WO2022219942A1 - Rotor and electric motor - Google Patents

Rotor and electric motor Download PDF

Info

Publication number
WO2022219942A1
WO2022219942A1 PCT/JP2022/007903 JP2022007903W WO2022219942A1 WO 2022219942 A1 WO2022219942 A1 WO 2022219942A1 JP 2022007903 W JP2022007903 W JP 2022007903W WO 2022219942 A1 WO2022219942 A1 WO 2022219942A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnet
rotating shaft
permanent magnets
permanent magnet
Prior art date
Application number
PCT/JP2022/007903
Other languages
French (fr)
Japanese (ja)
Inventor
慶一郎 額田
修悟 福田
浩司 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023514373A priority Critical patent/JPWO2022219942A1/ja
Publication of WO2022219942A1 publication Critical patent/WO2022219942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Definitions

  • the present disclosure relates to rotors and electric motors used in various devices including household electrical devices and industrial devices.
  • Electric motors are used in various electrical equipment such as household equipment and industrial equipment.
  • An IPM (Interior Permanent Magnet) motor is known as an electric motor.
  • the rotor of the IPM motor includes, for example, a rotor core, permanent magnets arranged in each of a plurality of magnet arrangement holes provided in the rotor core, and magnets extending through the rotor core. and a rotating shaft fixed to.
  • magnetic flux generated by the permanent magnet of the rotor is passed through the stator to generate torque for rotating the rotor.
  • an IPM motor which includes a rotor in which a plurality of magnet arrangement holes in a rotor core are radially provided (Patent Document 1).
  • the present disclosure is intended to solve the above problems, and aims to provide a rotor and an electric motor that can reduce cogging torque.
  • a rotor includes a rotor core having a plurality of magnet placement holes, a plurality of permanent magnets arranged inside the plurality of magnet placement holes, and fixed to the rotor core. and a rotating shaft, and each of the plurality of permanent magnets is provided with a protrusion at a corner in a plan view.
  • the outer peripheral surface of the projecting portion is arcuate.
  • the corners of the inner surface of each of the plurality of magnet placement holes are arcuate, and the radius of curvature of the corners of the inner surface of the magnet placement holes is greater than the radius of curvature of the protrusion.
  • the radius of curvature of the outer peripheral surface is larger.
  • the plurality of magnet arrangement holes are provided radially around the rotation axis.
  • An electric motor in any one of the first to fourth aspects, is characterized in that the surface of the permanent magnet is covered with a coating layer made of resin or metal, and the projecting portion is composed of the coating layer.
  • An electric motor includes the rotor according to any one of the first to fifth aspects, and a stator arranged to face the rotor and generating a magnetic force acting on the rotor. ing.
  • FIG. 1 is a perspective view of an electric motor according to an embodiment of the present disclosure
  • FIG. A perspective view of a rotor of the motor
  • FIG. A plan view of the main part of the rotor of the motor
  • each figure is a schematic diagram and is not necessarily strictly illustrated.
  • symbol is attached
  • FIG. 1 is a perspective view of an electric motor 1 according to an embodiment.
  • the electric motor 1 includes a rotor 2 and a stator 3.
  • Electric motor 1 in the present embodiment is an inner rotor type motor in which rotor 2 is arranged inside stator 3 . That is, the stator 3 is configured to surround the rotor 2 .
  • the rotor 2 (rotor) is rotated by the magnetic force generated in the stator 3.
  • the rotor 2 has a rotating shaft 10 and rotates about an axis C of the rotating shaft 10 as a rotation center.
  • the rotor 2 generates a magnetic force that acts on the stator 3.
  • the rotor 2 has a structure in which a plurality of N poles and S poles, which are main magnetic fluxes, are repeatedly present in the circumferential direction.
  • the direction of the main magnetic flux generated by the rotor 2 is perpendicular to the direction of the axis C of the rotating shaft 10 (rotating shaft direction). That is, the direction of the main magnetic flux generated by the rotor 2 is the radial direction.
  • the rotor 2 is arranged with the stator 3 through an air gap. Specifically, a minute air gap exists between the surface of the rotor 2 and the surface of the stator 3 .
  • the rotor 2 is an embedded permanent magnet rotor (IPM rotor) in which permanent magnets are embedded in an iron core. Therefore, electric motor 1 in the present embodiment is an IPM motor.
  • the stator 3 (stator) is arranged to face the rotor 2 via an air gap, and generates magnetic force acting on the rotor 2 .
  • the stator 3 is arranged so as to surround the rotor core 20 of the rotor 2 .
  • the stator 3 forms a magnetic circuit together with the rotor 2 .
  • the stator 3 is configured so that N poles and S poles are alternately generated in the circumferential direction as the main magnetic flux on the air gap surface.
  • the stator 3 has a stator core 3a (stator core) and winding coils 3b (stator coil).
  • a plurality of teeth 3a1 projecting toward the rotor core 20 of the rotor 2 are provided on the stator core 3a.
  • the plurality of teeth 3 a 1 are provided so as to protrude toward the axis C of the rotating shaft 10 .
  • the plurality of teeth 3a1 are provided at regular intervals in the circumferential direction. Therefore, the multiple teeth 3a1 radially extend in a direction perpendicular to the axis C of the rotating shaft 10 (radial direction).
  • the stator core 3a is composed of a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10, for example.
  • Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape.
  • the stator core 3a is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
  • the winding coil 3b is wound around each of the plurality of teeth 3a1 of the stator core 3a. Specifically, the winding coil 3b is wound around each tooth 3a1 via an insulator.
  • Each winding coil 3b is composed of unit coils of three phases, U-phase, V-phase and W-phase, which are electrically 120 degrees out of phase with each other. That is, the winding coil 3b wound around each tooth 3a1 is energized and driven by a three-phase alternating current that is energized in phase units of the U phase, the V phase, and the W phase. Thereby, the main magnetic flux of the stator 3 is generated in each tooth 3a1.
  • the winding coil 3b is made of a metal material such as copper whose surface is coated with an insulating film, and has a circular or rectangular cross section.
  • the electric motor 1 configured in this manner, when the winding coil 3b of the stator 3 is energized, a field current flows through the winding coil 3b to generate a magnetic field. Thereby, a magnetic flux is generated from the stator 3 toward the rotor 2 .
  • the rotor 2 generates a magnetic flux directed toward the stator 3 . That is, the permanent magnets of rotor 2 generate a magnetic flux that passes through stator 3 .
  • the magnetic force generated by the interaction between the magnetic flux generated by the stator 3 and the magnetic flux generated by the rotor 2 becomes torque for rotating the rotor 2 , and the rotor 2 rotates about the rotation axis 10 .
  • FIG. 2 is a perspective view of the rotor 2 according to the embodiment.
  • FIG. 3 is a plan view of main parts of the rotor 2 according to the embodiment. 2 and 3, the rotating shaft 10 is omitted.
  • the rotor 2 includes a rotating shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
  • the rotating shaft 10 is a long shaft that serves as the center when the rotor 2 rotates.
  • the rotating shaft 10 is, for example, a metal rod and fixed to the center of the rotor 2 .
  • the rotating shaft 10 is fixed to the rotor core 20 .
  • rotating shaft 10 is fixed to rotor core 20 while penetrating through the center of rotor core 20 so as to protrude from both sides of rotor 2 .
  • the rotating shaft 10 is fixed to the rotor core 20 by being press-fitted into a through hole 20a formed in the center of the rotor core 20 or by shrink fitting.
  • a first portion of the rotating shaft 10 projecting to one side of the rotor 2 is supported by a first bearing, and a second portion of the rotating shaft 10 projecting to the other side of the rotor 2 is supported by a first bearing. It is supported by two bearings.
  • a load driven by the electric motor 1 is attached to the first portion or the second portion of the rotating shaft 10 .
  • the rotor core 20 (rotor core) is composed of, for example, a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10 .
  • Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape, and fixed to each other by caulking or the like.
  • the rotor core 20 is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
  • the rotor core 20 is a core having a plurality of magnet placement holes 21.
  • a plurality of magnet arrangement holes 21 are holes for magnet arrangement in which permanent magnets 30 are arranged.
  • a permanent magnet 30 is inserted into the magnet placement hole 21 .
  • the magnet arrangement hole 21 is a magnet insertion hole into which the permanent magnet 30 is inserted.
  • One permanent magnet 30 is inserted into each magnet placement hole 21 .
  • the rotor 2 is a ten-pole rotor having ten magnetic poles. Therefore, the rotor core 20 is provided with 10 magnet placement holes 21 and 10 permanent magnets 30 . Note that the present invention is not particularly limited to this, and can be applied to other numbers of magnetic poles.
  • the magnet placement hole 21 is a through hole that penetrates the rotor core 20 along the direction of the axis C of the rotating shaft 10 . Therefore, the cross-sectional shape of the magnet arrangement hole 21 is the same in the direction of the axis C of the rotating shaft 10 in any cross section taken along a plane orthogonal to the rotating shaft 10 . In other words, all the steel plates forming the rotor core 20 are formed with the magnet arrangement holes 21 having the same shape. Note that the magnet arrangement hole 21 may not be a through hole as long as the permanent magnet 30 can be arranged.
  • the plurality of magnet arrangement holes 21 are radially provided around the rotating shaft 10. As shown in FIGS. Also, the plurality of magnet placement holes 21 are provided at regular intervals along the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). Each of the plurality of magnet arrangement holes 21 extends in the radial direction of the rotor core 20 (the direction orthogonal to the direction of the axis C of the rotating shaft 10) in plan view. That is, the magnet placement holes 21 are elongated in the radial direction of the rotor core 20, and the length in the radial direction is longer than the length in the rotational direction (circumferential direction). The magnet arrangement hole 21 may be elongated in the rotational direction (circumferential direction) of the rotor core 20, and the length in the rotational direction (circumferential direction) may be longer than the radial length.
  • a plurality of elongated magnet placement holes 21 are formed in the shape of spokes around the rotating shaft 10 . That is, the rotor 2 is a spoke-type IPM rotor, and the electric motor 1 is a spoke-type IPM motor.
  • the plan view shape of each magnet placement hole 21 is substantially rectangular with the radial direction of the rotor core 20 as its longitudinal direction.
  • the planar view shapes of the plurality of magnet placement holes 21 are the same.
  • a permanent magnet 30 is inserted into each of the magnet arrangement holes 21 of the rotor 2 along the direction of the axis C of the rotating shaft 10 , and the permanent magnets 30 are inserted into each of the plurality of magnet arrangement holes 21 . placed.
  • the permanent magnet 30 is inserted from above (above the paper) the axis C of the rotating shaft 10, but the permanent magnet 30 may be inserted from below (below the paper).
  • the permanent magnet 30 is, for example, a sintered magnet.
  • the plurality of permanent magnets 30 are arranged such that the magnetic pole direction is in the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). That is, the permanent magnet 30 is magnetized so that the direction of the magnetic poles is the circumferential direction of the rotor core 20 .
  • the two adjacent permanent magnets 30 have opposite magnetic pole directions of the S pole and the N pole.
  • the planar view shape and size of the permanent magnet 30 are substantially the same as the planar view shape and size of the magnet placement hole 21 , and the permanent magnet 30 is fitted in the magnet placement hole 21 . Therefore, the planar view shape of the permanent magnet 30 is an elongated substantially rectangular shape.
  • the permanent magnet 30 is a plate-like rectangular parallelepiped having a thickness in a direction perpendicular to the radial direction of the rotor core 20 . Note that the permanent magnet 30 in each magnet placement hole 21 may be divided into a plurality of pieces.
  • each magnet placement hole 21 there is a gap (space, clearance) of a certain size between the outer surface of the permanent magnet 30 and the inner surface of the magnet placement hole 21 .
  • An adhesive may be provided in this gap for adhesively fixing the permanent magnet 30 to the magnet arrangement hole 21 .
  • the adhesive may not be provided in this gap.
  • the permanent magnet 30 is composed of, for example, a Nd--Fe--B based sintered magnet or ferrite sintered magnet. Alternatively, it may be a bonded magnet formed of magnet powder such as Nd--Fe--B magnet powder or ferrite magnet powder, a resin material and a small amount of additives.
  • the permanent magnets 30 may be magnetized after being placed in the magnet placement holes 21, or may be magnetized in advance before the permanent magnets 30 are inserted into the magnet placement holes 21. However, considering the workability of inserting the permanent magnet 30 into the magnet arrangement hole 21, it is better to magnetize the permanent magnet 30 after inserting it into the magnet arrangement hole 21. FIG.
  • the permanent magnet 30 is covered with a covering material made of resin to form a covering layer 31 to cover the periphery of the permanent magnet 30 .
  • each permanent magnet 30 has a projecting portion 32 at each of four corners 30a in a plan view (viewed from the direction of the axis C of the rotating shaft 10).
  • the protruding portion 32 has an arc-shaped outer peripheral surface.
  • the protruding portion 32 protrudes from the permanent magnet 30 along a line connecting the center of the permanent magnet 30 and the corner portion 30a in plan view.
  • the permanent magnet 30 is fixed to the inner surface of the magnet placement hole 21 by the four protrusions 32 .
  • the projecting portion 32 is formed entirely along the direction of the axis C of the rotating shaft 10 . That is, the projecting portion 32 is provided over the entire permanent magnet 30 in the vertical direction (rotational axis direction). Note that the projecting portions 32 may be formed only on the upper and lower portions of the permanent magnet 30 in the vertical direction (rotational axis direction).
  • the protruding part 32 is configured by molding a part of the covering layer 31 so as to protrude.
  • the permanent magnet 30 itself may be configured to partially protrude, it is preferable to form it on the coating layer 31 from the viewpoint of ease of production.
  • the four protrusions 32 are substantially the same in shape and size.
  • the projecting portion 32 is in contact with the corner portion 21 a of the inner surface of the magnet placement hole 21 . Specifically, the projecting portion 32 is in contact with two inner surfaces of the magnet placement hole 21 that are connected via the corner portion 21a. Since the outer peripheral surface of the protruding portion 32 is arcuate, the area of the contact portion between the inner surface of the magnet placement hole 21 and the protruding portion 32 in a plan view can be reduced. As a result, friction when inserting the permanent magnets 30 into the magnet arrangement holes 21 can be reduced, and problems such as damage to the coating layer 31 covering the permanent magnets 30 and deformation of the rotor core 20 are less likely to occur. Furthermore, since the projecting portion 32 is composed of the coating layer 31 made of resin, it is possible to prevent damage to the rotor core 20 during insertion.
  • FIG. 4 is a partially enlarged plan view of the rotor 2 showing another example of the present embodiment.
  • the inner peripheral surface of the corner 21a of the inner surface of the magnet placement hole 21 is arcuate.
  • the radius of curvature of the outer peripheral surface of the projecting portion 32 is larger than the radius of curvature of the corners 21 a of the inner surface of the magnet placement hole 21 .
  • the radius of curvature represents the radius of the arc.
  • the corner portion 21a of the inner surface of the arc-shaped magnet placement hole 21 and the outer peripheral surface of the arc-shaped protruding portion 32 will come into contact with each other. It may rotate along the corner 21a and be fixed in a rotated state. At this time, the rotating state of each permanent magnet 30 becomes uneven. As a result, the difference in the amount of magnetic flux density between the magnetic poles of each permanent magnet 30 and the other permanent magnets 30 increases, resulting in an increase in cogging torque.
  • the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed substantially in the center of the magnet arrangement holes 21 .
  • each magnet placement hole 21 variations in placement locations of the permanent magnets 30 can be suppressed.
  • the difference in the amount of magnetic flux density between each permanent magnet 30 and the other permanent magnets 30 can be reduced, and it is possible to prevent an increase in torque ripple and an increase in cogging torque.
  • the permanent magnet 30 can be removed from the magnet arranging hole. 21 can be held securely.
  • the surface of the permanent magnet 30 is covered with the coating layer 31 made of resin, but the coating layer 31 is not limited to resin, and may be made of metal or may contain metal. That is, the surface of the permanent magnet 30 may be covered with a coating layer 31 made of metal, or may be covered with a coating layer 31 made of resin containing metal.
  • copper, nickel, or aluminum is mentioned as a metal used here.
  • the rotor and the electric motor according to the present disclosure can be widely used in electric motors and the like used in various devices including household electrical equipment and industrial equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

Provided is a rotor and an electric motor capable of reducing torque ripple. The rotor comprises: a rotor core (20) having a plurality of magnet placement holes (21); a plurality of permanent magnets (30) respectively placed inside the plurality of magnet placement holes (21); and a rotating shaft (10) fixed to the rotor core (20). The plurality of magnet placement holes (21) are radially provided about the rotating shaft (10), and the permanent magnets (30) are each provided with a projection portion (32) at a corner portion (30a) in a plan view.

Description

回転子及び電動機rotor and motor
 本開示は、家庭用電気機器、産業用機器をはじめとして種々の機器に用いられている回転子及び電動機に関する。 The present disclosure relates to rotors and electric motors used in various devices including household electrical devices and industrial devices.
 電動機は、家庭用機器又は産業用機器等の様々な電気機器に用いられている。電動機として、IPM(Interior Permanent Magnet)モータが知られている。IPMモータの回転子は、例えば、回転子鉄心と、回転子鉄心に設けられた複数の磁石配置穴の各々に配置された永久磁石と、回転子鉄心を貫通するようにして回転子鉄心の中心に固定された回転軸とを備える。IPMモータでは、回転子の永久磁石で発生する磁束を固定子に通すことで回転子を回転させるトルクを発生させている。 Electric motors are used in various electrical equipment such as household equipment and industrial equipment. An IPM (Interior Permanent Magnet) motor is known as an electric motor. The rotor of the IPM motor includes, for example, a rotor core, permanent magnets arranged in each of a plurality of magnet arrangement holes provided in the rotor core, and magnets extending through the rotor core. and a rotating shaft fixed to. In the IPM motor, magnetic flux generated by the permanent magnet of the rotor is passed through the stator to generate torque for rotating the rotor.
 従来、この種のモータとして、回転子鉄心の複数の磁石配置穴が放射状に設けられた回転子を備えるIPMモータが知られている(特許文献1)。 Conventionally, as this type of motor, an IPM motor is known which includes a rotor in which a plurality of magnet arrangement holes in a rotor core are radially provided (Patent Document 1).
特開2017-46386号公報JP 2017-46386 A
 従来の回転子では、磁石配置穴への永久磁石の挿入性を高めるために、回転子鉄心と永久磁石との間に所定のスペースを設けることがある。この場合、磁石配置穴に永久磁石を挿入すると、永久磁石の磁石配置穴内の配置箇所がばらつく可能性があった。この結果、各永久磁石での磁極の他の永久磁石との磁束密度量の差が大きくなるため、コギングトルクが大きくなるという問題を有していた。 In conventional rotors, a predetermined space is sometimes provided between the rotor core and the permanent magnets in order to improve the insertability of the permanent magnets into the magnet placement holes. In this case, when the permanent magnets are inserted into the magnet arrangement holes, there is a possibility that the arrangement positions of the permanent magnets in the magnet arrangement holes vary. As a result, the difference in magnetic flux density between the magnetic poles of each permanent magnet and that of the other permanent magnets is increased, resulting in a problem of increased cogging torque.
 本開示は、以上のような問題を解決するものであり、コギングトルクを低減できる回転子及び電動機を提供することを目的とする。 The present disclosure is intended to solve the above problems, and aims to provide a rotor and an electric motor that can reduce cogging torque.
 本開示の第1の態様に係る回転子は、複数の磁石配置穴を有する回転子鉄心と、それぞれ複数の磁石配置穴の内部に配置された複数の永久磁石と、回転子鉄心に固定された回転軸とを備え、複数の永久磁石の各々は、平面視で角部に突出部が設けられている。 A rotor according to a first aspect of the present disclosure includes a rotor core having a plurality of magnet placement holes, a plurality of permanent magnets arranged inside the plurality of magnet placement holes, and fixed to the rotor core. and a rotating shaft, and each of the plurality of permanent magnets is provided with a protrusion at a corner in a plan view.
 本開示の第2の態様に係る回転子は、第1の態様において、突出部の外周面が円弧状である。 In the rotor according to the second aspect of the present disclosure, in the first aspect, the outer peripheral surface of the projecting portion is arcuate.
 本開示の第3の態様に係る電動機は、第2の態様において、複数の磁石配置穴の各々の内面の角部は円弧状で、磁石配置穴の内面の角部の曲率半径より突出部の外周面の曲率半径の方が大きい。 In the electric motor according to a third aspect of the present disclosure, in the second aspect, the corners of the inner surface of each of the plurality of magnet placement holes are arcuate, and the radius of curvature of the corners of the inner surface of the magnet placement holes is greater than the radius of curvature of the protrusion. The radius of curvature of the outer peripheral surface is larger.
 本開示の第4の態様に係る電動機は、第1~第3のいずれかの態様において、複数の磁石配置穴は、回転軸を中心として放射状に設けられている。 In any one of the first to third aspects of the electric motor according to the fourth aspect of the present disclosure, the plurality of magnet arrangement holes are provided radially around the rotation axis.
 本開示の第5の態様に係る電動機は、第1~第4のいずれかの態様において、永久磁石の表面が樹脂または金属からなる被覆層で覆われ、突出部が前記被覆層で構成されている。 An electric motor according to a fifth aspect of the present disclosure, in any one of the first to fourth aspects, is characterized in that the surface of the permanent magnet is covered with a coating layer made of resin or metal, and the projecting portion is composed of the coating layer. there is
 本開示の第6の態様に係る電動機は、第1~第5の態様のいずれかの回転子と、回転子に対向して配置され、回転子に作用する磁力を発生させる固定子とを備えている。 An electric motor according to a sixth aspect of the present disclosure includes the rotor according to any one of the first to fifth aspects, and a stator arranged to face the rotor and generating a magnetic force acting on the rotor. ing.
 本開示によれば、コギングトルクを低減できる回転子及び電動機を提供することが可能である。 According to the present disclosure, it is possible to provide a rotor and an electric motor that can reduce cogging torque.
本開示の一実施の形態に係る電動機の斜視図1 is a perspective view of an electric motor according to an embodiment of the present disclosure; FIG. 同電動機の回転子の斜視図A perspective view of a rotor of the motor 同電動機の回転子の主要部の平面図A plan view of the main part of the rotor of the motor 同電動機の回転子の主要部の拡大平面図An enlarged plan view of the main part of the rotor of the same electric motor.
 以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 An embodiment of the present disclosure will be described below. It should be noted that each of the embodiments described below is a specific example of the present disclosure. Therefore, numerical values, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in independent claims representing the highest concept of the present disclosure will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、他の図と実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. In addition, in each figure, the same code|symbol is attached|subjected to the substantially same structure as other figures, and the overlapping description is abbreviate|omitted or simplified.
 (実施の形態)
 まず、実施の形態に係る電動機1の概略構成について、図1を用いて説明する。図1は、実施の形態に係る電動機1の斜視図である。
(Embodiment)
First, a schematic configuration of an electric motor 1 according to an embodiment will be described with reference to FIG. 1 . FIG. 1 is a perspective view of an electric motor 1 according to an embodiment.
 図1に示すように、電動機1は、回転子2と固定子3とを備える。本実施の形態における電動機1は、回転子2が固定子3の内側に配置されたインナーロータ型のモータである。つまり、固定子3は、回転子2を囲むように構成されている。 As shown in FIG. 1, the electric motor 1 includes a rotor 2 and a stator 3. Electric motor 1 in the present embodiment is an inner rotor type motor in which rotor 2 is arranged inside stator 3 . That is, the stator 3 is configured to surround the rotor 2 .
 回転子2(ロータ)は、固定子3に生じる磁力によって回転する。具体的には、回転子2は、回転軸10を有しており、回転軸10の軸心Cを回転中心として回転する。 The rotor 2 (rotor) is rotated by the magnetic force generated in the stator 3. Specifically, the rotor 2 has a rotating shaft 10 and rotates about an axis C of the rotating shaft 10 as a rotation center.
 回転子2は、固定子3に作用する磁力を発生する。回転子2は、周方向に亘って主磁束となるN極とS極とが複数繰り返して存在する構成になっている。本実施の形態において、回転子2が発生する主磁束の向きは、回転軸10の軸心Cの方向(回転軸方向)と直交する方向である。つまり、回転子2が発生する主磁束の向きは、ラジアル方向(径方向)である。 The rotor 2 generates a magnetic force that acts on the stator 3. The rotor 2 has a structure in which a plurality of N poles and S poles, which are main magnetic fluxes, are repeatedly present in the circumferential direction. In the present embodiment, the direction of the main magnetic flux generated by the rotor 2 is perpendicular to the direction of the axis C of the rotating shaft 10 (rotating shaft direction). That is, the direction of the main magnetic flux generated by the rotor 2 is the radial direction.
 回転子2は、固定子3とエアギャップを介して配置されている。具体的には、回転子2の表面と固定子3の表面との間には微小なエアギャップが存在する。詳細は後述するが、回転子2は、鉄心に永久磁石が埋め込まれた永久磁石埋め込み型のロータ(IPMロータ)である。したがって、本実施の形態における電動機1は、IPMモータである。 The rotor 2 is arranged with the stator 3 through an air gap. Specifically, a minute air gap exists between the surface of the rotor 2 and the surface of the stator 3 . Although details will be described later, the rotor 2 is an embedded permanent magnet rotor (IPM rotor) in which permanent magnets are embedded in an iron core. Therefore, electric motor 1 in the present embodiment is an IPM motor.
 固定子3(ステータ)は、エアギャップを介して回転子2に対向して配置され、回転子2に作用する磁力を発生させる。具体的には、固定子3は、回転子2の回転子鉄心20を囲むように配置されている。固定子3は、回転子2とともに磁気回路を構成している。 The stator 3 (stator) is arranged to face the rotor 2 via an air gap, and generates magnetic force acting on the rotor 2 . Specifically, the stator 3 is arranged so as to surround the rotor core 20 of the rotor 2 . The stator 3 forms a magnetic circuit together with the rotor 2 .
 固定子3は、エアギャップ面に主磁束としてN極とS極とが周方向に交互に生成されるように構成されている。本実施の形態において、固定子3は、固定子鉄心3a(ステータコア)と巻線コイル3b(ステータコイル)とを有する。 The stator 3 is configured so that N poles and S poles are alternately generated in the circumferential direction as the main magnetic flux on the air gap surface. In this embodiment, the stator 3 has a stator core 3a (stator core) and winding coils 3b (stator coil).
 固定子鉄心3aには、回転子2の回転子鉄心20に向かって突出する複数のティース3a1が設けられている。具体的には、複数のティース3a1は、回転軸10の軸心Cに向かって突出するように設けられている。また、複数のティース3a1は、周方向に等間隔に設けられている。したがって、複数のティース3a1は、回転軸10の軸心Cと直交する方向(ラジアル方向)に放射状に延在している。 A plurality of teeth 3a1 projecting toward the rotor core 20 of the rotor 2 are provided on the stator core 3a. Specifically, the plurality of teeth 3 a 1 are provided so as to protrude toward the axis C of the rotating shaft 10 . Moreover, the plurality of teeth 3a1 are provided at regular intervals in the circumferential direction. Therefore, the multiple teeth 3a1 radially extend in a direction perpendicular to the axis C of the rotating shaft 10 (radial direction).
 固定子鉄心3aは、例えば、回転軸10の軸心Cの方向に積層された複数の鋼板によって構成されている。複数の鋼板の各々は、例えば所定形状に打ち抜き加工された電磁鋼板である。なお、固定子鉄心3aは、複数の鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。 The stator core 3a is composed of a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10, for example. Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape. Note that the stator core 3a is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
 巻線コイル3bは、固定子鉄心3aの複数のティース3a1の各々に巻き回されている。具体的には、巻線コイル3bは、インシュレータを介して各ティース3a1に巻き回されている。各巻線コイル3bは、互いに電気的に120度位相が異なる、U相、V相及びW相の3相それぞれの単位コイルによって構成されている。つまり、各ティース3a1に巻き回された巻線コイル3bは、U相、V相及びW相の相単位でそれぞれに通電される3相の交流によって通電駆動される。これにより、各ティース3a1に固定子3の主磁束が生成される。 The winding coil 3b is wound around each of the plurality of teeth 3a1 of the stator core 3a. Specifically, the winding coil 3b is wound around each tooth 3a1 via an insulator. Each winding coil 3b is composed of unit coils of three phases, U-phase, V-phase and W-phase, which are electrically 120 degrees out of phase with each other. That is, the winding coil 3b wound around each tooth 3a1 is energized and driven by a three-phase alternating current that is energized in phase units of the U phase, the V phase, and the W phase. Thereby, the main magnetic flux of the stator 3 is generated in each tooth 3a1.
 なお、巻線コイル3bは、表面に絶縁被膜が施された銅等の金属材料からなる断面が円形または矩形の巻線で構成されている。 The winding coil 3b is made of a metal material such as copper whose surface is coated with an insulating film, and has a circular or rectangular cross section.
 このように構成された電動機1では、固定子3の巻線コイル3bに通電すると、界磁電流が巻線コイル3bに流れて磁界が生成される。これにより、固定子3から回転子2に向かう磁束が生成される。一方、回転子2では、固定子3に向かう磁束が生成される。つまり、回転子2の永久磁石によって固定子3を通る磁束が生成される。この固定子3で生成される磁束と回転子2で生成される磁束との相互作用によって生じた磁気力が回転子2を回転させるトルクとなり、回転子2が回転軸10を中心に回転する。 In the electric motor 1 configured in this manner, when the winding coil 3b of the stator 3 is energized, a field current flows through the winding coil 3b to generate a magnetic field. Thereby, a magnetic flux is generated from the stator 3 toward the rotor 2 . On the other hand, the rotor 2 generates a magnetic flux directed toward the stator 3 . That is, the permanent magnets of rotor 2 generate a magnetic flux that passes through stator 3 . The magnetic force generated by the interaction between the magnetic flux generated by the stator 3 and the magnetic flux generated by the rotor 2 becomes torque for rotating the rotor 2 , and the rotor 2 rotates about the rotation axis 10 .
 次に、本実施の形態に係る回転子2の詳細な構成について、図1を参照しつつ、図2及び図3を用いて説明する。図2は、実施の形態に係る回転子2の斜視図である。図3は、実施の形態に係る回転子2の主要部の平面図である。図2,図3では回転軸10は省略している。 Next, the detailed configuration of the rotor 2 according to the present embodiment will be described using FIGS. 2 and 3 while referring to FIG. 1. FIG. FIG. 2 is a perspective view of the rotor 2 according to the embodiment. FIG. 3 is a plan view of main parts of the rotor 2 according to the embodiment. 2 and 3, the rotating shaft 10 is omitted.
 図1~図3に示すように、回転子2は、回転軸10と、回転子鉄心20と、複数の永久磁石30とを備える。 As shown in FIGS. 1 to 3, the rotor 2 includes a rotating shaft 10, a rotor core 20, and a plurality of permanent magnets 30.
 回転軸10は、回転子2が回転する際の中心となる長尺状のシャフトである。回転軸10は、例えば金属棒であり、回転子2の中心に固定されている。具体的には、回転軸10は、回転子鉄心20に固定されている。本実施の形態において、回転軸10は、回転子2の両側に突出するように、回転子鉄心20の中心を貫いた状態で回転子鉄心20に固定されている。回転軸10は、回転子鉄心20の中心に形成された貫通孔20aに圧入したり焼き嵌めしたりすることで回転子鉄心20に固定されている。 The rotating shaft 10 is a long shaft that serves as the center when the rotor 2 rotates. The rotating shaft 10 is, for example, a metal rod and fixed to the center of the rotor 2 . Specifically, the rotating shaft 10 is fixed to the rotor core 20 . In the present embodiment, rotating shaft 10 is fixed to rotor core 20 while penetrating through the center of rotor core 20 so as to protrude from both sides of rotor 2 . The rotating shaft 10 is fixed to the rotor core 20 by being press-fitted into a through hole 20a formed in the center of the rotor core 20 or by shrink fitting.
 なお、図示しないが、回転子2の一方側に突出する回転軸10の第1部位は、第1軸受けに支持され、回転子2の他方側に突出する回転軸10の第2部位は、第2軸受けに支持されている。回転軸10の第1部位又は第2部位に、電動機1によって駆動される負荷が取り付けられる。 Although not shown, a first portion of the rotating shaft 10 projecting to one side of the rotor 2 is supported by a first bearing, and a second portion of the rotating shaft 10 projecting to the other side of the rotor 2 is supported by a first bearing. It is supported by two bearings. A load driven by the electric motor 1 is attached to the first portion or the second portion of the rotating shaft 10 .
 回転子鉄心20(ロータコア)は、例えば、回転軸10の軸心Cの方向に積層された複数の鋼板によって構成されている。複数の鋼板の各々は、例えば所定形状に打ち抜き加工された電磁鋼板であり、かしめ等によって互いに固定されている。なお、回転子鉄心20は、複数の鋼板の積層体に限るものではなく、磁性材料によって構成されたバルク体であってもよい。 The rotor core 20 (rotor core) is composed of, for example, a plurality of steel plates laminated in the direction of the axis C of the rotating shaft 10 . Each of the plurality of steel plates is, for example, an electromagnetic steel plate punched into a predetermined shape, and fixed to each other by caulking or the like. Note that the rotor core 20 is not limited to a laminate of a plurality of steel plates, and may be a bulk body made of a magnetic material.
 回転子鉄心20は、複数の磁石配置穴21を有する鉄心である。複数の磁石配置穴21は、永久磁石30が配置される磁石配置のための穴である。具体的には、磁石配置穴21には永久磁石30が挿入される。つまり、磁石配置穴21は、永久磁石30が挿入される磁石挿入孔である。各磁石配置穴21には、1つの永久磁石30が挿入される。一例として、回転子2は、磁極数が10である10極ロータである。したがって、回転子鉄心20には10個の磁石配置穴21と10個の永久磁石30とが設けられている。なお、特にこれに限定されるものではなく、その他の磁極数についても適用できる。 The rotor core 20 is a core having a plurality of magnet placement holes 21. A plurality of magnet arrangement holes 21 are holes for magnet arrangement in which permanent magnets 30 are arranged. Specifically, a permanent magnet 30 is inserted into the magnet placement hole 21 . That is, the magnet arrangement hole 21 is a magnet insertion hole into which the permanent magnet 30 is inserted. One permanent magnet 30 is inserted into each magnet placement hole 21 . As an example, the rotor 2 is a ten-pole rotor having ten magnetic poles. Therefore, the rotor core 20 is provided with 10 magnet placement holes 21 and 10 permanent magnets 30 . Note that the present invention is not particularly limited to this, and can be applied to other numbers of magnetic poles.
 また、本実施の形態において、磁石配置穴21は、回転軸10の軸心Cの方向に沿って回転子鉄心20を貫通する貫通孔である。したがって、回転軸10に直交する平面で切断したときの任意の断面において、磁石配置穴21の断面形状は、回転軸10の軸心Cの方向において同じになっている。つまり、回転子鉄心20を構成する全ての鋼板には、いずれも同じ形状の磁石配置穴21が形成されている。なお、磁石配置穴21は、永久磁石30が配置することができれば、貫通孔でなくてもよい。 Also, in the present embodiment, the magnet placement hole 21 is a through hole that penetrates the rotor core 20 along the direction of the axis C of the rotating shaft 10 . Therefore, the cross-sectional shape of the magnet arrangement hole 21 is the same in the direction of the axis C of the rotating shaft 10 in any cross section taken along a plane orthogonal to the rotating shaft 10 . In other words, all the steel plates forming the rotor core 20 are formed with the magnet arrangement holes 21 having the same shape. Note that the magnet arrangement hole 21 may not be a through hole as long as the permanent magnet 30 can be arranged.
 図1、図2に示すように、複数の磁石配置穴21は、回転軸10を中心として放射状に設けられている。また、複数の磁石配置穴21は、回転子鉄心20の周方向(回転軸10の回転方向)に沿って等間隔で設けられている。複数の磁石配置穴21の各々は、平面視において、回転子鉄心20の径方向(回転軸10の軸心Cの方向に直交する方向)に延在している。つまり、磁石配置穴21は、回転子鉄心20の径方向に長尺状であり、径方向の長さが回転方向(円周方向)の長さに比べて長くなっている。なお、磁石配置穴21を、回転子鉄心20の回転方向(円周方向)に長尺状で、回転方向(円周方向)の長さが径方向長さに比べて長いものとしてもよい。 As shown in FIGS. 1 and 2, the plurality of magnet arrangement holes 21 are radially provided around the rotating shaft 10. As shown in FIGS. Also, the plurality of magnet placement holes 21 are provided at regular intervals along the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). Each of the plurality of magnet arrangement holes 21 extends in the radial direction of the rotor core 20 (the direction orthogonal to the direction of the axis C of the rotating shaft 10) in plan view. That is, the magnet placement holes 21 are elongated in the radial direction of the rotor core 20, and the length in the radial direction is longer than the length in the rotational direction (circumferential direction). The magnet arrangement hole 21 may be elongated in the rotational direction (circumferential direction) of the rotor core 20, and the length in the rotational direction (circumferential direction) may be longer than the radial length.
 長尺状の複数の磁石配置穴21は、回転軸10を中心にスポーク状に形成されている。つまり、回転子2は、スポーク型のIPMロータであり、電動機1は、スポーク型のIPMモータである。本実施の形態において、各磁石配置穴21の平面視形状は、回転子鉄心20の径方向を長手方向とする略長方形である。また、複数の磁石配置穴21の平面視形状は、互いに同じである。 A plurality of elongated magnet placement holes 21 are formed in the shape of spokes around the rotating shaft 10 . That is, the rotor 2 is a spoke-type IPM rotor, and the electric motor 1 is a spoke-type IPM motor. In the present embodiment, the plan view shape of each magnet placement hole 21 is substantially rectangular with the radial direction of the rotor core 20 as its longitudinal direction. In addition, the planar view shapes of the plurality of magnet placement holes 21 are the same.
 図2に示すように、回転子2の磁石配置穴21各々に永久磁石30が、回転軸10の軸心Cの方向に沿って挿入され、複数の磁石配置穴21の各々に永久磁石30が配置される。本実施の形態においては、回転軸10の軸心Cの上方(紙面上方)から永久磁石30が挿入されているが、下方(紙面下方)から永久磁石30を挿入してもよい。 As shown in FIG. 2 , a permanent magnet 30 is inserted into each of the magnet arrangement holes 21 of the rotor 2 along the direction of the axis C of the rotating shaft 10 , and the permanent magnets 30 are inserted into each of the plurality of magnet arrangement holes 21 . placed. In the present embodiment, the permanent magnet 30 is inserted from above (above the paper) the axis C of the rotating shaft 10, but the permanent magnet 30 may be inserted from below (below the paper).
 本実施の形態において、永久磁石30は、例えば、焼結マグネットである。複数の永久磁石30は、磁極の方向が回転子鉄心20の周方向(回転軸10の回転方向)となるように配置されている。つまり、永久磁石30は、磁極の方向が回転子鉄心20の周方向となるように着磁されている。なお、隣り合う2つの永久磁石30は、S極及びN極の磁極の向きが逆向きになっている。  In the present embodiment, the permanent magnet 30 is, for example, a sintered magnet. The plurality of permanent magnets 30 are arranged such that the magnetic pole direction is in the circumferential direction of the rotor core 20 (the rotation direction of the rotating shaft 10). That is, the permanent magnet 30 is magnetized so that the direction of the magnetic poles is the circumferential direction of the rotor core 20 . It should be noted that the two adjacent permanent magnets 30 have opposite magnetic pole directions of the S pole and the N pole.
 永久磁石30の平面視形状及び大きさは、磁石配置穴21の平面視形状及び大きさとほぼ同じであり、永久磁石30は、磁石配置穴21に嵌合されている。したがって、永久磁石30の平面視形状は、長尺状の略長方形である。一例として、永久磁石30は、回転子鉄心20の径方向と直交する方向を厚さとする板状の直方体である。なお、各磁石配置穴21内の永久磁石30は、複数に分割されていてもよい。 The planar view shape and size of the permanent magnet 30 are substantially the same as the planar view shape and size of the magnet placement hole 21 , and the permanent magnet 30 is fitted in the magnet placement hole 21 . Therefore, the planar view shape of the permanent magnet 30 is an elongated substantially rectangular shape. As an example, the permanent magnet 30 is a plate-like rectangular parallelepiped having a thickness in a direction perpendicular to the radial direction of the rotor core 20 . Note that the permanent magnet 30 in each magnet placement hole 21 may be divided into a plurality of pieces.
 各磁石配置穴21において、永久磁石30の外面と磁石配置穴21の内面との間には一定の寸法の隙間(スペース、クリアランス)が存在している。この隙間には、永久磁石30を磁石配置穴21に接着固定するための接着剤が設けられていてもよい。一方、この隙間に接着剤が設けられていなくてもよい。 In each magnet placement hole 21 , there is a gap (space, clearance) of a certain size between the outer surface of the permanent magnet 30 and the inner surface of the magnet placement hole 21 . An adhesive may be provided in this gap for adhesively fixing the permanent magnet 30 to the magnet arrangement hole 21 . On the other hand, the adhesive may not be provided in this gap.
 永久磁石30は、例えば、Nd-Fe-B系の焼結磁石またはフェライト焼結磁石で構成される。あるいは、Nd-Fe-B系磁石粉末、フェライト系磁石粉末などの磁石粉末と、樹脂材料および少量の添加剤等とで形成されるボンド磁石であってもよい。 The permanent magnet 30 is composed of, for example, a Nd--Fe--B based sintered magnet or ferrite sintered magnet. Alternatively, it may be a bonded magnet formed of magnet powder such as Nd--Fe--B magnet powder or ferrite magnet powder, a resin material and a small amount of additives.
 なお、永久磁石30の着磁については、永久磁石30を磁石配置穴21内に配置した後に着磁してもよいし、永久磁石30を磁石配置穴21に挿入する前に予め着磁してもよいが、永久磁石30を磁石配置穴21に挿入する作業性を考慮すると、永久磁石30を磁石配置穴21内に挿入した後に着磁する方がよい。 The permanent magnets 30 may be magnetized after being placed in the magnet placement holes 21, or may be magnetized in advance before the permanent magnets 30 are inserted into the magnet placement holes 21. However, considering the workability of inserting the permanent magnet 30 into the magnet arrangement hole 21, it is better to magnetize the permanent magnet 30 after inserting it into the magnet arrangement hole 21. FIG.
 また、永久磁石30を、樹脂からなる被覆材で被覆して被覆層31を形成して永久磁石30の周囲を被覆している。 Also, the permanent magnet 30 is covered with a covering material made of resin to form a covering layer 31 to cover the periphery of the permanent magnet 30 .
 図3に示すように、各永久磁石30は、平面視で(回転軸10の軸心Cの方向から見て)、4つの角部30aそれぞれに突出部32が設けられている。この突出部32は、その外周面が円弧状である。突出部32は、平面視で永久磁石30の中央と角部30aとを結ぶ線に沿って永久磁石30から突出している。4つの突出部32によって、永久磁石30が磁石配置穴21の内面に固定される。 As shown in FIG. 3, each permanent magnet 30 has a projecting portion 32 at each of four corners 30a in a plan view (viewed from the direction of the axis C of the rotating shaft 10). The protruding portion 32 has an arc-shaped outer peripheral surface. The protruding portion 32 protrudes from the permanent magnet 30 along a line connecting the center of the permanent magnet 30 and the corner portion 30a in plan view. The permanent magnet 30 is fixed to the inner surface of the magnet placement hole 21 by the four protrusions 32 .
 突出部32は、回転軸10の軸心Cの方向に沿って全体的に形成されている。すなわち、永久磁石30の上下方向(回転軸方向)における全体に突出部32が設けられている。なお、突出部32を、永久磁石30の上下方向(回転軸方向)の上部、下部のみに形成してもよい。 The projecting portion 32 is formed entirely along the direction of the axis C of the rotating shaft 10 . That is, the projecting portion 32 is provided over the entire permanent magnet 30 in the vertical direction (rotational axis direction). Note that the projecting portions 32 may be formed only on the upper and lower portions of the permanent magnet 30 in the vertical direction (rotational axis direction).
 突出部32は被覆層31の一部を突出するように成形して構成される。永久磁石30自体の一部が突出するような構成としてもよいが、生産の容易さの観点から、被覆層31に形成した方が好適である。4つの突出部32は、互いに形状、大きさが略同一である。 The protruding part 32 is configured by molding a part of the covering layer 31 so as to protrude. Although the permanent magnet 30 itself may be configured to partially protrude, it is preferable to form it on the coating layer 31 from the viewpoint of ease of production. The four protrusions 32 are substantially the same in shape and size.
 突出部32は、磁石配置穴21の内面の角部21aと接している。具体的には、突出部32は、磁石配置穴21の角部21aを介して繋がっている2つの内面に接している。突出部32の外周面が円弧状であるため、平面視での磁石配置穴21の内面と突出部32との接する箇所の面積を減少させることができる。これにより、磁石配置穴21に永久磁石30を挿入する際の摩擦を減少させることができ、永久磁石30を被覆する被覆層31の損傷や、回転子鉄心20の変形という不具合が起こり難くなる。さらに、突出部32は樹脂からなる被覆層31で構成されているため、挿入時の回転子鉄心20に対する損傷も防止できる。 The projecting portion 32 is in contact with the corner portion 21 a of the inner surface of the magnet placement hole 21 . Specifically, the projecting portion 32 is in contact with two inner surfaces of the magnet placement hole 21 that are connected via the corner portion 21a. Since the outer peripheral surface of the protruding portion 32 is arcuate, the area of the contact portion between the inner surface of the magnet placement hole 21 and the protruding portion 32 in a plan view can be reduced. As a result, friction when inserting the permanent magnets 30 into the magnet arrangement holes 21 can be reduced, and problems such as damage to the coating layer 31 covering the permanent magnets 30 and deformation of the rotor core 20 are less likely to occur. Furthermore, since the projecting portion 32 is composed of the coating layer 31 made of resin, it is possible to prevent damage to the rotor core 20 during insertion.
 図4は、本実施の形態の他の例を示す回転子2の主要部の一部を拡大した平面図である。図4に示すように、磁石配置穴21の内面の角部21aの内周面は円弧状となっている。さらに、図4に示すように、磁石配置穴21の内面の角部21aの曲率半径より、突出部32の外周面の曲率半径の方が大きくなっている。曲率半径は円弧の半径を表す。これにより、突出部32(永久磁石30)の位置が固定される。 FIG. 4 is a partially enlarged plan view of the rotor 2 showing another example of the present embodiment. As shown in FIG. 4, the inner peripheral surface of the corner 21a of the inner surface of the magnet placement hole 21 is arcuate. Furthermore, as shown in FIG. 4 , the radius of curvature of the outer peripheral surface of the projecting portion 32 is larger than the radius of curvature of the corners 21 a of the inner surface of the magnet placement hole 21 . The radius of curvature represents the radius of the arc. Thereby, the position of the projecting portion 32 (permanent magnet 30) is fixed.
 逆に、突出部32の外周面の曲率半径の方が小さいと、円弧状の磁石配置穴21の内面の角部21aと円弧状の突出部32外周面とが接してしまい、突出部32が角部21aに沿って回転し、回転した状態で固定される可能性がある。このとき、各永久磁石30での回転状態が不均一になってしまう。そうすると、各永久磁石30での他の永久磁石30との磁極の磁束密度量の差が大きくなるため、コギングトルクが高くなる。 Conversely, if the radius of curvature of the outer peripheral surface of the protruding portion 32 is smaller, the corner portion 21a of the inner surface of the arc-shaped magnet placement hole 21 and the outer peripheral surface of the arc-shaped protruding portion 32 will come into contact with each other. It may rotate along the corner 21a and be fixed in a rotated state. At this time, the rotating state of each permanent magnet 30 becomes uneven. As a result, the difference in the amount of magnetic flux density between the magnetic poles of each permanent magnet 30 and the other permanent magnets 30 increases, resulting in an increase in cogging torque.
 上記のような構成にすることによって、各磁石配置穴21に挿入された永久磁石30がそれぞれ、磁石配置穴21内の略中央部に確実に固定される。 With the configuration as described above, the permanent magnets 30 inserted into the respective magnet arrangement holes 21 are reliably fixed substantially in the center of the magnet arrangement holes 21 .
 したがって、各磁石配置穴21において、永久磁石30の配置箇所のばらつきを抑制できる。この結果、各永久磁石30での他の永久磁石30との磁束密度量の差を低減でき、トルクリップルが高くなったりコギングトルクが大きくなったりするのを防ぐことができるという利点が得られる。 Therefore, in each magnet placement hole 21, variations in placement locations of the permanent magnets 30 can be suppressed. As a result, the difference in the amount of magnetic flux density between each permanent magnet 30 and the other permanent magnets 30 can be reduced, and it is possible to prevent an increase in torque ripple and an increase in cogging torque.
 さらに、永久磁石30の突出部32が形成されていない箇所では、磁石配置穴21の内面との間にスペースがあるため、このスペース内に接着材を形成すれば、永久磁石30を磁石配置穴21内に確実に保持させることができる。 Furthermore, since there is a space between the portion of the permanent magnet 30 where the projecting portion 32 is not formed and the inner surface of the magnet arranging hole 21, if an adhesive is formed in this space, the permanent magnet 30 can be removed from the magnet arranging hole. 21 can be held securely.
 一方、突出部32が形成されず、かつスペースが無い場合は、接着代がなくなり永久磁石30の保持が出来ない可能性がある。 On the other hand, if the protruding portion 32 is not formed and there is no space, there is a possibility that the permanent magnet 30 cannot be held because there is no adhesive allowance.
 なお、上記実施の形態において永久磁石30の表面は樹脂からなる被覆層31で覆われているが、被覆層31は樹脂に限られず、金属からなってもよく、金属を含んでいてもよい。すなわち、永久磁石30の表面は金属からなる被覆層31で覆われていてもよく、金属を含む樹脂からなる被覆層31で覆われていてもよい。なお、ここで用いる金属としては、銅、ニッケルまたはアルミニウムが挙げられる。 In the above embodiment, the surface of the permanent magnet 30 is covered with the coating layer 31 made of resin, but the coating layer 31 is not limited to resin, and may be made of metal or may contain metal. That is, the surface of the permanent magnet 30 may be covered with a coating layer 31 made of metal, or may be covered with a coating layer 31 made of resin containing metal. In addition, copper, nickel, or aluminum is mentioned as a metal used here.
 なお、上記の一実施の形態は一例に過ぎず、本開示はこれに限定されず、適宜変更することができる。例えば、上記の実施の形態の構成の一部を公知の他の構成に置き換えてもよい。また上記の実施の形態で言及されていない構成は任意であり、例えば公知の構成を適宜選択して本開示に組み合わせることができる。 It should be noted that the above embodiment is merely an example, and the present disclosure is not limited to this, and can be modified as appropriate. For example, part of the configurations of the above embodiments may be replaced with other known configurations. Configurations not mentioned in the above embodiments are optional, and for example, known configurations can be appropriately selected and combined with the present disclosure.
 本開示に係る回転子および電動機は、家庭用電気機器、産業用機器をはじめとして種々の機器に用いられている電動機等に広く利用可能である。 The rotor and the electric motor according to the present disclosure can be widely used in electric motors and the like used in various devices including household electrical equipment and industrial equipment.
 1  電動機
 2  回転子
 3  固定子
 3a  固定子鉄心
 3a1  ティース
 3b  巻線コイル
 10  回転軸
 20  回転子鉄心
 21  磁石配置穴
 21a  角部
 30  永久磁石
 30a  角部
 31  被覆層
 32  突出部
Reference Signs List 1 electric motor 2 rotor 3 stator 3a stator core 3a1 tooth 3b winding coil 10 rotating shaft 20 rotor core 21 magnet placement hole 21a corner 30 permanent magnet 30a corner 31 coating layer 32 protrusion

Claims (6)

  1.  複数の磁石配置穴を有する回転子鉄心と、
     それぞれ前記複数の磁石配置穴の内部に配置された複数の永久磁石と、
     前記回転子鉄心に固定された回転軸と、を備え、
     前記複数の永久磁石の各々は、平面視で角部に突出部が設けられている、
     回転子。
    a rotor core having a plurality of magnet placement holes;
    a plurality of permanent magnets respectively arranged inside the plurality of magnet arrangement holes;
    and a rotating shaft fixed to the rotor core,
    Each of the plurality of permanent magnets has a protrusion at a corner in a plan view,
    rotor.
  2.  前記突出部の外周面が円弧状である、請求項1に記載の回転子。 The rotor according to claim 1, wherein the outer peripheral surface of the protrusion is arcuate.
  3.  前記磁石配置穴の内面の角部は円弧状で、前記磁石配置穴の前記内面の前記角部の曲率半径より前記突出部の前記外周面の曲率半径の方が大きい、請求項2に記載の回転子。 3. The method according to claim 2, wherein the corners of the inner surface of the magnet arrangement hole are arcuate, and the radius of curvature of the outer peripheral surface of the protrusion is larger than the radius of curvature of the corners of the inner surface of the magnet arrangement hole. rotor.
  4.  前記複数の磁石配置穴は、前記回転軸を中心として放射状に設けられている、請求項1~3のいずれかに記載されている回転子。 The rotor according to any one of claims 1 to 3, wherein the plurality of magnet arrangement holes are provided radially around the rotation axis.
  5.  前記永久磁石の表面が樹脂または金属からなる被覆層で覆われ、前記突出部が前記被覆層で構成されている、請求項1~4のいずれかに記載されている回転子。 The rotor according to any one of claims 1 to 4, wherein the surface of said permanent magnet is covered with a coating layer made of resin or metal, and said protruding portions are constituted by said coating layer.
  6.  請求項1~5のいずれかに記載の回転子と、前記回転子に対向して配置され、前記回転子に作用する磁力を発生させる固定子とを備えている電動機。 An electric motor, comprising: the rotor according to any one of claims 1 to 5; and a stator arranged to face the rotor and generating a magnetic force acting on the rotor.
PCT/JP2022/007903 2021-04-13 2022-02-25 Rotor and electric motor WO2022219942A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514373A JPWO2022219942A1 (en) 2021-04-13 2022-02-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021067436 2021-04-13
JP2021-067436 2021-04-13

Publications (1)

Publication Number Publication Date
WO2022219942A1 true WO2022219942A1 (en) 2022-10-20

Family

ID=83639588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007903 WO2022219942A1 (en) 2021-04-13 2022-02-25 Rotor and electric motor

Country Status (2)

Country Link
JP (1) JPWO2022219942A1 (en)
WO (1) WO2022219942A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148235A (en) * 2008-12-18 2010-07-01 Toshiba Corp Permanent magnet type rotary electric machine
JP2014075965A (en) * 2012-09-14 2014-04-24 Mitsubishi Electric Corp Dynamo-electric machine
WO2015146210A1 (en) * 2014-03-24 2015-10-01 日立オートモティブシステムズ株式会社 Permanent magnet rotating electric machine and method for manufacturing same
JP2015195638A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 rotor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148235A (en) * 2008-12-18 2010-07-01 Toshiba Corp Permanent magnet type rotary electric machine
JP2014075965A (en) * 2012-09-14 2014-04-24 Mitsubishi Electric Corp Dynamo-electric machine
WO2015146210A1 (en) * 2014-03-24 2015-10-01 日立オートモティブシステムズ株式会社 Permanent magnet rotating electric machine and method for manufacturing same
JP2015195638A (en) * 2014-03-31 2015-11-05 ダイキン工業株式会社 rotor

Also Published As

Publication number Publication date
JPWO2022219942A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
JP2008193838A (en) Axial gap motor
JP6545393B2 (en) Conscious pole rotor, motor and air conditioner
US20230253838A1 (en) Electric motor
WO2018117195A1 (en) Rotary electric machine
JPWO2022019074A5 (en)
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2007329985A (en) Axial gap type motor and its manufacturing method
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP2008193842A (en) Axial gap type rotating electric machine
JP2013123327A (en) Rotary electric machine
JP2005151785A (en) Synchronous generator having annular armature coil
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
JP2013207946A (en) Rotary electric machine
JP5672149B2 (en) Rotating electric machine rotor and rotating electric machine using the same
JP2014050254A (en) Excitation type rotary electric machine
JP2007202333A (en) Rotating electric machine
WO2022219942A1 (en) Rotor and electric motor
WO2022255038A1 (en) Rotor and electric motor
WO2021235267A1 (en) Rotor and electric motor
WO2022219923A1 (en) Rotor and electric motor
JP2005124378A (en) Induction motor having annular stator coil
JP2018148675A (en) Stator for rotary electric machine
JP2005130685A (en) Permanent magnet electric motor with annular stator coil
WO2023276512A1 (en) Rotor and method for manufacturing same, and electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787870

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514373

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787870

Country of ref document: EP

Kind code of ref document: A1