JP5268711B2 - Electric motor and compressor, air conditioner and vacuum cleaner - Google Patents

Electric motor and compressor, air conditioner and vacuum cleaner Download PDF

Info

Publication number
JP5268711B2
JP5268711B2 JP2009047529A JP2009047529A JP5268711B2 JP 5268711 B2 JP5268711 B2 JP 5268711B2 JP 2009047529 A JP2009047529 A JP 2009047529A JP 2009047529 A JP2009047529 A JP 2009047529A JP 5268711 B2 JP5268711 B2 JP 5268711B2
Authority
JP
Japan
Prior art keywords
magnet
rotor
electric motor
hole
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009047529A
Other languages
Japanese (ja)
Other versions
JP2010206882A (en
Inventor
昌弘 仁吾
和彦 馬場
智明 及川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2009047529A priority Critical patent/JP5268711B2/en
Publication of JP2010206882A publication Critical patent/JP2010206882A/en
Application granted granted Critical
Publication of JP5268711B2 publication Critical patent/JP5268711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor which reliably insulates a magnet division face without using an insulating member and which has high efficiency and reliability. <P>SOLUTION: The motor is provided with a stator and a rotor 200 arranged at the inside of the stator through a gap. The rotor 200 is provided with a rotor core 21 constituted by punching an electromagnetic steel plate in a predetermined shape and laminating a predetermined number of plates, a plurality of magnet insertion holes 24 formed in a circumferential direction along an outer peripheral edge of the rotor core 21, and a plurality of permanent magnets 22 which are inserted into the magnet insertion holes 24 and are disposed in the circumferential direction in a divided manner through the gap of a predetermined size. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、永久磁石を装着した回転子を用いる電動機に関する。また、その電動機を用いる圧縮機及び空気調和機及び電気掃除機に関する。   The present invention relates to an electric motor using a rotor equipped with a permanent magnet. The present invention also relates to a compressor, an air conditioner, and a vacuum cleaner that use the electric motor.
最近では、小型軽量で高効率の電動機を構成するために、回転子の永久磁石として、高い磁束密度を有する希土類磁石が多用されている。しかし、希土類磁石は、導電性が高く抵抗が小さいために、電動機の運転中に渦電流が発生し易く、永久磁石表面に渦電流損失が生じて、永久磁石の発熱の原因となる。永久磁石の発熱は、永久磁石の減磁耐力を低下させ電動機の信頼性の低下にも繋がる。   In recent years, rare earth magnets having a high magnetic flux density have been frequently used as permanent magnets for rotors in order to construct small, light and highly efficient electric motors. However, since rare earth magnets have high conductivity and low resistance, eddy currents are easily generated during operation of the electric motor, and eddy current loss occurs on the surface of the permanent magnets, causing the permanent magnets to generate heat. The heat generated by the permanent magnet reduces the demagnetization resistance of the permanent magnet and leads to a decrease in the reliability of the motor.
そこで、永久磁石表面の渦電流を低減しながら、高効率を達成できる永久磁石回転電機を提供するために、回転子鉄心の内部に形成された複数の永久磁石挿入孔に挿入されると共に、回転子周方向に互いに異なる極性となるように、互いに間隔をもって回転子周方向に環状に並設された永久磁石が、導電性の磁石からなるものであって、その電気抵抗を大きくしてその表面に発生する渦電流を低減するように、導電性の単位磁石を回転子周方向に複数個並設した単位磁石群から構成されており、絶縁部材が形成された単位磁石を永久磁石挿入孔に挿入することにより、単位磁石間に絶縁部材が介在する永久磁石回転電機が提案されている(例えば、特許文献1参照)。   Therefore, in order to provide a permanent magnet rotating electrical machine that can achieve high efficiency while reducing the eddy current on the surface of the permanent magnet, it is inserted into a plurality of permanent magnet insertion holes formed inside the rotor core and rotated. Permanent magnets arranged in a ring in the circumferential direction of the rotor so as to have different polarities in the circumferential direction of the rotor are made of conductive magnets, and their electrical resistance is increased to increase their surface In order to reduce the eddy current generated in the rotor, it is composed of a unit magnet group in which a plurality of conductive unit magnets are arranged side by side in the circumferential direction of the rotor. There has been proposed a permanent magnet rotating electrical machine in which an insulating member is interposed between unit magnets by insertion (see, for example, Patent Document 1).
特許第3690067号公報Japanese Patent No. 3690067
しかしながら、上記特許文献1記載の回転子は、単位磁石間に絶縁部材が介在するので材料費が上がり、生産性が悪いという課題があった。   However, the rotor described in Patent Document 1 has a problem that the material cost increases and productivity is poor because an insulating member is interposed between unit magnets.
この発明は、上記のような課題を解決するためになされたもので、絶縁部材を使用することなく磁石分割面の絶縁を確実に行うことができ、効率及び信頼性の高い電動機を提供する。さらに、その電動機を用いる圧縮機及び空気調和機及び電気掃除機を提供する。   The present invention has been made to solve the above-described problems, and provides an electric motor that can reliably insulate a magnet dividing surface without using an insulating member and has high efficiency and reliability. Furthermore, a compressor, an air conditioner, and a vacuum cleaner using the electric motor are provided.
この発明に係る電動機は、固定子と、固定子の内側に、空隙を介して配置される回転子と、を備え、
回転子は、
電磁鋼板を所定の形状に打ち抜いて所定の枚数を積層して構成される回転子鉄心と、
回転子鉄心の外周縁に沿って周方向に形成される複数の磁石挿入孔と、
磁石挿入孔に挿入され、間に所定の寸法の空隙を介して周方向に分割配置される複数の永久磁石と、を具備するものである。
An electric motor according to the present invention includes a stator, and a rotor disposed inside the stator via a gap,
The rotor is
A rotor core constructed by punching electromagnetic steel sheets into a predetermined shape and laminating a predetermined number of sheets,
A plurality of magnet insertion holes formed in the circumferential direction along the outer peripheral edge of the rotor core;
And a plurality of permanent magnets that are inserted into the magnet insertion hole and divided and arranged in the circumferential direction with a gap having a predetermined dimension therebetween.
この発明に係る電動機は、磁石挿入孔に複数の永久磁石が間に所定の寸法の空隙を介して周方向に分割配置されるので、永久磁石の渦電流損が減少して、電動機の効率、信頼性を向上させることができる。   In the electric motor according to the present invention, a plurality of permanent magnets are divided and arranged in the circumferential direction through gaps of a predetermined dimension in the magnet insertion hole, so that the eddy current loss of the permanent magnets is reduced and the efficiency of the electric motor is reduced. Reliability can be improved.
一般的な永久磁石型の電動機300の横断面図。1 is a cross-sectional view of a general permanent magnet type electric motor 300. FIG. 図1の電動機300の回転子500の横断面図。FIG. 2 is a transverse sectional view of a rotor 500 of the electric motor 300 of FIG. 1. 実施の形態1を示す図で、永久磁石型の電動機100の横断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of a permanent magnet type electric motor 100. 実施の形態1を示す図で、図3の電動機100の回転子200の横断面図。FIG. 4 shows the first embodiment, and is a cross-sectional view of the rotor 200 of the electric motor 100 of FIG. 3. 実施の形態1を示す図で、回転子200の回転子鉄心21の横断面図。FIG. 3 shows the first embodiment, and is a cross-sectional view of a rotor core 21 of a rotor 200. 実施の形態1を示す図で、回転子鉄心21の磁石挿入孔24の横断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of a magnet insertion hole 24 of the rotor core 21. 実施の形態1を示す図で、変形例1の回転子600の横断面図。FIG. 6 shows the first embodiment, and is a cross-sectional view of a rotor 600 of a first modification. 実施の形態1を示す図で、変形例1の回転子600の回転子鉄心61の部分拡大断面図。FIG. 10 is a diagram showing the first embodiment, and is a partially enlarged cross-sectional view of a rotor core 61 of a rotor 600 of a first modification. 実施の形態1を示す図で、鉄損を従来形状と比較した図。The figure which shows Embodiment 1 and the figure which compared the iron loss with the conventional shape. 実施の形態1を示す図で、変形例2の回転子700の部分拡大断面図。FIG. 5 shows the first embodiment and is a partially enlarged cross-sectional view of a rotor 700 of a second modification. 実施の形態1を示す図で、変形例2の永久磁石22a,22bの拡大断面図。FIG. 5 shows the first embodiment, and is an enlarged cross-sectional view of permanent magnets 22a and 22b of a second modification. 実施の形態2を示す図で、永久磁石型の電動機800の横断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of a permanent magnet type electric motor 800. 実施の形態2を示す図で、図12の電動機800の回転子900の横断面図(永久磁石22固定前)。FIG. 13 is a diagram showing the second embodiment, and is a cross-sectional view of the rotor 900 of the electric motor 800 of FIG. 12 (before fixing the permanent magnet 22). 図13の部分拡大図。The elements on larger scale of FIG. 実施の形態2を示す図で、回転子鉄心91の部分拡大図。FIG. 9 shows the second embodiment and is a partially enlarged view of a rotor core 91. FIG. 実施の形態2を示す図で、図12の電動機800の回転子900の横断面図(永久磁石22固定後)。FIG. 13 is a diagram showing the second embodiment, and is a cross-sectional view of the rotor 900 of the electric motor 800 of FIG. 12 (after fixing the permanent magnet 22). 図16の部分拡大図。The elements on larger scale of FIG. 実施の形態2を示す図で、変形例の回転子900の横断面図(永久磁石22固定前)。It is a figure which shows Embodiment 2, and is a cross-sectional view of the rotor 900 of a modification (before permanent magnet 22 fixation). 図18の部分拡大図。The elements on larger scale of FIG. 実施の形態2を示す図で、変形例の回転子鉄心91の部分拡大図。FIG. 10 shows the second embodiment, and is a partially enlarged view of a rotor core 91 according to a modification. 実施の形態2を示す図で、変形例の回転子900の横断面図(永久磁石22固定後)。It is a figure which shows Embodiment 2, and is a cross-sectional view of the rotor 900 of a modification (after permanent magnet 22 fixation). 図21の部分拡大図。The elements on larger scale of FIG. 一般的な永久磁石型の電動機300の縦断面図。1 is a longitudinal sectional view of a general permanent magnet type electric motor 300. FIG. 実施の形態3を示す図で、電動機1100の縦断面図。FIG. 10 shows the third embodiment and is a longitudinal sectional view of an electric motor 1100. 実施の形態3を示す図で、回転子1200の縦断面図。FIG. 10 is a diagram illustrating the third embodiment, and is a longitudinal sectional view of a rotor 1200; 実施の形態3を示す図で、図25から永久磁石22を除いた縦断面図。It is a figure which shows Embodiment 3, and is a longitudinal cross-sectional view which removed the permanent magnet 22 from FIG. 図25のA−A断面図。AA sectional drawing of FIG. 図25のB−B断面図。BB sectional drawing of FIG. 図26のC−C断面図。CC sectional drawing of FIG. 図26のD−D断面図。DD sectional drawing of FIG. 実施の形態3を示す図で、変形例1の回転子1300の図28相当図。FIG. 28 shows the third embodiment and is a view corresponding to FIG. 28 of the rotor 1300 of the first modification. 実施の形態3を示す図で、変形例2の回転子1400の図28相当図。FIG. 28 shows the third embodiment and is a view corresponding to FIG. 28 of the rotor 1400 of the second modification.
実施の形態1.
実施の形態1の説明の前に、先ず一般的な永久磁石を用いる電動機300について説明する。
Embodiment 1 FIG.
Prior to the description of the first embodiment, first, an electric motor 300 using a general permanent magnet will be described.
図1は一般的な永久磁石を用いる電動機300の横断面図、図2は図1の電動機300の回転子500の横断面図である。   FIG. 1 is a transverse sectional view of an electric motor 300 using a general permanent magnet, and FIG. 2 is a transverse sectional view of a rotor 500 of the electric motor 300 of FIG.
図1に示すように、一般的な永久磁石を用いる電動機300(ブラシレスDCモータ)は、固定子400と、回転子500とを備える。   As shown in FIG. 1, an electric motor 300 (brushless DC motor) using a general permanent magnet includes a stator 400 and a rotor 500.
固定子400の内側に、空隙46(空間)を介して回転子500が、固定子400と略同心に配置される。   Inside the stator 400, the rotor 500 is disposed substantially concentrically with the stator 400 via a gap 46 (space).
回転子500と固定子400との間の空隙46は、例えば、径方向幅が0.3〜1.0mm程度であり、一例では、0.5mmである。   The gap 46 between the rotor 500 and the stator 400 has a radial width of about 0.3 to 1.0 mm, for example, and is 0.5 mm in one example.
図1を参照しながら、固定子400の構成を説明する。固定子400は、少なくとも円筒形の固定子鉄心41と、巻線45と、巻線45と固定子鉄心41とを絶縁する絶縁部材47とを備える。   The configuration of the stator 400 will be described with reference to FIG. The stator 400 includes at least a cylindrical stator core 41, a winding 45, and an insulating member 47 that insulates the winding 45 from the stator core 41.
固定子鉄心41は9個のティース42を有し、夫々のティース42に集中巻方式の巻線45が絶縁部材47を介して施される。巻線45は、例えば、三相Y結線である。   The stator core 41 has nine teeth 42, and a concentrated winding type winding 45 is applied to each of the teeth 42 via an insulating member 47. The winding 45 is, for example, a three-phase Y connection.
固定子鉄心41は、外周側にリング状のコアバック43が設けられる。このコアバック43から回転子500側に向かって、9個のティース42が放射状に延び、周方向に略等間隔に配置されている。   The stator core 41 is provided with a ring-shaped core back 43 on the outer peripheral side. Nine teeth 42 extend radially from the core back 43 toward the rotor 500 and are arranged at substantially equal intervals in the circumferential direction.
隣接する二つのティース42間の空間をスロット44と呼ぶ。スロット44も周方向に略等間隔に配置される。スロット44の数は、ティース42の数と同じ9個である。   A space between two adjacent teeth 42 is called a slot 44. The slots 44 are also arranged at substantially equal intervals in the circumferential direction. The number of slots 44 is nine, which is the same as the number of teeth 42.
ティース42は、コアバック43側から内側に向かって略平行の形状を有している。そのため、二つのティース42間に形成されるスロット44は、周方向の長さがその内周側よりもコアバック43側が長くなる。   The teeth 42 have a substantially parallel shape from the core back 43 side toward the inside. Therefore, the slot 44 formed between the two teeth 42 has a circumferential length that is longer on the core back 43 side than on the inner circumferential side.
ティース42の先端部42a(内径側)は、両端が周方向に広がるような円弧状をなしている。   The tip 42a (inner diameter side) of the tooth 42 has an arc shape with both ends spreading in the circumferential direction.
ティース42の先端部42aの周方向端部は、隣接するティース42の先端部42aの周方向端部と空間を介して対向している。この空間をスロットオープニング44aと呼ぶ。   The circumferential end of the tip 42a of the tooth 42 is opposed to the circumferential end of the tip 42a of the adjacent tooth 42 via a space. This space is called a slot opening 44a.
固定子鉄心41は、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚所定の形状に打ち抜いて、所定の枚数を積層することで構成される。固定子鉄心41は、積層後カシメ、溶接等により一体化される。   The stator core 41 is configured by punching thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm into a predetermined shape one by one and laminating a predetermined number. The stator core 41 is integrated by caulking after welding, welding, or the like.
次に、回転子500の構成を図2を参照しながら説明する。回転子500は、少なくとも回転子鉄心51と、回転子鉄心51の磁石挿入孔(符号は付けない)に挿入される永久磁石52と、回転子500の略中心部に位置する回転軸53とを備える。   Next, the configuration of the rotor 500 will be described with reference to FIG. The rotor 500 includes at least a rotor core 51, a permanent magnet 52 that is inserted into a magnet insertion hole (not labeled) of the rotor core 51, and a rotation shaft 53 that is positioned substantially at the center of the rotor 500. Prepare.
回転子500は、永久磁石52を6個有し、それぞれが異極に着磁されて6極を構成する。   The rotor 500 has six permanent magnets 52, each of which is magnetized to have a different polarity and constitutes six poles.
永久磁石を用いる電動機300の巻線45に交流電流を流すと、空隙46に回転磁界が形成される。その回転磁界に永久磁石52が引っ張られることによりトルクが発生し、巻線45の作る回転磁界に同期して回転子500が回転する。回転子500が回転磁界に同期して回転している時、回転子鉄心51における磁束密度は、固定子400のティース42とスロット44との影響を受けて時間的に変化する。   When an alternating current is passed through the winding 45 of the electric motor 300 using a permanent magnet, a rotating magnetic field is formed in the gap 46. Torque is generated by the permanent magnet 52 being pulled by the rotating magnetic field, and the rotor 500 rotates in synchronization with the rotating magnetic field formed by the winding 45. When the rotor 500 rotates in synchronization with the rotating magnetic field, the magnetic flux density in the rotor core 51 changes with time due to the influence of the teeth 42 and the slots 44 of the stator 400.
このため、一般的な永久磁石型の電動機300においては、回転子鉄心51および永久磁石52にこの磁束を打ち消す向きに渦電流が生じる。回転子鉄心51は、通常絶縁された積層鋼板で構成されるためほとんど渦電流は流れないが、導電率の大きい永久磁石52では回転子鉄心51のような積層構造をしていないために渦電流が流れる。   For this reason, in a general permanent magnet type electric motor 300, an eddy current is generated in the rotor core 51 and the permanent magnet 52 in a direction to cancel the magnetic flux. Since the rotor core 51 is usually composed of insulated laminated steel plates, almost no eddy current flows. However, the permanent magnet 52 having a high conductivity does not have a laminated structure like the rotor core 51, so the eddy current does not flow. Flows.
渦電流損は一般に以下の式で表される。
P=K(fBw)/ργ (1)
ここで、
P:渦電流損[W/kg]
B:磁束[T]
w:Bに垂直な導体幅[cm]
f:周波数[Hz]
ρ:固有抵抗[Ωcm]
γ:密度[g/cm
K:係数
とする。
Eddy current loss is generally expressed by the following equation.
P = K (fBw) 2 / ργ (1)
here,
P: Eddy current loss [W / kg]
B: Magnetic flux [T]
w: Conductor width perpendicular to B [cm]
f: Frequency [Hz]
ρ: Specific resistance [Ωcm]
γ: Density [g / cm 3 ]
K: A coefficient.
上記(1)式より、渦電流損Pは、高速回転であるほど周波数が高くなり大きな損失となることがわかる。   From the above equation (1), it can be seen that the eddy current loss P increases as the rotation speed increases, resulting in a large loss.
また、フェライト磁石に比べて希土類磁石のような磁力の強い(磁束Bが大きい)永久磁石を使用する電動機ほど損失が大きいといえる。   Moreover, it can be said that the electric motor using a permanent magnet having a strong magnetic force (a magnetic flux B is large) like a rare earth magnet has a larger loss than a ferrite magnet.
また、磁束Bに垂直な導体幅wが小さいほど渦電流損Pは小さいといえる。   Further, it can be said that the smaller the conductor width w perpendicular to the magnetic flux B is, the smaller the eddy current loss P is.
上記(1)式より、例えば磁束Bに垂直な導体幅wが半分になった場合は、渦電流損Pはその2乗の1/4に低減する。   From the above equation (1), for example, when the conductor width w perpendicular to the magnetic flux B is halved, the eddy current loss P is reduced to ¼ of the square.
また、固有抵抗ρが高い、つまり、導電率の低い材料であるほうが渦電流は発生しにくい。希土類磁石はフェライトに対し導電率は高いので、フェライトに比べ渦電流は発生しやすい。   Also, eddy currents are less likely to occur when the specific resistance ρ is high, that is, when the material has low conductivity. Rare earth magnets have higher electrical conductivity than ferrite, so eddy currents are more likely to occur than ferrite.
図3乃至図11は実施の形態1を示す図で、図3は永久磁石型の電動機100の横断面図、図4は図3の電動機100の回転子200の横断面図、図5は回転子200の回転子鉄心21の横断面図、図6は回転子鉄心21の磁石挿入孔24の横断面図、図7は変形例1の回転子600の横断面図、図8は変形例1の回転子600の回転子鉄心61の部分拡大断面図、図9は鉄損を従来形状と比較した図、図10は変形例2の回転子700の部分拡大断面図、図11は変形例2の永久磁石22a,22bの拡大断面図である。   3 to 11 are diagrams showing the first embodiment. FIG. 3 is a transverse sectional view of the permanent magnet type electric motor 100. FIG. 4 is a transverse sectional view of the rotor 200 of the electric motor 100 of FIG. 6 is a cross-sectional view of the magnet insertion hole 24 of the rotor core 21, FIG. 7 is a cross-sectional view of the rotor 600 of the first modification, and FIG. 9 is a partially enlarged cross-sectional view of a rotor core 61 of the rotor 600 of FIG. 9, FIG. 9 is a view comparing iron loss with a conventional shape, FIG. 10 is a partially enlarged cross-sectional view of a rotor 700 of Modification 2, and FIG. It is an expanded sectional view of permanent magnets 22a and 22b.
図3は実施の形態1の永久磁石型の電動機100の横断面図である。図3の電動機100の固定子400は、図1の一般的な電動機300の固定子400と同じである。しかし、図3の電動機100の回転子200は、図1の一般的な電動機300の回転子500と異なる。固定子400については、説明を省く。   FIG. 3 is a cross-sectional view of the permanent magnet type electric motor 100 of the first embodiment. The stator 400 of the electric motor 100 of FIG. 3 is the same as the stator 400 of the general electric motor 300 of FIG. However, the rotor 200 of the electric motor 100 of FIG. 3 is different from the rotor 500 of the general electric motor 300 of FIG. The description of the stator 400 is omitted.
図4乃至図6により、実施の形態1の電動機100の回転子200の構成を説明する。   The configuration of the rotor 200 of the electric motor 100 according to the first embodiment will be described with reference to FIGS.
図4に示すように、回転子200は、複数(図4では6個)の磁石挿入孔24が内部に形成された回転子鉄心21と、複数の磁石挿入孔24に挿入されると共に、回転子200周方向に互いに異なる極性となるように、互いに間隔をもって回転子200周方向に環状に並設された永久磁石22と、回転子200の略中央部に配置される回転軸53と、を備えている。   As shown in FIG. 4, the rotor 200 is inserted into the rotor core 21 having a plurality (six in FIG. 4) of magnet insertion holes 24 formed therein and the plurality of magnet insertion holes 24, and is rotated. The permanent magnets 22 arranged in a ring in the circumferential direction of the rotor 200 so as to have different polarities in the circumferential direction of the rotor 200, and the rotating shaft 53 disposed in a substantially central portion of the rotor 200, I have.
回転子200は6極であり、1極の永久磁石22は二つに分割されている。それぞれの永久磁石22は、平板形状である。永久磁石22の材料は、Nd−Fe−B(ネオジ、鉄、ホウ素)を主成分とするネオジウム希土類磁石であり、厚さは2mm程度である。   The rotor 200 has 6 poles, and the 1 pole permanent magnet 22 is divided into two. Each permanent magnet 22 has a flat plate shape. The material of the permanent magnet 22 is a neodymium rare earth magnet mainly composed of Nd—Fe—B (neodymium, iron, boron) and has a thickness of about 2 mm.
回転子鉄心21は、固定子鉄心41と同様、厚さ0.1〜0.7mm程度の薄い電磁鋼板を一枚一枚所定の形状に打ち抜いて、所定の枚数を積層することで構成される。   As with the stator core 41, the rotor core 21 is formed by punching thin electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm into a predetermined shape one by one and laminating a predetermined number of sheets. .
図5に示すように、回転子鉄心21には、断面形状が略長方形の磁石挿入孔24が、回転子鉄心21の外周縁に沿って周方向に複数(6個)形成されている。回転子鉄心21の略中心部に回転軸53が嵌合する軸孔23が形成されている。   As shown in FIG. 5, a plurality (six) of magnet insertion holes 24 having a substantially rectangular cross-sectional shape are formed in the rotor core 21 along the outer peripheral edge of the rotor core 21 in the circumferential direction. A shaft hole 23 into which the rotation shaft 53 is fitted is formed at a substantially central portion of the rotor core 21.
磁石挿入孔24の内側の面(断面では直線部)の略中央部に、磁石挿入孔24内に突出し、径方向に延びる突起25を設けている。突起25を設けることにより、間に空隙を有して永久磁石22を2分割することができる(図6)。   A protrusion 25 that protrudes into the magnet insertion hole 24 and extends in the radial direction is provided at a substantially central portion of the inner surface of the magnet insertion hole 24 (a straight line portion in cross section). By providing the protrusion 25, the permanent magnet 22 can be divided into two with a gap in between (FIG. 6).
磁石を単に分割しただけでは、磁石分割面が絶縁されていないため、渦電流低減を確実にすることはできず、分割面に絶縁部材を介すなどの処理を施す必要がある。突起25を設けることにより、分割された永久磁石22の間に空隙が形成されるので、分割面に絶縁部材を介すなどの処理は不要である。   If the magnet is simply divided, the magnet dividing surface is not insulated, so eddy current reduction cannot be ensured, and it is necessary to perform processing such as an insulating member on the dividing surface. By providing the protrusions 25, gaps are formed between the divided permanent magnets 22, so that treatment such as interposing an insulating member on the divided surface is unnecessary.
突起25を固定子400の回転磁界の影響を受け磁気変動が大きい磁石挿入孔24の外側の面に設ける場合は、高調波磁束により、損失が増大する恐れがあるため、突起25は磁石挿入孔24の内側の面に設けるのが好ましい。   When the protrusion 25 is provided on the outer surface of the magnet insertion hole 24 that is affected by the rotating magnetic field of the stator 400 and has a large magnetic fluctuation, the loss may increase due to the harmonic magnetic flux. Preferably, it is provided on the inner surface of 24.
また、突起25により、同一極の永久磁石22間で短絡する磁束が増えるので、突起25の径方向の長さは、永久磁石22の厚さの1/3以下に設計するのが好ましい。本実施の形態の一例では、2mmの永久磁石22の厚さに対して、突起25の高さ(径方向長さ)を0.3mm程度としている。   Moreover, since the magnetic flux which short-circuits between the permanent magnets 22 of the same pole increases by the protrusion 25, it is preferable to design the length of the protrusion 25 in the radial direction to be 1/3 or less of the thickness of the permanent magnet 22. In an example of the present embodiment, the height (radial length) of the protrusion 25 is about 0.3 mm with respect to the thickness of the permanent magnet 22 of 2 mm.
このように構成することで、永久磁石22の分割面に突起25の幅に相当する空隙ができ、空気絶縁により表面積が小さくなった永久磁石22に発生する渦電流が減少し、渦電流損を低減するとともに発熱による減磁を防ぐことが出来る。   With this configuration, a gap corresponding to the width of the protrusion 25 is formed on the split surface of the permanent magnet 22, eddy currents generated in the permanent magnet 22 whose surface area is reduced by air insulation are reduced, and eddy current loss is reduced. It is possible to reduce and prevent demagnetization due to heat generation.
一般的な永久磁石埋込型回転子は、隣り合う異なる極の磁石間に磁石間の漏れ磁束を低減するために、フラックスバリア(漏れ磁束抑制穴)を設けており、回転子表面には高調波磁束を低減し、電磁加振力を低減するためのスリットを設ける場合もある。   In general permanent magnet embedded rotors, flux barriers (leakage flux suppression holes) are provided between magnets of different poles adjacent to each other to reduce leakage flux between the magnets. In some cases, a slit for reducing wave magnetic flux and electromagnetic excitation force is provided.
本実施の形態に、これらの公知の技術を組み合わせてもよい。図7は変形例1の回転子600の横断面図、図8は変形例1の回転子600の回転子鉄心61の部分拡大断面図である。図7、図8に示すように、変形例1の回転子600は、磁石挿入孔64の両端に異極間の漏れ磁束を抑制する漏れ磁束抑制穴66(フラックスバリア)を設けている。   These known techniques may be combined with the present embodiment. FIG. 7 is a cross-sectional view of the rotor 600 of the first modification, and FIG. 8 is a partially enlarged cross-sectional view of the rotor core 61 of the rotor 600 of the first modification. As shown in FIGS. 7 and 8, the rotor 600 of the first modification is provided with leakage flux suppression holes 66 (flux barriers) that suppress leakage flux between different poles at both ends of the magnet insertion hole 64.
また、磁石挿入孔64の外側の鉄心部分に、高調波磁束を低減し、電磁加振力を低減するための複数のスリット62(ここでは、2個)を設けている。   In addition, a plurality of slits 62 (two in this case) are provided in the iron core portion outside the magnet insertion hole 64 to reduce the harmonic magnetic flux and reduce the electromagnetic excitation force.
本実施の形態の効果を、鉄損について従来形状と比較した図9により説明する。図9は、60rps(回転数/秒)、2N・m(ニュートンメートル)負荷時の鉄損を比較した結果である。永久磁石52を分割していない従来形状(例えば、図2)に比べ、永久磁石22を分割した本実施の形態は、12%鉄損が低減した。   The effect of the present embodiment will be described with reference to FIG. 9 which compares the iron loss with the conventional shape. FIG. 9 shows a result of comparison of iron loss at a load of 60 rps (rotation speed / second) and 2 N · m (Newton meter). Compared with the conventional shape in which the permanent magnet 52 is not divided (for example, FIG. 2), the present embodiment in which the permanent magnet 22 is divided has reduced iron loss by 12%.
本実施の形態は、1極を構成する永久磁石22を円周方向に2分割しているが、分割数を2分割より多くしても構わない。分割数を多くすることにより、さらに永久磁石22に発生する渦電流が減少し、渦電流損を低減することができる。   In the present embodiment, the permanent magnet 22 constituting one pole is divided into two in the circumferential direction, but the number of divisions may be larger than two. By increasing the number of divisions, the eddy current generated in the permanent magnet 22 is further reduced, and the eddy current loss can be reduced.
このように永久磁石22を分割することで、各極を構成する永久磁石22の表面積が小さくなることにより渦電流が小さくなり、高調波磁束による渦電流損を低減でき、更には、渦電流損による発熱を抑制することができる。   By dividing the permanent magnet 22 in this way, the surface area of the permanent magnet 22 constituting each pole is reduced, so that the eddy current is reduced, eddy current loss due to the harmonic magnetic flux can be reduced, and further, the eddy current loss is reduced. Heat generation due to can be suppressed.
図10は変形例2の回転子700の部分拡大断面図、図11は変形例2の永久磁石22a,22bの拡大断面図である。   FIG. 10 is a partially enlarged cross-sectional view of the rotor 700 of the second modification, and FIG. 11 is an enlarged cross-sectional view of the permanent magnets 22a and 22b of the second modification.
図10に示す変形例2の回転子700は、分割された永久磁石22a,22bの磁石挿入孔64の突起65と接する角部22a−1,22b−1に面取り(一例では丸取り)加工を施している(図11参照)。   The rotor 700 of Modification 2 shown in FIG. 10 is chamfered (rounded in one example) to the corner portions 22a-1 and 22b-1 that are in contact with the projections 65 of the magnet insertion holes 64 of the divided permanent magnets 22a and 22b. (See FIG. 11).
突起65に接触する永久磁石22a,22bの角部22a−1,22b−1に、面取り等の加工を施すことにより永久磁石22a,22bに過度の応力がかかることがなくなり、生産性、品質が向上する。   Excessive stress is not applied to the permanent magnets 22a and 22b by chamfering the corner portions 22a-1 and 22b-1 of the permanent magnets 22a and 22b-1 that are in contact with the protrusions 65, thereby improving productivity and quality. improves.
実施の形態2.
上記実施の形態1は、永久磁石に絶縁部材を施すことなく永久磁石間の絶縁を行えるが、磁石挿入孔に突起があるため永久磁石の挿入性が必ずしもよいとは言えない。突起がある分、永久磁石の挿入性が悪化し、生産性が悪くなる場合もある。
Embodiment 2. FIG.
In the first embodiment, insulation between permanent magnets can be performed without applying an insulating member to the permanent magnets. However, since there are projections in the magnet insertion holes, it cannot be said that the insertability of the permanent magnets is necessarily good. Since the protrusions are present, the insertability of the permanent magnet is deteriorated and the productivity may be deteriorated.
そこで、本実施の形態では、永久磁石の挿入性を改善するとともに、永久磁石の固定力を向上させ、磁石の音・振動特性が優れた回転子について説明する。   Therefore, in the present embodiment, a rotor that improves the insertability of the permanent magnet, improves the fixing force of the permanent magnet, and has excellent magnet sound and vibration characteristics will be described.
図12乃至図20は実施の形態2を示す図で、図12は永久磁石型の電動機800の横断面図、図13は図12の電動機800の回転子900の横断面図(永久磁石22固定前)、図14は図13の部分拡大図、図15は回転子鉄心91の部分拡大図、図16は図12の電動機800の回転子900の横断面図(永久磁石22固定後)、図17は図16の部分拡大図、図18は変形例の回転子900の横断面図(永久磁石22固定前)、図19は図18の部分拡大図、図20は変形例の回転子鉄心91の部分拡大図、図21は変形例の回転子900の横断面図(永久磁石22固定後)、図22は図21の部分拡大図である。   12 to 20 show the second embodiment. FIG. 12 is a transverse sectional view of a permanent magnet type electric motor 800. FIG. 13 is a transverse sectional view of a rotor 900 of the electric motor 800 of FIG. 14 is a partially enlarged view of FIG. 13, FIG. 15 is a partially enlarged view of the rotor core 91, and FIG. 16 is a cross-sectional view of the rotor 900 of the electric motor 800 of FIG. 12 (after fixing the permanent magnet 22). 17 is a partially enlarged view of FIG. 16, FIG. 18 is a cross-sectional view of the modified example of the rotor 900 (before fixing the permanent magnet 22), FIG. 19 is a partially enlarged view of FIG. FIG. 21 is a cross-sectional view of a modified example of a rotor 900 (after fixing the permanent magnet 22), and FIG. 22 is a partially enlarged view of FIG.
図12乃至図17により、実施の形態2の一例を説明する。図12は永久磁石型の電動機800の横断面図である。電動機800は、実施の形態1の電動機100とは、固定子400は同じであるが、回転子900が異なる。   An example of the second embodiment will be described with reference to FIGS. FIG. 12 is a cross-sectional view of a permanent magnet type electric motor 800. The electric motor 800 is the same in the stator 400 as the electric motor 100 of the first embodiment, but the rotor 900 is different.
図13乃至図15に示すように、回転子900は、回転子鉄心91の磁石挿入孔94のそれぞれの内側(回転軸53側)に、永久磁石22固定用の、一例では円形の孔97を有する。   As shown in FIGS. 13 to 15, the rotor 900 has a circular hole 97 in one example for fixing the permanent magnet 22 on the inner side (rotation shaft 53 side) of the magnet insertion hole 94 of the rotor core 91. Have.
この孔97は、外部から力を加えて磁石挿入孔94の形状を変形させて、分割されて磁石挿入孔94に挿入された永久磁石22を固定するものである。   The hole 97 is for fixing the permanent magnet 22 that is divided and inserted into the magnet insertion hole 94 by applying a force from the outside to deform the shape of the magnet insertion hole 94.
孔97と磁石挿入孔94の間の鉄心は変形しやすいように薄肉となるように構成される。孔97と磁石挿入孔94との間の最薄肉部の寸法は、0.5mm程度である。   The iron core between the hole 97 and the magnet insertion hole 94 is configured to be thin so as to be easily deformed. The dimension of the thinnest portion between the hole 97 and the magnet insertion hole 94 is about 0.5 mm.
一例では円形の孔97を示したが、他の形状でもよい。   In the example, the circular hole 97 is shown, but other shapes may be used.
磁石挿入孔94に二つの永久磁石22を挿入後、例えば、孔97よりも大きな径を有するテーパー状の棒を孔97に挿入する。それにより孔97を拡大して磁石挿入孔94の磁石分割部付近を変形させる。磁石挿入孔94の磁石分割部付近を変形させることにより、二つの永久磁石22の間に磁石挿入孔94内に突出する変形部94aを形成して、二つの永久磁石22を固定する(図16、図17参照)。   After inserting the two permanent magnets 22 into the magnet insertion hole 94, for example, a tapered rod having a diameter larger than that of the hole 97 is inserted into the hole 97. Thereby, the hole 97 is enlarged and the vicinity of the magnet dividing portion of the magnet insertion hole 94 is deformed. By deforming the vicinity of the magnet split portion of the magnet insertion hole 94, a deformation portion 94a protruding into the magnet insertion hole 94 is formed between the two permanent magnets 22, and the two permanent magnets 22 are fixed (FIG. 16). FIG. 17).
本来、着磁後の永久磁石22であれば、磁石分割部には反発し合う力が働いているので、回転子鉄心91に永久磁石22を挿入しただけの状態でも、永久磁石22間に僅かな隙間ができる。その状態で、孔97を拡大して磁石挿入孔94を変形させれば、変形した変形部94a(鉄心)が永久磁石22の間の隙間に入り込み、永久磁石22を固定することができる。   Originally, if the permanent magnet 22 has been magnetized, a repulsive force is acting on the magnet dividing portion. Therefore, even when the permanent magnet 22 is merely inserted into the rotor core 91, the permanent magnet 22 has a slight gap between the permanent magnets 22. A gap is created. In this state, when the hole 97 is enlarged and the magnet insertion hole 94 is deformed, the deformed deformed portion 94a (iron core) enters the gap between the permanent magnets 22, and the permanent magnet 22 can be fixed.
また、未着磁の永久磁石22であっても、孔97の変形により永久磁石22は分割部に対して離れる方向に力を受ける。従って、変形させる力を調整することによって、永久磁石22間の隙間を確保することができる。本実施の形態では、永久磁石22間に、0.6mm程度の隙間を確保している。   Even if the permanent magnet 22 is not magnetized, the permanent magnet 22 receives a force in a direction away from the divided portion due to the deformation of the hole 97. Therefore, the gap between the permanent magnets 22 can be ensured by adjusting the deformation force. In the present embodiment, a gap of about 0.6 mm is secured between the permanent magnets 22.
このように構成することで、磁石分割部に空隙ができ、この空気層により永久磁石22同士は絶縁され、表面積が小さくなったそれぞれの永久磁石22に流れる渦電流は減少し、渦電流損を低減するができる。更に、渦電流損によって生じる発熱による永久磁石22の減磁を防ぐことができ、電動機800の信頼性を向上させることができる。   With this configuration, a gap is formed in the magnet dividing portion, the permanent magnets 22 are insulated from each other by this air layer, the eddy current flowing through each permanent magnet 22 having a reduced surface area is reduced, and eddy current loss is reduced. It can be reduced. Furthermore, demagnetization of the permanent magnet 22 due to heat generation caused by eddy current loss can be prevented, and the reliability of the electric motor 800 can be improved.
なお、最近良く用いられる希土類磁石の保磁力は温度が高いほど低下し、減磁しやすい。よって、永久磁石22を分割して、永久磁石22に流れる渦電流を減少させて渦電流損を低減し、渦電流損によって生じる永久磁石22の発熱を抑制することは有効である。   Note that the coercive force of rare earth magnets that are frequently used recently decreases as the temperature increases, and tends to be demagnetized. Therefore, it is effective to divide the permanent magnet 22 to reduce the eddy current loss by reducing the eddy current flowing through the permanent magnet 22 and to suppress the heat generation of the permanent magnet 22 caused by the eddy current loss.
また、鉄心を変形させて永久磁石22を固定しているため、永久磁石22が動かないように強力に保持することができ、永久磁石22の音、振動低減に有効である。   Further, since the permanent magnet 22 is fixed by deforming the iron core, the permanent magnet 22 can be strongly held so as not to move, and it is effective in reducing the sound and vibration of the permanent magnet 22.
図18乃至図22により、変形例の回転子1000について説明する。変形例の回転子1000の回転子鉄心101は、磁石挿入孔104のそれぞれの内側(回転軸53側)に、永久磁石22固定用の、だるま形状の孔107を有する。   A modified rotor 1000 will be described with reference to FIGS. The rotor core 101 of the rotor 1000 according to the modified example has a harpoon-shaped hole 107 for fixing the permanent magnet 22 inside each magnet insertion hole 104 (on the rotating shaft 53 side).
変形例の回転子1000は、回転子鉄心101の磁石挿入孔94のそれぞれの内側(回転軸53側)に設けられる永久磁石22固定用のだるま形状の孔107以外は、図13乃至図15に示す回転子900と同じである。   A modified example of the rotor 1000 is shown in FIGS. 13 to 15 except for a hole 107 for fixing the permanent magnet 22 provided inside each of the magnet insertion holes 94 of the rotor core 101 (on the rotating shaft 53 side). It is the same as the rotor 900 shown.
だるま形状の孔107は、面積の小さい頭部が磁石挿入孔104に接し、孔107と磁石挿入孔104との間の最薄肉部の寸法は、0.5mm程度である。   In the daruma-shaped hole 107, the head having a small area is in contact with the magnet insertion hole 104, and the dimension of the thinnest portion between the hole 107 and the magnet insertion hole 104 is about 0.5 mm.
だるま形状の孔107の場合は、磁石挿入孔104に近接する頭部のみを変形させるだけでよい。従って、だるま形状の孔107の高さよりも長いテーパー状の棒を孔107に挿入して変形させて、磁石挿入孔104に変形部104aを形成して永久磁石22を固定する作業を、円形の孔97の場合よりも容易に行うことができる。   In the case of the daruma-shaped hole 107, only the head near the magnet insertion hole 104 needs to be deformed. Therefore, a taper-shaped rod longer than the height of the daruma-shaped hole 107 is inserted into the hole 107 and deformed to form the deformed portion 104a in the magnet insertion hole 104 and fix the permanent magnet 22 in a circular manner. This can be done more easily than in the case of the hole 97.
磁石挿入孔94,104の変形は、永久磁石22の固定が行える最小の変形量でよく、回転子900,1000の軸方向端部付近のみを変形させるようにしてもよい。   The deformation of the magnet insertion holes 94 and 104 may be a minimum deformation amount that can fix the permanent magnet 22, and only the vicinity of the axial end portions of the rotors 900 and 1000 may be deformed.
本実施の形態では、一例では、50mm程度の回転子鉄心91,101のコア積幅に対し、片側端部の10mm程度だけ孔97,107を変形させている。   In the present embodiment, in one example, the holes 97 and 107 are deformed by about 10 mm at one end portion with respect to the core width of the rotor cores 91 and 101 of about 50 mm.
実施の形態3.
上記実施の形態1,2では、永久磁石22を回転子周方向に分割する形態について述べたが、本実施の形態は、永久磁石22を回転子軸方向に分割する形態について説明する。
Embodiment 3 FIG.
In the first and second embodiments, the form in which the permanent magnet 22 is divided in the rotor circumferential direction has been described. In the present embodiment, a form in which the permanent magnet 22 is divided in the rotor axial direction will be described.
本実施の形態を説明する前に、一般的な永久磁石型の電動機300いついて説明する。   Before describing this embodiment, a general permanent magnet type electric motor 300 will be described.
図23は一般的な永久磁石型の電動機300の縦断面図である。図1で示した一般的な永久磁石型の電動機300と同じものである。図23では、固定子400のスロット44、絶縁部材47及び巻線45は図示していない(ティース42部分の断面)。   FIG. 23 is a longitudinal sectional view of a general permanent magnet type electric motor 300. This is the same as the general permanent magnet type electric motor 300 shown in FIG. In FIG. 23, the slot 44, the insulating member 47, and the winding 45 of the stator 400 are not shown (cross section of the tooth 42 portion).
既に説明したように、永久磁石を用いる電動機300の巻線45に交流電流を流すと、空隙46に回転磁界が形成される。その回転磁界に永久磁石52が引っ張られることによりトルクが発生し、巻線45の作る回転磁界に同期して回転子500が回転する。回転子500が回転磁界に同期して回転している時、回転子鉄心51における磁束密度は、固定子400のティース42とスロット44との影響を受けて時間的に変化する。   As already described, when an alternating current is passed through the winding 45 of the electric motor 300 using a permanent magnet, a rotating magnetic field is formed in the gap 46. Torque is generated by the permanent magnet 52 being pulled by the rotating magnetic field, and the rotor 500 rotates in synchronization with the rotating magnetic field formed by the winding 45. When the rotor 500 rotates in synchronization with the rotating magnetic field, the magnetic flux density in the rotor core 51 changes with time due to the influence of the teeth 42 and the slots 44 of the stator 400.
このため、一般的な永久磁石型の電動機300においては、回転子鉄心51および永久磁石52にこの磁束を打ち消す向きに渦電流が生じる。回転子鉄心51は、通常絶縁された積層鋼板で構成されるためほとんど渦電流は流れないが、導電率の大きい永久磁石52では回転子鉄心51のような積層構造をしていないために渦電流が流れる。   For this reason, in a general permanent magnet type electric motor 300, an eddy current is generated in the rotor core 51 and the permanent magnet 52 in a direction to cancel the magnetic flux. Since the rotor core 51 is usually composed of insulated laminated steel plates, almost no eddy current flows. However, the permanent magnet 52 having a high conductivity does not have a laminated structure like the rotor core 51, so the eddy current does not flow. Flows.
図24乃至図31は実施の形態3を示す図で、図24は電動機1100の縦断面図、図25は回転子1200の縦断面図、図26は図25から永久磁石22を除いた縦断面図、図27は図25のA−A断面図、図28は図25のB−B断面図、図29は図26のC−C断面図、図30は図26のD−D断面図、図31は変形例1の回転子1300の図28相当図、図32は変形例2の回転子1400の図28相当図である。   24 to 31 are diagrams showing the third embodiment. FIG. 24 is a longitudinal sectional view of an electric motor 1100. FIG. 25 is a longitudinal sectional view of a rotor 1200. FIG. 26 is a longitudinal sectional view of FIG. 27 is a cross-sectional view taken along line AA in FIG. 25, FIG. 28 is a cross-sectional view taken along line BB in FIG. 25, FIG. 29 is a cross-sectional view taken along CC in FIG. FIG. 31 is a view corresponding to FIG. 28 of the rotor 1300 of the first modification, and FIG. 32 is a view corresponding to FIG. 28 of the rotor 1400 of the second modification.
図24に示すように、本実施の形態の電動機1100の回転子1200は、永久磁石22が軸方向に分割されている。   As shown in FIG. 24, in the rotor 1200 of the electric motor 1100 of the present embodiment, the permanent magnet 22 is divided in the axial direction.
尚、図27のA−A断面図は、図2と回転子鉄心の符号が異なるだけである。   27 is different from FIG. 2 only in the reference numerals of the rotor core.
図24乃至図30に示すように、永久磁石22の分割部の磁石挿入孔124bは、永久磁石22が挿入される磁石挿入孔124aよりも径方向の寸法が短くなっている。   As shown in FIGS. 24 to 30, the magnet insertion hole 124 b of the divided portion of the permanent magnet 22 has a shorter radial dimension than the magnet insertion hole 124 a into which the permanent magnet 22 is inserted.
このように永久磁石22を軸方向に分割して構成することで、各極を構成する永久磁石22の表面積が小さくなり、高調波磁束による渦電流が流れにくくなり、渦電流による損失、及び、発熱を低減することができる。   By thus dividing the permanent magnet 22 in the axial direction, the surface area of the permanent magnet 22 constituting each pole is reduced, the eddy current due to the harmonic magnetic flux is less likely to flow, the loss due to the eddy current, and Heat generation can be reduced.
永久磁石22を単に分割しただけでは、磁石分割面が絶縁されていないため、渦電流低減を確実にすることはできず、分割面に絶縁部材を介すなどの処理を施す必要がある。   If the permanent magnet 22 is simply divided, the magnet dividing surface is not insulated. Therefore, eddy current reduction cannot be ensured, and it is necessary to perform processing such as an insulating member on the dividing surface.
本実施の形態では、磁石分割部の回転子鉄心121の磁石挿入孔124bを、永久磁石22が挿入される磁石挿入孔124aよりも小さな形状にしている。このように構成することにより、磁石分割部の鉄心には永久磁石22を挿入することができないので、分割部で確実に空気絶縁を取ることができる。絶縁は、分割部の電磁鋼板の枚数で管理することができる。   In the present embodiment, the magnet insertion hole 124b of the rotor core 121 of the magnet dividing portion is made smaller than the magnet insertion hole 124a into which the permanent magnet 22 is inserted. By comprising in this way, since the permanent magnet 22 cannot be inserted in the iron core of a magnet division part, air insulation can be reliably taken in a division part. Insulation can be managed by the number of electromagnetic steel sheets in the divided portion.
図31は変形例1の回転子1300の図28相当図である。このように、永久磁石22を挿入する磁石挿入孔134a(図示せず、磁石挿入孔124aと同じ)を二つの磁石挿入孔134cに分割し、二つの磁石挿入孔134cの間の鉄心部で磁石分割部を構成するようにしてもよい。磁石挿入孔134aの分割数は、任意でよい。   FIG. 31 is a view corresponding to FIG. 28 of the rotor 1300 of the first modification. In this way, the magnet insertion hole 134a (not shown, the same as the magnet insertion hole 124a) for inserting the permanent magnet 22 is divided into two magnet insertion holes 134c, and a magnet is formed at the iron core portion between the two magnet insertion holes 134c. You may make it comprise a division | segmentation part. The division number of the magnet insertion hole 134a may be arbitrary.
図32は変形例2の回転子1400の図28相当図である。このように、磁石挿入孔144a(図示せず、磁石挿入孔124aと同じ)よりも周方向の長さが短い磁石挿入孔144dで磁石分割部を構成してもよい。このとき、磁石挿入孔144dは永久磁石22よりも僅かに小さくすればよい。   FIG. 32 is a view corresponding to FIG. 28 of the rotor 1400 of the second modification. As described above, the magnet dividing portion may be configured by the magnet insertion hole 144d having a shorter circumferential length than the magnet insertion hole 144a (not shown, the same as the magnet insertion hole 124a). At this time, the magnet insertion hole 144 d may be slightly smaller than the permanent magnet 22.
上述の説明では、 一つの極の永久磁石22を軸方向に2分割しているが、分割数は任意でよい。   In the above description, the permanent magnet 22 having one pole is divided into two in the axial direction, but the number of divisions may be arbitrary.
また、磁石分割部で、磁石挿入孔を無くしてもよいが、永久磁石22間の短絡磁束が多くなり、トルクが減少するため、できるだけ永久磁石22断面と同等の孔が開いていることが好ましい。   Further, although the magnet insertion hole may be eliminated in the magnet dividing portion, the short-circuit magnetic flux between the permanent magnets 22 increases, and the torque is reduced. Therefore, it is preferable that a hole equivalent to the cross section of the permanent magnet 22 is opened as much as possible. .
上記実施の形態1〜3は、分割した永久磁石22を接着剤や樹脂などと共に一体に充填、固着する構成とすると、永久磁石22の固着とより確実な絶縁構成が同時にできる効果が得られる。   In the first to third embodiments, when the divided permanent magnet 22 is integrally filled and fixed together with an adhesive, resin, or the like, an effect of simultaneously fixing the permanent magnet 22 and a more reliable insulating structure can be obtained.
一般に、固定子400の巻線45(電機子巻線)が集中巻のときには、分布巻の場合に比べて電機子起磁力高調波が大きいため、永久磁石22に渦電流が発生しやすく、それに伴う損失あるいは発熱による減磁が問題となるため、実施の形態1〜3は集中巻の電動機により効果的である。   In general, when the winding 45 (armature winding) of the stator 400 is concentrated winding, since the armature magnetomotive force harmonic is larger than that of the distributed winding, an eddy current is likely to be generated in the permanent magnet 22. Since the accompanying demagnetization due to loss or heat generation becomes a problem, the first to third embodiments are more effective with a concentrated winding motor.
また、導電率の小さいフェライト系の磁石よりも、磁力が高く、導電率の高い希土類磁石の方が渦電流が発生しやすく、それに伴う損失あるいは発熱による減磁が問題となるため、実施の形態1〜3は希土類磁石を用いる電動機により効果的である。   In addition, a rare earth magnet having a higher magnetic force and a higher conductivity is more likely to generate eddy currents than a ferrite magnet having a lower conductivity, and the resulting demagnetization due to loss or heat generation is a problem. 1-3 are more effective with electric motors using rare earth magnets.
一般に渦電流損は磁束の変化に比例して発生するため、実施の形態1〜3は高速回転(例えば、5000rpm(回転数/分)以上)の電動機ほど効果的である。   Since eddy current loss generally occurs in proportion to changes in magnetic flux, the first to third embodiments are more effective for motors that rotate at high speed (for example, 5000 rpm (rotations / minute) or more).
本発明の活用例として、圧縮機等の製品の損失を大幅に低減し、製品の省エネ性を向上させることができる。また、磁石音も低減できるため、静音性の効果も期待できる。   As an application example of the present invention, loss of a product such as a compressor can be greatly reduced, and the energy saving performance of the product can be improved. Moreover, since the magnet sound can be reduced, an effect of quietness can be expected.
また、本発明の活用例として、高速回転により渦電流の発生し易い電気掃除機等の製品の損失を大幅に低減し、製品の省エネ性を向上させることができる。また、磁石音も低減できるため、静音性の効果も期待できる。   Further, as an application example of the present invention, it is possible to significantly reduce the loss of a product such as a vacuum cleaner that easily generates eddy currents due to high-speed rotation, and to improve the energy saving performance of the product. Moreover, since the magnet sound can be reduced, an effect of quietness can be expected.
21 回転子鉄心、22 永久磁石、22a 永久磁石、22a−1 角部、22b 永久磁石、22b−1 角部、23 軸孔、24 磁石挿入孔、25 突起、41 固定子鉄心、42 ティース、42a 先端部、43 コアバック、44 スロット、44a スロットオープニング、45 巻線、46 空隙、47 絶縁部材、51 回転子鉄心、52 永久磁石、53 回転軸、61 回転子鉄心、62 スリット、64 磁石挿入孔、65 突起、66 漏れ磁束抑制穴、91 回転子鉄心、94 磁石挿入孔、94a 変形部、97 孔、100 電動機、101 回転子鉄心、104 磁石挿入孔、104a 変形部、107 孔、121 回転子鉄心、124a 磁石挿入孔、124b 磁石挿入孔、131 回転子鉄心、134a 磁石挿入孔、134c 磁石挿入孔、144a 磁石挿入孔、144d 磁石挿入孔、200 回転子、300 電動機、400 固定子、500 回転子、600 回転子、700 回転子、800 電動機、900 回転子、1000 回転子、1100 電動機、1200 回転子、1300 回転子、1400 回転子。   21 rotor core, 22 permanent magnet, 22a permanent magnet, 22a-1 corner, 22b permanent magnet, 22b-1 corner, 23 shaft hole, 24 magnet insertion hole, 25 protrusion, 41 stator core, 42 teeth, 42a Tip, 43 Core back, 44 slots, 44a Slot opening, 45 windings, 46 air gap, 47 Insulating member, 51 Rotor core, 52 Permanent magnet, 53 Rotating shaft, 61 Rotor core, 62 Slit, 64 Magnet insertion hole , 65 Protrusion, 66 Leakage magnetic flux suppression hole, 91 Rotor core, 94 Magnet insertion hole, 94a Deformation part, 97 hole, 100 Electric motor, 101 Rotor core, 104 Magnet insertion hole, 104a Deformation part, 107 hole, 121 Rotor Iron core, 124a Magnet insertion hole, 124b Magnet insertion hole, 131 Rotor core, 134a Magnet insertion hole, 1 4c Magnet insertion hole, 144a Magnet insertion hole, 144d Magnet insertion hole, 200 rotor, 300 motor, 400 stator, 500 rotor, 600 rotor, 700 rotor, 800 motor, 900 rotor, 1000 rotor, 1100 Electric motor, 1200 rotor, 1300 rotor, 1400 rotor.

Claims (9)

  1. 固定子と、前記固定子の内側に、空隙を介して配置される回転子と、を備え、
    前記回転子は、
    電磁鋼板を所定の形状に打ち抜いて所定の枚数を積層して構成される回転子鉄心と、
    前記回転子鉄心の外周縁に沿って周方向に形成される磁石挿入孔であって、断面形状が略長方形であり前記回転子鉄心の外周縁に沿って直線部が形成される磁石挿入孔と、
    前記磁石挿入孔の前記回転子鉄心の中心側の直線部の内側の面からのみ該磁石挿入孔内に軸方向に連続して突出して径方向に延びる所定の形状の突起と、
    前記磁石挿入孔に挿入される複数の永久磁石であって、前記複数の永久磁石のうち隣り合う2つの永久磁石の間に前記突起が突出することにより、前記突起の幅の空隙を介して周方向に直線部に沿って分割配置される複数の永久磁石と、を具備することを特徴とする電動機。
    A stator, and a rotor disposed inside the stator via a gap,
    The rotor is
    A rotor core constructed by punching electromagnetic steel sheets into a predetermined shape and laminating a predetermined number of sheets,
    A magnet insertion hole formed in the circumferential direction along the outer peripheral edge of the rotor core, the magnet insertion hole having a substantially rectangular cross-sectional shape and a straight portion formed along the outer peripheral edge of the rotor core; ,
    A projection of a predetermined shape extending in the radial direction by continuously projecting in the magnet insertion hole only from the inner surface of the linear portion on the center side of the rotor core of the magnet insertion hole;
    A plurality of permanent magnets to be inserted into the magnet insertion hole, and the protrusion protrudes between two adjacent permanent magnets of the plurality of permanent magnets, so that the periphery of the permanent magnet is interposed through a gap having a width of the protrusion. And a plurality of permanent magnets that are divided and disposed along the straight line portion in the direction.
  2. 前記永久磁石は断面が長方形の平板形状であり、前記突起に当接する角部を面取りすることを特徴とする請求項1記載の電動機。   2. The electric motor according to claim 1, wherein the permanent magnet has a flat plate shape with a rectangular cross section, and chamfers corners that contact the protrusions.
  3. 前記永久磁石を、希土類磁石で構成することを特徴とする請求項1又は2に記載の電動機。   The electric motor according to claim 1, wherein the permanent magnet is composed of a rare earth magnet.
  4. 前記固定子の巻線を集中巻方式で構成することを特徴とする請求項1乃至3のいずれかに記載の電動機。   The electric motor according to any one of claims 1 to 3, wherein the stator winding is configured by a concentrated winding method.
  5. 分割した前記永久磁石を接着剤や樹脂で一体に固着する構成とすることを特徴とする請求項1乃至4のいずれかに記載の電動機。   5. The electric motor according to claim 1, wherein the divided permanent magnets are integrally fixed with an adhesive or a resin.
  6. 当該電動機は、5000rpm以上で回転することを特徴とする請求項1乃至5のいずれかに記載の電動機。   The electric motor according to claim 1, wherein the electric motor rotates at 5000 rpm or more.
  7. 請求項1乃至6のいずれかに記載の電動機を搭載したことを特徴とする圧縮機。   A compressor equipped with the electric motor according to any one of claims 1 to 6.
  8. 請求項7記載の圧縮機を搭載したことを特徴とする空気調和機。   An air conditioner equipped with the compressor according to claim 7.
  9. 請求項1乃至6のいずれかに記載の電動機を搭載したことを特徴とする電気掃除機。   An electric vacuum cleaner comprising the electric motor according to any one of claims 1 to 6.
JP2009047529A 2009-03-02 2009-03-02 Electric motor and compressor, air conditioner and vacuum cleaner Active JP5268711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009047529A JP5268711B2 (en) 2009-03-02 2009-03-02 Electric motor and compressor, air conditioner and vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009047529A JP5268711B2 (en) 2009-03-02 2009-03-02 Electric motor and compressor, air conditioner and vacuum cleaner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011265882A Division JP5436525B2 (en) 2011-12-05 2011-12-05 Electric motor

Publications (2)

Publication Number Publication Date
JP2010206882A JP2010206882A (en) 2010-09-16
JP5268711B2 true JP5268711B2 (en) 2013-08-21

Family

ID=42967807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009047529A Active JP5268711B2 (en) 2009-03-02 2009-03-02 Electric motor and compressor, air conditioner and vacuum cleaner

Country Status (1)

Country Link
JP (1) JP5268711B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399343B2 (en) 2010-08-20 2014-01-29 株式会社三井ハイテック Permanent magnet resin sealing method and laminated iron core manufactured by the method
JP5550525B2 (en) * 2010-10-29 2014-07-16 ビアメカニクス株式会社 Galvano scanner and laser processing machine
JP5614501B2 (en) * 2011-06-09 2014-10-29 トヨタ自動車株式会社 Rotating electric machine rotor, rotating electric machine, and method for manufacturing rotating electric machine rotor
JP5777450B2 (en) 2011-06-30 2015-09-09 株式会社三井ハイテック Method for manufacturing laminated iron core with permanent magnet sealed with resin
JP5946938B2 (en) * 2011-06-30 2016-07-06 株式会社三井ハイテック Method for manufacturing laminated iron core with permanent magnet sealed with resin
JP6095263B2 (en) * 2011-11-10 2017-03-15 信越化学工業株式会社 Embedded magnet type motor and compressor
KR101270836B1 (en) * 2011-12-08 2013-06-05 엘지이노텍 주식회사 Rotor core and motor having the same
JP5893394B2 (en) * 2011-12-27 2016-03-23 川崎重工業株式会社 Permanent magnet synchronous machine, driving apparatus and driving method for permanent magnet synchronous machine
CN104081631B (en) * 2012-03-23 2016-11-23 三菱重工汽车空调系统株式会社 Motor and employ the motor compressor of this motor
CN103780038B (en) * 2012-10-19 2016-08-17 株式会社东芝 Permanent magnet rotating machine
JP5732447B2 (en) * 2012-11-26 2015-06-10 本田技研工業株式会社 Rotating electrical machine rotor
US20150022044A1 (en) * 2013-07-22 2015-01-22 Steering Solutions Ip Holding Corporation System and method for reducing torque ripple in an interior permanent magnet motor
CN105794087B (en) 2013-12-05 2019-01-08 三菱电机株式会社 Permanent magnetic baried formula motor, compressor and refrigerating air conditioning device
JP2015052324A (en) * 2014-12-03 2015-03-19 三菱電機株式会社 Compressor
FR3032839B1 (en) * 2015-02-16 2018-05-04 Alstom Transport Technologies ELECTRIC MOTOR ROTOR AND CORRESPONDING ELECTRIC MOTOR
KR102051823B1 (en) * 2015-10-30 2019-12-04 미쓰비시덴키 가부시키가이샤 Electric motors, rotors, compressors and refrigeration air conditioning units
JP6452841B2 (en) 2015-11-02 2019-01-16 三菱電機株式会社 Electric motor, rotor, compressor and refrigeration air conditioner
CN109155550B (en) * 2016-05-25 2020-08-14 三菱电机株式会社 Rotor, motor, compressor, air conditioner, and method for manufacturing motor
JP6328208B2 (en) * 2016-11-04 2018-05-23 三菱電機株式会社 Magnet-embedded rotary electric machine and method for manufacturing the same
CN110061577B (en) * 2018-01-18 2021-06-08 上海海立电器有限公司 Rotor, permanent magnet synchronous motor and compressor
WO2021033557A1 (en) * 2019-08-21 2021-02-25 日本精工株式会社 Direct drive motor
WO2021192231A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1488733A1 (en) * 1965-12-08 1969-06-19 Siemens Ag Permanently excited electrical machine with permanent magnet blocks in the runner
JPH09233748A (en) * 1996-02-23 1997-09-05 Fuji Electric Co Ltd Fixing equipment of cylindrical core of rotating electric machine and its outer cylindrical body
JP4490621B2 (en) * 2002-06-20 2010-06-30 株式会社東芝 Rotor of abduction type permanent magnet motor
JP2004032844A (en) * 2002-06-21 2004-01-29 Asmo Co Ltd Rotor
JP2009044819A (en) * 2007-08-07 2009-02-26 Toyota Motor Corp Rotor for magnet-embedded motor and its manufacturing method therefor

Also Published As

Publication number Publication date
JP2010206882A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5268711B2 (en) Electric motor and compressor, air conditioner and vacuum cleaner
JP5436525B2 (en) Electric motor
JP5538439B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JPWO2008105049A1 (en) Permanent magnet motor, hermetic compressor and fan motor
US9343933B2 (en) Rotating electric machine
JP5677584B2 (en) Rotor, compressor and refrigeration air conditioner for embedded permanent magnet motor
JP5889340B2 (en) Rotor of embedded permanent magnet electric motor, electric motor provided with the rotor, compressor provided with the electric motor, and air conditioner provided with the compressor
JP5208084B2 (en) Rotor, blower and compressor of embedded permanent magnet motor
JP5347588B2 (en) Embedded magnet motor
US20110163618A1 (en) Rotating Electrical Machine
JP4901839B2 (en) Electric motor, compressor, blower and ventilation fan
JP2014155373A (en) Multi-gap rotary electric machine
JP5365074B2 (en) Axial gap type rotating electrical machine
JP2015047009A (en) Rotary electric machine
JP2013115899A (en) Rotor of permanent magnet type motor, manufacturing method of the same, and permanent magnet type motor
JP2009254030A (en) Motor
JPWO2017212575A1 (en) Permanent magnet motor
JP5793948B2 (en) Synchronous motor
EP3309931B1 (en) Permanent magnet-embedded motor and compressor
JP6440349B2 (en) Rotating electric machine
JP2021122163A (en) Rotary electric machine
JP2010057313A (en) Electric motor
JP5750995B2 (en) Synchronous motor
JP2008220128A (en) Axial gap type rotary electric machine and compressor
JP2019161828A (en) Rotary electric machine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250