separated into m pieces, they are formed integrally by casting a non-magnetic material such as resin or the like.

図7(a)は本実施形態に係る回転電機の永久磁石からなる回転子4-1からの鎖交磁束の流れを仮想磁路法により示す図である。アキシャル方向に直進する磁束Φ、Φ及びΦの他に、凹凸部のラジアル方向エアギャップも通過する磁束Φ及びΦが加わることが分かる。このラジアル方向エアギャップを通過する磁束Φ及びΦは、図3に示した本実施形態に係る回転電機に用いる永久磁石の着磁方法によって着磁された効果によるものである。 FIG. 7(a) is a diagram showing the flow of interlinkage magnetic flux from the rotor 4-1 made of permanent magnets of the rotating electric machine according to the present embodiment by the virtual magnetic path method. It can be seen that in addition to the magnetic fluxes Φ 1 , Φ 3 and Φ 5 that go straight in the axial direction, magnetic fluxes Φ 2 and Φ 4 that also pass through the radial air gap of the uneven portion are added. The magnetic fluxes Φ 2 and Φ 4 passing through the radial air gap are due to the magnetization effect of the permanent magnet magnetization method used in the rotating electric machine according to the present embodiment shown in FIG. 3 .

これに対して、図7(b)に示すように、本実施形態に係る回転電機の製造方法を用いない従来の凹凸エアギャップのアキシャルギャップ式回転電機では、永久磁石からなる回転子4-1からの鎖交磁束の流れは同様に仮想磁路法で図7(b)に示すように、アキシャル方向に直進する磁束Φ、Φ及びΦのみとなり、鎖交磁束は図7(a)に示した場合より、減少するので、トルクも減少することになる。 On the other hand, as shown in FIG. 7B, in a conventional axial gap type rotating electrical machine with uneven air gaps, which does not use the manufacturing method of the rotating electrical machine according to the present embodiment, a rotor 4-1 made of permanent magnets is used. Similarly, as shown in FIG. 7(b) by the virtual magnetic path method, the flow of the interlinkage magnetic flux from is only the magnetic fluxes Φ 1 , Φ 3 and Φ 5 that go straight in the axial direction, and the interlinkage magnetic flux is shown in FIG. 7(a ), the torque is also reduced.

次に、本実施形態に係る回転電機に使用する永久磁石の望ましい保持力値を示す。
≒(B/μ)・(Lg/Lm) (1)
本実施形態に係る回転電機の場合、磁気回路方程式から(1)式が成立する。ここで、H:,永久磁石の磁界強度「A/m」、Lm:有効磁石厚さ「m」、B:エアギャップ磁束密度「T」、μ:エアギャップの透磁率「H/m」,Lg:エアギャップ長「m」とする。
Next, desirable coercive force values of permanent magnets used in the rotary electric machine according to this embodiment are shown.
Hm≈ (B/ μ0 )·(Lg/Lm) (1)
In the case of the rotary electric machine according to this embodiment, the equation (1) holds from the magnetic circuit equation. Here, H m : magnetic field strength of permanent magnet “A/m”, Lm: effective magnet thickness “m”, B: air gap magnetic flux density “T”, μ 0 : magnetic permeability of air gap “H/m ”, Lg: Air gap length “m”.

固定子の歯の磁束密度とエアギャップ磁束密度Bは同じとなり、固定子歯は圧粉鉄心等で構成した場合は飽和磁束密度は2「T」程度であり、コストパフォーマンスを考慮して、(Lg/Lm)≒1/10 に磁気回路設計すれば、(1)式から、H≒0.016×10≒2000「Oe」となる。 The magnetic flux density of the stator teeth and the air gap magnetic flux density B are the same, and the saturation magnetic flux density is about 2 "T" when the stator teeth are composed of dust cores, etc. Considering cost performance, ( Lg/Lm)≈1/10 If the magnetic circuit is designed, from the equation (1), H m ≈0.016×10 7 ≈2000 Oe.

図8は、本実施形態に係る回転電機の分解斜視図であり、各部品を示す符号は、上述した回転電機と同様の符号を付している。回転子4は、永久磁石のみで構成しており、固定子1は、1-1~1-6を有するm=6個の巻き線用鉄心部で構成した場合について示したものである。 FIG. 8 is an exploded perspective view of the rotating electrical machine according to the present embodiment, and reference numerals indicating respective components are assigned the same reference numerals as those of the rotating electrical machine described above. The rotor 4 is composed only of permanent magnets, and the stator 1 is composed of m=6 core portions for windings having 1-1 to 1-6.

本発明によるアキシャルギャップ式回転電機は電動機または発電機に活用でき、安価で堅牢で軽薄短小、高トルク化、高効率化に適した、きわめて実用的なものである。従って工業的に大きな貢献が期待される。 The axial gap type rotary electric machine according to the present invention can be used as an electric motor or a generator, and is inexpensive, robust, light, thin, short and small, suitable for high torque and high efficiency, and extremely practical. Therefore, it is expected to make a great contribution industrially.

1 固定子
1-1、1-2、1-3、1-4、1-5、1-6、20 巻き線用鉄心部
2、 固定子歯
5、11、 永久磁石歯
6、 永久磁石歯鍔
3、13、21、 コイル
4、4-1、14 永久磁石回転子
7、 回転軸
8、 軸受け
22、 ブラケット
15、16 バックヨーク
9、 着磁ヨーク
12、 エアギャップ
25、 磁性体歯部
1 Stator 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 20 Winding core 2, Stator teeth 5, 11, Permanent magnet teeth 6, Permanent magnet teeth Collars 3, 13, 21, coils 4, 4-1, 14 permanent magnet rotor 7, rotating shaft 8, bearing 22, brackets 15, 16 back yoke 9, magnetizing yoke 12, air gap 25, magnetic tooth portion

Claims (6)

軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有するアキシャルギャップ式の回転電機であって、
前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、
前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、
前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向したことを特徴とする回転電機。但しmは2以上の整数。
A stator having a winding axis in the axial direction and in which winding core portions having m salient poles are distributed in the circumferential direction; An axial gap type rotating electric machine having a gap in the rotation axis direction between the elements,
The winding core portion has one or more stator teeth concentrically in an axial direction on a surface facing the air gap with the rotor,
The rotor includes permanent magnets having axial magnetic flux and radial magnetic flux in a portion facing the stator teeth, and an air gap between the rotor teeth and the stator teeth. one or more concentric axial permanent magnet teeth corresponding to the stator teeth;
A rotary electric machine, wherein the stator teeth and the permanent magnet teeth are rotatably opposed to each other with recesses and protrusions meshing with each other. However, m is an integer of 2 or more.
請求項1に記載の回転電機において、
前記永久磁石は、保持力が2000エールステッド以下の磁石材料で構成したことを特徴とする回転電機。
In the rotary electric machine according to claim 1,
A rotary electric machine, wherein the permanent magnet is made of a magnetic material having a coercive force of 2000 Oersted or less.
請求項1に記載の回転電機において、
前記永久磁石は、アルニコ磁石、鉄クロームコバルト磁石あるいはボンド磁石のいずれかで構成され、前記回転軸に直接固着されていることを特徴とする回転電機。
In the rotary electric machine according to claim 1,
A rotary electric machine, wherein the permanent magnet is composed of an alnico magnet, an iron-chromium-cobalt magnet, or a bond magnet, and is directly fixed to the rotating shaft.
軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、
前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、
前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、
前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、
前記永久磁石は、前記永久磁石歯に対応する同心円弧的で軸方向に凹凸を有した磁性体ヨークが前記永久磁石歯と噛み合うように対向して、ラジアル方向とアキシャル方向のパーミアンスのバランスを考慮した着磁とすることを特徴とする回転電機の製造方法。但しmは2以上の整数。
A stator having a winding axis in the axial direction and in which winding core portions having m salient poles are distributed in the circumferential direction; having a gap in the direction of the rotation axis between the children,
The winding core portion has one or more stator teeth concentrically in an axial direction on a surface facing the air gap with the rotor,
The rotor includes permanent magnets having axial magnetic flux and radial magnetic flux in a portion facing the stator teeth, and an air gap between the rotor teeth and the stator teeth. one or more concentric axial permanent magnet teeth corresponding to the stator teeth;
A method for manufacturing a rotating electric machine in which the stator teeth and the permanent magnet teeth are arranged so that concaves and convexes are engaged with each other and are rotatably opposed to each other,
The permanent magnet is arranged such that a magnetic yoke having concentric arc-shaped undulations in the axial direction corresponding to the permanent magnet teeth is opposed to the permanent magnet teeth so as to mesh with each other, so that the balance of permeance in the radial direction and the axial direction is taken into consideration. A method of manufacturing a rotating electric machine, characterized in that magnetization is performed according to the following. However, m is an integer of 2 or more.
軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、
前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、
前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、
前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、
前記永久磁石は、前記永久磁石歯に対応した同心円弧的で軸方向に凹凸を有した磁性体ヨークが、前記永久磁石の製造過程で前記永久磁石歯と噛み合うように対向成形して、異方性化磁場配向したことを特徴とする回転電機の製造方法。但しmは2以上の整数。
A stator having a winding axis in the axial direction and in which winding core portions having m salient poles are distributed in the circumferential direction; having a gap in the direction of the rotation axis between the children,
The winding core portion has one or more stator teeth concentrically in an axial direction on a surface facing the air gap with the rotor,
The rotor includes permanent magnets having axial magnetic flux and radial magnetic flux in a portion facing the stator teeth, and an air gap between the rotor teeth and the stator teeth. one or more concentric axial permanent magnet teeth corresponding to the stator teeth;
A method for manufacturing a rotating electric machine in which the stator teeth and the permanent magnet teeth are arranged so that concaves and convexes are engaged with each other and are rotatably opposed to each other,
In the permanent magnet, a magnetic yoke having a concentric arc shape corresponding to the permanent magnet teeth and having unevenness in the axial direction is opposed to the permanent magnet teeth in the manufacturing process of the permanent magnet so as to engage with the teeth. A method for manufacturing a rotating electric machine, characterized in that a polarizing magnetic field is oriented. However, m is an integer of 2 or more.
軸方向に巻き線軸を有すると共に、突極数がm個の巻き線用鉄心部が周方向に分布配置された固定子と、回転軸を備える回転子とを有し、前記固定子と前記回転子の間に回転軸方向にギャップを有し、
前記巻き線用鉄心部は、前記回転子とのエアギャップ対向面に同心円弧的で軸方向に1個以上の固定子歯を有し、
前記回転子は、前記固定子歯と対向する部分がアキシャル方向の磁束とラジアル方向に分流する磁束とを有する永久磁石からなると共に、エアギャップを介して、前記固定子歯と対向する部分に前記固定子歯と対応する同心円的で軸方向に1個以上の永久磁石歯を有し、
前記固定子歯と前記永久磁石歯とが互いに凹と凸がかみ合うように配置されて回転自在に対向した回転電機の製造方法であって、
前記永久磁石の磁化方向が、軸方向に単極磁化であり、
前記回転電機を組み立て後に、軸方向に、外部から着磁することを特徴とする回転電機の製造方法。但しmは2以上の整数。
A stator having a winding axis in the axial direction and in which winding core portions having m salient poles are distributed in the circumferential direction; having a gap in the direction of the rotation axis between the children,
The winding core portion has one or more stator teeth concentrically in an axial direction on a surface facing the air gap with the rotor,
The rotor includes permanent magnets having axial magnetic flux and radial magnetic flux in a portion facing the stator teeth, and an air gap between the rotor teeth and the stator teeth. one or more concentric axial permanent magnet teeth corresponding to the stator teeth;
A method for manufacturing a rotating electric machine in which the stator teeth and the permanent magnet teeth are arranged so that concaves and convexes are engaged with each other and are rotatably opposed to each other,
The magnetization direction of the permanent magnet is unipolar magnetization in the axial direction,
A method of manufacturing a rotating electrical machine, comprising: magnetizing the rotating electrical machine from the outside in the axial direction after assembly of the rotating electrical machine. However, m is an integer of 2 or more.
JP2019121979A 2019-06-28 2019-06-28 Rotating electric machine and manufacturing method of rotating electric machine Active JP7193422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121979A JP7193422B2 (en) 2019-06-28 2019-06-28 Rotating electric machine and manufacturing method of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121979A JP7193422B2 (en) 2019-06-28 2019-06-28 Rotating electric machine and manufacturing method of rotating electric machine

Publications (2)

Publication Number Publication Date
JP2021010211A JP2021010211A (en) 2021-01-28
JP7193422B2 true JP7193422B2 (en) 2022-12-20

Family

ID=74199889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121979A Active JP7193422B2 (en) 2019-06-28 2019-06-28 Rotating electric machine and manufacturing method of rotating electric machine

Country Status (1)

Country Link
JP (1) JP7193422B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113704900B (en) * 2021-07-22 2023-12-26 无锡欧瑞京电机有限公司 Design method for rotor vent hole of asynchronous motor based on magnetic circuit calculation and electromagnetic field check

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233120A (en) 2001-02-02 2002-08-16 Canon Electronics Inc Electromagnetic rotating machine
JP2008211890A (en) 2007-02-26 2008-09-11 Daikin Ind Ltd Manufacturing method of rotating electric machine
JP2008236835A (en) 2007-03-16 2008-10-02 Daikin Ind Ltd Method of magnetizing rotor
JP2011130598A (en) 2009-12-18 2011-06-30 Hitachi Ltd Axial gap permanent-magnet motor, rotor used in the same, and manufacturing method for the rotor
JP2015142434A (en) 2014-01-28 2015-08-03 日本ピストンリング株式会社 Axial solid gap type rotary electric machine
JP2017121118A (en) 2015-12-28 2017-07-06 マツダ株式会社 Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3268152B2 (en) * 1995-01-31 2002-03-25 株式会社東芝 Permanent magnet field type rotating electric machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233120A (en) 2001-02-02 2002-08-16 Canon Electronics Inc Electromagnetic rotating machine
JP2008211890A (en) 2007-02-26 2008-09-11 Daikin Ind Ltd Manufacturing method of rotating electric machine
JP2008236835A (en) 2007-03-16 2008-10-02 Daikin Ind Ltd Method of magnetizing rotor
JP2011130598A (en) 2009-12-18 2011-06-30 Hitachi Ltd Axial gap permanent-magnet motor, rotor used in the same, and manufacturing method for the rotor
JP2015142434A (en) 2014-01-28 2015-08-03 日本ピストンリング株式会社 Axial solid gap type rotary electric machine
JP2017121118A (en) 2015-12-28 2017-07-06 マツダ株式会社 Method of manufacturing anisotropic magnet, method of manufacturing anisotropic soft magnetic material and method of manufacturing rotor of dynamo-electric machine

Also Published As

Publication number Publication date
JP2021010211A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
JP4692090B2 (en) Axial air gap type electric motor
US20050179336A1 (en) Axial gap electric rotary machine
WO2012067223A1 (en) Rotor and motor
WO2014188737A1 (en) Permanent magnet synchronous motor
US20060022553A1 (en) Rotating electric machine
JP2005094955A (en) Axial permanent magnet motor
JP5610989B2 (en) Rotating motor
JP2006087287A (en) Magnetic flux concentrating motor
JP2008271640A (en) Axial gap motor
JP5857799B2 (en) Hybrid excitation type rotating electric machine
JP2009136046A (en) Toroidally-wound dynamo-electric machine
JP2011078202A (en) Axial gap motor
JP6002020B2 (en) Rotating electric machine
JP2005269778A (en) Axial-gap rotating electric machine
WO2021131071A1 (en) Hybrid-field double-gap synchronous machine and drive system
JPH0479741A (en) Permanent magnet rotor
JP2007143331A (en) Permanent-magnet-embedded rotor
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
JP3985281B2 (en) Rotating electric machine
JP5855903B2 (en) Rotor and motor
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP4491211B2 (en) Permanent magnet rotating electric machine
JP2004350492A (en) Electrical machine of axial-flow structure type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221208

R150 Certificate of patent or registration of utility model

Ref document number: 7193422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150