WO2023276514A1 - Rotor, method for manufacturing same, and electric motor - Google Patents

Rotor, method for manufacturing same, and electric motor Download PDF

Info

Publication number
WO2023276514A1
WO2023276514A1 PCT/JP2022/021825 JP2022021825W WO2023276514A1 WO 2023276514 A1 WO2023276514 A1 WO 2023276514A1 JP 2022021825 W JP2022021825 W JP 2022021825W WO 2023276514 A1 WO2023276514 A1 WO 2023276514A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
permanent magnets
magnetically conductive
electric motor
Prior art date
Application number
PCT/JP2022/021825
Other languages
French (fr)
Japanese (ja)
Inventor
修悟 福田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023531717A priority Critical patent/JPWO2023276514A1/ja
Publication of WO2023276514A1 publication Critical patent/WO2023276514A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the present disclosure relates to rotors and electric motors used in various devices including household electrical devices and industrial devices.
  • Electric motors are used in various electrical equipment such as household equipment and industrial equipment.
  • An IPM (Interior Permanent Magnet) motor is known as an electric motor.
  • the rotor of the IPM motor includes, for example, a rotor core, permanent magnets arranged in each of a plurality of magnet arrangement holes provided in the rotor core, and magnets extending through the rotor core.
  • a rotating shaft fixed to the In the IPM motor magnetic flux generated by the permanent magnet of the rotor is passed through the stator to generate torque for rotating the rotor.
  • a predetermined space is sometimes provided between the rotor core and the permanent magnets in order to improve the insertability of the permanent magnets into the magnet placement holes.
  • the permanent magnet when a permanent magnet is inserted into the magnet placement hole, the permanent magnet is magnetically attracted to either the left or right inner surface of the magnet placement hole (left or right in the circumferential direction when viewed from the axial direction).
  • the attraction points of the permanent magnets vary in the circumferential direction, variations in the amount of magnetic flux density of the magnetic poles of the permanent magnets increase, resulting in a problem of increased cogging torque.
  • the present disclosure aims to solve the above problems, and aims to provide a rotor capable of reducing cogging torque, a method for manufacturing the same, and an electric motor.
  • a rotor includes a rotor core having a plurality of magnet placement holes, a plurality of permanent magnets respectively arranged in the plurality of magnet placement holes, and fixed to the rotor core and a rotating shaft.
  • Each of the plurality of permanent magnets is covered with magnetically conductive resin on at least two side faces facing in the direction of rotation.
  • Each of the plurality of permanent magnets is fixed to a corresponding one of the plurality of magnet placement holes by the magnetically conductive resin layer.
  • a method for manufacturing a rotor according to a second aspect of the present disclosure includes forming the magnetism-permeable resin layer on at least two side surfaces of the permanent magnets of the rotor facing in the rotation direction, and then magnetizing the permanent magnets. After that, the permanent magnet having the magnetically conductive resin layer formed on the two side surfaces is inserted into the magnet arrangement hole.
  • An electric motor includes the rotor, and a stator arranged to face the rotor and generating a magnetic force acting on the rotor.
  • FIG. 1 is a perspective view of an electric motor according to an embodiment of the present disclosure
  • FIG. A perspective view of a rotor of the same electric motor.
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • symbol is attached
  • FIG. 1 is a perspective view of an electric motor 1 according to an embodiment.
  • the electric motor 1 includes a rotor 2 and a stator 3.
  • Electric motor 1 in the present embodiment is an inner rotor type motor in which rotor 2 is arranged inside stator 3 . That is, the stator 3 is configured to surround the rotor 2 .
  • the rotor 2 (rotor) is rotated by the magnetic force generated in the stator 3.
  • the rotor 2 has a rotating shaft 10 and rotates about an axis C of the rotating shaft 10 as a rotation center.
  • the rotor 2 generates a magnetic force that acts on the stator 3.
  • the rotor 2 has a structure in which a plurality of N poles and S poles, which are main magnetic fluxes, are repeatedly present in the circumferential direction.
  • the direction of the main magnetic flux generated by the rotor 2 is perpendicular to the direction of the axis C of the rotating shaft 10 (rotating shaft direction). That is, the direction of the main magnetic flux generated by the rotor 2 is the radial direction.
  • the rotor 2 is arranged with the stator 3 through an air gap. Specifically, a minute air gap exists between the surface of the rotor 2 and the surface of the stator 3 .
  • the rotor 2 is an embedded permanent magnet rotor (IPM rotor) in which permanent magnets are embedded in an iron core. Therefore, electric motor 1 in the present embodiment is an IPM motor.
  • the stator 3 (stator) is arranged to face the rotor 2 via an air gap, and generates magnetic force acting on the rotor 2 .
  • the stator 3 is arranged so as to surround the rotor core 20 of the rotor 2 .
  • the stator 3 forms a magnetic circuit together with the rotor 2 .
  • the stator 3 is configured so that N poles and S poles are alternately generated in the circumferential direction as the main magnetic flux on the air gap surface.
  • the stator 3 has a stator core 3a (stator core) and winding coils 3b (stator coil).
  • a plurality of teeth 3a1 projecting toward the rotor core 20 of the rotor 2 are provided on the stator core 3a.
  • the plurality of teeth 3 a 1 are provided so as to protrude toward the axis C of the rotating shaft 10 .
  • the plurality of teeth 3a1 are provided at regular intervals in the circumferential direction. Therefore, the multiple teeth 3a1 radially extend in a direction perpendicular to the axis C of the rotating shaft 10 (radial direction).
  • the stator core 3a is composed of a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10, for example.
  • Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape.
  • the stator core 3a is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
  • the winding coil 3b is wound around each of the plurality of teeth 3a1 of the stator core 3a. Specifically, the winding coil 3b is wound around each tooth 3a1 via an insulator.
  • Each winding coil 3b is composed of unit coils of three phases, U-phase, V-phase and W-phase, which are electrically 120 degrees out of phase with each other. That is, the winding coil 3b wound around each tooth 3a1 is energized and driven by a three-phase alternating current that is energized in phase units of the U phase, the V phase, and the W phase. Thereby, the main magnetic flux of the stator 3 is generated in each tooth 3a1.
  • the winding coil 3b is made of a metal material such as copper whose surface is coated with an insulating film, and has a circular or rectangular cross section.
  • the electric motor 1 configured in this manner, when the winding coil 3b of the stator 3 is energized, a field current flows through the winding coil 3b to generate a magnetic field. Thereby, a magnetic flux is generated from the stator 3 toward the rotor 2 .
  • the rotor 2 generates a magnetic flux directed toward the stator 3 . That is, the permanent magnets of rotor 2 generate a magnetic flux that passes through stator 3 .
  • the magnetic force generated by the interaction between the magnetic flux generated by the stator 3 and the magnetic flux generated by the rotor 2 becomes torque for rotating the rotor 2 , and the rotor 2 rotates about the rotation axis 10 .
  • FIG. 2 is a perspective view of the rotor 2 according to the embodiment.
  • FIG. 3 is a plan view of main parts of the rotor 2 according to the embodiment. 2 and 3, the rotating shaft 10 is omitted.
  • the rotor 2 includes a rotating shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
  • the rotating shaft 10 is a long shaft that serves as the center when the rotor 2 rotates.
  • the rotating shaft 10 is, for example, a metal rod and fixed to the center of the rotor 2 .
  • the rotating shaft 10 is fixed to the rotor core 20 .
  • rotating shaft 10 is fixed to rotor core 20 while penetrating through the center of rotor core 20 so as to protrude from both sides of rotor 2 .
  • the rotating shaft 10 is fixed to the rotor core 20 by being press-fitted into a through hole 20a formed in the center of the rotor core 20 or by shrink fitting.
  • a first portion of the rotating shaft 10 projecting to one side of the rotor 2 is supported by a first bearing, and a second portion of the rotating shaft 10 projecting to the other side of the rotor 2 is supported by a first bearing. It is supported by two bearings.
  • a load driven by the electric motor 1 is attached to the first portion or the second portion of the rotating shaft 10 .
  • the rotor core 20 (rotor core) is composed of, for example, a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10 .
  • Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape, and fixed to each other by caulking or the like.
  • the rotor core 20 is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
  • the rotor core 20 is a core having a plurality of magnet placement holes 21.
  • a plurality of magnet arrangement holes 21 are holes for magnet arrangement in which permanent magnets 30 are arranged.
  • a permanent magnet 30 is inserted into the magnet placement hole 21 .
  • the magnet arrangement hole 21 is a magnet insertion hole into which the permanent magnet 30 is inserted.
  • One permanent magnet 30 is inserted into each magnet placement hole 21 .
  • the rotor 2 is a ten-pole rotor having ten magnetic poles. Therefore, the rotor core 20 is provided with 10 magnet placement holes 21 and 10 permanent magnets 30 . Note that the present invention is not particularly limited to this, and can be applied to other numbers of magnetic poles.
  • the magnet placement hole 21 is a through hole that penetrates the rotor core 20 along the direction of the axis C of the rotating shaft 10 . Therefore, the cross-sectional shape of the magnet arrangement hole 21 is the same in the direction of the axis C of the rotating shaft 10 in any cross section taken along a plane orthogonal to the rotating shaft 10 . In other words, all the steel plates forming the rotor core 20 are formed with the magnet placement holes 21 having the same shape. Note that the magnet arrangement hole 21 may not be a through hole as long as the permanent magnet 30 can be arranged.
  • the plurality of magnet arrangement holes 21 are radially provided around the rotating shaft 10. As shown in FIGS. Also, the plurality of magnet placement holes 21 are provided at regular intervals along the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). Each of the plurality of magnet arrangement holes 21 extends in the radial direction of the rotor core 20 (the direction orthogonal to the direction of the axis C of the rotating shaft 10) in plan view. That is, the magnet placement holes 21 are elongated in the radial direction of the rotor core 20, and the length in the radial direction is longer than the length in the rotational direction (circumferential direction). The magnet arrangement hole 21 may be elongated in the rotational direction (circumferential direction) of the rotor core 20, and the length in the rotational direction (circumferential direction) may be longer than the radial length.
  • a plurality of elongated magnet placement holes 21 are formed in the shape of spokes around the rotating shaft 10 . That is, the rotor 2 is a spoke-type IPM rotor, and the electric motor 1 is a spoke-type IPM motor.
  • the plan view shape of each magnet placement hole 21 is substantially rectangular with the radial direction of the rotor core 20 as its longitudinal direction.
  • the plan view shape of each of the plurality of magnet placement holes 21 is the same as each other.
  • a permanent magnet 30 is inserted into each of the magnet arrangement holes 21 of the rotor 2 along the direction of the axis C of the rotating shaft 10 , and the permanent magnets 30 are inserted into each of the plurality of magnet arrangement holes 21 . placed.
  • the permanent magnet 30 is inserted from above the axis C of the rotating shaft 10 (above the paper surface), but the permanent magnet 30 may be inserted from below (above the paper surface).
  • the permanent magnet 30 is, for example, a sintered magnet.
  • the plurality of permanent magnets 30 are arranged such that the magnetic pole direction is in the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). That is, the permanent magnet 30 is magnetized so that the direction of the magnetic poles is the circumferential direction of the rotor core 20 .
  • the two adjacent permanent magnets 30 have opposite magnetic pole directions of the S pole and the N pole.
  • the plan view shape of the permanent magnet 30 is substantially the same as the plan view shape of the magnet arrangement hole 21, and the size is slightly smaller.
  • the permanent magnets 30 are fitted in the magnet placement holes 21 .
  • the planar view shape of the permanent magnet 30 is an elongated substantially rectangular shape.
  • the permanent magnet 30 is a plate-like rectangular parallelepiped having a thickness in a direction perpendicular to the radial direction of the rotor core 20 . Note that the permanent magnet 30 may be divided into a plurality of pieces.
  • each magnet placement hole 21 there is a gap (space, clearance) of a certain size between the outer surface of the permanent magnet 30 and the inner surface of the magnet placement hole 21 .
  • An adhesive may be provided in this gap for adhesively fixing the permanent magnet 30 to the magnet arrangement hole 21 .
  • the adhesive may not be provided in this gap.
  • the permanent magnet 30 is composed of, for example, a Nd--Fe--B based sintered magnet or ferrite sintered magnet. Alternatively, it may be a bonded magnet formed of magnet powder such as Nd--Fe--B magnet powder or ferrite magnet powder, a resin material and a small amount of additives.
  • the permanent magnet 30 is surrounded by a magnetically conductive resin layer 31 made of resin and a magnetically conductive material.
  • the magnetically conductive material is composed of, for example, a ferromagnetic material such as iron or nickel.
  • the resin is, for example, a thermoplastic resin having a melting point of 130° C. or higher, such as polyethylene, polypropylene, or polyamide.
  • the magnetically conductive material is, for example, powdery and dispersed in resin. As shown in FIG. 2, when the permanent magnets 30 are inserted into each of the magnet arrangement holes 21, the permanent magnets 30 are in a state where at least two side surfaces facing in the direction of rotation are covered with the magnetically conductive resin layer 31. .
  • each magnet placement hole 21 is provided with two inner surfaces 21a and 21b facing each other in the circumferential direction (rotating direction of the rotating shaft 10) in plan view.
  • the permanent magnet 30 is arranged so as not to be in direct contact with the two inner surfaces 21a and 21b.
  • the permanent magnet 30 is fixed in the magnet arrangement hole 21 by the magnetically conductive resin layer 31 .
  • the total thickness of the permanent magnets 30 and the magnetism-permeable resin layer 31 is approximately equal to the width of the magnet placement hole 21 or slightly wider than the width of the magnet placement hole 21 . Even if the width of the magnet placement hole 21 is wider than the width of the magnet placement hole 21, the outer magnetism-permeable resin layer 31 has resin and is therefore flexible. A stress acts on the resin layer 31 . As a result, the magnetism-permeable resin layer 31 is pushed in by the inner surfaces 21a and 21b, and after insertion, stress is also applied from the permanent magnet 30 side toward the inner surfaces 21a and 21b of the magnet arrangement hole 21. are reliably held in the magnet placement hole 21 .
  • the magnetic flux density of the permanent magnet 30 is the innermost (outer in the radial direction) than the magnetic flux density of the outermost (outer in the radial direction) portion of the permanent magnet 30 including at least two side surfaces facing in the rotation direction.
  • the magnetic flux density ratio of the portion is 0.7 or more.
  • the periphery of the permanent magnet 30 is coated with a magnetically conductive resin layer 31 made of resin and a magnetically conductive material. After that, the magnetically conductive resin layer 31 is cured.
  • the magnetically conductive resin layers 31 are formed on both surfaces of the permanent magnet 30 at least in the circumferential direction (rotational direction).
  • the permanent magnet 30 is magnetized.
  • the permanent magnet 30 covered with the magnetically conductive resin layer 31 is inserted into the magnet placement hole 21 .
  • the magnetism-permeable resin layer 31 is press-fitted so as to be in contact with the inner surfaces 21 a and 21 b of the magnet arrangement hole 21 . Since the magnetism-permeable resin layer 31 contains resin, it is possible to prevent the inner surfaces 21a and 21b from being damaged.
  • the permanent magnets 30 inserted into the magnet placement holes 21 are securely fixed in the magnet placement holes 21 by the magnetically conductive resin layer 31 .
  • each permanent magnet 30 can be prevented from moving from the arrangement position in the circumferential direction.
  • thermoplastic magnetically conductive resin when brought into contact with the magnetized permanent magnet, the permanent magnet is demagnetized by the heat generated when the resin hardens.
  • the magnetically conductive resin layer 31 is coated and cured on the permanent magnet 30 before magnetization, thermal demagnetization can be avoided.
  • FIG. 5A shows a plan view of the vicinity of the magnet placement hole 21 in the electric motor 1 according to the first modification of the embodiment of the present disclosure.
  • the configuration of the electric motor 1 is the same as that of the electric motor 1 shown in FIG.
  • the permanent magnet 30 is in contact with only one surface of the magnet arrangement hole 21 in the radial direction, and three side surfaces of the permanent magnet 30 including the surface facing the inner surface 21 a and the inner surface 21 b are covered with the magnetically conductive resin layer 31 . shows the configured configuration. Also with this configuration, the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed in the magnet arrangement holes 21 by the magnetically conductive resin layer 31 .
  • FIG. 5B shows a plan view of the vicinity of the magnet placement hole 21 in the electric motor 1 according to the second modification of the embodiment of the present disclosure.
  • the configuration of the electric motor 1 is the same as that of the electric motor 1 shown in FIG.
  • a second modification shows a configuration in which the permanent magnet 30 is not in contact with the magnet placement hole 21 and the four side surfaces of the permanent magnet 30 are covered with the magnetically conductive resin layer 31 . Also with this configuration, the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed in the magnet arrangement holes 21 by the magnetically conductive resin layer 31 .
  • a rotor (2) includes a rotor core (20) having a plurality of magnet placement holes (21), and a plurality of permanent magnets respectively arranged in the plurality of magnet placement holes (21). It comprises a magnet (30) and a rotating shaft (10) fixed to a rotor core (20). Each of the plurality of permanent magnets (30) is covered with a magnetically conductive resin (31) on at least two side surfaces facing in the direction of rotation. Each of the plurality of permanent magnets (30) is fixed to a corresponding one of the plurality of magnet placement holes (20) by a magnetically conductive resin layer (31).
  • a method for manufacturing a rotor (2) according to a second aspect of the present disclosure includes forming a magnetically conductive resin layer (31) on at least two side surfaces of a permanent magnet (30) facing the rotation direction of the rotor (2). After that, the permanent magnet (30) is magnetized, and then the permanent magnet (30) having the magnetically conductive resin layer (31) formed on the two sides is inserted into the magnet arrangement hole (21).
  • An electric motor (1) according to a third aspect of the present disclosure is arranged to face the rotor (2) of the first aspect and the rotor (2), and generates a magnetic force acting on the rotor (2).
  • a stator (3) that allows
  • the rotor and the electric motor according to the present disclosure can be widely used in electric motors and the like used in various devices including household electrical equipment and industrial equipment.

Abstract

The present invention reduces the cogging torque of a rotor and provides an electric motor provided with this rotor. The present invention comprises a rotor core (20) having a plurality of magnet placement holes (21), a plurality of permanent magnets (30) placed in the plurality of magnet placement holes (21), respectively, and a rotary shaft (10) fixed to the rotor core (20). The permanent magnet (30) placed inside each of the plurality of magnet placement holes (21) has two side surfaces facing at least the rotation direction, and the two side surfaces are covered with a magnetically conductive resin (31). The permanent magnet (30) is fixed to the magnet placement hole (21) by the magnetically conductive resin layer (31).

Description

回転子及びその製造方法、並びに電動機ROTOR, MANUFACTURING METHOD THEREOF, AND ELECTRIC MOTOR
 本開示は、家庭用電気機器、産業用機器をはじめとして種々の機器に用いられている回転子及び電動機に関する。 The present disclosure relates to rotors and electric motors used in various devices including household electrical devices and industrial devices.
 電動機は、家庭用機器又は産業用機器等の様々な電気機器に用いられている。電動機として、IPM(Interior Permanent Magnet)モータが知られている。IPMモータの回転子は、例えば、回転子鉄心と、回転子鉄心に設けられた複数の磁石配置穴の各々に配置された永久磁石と、回転子鉄心を貫通するようにして回転子鉄心の中心に固定された回転軸と、を備える。IPMモータでは、回転子の永久磁石で発生する磁束を固定子に通すことで回転子を回転させるトルクを発生させている。 Electric motors are used in various electrical equipment such as household equipment and industrial equipment. An IPM (Interior Permanent Magnet) motor is known as an electric motor. The rotor of the IPM motor includes, for example, a rotor core, permanent magnets arranged in each of a plurality of magnet arrangement holes provided in the rotor core, and magnets extending through the rotor core. a rotating shaft fixed to the In the IPM motor, magnetic flux generated by the permanent magnet of the rotor is passed through the stator to generate torque for rotating the rotor.
 従来、この種のモータとして、回転子鉄心の複数の磁石配置穴が放射状に設けられた回転子を備えるスポーク型のIPMモータが知られている(特許文献1)。スポーク型のIPMモータでは、径方向の長さが円周方向の長さに比べて長い永久磁石を有しているので永久磁石の表面積を増やすことができる。これにより、固定子を通る永久磁石の磁束、つまりトルクに寄与する永久磁石の磁束を増加させることができる。 Conventionally, as this type of motor, there has been known a spoke-type IPM motor having a rotor in which a plurality of magnet arrangement holes in a rotor iron core are radially provided (Patent Document 1). Since the spoke-type IPM motor has permanent magnets whose length in the radial direction is longer than their length in the circumferential direction, the surface area of the permanent magnets can be increased. Thereby, the magnetic flux of the permanent magnets passing through the stator, that is, the magnetic flux of the permanent magnets contributing to the torque can be increased.
特開2017-46386号公報JP 2017-46386 A
 従来の回転子では、磁石配置穴への永久磁石の挿入性を高めるために、回転子鉄心と永久磁石との間に所定のスペースを設けることがある。この場合、磁石配置穴に永久磁石を挿入すると、永久磁石は磁力で磁石配置穴の左右(軸方向から見て周方向の左右)どちらかの内面に吸着する。複数の磁石配置穴において、この永久磁石の吸着箇所が周方向でばらつくと、永久磁石ごとの磁極の磁束密度量のばらつきが大きくなるため、コギングトルクが大きくなるという問題を有していた。 In conventional rotors, a predetermined space is sometimes provided between the rotor core and the permanent magnets in order to improve the insertability of the permanent magnets into the magnet placement holes. In this case, when a permanent magnet is inserted into the magnet placement hole, the permanent magnet is magnetically attracted to either the left or right inner surface of the magnet placement hole (left or right in the circumferential direction when viewed from the axial direction). In a plurality of magnet arrangement holes, if the attraction points of the permanent magnets vary in the circumferential direction, variations in the amount of magnetic flux density of the magnetic poles of the permanent magnets increase, resulting in a problem of increased cogging torque.
 本開示は、以上のような問題を解決するものであり、コギングトルクを低減できる回転子及びその製造方法、並びに電動機を提供することを目的とする。 The present disclosure aims to solve the above problems, and aims to provide a rotor capable of reducing cogging torque, a method for manufacturing the same, and an electric motor.
 本開示の第1の態様に係る回転子は、複数の磁石配置穴を有する回転子鉄心と、前記複数の磁石配置穴にそれぞれ配置された複数の永久磁石と、前記回転子鉄心に固定された回転軸と、を備える。前記複数の永久磁石の各々は、少なくとも回転方向に面する2つの側面が導磁性樹脂で覆われる。前記複数の永久磁石の各々は、前記導磁性樹脂層によって前記複数の磁石配置穴の対応する一つに固定されている。 A rotor according to a first aspect of the present disclosure includes a rotor core having a plurality of magnet placement holes, a plurality of permanent magnets respectively arranged in the plurality of magnet placement holes, and fixed to the rotor core and a rotating shaft. Each of the plurality of permanent magnets is covered with magnetically conductive resin on at least two side faces facing in the direction of rotation. Each of the plurality of permanent magnets is fixed to a corresponding one of the plurality of magnet placement holes by the magnetically conductive resin layer.
 本開示の第2の態様に係る回転子の製造方法は、前記回転子について前記永久磁石の少なくとも回転方向に面する2つの側面に前記導磁性樹脂層を形成した後、前記永久磁石を着磁し、その後、前記2つの側面に前記導磁性樹脂層が形成された前記永久磁石を前記磁石配置穴に挿入するようにしている。 A method for manufacturing a rotor according to a second aspect of the present disclosure includes forming the magnetism-permeable resin layer on at least two side surfaces of the permanent magnets of the rotor facing in the rotation direction, and then magnetizing the permanent magnets. After that, the permanent magnet having the magnetically conductive resin layer formed on the two side surfaces is inserted into the magnet arrangement hole.
 本開示の第3の態様に係る電動機は、前記回転子と、前記回転子に対向して配置され、前記回転子に作用する磁力を発生させる固定子とを備えている。 An electric motor according to a third aspect of the present disclosure includes the rotor, and a stator arranged to face the rotor and generating a magnetic force acting on the rotor.
 本開示によれば、コギングトルクを低減できる回転子及び電動機を提供することが可能である。 According to the present disclosure, it is possible to provide a rotor and an electric motor that can reduce cogging torque.
本開示の一実施の形態に係る電動機の斜視図1 is a perspective view of an electric motor according to an embodiment of the present disclosure; FIG. 同電動機の回転子の斜視図A perspective view of a rotor of the same electric motor. 同電動機の回転子の主要部の平面図A plan view of the main part of the rotor of the motor 同電動機の回転子の製造方法を示す断面図Sectional drawing which shows the manufacturing method of the rotor of the same electric motor. 本開示の一実施の形態の第一変形例に係る電動機の磁石配置穴近傍の平面図A plan view near a magnet arrangement hole of an electric motor according to a first modification of an embodiment of the present disclosure 本開示の一実施の形態の第二変形例に係る電動機の磁石配置穴近傍の平面図A plan view near a magnet arrangement hole of an electric motor according to a second modification of an embodiment of the present disclosure
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 An embodiment of the present disclosure will be described below. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, numerical values, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、他の図と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. In addition, in each figure, the same code|symbol is attached|subjected to the substantially same structure as other figures, and the overlapping description is abbreviate|omitted or simplified.
 (実施の形態)
 まず、実施の形態に係る電動機1の概略構成について、図1を用いて説明する。図1は、実施の形態に係る電動機1の斜視図である。
(Embodiment)
First, a schematic configuration of an electric motor 1 according to an embodiment will be described with reference to FIG. 1 . FIG. 1 is a perspective view of an electric motor 1 according to an embodiment.
 図1に示すように、電動機1は、回転子2と固定子3とを備える。本実施の形態における電動機1は、回転子2が固定子3の内側に配置されたインナーロータ型のモータである。つまり、固定子3は、回転子2を囲むように構成されている。 As shown in FIG. 1, the electric motor 1 includes a rotor 2 and a stator 3. Electric motor 1 in the present embodiment is an inner rotor type motor in which rotor 2 is arranged inside stator 3 . That is, the stator 3 is configured to surround the rotor 2 .
 回転子2(ロータ)は、固定子3に生じる磁力によって回転する。具体的には、回転子2は、回転軸10を有しており、回転軸10の軸心Cを回転中心として回転する。 The rotor 2 (rotor) is rotated by the magnetic force generated in the stator 3. Specifically, the rotor 2 has a rotating shaft 10 and rotates about an axis C of the rotating shaft 10 as a rotation center.
 回転子2は、固定子3に作用する磁力を発生する。回転子2は、周方向に亘って主磁束となるN極とS極とが複数繰り返して存在する構成になっている。本実施の形態において、回転子2が発生する主磁束の向きは、回転軸10の軸心Cの方向(回転軸方向)と直交する方向である。つまり、回転子2が発生する主磁束の向きは、ラジアル方向(径方向)である。 The rotor 2 generates a magnetic force that acts on the stator 3. The rotor 2 has a structure in which a plurality of N poles and S poles, which are main magnetic fluxes, are repeatedly present in the circumferential direction. In the present embodiment, the direction of the main magnetic flux generated by the rotor 2 is perpendicular to the direction of the axis C of the rotating shaft 10 (rotating shaft direction). That is, the direction of the main magnetic flux generated by the rotor 2 is the radial direction.
 回転子2は、固定子3とエアギャップを介して配置されている。具体的には、回転子2の表面と固定子3の表面との間には微小なエアギャップが存在する。詳細は後述するが、回転子2は、鉄心に永久磁石が埋め込まれた永久磁石埋め込み型のロータ(IPMロータ)である。したがって、本実施の形態における電動機1は、IPMモータである。 The rotor 2 is arranged with the stator 3 through an air gap. Specifically, a minute air gap exists between the surface of the rotor 2 and the surface of the stator 3 . Although details will be described later, the rotor 2 is an embedded permanent magnet rotor (IPM rotor) in which permanent magnets are embedded in an iron core. Therefore, electric motor 1 in the present embodiment is an IPM motor.
 固定子3(ステータ)は、エアギャップを介して回転子2に対向して配置され、回転子2に作用する磁力を発生させる。具体的には、固定子3は、回転子2の回転子鉄心20を囲むように配置されている。固定子3は、回転子2とともに磁気回路を構成している。 The stator 3 (stator) is arranged to face the rotor 2 via an air gap, and generates magnetic force acting on the rotor 2 . Specifically, the stator 3 is arranged so as to surround the rotor core 20 of the rotor 2 . The stator 3 forms a magnetic circuit together with the rotor 2 .
 固定子3は、エアギャップ面に主磁束としてN極とS極とが周方向に交互に生成されるように構成されている。本実施の形態において、固定子3は、固定子鉄心3a(ステータコア)と巻線コイル3b(ステータコイル)とを有する。 The stator 3 is configured so that N poles and S poles are alternately generated in the circumferential direction as the main magnetic flux on the air gap surface. In this embodiment, the stator 3 has a stator core 3a (stator core) and winding coils 3b (stator coil).
 固定子鉄心3aには、回転子2の回転子鉄心20に向かって突出する複数のティース3a1が設けられている。具体的には、複数のティース3a1は、回転軸10の軸心Cに向かって突出するように設けられている。また、複数のティース3a1は、周方向に等間隔に設けられている。したがって、複数のティース3a1は、回転軸10の軸心Cと直交する方向(ラジアル方向)に放射状に延在している。 A plurality of teeth 3a1 projecting toward the rotor core 20 of the rotor 2 are provided on the stator core 3a. Specifically, the plurality of teeth 3 a 1 are provided so as to protrude toward the axis C of the rotating shaft 10 . Moreover, the plurality of teeth 3a1 are provided at regular intervals in the circumferential direction. Therefore, the multiple teeth 3a1 radially extend in a direction perpendicular to the axis C of the rotating shaft 10 (radial direction).
 固定子鉄心3aは、例えば、回転軸10の軸心Cの方向に積層された複数の鋼板によって構成されている。複数の鋼板の各々は、例えば所定形状に打ち抜き加工された電磁鋼板である。なお、固定子鉄心3aは、複数の鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。 The stator core 3a is composed of a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10, for example. Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape. Note that the stator core 3a is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
 巻線コイル3bは、固定子鉄心3aの複数のティース3a1の各々に巻き回されている。具体的には、巻線コイル3bは、インシュレータを介して各ティース3a1に巻き回されている。各巻線コイル3bは、互いに電気的に120度位相が異なる、U相、V相及びW相の3相それぞれの単位コイルによって構成されている。つまり、各ティース3a1に巻き回された巻線コイル3bは、U相、V相及びW相の相単位でそれぞれに通電される3相の交流によって通電駆動される。これにより、各ティース3a1に固定子3の主磁束が生成される。 The winding coil 3b is wound around each of the plurality of teeth 3a1 of the stator core 3a. Specifically, the winding coil 3b is wound around each tooth 3a1 via an insulator. Each winding coil 3b is composed of unit coils of three phases, U-phase, V-phase and W-phase, which are electrically 120 degrees out of phase with each other. That is, the winding coil 3b wound around each tooth 3a1 is energized and driven by a three-phase alternating current that is energized in phase units of the U phase, the V phase, and the W phase. Thereby, the main magnetic flux of the stator 3 is generated in each tooth 3a1.
 なお、巻線コイル3bは、表面に絶縁被膜が施された銅等の金属材料からなる断面が円形または矩形の巻線で構成されている。 The winding coil 3b is made of a metal material such as copper whose surface is coated with an insulating film, and has a circular or rectangular cross section.
 このように構成された電動機1では、固定子3の巻線コイル3bに通電すると、界磁電流が巻線コイル3bに流れて磁界が生成される。これにより、固定子3から回転子2に向かう磁束が生成される。一方、回転子2では、固定子3に向かう磁束が生成される。つまり、回転子2の永久磁石によって固定子3を通る磁束が生成される。この固定子3で生成される磁束と回転子2で生成される磁束との相互作用によって生じた磁気力が回転子2を回転させるトルクとなり、回転子2が回転軸10を中心に回転する。 In the electric motor 1 configured in this manner, when the winding coil 3b of the stator 3 is energized, a field current flows through the winding coil 3b to generate a magnetic field. Thereby, a magnetic flux is generated from the stator 3 toward the rotor 2 . On the other hand, the rotor 2 generates a magnetic flux directed toward the stator 3 . That is, the permanent magnets of rotor 2 generate a magnetic flux that passes through stator 3 . The magnetic force generated by the interaction between the magnetic flux generated by the stator 3 and the magnetic flux generated by the rotor 2 becomes torque for rotating the rotor 2 , and the rotor 2 rotates about the rotation axis 10 .
 次に、本実施の形態に係る回転子2の詳細な構成について、図1を参照しつつ、図2及び図3を用いて説明する。図2は、実施の形態に係る回転子2の斜視図である。図3は、実施の形態に係る回転子2の主要部の平面図である。図2,図3では回転軸10は省略している。 Next, the detailed configuration of the rotor 2 according to the present embodiment will be described using FIGS. 2 and 3 while referring to FIG. 1. FIG. FIG. 2 is a perspective view of the rotor 2 according to the embodiment. FIG. 3 is a plan view of main parts of the rotor 2 according to the embodiment. 2 and 3, the rotating shaft 10 is omitted.
 図1~図3に示すように、回転子2は、回転軸10と、回転子鉄心20と、複数の永久磁石30とを備える。 As shown in FIGS. 1 to 3, the rotor 2 includes a rotating shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
 回転軸10は、回転子2が回転する際の中心となる長尺状のシャフトである。回転軸10は、例えば金属棒であり、回転子2の中心に固定されている。具体的には、回転軸10は、回転子鉄心20に固定されている。本実施の形態において、回転軸10は、回転子2の両側に突出するように、回転子鉄心20の中心を貫いた状態で回転子鉄心20に固定されている。回転軸10は、回転子鉄心20の中心に形成された貫通孔20aに圧入したり焼き嵌めしたりすることで回転子鉄心20に固定されている。 The rotating shaft 10 is a long shaft that serves as the center when the rotor 2 rotates. The rotating shaft 10 is, for example, a metal rod and fixed to the center of the rotor 2 . Specifically, the rotating shaft 10 is fixed to the rotor core 20 . In the present embodiment, rotating shaft 10 is fixed to rotor core 20 while penetrating through the center of rotor core 20 so as to protrude from both sides of rotor 2 . The rotating shaft 10 is fixed to the rotor core 20 by being press-fitted into a through hole 20a formed in the center of the rotor core 20 or by shrink fitting.
 なお、図示しないが、回転子2の一方側に突出する回転軸10の第1部位は、第1軸受けに支持され、回転子2の他方側に突出する回転軸10の第2部位は、第2軸受けに支持されている。回転軸10の第1部位又は第2部位に、電動機1によって駆動される負荷が取り付けられる。 Although not shown, a first portion of the rotating shaft 10 projecting to one side of the rotor 2 is supported by a first bearing, and a second portion of the rotating shaft 10 projecting to the other side of the rotor 2 is supported by a first bearing. It is supported by two bearings. A load driven by the electric motor 1 is attached to the first portion or the second portion of the rotating shaft 10 .
 回転子鉄心20(ロータコア)は、例えば、回転軸10の軸心Cの方向に積層された複数の鋼板によって構成されている。複数の鋼板の各々は、例えば所定形状に打ち抜き加工された電磁鋼板であり、かしめ等によって互いに固定されている。なお、回転子鉄心20は、複数の鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。 The rotor core 20 (rotor core) is composed of, for example, a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10 . Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape, and fixed to each other by caulking or the like. Note that the rotor core 20 is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
 回転子鉄心20は、複数の磁石配置穴21を有する鉄心である。複数の磁石配置穴21は、永久磁石30が配置される磁石配置のための穴である。具体的には、磁石配置穴21には永久磁石30が挿入される。つまり、磁石配置穴21は、永久磁石30が挿入される磁石挿入孔である。各磁石配置穴21には、1つの永久磁石30が挿入される。一例として、回転子2は、磁極数が10である10極ロータである。したがって、回転子鉄心20には10個の磁石配置穴21と10個の永久磁石30とが設けられている。なお、特にこれに限定されるものではなく、その他の磁極数についても適用できる。 The rotor core 20 is a core having a plurality of magnet placement holes 21. A plurality of magnet arrangement holes 21 are holes for magnet arrangement in which permanent magnets 30 are arranged. Specifically, a permanent magnet 30 is inserted into the magnet placement hole 21 . That is, the magnet arrangement hole 21 is a magnet insertion hole into which the permanent magnet 30 is inserted. One permanent magnet 30 is inserted into each magnet placement hole 21 . As an example, the rotor 2 is a ten-pole rotor having ten magnetic poles. Therefore, the rotor core 20 is provided with 10 magnet placement holes 21 and 10 permanent magnets 30 . Note that the present invention is not particularly limited to this, and can be applied to other numbers of magnetic poles.
 また、本実施の形態において、磁石配置穴21は、回転軸10の軸心Cの方向に沿って回転子鉄心20を貫通する貫通孔である。したがって、回転軸10に直交する平面で切断したときの任意の断面において、磁石配置穴21の断面形状は、回転軸10の軸心Cの方向において同じになっている。つまり、回転子鉄心20を構成する全ての鋼板には、いずれも同じ形状の磁石配置穴21が形成されている。なお、磁石配置穴21は、永久磁石30が配置することができれば、貫通孔でなくてもよい。 Also, in the present embodiment, the magnet placement hole 21 is a through hole that penetrates the rotor core 20 along the direction of the axis C of the rotating shaft 10 . Therefore, the cross-sectional shape of the magnet arrangement hole 21 is the same in the direction of the axis C of the rotating shaft 10 in any cross section taken along a plane orthogonal to the rotating shaft 10 . In other words, all the steel plates forming the rotor core 20 are formed with the magnet placement holes 21 having the same shape. Note that the magnet arrangement hole 21 may not be a through hole as long as the permanent magnet 30 can be arranged.
 図1、図2に示すように、複数の磁石配置穴21は、回転軸10を中心として放射状に設けられている。また、複数の磁石配置穴21は、回転子鉄心20の周方向(回転軸10の回転方向)に沿って等間隔で設けられている。複数の磁石配置穴21の各々は、平面視において、回転子鉄心20の径方向(回転軸10の軸心Cの方向に直交する方向)に延在している。つまり、磁石配置穴21は、回転子鉄心20の径方向に長尺状であり、径方向の長さが回転方向(円周方向)の長さに比べて長くなっている。なお、磁石配置穴21を、回転子鉄心20の回転方向(円周方向)に長尺状で、回転方向(円周方向)の長さが径方向長さに比べて長いものとしてもよい。 As shown in FIGS. 1 and 2, the plurality of magnet arrangement holes 21 are radially provided around the rotating shaft 10. As shown in FIGS. Also, the plurality of magnet placement holes 21 are provided at regular intervals along the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). Each of the plurality of magnet arrangement holes 21 extends in the radial direction of the rotor core 20 (the direction orthogonal to the direction of the axis C of the rotating shaft 10) in plan view. That is, the magnet placement holes 21 are elongated in the radial direction of the rotor core 20, and the length in the radial direction is longer than the length in the rotational direction (circumferential direction). The magnet arrangement hole 21 may be elongated in the rotational direction (circumferential direction) of the rotor core 20, and the length in the rotational direction (circumferential direction) may be longer than the radial length.
 長尺状の複数の磁石配置穴21は、回転軸10を中心にスポーク状に形成されている。つまり、回転子2は、スポーク型のIPMロータであり、電動機1は、スポーク型のIPMモータである。本実施の形態において、各磁石配置穴21の平面視形状は、回転子鉄心20の径方向を長手方向とする略長方形である。また、複数の磁石配置穴21の各々の平面視形状は、互いに同じである。 A plurality of elongated magnet placement holes 21 are formed in the shape of spokes around the rotating shaft 10 . That is, the rotor 2 is a spoke-type IPM rotor, and the electric motor 1 is a spoke-type IPM motor. In the present embodiment, the plan view shape of each magnet placement hole 21 is substantially rectangular with the radial direction of the rotor core 20 as its longitudinal direction. In addition, the plan view shape of each of the plurality of magnet placement holes 21 is the same as each other.
 図2に示すように、回転子2の磁石配置穴21各々に永久磁石30が、回転軸10の軸心Cの方向に沿って挿入され、複数の磁石配置穴21の各々に永久磁石30が配置される。本実施の形態においては、回転軸10の軸心Cの上方(紙面上方)から永久磁石30が挿入されているが、下方(紙面上方)から永久磁石30を挿入してもよい。 As shown in FIG. 2 , a permanent magnet 30 is inserted into each of the magnet arrangement holes 21 of the rotor 2 along the direction of the axis C of the rotating shaft 10 , and the permanent magnets 30 are inserted into each of the plurality of magnet arrangement holes 21 . placed. In the present embodiment, the permanent magnet 30 is inserted from above the axis C of the rotating shaft 10 (above the paper surface), but the permanent magnet 30 may be inserted from below (above the paper surface).
 本実施の形態において、永久磁石30は、例えば、焼結マグネットである。複数の永久磁石30は、磁極の方向が回転子鉄心20の周方向(回転軸10の回転方向)となるように配置されている。つまり、永久磁石30は、磁極の方向が回転子鉄心20の周方向となるように着磁されている。なお、隣り合う2つの永久磁石30は、S極及びN極の磁極の向きが逆向きになっている。  In the present embodiment, the permanent magnet 30 is, for example, a sintered magnet. The plurality of permanent magnets 30 are arranged such that the magnetic pole direction is in the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). That is, the permanent magnet 30 is magnetized so that the direction of the magnetic poles is the circumferential direction of the rotor core 20 . It should be noted that the two adjacent permanent magnets 30 have opposite magnetic pole directions of the S pole and the N pole.
 永久磁石30の平面視形状は、磁石配置穴21の平面視形状とほぼ同じであり、大きさは若干小さくなっている。永久磁石30は、磁石配置穴21に嵌合されている。永久磁石30の平面視形状は、長尺状の略長方形である。一例として、永久磁石30は、回転子鉄心20の径方向と直交する方向を厚さとする板状の直方体である。なお、永久磁石30は、複数に分割されていてもよい。 The plan view shape of the permanent magnet 30 is substantially the same as the plan view shape of the magnet arrangement hole 21, and the size is slightly smaller. The permanent magnets 30 are fitted in the magnet placement holes 21 . The planar view shape of the permanent magnet 30 is an elongated substantially rectangular shape. As an example, the permanent magnet 30 is a plate-like rectangular parallelepiped having a thickness in a direction perpendicular to the radial direction of the rotor core 20 . Note that the permanent magnet 30 may be divided into a plurality of pieces.
 各磁石配置穴21において、永久磁石30の外面と磁石配置穴21の内面との間には一定の寸法の隙間(スペース、クリアランス)が存在している。この隙間には、永久磁石30を磁石配置穴21に接着固定するための接着剤が設けられていてもよい。一方、この隙間に接着剤が設けられていなくてもよい。 In each magnet placement hole 21 , there is a gap (space, clearance) of a certain size between the outer surface of the permanent magnet 30 and the inner surface of the magnet placement hole 21 . An adhesive may be provided in this gap for adhesively fixing the permanent magnet 30 to the magnet arrangement hole 21 . On the other hand, the adhesive may not be provided in this gap.
 永久磁石30は、例えば、Nd-Fe-B系の焼結磁石またはフェライト焼結磁石で構成される。あるいは、Nd-Fe-B系磁石粉末、フェライト系磁石粉末などの磁石粉末と、樹脂材料および少量の添加剤等とで形成されるボンド磁石であってもよい。 The permanent magnet 30 is composed of, for example, a Nd--Fe--B based sintered magnet or ferrite sintered magnet. Alternatively, it may be a bonded magnet formed of magnet powder such as Nd--Fe--B magnet powder or ferrite magnet powder, a resin material and a small amount of additives.
 また、永久磁石30は、その周囲が樹脂と導磁性材料からなる導磁性樹脂層31で覆われている。導磁性材料は、例えば、鉄、ニッケル等の強磁性材料で構成されている。樹脂は、例えば、ポリエチレン、ポリプロピレン、ポリアミド等の融点が130℃以上の熱可性樹脂で構成されている。 In addition, the permanent magnet 30 is surrounded by a magnetically conductive resin layer 31 made of resin and a magnetically conductive material. The magnetically conductive material is composed of, for example, a ferromagnetic material such as iron or nickel. The resin is, for example, a thermoplastic resin having a melting point of 130° C. or higher, such as polyethylene, polypropylene, or polyamide.
 導磁性材料は、例えば、粉末状で、樹脂中に分散している。図2に示すように、磁石配置穴21の各々に永久磁石30を挿入するとき、永久磁石30は、少なくとも回転方向に面する2つの側面が導磁性樹脂層31で覆われている状態である。 The magnetically conductive material is, for example, powdery and dispersed in resin. As shown in FIG. 2, when the permanent magnets 30 are inserted into each of the magnet arrangement holes 21, the permanent magnets 30 are in a state where at least two side surfaces facing in the direction of rotation are covered with the magnetically conductive resin layer 31. .
 図3に示すように、各磁石配置穴21には、平面視で、周方向(回転軸10の回転方向)において対向する2つの内面21a、21bが設けられている。そして、永久磁石30は、2つの内面21a、21bとは直接接しないように配置される。永久磁石30の回転方向に面する2つの側面と磁石配置穴21の内面21a、内面21bとの間にはそれぞれ隙間があり、この隙間に導磁性樹脂層31が配置される。すなわち、各磁石配置穴21は、少なくとも回転方向においては、永久磁石30と導磁性樹脂層31とで占められている。そして、永久磁石30は磁石配置穴21に導磁性樹脂層31によって固定されている。 As shown in FIG. 3, each magnet placement hole 21 is provided with two inner surfaces 21a and 21b facing each other in the circumferential direction (rotating direction of the rotating shaft 10) in plan view. The permanent magnet 30 is arranged so as not to be in direct contact with the two inner surfaces 21a and 21b. There are gaps between the two side surfaces of the permanent magnet 30 facing in the direction of rotation and the inner surfaces 21a and 21b of the magnet arrangement hole 21, respectively, and the magnetism-permeable resin layer 31 is arranged in these gaps. That is, each magnet placement hole 21 is occupied by the permanent magnet 30 and the magnetically conductive resin layer 31 at least in the direction of rotation. The permanent magnet 30 is fixed in the magnet arrangement hole 21 by the magnetically conductive resin layer 31 .
 周方向において、永久磁石30および導磁性樹脂層31を合わせた厚みは、磁石配置穴21の幅と略同等、あるいは磁石配置穴21の幅より若干広い。磁石配置穴21の幅より広くても、外側の導磁性樹脂層31は樹脂を有するので柔軟性があり、これにより、永久磁石30挿入時に、磁石配置穴21の内面21a、内面21bから導磁性樹脂層31に向けた応力が働く。この結果、導磁性樹脂層31が内面21a、内面21bによって押し込められて、挿入後、永久磁石30側から磁石配置穴21の内面21a、内面21bに向けた応力も加わることになり、永久磁石30は磁石配置穴21内において確実に保持される。 In the circumferential direction, the total thickness of the permanent magnets 30 and the magnetism-permeable resin layer 31 is approximately equal to the width of the magnet placement hole 21 or slightly wider than the width of the magnet placement hole 21 . Even if the width of the magnet placement hole 21 is wider than the width of the magnet placement hole 21, the outer magnetism-permeable resin layer 31 has resin and is therefore flexible. A stress acts on the resin layer 31 . As a result, the magnetism-permeable resin layer 31 is pushed in by the inner surfaces 21a and 21b, and after insertion, stress is also applied from the permanent magnet 30 side toward the inner surfaces 21a and 21b of the magnet arrangement hole 21. are reliably held in the magnet placement hole 21 .
 また、永久磁石30の磁束密度は、永久磁石30の少なくとも回転方向に面する2つの側面を含む最も外径側(径方向の外側)の部分の磁束密度に対する最も内径側(径方向の外側)の部分の磁束密度の比率が0.7以上である。 In addition, the magnetic flux density of the permanent magnet 30 is the innermost (outer in the radial direction) than the magnetic flux density of the outermost (outer in the radial direction) portion of the permanent magnet 30 including at least two side surfaces facing in the rotation direction. The magnetic flux density ratio of the portion is 0.7 or more.
 本実施の形態では、まず、永久磁石30の周囲を樹脂と導磁性材料からなる導磁性樹脂層31でコーティングする。その後、導磁性樹脂層31を硬化させる。この導磁性樹脂層31は少なくとも周方向(回転方向)で永久磁石30の両面に形成する。 In this embodiment, first, the periphery of the permanent magnet 30 is coated with a magnetically conductive resin layer 31 made of resin and a magnetically conductive material. After that, the magnetically conductive resin layer 31 is cured. The magnetically conductive resin layers 31 are formed on both surfaces of the permanent magnet 30 at least in the circumferential direction (rotational direction).
 次に、永久磁石30に着磁する。 Next, the permanent magnet 30 is magnetized.
 その後、図4に示すように、導磁性樹脂層31で覆われている永久磁石30を磁石配置穴21に挿入する。このとき、導磁性樹脂層31は磁石配置穴21の内面21a、内面21bと接するように圧入される。導磁性樹脂層31は樹脂が含有されているので、内面21a、内面21bを損傷することを防止できる。 After that, as shown in FIG. 4, the permanent magnet 30 covered with the magnetically conductive resin layer 31 is inserted into the magnet placement hole 21 . At this time, the magnetism-permeable resin layer 31 is press-fitted so as to be in contact with the inner surfaces 21 a and 21 b of the magnet arrangement hole 21 . Since the magnetism-permeable resin layer 31 contains resin, it is possible to prevent the inner surfaces 21a and 21b from being damaged.
 上記のような構成にすることによって、各磁石配置穴21に挿入された永久磁石30が、各磁石配置穴21内で導磁性樹脂層31によって確実に固定される。 With the configuration as described above, the permanent magnets 30 inserted into the magnet placement holes 21 are securely fixed in the magnet placement holes 21 by the magnetically conductive resin layer 31 .
 すなわち、回転方向において、各磁石配置穴21を永久磁石30と導磁性樹脂層31とで満たされるため、各永久磁石30が周方向での配置箇所から移動することを防止できる。 That is, since each magnet arrangement hole 21 is filled with the permanent magnet 30 and the magnetism-permeable resin layer 31 in the rotation direction, each permanent magnet 30 can be prevented from moving from the arrangement position in the circumferential direction.
 したがって、各磁石配置穴21において、永久磁石30の吸着箇所のばらつきを抑制できる。この結果、永久磁石30ごとの磁束密度量のばらつきを低減でき、コギングトルクが大きくなるのを防ぐことができるという利点が得られる。 Therefore, in each magnet placement hole 21, variations in the attraction points of the permanent magnets 30 can be suppressed. As a result, it is possible to reduce variations in the amount of magnetic flux density for each permanent magnet 30, and to prevent an increase in cogging torque.
 ここで、熱可塑性の導磁性樹脂を着磁後の永久磁石に接触させると、永久磁石が樹脂の硬化の際の熱により減磁する。 Here, when the thermoplastic magnetically conductive resin is brought into contact with the magnetized permanent magnet, the permanent magnet is demagnetized by the heat generated when the resin hardens.
 本実施の形態では、着磁前に、あらかじめ導磁性樹脂層31を永久磁石30へコーティング、硬化しているため、熱減磁を回避できる。 In the present embodiment, since the magnetically conductive resin layer 31 is coated and cured on the permanent magnet 30 before magnetization, thermal demagnetization can be avoided.
 (第一変形例)
 本開示の一実施の形態の第一変形例に係る電動機1における磁石配置穴21の近傍の平面図を図5Aに示す。電動機1の構成は、図1に示す電動機1と同様である。第一変形例は、永久磁石30が磁石配置穴21の径方向に向かう一面のみと接し、内面21a、内面21bに対向する面を含む永久磁石30の3つの側面が導磁性樹脂層31に覆われている構成を示す。この構成によっても、各磁石配置穴21に挿入された永久磁石30が、磁石配置穴21内で導磁性樹脂層31によって確実に固定される。
(first modification)
FIG. 5A shows a plan view of the vicinity of the magnet placement hole 21 in the electric motor 1 according to the first modification of the embodiment of the present disclosure. The configuration of the electric motor 1 is the same as that of the electric motor 1 shown in FIG. In the first modification, the permanent magnet 30 is in contact with only one surface of the magnet arrangement hole 21 in the radial direction, and three side surfaces of the permanent magnet 30 including the surface facing the inner surface 21 a and the inner surface 21 b are covered with the magnetically conductive resin layer 31 . shows the configured configuration. Also with this configuration, the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed in the magnet arrangement holes 21 by the magnetically conductive resin layer 31 .
 (第二変形例)
 本開示の一実施の形態の第二変形例に係る電動機1における磁石配置穴21の近傍の平面図を図5Bに示す。電動機1の構成は、図1に示す電動機1と同様である。第二変形例は、永久磁石30が磁石配置穴21に接することなく、永久磁石30の4つの側面が導磁性樹脂層31に覆われている構成を示す。この構成によっても、各磁石配置穴21に挿入された永久磁石30が、磁石配置穴21内で導磁性樹脂層31によって確実に固定される。
(Second modification)
FIG. 5B shows a plan view of the vicinity of the magnet placement hole 21 in the electric motor 1 according to the second modification of the embodiment of the present disclosure. The configuration of the electric motor 1 is the same as that of the electric motor 1 shown in FIG. A second modification shows a configuration in which the permanent magnet 30 is not in contact with the magnet placement hole 21 and the four side surfaces of the permanent magnet 30 are covered with the magnetically conductive resin layer 31 . Also with this configuration, the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed in the magnet arrangement holes 21 by the magnetically conductive resin layer 31 .
 なお、上記の一実施の形態は一例に過ぎず、本開示はこれに限定されず、適宜変更することができる。例えば、上記の実施の形態の構成の一部を公知の他の構成に置き換えてもよい。また上記の実施の形態で言及されていない構成は任意であり、例えば公知の構成を適宜選択して本開示に組み合わせることができる。 It should be noted that the above embodiment is merely an example, and the present disclosure is not limited to this, and can be modified as appropriate. For example, part of the configurations of the above embodiments may be replaced with other known configurations. Configurations not mentioned in the above embodiments are optional, and for example, known configurations can be appropriately selected and combined with the present disclosure.
 (実施の態様)
 本開示の実施の態様について、以下に説明する。
(mode of implementation)
Embodiments of the present disclosure are described below.
 本開示の第1の態様に係る回転子(2)は、複数の磁石配置穴(21)を有する回転子鉄心(20)と、複数の磁石配置穴(21)にそれぞれ配置された複数の永久磁石(30)と、回転子鉄心(20)に固定された回転軸(10)と、を備える。複数の永久磁石(30)の各々は、少なくとも回転方向に面する2つの側面が導磁性樹脂(31)で覆われる。複数の永久磁石(30)の各々は、導磁性樹脂層(31)によって複数の磁石配置穴(20)の対応する一つに固定されている。 A rotor (2) according to a first aspect of the present disclosure includes a rotor core (20) having a plurality of magnet placement holes (21), and a plurality of permanent magnets respectively arranged in the plurality of magnet placement holes (21). It comprises a magnet (30) and a rotating shaft (10) fixed to a rotor core (20). Each of the plurality of permanent magnets (30) is covered with a magnetically conductive resin (31) on at least two side surfaces facing in the direction of rotation. Each of the plurality of permanent magnets (30) is fixed to a corresponding one of the plurality of magnet placement holes (20) by a magnetically conductive resin layer (31).
 本開示の第2の態様に係る回転子(2)の製造方法は、回転子(2)について永久磁石(30)の少なくとも回転方向に面する2つの側面に導磁性樹脂層(31)を形成した後、永久磁石(30)を着磁し、その後、2つの側面に導磁性樹脂層(31)が形成された永久磁石(30)を磁石配置穴(21)に挿入するようにしている。 A method for manufacturing a rotor (2) according to a second aspect of the present disclosure includes forming a magnetically conductive resin layer (31) on at least two side surfaces of a permanent magnet (30) facing the rotation direction of the rotor (2). After that, the permanent magnet (30) is magnetized, and then the permanent magnet (30) having the magnetically conductive resin layer (31) formed on the two sides is inserted into the magnet arrangement hole (21).
 本開示の第3の態様に係る電動機(1)は、第1の態様の回転子(2)と、回転子(2)に対向して配置され、回転子(2)に作用する磁力を発生させる固定子(3)とを備えている。 An electric motor (1) according to a third aspect of the present disclosure is arranged to face the rotor (2) of the first aspect and the rotor (2), and generates a magnetic force acting on the rotor (2). a stator (3) that allows
 本開示に係る回転子および電動機は、家庭用電気機器、産業用機器をはじめとして種々の機器に用いられている電動機等に広く利用可能である。 The rotor and the electric motor according to the present disclosure can be widely used in electric motors and the like used in various devices including household electrical equipment and industrial equipment.
 1  電動機
 2  回転子
 3  固定子
 3a  固定子鉄心
 3a1  ティース
 3b  巻線コイル
 10  回転軸
 20  回転子鉄心
 21  磁石配置穴
 21a、21b  内面
 30  永久磁石
 31  導磁性樹脂層
REFERENCE SIGNS LIST 1 electric motor 2 rotor 3 stator 3a stator core 3a1 tooth 3b winding coil 10 rotating shaft 20 rotor core 21 magnet arrangement hole 21a, 21b inner surface 30 permanent magnet 31 magnetically conductive resin layer

Claims (3)

  1.  複数の磁石配置穴を有する回転子鉄心と、
     前記複数の磁石配置穴にそれぞれ配置された複数の永久磁石と、
     前記回転子鉄心に固定された回転軸と、を備え、
     前記複数の永久磁石の各々は、少なくとも回転方向に面する2つの側面が導磁性樹脂で覆われ、
     前記複数の永久磁石の各々は、前記導磁性樹脂層によって前記複数の磁石配置穴の対応する一つに固定されている、
     回転子。
    a rotor core having a plurality of magnet placement holes;
    a plurality of permanent magnets respectively arranged in the plurality of magnet arrangement holes;
    and a rotating shaft fixed to the rotor core,
    each of the plurality of permanent magnets is covered with a magnetically conductive resin on at least two side faces facing the direction of rotation;
    each of the plurality of permanent magnets is fixed to a corresponding one of the plurality of magnet placement holes by the magnetically conductive resin layer;
    rotor.
  2.  請求項1に記載の回転子の製造方法であって、前記永久磁石の少なくとも回転方向に面する前記2つの側面に前記導磁性樹脂層を形成した後、前記永久磁石を着磁し、その後、前記2つの側面に前記導磁性樹脂層が形成された前記永久磁石を前記磁石配置穴に挿入するようにした、
     回転子の製造方法。
    2. The method of manufacturing a rotor according to claim 1, wherein after the magnetically conductive resin layer is formed on at least the two side surfaces of the permanent magnets facing in the direction of rotation, the permanent magnets are magnetized; The permanent magnet having the magnetically conductive resin layer formed on the two side surfaces is inserted into the magnet arrangement hole,
    A rotor manufacturing method.
  3.  請求項1に記載の回転子と、前記回転子に対向して配置され、前記回転子に作用する磁力を発生させる固定子とを備えている、
     電動機。
    2. A rotor according to claim 1, and a stator arranged to face the rotor and generating a magnetic force acting on the rotor.
    Electric motor.
PCT/JP2022/021825 2021-06-30 2022-05-27 Rotor, method for manufacturing same, and electric motor WO2023276514A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531717A JPWO2023276514A1 (en) 2021-06-30 2022-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021108267 2021-06-30
JP2021-108267 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023276514A1 true WO2023276514A1 (en) 2023-01-05

Family

ID=84691219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021825 WO2023276514A1 (en) 2021-06-30 2022-05-27 Rotor, method for manufacturing same, and electric motor

Country Status (2)

Country Link
JP (1) JPWO2023276514A1 (en)
WO (1) WO2023276514A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060836A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Rotor for motor with embedded type magnet and manufacturing method thereof
JP2011239607A (en) * 2010-05-12 2011-11-24 Toyota Motor Corp Inner magnetic type rotor and magnet fixing method for the same
WO2013008284A1 (en) * 2011-07-08 2013-01-17 三菱電機株式会社 Permanent magnet type electric rotating machine and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060836A (en) * 2005-08-25 2007-03-08 Fuji Heavy Ind Ltd Rotor for motor with embedded type magnet and manufacturing method thereof
JP2011239607A (en) * 2010-05-12 2011-11-24 Toyota Motor Corp Inner magnetic type rotor and magnet fixing method for the same
WO2013008284A1 (en) * 2011-07-08 2013-01-17 三菱電機株式会社 Permanent magnet type electric rotating machine and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2023276514A1 (en) 2023-01-05

Similar Documents

Publication Publication Date Title
US7535145B2 (en) Axial air gap-type electric motor
WO2013114542A1 (en) Rotor for permanent magnet-embedded electric motor, electric motor provided with same rotor, compressor provided with same electric motor, and air conditioner provided with same compressor
US11621621B2 (en) Magnets, pole shoes, and slot openings of axial flux motor
CN112838693A (en) Rotating electrical machine
JP6661939B2 (en) Rotor
JP7293371B2 (en) Rotor of rotary electric machine
US20130221771A1 (en) Hybrid excitation rotating electrical machine
WO2022019074A1 (en) Electric motor
JP2017118691A (en) motor
JP3722166B2 (en) Field of permanent magnet motor
JPWO2022019074A5 (en)
WO2019038958A1 (en) Rotary electric machine
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP7166066B2 (en) Rotating electric machine
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
WO2023276512A1 (en) Rotor and method for manufacturing same, and electric motor
WO2023276513A1 (en) Rotor, method for manufacturing same, and electric motor
WO2022219923A1 (en) Rotor and electric motor
WO2022219942A1 (en) Rotor and electric motor
WO2022255038A1 (en) Rotor and electric motor
JP5750995B2 (en) Synchronous motor
JP5793948B2 (en) Synchronous motor
JP2014225959A (en) Rotor of dynamo-electric machine and manufacturing method therefor
WO2021235267A1 (en) Rotor and electric motor
JPWO2022219923A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832672

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531717

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE