WO2023176199A1 - Rotor and electric motor - Google Patents

Rotor and electric motor Download PDF

Info

Publication number
WO2023176199A1
WO2023176199A1 PCT/JP2023/004025 JP2023004025W WO2023176199A1 WO 2023176199 A1 WO2023176199 A1 WO 2023176199A1 JP 2023004025 W JP2023004025 W JP 2023004025W WO 2023176199 A1 WO2023176199 A1 WO 2023176199A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
adhesive layer
adhesive
rotor core
permanent magnet
Prior art date
Application number
PCT/JP2023/004025
Other languages
French (fr)
Japanese (ja)
Inventor
宏之 吉村
崇弘 大橋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023176199A1 publication Critical patent/WO2023176199A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present disclosure relates to a rotor and an electric motor, and particularly relates to a rotor including a permanent magnet and an electric motor including a rotor.
  • Patent Document 1 describes a rotor that includes permanent magnets.
  • a magnet embedding hole (magnet placement hole) is formed in the rotor core of the rotor.
  • a permanent magnet is fixed to the magnet embedding hole with an adhesive.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a rotor and a motor that can increase the adhesive strength between a permanent magnet and a rotor core.
  • a rotor includes a rotor core, a permanent magnet, an adhesive, and a rotating shaft.
  • the permanent magnet is arranged close to the rotor core.
  • the adhesive is placed between the rotor core and the permanent magnet, and fixes the permanent magnet to the rotor core.
  • the rotation shaft is fixed to the rotor core, and has an axis as the center of rotation.
  • the adhesive has multiple adhesive layers. The plurality of adhesive layers are arranged in a line in a direction in which the axial center of the rotating shaft extends, and each has at least partially opposite edges spaced apart from each other.
  • An electric motor includes the rotor and stator.
  • the adhesive strength between the permanent magnet and the rotor core can be increased.
  • FIG. 1 is a schematic top view of the electric motor according to the first embodiment.
  • FIG. 2 is a perspective view of the rotor of the electric motor according to the first embodiment.
  • FIG. 3 is a partial sectional view of the rotor of the electric motor according to the first embodiment.
  • FIG. 4 is a partial cross-sectional view of the rotor according to the first modification.
  • FIG. 5 is a partial sectional view of a rotor according to a second modification.
  • FIG. 6 is a partial sectional view of a rotor according to a third modification.
  • FIG. 7 is a schematic top view of the electric motor according to the second embodiment.
  • FIG. 8 is a perspective view of the rotor of the electric motor according to the second embodiment.
  • FIG. 9 is a partial sectional view of the rotor of the electric motor according to the second embodiment.
  • FIG. 10 is a partial sectional view of a rotor according to a fourth modification.
  • FIG. 11 is a partial sectional view of a rotor according to a fifth modification.
  • FIG. 12 is a partial sectional view of a rotor according to a sixth modification.
  • FIG. 13 is a schematic diagram of the electric motor and the power source that supplies current to the electric motor according to the first embodiment.
  • the electric motor 1 is an inner rotor type motor.
  • FIG. 1 is a schematic top view of the electric motor 1 according to the first embodiment.
  • FIG. 2 is a perspective view of the rotor 3 of the electric motor 1 according to the first embodiment.
  • FIG. 3 is a partial sectional view of the rotor 3 of the electric motor 1 according to the first embodiment.
  • the electric motor 1 has a stator 2 and a rotor 3.
  • the direction in which the axis 14 (described later) of the rotating shaft 10 (described later) extends is referred to as an axial direction A1
  • the circumferential direction of the rotor 3 is referred to as a circumferential direction C1.
  • a direction along a line segment connecting a point on a plane perpendicular to the axis 14 and an intersection of the plane and the axis 14 is referred to as a radial direction F1.
  • the axial direction A1, the circumferential direction C1, and the radial direction F1 are orthogonal to each other.
  • the stator 2 is a stator that has a stator core 4 and a plurality of (nine in FIG. 1) coil windings 6.
  • the stator core 4 is a laminated core in which a plurality of steel plates are laminated in the thickness direction.
  • the stator core 4 is formed into a substantially cylindrical column shape.
  • the stator core 4 includes an annular core back 7 and a plurality of (nine in FIG. 1) core backs arranged on the inner peripheral surface of the core back 7 at regular intervals along the circumferential direction C1 and extending in the radial direction F1 and toward the axis 14. It has teeth 8.
  • Each coil winding 6 is wound around one corresponding tooth 8.
  • the rotor 3 is an IPM (Interior Permanent Magnet) type rotor in which a permanent magnet is embedded inside the rotor core.
  • the rotor 3 is arranged closer to the axis 14 than the stator 2 in the radial direction F1, and includes a rotor core 9, a rotating shaft 10, and a plurality of permanent magnets 11.
  • FIG. 13 shows a schematic diagram of a power supply 100 that supplies current to the electric motor 1.
  • the electric motor 1 operates as follows.
  • a cable 101 extends from a power supply 100 to the electric motor 1, and current is supplied through a power supply connection part 102. More specifically, three-phase currents having a phase difference of 120 degrees in electrical angle are supplied to the plurality of coil windings 6 through the power supply connection part 102, respectively, to excite the stator 2 and generate a rotating magnetic field. do.
  • This rotating magnetic field interacts with the magnetic field generated by the permanent magnet 11 provided on the rotor 3 to generate rotational torque in the rotor 3, and as a result, the rotor 3 rotates around the axis 14. .
  • the rotor core 9 is a laminated core in which a plurality of steel plates 17 are laminated in the thickness direction.
  • the rotor core 9 has a circular center shaft hole 12 and is formed in a cylindrical shape.
  • a plurality of magnet arrangement holes 13 are formed in the rotor core 9 and arranged in the circumferential direction C1.
  • the opening shape of the magnet arrangement hole 13 is a substantially rectangular parallelepiped.
  • the magnet placement hole 13 penetrates in the axial direction A1, but may have a bottom.
  • the rotating shaft 10 is a cylindrical member and has an axis 14 that is the center of rotation.
  • the rotating shaft 10 is inserted into a central shaft hole 12 of the rotor core 9 and is fixed therein.
  • a plurality of (10 in FIG. 1) permanent magnets 11 are inserted and fixed into the plurality of magnet placement holes 13 of the rotor core 9, respectively.
  • Each permanent magnet 11 has, for example, a rectangular parallelepiped shape.
  • a samarium-cobalt permanent magnet, a neodymium magnet, or the like can be used, and a neodymium magnet is suitable for use in an automobile motor.
  • FIG. 3 is a cross-sectional view of FIG. 2 taken along a plane that passes through the rotor core 9 and the permanent magnets 11 and includes the III-III line segment along the radial direction F1 and is perpendicular to the circumferential direction C1.
  • the rotor 3 has an adhesive 16 for fixing the permanent magnets 11 to the magnet placement holes 13.
  • the adhesive 16 is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11.
  • the adhesive 16 is, for example, a thermosetting resin, and specifically may be, for example, an epoxy resin or a silicone resin.
  • the adhesive 16 has a first adhesive layer 31 and a second adhesive layer 32, as shown in FIG. In the axial direction A1, the first adhesive layer 31 is arranged above the second adhesive layer 32 in the paper of FIG. 3, and the second adhesive layer 32 is arranged below the first adhesive layer 31 in the paper of FIG. has been done.
  • the first adhesive layer 31 and the second adhesive layer 32 are each formed on the outer surface 26 of the permanent magnet 11. Note that the first adhesive layer 31 and the second adhesive layer 32 only need to be formed on at least a portion of the outer surface 26 of the permanent magnet 11. For example, each of the first adhesive layer 31 and the second adhesive layer 32 may be formed in an annular shape around the outer surface 26.
  • each of the first adhesive layer 31 and the plurality of second adhesive layers 32 may be divided into a plurality of parts and formed so as to be lined up in the circumferential direction around the outer surface 26.
  • each of the first adhesive layer 31 and the plurality of second adhesive layers 32 may be formed only on one surface of the outer surface 26.
  • the lower edge 33 of the first adhesive layer 31 and the upper edge 34 of the second adhesive layer 32 face each other at a distance over the entire circumference. In other words, the gap 35 exists between the first adhesive layer 31 and the second adhesive layer 32 in the axial direction A1.
  • the possibility of strength saturation can be reduced. This is because the first adhesive layer 31 and the second adhesive layer 32 are shorter in the axial direction A1 than the length at which strength saturation occurs due to stress concentration at the ends. As a result of the above, even if the area where the adhesive 16 is applied is large, the possibility that the adhesive strength per unit area will decrease can be reduced. As a result, even in the rotor core 9 which is long in the axial direction A1, the permanent magnets 11 can be bonded with a strength corresponding to the bonding area.
  • a rotor core 9 having a plurality of magnet placement holes 13 is prepared.
  • the permanent magnets 11 are inserted into each of the plurality of magnet placement holes 13 in the rotor core 9.
  • the permanent magnets 11 are fixed to the rotor core 9 by applying adhesive 16 to the gap between the inner surface 25 of the magnet arrangement hole 13 of the rotor core 9 and the outer surface 26 of the permanent magnet 11.
  • the adhesive 16 is supplied to a predetermined position so that a gap 35 is secured between the first adhesive layer 31 and the second adhesive layer 32 by controlling the viscosity depending on the type and temperature of the adhesive.
  • the wettability of the middle part of the protective film of the permanent magnet 11 is made worse than that of the upper and lower parts, so that the gap 35 is secured between the first adhesive layer 31 and the second adhesive layer 32.
  • the adhesive 16 may be supplied to a predetermined position.
  • the permanent magnet 11 coated with the adhesive 16 in advance may be inserted into the magnet placement hole 13.
  • the rotating shaft 10 is attached to the rotor core 9. Specifically, the rotating shaft 10 is fixed to the central shaft hole 12 of the rotor core 9.
  • FIG. 4 is a partial cross-sectional view of the rotor 3 according to the first modification, and is a diagram similar to FIG. 3.
  • the adhesive 40 is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11.
  • the adhesive 40 includes a first adhesive layer 41, a second adhesive layer 42, a third adhesive layer 43, a fourth adhesive layer 44, and a fifth adhesive layer 45.
  • the first adhesive layer 41 to the fifth adhesive layer 45 are arranged in this order from top to bottom in the axial direction A1 in the gap between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11.
  • Each of the first adhesive layer 41 to the fifth adhesive layer 45 is formed around the outer surface 26 of the permanent magnet 11.
  • the upper edge 66 of the fourth adhesive layer 44, the lower edge 67 of the fourth adhesive layer 44, and the upper edge 68 of the fifth adhesive layer 45 are each opposed to each other with a distance between them. In other words, gaps 71, 72, 73, and 74 exist in the axial direction A1 between adjacent adhesive layers. Note that the first to fifth adhesive layers 41 to 45 only need to be formed on at least a portion of the outer surface 26 of the permanent magnet 11.
  • each of the first adhesive layer 41 to the fifth adhesive layer 45 may be formed in an annular shape around the outer surface 26.
  • each of the first adhesive layer 41 to the fifth adhesive layer 45 may be divided into a plurality of parts and arranged circumferentially around the outer surface 26.
  • each of the first adhesive layer 41 to the fifth adhesive layer 45 may be formed only on one surface of the outer surface 26.
  • FIG. 5 is a partial sectional view of the rotor 3 according to the second modification, and is a diagram similar to FIG. 3.
  • the rotor 3 further includes a blocking member 51.
  • the blocking member 51 is a member for separating the edge of the first adhesive layer 31 and the edge of the second adhesive layer 32 by blocking the first adhesive layer 31 and the second adhesive layer 32 from each other.
  • the blocking member 51 has a rectangular cylindrical shape and is located between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11. is placed between. In this way, the blocking member 51 blocks the first adhesive layer 31 and the second adhesive layer 32 from each other.
  • the blocking member 51 is, for example, fitted and fixed to the permanent magnet 11.
  • the blocking member 51 is made of resin or metal, for example, and is provided at an intermediate portion of the outer surface 26 of the permanent magnet 11 in the axial direction A1.
  • the blocking member 51 only needs to correspond to the first adhesive layer 31 and the second adhesive layer 32. That is, the shielding member 51 may be provided in an annular shape around the outer surface 26 in accordance with the configuration of the first adhesive layer 31 and the second adhesive layer 32, or a plurality of shielding members 51 may be arranged circumferentially around the outer surface 26. It may be provided on only one surface of the outer surface 26.
  • the shielding member 51 facilitates positioning of the first adhesive layer 31 and the second adhesive layer 32, so manufacturing of the rotor 3 is simplified.
  • the manufacturing method in which the first adhesive layer 31 and the second adhesive layer 32 are first applied to the permanent magnet 11 and then inserted into the magnet placement hole 13 becomes easier.
  • FIG. 6 is a partial cross-sectional view of the rotor 3 according to the third modification, and is a diagram similar to FIG. 3.
  • the rotor 3 further includes a blocking member 52.
  • the blocking member 52 is a member for separating the edges of the adhesive layers by blocking the plurality of adhesive layers from each other.
  • the blocking member 52 is disposed between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11 and between the lower edge 33 of the first adhesive layer 31 and the upper edge 34 of the second adhesive layer 32. There is. In this way, the blocking member 52 blocks the first adhesive layer 31 and the second adhesive layer 32 from each other.
  • the blocking member 52 is integrated with the rotor core 9. That is, the blocking member 52 is a protrusion that protrudes toward the axial center 14 in the radial direction F1 from the intermediate portion in the axial direction A1 of the inner surface 25 of the magnet arrangement hole 13 of the rotor core 9 of the first embodiment. Note that the blocking member 52 only needs to correspond to the first adhesive layer 31 and the second adhesive layer 32. That is, the shielding member 52 may be formed in an annular shape around the inner surface 25 in accordance with the configuration of the first adhesive layer 31 and the second adhesive layer 32, or may be formed in a plurality of shielding members arranged circumferentially around the inner surface 25. or may be formed only on one surface of the inner surface 25.
  • the shielding member 52 facilitates positioning of the first adhesive layer 31 and the second adhesive layer 32, so manufacturing of the rotor 3 is simplified.
  • FIG. 7 is a schematic top view of an electric motor 1A according to the second embodiment.
  • FIG. 8 is a perspective view of a rotor 3A of a power transmitter 1A according to the second embodiment.
  • FIG. 9 is a partial sectional view of a rotor 3A of a power transmitter 1A according to the second embodiment.
  • the electric motor 1A has a stator 2A and a rotor 3A.
  • the stator 2A is a stator that has a stator core 4A and a plurality of coil windings 6A.
  • the rotor 3A is of the SPM (Surface Permanent Magnet) type in which a plurality of permanent magnets are arranged on the outer peripheral surface of the rotor core.
  • the rotor 3A includes a rotor core 9A, a permanent magnet 11A, and a rotating shaft 10A.
  • the permanent magnet 11A has a cylindrical shape and is provided on the outer peripheral surface 37A of the rotor core 9A.
  • the permanent magnet 11A has a plurality of N poles and S poles located alternately in the circumferential direction C1.
  • FIG. 9 shows a cross-sectional view of FIG. 8 taken along a plane that passes through the rotor core 9A and the permanent magnet 11A, includes the IX-IX line segment along the radial direction F1, and is perpendicular to the circumferential direction C1.
  • the rotor 3A has an adhesive 16A for fixing the permanent magnet 11A to the outer peripheral surface 37A of the rotor core 9A.
  • the adhesive 16A is filled in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A.
  • the adhesive 16A has a first adhesive layer 31A and a second adhesive layer 32A.
  • the first adhesive layer 31A and the second adhesive layer 32A are arranged side by side in the axial direction A1, and the first adhesive layer 31A is arranged on the second adhesive layer 32A in the paper of FIG.
  • a second adhesive layer 32A is disposed below the first adhesive layer 31A.
  • the first adhesive layer 31A and the second adhesive layer 32A are each formed continuously or intermittently in the circumferential direction C1 on the outer peripheral surface 37A of the rotor core 9A.
  • the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A face each other at a distance over the entire circumference. In other words, a gap 35A in the axial direction A1 exists between the first adhesive layer 31A and the second adhesive layer 32A.
  • the adhesive 16A in the axial direction A1 By dividing the adhesive 16A in the axial direction A1 as described above, strength saturation can be avoided. Thereby, even if the applied area of the adhesive 16A is large, the adhesive strength per unit area does not decrease. As a result, even in the rotor core 9A which is long in the axial direction A1, the permanent magnet 11A can be bonded with a strength corresponding to the bonding area.
  • the permanent magnet 11A may be a plurality of permanent magnets divided in the circumferential direction C1. In that case, the adhesive layers of all the permanent magnets may be divided in the axial direction, or the adhesive layers of some permanent magnets may be divided in the axial direction.
  • FIG. 10 is a partial sectional view of a rotor 3A according to a fourth modification, and is a drawing similar to FIG. 9.
  • the adhesive 40A is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11.
  • the adhesive 40A includes a first adhesive layer 41A, a second adhesive layer 42A, a third adhesive layer 43A, a fourth adhesive layer 44A, and a fifth adhesive layer 45A.
  • the first adhesive layer 41A to the fifth adhesive layer 45A are arranged in this order from top to bottom in the axial direction A1 in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A.
  • the first adhesive layer 41A to the fifth adhesive layer 45A are each formed continuously or intermittently in the circumferential direction C1 on the outer peripheral surface 37A of the rotor core 9A.
  • FIG. 11 is a partial sectional view of a rotor 3A according to a fifth modification, and is a drawing similar to FIG. 9.
  • the rotor 3A further includes a blocking member 51A.
  • the blocking member 51A is a member for separating the edges of the adhesive layers by blocking the plurality of adhesive layers from each other.
  • the blocking member 51A has a cylindrical shape, and is located between the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A. is located between. In this way, the blocking member 51A blocks the first adhesive layer 31A and the second adhesive layer 32A.
  • the blocking member 51A is fixed to the permanent magnet 11A.
  • the blocking member 51A is made of resin, for example, and is provided at an intermediate portion in the axial direction A1 of the inner circumferential surface 38A of the permanent magnet 11A.
  • the shielding member 51A facilitates positioning of the first adhesive layer 31A and the second adhesive layer 32A, thereby simplifying the manufacture of the rotor 3A.
  • FIG. 12 is a partial sectional view of a rotor 3A according to a sixth modification, and is a drawing similar to FIG. 9.
  • the rotor 3A further includes a blocking member 52A.
  • the blocking member 52A is a member for separating the edges by blocking the plurality of adhesive layers from each other.
  • the blocking member 52A is located between the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A. It is located.
  • the blocking member 52A is integrated with the rotor core 9A. That is, the blocking member 52A protrudes toward the axial center 14 in the radial direction F1 from the intermediate portion in the axial direction A1 of the outer peripheral surface 37A of the rotor core 9 of the first embodiment.
  • the shielding member 52A facilitates the positioning of the first adhesive layer 31A and the second adhesive layer 32A, making it easier to manufacture the rotor 3A.
  • the adhesive layers of all the permanent magnets are divided in the axial direction, but only some of the permanent magnets may have adhesive layers divided in the axial direction.
  • the edges of the two adhesive layers faced each other at a distance over the entire circumference, but if some parts of the adhesive layer faced each other at a distance, at least that portion In this case, the same effects as in the first embodiment can be obtained. Therefore, the edges may be partially connected in the circumferential direction.
  • first embodiment and the second embodiment are directed to an inner rotor type electric motor
  • present disclosure can also be applied to an outer rotor type electric motor.
  • the blocking member may be used to realize three or more adhesive layers.
  • the blocking member may be used to realize three or more adhesive layers.
  • the number and type of adhesive layers are not limited.
  • the number, position, and material of the blocking members are not limited.
  • the shape of the magnet placement hole and the magnet are not limited.
  • the magnet arrangement hole extends long in the radial direction when viewed from above, but the magnet arrangement hole may extend substantially in the circumferential direction.
  • the rotor core may be a powder core whose main component is a powder material formed by pressure-molding a powdered magnetic material.
  • the stator (3, 3A) includes a rotor core (9, 9A), a permanent magnet (11, 11A), an adhesive (16, 16A, 40, 40A), and a rotating shaft (10 , 10A).
  • the permanent magnets (11, 11A) are arranged close to the rotor core (9, 9A).
  • the adhesive (16, 16A, 40, 40A) is placed between the rotor core (9, 9A) and the permanent magnet (11, 11A).
  • 11A) is fixed.
  • the rotating shaft (10, 10A) is fixed to the rotor core (9, 9A) and rotates around the shaft center (14).
  • the adhesives (16, 16A, 40, 40A) are arranged in a line in the direction in which the axis (14) of the rotating shaft (10, 10A) extends, and are spaced apart from each other by opposing edges (33, 34). ) at least partially.
  • strength saturation can be avoided by dividing the adhesive (16, 16A, 40, 40A) in the axial direction (A1). Thereby, even if the applied area of the adhesive (16, 16A, 40, 40A) is large, the adhesive strength per unit area does not decrease. As a result, even on rotor cores (9, 9A) that are long in the axial direction (A1), permanent magnets (11, 11A) can be bonded with strength corresponding to the bonding area.
  • the stator (3) according to the second aspect includes a plurality of permanent magnets (11) in the first aspect.
  • the rotor core (9) has a plurality of magnet placement holes (13) arranged in the circumferential direction and corresponding to the plurality of permanent magnets (11).
  • Each of the plurality of permanent magnets (11) is arranged inside a corresponding one of the plurality of magnet arrangement holes (13).
  • the permanent magnet (11) can be bonded to the magnet arrangement hole (13) with a strength that corresponds to the bonding area.
  • the edges (33, 34) of the plurality of adhesive layers (31, 32) face each other at a distance.
  • the permanent magnets (11, 11A) are bonded to the magnet placement holes (13, 13A) with a strength that corresponds to the bonding area. It becomes possible.
  • the rotor (3, 3A) according to the fourth aspect has a plurality of It further includes a blocking member (51, 51A, 52, 52A) disposed between the edges (33, 33A, 34, 34A) of the adhesive layer (31, 31A, 32, 32A).
  • the adhesive layer (31, 31A, 32, 32A) can be easily positioned by the blocking member (51, 51A, 52, 52A), so manufacturing of the rotor (3, 3A) is simplified. .
  • the blocking member (51, 51A) is fixed to the permanent magnet (11, 11A) in the fourth aspect.
  • the adhesive layers (31, 31A, 32, 32A) can be easily positioned with respect to each other by the blocking member (51, 51A), so manufacturing of the rotor (3, 3A) is simplified.
  • the blocking member (52) is integrated with the rotor core (9, 9A) in the fourth aspect.
  • the adhesive layer (31, 31A, 32, 32A) can be easily positioned by the blocking member (52, 52A), so manufacturing of the rotor (3, 3A) is simplified.
  • the rotor (3, 3A) according to the seventh aspect includes three or more adhesive layers (41, 41A, 42, 42A, 43, 43A, 44, 44A, 45, 45A).
  • the permanent magnets (11, 11A) can be bonded with a strength corresponding to the bonding area.
  • the electric motor (1, 1A) according to the eighth aspect includes the rotor (3, 3A) and stator (2, 2A) in any one of the first to seventh aspects.
  • the permanent magnets (11, 11A) can be bonded with a strength corresponding to the bonding area.
  • the adhesive strength between the permanent magnet and the rotor core can be increased. Therefore, the rotor and electric motor of the present disclosure can improve the reliability of the electric motor and are industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Provided are a rotor and an electric motor with which it is possible to increase the adhesive strength between permanent magnets and a rotor core. A rotor (3) comprises a rotor core (9), permanent magnets (11), an adhesive (16), and a rotary shaft. The adhesive (16) is positioned between the rotor core (9) and the permanent magnets (11), and fixes the permanent magnets (11) to the rotor core (9). The rotary shaft (10) is fixed to the rotor core (9), and rotates about an axis (14). The adhesive (16) includes a first adhesive layer (31) and a second adhesive layer (32). The first adhesive layer (31) and the second adhesive layer (32) are arranged one after the other in the direction of extension of the axis of the rotary shaft, and have a bottom edge (33) and a top edge (34) that are opposite one another with a distance therebetween.

Description

回転子及び電動機Rotor and electric motor
 本開示は、回転子及び電動機に関し、特に、永久磁石を備える回転子、及び回転子を備える電動機に関する。 The present disclosure relates to a rotor and an electric motor, and particularly relates to a rotor including a permanent magnet and an electric motor including a rotor.
 特許文献1には、永久磁石を備える回転子が記載されている。回転子の回転子鉄心には、磁石埋設用孔(磁石配置穴)が形成されている。磁石埋設用孔には、永久磁石が接着剤によって固定されている。 Patent Document 1 describes a rotor that includes permanent magnets. A magnet embedding hole (magnet placement hole) is formed in the rotor core of the rotor. A permanent magnet is fixed to the magnet embedding hole with an adhesive.
特開2017-192222号公報JP2017-192222A
 しかし、特許文献1に記載の回転子が回転軸の軸心方向に長くなると、接着剤の面積も軸心方向に長くなる。そして、軸心方向において接着剤がある長さ以上になると、軸心方向における接着層端部での応力集中に起因して、応力に対する強度増加が軸心方向において飽和してしまう。つまり、接着剤の塗布面積が大きくなるにつれ、応力は大きくなるものの接着強度が変化しなくなる。このため、接着剤の単位面積当たりの接着強度が低下してしまう。 However, when the rotor described in Patent Document 1 becomes longer in the axial direction of the rotating shaft, the area of the adhesive also becomes longer in the axial direction. When the length of the adhesive exceeds a certain length in the axial direction, the increase in strength against stress becomes saturated in the axial direction due to stress concentration at the end of the adhesive layer in the axial direction. In other words, as the adhesive application area increases, the stress increases, but the adhesive strength does not change. Therefore, the adhesive strength per unit area of the adhesive decreases.
 本開示は上記の点に鑑みてなされたものであり、永久磁石と回転子鉄心との接着強度を高めることができる回転子及び電動機を提供することを目的とする。 The present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a rotor and a motor that can increase the adhesive strength between a permanent magnet and a rotor core.
 本開示の一態様に係る回転子は、回転子鉄心と、永久磁石と、接着剤と、回転軸とを備える。前記永久磁石は、前記回転子鉄心に近接配置されている。前記接着剤は、前記回転子鉄心と前記永久磁石との間に配置され、前記永久磁石を前記回転子鉄心に固定する。前記回転軸は、前記回転子鉄心に固定され、軸心を回転中心とする。前記接着剤は、複数の接着層を有する。前記複数の接着層は、前記回転軸の前記軸心が延伸する方向に並んで配置され、それぞれ互いに距離を空けて対向する端縁を少なくとも部分的に有する。 A rotor according to one aspect of the present disclosure includes a rotor core, a permanent magnet, an adhesive, and a rotating shaft. The permanent magnet is arranged close to the rotor core. The adhesive is placed between the rotor core and the permanent magnet, and fixes the permanent magnet to the rotor core. The rotation shaft is fixed to the rotor core, and has an axis as the center of rotation. The adhesive has multiple adhesive layers. The plurality of adhesive layers are arranged in a line in a direction in which the axial center of the rotating shaft extends, and each has at least partially opposite edges spaced apart from each other.
 本開示の他の一態様に係る電動機は、前記回転子と固定子とを備えている。 An electric motor according to another aspect of the present disclosure includes the rotor and stator.
 本開示の上記態様に係る回転子及び電動機によれば、永久磁石と回転子鉄心との接着強度を高めることができる。 According to the rotor and electric motor according to the above aspects of the present disclosure, the adhesive strength between the permanent magnet and the rotor core can be increased.
図1は、第1実施形態に係る電動機の概略上面図である。FIG. 1 is a schematic top view of the electric motor according to the first embodiment. 図2は、第1実施形態に係る電動機の回転子の斜視図である。FIG. 2 is a perspective view of the rotor of the electric motor according to the first embodiment. 図3は、第1実施形態に係る電動機の回転子の部分断面図である。FIG. 3 is a partial sectional view of the rotor of the electric motor according to the first embodiment. 図4は、第1変形例に係る回転子の部分断面図である。FIG. 4 is a partial cross-sectional view of the rotor according to the first modification. 図5は、第2変形例に係る回転子の部分断面図である。FIG. 5 is a partial sectional view of a rotor according to a second modification. 図6は、第3変形例に係る回転子の部分断面図である。FIG. 6 is a partial sectional view of a rotor according to a third modification. 図7は、第2実施形態に係る電動機の概略上面図である。FIG. 7 is a schematic top view of the electric motor according to the second embodiment. 図8は、第2実施形態に係る電動機の回転子の斜視図である。FIG. 8 is a perspective view of the rotor of the electric motor according to the second embodiment. 図9は、第2実施形態に係る電動機の回転子の部分断面図である。FIG. 9 is a partial sectional view of the rotor of the electric motor according to the second embodiment. 図10は、第4変形例に係る回転子の部分断面図である。FIG. 10 is a partial sectional view of a rotor according to a fourth modification. 図11は、第5変形例に係る回転子の部分断面図である。FIG. 11 is a partial sectional view of a rotor according to a fifth modification. 図12は、第6変形例に係る回転子の部分断面図である。FIG. 12 is a partial sectional view of a rotor according to a sixth modification. 図13は、第1実施形態に係る電動機および当該電動機に電流を供給する電源の模式図である。FIG. 13 is a schematic diagram of the electric motor and the power source that supplies current to the electric motor according to the first embodiment.
 (実施形態)
 以下、本開示の実施形態に係る回転子及び電動機について図面を参照して詳細に説明する。ただし、下記の実施形態において説明する各図は模式的な図であり、各構成要素の大きさ及び厚さのそれぞれの比が必ずしも実際の寸法比を反映しているとは限らない。なお、以下の実施形態で説明する構成は本開示の一例に過ぎない。本開示は、以下の実施形態に限定されず、本開示の効果を奏することができれば、設計等に応じて種々の変更が可能である。
(Embodiment)
Hereinafter, a rotor and an electric motor according to embodiments of the present disclosure will be described in detail with reference to the drawings. However, each figure described in the following embodiments is a schematic diagram, and the respective ratios of the sizes and thicknesses of each component do not necessarily reflect the actual size ratios. Note that the configuration described in the embodiments below is only an example of the present disclosure. The present disclosure is not limited to the following embodiments, and various changes can be made depending on the design etc. as long as the effects of the present disclosure can be achieved.
 (第1実施形態)
 (1)電動機の概要
 図1~図3を用いて、本開示の第1実施形態に係る電動機1を説明する。電動機1は、インナーロータタイプのモータである。
(First embodiment)
(1) Overview of Electric Motor An electric motor 1 according to a first embodiment of the present disclosure will be described using FIGS. 1 to 3. The electric motor 1 is an inner rotor type motor.
 図1は、第1実施形態に係る電動機1の概略上面図である。図2は、第1実施形態に係る電動機1の回転子3の斜視図である。図3は、第1実施形態に係る電動機1の回転子3の部分断面図である。 FIG. 1 is a schematic top view of the electric motor 1 according to the first embodiment. FIG. 2 is a perspective view of the rotor 3 of the electric motor 1 according to the first embodiment. FIG. 3 is a partial sectional view of the rotor 3 of the electric motor 1 according to the first embodiment.
 電動機1は、固定子2と、回転子3とを有している。なお、これ以降の説明において、回転軸10(後述)の軸心14(後述)が延びる方向を軸心方向A1とし、回転子3の周方向を周方向C1と呼ぶ。また、軸心14に垂直な平面上の1点と、当該平面と軸心14との交点とを結ぶ線分に沿う方向を径方向F1と呼ぶ。電動機1に含まれる任意の1点において、軸心方向A1と、周方向C1と、径方向F1とは、互いに直交する。 The electric motor 1 has a stator 2 and a rotor 3. In the following description, the direction in which the axis 14 (described later) of the rotating shaft 10 (described later) extends is referred to as an axial direction A1, and the circumferential direction of the rotor 3 is referred to as a circumferential direction C1. Further, a direction along a line segment connecting a point on a plane perpendicular to the axis 14 and an intersection of the plane and the axis 14 is referred to as a radial direction F1. At any one point included in the electric motor 1, the axial direction A1, the circumferential direction C1, and the radial direction F1 are orthogonal to each other.
 固定子2は、固定子鉄心4と、複数(図1では9個)のコイル巻線6と、を有するステータである。固定子鉄心4は、複数の鋼板が厚さ方向に積層された積層コアである。固定子鉄心4は、略円筒柱状に形成されている。固定子鉄心4は、円環状のコアバック7と、その内周面に周方向C1に沿って一定間隔で配置され径方向F1かつ軸心14に向かって延びる複数(図1では9個)のティース8とを有している。各コイル巻線6は、対応する1個のティース8に巻かれている。 The stator 2 is a stator that has a stator core 4 and a plurality of (nine in FIG. 1) coil windings 6. The stator core 4 is a laminated core in which a plurality of steel plates are laminated in the thickness direction. The stator core 4 is formed into a substantially cylindrical column shape. The stator core 4 includes an annular core back 7 and a plurality of (nine in FIG. 1) core backs arranged on the inner peripheral surface of the core back 7 at regular intervals along the circumferential direction C1 and extending in the radial direction F1 and toward the axis 14. It has teeth 8. Each coil winding 6 is wound around one corresponding tooth 8.
 回転子3は、回転子鉄心の内部に永久磁石が埋め込まれたIPM(Interior Permanent Magnet)タイプのロータである。回転子3は、径方向F1において固定子2と比べ軸心14により近い位置に配置され、回転子鉄心9と、回転軸10と、複数の永久磁石11とを備えている。 The rotor 3 is an IPM (Interior Permanent Magnet) type rotor in which a permanent magnet is embedded inside the rotor core. The rotor 3 is arranged closer to the axis 14 than the stator 2 in the radial direction F1, and includes a rotor core 9, a rotating shaft 10, and a plurality of permanent magnets 11.
 図13に、電動機1に電流を供給する電源100の模式図を示す。電動機1は、以下のように動作する。電動機1は、電源100からケーブル101が延び、電源接続部102を通じて電流が供給される。より具体的には、電源接続部102を通じて、互いに電気角で120°の位相差を有する3相の電流がそれぞれ複数のコイル巻線6に供給されて固定子2が励磁され、回転磁界が発生する。この回転磁界と、回転子3に設けられた永久磁石11が発生する磁界とが相互作用して、回転子3に回転トルクが発生し、その結果、回転子3が軸心14回りに回転する。 FIG. 13 shows a schematic diagram of a power supply 100 that supplies current to the electric motor 1. The electric motor 1 operates as follows. A cable 101 extends from a power supply 100 to the electric motor 1, and current is supplied through a power supply connection part 102. More specifically, three-phase currents having a phase difference of 120 degrees in electrical angle are supplied to the plurality of coil windings 6 through the power supply connection part 102, respectively, to excite the stator 2 and generate a rotating magnetic field. do. This rotating magnetic field interacts with the magnetic field generated by the permanent magnet 11 provided on the rotor 3 to generate rotational torque in the rotor 3, and as a result, the rotor 3 rotates around the axis 14. .
 (2)回転子
 図2に示すように、回転子鉄心9は、複数の鋼板17が厚さ方向に積層された積層コアである。回転子鉄心9は、円形の中心軸孔12を有しており、円筒形状に形成されている。
(2) Rotor As shown in FIG. 2, the rotor core 9 is a laminated core in which a plurality of steel plates 17 are laminated in the thickness direction. The rotor core 9 has a circular center shaft hole 12 and is formed in a cylindrical shape.
 回転子鉄心9には、周方向C1に並んだ複数の磁石配置穴13が形成されている。磁石配置穴13は、開口形状が略直方体状である。この実施形態では磁石配置穴13は軸心方向A1に貫通しているが、底部を有していてもよい。 A plurality of magnet arrangement holes 13 are formed in the rotor core 9 and arranged in the circumferential direction C1. The opening shape of the magnet arrangement hole 13 is a substantially rectangular parallelepiped. In this embodiment, the magnet placement hole 13 penetrates in the axial direction A1, but may have a bottom.
 回転軸10は、円柱状の部材であり、回転中心となる軸心14を有している。回転軸10は、回転子鉄心9の中心軸孔12に挿入され固定されている。 The rotating shaft 10 is a cylindrical member and has an axis 14 that is the center of rotation. The rotating shaft 10 is inserted into a central shaft hole 12 of the rotor core 9 and is fixed therein.
 複数(図1では10個)の永久磁石11は、それぞれ回転子鉄心9の複数の磁石配置穴13に挿入され固定されている。各永久磁石11は、例えば、直方体状である。永久磁石11は、サマリウム・コバルト系の永久磁石、ネオジウム磁石等を用いることができ、自動車のモータ用としては、ネオジウム磁石が好適である。 A plurality of (10 in FIG. 1) permanent magnets 11 are inserted and fixed into the plurality of magnet placement holes 13 of the rotor core 9, respectively. Each permanent magnet 11 has, for example, a rectangular parallelepiped shape. As the permanent magnet 11, a samarium-cobalt permanent magnet, a neodymium magnet, or the like can be used, and a neodymium magnet is suitable for use in an automobile motor.
 図3は、図2において、回転子鉄心9および永久磁石11を通り、径方向F1に沿うIII-III線分を含み、かつ周方向C1に垂直な面で切った断面図を示す。回転子3は、図3に示すように、永久磁石11を磁石配置穴13に固定するための接着剤16を有している。接着剤16は、磁石配置穴13の内面25と永久磁石11の外面26との間隙に充填されている。接着剤16は、例えば、熱硬化性樹脂であり、具体的には、例えばエポキシ樹脂やシリコーン樹脂であってよい。 FIG. 3 is a cross-sectional view of FIG. 2 taken along a plane that passes through the rotor core 9 and the permanent magnets 11 and includes the III-III line segment along the radial direction F1 and is perpendicular to the circumferential direction C1. As shown in FIG. 3, the rotor 3 has an adhesive 16 for fixing the permanent magnets 11 to the magnet placement holes 13. The adhesive 16 is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11. The adhesive 16 is, for example, a thermosetting resin, and specifically may be, for example, an epoxy resin or a silicone resin.
 接着剤16は、図3に示すように、第1接着層31と第2接着層32を有する。軸心方向A1において、図3の紙面にて第1接着層31が第2接着層32より上に配置され、図3の紙面にて第2接着層32が第1接着層31より下に配置されている。第1接着層31と第2接着層32は、各々、永久磁石11の外面26に形成されている。なお、第1接着層31と第2接着層32は、永久磁石11の外面26の少なくとも一部に形成されていればよい。例えば、第1接着層31と第2接着層32の各々が、外面26の周囲に環状に形成されていてもよい。あるいは、第1接着層31と複数の第2接着層32の各々が、外面26の周囲に周方向に並ぶように複数に分割されて形成されていてもよい。あるいは、第1接着層31と複数の第2接着層32の各々が、外面26の一面のみに形成されていてもよい。第1接着層31の下端縁33と第2接着層32の上端縁34は、全周にわたって互いに距離を空けて対向している。言い換えると、軸心方向A1において、第1接着層31と第2接着層32の間には、空隙35が存在する。 The adhesive 16 has a first adhesive layer 31 and a second adhesive layer 32, as shown in FIG. In the axial direction A1, the first adhesive layer 31 is arranged above the second adhesive layer 32 in the paper of FIG. 3, and the second adhesive layer 32 is arranged below the first adhesive layer 31 in the paper of FIG. has been done. The first adhesive layer 31 and the second adhesive layer 32 are each formed on the outer surface 26 of the permanent magnet 11. Note that the first adhesive layer 31 and the second adhesive layer 32 only need to be formed on at least a portion of the outer surface 26 of the permanent magnet 11. For example, each of the first adhesive layer 31 and the second adhesive layer 32 may be formed in an annular shape around the outer surface 26. Alternatively, each of the first adhesive layer 31 and the plurality of second adhesive layers 32 may be divided into a plurality of parts and formed so as to be lined up in the circumferential direction around the outer surface 26. Alternatively, each of the first adhesive layer 31 and the plurality of second adhesive layers 32 may be formed only on one surface of the outer surface 26. The lower edge 33 of the first adhesive layer 31 and the upper edge 34 of the second adhesive layer 32 face each other at a distance over the entire circumference. In other words, the gap 35 exists between the first adhesive layer 31 and the second adhesive layer 32 in the axial direction A1.
 上記のように接着剤16を軸心方向A1に分割することで、強度飽和の可能性を低減できる。なぜなら、第1接着層31及び第2接着層32は、軸心方向A1において端部の応力集中によって強度飽和が発生する長さよりも短くなっているからである。以上の結果、接着剤16の塗布面積が大きくても単位面積当たりの接着強度が低下する可能性を低減できる。その結果、軸心方向A1に長い回転子鉄心9においても、接着面積に応じた強度で永久磁石11を接着可能になる。 By dividing the adhesive 16 in the axial direction A1 as described above, the possibility of strength saturation can be reduced. This is because the first adhesive layer 31 and the second adhesive layer 32 are shorter in the axial direction A1 than the length at which strength saturation occurs due to stress concentration at the ends. As a result of the above, even if the area where the adhesive 16 is applied is large, the possibility that the adhesive strength per unit area will decrease can be reduced. As a result, even in the rotor core 9 which is long in the axial direction A1, the permanent magnets 11 can be bonded with a strength corresponding to the bonding area.
 (3)回転子の製造方法
 回転子3の製造方法を説明する。
(3) Rotor manufacturing method A manufacturing method of the rotor 3 will be explained.
 第1工程として、複数の磁石配置穴13を有する回転子鉄心9を準備する。 As a first step, a rotor core 9 having a plurality of magnet placement holes 13 is prepared.
 第2工程として、回転子鉄心9に対し、複数の磁石配置穴13の各々に永久磁石11を挿入する。 As a second step, the permanent magnets 11 are inserted into each of the plurality of magnet placement holes 13 in the rotor core 9.
 第3工程として、回転子鉄心9の磁石配置穴13の内面25と永久磁石11の外面26との間隙に接着剤16を塗布することで、永久磁石11を回転子鉄心9に固定する。この場合、接着剤の種類、温度によって粘度を制御することで第1接着層31と第2接着層32との間に空隙35が確保されるように所定の位置に接着剤16を供給する。それに代えて又は加えて、永久磁石11の保護膜の中間部の濡れ性を上下に比べて悪くすることで、第1接着層31と第2接着層32の間に空隙35が確保されるように所定の位置に接着剤16を供給してもよい。 As a third step, the permanent magnets 11 are fixed to the rotor core 9 by applying adhesive 16 to the gap between the inner surface 25 of the magnet arrangement hole 13 of the rotor core 9 and the outer surface 26 of the permanent magnet 11. In this case, the adhesive 16 is supplied to a predetermined position so that a gap 35 is secured between the first adhesive layer 31 and the second adhesive layer 32 by controlling the viscosity depending on the type and temperature of the adhesive. Alternatively or in addition, the wettability of the middle part of the protective film of the permanent magnet 11 is made worse than that of the upper and lower parts, so that the gap 35 is secured between the first adhesive layer 31 and the second adhesive layer 32. The adhesive 16 may be supplied to a predetermined position.
 なお、第2工程及び第3工程の代わりに、接着剤16をあらかじめ塗布した永久磁石11を磁石配置穴13に挿入してもよい。 Note that instead of the second and third steps, the permanent magnet 11 coated with the adhesive 16 in advance may be inserted into the magnet placement hole 13.
 第4工程として、回転子鉄心9に回転軸10を取り付ける。具体的には、回転子鉄心9の中心軸孔12に、回転軸10を固定する。 As a fourth step, the rotating shaft 10 is attached to the rotor core 9. Specifically, the rotating shaft 10 is fixed to the central shaft hole 12 of the rotor core 9.
 (4)変形例
 上述の実施形態は、本開示の様々な実施形態の一つに過ぎない。上述の実施形態は、本開示の目的を達成できれば、設計等に応じて種々の変更が可能である。以下、上述の実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。なお、以下の変形例について、電動機1の概略上面図は図1と同様の図面となり、回転子3の斜視図は図2と同様の図面となる。
(4) Modifications The embodiment described above is just one of various embodiments of the present disclosure. The embodiments described above can be modified in various ways depending on the design, etc., as long as the objective of the present disclosure can be achieved. Modifications of the above embodiment will be listed below. The modified examples described below can be applied in combination as appropriate. In addition, regarding the following modified examples, a schematic top view of the electric motor 1 is a drawing similar to FIG. 1, and a perspective view of the rotor 3 is a drawing similar to FIG. 2.
 (4-1)第1変形例
 第1実施形態では接着層は2層(第1接着層31、第2接着層32)であったが、接着層は複数であればよいので、3層以上であってもよい。
(4-1) First modification example In the first embodiment, there were two adhesive layers (first adhesive layer 31, second adhesive layer 32), but since it is sufficient to have multiple adhesive layers, three or more adhesive layers are required. It may be.
 図4を用いて、そのような例を第1変形例として説明する。図4は、第1変形例に係る回転子3の部分断面図であり、図3と同様の図である。 Such an example will be described as a first modification using FIG. 4. FIG. 4 is a partial cross-sectional view of the rotor 3 according to the first modification, and is a diagram similar to FIG. 3.
 接着剤40は、磁石配置穴13の内面25と永久磁石11の外面26との間隙に充填されている。接着剤40は、図4に示すように、第1接着層41と、第2接着層42と、第3接着層43と、第4接着層44と、第5接着層45と、を有する。第1接着層41~第5接着層45は、磁石配置穴13の内面25と永久磁石11の外面26との間隙において、この順で軸心方向A1の上から下に配置されている。第1接着層41~第5接着層45は、各々が、永久磁石11の外面26の周囲に形成されている。第1接着層41の下端縁61と第2接着層42の上端縁62、第2接着層42の下端縁63と第3接着層43の上端縁64、第3接着層43の下端縁65と第4接着層44の上端縁66、第4接着層44の下端縁67と第5接着層45の上端縁68は、各々、互いに距離を空けて対向している。言い換えると、隣接する接着層同士の間には、軸心方向A1の空隙71、72、73、74が存在する。なお、第1接着層41~第5接着層45は、永久磁石11の外面26の少なくとも一部に形成されていればよい。例えば、第1接着層41~第5接着層45の各々が、外面26の周囲に環状に形成されていてもよい。あるいは、第1接着層41~第5接着層45の各々が、外面26の周囲に周方向に並ぶように複数に分割されて形成されていてもよい。あるいは、第1接着層41~第5接着層45の各々が、外面26の一面のみに形成されていてもよい。 The adhesive 40 is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11. As shown in FIG. 4, the adhesive 40 includes a first adhesive layer 41, a second adhesive layer 42, a third adhesive layer 43, a fourth adhesive layer 44, and a fifth adhesive layer 45. The first adhesive layer 41 to the fifth adhesive layer 45 are arranged in this order from top to bottom in the axial direction A1 in the gap between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11. Each of the first adhesive layer 41 to the fifth adhesive layer 45 is formed around the outer surface 26 of the permanent magnet 11. The lower edge 61 of the first adhesive layer 41 and the upper edge 62 of the second adhesive layer 42, the lower edge 63 of the second adhesive layer 42, the upper edge 64 of the third adhesive layer 43, and the lower edge 65 of the third adhesive layer 43. The upper edge 66 of the fourth adhesive layer 44, the lower edge 67 of the fourth adhesive layer 44, and the upper edge 68 of the fifth adhesive layer 45 are each opposed to each other with a distance between them. In other words, gaps 71, 72, 73, and 74 exist in the axial direction A1 between adjacent adhesive layers. Note that the first to fifth adhesive layers 41 to 45 only need to be formed on at least a portion of the outer surface 26 of the permanent magnet 11. For example, each of the first adhesive layer 41 to the fifth adhesive layer 45 may be formed in an annular shape around the outer surface 26. Alternatively, each of the first adhesive layer 41 to the fifth adhesive layer 45 may be divided into a plurality of parts and arranged circumferentially around the outer surface 26. Alternatively, each of the first adhesive layer 41 to the fifth adhesive layer 45 may be formed only on one surface of the outer surface 26.
 第1変形例でも第1実施形態と同じ効果が得られる。 The same effects as the first embodiment can be obtained in the first modification.
 (4-2)第2変形例
 第1実施形態では第1接着層31と第2接着層32の間は空隙35となっていたが、2つの接着層は離れていればよいので、他の部材によって満たされていてもよい。
(4-2) Second modification example In the first embodiment, there was a gap 35 between the first adhesive layer 31 and the second adhesive layer 32, but since the two adhesive layers only need to be separated, other It may be filled with a member.
 図5を用いて、そのような例を第2変形例として説明する。図5は、第2変形例に係る回転子3の部分断面図であり、図3と同様の図である。 Such an example will be described as a second modification using FIG. 5. FIG. 5 is a partial sectional view of the rotor 3 according to the second modification, and is a diagram similar to FIG. 3.
 回転子3は、第1実施形態の構成に加えて、遮断部材51を更に備えている。遮断部材51は、第1接着層31及び第2接着層32同士を遮断することで第1接着層31の端縁と第2接着層32の端縁とを離すための部材である。遮断部材51は、角筒状であり、磁石配置穴13の内面25と永久磁石11の外面26との間において、第1接着層31の下端縁33と第2接着層32の上端縁34との間に配置されている。このようにして、遮断部材51は、第1接着層31と第2接着層32を遮断している。 In addition to the configuration of the first embodiment, the rotor 3 further includes a blocking member 51. The blocking member 51 is a member for separating the edge of the first adhesive layer 31 and the edge of the second adhesive layer 32 by blocking the first adhesive layer 31 and the second adhesive layer 32 from each other. The blocking member 51 has a rectangular cylindrical shape and is located between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11. is placed between. In this way, the blocking member 51 blocks the first adhesive layer 31 and the second adhesive layer 32 from each other.
 遮断部材51は、永久磁石11に例えば嵌合されて固定されている。具体的には、遮断部材51は、例えば樹脂製又は金属製であり、永久磁石11の外面26の軸心方向A1中間部に設けられている。なお、遮断部材51は第1接着層31と第2接着層32に対応さえしていればよい。すなわち、遮蔽部材51は、第1接着層31と第2接着層32の構成に対応して、外面26の周囲に環状に設けられていてもよいし、外面26の周囲に周方向に複数並んで設けられていてもよいし、外面26の一面のみに設けられていてもよい。 The blocking member 51 is, for example, fitted and fixed to the permanent magnet 11. Specifically, the blocking member 51 is made of resin or metal, for example, and is provided at an intermediate portion of the outer surface 26 of the permanent magnet 11 in the axial direction A1. Note that the blocking member 51 only needs to correspond to the first adhesive layer 31 and the second adhesive layer 32. That is, the shielding member 51 may be provided in an annular shape around the outer surface 26 in accordance with the configuration of the first adhesive layer 31 and the second adhesive layer 32, or a plurality of shielding members 51 may be arranged circumferentially around the outer surface 26. It may be provided on only one surface of the outer surface 26.
 第2変形例では、遮断部材51によって第1接着層31と第2接着層の32の位置決めが容易になるので、回転子3の製造が簡単になる。 In the second modification, the shielding member 51 facilitates positioning of the first adhesive layer 31 and the second adhesive layer 32, so manufacturing of the rotor 3 is simplified.
 また、第2変形例では、永久磁石11に第1接着層31と第2接着層32を先に塗布してから、磁石配置穴13に挿入する製造方法が容易になる。 In addition, in the second modification, the manufacturing method in which the first adhesive layer 31 and the second adhesive layer 32 are first applied to the permanent magnet 11 and then inserted into the magnet placement hole 13 becomes easier.
 (4-3)第3変形例
 図6を用いて、2つの接着層が他の部材によって遮断されている他の例を、第3変形例として説明する。図6は、第3変形例に係る回転子3の部分断面図であり、図3と同様の図である。
(4-3) Third Modification Example With reference to FIG. 6, another example in which two adhesive layers are blocked by another member will be described as a third modification example. FIG. 6 is a partial cross-sectional view of the rotor 3 according to the third modification, and is a diagram similar to FIG. 3.
 回転子3は、第1実施形態の構成に加えて、遮断部材52を更に備えている。遮断部材52は、複数の接着層同士を遮断することで接着層の端縁同士を離すための部材である。遮断部材52は、磁石配置穴13の内面25と永久磁石11の外面26との間において、第1接着層31の下端縁33と第2接着層32の上端縁34との間に配置されている。このようにして、遮断部材52は、第1接着層31と第2接着層32を遮断している。 In addition to the configuration of the first embodiment, the rotor 3 further includes a blocking member 52. The blocking member 52 is a member for separating the edges of the adhesive layers by blocking the plurality of adhesive layers from each other. The blocking member 52 is disposed between the inner surface 25 of the magnet arrangement hole 13 and the outer surface 26 of the permanent magnet 11 and between the lower edge 33 of the first adhesive layer 31 and the upper edge 34 of the second adhesive layer 32. There is. In this way, the blocking member 52 blocks the first adhesive layer 31 and the second adhesive layer 32 from each other.
 遮断部材52は、回転子鉄心9と一体である。つまり、遮断部材52は、第1実施形態の回転子鉄心9の磁石配置穴13の内面25の軸心方向A1中間部から径方向F1かつ軸心14に向かって突出している突起である。なお、遮断部材52は、第1接着層31と第2接着層32に対応さえしていればよい。すなわち、遮蔽部材52は、第1接着層31と第2接着層32の構成に対応して、内面25の周囲に環状に形成されていてもよいし、内面25の周囲に周方向に複数並んで形成されていてもよいし、内面25の一面のみに形成されていてもよい。 The blocking member 52 is integrated with the rotor core 9. That is, the blocking member 52 is a protrusion that protrudes toward the axial center 14 in the radial direction F1 from the intermediate portion in the axial direction A1 of the inner surface 25 of the magnet arrangement hole 13 of the rotor core 9 of the first embodiment. Note that the blocking member 52 only needs to correspond to the first adhesive layer 31 and the second adhesive layer 32. That is, the shielding member 52 may be formed in an annular shape around the inner surface 25 in accordance with the configuration of the first adhesive layer 31 and the second adhesive layer 32, or may be formed in a plurality of shielding members arranged circumferentially around the inner surface 25. or may be formed only on one surface of the inner surface 25.
 第3変形例では、遮断部材52によって第1接着層31と第2接着層の32の位置決めが容易になるので、回転子3の製造が簡単になる。 In the third modification, the shielding member 52 facilitates positioning of the first adhesive layer 31 and the second adhesive layer 32, so manufacturing of the rotor 3 is simplified.
 (第2実施形態)
 (1)電動機
 図7~図9を用いて、本開示の第2実施形態に係る電動機1Aを説明する。なお、第1実施形態との相違点を中心に説明するので、同じ構成には同じ又は対応する符号を付すことで説明を適宜省略する。図7は、第2実施形態に係る電動機1Aの概略上面図である。図8は、第2実施形態に係る電送機1Aの回転子3Aの斜視図である。図9は、第2実施形態に係る電送機1Aの回転子3Aの部分断面図である。
(Second embodiment)
(1) Electric Motor An electric motor 1A according to a second embodiment of the present disclosure will be described using FIGS. 7 to 9. Note that since the explanation will focus on the differences from the first embodiment, the explanation will be omitted as appropriate by assigning the same or corresponding numerals to the same configurations. FIG. 7 is a schematic top view of an electric motor 1A according to the second embodiment. FIG. 8 is a perspective view of a rotor 3A of a power transmitter 1A according to the second embodiment. FIG. 9 is a partial sectional view of a rotor 3A of a power transmitter 1A according to the second embodiment.
 電動機1Aは、固定子2Aと、回転子3Aとを有している。固定子2Aは、固定子鉄心4Aと、複数のコイル巻線6Aと、を有するステータである。 The electric motor 1A has a stator 2A and a rotor 3A. The stator 2A is a stator that has a stator core 4A and a plurality of coil windings 6A.
 (2)回転子
 回転子3Aは、回転子鉄心の外周面に複数の永久磁石が配置されるSPM(Surface Permanent Magnet)タイプである。回転子3Aは、回転子鉄心9Aと、永久磁石11Aと、回転軸10Aと、を有している。
(2) Rotor The rotor 3A is of the SPM (Surface Permanent Magnet) type in which a plurality of permanent magnets are arranged on the outer peripheral surface of the rotor core. The rotor 3A includes a rotor core 9A, a permanent magnet 11A, and a rotating shaft 10A.
 永久磁石11Aは、円筒形状であって、回転子鉄心9Aの外周面37Aに設けられている。永久磁石11Aは、周方向C1に交互に位置する複数のN極とS極を有している。 The permanent magnet 11A has a cylindrical shape and is provided on the outer peripheral surface 37A of the rotor core 9A. The permanent magnet 11A has a plurality of N poles and S poles located alternately in the circumferential direction C1.
 図9は、図8において、回転子鉄心9Aおよび永久磁石11Aを通り、径方向F1に沿うIX-IX線分を含み、かつ周方向C1に垂直な面で切った断面図を示す。回転子3Aは、図9に示すように、永久磁石11Aを回転子鉄心9Aの外周面37Aに固定するための接着剤16Aを有している。接着剤16Aは、回転子鉄心9Aの外周面37Aと永久磁石11Aの内周面38Aとの間隙に充填されている。 FIG. 9 shows a cross-sectional view of FIG. 8 taken along a plane that passes through the rotor core 9A and the permanent magnet 11A, includes the IX-IX line segment along the radial direction F1, and is perpendicular to the circumferential direction C1. As shown in FIG. 9, the rotor 3A has an adhesive 16A for fixing the permanent magnet 11A to the outer peripheral surface 37A of the rotor core 9A. The adhesive 16A is filled in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A.
 接着剤16Aは、図9に示すように、第1接着層31Aと第2接着層32Aを有する。第1接着層31Aと第2接着層32Aは、軸心方向A1に並んで配置され、図9の紙面にて第1接着層31Aが第2接着層32A上に配置され、図9の紙面にて第2接着層32Aが第1接着層31Aの下に配置されている。第1接着層31Aと第2接着層32Aは、各々、回転子鉄心9Aの外周面37Aに周方向C1に連続的に又は断続的に形成されている。ただし、第1接着層31Aの下端縁33Aと第2接着層32Aの上端縁34Aは、全周にわたって互いに距離を空けて対向している。言い換えると、第1接着層31Aと第2接着層32Aの間には、軸心方向A1の空隙35Aが存在する。 As shown in FIG. 9, the adhesive 16A has a first adhesive layer 31A and a second adhesive layer 32A. The first adhesive layer 31A and the second adhesive layer 32A are arranged side by side in the axial direction A1, and the first adhesive layer 31A is arranged on the second adhesive layer 32A in the paper of FIG. A second adhesive layer 32A is disposed below the first adhesive layer 31A. The first adhesive layer 31A and the second adhesive layer 32A are each formed continuously or intermittently in the circumferential direction C1 on the outer peripheral surface 37A of the rotor core 9A. However, the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A face each other at a distance over the entire circumference. In other words, a gap 35A in the axial direction A1 exists between the first adhesive layer 31A and the second adhesive layer 32A.
 上記のように接着剤16Aを軸心方向A1に分割することで、強度飽和を回避することができる。それにより、接着剤16Aの塗布面積が大きくても単位面積当たりの接着強度が低下しない。その結果、軸心方向A1に長い回転子鉄心9Aにおいても、接着面積に応じた強度で永久磁石11Aを接着可能になる。 By dividing the adhesive 16A in the axial direction A1 as described above, strength saturation can be avoided. Thereby, even if the applied area of the adhesive 16A is large, the adhesive strength per unit area does not decrease. As a result, even in the rotor core 9A which is long in the axial direction A1, the permanent magnet 11A can be bonded with a strength corresponding to the bonding area.
 なお、永久磁石11Aは、周方向C1に分割された複数の永久磁石であってもよい。その場合、全ての永久磁石の接着層が軸心方向に分割されていてもよいし、一部の永久磁石の接着層が軸心方向に分割されていてもよい。 Note that the permanent magnet 11A may be a plurality of permanent magnets divided in the circumferential direction C1. In that case, the adhesive layers of all the permanent magnets may be divided in the axial direction, or the adhesive layers of some permanent magnets may be divided in the axial direction.
 (3)変形例
 以下、上述の第2実施形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。なお、以下の変形例について、電動機1Aの概略上面図は図7と同様の図面となり、回転子3Aの斜視図は図8と同様の図面となる。
(3) Modifications Modifications of the second embodiment described above will be listed below. The modified examples described below can be applied in combination as appropriate. Regarding the following modifications, a schematic top view of the electric motor 1A is similar to FIG. 7, and a perspective view of the rotor 3A is similar to FIG. 8.
 (3-1)第4変形例
 第2実施形態では接着層は2層(第1接着層31A、第2接着層32A)であったが、接着層は複数であればよいので、3層以上であってもよい。
(3-1) Fourth modification example In the second embodiment, there were two adhesive layers (first adhesive layer 31A, second adhesive layer 32A), but since it is sufficient to have multiple adhesive layers, there are three or more adhesive layers. It may be.
 図10を用いて、そのような例を第4変形例として説明する。図10は、第4変形例に係る回転子3Aの部分断面図であり、図9と同様の図面である。 Such an example will be described as a fourth modification using FIG. 10. FIG. 10 is a partial sectional view of a rotor 3A according to a fourth modification, and is a drawing similar to FIG. 9.
 接着剤40Aは、磁石配置穴13の内面25と永久磁石11の外面26との間隙に充填されている。接着剤40Aは、図10に示すように、第1接着層41Aと、第2接着層42Aと、第3接着層43Aと、第4接着層44Aと、第5接着層45Aと、を有する。第1接着層41A~第5接着層45Aは、回転子鉄心9Aの外周面37Aと永久磁石11Aの内周面38Aとの間隙において、この順で軸心方向A1の上から下に配置されている。第1接着層41A~第5接着層45Aは、各々、回転子鉄心9Aの外周面37Aに周方向C1に連続的に又は断続的に形成されている。ただし、第1接着層41Aの下端縁61Aと第2接着層42Aの上端縁62A、第2接着層42Aの下端縁63Aと第3接着層43Aの上端縁64A、第3接着層43Aの下端縁65Aと第4接着層44Aの上端縁66A、第4接着層44Aの下端縁67Aと第5接着層45Aの上端縁68Aは、各々、全周にわたって互いに距離を空けて対向している。言い換えると、接着層同士の間には、軸心方向A1の空隙71A、空隙72A、空隙73A、空隙74Aが存在する。 The adhesive 40A is filled in the gap between the inner surface 25 of the magnet placement hole 13 and the outer surface 26 of the permanent magnet 11. As shown in FIG. 10, the adhesive 40A includes a first adhesive layer 41A, a second adhesive layer 42A, a third adhesive layer 43A, a fourth adhesive layer 44A, and a fifth adhesive layer 45A. The first adhesive layer 41A to the fifth adhesive layer 45A are arranged in this order from top to bottom in the axial direction A1 in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A. There is. The first adhesive layer 41A to the fifth adhesive layer 45A are each formed continuously or intermittently in the circumferential direction C1 on the outer peripheral surface 37A of the rotor core 9A. However, the lower edge 61A of the first adhesive layer 41A, the upper edge 62A of the second adhesive layer 42A, the lower edge 63A of the second adhesive layer 42A, the upper edge 64A of the third adhesive layer 43A, and the lower edge of the third adhesive layer 43A. 65A and the upper edge 66A of the fourth adhesive layer 44A, and the lower edge 67A of the fourth adhesive layer 44A and the upper edge 68A of the fifth adhesive layer 45A, respectively, face each other at a distance over the entire circumference. In other words, there are a gap 71A, a gap 72A, a gap 73A, and a gap 74A in the axial direction A1 between the adhesive layers.
 第4変形例でも第2実施形態と同じ効果が得られる。 The same effects as the second embodiment can be obtained in the fourth modification.
 (3-2)第5変形例
 第1実施形態では2つの接着層の間は空隙となっていたが、2つの接着層は端縁同士が離れていればよいので、他の部材によって満たされていてもよい。
(3-2) Fifth modification example In the first embodiment, there was a gap between the two adhesive layers, but since it is sufficient that the edges of the two adhesive layers are separated from each other, the gap can be filled with other members. You can leave it there.
 図11を用いて、そのような例を第5変形例として説明する。図11は、第5変形例に係る回転子3Aの部分断面図であり、図9と同様の図面である。 Such an example will be described as a fifth modification using FIG. 11. FIG. 11 is a partial sectional view of a rotor 3A according to a fifth modification, and is a drawing similar to FIG. 9.
 回転子3Aは、第2実施形態の構成に加えて、遮断部材51Aを更に備えている。遮断部材51Aは、複数の接着層同士を遮断することで接着層の端縁同士を離すための部材である。遮断部材51Aは、円柱形状であり、回転子鉄心9Aの外周面37Aと永久磁石11Aの内周面38Aの間隙において、第1接着層31Aの下端縁33Aと第2接着層32Aの上端縁34Aとの間に配置されている。このようにして、遮断部材51Aは、第1接着層31Aと第2接着層32Aを遮断している。 In addition to the configuration of the second embodiment, the rotor 3A further includes a blocking member 51A. The blocking member 51A is a member for separating the edges of the adhesive layers by blocking the plurality of adhesive layers from each other. The blocking member 51A has a cylindrical shape, and is located between the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A. is located between. In this way, the blocking member 51A blocks the first adhesive layer 31A and the second adhesive layer 32A.
 遮断部材51Aは、永久磁石11Aに固定されている。具体的には、遮断部材51Aは、例えば樹脂製であり、永久磁石11Aの内周面38Aの軸心方向A1中間部に設けられている。 The blocking member 51A is fixed to the permanent magnet 11A. Specifically, the blocking member 51A is made of resin, for example, and is provided at an intermediate portion in the axial direction A1 of the inner circumferential surface 38A of the permanent magnet 11A.
 第5変形例では、遮断部材51Aによって第1接着層31Aと第2接着層の32Aの位置決めが容易になるので、回転子3Aの製造が簡単になる。 In the fifth modification, the shielding member 51A facilitates positioning of the first adhesive layer 31A and the second adhesive layer 32A, thereby simplifying the manufacture of the rotor 3A.
 (3-3)第6変形例
 図12を用いて、2つの接着層が他の部材によって遮断されている他の例を、第6変形例として説明する。図12は、第6変形例に係る回転子3Aの部分断面図であり、図9と同様の図面である。
(3-3) Sixth Modification Example With reference to FIG. 12, another example in which two adhesive layers are blocked by another member will be described as a sixth modification example. FIG. 12 is a partial sectional view of a rotor 3A according to a sixth modification, and is a drawing similar to FIG. 9.
 回転子3Aは、第2実施形態の構成に加えて、遮断部材52Aを更に備えている。遮断部材52Aは、複数の接着層同士を遮断することで端縁同士を離すための部材である。遮断部材52Aは、回転子鉄心9Aの外周面37Aと永久磁石11Aの内周面38Aとの間隙において、第1接着層31Aの下端縁33Aと第2接着層32Aの上端縁34Aとの間に配置されている。 In addition to the configuration of the second embodiment, the rotor 3A further includes a blocking member 52A. The blocking member 52A is a member for separating the edges by blocking the plurality of adhesive layers from each other. The blocking member 52A is located between the lower edge 33A of the first adhesive layer 31A and the upper edge 34A of the second adhesive layer 32A in the gap between the outer peripheral surface 37A of the rotor core 9A and the inner peripheral surface 38A of the permanent magnet 11A. It is located.
 遮断部材52Aは、回転子鉄心9Aと一体である。つまり、遮断部材52Aは、第1実施形態の回転子鉄心9の外周面37Aの軸心方向A1中間部から径方向F1かつ軸心14に向かって突出している。 The blocking member 52A is integrated with the rotor core 9A. That is, the blocking member 52A protrudes toward the axial center 14 in the radial direction F1 from the intermediate portion in the axial direction A1 of the outer peripheral surface 37A of the rotor core 9 of the first embodiment.
 第6変形例では、遮断部材52Aによって第1接着層31Aと第2接着層の32Aの位置決めが容易になるので、回転子3Aの製造が簡単になる。 In the sixth modification, the shielding member 52A facilitates the positioning of the first adhesive layer 31A and the second adhesive layer 32A, making it easier to manufacture the rotor 3A.
 (他の変形例)
 第1実施形態では全ての永久磁石の接着層が軸心方向に分割されていたが、接着層が軸心方向に分割されている永久磁石は一部だけでもよい。
(Other variations)
In the first embodiment, the adhesive layers of all the permanent magnets are divided in the axial direction, but only some of the permanent magnets may have adhesive layers divided in the axial direction.
 第1実施形態及び第2実施形態では2つの接着層の端縁同士が全周にわたって互いに距離を空けて対向していたが、一部が互いに距離を空けて対向していれば、少なくともその部分では第1実施形態と同じ効果が得られる。したがって、端縁同士の周方向の一部がつながっていてもよい。 In the first and second embodiments, the edges of the two adhesive layers faced each other at a distance over the entire circumference, but if some parts of the adhesive layer faced each other at a distance, at least that portion In this case, the same effects as in the first embodiment can be obtained. Therefore, the edges may be partially connected in the circumferential direction.
 第1実施形態及び第2実施形態はインナーロータ型の電動機を対象にしていたが、本開示はアウターロータ型の電動機にも適用できる。 Although the first embodiment and the second embodiment are directed to an inner rotor type electric motor, the present disclosure can also be applied to an outer rotor type electric motor.
 第1変形例と第2変形例又は第3変形例を組み合わせることで、3層以上の接着層を実現するのに遮断部材を用いてもよい。 By combining the first modification, the second modification, or the third modification, the blocking member may be used to realize three or more adhesive layers.
 第4変形例と第5変形例又は第6変形例を組み合わせることで、3層以上の接着層を実現するのに遮断部材を用いてもよい。 By combining the fourth modification, the fifth modification, or the sixth modification, the blocking member may be used to realize three or more adhesive layers.
 接着層の数、種類は限定されない。 The number and type of adhesive layers are not limited.
 遮断部材の数、位置、材質は限定されない。 The number, position, and material of the blocking members are not limited.
 磁石配置穴及び磁石の形状は限定されない。第1実施形態では磁石配置穴は平面視において径方向に長く延びていたが、磁石配置穴は概ね周方向に長く延びていてもよい。 The shape of the magnet placement hole and the magnet are not limited. In the first embodiment, the magnet arrangement hole extends long in the radial direction when viewed from above, but the magnet arrangement hole may extend substantially in the circumferential direction.
 回転子鉄心は、粉状の磁性体を加圧成形してなる圧粉材を主な構成要素とする圧粉コアであってもよい。 The rotor core may be a powder core whose main component is a powder material formed by pressure-molding a powdered magnetic material.
 (態様)
 本明細書には、以下の態様が開示されている。
(mode)
The following aspects are disclosed herein.
 第1態様に係る固定子(3、3A)は、回転子鉄心(9、9A)と、永久磁石(11、11A)と、接着剤(16、16A、40、40A)と、回転軸(10、10A)とを備えている。永久磁石(11、11A)は、回転子鉄心(9、9A)に近接配置されている。接着剤(16、16A、40、40A)は、回転子鉄心(9、9A)と永久磁石(11、11A)との間に配置され、回転子鉄心(9、9A)と永久磁石(11、11A)を固定する。回転軸(10、10A)は、回転子鉄心(9、9A)に固定され、軸心(14)を回転中心とする。接着剤(16、16A、40、40A)は、回転軸(10、10A)の軸心(14)が延伸する方向に並んで配置され、それぞれ互いに距離を空けて対向する端縁(33、34)を少なくとも部分的に有する複数の接着層(31、32)を有する。 The stator (3, 3A) according to the first aspect includes a rotor core (9, 9A), a permanent magnet (11, 11A), an adhesive (16, 16A, 40, 40A), and a rotating shaft (10 , 10A). The permanent magnets (11, 11A) are arranged close to the rotor core (9, 9A). The adhesive (16, 16A, 40, 40A) is placed between the rotor core (9, 9A) and the permanent magnet (11, 11A). 11A) is fixed. The rotating shaft (10, 10A) is fixed to the rotor core (9, 9A) and rotates around the shaft center (14). The adhesives (16, 16A, 40, 40A) are arranged in a line in the direction in which the axis (14) of the rotating shaft (10, 10A) extends, and are spaced apart from each other by opposing edges (33, 34). ) at least partially.
 この態様によれば、接着剤(16、16A、40、40A)を軸心方向(A1)に分割することで、強度飽和を回避することができる。それにより、接着剤(16、16A、40、40A)の塗布面積が大きくても単位面積当たりの接着強度が低下しない。その結果、軸心方向(A1)に長い回転子鉄心(9、9A)においても、接着面積に応じた強度で永久磁石(11、11A)を接着可能になる。 According to this aspect, strength saturation can be avoided by dividing the adhesive (16, 16A, 40, 40A) in the axial direction (A1). Thereby, even if the applied area of the adhesive (16, 16A, 40, 40A) is large, the adhesive strength per unit area does not decrease. As a result, even on rotor cores (9, 9A) that are long in the axial direction (A1), permanent magnets (11, 11A) can be bonded with strength corresponding to the bonding area.
 第2態様に係る固定子(3)は、第1態様において、永久磁石(11)を複数備えている。回転子鉄心(9)は、周方向に並んでおり複数の永久磁石(11)に対応する複数の磁石配置穴(13)を有している。複数の永久磁石(11)の各々は、複数の磁石配置穴(13)のうち対応する磁石配置穴(13)の内部に配置されている。 The stator (3) according to the second aspect includes a plurality of permanent magnets (11) in the first aspect. The rotor core (9) has a plurality of magnet placement holes (13) arranged in the circumferential direction and corresponding to the plurality of permanent magnets (11). Each of the plurality of permanent magnets (11) is arranged inside a corresponding one of the plurality of magnet arrangement holes (13).
 この態様によれば、軸心方向(A1)に長い回転子鉄心(9)においても、接着面積に応じた強度で永久磁石(11)を磁石配置穴(13)に接着可能になる。 According to this aspect, even in the rotor core (9) that is long in the axial direction (A1), the permanent magnet (11) can be bonded to the magnet arrangement hole (13) with a strength that corresponds to the bonding area.
 第3態様に係る回転子(3、3A)では、第1又は第2態様において、複数の接着層(31、32)の端縁(33、34)は互いに距離を空けて対向している。 In the rotor (3, 3A) according to the third aspect, in the first or second aspect, the edges (33, 34) of the plurality of adhesive layers (31, 32) face each other at a distance.
 この態様によれば、軸心方向(A1)に長い回転子鉄心(9、9A)においても、接着面積に応じた強度で永久磁石(11、11A)を磁石配置穴(13、13A)に接着可能になる。 According to this aspect, even in the rotor core (9, 9A) that is long in the axial direction (A1), the permanent magnets (11, 11A) are bonded to the magnet placement holes (13, 13A) with a strength that corresponds to the bonding area. It becomes possible.
 第4態様に係る回転子(3、3A)は、第1~第3態様のいずれか一つにおいて、回転子鉄心(9、9A)と永久磁石(11、11A)との間において、複数の接着層(31、31A、32、32A)の端縁(33、33A、34、34A)同士の間に配置された遮断部材(51、51A、52、52A)を更に備える。 In any one of the first to third aspects, the rotor (3, 3A) according to the fourth aspect has a plurality of It further includes a blocking member (51, 51A, 52, 52A) disposed between the edges (33, 33A, 34, 34A) of the adhesive layer (31, 31A, 32, 32A).
 この態様によれば、遮断部材(51、51A、52、52A)によって接着層(31、31A、32、32A)の位置決めが容易になるので、回転子(3、3A)の製造が簡単になる。 According to this aspect, the adhesive layer (31, 31A, 32, 32A) can be easily positioned by the blocking member (51, 51A, 52, 52A), so manufacturing of the rotor (3, 3A) is simplified. .
 第5態様に係る回転子(3、3A)では、第4態様において、遮断部材(51、51A)は、永久磁石(11、11A)に固定されている。 In the rotor (3, 3A) according to the fifth aspect, the blocking member (51, 51A) is fixed to the permanent magnet (11, 11A) in the fourth aspect.
 この態様によれば、遮断部材(51、51A)によって接着層(31、31A、32、32A)同士の位置決めが容易になるので、回転子(3、3A)の製造が簡単になる。 According to this aspect, the adhesive layers (31, 31A, 32, 32A) can be easily positioned with respect to each other by the blocking member (51, 51A), so manufacturing of the rotor (3, 3A) is simplified.
 第6態様に係る回転子(3、3A)では、第4態様において、遮断部材(52)は、回転子鉄心(9、9A)と一体である。 In the rotor (3, 3A) according to the sixth aspect, the blocking member (52) is integrated with the rotor core (9, 9A) in the fourth aspect.
 この態様によれば、遮断部材(52、52A)によって接着層(31、31A、32、32A)の位置決めが容易になるので、回転子(3、3A)の製造が簡単になる。 According to this aspect, the adhesive layer (31, 31A, 32, 32A) can be easily positioned by the blocking member (52, 52A), so manufacturing of the rotor (3, 3A) is simplified.
 第7態様に係る回転子(3、3A)は、第1~第6態様のいずれか一つにおいて、複数の接着層として、3つ以上の接着層(41、41A、42、42A、43、43A、44、44A、45、45A)を備える。 In any one of the first to sixth aspects, the rotor (3, 3A) according to the seventh aspect includes three or more adhesive layers (41, 41A, 42, 42A, 43, 43A, 44, 44A, 45, 45A).
 この態様によれば、軸心方向(A1)に長い回転子鉄心(9、9A)においても、接着面積に応じた強度で永久磁石(11、11A)を接着可能になる。 According to this aspect, even on the rotor cores (9, 9A) that are long in the axial direction (A1), the permanent magnets (11, 11A) can be bonded with a strength corresponding to the bonding area.
 第8態様に係る電動機(1、1A)は、第1~第7態様のいずれか一つにおける回転子(3、3A)と、固定子(2、2A)と、を備えている。 The electric motor (1, 1A) according to the eighth aspect includes the rotor (3, 3A) and stator (2, 2A) in any one of the first to seventh aspects.
 この態様によれば、軸心方向(A1)に長い回転子鉄心(9、9A)においても、接着面積に応じた強度で永久磁石(11、11A)を接着可能になる。 According to this aspect, even on the rotor cores (9, 9A) that are long in the axial direction (A1), the permanent magnets (11, 11A) can be bonded with a strength corresponding to the bonding area.
 本開示の回転子及び電動機によれば、永久磁石と回転子鉄心との接着強度を高めることができる。そのため、本開示の回転子及び電動機は、電動機の信頼性を高めることができ、産業上有用である。 According to the rotor and motor of the present disclosure, the adhesive strength between the permanent magnet and the rotor core can be increased. Therefore, the rotor and electric motor of the present disclosure can improve the reliability of the electric motor and are industrially useful.
1、1A:電動機
2、2A:固定子
3、3A:回転子
9、9A:回転子鉄心
10、10A:回転軸
11、11A:永久磁石
13:磁石配置穴
14:軸心
16、16A、40、40A:接着剤
31、31A、41、41A:第1接着層
32、32A、42、42A:第2接着層
43、43A:第3接着層
44、44A:第4接着層
45、45A:第5接着層
51、51A:遮断部材
52、52A:遮断部材
A1:軸心方向
C1:周方向
F1:径方向
1, 1A: Electric motor 2, 2A: Stator 3, 3A: Rotor 9, 9A: Rotor core 10, 10A: Rotating shaft 11, 11A: Permanent magnet 13: Magnet placement hole 14: Axis center 16, 16A, 40 , 40A: Adhesive 31, 31A, 41, 41A: First adhesive layer 32, 32A, 42, 42A: Second adhesive layer 43, 43A: Third adhesive layer 44, 44A: Fourth adhesive layer 45, 45A: 5 adhesive layer 51, 51A: blocking member 52, 52A: blocking member A1: axial direction C1: circumferential direction F1: radial direction

Claims (8)

  1.  回転子鉄心と、
     前記回転子鉄心に近接配置された永久磁石と、
     前記回転子鉄心と前記永久磁石との間に配置され、前記回転子鉄心と前記永久磁石を固定する接着剤と、
     前記回転子鉄心に固定され、軸心を回転中心とする回転軸と、を備え、
     前記接着剤は、前記回転軸の前記軸心が延伸する方向に並んで配置され、それぞれ互いに距離を空けて対向する端縁を少なくとも部分的に有する複数の接着層を有する、
    回転子。
    rotor core,
    a permanent magnet disposed close to the rotor core;
    an adhesive disposed between the rotor core and the permanent magnet to fix the rotor core and the permanent magnet;
    a rotating shaft fixed to the rotor core and having the shaft center as the rotation center;
    The adhesive has a plurality of adhesive layers arranged in a line in a direction in which the axial center of the rotating shaft extends, each having at least partially opposite edges at a distance from each other.
    rotor.
  2.  前記永久磁石を複数備え、
     前記回転子鉄心は、周方向に並んでおり前記複数の永久磁石に対応する複数の磁石配置穴を有しており、
     前記複数の永久磁石の各々は、前記複数の磁石配置穴のうち対応する磁石配置穴の内部に配置されている、
    請求項1に記載の回転子。
    comprising a plurality of the permanent magnets,
    The rotor core has a plurality of magnet placement holes arranged in a circumferential direction and corresponding to the plurality of permanent magnets,
    Each of the plurality of permanent magnets is arranged inside a corresponding magnet arrangement hole among the plurality of magnet arrangement holes,
    A rotor according to claim 1.
  3.  前記複数の接着層の前記端縁は互いに距離を空けて対向している、
    請求項1又は2に記載の回転子。
    The edges of the plurality of adhesive layers face each other at a distance,
    The rotor according to claim 1 or 2.
  4.  前記回転子鉄心と前記永久磁石との間において、前記複数の接着層の前記端縁同士の間に配置された遮断部材を更に備える、
    請求項1~3のいずれか1項に記載の回転子。
    further comprising a blocking member disposed between the edges of the plurality of adhesive layers between the rotor core and the permanent magnet;
    The rotor according to any one of claims 1 to 3.
  5.  前記遮断部材は、前記永久磁石に固定されている、
    請求項4に記載の回転子。
    the blocking member is fixed to the permanent magnet;
    A rotor according to claim 4.
  6.  前記遮断部材は、前記回転子鉄心と一体である、
    請求項4に記載の回転子。
    the blocking member is integral with the rotor core;
    A rotor according to claim 4.
  7.  前記複数の接着層として、3つ以上の接着層を備える、
    請求項1~6のいずれか1項に記載の回転子。
    The plurality of adhesive layers include three or more adhesive layers,
    A rotor according to any one of claims 1 to 6.
  8.  請求項1~7のいずれか1項に記載の回転子と、
     固定子と、
    を備えた、
    電動機。
    A rotor according to any one of claims 1 to 7,
    a stator;
    Equipped with
    Electric motor.
PCT/JP2023/004025 2022-03-14 2023-02-07 Rotor and electric motor WO2023176199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039421 2022-03-14
JP2022-039421 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176199A1 true WO2023176199A1 (en) 2023-09-21

Family

ID=88022801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004025 WO2023176199A1 (en) 2022-03-14 2023-02-07 Rotor and electric motor

Country Status (1)

Country Link
WO (1) WO2023176199A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206882A (en) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp Motor, compressor, air conditioner and vacuum cleaner
JP2019140848A (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Rotor and electric motor including the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010206882A (en) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp Motor, compressor, air conditioner and vacuum cleaner
JP2019140848A (en) * 2018-02-14 2019-08-22 パナソニックIpマネジメント株式会社 Rotor and electric motor including the same

Similar Documents

Publication Publication Date Title
CN108075585B (en) Rotating electrical machine
RU2689311C1 (en) Rotating electrical machine
WO2017085814A1 (en) Electric motor and air conditioner
CN113196616B (en) Laminated iron core and rotary electric machine
US7893590B2 (en) Stator having high assembly
US20040140725A1 (en) Rotary electrical apparatus
JP6633171B1 (en) Laminated core, stator and rotor
JP2019126102A (en) Rotor and rotary electric machine
WO2007123057A1 (en) Motor
JP2019068620A (en) Rotor core, rotor, dynamoelectric machine, electric auxiliary system for motor car
JP7228768B2 (en) Electric tool manufacturing method and motor manufacturing method
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2002238193A (en) Motor
JP2009050116A (en) Capacitor motor, and manufacturing method thereof
WO2023176199A1 (en) Rotor and electric motor
JP7308441B2 (en) Electric tool
JP7068151B2 (en) Rotor of a synchronous motor with a reinforcing member that presses a magnet
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
JP2002101585A (en) Rotor structure of synchronous motor
JP6003028B2 (en) Rotating electric machine
JP6641601B2 (en) Rotor for rotating electric machine
JPH11191939A (en) Motor using rotor embedded with permanent magnet
JP6264409B1 (en) Rotating electric machine
JP2002199639A (en) Motor
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770160

Country of ref document: EP

Kind code of ref document: A1