WO2013114541A1 - Embedded permanent magnet electric motor and compressor - Google Patents

Embedded permanent magnet electric motor and compressor Download PDF

Info

Publication number
WO2013114541A1
WO2013114541A1 PCT/JP2012/052027 JP2012052027W WO2013114541A1 WO 2013114541 A1 WO2013114541 A1 WO 2013114541A1 JP 2012052027 W JP2012052027 W JP 2012052027W WO 2013114541 A1 WO2013114541 A1 WO 2013114541A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rare earth
rotor core
ferrite
electric motor
Prior art date
Application number
PCT/JP2012/052027
Other languages
French (fr)
Japanese (ja)
Inventor
馬場 和彦
昌弘 仁吾
浩二 矢部
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/052027 priority Critical patent/WO2013114541A1/en
Publication of WO2013114541A1 publication Critical patent/WO2013114541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a permanent magnet embedded motor and a compressor equipped with this motor.
  • An embedded permanent magnet electric motor employs one of a ferrite magnet and a rare earth magnet as a permanent magnet constituting the magnetic pole of the rotor.
  • a ferrite magnet is used, although it is inexpensive, since the magnetic flux density is small, the current flowing through the electric motor increases and it is difficult to achieve high efficiency.
  • rare earth magnets having a higher magnetic flux density than ferrite magnets are often used in electric motors used in compressors such as air conditioners that require high efficiency.
  • the rare earth magnet contains expensive rare earth elements such as neodymium (Nd) and dysprosium (Dy), there is a problem that the cost of the electric motor increases.
  • high safety R32 refrigerant, or R32 exceeds 50%
  • the discharge temperature is higher than R22.
  • the compressor discharge temperature is about 20 ° C. higher than when R22, R410A, and R407C are used, and the rare-earth magnet is demagnetized during high-temperature operation of the compressor. There was a problem that efficiency decreased.
  • the magnet constituting the field magnetic pole corresponds to the number of poles in the rotation direction of the rotor along the circumference of the rotor core inner diameter.
  • the number of rare earth magnets and the number of ferrite magnets arranged along the boundary between the magnetic poles of the rare earth magnets are included.
  • Each of the magnetic poles is composed of at least three permanent magnets using the ferrite magnet as a shared adjacent magnetic pole. .
  • An effect of reducing the cost is shown by using an expensive rare earth magnet and an inexpensive ferrite magnet in combination.
  • the compressor shown by the following patent document 2 uses the brushless DC motor which has the rare earth magnet as a drive source using the R32 refrigerant
  • Japanese Patent No. 3832530 (FIG. 1 etc.) Japanese Patent Laid-Open No. 2001-115963 (FIG. 1 etc.)
  • rare earth magnets are arranged around the inner diameter of the rotor core in order to obtain reluctance torque. That is, the rare earth magnet is disposed closer to the rotor shaft (shaft) center hole than the ferrite magnet. For this reason, the iron core area between the rare earth magnet and the outer peripheral surface of the rotor is larger than when the rare earth magnet and the ferrite magnet are arranged on the same circumference, and the circumferential width of the rare earth magnet is greatly increased. It was necessary to make it smaller. Therefore, even when a ferrite magnet is arranged to supplement the magnetic flux density, a sufficient magnetic flux density cannot be obtained compared to a rotor composed only of rare earth magnets, resulting in a decrease in efficiency.
  • the permanent magnet motor shown in Patent Document 1 has a structure in which reluctance torque is actively used, there is a problem that electromagnetic excitation force such as torque ripple increases, and sound and vibration increase.
  • the electromagnetic excitation force causes the compressor casing and piping to vibrate, so measures such as increasing the rigidity of the compressor casing and increasing the strength of the piping can be taken. There was a problem that the cost increased.
  • the present invention has been made in view of the above, and an object thereof is to obtain a permanent magnet embedded type electric motor and a compressor that can reduce sound and vibration with high efficiency.
  • the present invention is a permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel plates is disposed in a stator, Magnets constituting the magnetic poles of the rotor core are provided between the ferrite magnets and ferrite magnets provided on the outer peripheral side of the rotor core and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core.
  • the rotor core has a thickness greater than that of the stator core, and the axial length of the ferrite magnet is greater than the axial length of the rare earth magnet.
  • the axial length of the rare earth magnet is formed substantially equal to the stack thickness of the stator core, and the axial length of the ferrite magnet is formed approximately equal to the stack thickness of the rotor core,
  • the rare earth magnet Characterized in that it is provided at a position opposed to the inner peripheral portion of the stator core with respect to the lamination thickness direction of the child core.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG.
  • FIG. 3 is a cross-sectional view centering on the magnet insertion hole.
  • FIG. 4 is a cross-sectional view of a rotor using a ferrite magnet whose magnetization direction is radial.
  • FIG. 5 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet and the magnetic circuit of the rare earth magnet shown in FIG.
  • FIG. 6 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is parallel.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG.
  • FIG. 3 is a cross-
  • FIG. 7 is a sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is polar.
  • FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor using only rare earth magnets.
  • FIG. 9 is a diagram for explaining the relationship between the thickness and width of the ferrite magnet.
  • FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening of the rare earth magnet and the tooth width.
  • FIG. 11 is a perspective view of an embedded permanent magnet electric motor.
  • FIG. 12 is a side view of the permanent magnet embedded electric motor.
  • FIG. 13 is a perspective view of the rotor core and the permanent magnet.
  • FIG. 14 is a longitudinal sectional view of the rotary compressor.
  • FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor (hereinafter referred to as “electric motor”) 100 according to an embodiment of the present invention
  • FIG. 2 shows the structure of the rotor 1 shown in FIG. It is sectional drawing.
  • FIG. 3 is a cross-sectional view centering on the magnet insertion hole
  • FIG. 4 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 having a radial magnetization direction
  • FIG. 5 is shown in FIG.
  • FIG. 6 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet 4 and the magnetic circuit of the rare-earth magnet 3, and FIG.
  • FIG. 6 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnet magnetization directions are parallel.
  • FIG. 7 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is polar.
  • an electric motor 100 includes a stator 2 and a rotor 1.
  • a plurality of teeth are formed on the inner peripheral portion of the stator 2 at an equiangular pitch in the circumferential direction.
  • the rotor 1 includes a rotor core 7 embedded with a magnet, a rare earth magnet 3, and a ferrite magnet 4 as main components.
  • the shaft hole side surface 4 a of the ferrite magnet 4 is arranged on the same circumference as the shaft hole side surface 3 a of the rare earth magnet 3.
  • the rotor iron core 7 is manufactured by laminating electromagnetic steel plates, and the outer peripheral surface of the rotor 1 (hereinafter simply referred to as “rotor outer peripheral surface”) is formed in a cylindrical shape.
  • the magnetic pole 21 is composed of one Nd—Fe—B rare earth magnet 3 and one side of two ferrite magnets 4.
  • the ferrite magnet 4 has a plate shape in which the shaft hole side surface 4a is formed in a substantially arc shape.
  • the rare earth magnet 3 has a flat plate shape magnetized in parallel in the thickness direction (radial direction of the rotor 1).
  • the residual magnetic flux density of the Nd—Fe—B rare earth magnet 3 is about three times the residual magnetic flux density of the wet ferrite magnet 4.
  • the rare earth magnet 3 is formed to be thinner than the ferrite magnet 4.
  • the rare earth magnet 3 has a thickness of about 2 mm and the ferrite magnet 4 has a thickness of about 4 mm. is there.
  • a shaft hole 8 for connecting a shaft (not shown) for transmitting rotational energy and the rotor core 7 is provided at the center of the rotor 1.
  • the rotor core 7 and the shaft are connected by shrink fitting, press fitting or the like.
  • an air hole 9a for allowing refrigerant and refrigeration oil to pass therethrough and a rivet hole 9b for bundling the laminated rotor cores 7.
  • the air hole 9a is disposed on the inner diameter side of the rare earth magnet 3 and the rivet hole 9b is disposed on the inner diameter side of the ferrite magnet 4, but this may be reversed.
  • the rotor 1 of this Embodiment can improve the performance by increasing the flow path of the refrigerant when driven in the compressor by increasing the cross-sectional area of the air hole 9a within a range in which the torque does not decrease.
  • ferrite magnet insertion holes 22 formed in a number corresponding to the number of poles in the rotation direction of the rotor 1 on the rotor outer peripheral surface side, and ferrite
  • a rare earth magnet insertion hole 23 formed on the same circumference as the ferrite magnet insertion hole 22 is provided between the magnet insertion holes 22.
  • the rare earth magnet 3 is accommodated in the rare earth magnet insertion hole 23, and the ferrite magnet 4 is accommodated in the ferrite magnet insertion hole 22.
  • the ferrite magnet insertion hole 22 is referred to as the insertion hole 22, and the rare earth magnet insertion hole 23 is referred to as the insertion hole 23.
  • an inter-magnet thin portion 14 is provided, and between the insertion hole 22 and the rotor outer peripheral surface, a ferrite magnet outer peripheral thin portion 15 is provided.
  • the thicknesses of the inter-magnet thin portion 14 and the ferrite magnet outer peripheral thin portion 15 are, for example, 0.35 mm, which is about the same as the thickness of the electromagnetic steel plate (not shown) forming the rotor core 7.
  • the inter-magnet thin portion 14 is referred to as a thin portion 14
  • the ferrite magnet outer peripheral thin portion 15 is referred to as a thin portion 15.
  • An air hole 19 is formed between the ferrite magnet 4 and the thin portion 15 shown in FIG. This air hole 19 is formed by cutting the rotor outer peripheral surface side of the insertion hole 22, for example.
  • the iron core portion 7 a formed thicker than the thickness of the thin portion 15. That is, in the rotor 1 of the present embodiment, the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface is the same as the iron core area (thin wall thickness) between the insertion hole 22 and the rotor outer peripheral surface. The thickness of the portion 15 is larger than the thickness.
  • the iron core portion 7a is provided with slits 6 in the radial direction for relaxing magnetic flux density imbalance and magnetic saliency.
  • the ferrite magnet 4 is disposed between the poles 20. It arrange
  • the ferrite magnet 4 disposed between the poles 20 is composed of at least one, and is magnetized so that the magnetization direction is reversed with respect to the poles 20.
  • the magnetization direction will be described.
  • the magnetization direction of the rare earth magnet 3 is parallel, and the magnetization direction of the ferrite magnet 4 is radial orientation.
  • the magnetization direction of the ferrite magnet 4 is magnetized so as to be reversed between the poles 20.
  • FIG. 4 shows a focal point 17 having a radial orientation as a position where the magnetization direction is reversed.
  • the magnetization direction of the ferrite magnet 4 is substantially the same as the direction of the rare earth magnet 3 with the inter-electrode 20 as a boundary.
  • the magnetization direction of the ferrite magnet 4 is perpendicular to the gap 20, the rare earth magnet 3 exists in the magnetization direction of the ferrite magnet 4. Therefore, the rare earth magnet 3 becomes a magnetic resistance when viewed from the ferrite magnet 4, and the magnetic flux of the ferrite magnet 4 cannot be used effectively.
  • the rare earth magnet 3 is arranged on the inner peripheral side (the shaft hole 8 side) of the ferrite magnet 4 in order to effectively use the magnetic flux of the ferrite magnet 4.
  • FIG. 5 schematically shows a magnetic circuit (flow of magnetic flux) by the rare earth magnet 3 disposed on the rotor 1 and a magnetic circuit by the ferrite magnet 4.
  • the magnetic flux generated from each magnet constitutes a magnetic circuit as indicated by a broken line through the stator 2 shown in FIG.
  • the rotor 1 according to the present embodiment is a parallel circuit in which both magnetic circuits do not interfere with each other. Therefore, the rotor 1 can make maximum use of the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4.
  • the rotor 1 of the present embodiment reduces the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. be able to.
  • the magnetic flux of the ferrite magnet 4 is easily short-circuited because the magnetization direction is switched between the poles 20.
  • the magnetization direction of the ferrite magnet 4 is nearly perpendicular to the gap 20 ( It is preferably oriented in a direction that is not completely vertical.
  • the rotor 1 according to the present embodiment is effective in interlinking with the stator 2 by setting the magnetization direction of the ferrite magnet 4 to the radial orientation as shown in FIG. 4 or the polar orientation as shown in FIG.
  • the amount of magnetic flux is increased.
  • the magnetization direction of the ferrite magnet 4 is not limited to the radial orientation and the polar orientation, and may be a parallel orientation as shown in FIG. In this case, although the effective magnetic flux amount interlinking with the stator 2 is lower than that in the case of radial orientation or polar orientation, it is possible to avoid the above-described configuration of the magnetic resistance.
  • FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor 110 using only the rare earth magnet 3.
  • the conventional permanent magnet embedded motor 110 has a problem that the short-circuit magnetic flux between the adjacent rare earth magnets 3 (adjacent N pole and S pole) is large. Specifically, for example, when the magnetic flux emitted from the magnetic pole 21 shown in FIG. 2 is linked to the coil of the stator 2 shown in FIG. 1, this magnetic flux is effectively used as the magnet torque. However, when the magnetic flux emitted from the magnetic pole 21 is short-circuited without passing through the coil of the stator 2, this magnetic flux cannot be used as magnet torque.
  • the rotor 1 As shown in FIG. 2, the rotor 1 according to the present embodiment includes a ferrite magnet 4 having a large magnetic resistance between adjacent rare earth magnets 3. Therefore, the magnetic flux of the rare earth magnet 3 is not easily short-circuited. Yes. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
  • the short circuit of the magnetic flux between the adjacent rare earth magnets 3 tries to pass through the thin portion 15 shown in FIG.
  • the ferrite magnet 4 is arranged on the outer peripheral surface side of the rotor, the thin portion 15 is thinned, and the magnet of the permanent magnet embedded electric motor 110 of the rare earth magnet 3 alone.
  • the magnetic resistance can be made larger than that of the outer peripheral thin portion 15a.
  • the thin part 15 of this Embodiment is magnetically saturated with the magnetic flux of the ferrite magnet 4, it becomes difficult to produce a short circuit magnetic flux. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
  • the rare earth magnet 3 and the ferrite magnet 4 are used in combination, a thin portion 14 as shown in FIG. 2 is required, but this thin portion 14 creates a short-circuit path of magnetic flux from the front to the back of the magnet, thereby fixing the thin portion.
  • the effective magnetic flux amount interlinking with the child 2 is reduced.
  • the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, and the thin portion 14 is further thinned. And short-circuit the thin-walled portion 14 (short-circuit from the front to the back of the magnet), so that the thin-walled portion 14 is likely to be magnetically saturated. Accordingly, the amount of short-circuit magnetic flux can be reduced as compared with the case where the rare earth magnet 3 alone or the ferrite magnet 4 alone is configured. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
  • the iron core on the surface of the magnetic pole 21 causes an increase in sound and vibration due to an increase in torque ripple due to reluctance torque and a magnetic attraction force when the rotor 1 is eccentric. Therefore, a design that reduces the iron core area on the surface of the magnetic pole 21 is preferable.
  • the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, so that the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is reduced. Can do. Therefore, it is possible to reduce the sound and vibration described above.
  • the residual magnetic flux density of the rare earth magnet 3 is about three times that of the ferrite magnet 4. Therefore, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, the energy change amount of the magnetic flux density at the boundary surface between the rare earth magnet 3 and the ferrite magnet 4 on the outer peripheral surface of the rotor is large, and this energy change increases sound and vibration. Cause it.
  • the iron core portion 7 a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is larger than the iron core (thin wall portion 15) existing on the rotor outer peripheral surface side of the ferrite magnet 4. It is configured.
  • the concentration of the magnetic flux density on the surface of the rare earth magnet 3 having a high magnetic flux density is alleviated, and the amount of energy change of the magnetic flux density described above becomes small. As a result, the electric motor 100 with low sound and vibration can be realized.
  • the magnetic attraction force can be reduced while relaxing the energy change of the magnetic flux density described above by adjusting the width and position of the slit 6, and sound and It is effective in reducing vibration.
  • the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, it is possible to secure a wide space in the inner circumference of the rotor 1 having a small influence on the magnetic characteristics. Therefore, caulking, air holes 9a, and rivet holes 9b can be easily provided in this space, and the manufacturability, cooling performance, and strength of the rotor 1 can be improved. In the case of a compressor in which the refrigerant passes through the electric motor, the circulation amount of the refrigerant is increased by opening the air holes 9a, and the effect of improving the performance is great.
  • an air hole 19 is formed between the ferrite magnet 4 and the thin portion 15.
  • the ferrite magnet 4 is difficult to demagnetize, and the reliability of the rotor 1 against demagnetization is increased. Can be improved.
  • FIG. 9 is a diagram for explaining the relationship between the thickness and the width of the ferrite magnet 4.
  • the ferrite magnet 4 shown in FIG. 9 is such that W> T, where T is the thickness in the magnetization direction (length in the radial direction) and W is the width (length in the rotation direction) of the ferrite magnet 4. It is configured.
  • the magnetic flux of the rare earth magnet 3 becomes difficult to be short-circuited, and the effective magnetic flux amount interlinked with the stator 2. Can be increased. And since the magnetic resistance between the adjacent rare earth magnets 3 can be increased as the width W of the ferrite magnet 4 is increased, the effect of reducing the short-circuit magnetic flux can be enhanced by configuring W> T. Is possible. Moreover, since the rare earth magnet 3 can be brought closer to the rotor outer peripheral surface as the thickness T is smaller, the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface can be reduced. And vibration can be further reduced.
  • FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening A and the teeth width B of the rare earth magnet 3.
  • the width of the magnetic pole opening (the length between adjacent ferrite magnets 4) on the surface of the rare earth magnet 3 is A, and the teeth width of the teeth 18 (the teeth 18 facing the rotor outer peripheral surface).
  • B is defined as (end face width), B> A.
  • the rare earth magnet 3 is widely arranged on the rotor surface to effectively use the magnet space of the rotor 120, and the rare earth magnet 3 is larger than the teeth width B.
  • the width of the magnetic pole opening on the surface (corresponding to the width A) is wide. In that case, the magnetic flux of the rare earth magnet 3 is easily short-circuited to the adjacent magnet through the teeth 18.
  • the electric motor 100 of the present embodiment can be configured to reduce the width A of the magnetic pole opening on the surface of the rare earth magnet 3 by using the rare earth magnet 3 and the ferrite magnet 4 in combination. Therefore, the width A is smaller than the teeth width B, the magnetic flux of the rare earth magnet 3 having a high magnetic flux density can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18, and the electric motor 100 having a high magnetic flux utilization rate of the magnet can be obtained. It is possible to obtain.
  • the magnetic flux of the rare earth magnet 3 is It becomes easy to flow to the teeth 18 having a small magnetic resistance.
  • the configuration example in which the shaft hole side surface 4a of the ferrite magnet 4 and the shaft hole side surface 3a of the rare earth magnet 3 are arranged on the same circumference has been described.
  • the rare earth magnet 3 is replaced with the ferrite magnet 4
  • the rare earth magnet 3 may be disposed closer to the slit 6 than the shaft hole 8.
  • FIG. 11 is a perspective view of the electric motor 100.
  • 12 is a side view of the electric motor 100
  • FIG. 13 is a perspective view of the rotor core 7 and permanent magnets (rare earth magnet 3 and ferrite magnet 4).
  • 12 and 13 show the thickness of the stator core 5 (thickness of the stacked electromagnetic steel plates) formed by laminating electromagnetic steel sheets, the thickness of the rotor core 7, the axial length of the rare earth magnet 3, and the ferrite. The relationship with the axial length of the magnet 4 is shown.
  • the stack thickness of the stator core 5 is Ls
  • the stack thickness of the rotor core 7 is Lr
  • the axial length of the rare earth magnet 3 is Ln
  • the axial length of the ferrite magnet 4 is Lf.
  • Ls ⁇ Lr, Ln ⁇ Lf, Ls ⁇ Ln, and Lf ⁇ Lr That is, in the electric motor 100 of the present embodiment, the rotor core 7 is configured such that the stack thickness Lr is larger than the stack thickness Ls of the stator core 5, and the axial length Lf of the ferrite magnet 4 is the rare earth magnet 3.
  • the axial length Ln of the rare earth magnet 3 is configured to be substantially equal to the stacking thickness Ls of the stator core 5, and the axial length of the ferrite magnet 4 is configured to be larger than the axial length Ln.
  • Lf is configured to be approximately equal to the thickness Lr of the rotor core 7.
  • substantially equal refers to a range of about ⁇ 2 mm.
  • the rare earth magnet 3 is inserted into the insertion hole 23, and the rare earth magnet 3 inserted into the insertion hole 23 has an inner circumference of the stator core 5 with respect to the stacking direction of the rotor core 7. It is provided at a position (predetermined position) facing the part. More specifically, a stopper (not shown) is provided in the insertion hole 23 so that the rare earth magnet 3 is disposed at a predetermined position.
  • the rare earth magnet 3 inserted into the insertion hole 23 is provided at a predetermined position by the axial end surface 3b of the rare earth magnet 3 coming into contact with the stopper, and the rare earth magnet 3 is arranged in a lower direction of the rotary compressor 200 described later. The magnet 3 is also prevented from falling.
  • the axial length ( ⁇ Lr) of the insertion hole 23 is formed to be larger than the axial length Ln of the rare earth magnet 3. Yes. Accordingly, a leakage of the same shape as the insertion hole 23 is formed on the outer side (between the axial end face 3b and the axial end face 7b of the rotor core 7) of the rare earth magnet 3 inserted into the insertion hole 23.
  • a magnetic flux suppression unit 10 (see FIG. 11) is formed.
  • the leakage flux suppressing portion 10 and the insertion hole 23 have the same shape, but the shape of the leakage flux suppressing portion 10 is not limited to this, and the rotor core 7 is not limited thereto. As long as the thin-walled portion 14 is formed and provided outside the axial end surface 3 b of the rare earth magnet 3, the shape may be different from that of the insertion hole 23.
  • the leakage flux suppression unit 10 is provided outside the end surface 3b in the axial direction of the rare earth magnet 3, so that the magnetic flux of the rare earth magnet 3 is outside the end surface 3b in the axial direction. Leakage can be suppressed. Further, in the rotor core 7, a portion of the intermagnet thin portion 14 is formed between the leakage flux suppressing portion 10 and the insertion hole 22, so that the leakage flux of the ferrite magnet 4 can be suppressed.
  • the electric motor 100 according to the present embodiment is configured such that the axial length Lf of the ferrite magnet 4 is larger than the axial length Ln of the rare earth magnet 3, thereby using an inexpensive ferrite magnet 4. Thus, it is possible to achieve both high efficiency and low cost of the electric motor 100.
  • FIG. 14 is a longitudinal sectional view of the rotary compressor 200, and the rotary compressor 200 shown in FIG. 14 is a one-cylinder rotary compressor.
  • a rotary compressor (hereinafter simply referred to as “compressor”) 200 includes an electric motor 100 (electric element) and a compression element 31 in an airtight container 30. Although not shown, refrigerating machine oil that lubricates each sliding portion of the compression element 31 is stored at the bottom of the sealed container 30.
  • the compression element 31 includes the following elements. (1) A cylinder 32 for storing refrigerant gas therein. (2) A rotating shaft 34 having an eccentric shaft 33 that is rotated by the electric motor 100. (3) A piston 35 fitted into the eccentric shaft 33 of the rotating shaft 34. (4) A vane (not shown) that divides the inside of the cylinder 32 into a suction side and a compression side. (5) A pair of upper and lower upper frames 36a and 36b in which the rotating shaft 34 is rotatably inserted and closes the axial end surface of the cylinder 32. (6) An upper discharge muffler 37a and a lower discharge muffler 37b mounted on the upper frame 36a and the lower frame 36b, respectively.
  • the refrigerant gas passes through the suction muffler 38 and is sucked into the cylinder 32 through a suction pipe 39 fixed to the sealed container 30.
  • the electric motor 100 is rotated by an inverter (not shown)
  • the piston 35 fitted to the eccentric shaft 33 of the rotating shaft 34 rotates in the cylinder 32.
  • the refrigerant gas is compressed in the cylinder 32.
  • the compressed high-temperature refrigerant gas is discharged into the sealed container 30 through the upper discharge muffler 37a and the lower discharge muffler 37b, and is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 41 provided in the sealed container 30.
  • the stator 2 of the electric motor 100 is directly attached and held in the sealed container 30 by a method such as shrink fitting or welding. Electric power from the glass terminal 40 fixed to the hermetic container 30 is supplied to the winding 11 wound around the stator 2.
  • the rotor 1 is arranged via a gap provided on the inner peripheral side of the stator 2, and the compression element 31 provided at the lower part of the compressor 200 via the rotation shaft 34 at the center of the rotor 1.
  • the bearings (the upper frame 36a and the lower frame 36b) are held in a rotatable state.
  • R410A, R407C, R22, etc. are conventionally used as the refrigerant of the compressor 200, any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired. As typical examples of the low GWP refrigerant, there are the following refrigerants.
  • HFO is an abbreviation for Hydro-Fluoro-Olefin, which is an unsaturated hydrocarbon having one double bond.
  • the GFO of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene).
  • GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition for example, a mixture of HFO-1234yf and R32, etc. is there. Since HFO-1234yf is a low-pressure refrigerant, its pressure loss is large, and the performance of the refrigeration cycle (especially in an evaporator) tends to deteriorate. Therefore, a mixture with R32 or R41, which is a high-pressure refrigerant, is more effective than HFO-1234yf in practical use.
  • R32 refrigerant is notable for toxicity and is not highly flammable, and thus has received particular attention. Moreover, when R32 refrigerant
  • coolant is used for the compressor 200, it has the characteristic that the internal temperature of the compressor 200 becomes about 20 degreeC high compared with R410A, R407C, R22 etc. which are used conventionally.
  • the temperature inside the compressor 200 varies depending on the compression load state (rotation speed, compression load torque, refrigerant), and is particularly dependent on the rotation speed.
  • the rotational speed of the electric motor 100 becomes the highest, the temperature inside the compressor 200 becomes maximum, and in the case of the R410A refrigerant, it is about 90 to 110 ° C.
  • the temperature in the compressor 200 further increases by about 20 ° C. to 110 to 130 ° C. with respect to the R410A refrigerant.
  • the temperature inside the compressor 200 is It depends on the temperature of the refrigerant rather than the heat generated by the electric motor 100 itself.
  • the rare earth magnet 3 has a negative coercivity temperature coefficient in which the coercive force decreases as the temperature increases.
  • the coercive force is an index of the demagnetization resistance of the permanent magnet.
  • a typical rare earth magnet 3 used in the compressor 200 is the temperature coefficient of -0.55 [% / °C] about by coercive force H CJ more than 20kOe at room temperature (20 ° C.).
  • the coercive force temperature coefficient indicates the degree to which the coercive force characteristic changes with temperature.
  • the coercive force decreases as the temperature of the permanent magnet increases. For example, it means that when the magnet temperature is increased by 100 ° C., the coercive force is reduced by 55%.
  • the radial thickness of the rare earth magnet 3 is increased or the Dy is increased in order to avoid demagnetization of the rare earth magnet 3. Measures such as the use of the rare earth magnet 3 having a large coercive force are necessary, and all of them increase the cost of the electric motor.
  • the electric motor 100 according to the present embodiment for the compressor 200, even when the R32 refrigerant is used, the amount of the rare earth magnet 3 used can be reduced and the cost can be reduced as compared with the case where only the rare earth magnet 3 is used. A high-efficiency electric motor with suppressed increase can be obtained.
  • a one-cylinder rotary compressor has been described as an example.
  • the present invention is not limited to this. If the electric motor 100 is incorporated in the compressor 200, the gist of the present invention is deviated. It goes without saying that the structure of the compressor 200 can be changed within a range not to be changed.
  • the electric motor 100 is an embedded permanent magnet electric motor in which the rotor core 7 formed by laminating a plurality of electromagnetic steel plates is disposed in the stator 2. Magnets constituting the magnetic poles 21 of the rotor core 7 are provided on the outer peripheral side of the rotor core 7 and are arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core 7, and the ferrite magnet 4
  • the rotor core 7 has a stack thickness Lr larger than the stack thickness Ls of the stator core 5, and the ferrite magnet 4 has an axial length Lf of rare earth magnet 3.
  • the axial length Ln of the rare earth magnet 3 is formed to be substantially equal to the stack thickness Ls of the stator core 5, and the axial length Lf of the ferrite magnet 4 is formed to be larger than the axial length Ln of the magnet 3. Formed approximately equal to the thickness Lr of the rotor core 7 Since the rare earth magnet 3 is provided at a position facing the inner peripheral portion of the stator core 5 with respect to the stacking direction of the rotor core 7, the amount of effective magnetic flux is increased by using an inexpensive ferrite magnet 4. Thus, both high efficiency and low cost of the electric motor 100 can be achieved.
  • the rotor core 7 is formed with an insertion hole 23 provided on the outer peripheral side of the rotor core 7 for inserting the rare earth magnet 3, and the rare earth magnet 3 inserted into the insertion hole 23. Since the leakage flux suppressing part 10 is formed between the axial end surface 3b and the axial end surface 7b of the rotor core 7, the magnetic flux of the rare earth magnet 3 is prevented from leaking outside the axial end surface 3b. can do. Further, in the rotor core 7, a portion of the intermagnet thin portion 14 is formed between the leakage flux suppressing portion 10 and the insertion hole 22, so that the leakage flux of the ferrite magnet 4 can be suppressed.
  • the ferrite magnet 4 is arranged so that the center of the ferrite magnet 4 is located between the poles 20 of the magnetic pole 21, and is magnetized so that the magnetization direction is reversed with respect to the poles 20. Therefore, the magnetic circuit of both the rare earth magnet 3 and the ferrite magnet 4 is a parallel circuit that does not interfere with each other, and the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4 can be utilized to the maximum. Further, when compared with a conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment reduces the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. can do. As a result, the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 can be reduced, and cost reduction, high efficiency, low noise, and low vibration can be realized.
  • the electric motor 100 since the ferrite magnet 4 having a large magnetic resistance exists between the rare earth magnets 3, the magnetic flux between the adjacent rare earth magnets 3 is difficult to be short-circuited, and the front and back of the magnets are reversed. Short-circuit magnetic flux is hardly generated. Therefore, when the rare earth magnet 3 per unit volume is considered, the effective magnetic flux amount linked to the stator 2 is increased, the magnet torque is increased, the applied current can be reduced, and the output can be increased. Alternatively, the increase in the amount of magnetic flux can be directed to reducing the amount of rare earth magnet 3 used.
  • the rare earth magnet 3 does not become magnetoresistive when viewed from the ferrite magnet 4,
  • the magnetization direction of the ferrite magnet 4 is oriented in a direction nearly perpendicular to the gap 20, so that the amount of effective magnetic flux linked to the stator 2 can be increased. Therefore, when compared with a conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4 can be reduced, and the cost can be further reduced. And high efficiency can be achieved.
  • the rare earth magnet 3 according to the present embodiment is arranged on the same circumference as the ferrite magnet 4, the iron core is a cause of increasing the sound and vibration associated with the magnetic attractive force when the rotor 1 is eccentric.
  • the area of the part 7a can be reduced. Therefore, compared with the case where the rare earth magnet 3 is not arranged on the same circumference as the ferrite magnet 4, it is possible to reduce noise and vibration.
  • the rotor core 7 is formed with an insertion hole 22 provided on the outer peripheral side of the rotor core 7 and into which the ferrite magnet 4 is inserted. Since a gap (air hole 19) is formed between them, it is possible to eliminate a part that is easily demagnetized at the design stage, prevent a change in the amount of magnetic flux due to demagnetization, and improve reliability. It is possible to improve the quality of a product equipped with the electric motor 100.
  • the ferrite magnet 4 when the thickness in the radial direction of the rotor core 7 is T and the length in the rotation direction of the rotor core 7 is W, W> T. Since it is comprised, the magnetic resistance between the rare earth magnets 3 is increased as W is increased, and the effect of reducing the short-circuit magnetic flux can be enhanced. Further, as T is smaller, the shaft hole side surface 4a can be brought closer to the vicinity of the outer peripheral surface of the rotor 1, and the shaft hole side surface 3a can be brought closer to the outer peripheral surface of the rotor 1 accordingly. It is possible to reduce the iron core area between the rotor outer peripheral surfaces (thickness of the iron core portion 7a), and to further reduce sound and vibration.
  • a plurality of teeth 18 formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator 2 according to the present embodiment, and the width of the magnetic pole opening on the surface of the rare earth magnet 3 is increased.
  • the width of the tooth 18 is B, since B> A, the magnetic flux of the rare earth magnet 3 can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the tooth 18. It is possible to obtain the electric motor 100 having a high magnetic flux utilization rate of the magnet.
  • the permanent magnet embedded electric motor and the compressor according to the embodiment of the present invention show an example of the content of the present invention, and can be combined with another known technique. Of course, it is possible to change and configure such as omitting a part without departing from the gist of the present invention.
  • the present invention can be applied to an interior permanent magnet electric motor and a compressor, and is particularly useful as an invention capable of reducing sound and vibration with high efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

An embedded permanent magnet electric motor obtained by arranging within a stator a rotor core (7) obtained by layering a plurality of electromagnetic steel sheets, wherein magnets constituting a magnetic pole of the rotor core (7) comprise: ferrite magnets (4) arranged in the circumferential direction of the rotor core (7) in a number equivalent to the number of poles, the ferrite magnets (4) being provided to the outer peripheral side of the rotor core (7); and rare earth magnets (3) arranged between the ferrite magnets (4); the cumulative thickness of the rotor core (7) is formed to be greater than the cumulative thickness of a stator core (24); the axial length (Lf) of the ferrite magnets (4) is formed to be greater than the axial length (Ln) of the rare earth magnets (3); the axial length (Ln) of the rare earth magnets (3) is formed to be substantially equivalent to the cumulative thickness of the stator core (24); the axial length (Lf) of the ferrite magnets (4) is formed to be substantially equivalent to the cumulative thickness of the rotor core (7) and the rare earth magnets (3) are provided to a position corresponding to an inner peripheral section of the stator core (24) with respect to the cumulative thickness direction of the rotor core (7).

Description

永久磁石埋込型電動機および圧縮機Permanent magnet embedded electric motor and compressor
 本発明は、永久磁石埋込型電動機およびこの電動機を搭載した圧縮機に関するものである。 The present invention relates to a permanent magnet embedded motor and a compressor equipped with this motor.
 環境意識の高まりから電動機の効率改善の要求が高まっている。高効率電動機として、永久磁石を回転子の鉄心内部に埋め込んだ永久磁石埋込型電動機がエアコン等の圧縮機用電動機を中心に広まってきている。永久磁石埋込型電動機には、回転子の磁極を構成する永久磁石としてフェライト磁石と希土類磁石との何れか一方が採用されている。フェライト磁石を用いた場合、安価であるものの、磁束密度が小さいため、電動機に流れる電流が増加し、高効率化が困難である。そのため、高効率を要求されるエアコン等の圧縮機に用いられる電動機には、フェライト磁石よりも磁束密度の大きい希土類磁石が多く用いられている。しかしながら、希土類磁石は、ネオジム(Nd)、ディスプロシウム(Dy)などの高価なレアアース元素を含むため、電動機のコストが高くなるという問題があった。 Demand for improving motor efficiency is increasing due to increased environmental awareness. As high-efficiency electric motors, permanent magnet embedded electric motors in which permanent magnets are embedded in the iron core of a rotor are spreading mainly in compressor motors such as air conditioners. An embedded permanent magnet electric motor employs one of a ferrite magnet and a rare earth magnet as a permanent magnet constituting the magnetic pole of the rotor. When a ferrite magnet is used, although it is inexpensive, since the magnetic flux density is small, the current flowing through the electric motor increases and it is difficult to achieve high efficiency. For this reason, rare earth magnets having a higher magnetic flux density than ferrite magnets are often used in electric motors used in compressors such as air conditioners that require high efficiency. However, since the rare earth magnet contains expensive rare earth elements such as neodymium (Nd) and dysprosium (Dy), there is a problem that the cost of the electric motor increases.
 また、圧縮機に用いる冷媒として、低GWP(GWP:CO2=1とした場合の地球温暖化係数)で、かつ安全性の高いR32冷媒、もしくはR32が50%を超え、吐出温度をR22よりも高いR32リッチ混合冷媒を用いた場合、R22、R410A、R407Cを採用した場合と比較して圧縮機吐出温度が約20℃高くなり、圧縮機の高温動作時に希土類磁石が減磁し、圧縮機の効率が低下するという問題があった。 In addition, as a refrigerant used in the compressor, low GWP (GWP: global warming potential when CO2 = 1) and high safety R32 refrigerant, or R32 exceeds 50%, and the discharge temperature is higher than R22. When a high R32 rich mixed refrigerant is used, the compressor discharge temperature is about 20 ° C. higher than when R22, R410A, and R407C are used, and the rare-earth magnet is demagnetized during high-temperature operation of the compressor. There was a problem that efficiency decreased.
 このような問題を解決するため、下記特許文献1に示される永久磁石電動機では、界磁磁極を構成する磁石に、回転子鉄心内径の周囲に沿って回転子の回転方向に極数に相当する数だけ配置される希土類磁石とこの希土類磁石による磁極の境界に沿って配置されるフェライト磁石とが含まれ、フェライト磁石を隣接磁極の共有として、各磁極が少なくとも3つの永久磁石により構成されている。高価な希土類磁石と安価なフェライト磁石を併用することで、低コスト化を図る効果が示されている。 In order to solve such a problem, in the permanent magnet motor shown in Patent Document 1 below, the magnet constituting the field magnetic pole corresponds to the number of poles in the rotation direction of the rotor along the circumference of the rotor core inner diameter. The number of rare earth magnets and the number of ferrite magnets arranged along the boundary between the magnetic poles of the rare earth magnets are included. Each of the magnetic poles is composed of at least three permanent magnets using the ferrite magnet as a shared adjacent magnetic pole. . An effect of reducing the cost is shown by using an expensive rare earth magnet and an inexpensive ferrite magnet in combination.
 また下記特許文献2に示される圧縮機は、圧縮機に用いる冷媒として、上述したR32冷媒もしくはR32リッチ混合冷媒を用い、駆動源として希土類磁石を有するブラシレスDCモータを用い、前記希土類磁石は冷媒としてR22、R410A、もしくはR407Cを採用した圧縮機における永久磁石の厚みよりも大きい厚みとすることで、高効率化及び圧縮機吐出温度上昇の抑制を達成している。 Moreover, the compressor shown by the following patent document 2 uses the brushless DC motor which has the rare earth magnet as a drive source using the R32 refrigerant | coolant or R32 rich mixed refrigerant | coolant mentioned above as a refrigerant | coolant used for a compressor, and the said rare earth magnet is used as a refrigerant | coolant. By making the thickness larger than the thickness of the permanent magnet in the compressor employing R22, R410A, or R407C, high efficiency and suppression of increase in compressor discharge temperature are achieved.
特許第3832530号公報(図1など)Japanese Patent No. 3832530 (FIG. 1 etc.) 特開2001-115963号公報(図1など)Japanese Patent Laid-Open No. 2001-115963 (FIG. 1 etc.)
 しかしながら、上記特許文献1に示される永久磁石電動機では、リラクタンストルクを得るために希土類磁石が回転子鉄心内径の周囲に沿って配置されている。すなわち、希土類磁石がフェライト磁石よりも回転子軸(シャフト)用中心孔側に配置されている。そのため、希土類磁石と回転子の外周面との間における鉄心面積が希土類磁石とフェライト磁石とを同一円周上に配置した場合に比べて多くなると共に、希土類磁石の円周方向の幅寸法を大幅に小さくする必要があった。したがって、フェライト磁石を配置して磁束密度を補った場合であっても、希土類磁石のみで構成した回転子に比べ、十分な磁束密度が得られず効率の低下を招いていた。 However, in the permanent magnet motor shown in Patent Document 1, rare earth magnets are arranged around the inner diameter of the rotor core in order to obtain reluctance torque. That is, the rare earth magnet is disposed closer to the rotor shaft (shaft) center hole than the ferrite magnet. For this reason, the iron core area between the rare earth magnet and the outer peripheral surface of the rotor is larger than when the rare earth magnet and the ferrite magnet are arranged on the same circumference, and the circumferential width of the rare earth magnet is greatly increased. It was necessary to make it smaller. Therefore, even when a ferrite magnet is arranged to supplement the magnetic flux density, a sufficient magnetic flux density cannot be obtained compared to a rotor composed only of rare earth magnets, resulting in a decrease in efficiency.
 また、上記特許文献1に示される永久磁石電動機は、リラクタンストルクを積極的に利用する構造のため、トルクリップル等の電磁加振力が増加し、音および振動が大きくなるという課題があった。特に、この電動機が圧縮機に組み込まれている場合、電磁加振力が圧縮機の筐体や配管を振動させる要因となるため、圧縮機筐体の剛性アップや配管の強度アップなどの対策でコストが増加するという課題があった。 Further, since the permanent magnet motor shown in Patent Document 1 has a structure in which reluctance torque is actively used, there is a problem that electromagnetic excitation force such as torque ripple increases, and sound and vibration increase. In particular, when this electric motor is built into a compressor, the electromagnetic excitation force causes the compressor casing and piping to vibrate, so measures such as increasing the rigidity of the compressor casing and increasing the strength of the piping can be taken. There was a problem that the cost increased.
 また、上記特許文献2に示される圧縮機では、圧縮機内部の温度上昇が大きくなることに伴う永久磁石の熱減磁を抑制するために、永久磁石の厚みを厚くする、もしくは、保磁力の高い永久磁石(希土類磁石)を用いるなどの対策が行われている。そのため、希土類磁石の使用量が増加、もしくは、希土類磁石の中に含まれるレアアース元素の量が増加し、電動機のコストが増加するという課題があった。 Moreover, in the compressor shown by the said patent document 2, in order to suppress the thermal demagnetization of the permanent magnet accompanying the temperature rise inside a compressor becoming large, the thickness of a permanent magnet is thickened or coercive force of Measures such as using a high permanent magnet (rare earth magnet) are being taken. Therefore, there has been a problem that the amount of rare earth magnet used increases or the amount of rare earth elements contained in the rare earth magnet increases, resulting in an increase in the cost of the electric motor.
 本発明は、上記に鑑みてなされたものであって、高効率で、音および振動を低減可能な永久磁石埋込型電動機および圧縮機を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a permanent magnet embedded type electric motor and a compressor that can reduce sound and vibration with high efficiency.
 上述した課題を解決し、目的を達成するために、本発明は、複数の電磁鋼板を積層してなる回転子鉄心を固定子内に配置して成る永久磁石埋込型電動機であって、前記回転子鉄心の磁極を構成する磁石は、前記回転子鉄心の外周側に設けられ前記回転子鉄心の円周方向へ極数に相当する数だけ配置されるフェライト磁石と、前記フェライト磁石の間に配置された希土類磁石と、から成り、前記回転子鉄心の積厚は、固定子鉄心の積厚よりも大きく形成され、前記フェライト磁石の軸方向長さは、前記希土類磁石の軸方向長さよりも大きく形成され、前記希土類磁石の軸方向長さは、前記固定子鉄心の積厚とほぼ等しく形成され、前記フェライト磁石の軸方向長さは、前記回転子鉄心の積厚とほぼ等しく形成され、前記希土類磁石は、前記回転子鉄心の積厚方向に対して前記固定子鉄心の内周部と対向する位置に設けられることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel plates is disposed in a stator, Magnets constituting the magnetic poles of the rotor core are provided between the ferrite magnets and ferrite magnets provided on the outer peripheral side of the rotor core and arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core. The rotor core has a thickness greater than that of the stator core, and the axial length of the ferrite magnet is greater than the axial length of the rare earth magnet. The axial length of the rare earth magnet is formed substantially equal to the stack thickness of the stator core, and the axial length of the ferrite magnet is formed approximately equal to the stack thickness of the rotor core, The rare earth magnet Characterized in that it is provided at a position opposed to the inner peripheral portion of the stator core with respect to the lamination thickness direction of the child core.
 この発明によれば、高効率で、音および振動を低減することができるという効果を奏する。 According to the present invention, there is an effect that sound and vibration can be reduced with high efficiency.
図1は、本発明の実施の形態にかかる永久磁石埋込型電動機の横断面図である。FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor according to an embodiment of the present invention. 図2は、図1に示される回転子の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure of the rotor shown in FIG. 図3は、磁石挿入孔を中心に示す断面図である。FIG. 3 is a cross-sectional view centering on the magnet insertion hole. 図4は、磁化方向がラジアル配向のフェライト磁石を用いた回転子の断面図である。FIG. 4 is a cross-sectional view of a rotor using a ferrite magnet whose magnetization direction is radial. 図5は、図4に示されるフェライト磁石の磁気回路と希土類磁石の磁気回路との関係を説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet and the magnetic circuit of the rare earth magnet shown in FIG. 図6は、磁石の磁化方向が平行配向のフェライト磁石を用いた回転子の断面図である。FIG. 6 is a cross-sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is parallel. 図7は、磁石の磁化方向が極配向のフェライト磁石を用いた回転子の断面図である。FIG. 7 is a sectional view of a rotor using a ferrite magnet in which the magnetization direction of the magnet is polar. 図8は、希土類磁石のみ用いた従来の永久磁石埋込型電動機の断面図である。FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor using only rare earth magnets. 図9は、フェライト磁石の厚さと幅の関係を説明するための図である。FIG. 9 is a diagram for explaining the relationship between the thickness and width of the ferrite magnet. 図10は、希土類磁石の磁極開口部とティース幅との関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening of the rare earth magnet and the tooth width. 図11は、永久磁石埋込型電動機の斜視図である。FIG. 11 is a perspective view of an embedded permanent magnet electric motor. 図12は、永久磁石埋込型電動機の側面図である。FIG. 12 is a side view of the permanent magnet embedded electric motor. 図13は、回転子鉄心と永久磁石の斜視図である。FIG. 13 is a perspective view of the rotor core and the permanent magnet. 図14は、ロータリ圧縮機の縦断面図である。FIG. 14 is a longitudinal sectional view of the rotary compressor.
 以下に、本発明にかかる永久磁石埋込型電動機および圧縮機の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, embodiments of an embedded permanent magnet electric motor and a compressor according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、本発明の実施の形態にかかる永久磁石埋込型電動機(以下「電動機」と称する)100の横断面図であり、図2は、図1に示される回転子1の構造を示す断面図である。図3は、磁石挿入孔を中心に示す断面図であり、図4は、磁化方向がラジアル配向のフェライト磁石4を用いた回転子1の断面図であり、図5は、図4に示されるフェライト磁石4の磁気回路と希土類磁石3の磁気回路との関係を説明するための断面図であり、図6は、磁石の磁化方向が平行配向のフェライト磁石4を用いた回転子1の断面図であり、図7は、磁石の磁化方向が極配向のフェライト磁石4を用いた回転子1の断面図である。
Embodiment.
FIG. 1 is a cross-sectional view of a permanent magnet embedded electric motor (hereinafter referred to as “electric motor”) 100 according to an embodiment of the present invention, and FIG. 2 shows the structure of the rotor 1 shown in FIG. It is sectional drawing. FIG. 3 is a cross-sectional view centering on the magnet insertion hole, FIG. 4 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 having a radial magnetization direction, and FIG. 5 is shown in FIG. FIG. 6 is a cross-sectional view for explaining the relationship between the magnetic circuit of the ferrite magnet 4 and the magnetic circuit of the rare-earth magnet 3, and FIG. 6 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnet magnetization directions are parallel. FIG. 7 is a cross-sectional view of the rotor 1 using the ferrite magnet 4 in which the magnetization direction of the magnet is polar.
 図1において、本発明の実施の形態にかかる電動機100は、固定子2および回転子1を有して構成されている。固定子2の内周部には、複数のティースが円周方向に等角ピッチで形成されている。 In FIG. 1, an electric motor 100 according to an embodiment of the present invention includes a stator 2 and a rotor 1. A plurality of teeth are formed on the inner peripheral portion of the stator 2 at an equiangular pitch in the circumferential direction.
 図2において、回転子1は、主たる構成として、磁石埋め込み式の回転子鉄心7、希土類磁石3、およびフェライト磁石4を有して構成されている。図2では、一例として、フェライト磁石4のシャフト孔側面4aが、希土類磁石3のシャフト孔側面3aと同一円周上に配置されている。 In FIG. 2, the rotor 1 includes a rotor core 7 embedded with a magnet, a rare earth magnet 3, and a ferrite magnet 4 as main components. In FIG. 2, as an example, the shaft hole side surface 4 a of the ferrite magnet 4 is arranged on the same circumference as the shaft hole side surface 3 a of the rare earth magnet 3.
 回転子鉄心7は、電磁鋼板を積層して製作され回転子1の外周面(以下単に「回転子外周面」と称する)が円筒状に形成され、例えば6極の磁極21で構成され、各磁極21は、1枚のNd-Fe-B系の希土類磁石3と2枚のフェライト磁石4の片側とで構成される。 The rotor iron core 7 is manufactured by laminating electromagnetic steel plates, and the outer peripheral surface of the rotor 1 (hereinafter simply referred to as “rotor outer peripheral surface”) is formed in a cylindrical shape. The magnetic pole 21 is composed of one Nd—Fe—B rare earth magnet 3 and one side of two ferrite magnets 4.
 フェライト磁石4は、シャフト孔側面4aが略円弧形状に形成された板状を成す。希土類磁石3は、厚さ方向(回転子1の半径方向)へ平行に磁化された平板状を成す。なお、Nd-Fe-B系の希土類磁石3の残留磁束密度は、湿式フェライト磁石4の残留磁束密度の約3倍である。希土類磁石3の厚さは、フェライト磁石4の厚さよりも薄く形成され、本実施の形態の回転子1では、例えば希土類磁石3の厚さが2mm程度、フェライト磁石4の厚さが4mm程度である。 The ferrite magnet 4 has a plate shape in which the shaft hole side surface 4a is formed in a substantially arc shape. The rare earth magnet 3 has a flat plate shape magnetized in parallel in the thickness direction (radial direction of the rotor 1). The residual magnetic flux density of the Nd—Fe—B rare earth magnet 3 is about three times the residual magnetic flux density of the wet ferrite magnet 4. The rare earth magnet 3 is formed to be thinner than the ferrite magnet 4. In the rotor 1 of the present embodiment, for example, the rare earth magnet 3 has a thickness of about 2 mm and the ferrite magnet 4 has a thickness of about 4 mm. is there.
 回転子1の中心部には、回転エネルギーを伝達するためのシャフト(図示せず)と回転子鉄心7とを連結するためのシャフト孔8が設けられている。回転子鉄心7とシャフトは、焼嵌、圧入等により連結される。そして、シャフト孔8と磁石(3、4)との間には、冷媒や冷凍機油が通過するための風穴9aと積層した回転子鉄心7を束ねるためのリベット穴9bとが設けられている。また、本実施の形態の回転子1では、風穴9aが希土類磁石3の内径側に配置され、リベット穴9bがフェライト磁石4の内径側に配置されているが、この逆でもよい。また、本実施の形態の回転子1は、風穴9aの断面積をトルクの低下しない範囲で大きくすることで、圧縮機中で駆動した際に冷媒の流路が増し、性能を改善できる。 A shaft hole 8 for connecting a shaft (not shown) for transmitting rotational energy and the rotor core 7 is provided at the center of the rotor 1. The rotor core 7 and the shaft are connected by shrink fitting, press fitting or the like. Between the shaft hole 8 and the magnets (3, 4), there are provided an air hole 9a for allowing refrigerant and refrigeration oil to pass therethrough and a rivet hole 9b for bundling the laminated rotor cores 7. Further, in the rotor 1 of the present embodiment, the air hole 9a is disposed on the inner diameter side of the rare earth magnet 3 and the rivet hole 9b is disposed on the inner diameter side of the ferrite magnet 4, but this may be reversed. Moreover, the rotor 1 of this Embodiment can improve the performance by increasing the flow path of the refrigerant when driven in the compressor by increasing the cross-sectional area of the air hole 9a within a range in which the torque does not decrease.
 図3において、シャフト孔8と回転子外周面との間には、回転子外周面側にて回転子1の回転方向へ極数に相当する数だけ形成されたフェライト磁石挿入孔22と、フェライト磁石挿入孔22の間にてフェライト磁石挿入孔22と同一円周上に形成された希土類磁石挿入孔23とが設けられている。希土類磁石3は、希土類磁石挿入孔23に収納され、フェライト磁石4は、フェライト磁石挿入孔22に収納される。なお、以下の説明では、フェライト磁石挿入孔22は挿入孔22と称し、希土類磁石挿入孔23は挿入孔23と称する。 In FIG. 3, between the shaft hole 8 and the rotor outer peripheral surface, ferrite magnet insertion holes 22 formed in a number corresponding to the number of poles in the rotation direction of the rotor 1 on the rotor outer peripheral surface side, and ferrite A rare earth magnet insertion hole 23 formed on the same circumference as the ferrite magnet insertion hole 22 is provided between the magnet insertion holes 22. The rare earth magnet 3 is accommodated in the rare earth magnet insertion hole 23, and the ferrite magnet 4 is accommodated in the ferrite magnet insertion hole 22. In the following description, the ferrite magnet insertion hole 22 is referred to as the insertion hole 22, and the rare earth magnet insertion hole 23 is referred to as the insertion hole 23.
 挿入孔22と挿入孔23との間には、磁石間薄肉部14が設けられ、挿入孔22と回転子外周面との間には、フェライト磁石外周薄肉部15が設けられている。磁石間薄肉部14およびフェライト磁石外周薄肉部15の各々の厚みは、例えば、回転子鉄心7を形成している電磁鋼板(図示せず)の厚さと同程度の0.35mmである。なお、以下の説明では、磁石間薄肉部14は薄肉部14と称し、フェライト磁石外周薄肉部15は薄肉部15と称する。 Between the insertion hole 22 and the insertion hole 23, an inter-magnet thin portion 14 is provided, and between the insertion hole 22 and the rotor outer peripheral surface, a ferrite magnet outer peripheral thin portion 15 is provided. The thicknesses of the inter-magnet thin portion 14 and the ferrite magnet outer peripheral thin portion 15 are, for example, 0.35 mm, which is about the same as the thickness of the electromagnetic steel plate (not shown) forming the rotor core 7. In the following description, the inter-magnet thin portion 14 is referred to as a thin portion 14, and the ferrite magnet outer peripheral thin portion 15 is referred to as a thin portion 15.
 図2に示されるフェライト磁石4と薄肉部15との間には、フェライト磁石4の回転子外周面側に空気孔19が形成されている。この空気孔19は、例えば挿入孔22の回転子外周面側を切削加工することで形成されている。 An air hole 19 is formed between the ferrite magnet 4 and the thin portion 15 shown in FIG. This air hole 19 is formed by cutting the rotor outer peripheral surface side of the insertion hole 22, for example.
 希土類磁石3の回転子外周面側には、薄肉部15の厚さよりも厚く形成された鉄心部7aが存在する。すなわち、本実施の形態の回転子1は、希土類磁石3と回転子外周面の間の鉄心面積(鉄心部7aの厚み)が、挿入孔22と回転子外周面との間の鉄心面積(薄肉部15の厚み)よりも大きくなるように構成されている。 On the rotor outer peripheral surface side of the rare earth magnet 3, there is an iron core portion 7 a formed thicker than the thickness of the thin portion 15. That is, in the rotor 1 of the present embodiment, the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface is the same as the iron core area (thin wall thickness) between the insertion hole 22 and the rotor outer peripheral surface. The thickness of the portion 15 is larger than the thickness.
 この鉄心部7aには、磁束密度のアンバランスおよび磁気突極性を緩和するためのスリット6が径方向に設けられている。 The iron core portion 7a is provided with slits 6 in the radial direction for relaxing magnetic flux density imbalance and magnetic saliency.
 図2に示される極間20は、隣接する磁極21(N極とS極)が切り替わる境界線を表し、磁極21の中心には希土類磁石3が配置され、フェライト磁石4は、極間20にフェライト磁石4の中心が位置するように配置されている。極間20に配置されたフェライト磁石4は、少なくとも1枚で構成され、極間20に対して磁化方向が反転するように着磁される。以下、磁化方向に関して説明する。 2 represents a boundary line where adjacent magnetic poles 21 (N pole and S pole) are switched. The rare earth magnet 3 is disposed at the center of the magnetic pole 21, and the ferrite magnet 4 is disposed between the poles 20. It arrange | positions so that the center of the ferrite magnet 4 may be located. The ferrite magnet 4 disposed between the poles 20 is composed of at least one, and is magnetized so that the magnetization direction is reversed with respect to the poles 20. Hereinafter, the magnetization direction will be described.
 図4において、希土類磁石3の磁化方向は平行であり、フェライト磁石4の磁化方向はラジアル配向である。フェライト磁石4の磁化方向は、極間20で反転するように着磁されている。図4には、磁化方向が反転する位置としてラジアル配向の焦点17が示されている。フェライト磁石4の磁化方向は、極間20を境界とし希土類磁石3の方向と略同じ向きとなる。 In FIG. 4, the magnetization direction of the rare earth magnet 3 is parallel, and the magnetization direction of the ferrite magnet 4 is radial orientation. The magnetization direction of the ferrite magnet 4 is magnetized so as to be reversed between the poles 20. FIG. 4 shows a focal point 17 having a radial orientation as a position where the magnetization direction is reversed. The magnetization direction of the ferrite magnet 4 is substantially the same as the direction of the rare earth magnet 3 with the inter-electrode 20 as a boundary.
 ここで、希土類磁石3とフェライト磁石4とを併用する場合において、双方の磁石が他方の磁石の磁気回路上の磁気抵抗になるように配置されたとき、固定子2に鎖交する有効磁束量が低減し、好ましくない。例えば、フェライト磁石4の磁化方向が極間20に対して垂直の場合、フェライト磁石4の磁化方向に希土類磁石3が存在することになる。そのため、フェライト磁石4からみて希土類磁石3が磁気抵抗となり、フェライト磁石4の磁束を有効に利用することができない。上記従来技術では、フェライト磁石4の磁束を有効利用するため、希土類磁石3がフェライト磁石4よりも内周側(シャフト孔8側)に配置されている。 Here, in the case where the rare earth magnet 3 and the ferrite magnet 4 are used in combination, the effective magnetic flux amount linked to the stator 2 when both magnets are arranged to have a magnetic resistance on the magnetic circuit of the other magnet. Is not preferable. For example, when the magnetization direction of the ferrite magnet 4 is perpendicular to the gap 20, the rare earth magnet 3 exists in the magnetization direction of the ferrite magnet 4. Therefore, the rare earth magnet 3 becomes a magnetic resistance when viewed from the ferrite magnet 4, and the magnetic flux of the ferrite magnet 4 cannot be used effectively. In the above prior art, the rare earth magnet 3 is arranged on the inner peripheral side (the shaft hole 8 side) of the ferrite magnet 4 in order to effectively use the magnetic flux of the ferrite magnet 4.
 一方、フェライト磁石4の磁化方向を平行配向、ラジアル配向、あるいは極配向にした場合、希土類磁石3およびフェライト磁石4が互いの磁気回路上の磁気抵抗になりにくい。図5には、回転子1に配置された希土類磁石3による磁気回路(磁束の流れ)とフェライト磁石4による磁気回路とが模式的に示されている。各磁石から発生した磁束は、図1に示される固定子2を介して、およそ破線に示すような磁気回路を構成する。本実施の形態の回転子1では、双方の磁気回路が互いに干渉しあわないような並列回路となっている。そのため、回転子1は、希土類磁石3およびフェライト磁石4の磁束を最大限利用することができる。 On the other hand, when the magnetization direction of the ferrite magnet 4 is parallel, radial, or polar, the rare earth magnet 3 and the ferrite magnet 4 are unlikely to have a magnetic resistance on each other's magnetic circuit. FIG. 5 schematically shows a magnetic circuit (flow of magnetic flux) by the rare earth magnet 3 disposed on the rotor 1 and a magnetic circuit by the ferrite magnet 4. The magnetic flux generated from each magnet constitutes a magnetic circuit as indicated by a broken line through the stator 2 shown in FIG. The rotor 1 according to the present embodiment is a parallel circuit in which both magnetic circuits do not interfere with each other. Therefore, the rotor 1 can make maximum use of the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4.
 また、希土類磁石3のみ用いた従来の電動機に対して同一の回転子磁束で比較した場合、本実施の形態の回転子1は、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができる。 Further, when compared with a conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment reduces the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. be able to.
 なお、フェライト磁石4の磁束は、極間20で磁化方向が切り替わるため短絡し易いが、この短絡磁束を低減するためには、フェライト磁石4の磁化方向が極間20に対して垂直に近い(完全に垂直ではない)方向に向くことが好ましい。 The magnetic flux of the ferrite magnet 4 is easily short-circuited because the magnetization direction is switched between the poles 20. However, in order to reduce the short-circuit magnetic flux, the magnetization direction of the ferrite magnet 4 is nearly perpendicular to the gap 20 ( It is preferably oriented in a direction that is not completely vertical.
 そこで、本実施の形態にかかる回転子1は、フェライト磁石4の磁化方向を図4に示すようなラジアル配向や図7に示すような極配向にすることによって、固定子2に鎖交する有効磁束量を増加させている。なお、フェライト磁石4の磁化方向は、ラジアル配向および極配向に限定されるものではなく、図6に示すような平行配向でもよい。この場合、固定子2に鎖交する有効磁束量は、ラジアル配向や極配向の場合に比べて低下するものの、上述した磁気抵抗となる構成を回避することは可能である。 Therefore, the rotor 1 according to the present embodiment is effective in interlinking with the stator 2 by setting the magnetization direction of the ferrite magnet 4 to the radial orientation as shown in FIG. 4 or the polar orientation as shown in FIG. The amount of magnetic flux is increased. The magnetization direction of the ferrite magnet 4 is not limited to the radial orientation and the polar orientation, and may be a parallel orientation as shown in FIG. In this case, although the effective magnetic flux amount interlinking with the stator 2 is lower than that in the case of radial orientation or polar orientation, it is possible to avoid the above-described configuration of the magnetic resistance.
 図8は、希土類磁石3のみ用いた従来の永久磁石埋込型電動機110の断面図である。従来の永久磁石埋込型電動機110では、隣接する希土類磁石3間(隣接するN極とS極)における短絡磁束が大きいという課題があった。具体的に説明すると、例えば図2に示される磁極21から出た磁束が図1に示される固定子2のコイルに鎖交した場合には、この磁束がマグネットトルクとして有効に利用される。しかしながら、磁極21から出た磁束が固定子2のコイルを介さずに短絡した場合、この磁束はマグネットトルクとして利用することができない。 FIG. 8 is a cross-sectional view of a conventional permanent magnet embedded electric motor 110 using only the rare earth magnet 3. The conventional permanent magnet embedded motor 110 has a problem that the short-circuit magnetic flux between the adjacent rare earth magnets 3 (adjacent N pole and S pole) is large. Specifically, for example, when the magnetic flux emitted from the magnetic pole 21 shown in FIG. 2 is linked to the coil of the stator 2 shown in FIG. 1, this magnetic flux is effectively used as the magnet torque. However, when the magnetic flux emitted from the magnetic pole 21 is short-circuited without passing through the coil of the stator 2, this magnetic flux cannot be used as magnet torque.
 本実施の形態の回転子1は、図2に示すように、隣接する希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、希土類磁石3の磁束が短絡しにくい構成となっている。その結果、固定子2に鎖交する有効磁束量を増加させることができる。 As shown in FIG. 2, the rotor 1 according to the present embodiment includes a ferrite magnet 4 having a large magnetic resistance between adjacent rare earth magnets 3. Therefore, the magnetic flux of the rare earth magnet 3 is not easily short-circuited. Yes. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
 隣接する希土類磁石3間の磁束の短絡は、図2に示される薄肉部15を通過しようとする。本実施の形態の回転子1は、フェライト磁石4が回転子外周面側に配置されているため、薄肉部15が薄肉化されており、希土類磁石3単体の永久磁石埋込型電動機110の磁石外周薄肉部15aよりも磁気抵抗を大きくすることができる。また、本実施の形態の薄肉部15はフェライト磁石4の磁束で磁気飽和するため、短絡磁束が生じにくくなる。その結果、固定子2に鎖交する有効磁束量を増加させることができる。 The short circuit of the magnetic flux between the adjacent rare earth magnets 3 tries to pass through the thin portion 15 shown in FIG. In the rotor 1 of the present embodiment, since the ferrite magnet 4 is arranged on the outer peripheral surface side of the rotor, the thin portion 15 is thinned, and the magnet of the permanent magnet embedded electric motor 110 of the rare earth magnet 3 alone. The magnetic resistance can be made larger than that of the outer peripheral thin portion 15a. Moreover, since the thin part 15 of this Embodiment is magnetically saturated with the magnetic flux of the ferrite magnet 4, it becomes difficult to produce a short circuit magnetic flux. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
 また、希土類磁石3とフェライト磁石4を併用する場合、図2に示すような薄肉部14が必要となるが、この薄肉部14によって磁石の表から裏への磁束の短絡経路が生じて、固定子2に鎖交する有効磁束量が低下する。本実施の形態の回転子1では、希土類磁石3とフェライト磁石4とが同一円周上に配置され、さらに薄肉部14が薄肉化されているため、希土類磁石3の磁束とフェライト磁石4の磁束とが薄肉部14を短絡(磁石の表から裏に短絡)するため、薄肉部14が磁気飽和し易い。従って、希土類磁石3単体もしくはフェライト磁石4単体で構成した場合に比べて、短絡磁束量を低減することができる。その結果、固定子2に鎖交する有効磁束量を増加させることができる。 Further, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, a thin portion 14 as shown in FIG. 2 is required, but this thin portion 14 creates a short-circuit path of magnetic flux from the front to the back of the magnet, thereby fixing the thin portion. The effective magnetic flux amount interlinking with the child 2 is reduced. In the rotor 1 of the present embodiment, the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, and the thin portion 14 is further thinned. And short-circuit the thin-walled portion 14 (short-circuit from the front to the back of the magnet), so that the thin-walled portion 14 is likely to be magnetically saturated. Accordingly, the amount of short-circuit magnetic flux can be reduced as compared with the case where the rare earth magnet 3 alone or the ferrite magnet 4 alone is configured. As a result, the effective magnetic flux amount interlinking with the stator 2 can be increased.
 また、電動機100において、磁極21表面の鉄心は、リラクタンストルクによるトルクリップルの増加や回転子1の偏心時の磁気吸引力により、音および振動を増加させる原因となる。従って、磁極21表面の鉄心面積を小さくする設計が好ましい。本実施の形態の回転子1は、希土類磁石3とフェライト磁石4とを同一円周上に配置することで、希土類磁石3の回転子外周面側に存在する鉄心部7aの面積を小さくすることができる。従って、上述した音および振動を軽減することが可能である。 Further, in the electric motor 100, the iron core on the surface of the magnetic pole 21 causes an increase in sound and vibration due to an increase in torque ripple due to reluctance torque and a magnetic attraction force when the rotor 1 is eccentric. Therefore, a design that reduces the iron core area on the surface of the magnetic pole 21 is preferable. In the rotor 1 of the present embodiment, the rare earth magnet 3 and the ferrite magnet 4 are arranged on the same circumference, so that the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is reduced. Can do. Therefore, it is possible to reduce the sound and vibration described above.
 また、希土類磁石3の残留磁束密度は、フェライト磁石4の残留磁束密度に対して約3倍である。そのため、希土類磁石3とフェライト磁石4とを併用する場合、回転子外周面の希土類磁石3とフェライト磁石4との境界面における磁束密度のエネルギー変化量が大きく、このエネルギー変化が音および振動を増加させる原因となる。本実施の形態の回転子1は、希土類磁石3の回転子外周面側に存在する鉄心部7aがフェライト磁石4の回転子外周面側に存在する鉄心(薄肉部15)よりも多くなるように構成されている。そのため、磁束密度の高い希土類磁石3の表面の磁束密度の集中が緩和され、上述した磁束密度のエネルギー変化量が小さくなり、その結果、音および振動の小さい電動機100を実現可能である。 Further, the residual magnetic flux density of the rare earth magnet 3 is about three times that of the ferrite magnet 4. Therefore, when the rare earth magnet 3 and the ferrite magnet 4 are used in combination, the energy change amount of the magnetic flux density at the boundary surface between the rare earth magnet 3 and the ferrite magnet 4 on the outer peripheral surface of the rotor is large, and this energy change increases sound and vibration. Cause it. In the rotor 1 of the present embodiment, the iron core portion 7 a existing on the rotor outer peripheral surface side of the rare earth magnet 3 is larger than the iron core (thin wall portion 15) existing on the rotor outer peripheral surface side of the ferrite magnet 4. It is configured. Therefore, the concentration of the magnetic flux density on the surface of the rare earth magnet 3 having a high magnetic flux density is alleviated, and the amount of energy change of the magnetic flux density described above becomes small. As a result, the electric motor 100 with low sound and vibration can be realized.
 なお、希土類磁石3の表面の鉄心部7aにスリット6を設けた場合、スリット6の幅、位置を調整することで上述した磁束密度のエネルギー変化を緩和しつつ、磁気吸引力も低減でき、音および振動の低減に効果的である。 In addition, when the slit 6 is provided in the iron core part 7a on the surface of the rare earth magnet 3, the magnetic attraction force can be reduced while relaxing the energy change of the magnetic flux density described above by adjusting the width and position of the slit 6, and sound and It is effective in reducing vibration.
 また、希土類磁石3とフェライト磁石4とを同一円周上に配置することで、磁気特性への影響が小さい回転子1の磁石内周部に、広いスペースを確保することが可能である。そのため、このスペースにカシメや風穴9a、リベット穴9bを設け易く、回転子1の製作性、冷却性能、回転子1の強度を改善することができる。冷媒が電動機中を通過する圧縮機の場合、風穴9aを開けたことにより冷媒の循環量が多くなり、性能改善の効果も大きい。 Further, by arranging the rare earth magnet 3 and the ferrite magnet 4 on the same circumference, it is possible to secure a wide space in the inner circumference of the rotor 1 having a small influence on the magnetic characteristics. Therefore, caulking, air holes 9a, and rivet holes 9b can be easily provided in this space, and the manufacturability, cooling performance, and strength of the rotor 1 can be improved. In the case of a compressor in which the refrigerant passes through the electric motor, the circulation amount of the refrigerant is increased by opening the air holes 9a, and the effect of improving the performance is great.
 また、本実施の形態の回転子1には、フェライト磁石4と薄肉部15との間に空気孔19が形成されている。空気孔19を設けることによって以下のような効果を得ることができる。固定子2に減磁位相の電流を流した場合、磁石の磁化方向と反対方向の磁界(反磁界)が発生する。希土類磁石3に対する反磁界は、希土類磁石3がシャフト孔8側に多少埋め込まれているため、薄肉部14を通過して逃げていく。ただし、フェライト磁石4に対する反磁界は、回転子外周面近傍にフェライト磁石4が配置されているため、フェライト磁石4を減磁させ易い。そこで、本実施の形態の回転子1は、フェライト磁石4の回転子外周面側に空気孔19を設けることによって、フェライト磁石4が減磁し難くなり、減磁に対する回転子1の信頼性を改善することができる。 In the rotor 1 of the present embodiment, an air hole 19 is formed between the ferrite magnet 4 and the thin portion 15. By providing the air holes 19, the following effects can be obtained. When a current having a demagnetization phase is passed through the stator 2, a magnetic field (demagnetizing field) in a direction opposite to the magnetization direction of the magnet is generated. The demagnetizing field with respect to the rare earth magnet 3 escapes through the thin portion 14 because the rare earth magnet 3 is somewhat embedded in the shaft hole 8 side. However, the demagnetizing field with respect to the ferrite magnet 4 is easy to demagnetize the ferrite magnet 4 because the ferrite magnet 4 is disposed in the vicinity of the outer peripheral surface of the rotor. Therefore, in the rotor 1 of the present embodiment, by providing the air holes 19 on the rotor outer peripheral surface side of the ferrite magnet 4, the ferrite magnet 4 is difficult to demagnetize, and the reliability of the rotor 1 against demagnetization is increased. Can be improved.
 図9は、フェライト磁石4の厚さと幅の関係を説明するための図である。図9に示されるフェライト磁石4は、磁化方向厚さ(半径方向の長さ)をTとし、フェライト磁石4の幅(回転方向の長さ)をWとした場合、W>Tとなるように構成されている。 FIG. 9 is a diagram for explaining the relationship between the thickness and the width of the ferrite magnet 4. The ferrite magnet 4 shown in FIG. 9 is such that W> T, where T is the thickness in the magnetization direction (length in the radial direction) and W is the width (length in the rotation direction) of the ferrite magnet 4. It is configured.
 本実施の形態の電動機100は、隣接する希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、希土類磁石3の磁束が短絡しにくくなり、固定子2に鎖交する有効磁束量を増加させることができる。そして、フェライト磁石4の幅Wが広いほど、隣接する希土類磁石3間の磁気抵抗を増加させることができるため、W>Tとなるように構成することによって、短絡磁束低減の効果を高めることが可能である。また、厚さTが小さいほど、希土類磁石3を回転子外周面近傍に近づけることができため、希土類磁石3と回転子外周面の間の鉄心面積(鉄心部7aの厚み)を低減でき、音および振動をより一層軽減することが可能である。 In the electric motor 100 of the present embodiment, since the ferrite magnet 4 having a large magnetic resistance exists between the adjacent rare earth magnets 3, the magnetic flux of the rare earth magnet 3 becomes difficult to be short-circuited, and the effective magnetic flux amount interlinked with the stator 2. Can be increased. And since the magnetic resistance between the adjacent rare earth magnets 3 can be increased as the width W of the ferrite magnet 4 is increased, the effect of reducing the short-circuit magnetic flux can be enhanced by configuring W> T. Is possible. Moreover, since the rare earth magnet 3 can be brought closer to the rotor outer peripheral surface as the thickness T is smaller, the iron core area (thickness of the iron core portion 7a) between the rare earth magnet 3 and the rotor outer peripheral surface can be reduced. And vibration can be further reduced.
 図10は、希土類磁石3の磁極開口部Aとティース幅Bとの関係を説明するための図である。図10に示される電動機100は、希土類磁石3表面の磁極開口部の幅(隣接するフェライト磁石4間の長さ)をAとして、ティース18のティース幅(回転子外周面に対向するティース18の端面幅)をBとした場合、B>Aとなるように構成されている。 FIG. 10 is a diagram for explaining the relationship between the magnetic pole opening A and the teeth width B of the rare earth magnet 3. In the electric motor 100 shown in FIG. 10, the width of the magnetic pole opening (the length between adjacent ferrite magnets 4) on the surface of the rare earth magnet 3 is A, and the teeth width of the teeth 18 (the teeth 18 facing the rotor outer peripheral surface). When B is defined as (end face width), B> A.
 図8に示されるような希土類磁石3単体の回転子120は、回転子120の磁石スペースを有効に利用するため、回転子表面に希土類磁石3を幅広く配置し、ティース幅Bよりも希土類磁石3表面の磁極開口部の幅(幅Aに相当)が広い場合が多い。その場合、希土類磁石3の磁束が、ティース18を伝って隣接磁石に短絡し易い。 In the rotor 120 of the rare earth magnet 3 alone as shown in FIG. 8, the rare earth magnet 3 is widely arranged on the rotor surface to effectively use the magnet space of the rotor 120, and the rare earth magnet 3 is larger than the teeth width B. In many cases, the width of the magnetic pole opening on the surface (corresponding to the width A) is wide. In that case, the magnetic flux of the rare earth magnet 3 is easily short-circuited to the adjacent magnet through the teeth 18.
 本実施の形態の電動機100は、希土類磁石3とフェライト磁石4を併用することによって、希土類磁石3表面の磁極開口部の幅Aを小さく構成できる。従って、幅Aがティース幅Bよりも小さくなり、磁束密度の高い希土類磁石3の磁束がティース18を伝って隣接希土類磁石3に短絡することを抑制でき、磁石の磁束利用率の高い電動機100を得ることが可能である。特に、本実施の形態の電動機100では、希土類磁石3が磁気抵抗の大きいフェライト磁石4に囲まれているため、幅Aをティース幅Bよりも小さく構成することによって、希土類磁石3の磁束は、磁気抵抗の小さいティース18に流れ易くなる。 The electric motor 100 of the present embodiment can be configured to reduce the width A of the magnetic pole opening on the surface of the rare earth magnet 3 by using the rare earth magnet 3 and the ferrite magnet 4 in combination. Therefore, the width A is smaller than the teeth width B, the magnetic flux of the rare earth magnet 3 having a high magnetic flux density can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the teeth 18, and the electric motor 100 having a high magnetic flux utilization rate of the magnet can be obtained. It is possible to obtain. In particular, in the electric motor 100 of the present embodiment, since the rare earth magnet 3 is surrounded by the ferrite magnet 4 having a large magnetic resistance, by configuring the width A to be smaller than the teeth width B, the magnetic flux of the rare earth magnet 3 is It becomes easy to flow to the teeth 18 having a small magnetic resistance.
 なお、本実施の形態では、フェライト磁石4のシャフト孔側面4aと希土類磁石3のシャフト孔側面3aとが同一円周上に配置された構成例を説明したが、例えば希土類磁石3をフェライト磁石4よりもシャフト孔8側に配置し、あるいは希土類磁石3をスリット6側に配置してもよい。 In the present embodiment, the configuration example in which the shaft hole side surface 4a of the ferrite magnet 4 and the shaft hole side surface 3a of the rare earth magnet 3 are arranged on the same circumference has been described. For example, the rare earth magnet 3 is replaced with the ferrite magnet 4 Alternatively, the rare earth magnet 3 may be disposed closer to the slit 6 than the shaft hole 8.
 図11は、電動機100の斜視図である。図12は、電動機100の側面図であり、図13は、回転子鉄心7と永久磁石(希土類磁石3、フェライト磁石4)の斜視図である。図12および図13には、電磁鋼板を積層してなる固定子鉄心5の積厚(電磁鋼鈑を積み重ねた厚さ)と回転子鉄心7の積厚と希土類磁石3の軸方向長さとフェライト磁石4の軸方向長さとの関係が示されている。 FIG. 11 is a perspective view of the electric motor 100. 12 is a side view of the electric motor 100, and FIG. 13 is a perspective view of the rotor core 7 and permanent magnets (rare earth magnet 3 and ferrite magnet 4). 12 and 13 show the thickness of the stator core 5 (thickness of the stacked electromagnetic steel plates) formed by laminating electromagnetic steel sheets, the thickness of the rotor core 7, the axial length of the rare earth magnet 3, and the ferrite. The relationship with the axial length of the magnet 4 is shown.
 ここで、固定子鉄心5の積厚をLs、回転子鉄心7の積厚をLr、希土類磁石3の軸方向長さをLn、フェライト磁石4の軸方向長さをLfとしたとき、電動機100は以下の関係式を満たすように構成される。
 Ls<Lr、かつ、Ln<Lf、かつ、Ls≒Ln、かつ、Lf≒Lr
 すなわち、本実施の形態の電動機100では、回転子鉄心7の積厚Lrが固定子鉄心5の積厚Lsよりも大きくなるように構成され、フェライト磁石4の軸方向長さLfが希土類磁石3の軸方向長さLnよりも大きくなるように構成され、希土類磁石3の軸方向長さLnが固定子鉄心5の積厚Lsとほぼ等しくなるように構成され、フェライト磁石4の軸方向長さLfが回転子鉄心7の積厚Lrとほぼ等しくなるように構成されている。ここで、「ほぼ等しく」とは、±2mm程度の範囲を指す。
Here, when the stack thickness of the stator core 5 is Ls, the stack thickness of the rotor core 7 is Lr, the axial length of the rare earth magnet 3 is Ln, and the axial length of the ferrite magnet 4 is Lf. Is configured to satisfy the following relational expression.
Ls <Lr, Ln <Lf, Ls≈Ln, and Lf≈Lr
That is, in the electric motor 100 of the present embodiment, the rotor core 7 is configured such that the stack thickness Lr is larger than the stack thickness Ls of the stator core 5, and the axial length Lf of the ferrite magnet 4 is the rare earth magnet 3. The axial length Ln of the rare earth magnet 3 is configured to be substantially equal to the stacking thickness Ls of the stator core 5, and the axial length of the ferrite magnet 4 is configured to be larger than the axial length Ln. Lf is configured to be approximately equal to the thickness Lr of the rotor core 7. Here, “substantially equal” refers to a range of about ± 2 mm.
 図13に示すように希土類磁石3は、挿入孔23の中に挿入され、挿入孔23に挿入された希土類磁石3は、回転子鉄心7の積厚方向に対して固定子鉄心5の内周部と対向する位置(所定位置)に設けられる。具体的に説明すると、挿入孔23の中には、所定位置に希土類磁石3が配設されるようにストッパー(図示せず)が設けられている。希土類磁石3の軸方向端面3bがこのストッパーに当接することで、挿入孔23の中に挿入された希土類磁石3は、所定位置に設けられ、かつ、後述するロータリ圧縮機200の下部方向に希土類磁石3が落下することも防止される。 As shown in FIG. 13, the rare earth magnet 3 is inserted into the insertion hole 23, and the rare earth magnet 3 inserted into the insertion hole 23 has an inner circumference of the stator core 5 with respect to the stacking direction of the rotor core 7. It is provided at a position (predetermined position) facing the part. More specifically, a stopper (not shown) is provided in the insertion hole 23 so that the rare earth magnet 3 is disposed at a predetermined position. The rare earth magnet 3 inserted into the insertion hole 23 is provided at a predetermined position by the axial end surface 3b of the rare earth magnet 3 coming into contact with the stopper, and the rare earth magnet 3 is arranged in a lower direction of the rotary compressor 200 described later. The magnet 3 is also prevented from falling.
 上述したように、Ln<Lf、かつ、Lf≒Lrの関係より、挿入孔23の軸方向長さ(≒Lr)は、希土類磁石3の軸方向長さLnよりも大きくなるように形成されている。従って、挿入孔23に挿入された希土類磁石3の軸方向端面3bよりも外側(軸方向端面3bと回転子鉄心7の軸方向端面7bとの間)には、挿入孔23と同一形状の漏れ磁束抑制部10(図11参照)が形成される。なお、本実施の形態では、一例として、漏れ磁束抑制部10と挿入孔23とが同一形状であるが、漏れ磁束抑制部10の形状は、これに限定されるものではなく、回転子鉄心7に薄肉部14が形成され、かつ、希土類磁石3の軸方向端面3bの外側に設けられていれば、挿入孔23と異なる形状であってもよい。 As described above, from the relationship of Ln <Lf and Lf≈Lr, the axial length (≈Lr) of the insertion hole 23 is formed to be larger than the axial length Ln of the rare earth magnet 3. Yes. Accordingly, a leakage of the same shape as the insertion hole 23 is formed on the outer side (between the axial end face 3b and the axial end face 7b of the rotor core 7) of the rare earth magnet 3 inserted into the insertion hole 23. A magnetic flux suppression unit 10 (see FIG. 11) is formed. In the present embodiment, as an example, the leakage flux suppressing portion 10 and the insertion hole 23 have the same shape, but the shape of the leakage flux suppressing portion 10 is not limited to this, and the rotor core 7 is not limited thereto. As long as the thin-walled portion 14 is formed and provided outside the axial end surface 3 b of the rare earth magnet 3, the shape may be different from that of the insertion hole 23.
 このように、本実施の形態にかかる電動機100は、希土類磁石3の軸方向端面3bよりも外側に漏れ磁束抑制部10を設けることで、希土類磁石3の磁束が軸方向端面3bよりも外側に漏れるのを抑制することができる。また、回転子鉄心7には、漏れ磁束抑制部10と挿入孔22との間に磁石間薄肉部14の一部分が形成されているため、フェライト磁石4の漏れ磁束を抑制することができる。 As described above, in the electric motor 100 according to the present embodiment, the leakage flux suppression unit 10 is provided outside the end surface 3b in the axial direction of the rare earth magnet 3, so that the magnetic flux of the rare earth magnet 3 is outside the end surface 3b in the axial direction. Leakage can be suppressed. Further, in the rotor core 7, a portion of the intermagnet thin portion 14 is formed between the leakage flux suppressing portion 10 and the insertion hole 22, so that the leakage flux of the ferrite magnet 4 can be suppressed.
 また、本実施の形態にかかる電動機100は、フェライト磁石4の軸方向長さLfを希土類磁石3の軸方向長さLnよりも大きく構成することで、安価なフェライト磁石4を用いて有効磁束量を増やすことができ、電動機100の高効率化と低コスト化の両立が可能である。 In addition, the electric motor 100 according to the present embodiment is configured such that the axial length Lf of the ferrite magnet 4 is larger than the axial length Ln of the rare earth magnet 3, thereby using an inexpensive ferrite magnet 4. Thus, it is possible to achieve both high efficiency and low cost of the electric motor 100.
 ここで、上記電動機100をロータリ圧縮機200(圧縮機の一例)に搭載した場合の構成について述べる。図14は、ロータリ圧縮機200の縦断面図であり、図14に示されるロータリ圧縮機200は、1シリンダロータリ圧縮機である。 Here, the configuration when the electric motor 100 is mounted on a rotary compressor 200 (an example of a compressor) will be described. FIG. 14 is a longitudinal sectional view of the rotary compressor 200, and the rotary compressor 200 shown in FIG. 14 is a one-cylinder rotary compressor.
 ロータリ圧縮機(以下単に「圧縮機」と称する)200は、密閉容器30内に電動機100(電動要素)と圧縮要素31とを備えている。図示はしないが、密閉容器30の底部には、圧縮要素31の各摺動部を潤滑する冷凍機油が貯留している。 A rotary compressor (hereinafter simply referred to as “compressor”) 200 includes an electric motor 100 (electric element) and a compression element 31 in an airtight container 30. Although not shown, refrigerating machine oil that lubricates each sliding portion of the compression element 31 is stored at the bottom of the sealed container 30.
 圧縮要素31は、以下に示す要素を備える。
(1)冷媒ガスを内部に納めるシリンダ32。
(2)電動機100により回転する偏心軸33を有する回転軸34。
(3)回転軸34の偏心軸33に嵌挿されるピストン35。
(4)シリンダ32内を吸入側と圧縮側に分けるベーン(図示せず)。
(5)回転軸34が回転自在に嵌挿され、シリンダ32の軸方向端面を閉塞する上下一対の上部フレーム36a及び下部フレーム36b。
(6)上部フレーム36a及び下部フレーム36bに夫々装着された上部吐出マフラ37a及び下部吐出マフラ37b。
The compression element 31 includes the following elements.
(1) A cylinder 32 for storing refrigerant gas therein.
(2) A rotating shaft 34 having an eccentric shaft 33 that is rotated by the electric motor 100.
(3) A piston 35 fitted into the eccentric shaft 33 of the rotating shaft 34.
(4) A vane (not shown) that divides the inside of the cylinder 32 into a suction side and a compression side.
(5) A pair of upper and lower upper frames 36a and 36b in which the rotating shaft 34 is rotatably inserted and closes the axial end surface of the cylinder 32.
(6) An upper discharge muffler 37a and a lower discharge muffler 37b mounted on the upper frame 36a and the lower frame 36b, respectively.
 次に動作について説明する。冷媒ガスは吸入マフラ38を通過して密閉容器30に固定された吸入パイプ39よりシリンダ32内へ吸入される。インバータ(図示せず)によって電動機100が回転すると、回転軸34の偏心軸33に嵌合されたピストン35がシリンダ32内を回転する。それにより、シリンダ32内では冷媒ガスの圧縮が行われる。圧縮された高温の冷媒ガスは上部吐出マフラ37aおよび下部吐出マフラ37bを経て、密閉容器30内へと吐出され、密閉容器30に設けられた吐出パイプ41を通って冷凍サイクルの高圧側へ供給される。 Next, the operation will be described. The refrigerant gas passes through the suction muffler 38 and is sucked into the cylinder 32 through a suction pipe 39 fixed to the sealed container 30. When the electric motor 100 is rotated by an inverter (not shown), the piston 35 fitted to the eccentric shaft 33 of the rotating shaft 34 rotates in the cylinder 32. Thereby, the refrigerant gas is compressed in the cylinder 32. The compressed high-temperature refrigerant gas is discharged into the sealed container 30 through the upper discharge muffler 37a and the lower discharge muffler 37b, and is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 41 provided in the sealed container 30. The
 電動機100の固定子2は、密閉容器30に焼嵌または溶接等の方法により直接取り付けられ保持されている。固定子2に巻回された巻線11には、密閉容器30に固定されるガラス端子40からの電力が供給される。 The stator 2 of the electric motor 100 is directly attached and held in the sealed container 30 by a method such as shrink fitting or welding. Electric power from the glass terminal 40 fixed to the hermetic container 30 is supplied to the winding 11 wound around the stator 2.
 回転子1は、固定子2の内周部側に設けた空隙を介して配置されており、回転子1の中心部の回転軸34を介して圧縮機200の下部に設けた圧縮要素31の軸受け部(上部フレーム36a及び下部フレーム36b)により回転自在な状態で保持されている。 The rotor 1 is arranged via a gap provided on the inner peripheral side of the stator 2, and the compression element 31 provided at the lower part of the compressor 200 via the rotation shaft 34 at the center of the rotor 1. The bearings (the upper frame 36a and the lower frame 36b) are held in a rotatable state.
 なお、圧縮機200の冷媒には、従来からR410A、R407C、R22等が用いられているが、低GWP(地球温暖化係数)の冷媒等などいかなる冷媒も適用できる。地球温暖化防止の観点からは、低GWP冷媒が望まれている。低GWP冷媒の代表例として、以下の冷媒がある。 In addition, although R410A, R407C, R22, etc. are conventionally used as the refrigerant of the compressor 200, any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired. As typical examples of the low GWP refrigerant, there are the following refrigerants.
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素、例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略で、Olefinは、二重結合を一つ持つ不飽和炭化水素のことである。なお、HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素、例えば、R1270(プロピレン)である。なお、GWPは3で、HFO-1234yfより小さいが、可燃性はHFO-1234yfより大きい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物、例えば、HFO-1234yfとR32との混合物等である。HFO-1234yfは、低圧冷媒のため圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、HFO-1234yfより高圧冷媒であるR32又はR41等との混合物が実用上は有力になる。
(1) A halogenated hydrocarbon having a carbon double bond in the composition, for example, HFO-1234yf (CF3CF = CH2). HFO is an abbreviation for Hydro-Fluoro-Olefin, which is an unsaturated hydrocarbon having one double bond. The GFO of HFO-1234yf is 4.
(2) A hydrocarbon having a carbon double bond in the composition, for example, R1270 (propylene). GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
(3) a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition, for example, a mixture of HFO-1234yf and R32, etc. is there. Since HFO-1234yf is a low-pressure refrigerant, its pressure loss is large, and the performance of the refrigeration cycle (especially in an evaporator) tends to deteriorate. Therefore, a mixture with R32 or R41, which is a high-pressure refrigerant, is more effective than HFO-1234yf in practical use.
 上記低GWP冷媒の内、R32冷媒については、毒性がなく、強燃性でないことから、特に注目されている。また、圧縮機200にR32冷媒を用いた場合、従来から用いられているR410A、R407C、R22等と比べ、圧縮機200の内部温度が約20℃高くなるという特性を有す。 Of the low GWP refrigerants, R32 refrigerant is notable for toxicity and is not highly flammable, and thus has received particular attention. Moreover, when R32 refrigerant | coolant is used for the compressor 200, it has the characteristic that the internal temperature of the compressor 200 becomes about 20 degreeC high compared with R410A, R407C, R22 etc. which are used conventionally.
 圧縮機200の内部の温度は、圧縮負荷状態(回転速度、圧縮負荷トルク、冷媒)によって異なり、特に回転速度に対して依存性が高くなっている。電動機100の回転速度が最も高くなるときに圧縮機200の内部の温度が最大となり、R410A冷媒の場合、およそ90~110℃である。そして、R32冷媒を用いた場合は、R410A冷媒に対し、圧縮機200内の温度が更に20℃程度上昇し、110~130℃となる。 The temperature inside the compressor 200 varies depending on the compression load state (rotation speed, compression load torque, refrigerant), and is particularly dependent on the rotation speed. When the rotational speed of the electric motor 100 becomes the highest, the temperature inside the compressor 200 becomes maximum, and in the case of the R410A refrigerant, it is about 90 to 110 ° C. When the R32 refrigerant is used, the temperature in the compressor 200 further increases by about 20 ° C. to 110 to 130 ° C. with respect to the R410A refrigerant.
 上記環境下においては、吸入口(吸入パイプ39)より吸入された冷媒は圧縮されて密閉容器30内を通り、吐出パイプ41から外部の冷媒回路へ流れるため、圧縮機200の内部の温度は、電動機100自体の発熱よりも、冷媒の温度に依存することになる。 Under the above environment, the refrigerant sucked from the suction port (suction pipe 39) is compressed and passes through the sealed container 30 and flows from the discharge pipe 41 to the external refrigerant circuit. Therefore, the temperature inside the compressor 200 is It depends on the temperature of the refrigerant rather than the heat generated by the electric motor 100 itself.
 圧縮機200の内部の温度の上昇により、回転子1の内部に配置された希土類磁石3の温度も上昇する。希土類磁石3は、温度が高くなるほど保磁力が低くなる負の保磁力温度係数を有する。 As the temperature inside the compressor 200 rises, the temperature of the rare earth magnet 3 arranged inside the rotor 1 also rises. The rare earth magnet 3 has a negative coercivity temperature coefficient in which the coercive force decreases as the temperature increases.
 ここで、保磁力とは、永久磁石の減磁耐力の指標を示すもので、数値が大きいほど逆磁界や熱に対して減磁耐力が大きいという特性を示す。例えば、圧縮機200に用いられる一般的な希土類磁石3は、常温(20℃)での保磁力HCJが20kOe以上で温度係数-0.55[%/℃]程度である。また、保磁力温度係数とは、温度によって保磁力の特性が変化する度合いを示すものであり、Nd・Fe・B系希土類磁石3の場合、永久磁石の温度が高くなるにしたがい保磁力が低下し、例えば、磁石温度が100℃上昇すると保磁力が55%低下することを意味する。 Here, the coercive force is an index of the demagnetization resistance of the permanent magnet. The larger the value, the higher the demagnetization resistance against reverse magnetic field and heat. For example, a typical rare earth magnet 3 used in the compressor 200 is the temperature coefficient of -0.55 [% / ℃] about by coercive force H CJ more than 20kOe at room temperature (20 ° C.). The coercive force temperature coefficient indicates the degree to which the coercive force characteristic changes with temperature. In the case of the Nd / Fe / B rare earth magnet 3, the coercive force decreases as the temperature of the permanent magnet increases. For example, it means that when the magnet temperature is increased by 100 ° C., the coercive force is reduced by 55%.
 したがって、圧縮機200の内部の温度がより高温となるR32冷媒を用いた場合、希土類磁石3の減磁を回避するために、希土類磁石3の径方向の厚みを大きくする、若しくは、Dyを多く含む保磁力の大きい希土類磁石3を使用する等の対策が必要であり、いずれも電動機のコストアップとなっていた。 Therefore, when the R32 refrigerant whose temperature inside the compressor 200 is higher is used, the radial thickness of the rare earth magnet 3 is increased or the Dy is increased in order to avoid demagnetization of the rare earth magnet 3. Measures such as the use of the rare earth magnet 3 having a large coercive force are necessary, and all of them increase the cost of the electric motor.
 圧縮機200に本実施の形態にかかる電動機100を用いることで、R32冷媒を用いた場合であっても、希土類磁石3のみで構成した場合に比べ、希土類磁石3の使用量を削減でき、コストアップを抑制した高効率な電動機が得られる。 By using the electric motor 100 according to the present embodiment for the compressor 200, even when the R32 refrigerant is used, the amount of the rare earth magnet 3 used can be reduced and the cost can be reduced as compared with the case where only the rare earth magnet 3 is used. A high-efficiency electric motor with suppressed increase can be obtained.
 なお、本実施の形態では、1シリンダロータリ圧縮機を例に説明したが、これに限定されるものではなく、圧縮機200の内部に電動機100が組み込まれていれば、本発明の要旨を逸脱しない範囲で、圧縮機200の構造を変更して構成することも可能であることは無論である。 In the present embodiment, a one-cylinder rotary compressor has been described as an example. However, the present invention is not limited to this. If the electric motor 100 is incorporated in the compressor 200, the gist of the present invention is deviated. It goes without saying that the structure of the compressor 200 can be changed within a range not to be changed.
 以上に説明したように、本実施の形態にかかる電動機100は、複数の電磁鋼板を積層してなる回転子鉄心7を固定子2内に配置して成る永久磁石埋込型電動機であって、回転子鉄心7の磁極21を構成する磁石は、回転子鉄心7の外周側に設けられ回転子鉄心7の円周方向へ極数に相当する数だけ配置されるフェライト磁石4と、フェライト磁石4の間に配置された希土類磁石3と、から成り、回転子鉄心7の積厚Lrは、固定子鉄心5の積厚Lsよりも大きく形成され、フェライト磁石4の軸方向長さLfは、希土類磁石3の軸方向長さLnよりも大きく形成され、希土類磁石3の軸方向長さLnは、固定子鉄心5の積厚Lsとほぼ等しく形成され、フェライト磁石4の軸方向長さLfは、回転子鉄心7の積厚Lrとほぼ等しく形成され、希土類磁石3は、回転子鉄心7の積厚方向に対して固定子鉄心5の内周部と対向する位置に設けるようにしたので、安価なフェライト磁石4を用いて有効磁束量を増やすことができ、電動機100の高効率化と低コスト化の両立が可能である。 As described above, the electric motor 100 according to the present embodiment is an embedded permanent magnet electric motor in which the rotor core 7 formed by laminating a plurality of electromagnetic steel plates is disposed in the stator 2. Magnets constituting the magnetic poles 21 of the rotor core 7 are provided on the outer peripheral side of the rotor core 7 and are arranged in a number corresponding to the number of poles in the circumferential direction of the rotor core 7, and the ferrite magnet 4 The rotor core 7 has a stack thickness Lr larger than the stack thickness Ls of the stator core 5, and the ferrite magnet 4 has an axial length Lf of rare earth magnet 3. The axial length Ln of the rare earth magnet 3 is formed to be substantially equal to the stack thickness Ls of the stator core 5, and the axial length Lf of the ferrite magnet 4 is formed to be larger than the axial length Ln of the magnet 3. Formed approximately equal to the thickness Lr of the rotor core 7 Since the rare earth magnet 3 is provided at a position facing the inner peripheral portion of the stator core 5 with respect to the stacking direction of the rotor core 7, the amount of effective magnetic flux is increased by using an inexpensive ferrite magnet 4. Thus, both high efficiency and low cost of the electric motor 100 can be achieved.
 また、本実施の形態にかかる回転子鉄心7には、回転子鉄心7の外周側に設けられ希土類磁石3を挿入する挿入孔23が形成され、この挿入孔23に挿入された希土類磁石3の軸方向端面3bと回転子鉄心7の軸方向端面7bとの間には、漏れ磁束抑制部10が形成されているので、希土類磁石3の磁束が軸方向端面3bよりも外側に漏れるのを抑制することができる。また、回転子鉄心7には、漏れ磁束抑制部10と挿入孔22との間に磁石間薄肉部14の一部分が形成されているため、フェライト磁石4の漏れ磁束を抑制することができる。 Further, the rotor core 7 according to the present embodiment is formed with an insertion hole 23 provided on the outer peripheral side of the rotor core 7 for inserting the rare earth magnet 3, and the rare earth magnet 3 inserted into the insertion hole 23. Since the leakage flux suppressing part 10 is formed between the axial end surface 3b and the axial end surface 7b of the rotor core 7, the magnetic flux of the rare earth magnet 3 is prevented from leaking outside the axial end surface 3b. can do. Further, in the rotor core 7, a portion of the intermagnet thin portion 14 is formed between the leakage flux suppressing portion 10 and the insertion hole 22, so that the leakage flux of the ferrite magnet 4 can be suppressed.
 また、本実施の形態にかかるフェライト磁石4は、磁極21の極間20にフェライト磁石4の中心が位置するように配置され、極間20に対して磁化方向が反転するように着磁されているので、希土類磁石3およびフェライト磁石4の双方の磁気回路が互いに干渉しあわないような並列回路となり、希土類磁石3およびフェライト磁石4の磁束を最大限利用することができる。また、希土類磁石3のみ用いた従来の電動機に対して同一の回転子の磁束で比較した場合、本実施の形態の回転子1は、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができる。その結果、希土類磁石3の回転子外周面側に存在する鉄心部7aの面積を小さくすることができ、低コスト化、高効率化、低騒音化、および低振動化を実現可能である。 Further, the ferrite magnet 4 according to the present embodiment is arranged so that the center of the ferrite magnet 4 is located between the poles 20 of the magnetic pole 21, and is magnetized so that the magnetization direction is reversed with respect to the poles 20. Therefore, the magnetic circuit of both the rare earth magnet 3 and the ferrite magnet 4 is a parallel circuit that does not interfere with each other, and the magnetic flux of the rare earth magnet 3 and the ferrite magnet 4 can be utilized to the maximum. Further, when compared with a conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the rotor 1 of the present embodiment reduces the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4. can do. As a result, the area of the iron core portion 7a existing on the rotor outer peripheral surface side of the rare earth magnet 3 can be reduced, and cost reduction, high efficiency, low noise, and low vibration can be realized.
 また、本実施の形態にかかる電動機100は、希土類磁石3の間に磁気抵抗の大きいフェライト磁石4が存在するため、隣接する希土類磁石3間の磁束が短絡しにくくなり、また磁石の表から裏への短絡磁束も生じにくい。そのため、単位体積あたりの希土類磁石3で考えた場合、固定子2に鎖交する有効磁束量が増加し、マグネットトルクが大きくなり、印加電流の低減、高出力化を図ることが可能であり、もしくは、磁束量の増加分を希土類磁石3の使用量の削減に振り向けることも可能である。 Further, in the electric motor 100 according to the present embodiment, since the ferrite magnet 4 having a large magnetic resistance exists between the rare earth magnets 3, the magnetic flux between the adjacent rare earth magnets 3 is difficult to be short-circuited, and the front and back of the magnets are reversed. Short-circuit magnetic flux is hardly generated. Therefore, when the rare earth magnet 3 per unit volume is considered, the effective magnetic flux amount linked to the stator 2 is increased, the magnet torque is increased, the applied current can be reduced, and the output can be increased. Alternatively, the increase in the amount of magnetic flux can be directed to reducing the amount of rare earth magnet 3 used.
 また、本実施の形態にかかるフェライト磁石4は、磁化方向が平行配向、ラジアル配向、または極配向となるように構成されているので、フェライト磁石4からみて希土類磁石3が磁気抵抗とならず、特にラジアル配向または極配向の場合、フェライト磁石4の磁化方向が極間20に対して垂直に近い方向に向くため、固定子2に鎖交する有効磁束量を増加させることができる。従って、希土類磁石3のみ用いた従来の電動機に対して同一の回転子の磁束で比較した場合、フェライト磁石4による磁束補助分の希土類磁石3の量を削減することができ、より一層の低コスト化と高効率化を図ることができる。 In addition, since the ferrite magnet 4 according to the present embodiment is configured such that the magnetization direction is parallel orientation, radial orientation, or polar orientation, the rare earth magnet 3 does not become magnetoresistive when viewed from the ferrite magnet 4, In particular, in the case of radial orientation or polar orientation, the magnetization direction of the ferrite magnet 4 is oriented in a direction nearly perpendicular to the gap 20, so that the amount of effective magnetic flux linked to the stator 2 can be increased. Therefore, when compared with a conventional electric motor using only the rare earth magnet 3 with the same rotor magnetic flux, the amount of the rare earth magnet 3 for the magnetic flux supplement by the ferrite magnet 4 can be reduced, and the cost can be further reduced. And high efficiency can be achieved.
 また、本実施の形態にかかる希土類磁石3は、フェライト磁石4と同一円周上に配置されているので、回転子1の偏心時の磁気吸引力に伴う音および振動を増加させる原因である鉄心部7aの面積を小さくすることができる。従って、希土類磁石3がフェライト磁石4と同一円周上に配置されていない場合に比べて、低騒音化および低振動化音を図ることが可能である。 Further, since the rare earth magnet 3 according to the present embodiment is arranged on the same circumference as the ferrite magnet 4, the iron core is a cause of increasing the sound and vibration associated with the magnetic attractive force when the rotor 1 is eccentric. The area of the part 7a can be reduced. Therefore, compared with the case where the rare earth magnet 3 is not arranged on the same circumference as the ferrite magnet 4, it is possible to reduce noise and vibration.
 また、本実施の形態にかかる回転子鉄心7には、回転子鉄心7の外周側に設けられフェライト磁石4を挿入する挿入孔22が形成され、フェライト磁石4の外周面と挿入孔22との間には隙間(空気孔19)が形成されているので、減磁し易い箇所を設計段階で排除し、減磁による磁束量の変化を防止し、信頼性を向上させることが可能であり、電動機100を搭載した製品の品質を向上させることが可能である。 Further, the rotor core 7 according to the present embodiment is formed with an insertion hole 22 provided on the outer peripheral side of the rotor core 7 and into which the ferrite magnet 4 is inserted. Since a gap (air hole 19) is formed between them, it is possible to eliminate a part that is easily demagnetized at the design stage, prevent a change in the amount of magnetic flux due to demagnetization, and improve reliability. It is possible to improve the quality of a product equipped with the electric motor 100.
 また、本実施の形態にかかるフェライト磁石4が、回転子鉄心7の半径方向における厚さをTとし、回転子鉄心7の回転方向における長さをWとした場合、W>Tとなるように構成されているので、Wが広いほど希土類磁石3間の磁気抵抗が増加され、短絡磁束低減の効果を高めることが可能である。また、Tが小さいほどシャフト孔側面4aが回転子1の外周面近傍に近づけることができ、それに伴ってシャフト孔側面3aも回転子1の外周面近傍に近づけることができるため、希土類磁石3と回転子外周面の間の鉄心面積(鉄心部7aの厚み)を低減でき、音および振動をより一層軽減することが可能である。 Further, in the ferrite magnet 4 according to the present embodiment, when the thickness in the radial direction of the rotor core 7 is T and the length in the rotation direction of the rotor core 7 is W, W> T. Since it is comprised, the magnetic resistance between the rare earth magnets 3 is increased as W is increased, and the effect of reducing the short-circuit magnetic flux can be enhanced. Further, as T is smaller, the shaft hole side surface 4a can be brought closer to the vicinity of the outer peripheral surface of the rotor 1, and the shaft hole side surface 3a can be brought closer to the outer peripheral surface of the rotor 1 accordingly. It is possible to reduce the iron core area between the rotor outer peripheral surfaces (thickness of the iron core portion 7a), and to further reduce sound and vibration.
 また、本実施の形態にかかる固定子2の内周部側には、円周方向に互いに間隔をおいて形成された複数のティース18が形成され、希土類磁石3表面の磁極開口部の幅をAとして、ティース18の幅をBとした場合、B>Aとなるように構成されているので、希土類磁石3の磁束がティース18を伝って隣接する希土類磁石3に短絡することを抑制でき、磁石の磁束利用率の高い電動機100を得ることが可能である。 A plurality of teeth 18 formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator 2 according to the present embodiment, and the width of the magnetic pole opening on the surface of the rare earth magnet 3 is increased. As A, when the width of the tooth 18 is B, since B> A, the magnetic flux of the rare earth magnet 3 can be prevented from being short-circuited to the adjacent rare earth magnet 3 through the tooth 18. It is possible to obtain the electric motor 100 having a high magnetic flux utilization rate of the magnet.
 なお、本発明の実施の形態にかかる永久磁石埋込型電動機および圧縮機は、本発明の内容の一例を示すものであり、更なる別の公知技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 Note that the permanent magnet embedded electric motor and the compressor according to the embodiment of the present invention show an example of the content of the present invention, and can be combined with another known technique. Of course, it is possible to change and configure such as omitting a part without departing from the gist of the present invention.
 以上のように、本発明は、永久磁石埋込型電動機および圧縮機に適用可能であり、特に、高効率で音および振動を低減することができる発明として有用である。 As described above, the present invention can be applied to an interior permanent magnet electric motor and a compressor, and is particularly useful as an invention capable of reducing sound and vibration with high efficiency.
 1、120 回転子
 2 固定子
 3 希土類磁石
 3a、4a シャフト孔側面
 3b、7b 軸方向端面
 4 フェライト磁石
 5、24 固定子鉄心
 6 スリット
 7 回転子鉄心
 7a 鉄心部
 8 シャフト孔
 9a 風穴
 9b リベット穴
 10 漏れ磁束抑制部
 11 巻線
 14 磁石間薄肉部
 15 フェライト磁石外周薄肉部
 15a 磁石外周薄肉部
 17 ラジアル配向の焦点
 18 ティース
 19 空気孔(隙間)
 20 極間
 21 磁極
 22 フェライト磁石挿入孔
 23 希土類磁石挿入孔
 30 密閉容器
 31 圧縮要素
 32 シリンダ
 33 偏心軸
 34 回転軸
 35 ピストン
 36a 上部フレーム
 36b 下部フレーム
 37a 上部吐出マフラ
 37b 下部吐出マフラ
 38 吸入マフラ
 39 吸入パイプ
 40 ガラス端子
 41 吐出パイプ
 100、110 永久磁石埋込型電動機
 200 ロータリ圧縮機
 Lf、Ln 軸方向長さ
 Lr、Ls 積厚
DESCRIPTION OF SYMBOLS 1,120 Rotor 2 Stator 3 Rare earth magnet 3a, 4a Shaft hole side surface 3b, 7b Axial end face 4 Ferrite magnet 5, 24 Stator iron core 6 Slit 7 Rotor iron core 7a Iron core part 8 Shaft hole 9a Air hole 9b Rivet hole 10 Leakage magnetic flux suppression part 11 Winding 14 Thin part between magnets 15 Ferrite magnet outer peripheral thin part 15a Magnet outer peripheral thin part 17 Focal point of radial orientation 18 Teeth 19 Air hole (gap)
20 Pole 21 Magnetic pole 22 Ferrite magnet insertion hole 23 Rare earth magnet insertion hole 30 Sealed container 31 Compression element 32 Cylinder 33 Eccentric shaft 34 Rotating shaft 35 Piston 36a Upper frame 36b Lower frame 37a Upper discharge muffler 37b Lower discharge muffler 38 Suction muffler 39 Suction Pipe 40 Glass terminal 41 Discharge pipe 100, 110 Embedded permanent magnet electric motor 200 Rotary compressor Lf, Ln Axial length Lr, Ls Stack thickness

Claims (9)

  1.  複数の電磁鋼板を積層してなる回転子鉄心を固定子内に配置して成る永久磁石埋込型電動機であって、
     前記回転子鉄心の磁極を構成する磁石は、
     前記回転子鉄心の外周側に設けられ前記回転子鉄心の円周方向へ極数に相当する数だけ配置されるフェライト磁石と、前記フェライト磁石の間に配置された希土類磁石と、から成り、
     前記回転子鉄心の積厚は、固定子鉄心の積厚よりも大きく形成され、
     前記フェライト磁石の軸方向長さは、前記希土類磁石の軸方向長さよりも大きく形成され、
     前記希土類磁石の軸方向長さは、前記固定子鉄心の積厚とほぼ等しく形成され、
     前記フェライト磁石の軸方向長さは、前記回転子鉄心の積厚とほぼ等しく形成され、
     前記希土類磁石は、前記回転子鉄心の積厚方向に対して前記固定子鉄心の内周部と対向する位置に設けられることを特徴とする永久磁石埋込型電動機。
    A permanent magnet embedded electric motor in which a rotor core formed by laminating a plurality of electromagnetic steel sheets is arranged in a stator,
    The magnet constituting the magnetic pole of the rotor core is
    A ferrite magnet provided on the outer peripheral side of the rotor core and disposed in a number corresponding to the number of poles in the circumferential direction of the rotor core, and a rare earth magnet disposed between the ferrite magnets,
    The rotor core stack is formed larger than the stator core stack,
    The axial length of the ferrite magnet is formed larger than the axial length of the rare earth magnet,
    The axial length of the rare earth magnet is formed approximately equal to the thickness of the stator core,
    The axial length of the ferrite magnet is formed approximately equal to the thickness of the rotor core,
    The permanent magnet embedded electric motor, wherein the rare earth magnet is provided at a position facing an inner peripheral portion of the stator core with respect to a stacking direction of the rotor core.
  2.  前記回転子鉄心には、前記回転子鉄心の外周側に設けられ前記希土類磁石を挿入する挿入孔が形成され、
     この挿入孔に挿入された希土類磁石の軸方向端面と前記回転子鉄心の軸方向端面との間には、漏れ磁束抑制部が形成されることを特徴とする請求項1に記載の永久磁石埋込型電動機。
    The rotor core is provided with an insertion hole for inserting the rare earth magnet provided on the outer peripheral side of the rotor core,
    2. The permanent magnet embedding according to claim 1, wherein a leakage flux suppressing portion is formed between an axial end face of the rare earth magnet inserted into the insertion hole and an axial end face of the rotor core. Built-in electric motor.
  3.  前記フェライト磁石は、前記磁極の極間に前記フェライト磁石の中心が位置するように配置され、前記極間に対して磁化方向が反転するように着磁されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 2. The ferrite magnet is disposed so that a center of the ferrite magnet is located between poles of the magnetic pole, and is magnetized so that a magnetization direction is reversed with respect to the gap between the poles. The permanent magnet embedded type electric motor described in 1.
  4.  前記希土類磁石は、前記フェライト磁石と同一円周上に配置されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 2. The embedded permanent magnet motor according to claim 1, wherein the rare earth magnet is disposed on the same circumference as the ferrite magnet.
  5.  前記回転子鉄心には、前記回転子鉄心の外周側に設けられ前記フェライト磁石を挿入する挿入孔が形成され、
     前記フェライト磁石の外周面とこの挿入孔との間には、隙間が形成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。
    The rotor core is provided with an insertion hole for inserting the ferrite magnet provided on the outer peripheral side of the rotor core,
    The permanent magnet embedded electric motor according to claim 1, wherein a gap is formed between the outer peripheral surface of the ferrite magnet and the insertion hole.
  6.  前記フェライト磁石は、前記回転子鉄心の半径方向における厚さをTとし、前記回転子鉄心の回転方向における長さをWとした場合、W>Tとなるように構成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。 The ferrite magnet is configured such that W> T, where T is the thickness in the radial direction of the rotor core and W is the length in the rotational direction of the rotor core. The embedded permanent magnet electric motor according to claim 1.
  7.  前記固定子の内周部側には、円周方向に互いに間隔をおいて形成された複数のティースが形成され、
     前記希土類磁石表面の磁極開口部の幅をAとして、前記ティースの幅をBとした場合、B>Aとなるように構成されていることを特徴とする請求項1に記載の永久磁石埋込型電動機。
    A plurality of teeth formed at intervals in the circumferential direction are formed on the inner peripheral side of the stator,
    2. The permanent magnet embedding according to claim 1, wherein B is greater than A when the width of the magnetic pole opening on the surface of the rare earth magnet is A and the width of the teeth is B. 3. Type electric motor.
  8.  請求項1乃至7のいずれか1項に記載の永久磁石埋込型電動機を搭載したことを特徴とする圧縮機。 A compressor equipped with the permanent magnet embedded motor according to any one of claims 1 to 7.
  9.  冷媒に、R32冷媒を用いることを特徴とする請求項8に記載の圧縮機。 The compressor according to claim 8, wherein R32 refrigerant is used as the refrigerant.
PCT/JP2012/052027 2012-01-30 2012-01-30 Embedded permanent magnet electric motor and compressor WO2013114541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052027 WO2013114541A1 (en) 2012-01-30 2012-01-30 Embedded permanent magnet electric motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052027 WO2013114541A1 (en) 2012-01-30 2012-01-30 Embedded permanent magnet electric motor and compressor

Publications (1)

Publication Number Publication Date
WO2013114541A1 true WO2013114541A1 (en) 2013-08-08

Family

ID=48904624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052027 WO2013114541A1 (en) 2012-01-30 2012-01-30 Embedded permanent magnet electric motor and compressor

Country Status (1)

Country Link
WO (1) WO2013114541A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2015082875A (en) * 2013-10-22 2015-04-27 株式会社日立産機システム Permanent-magnet rotary electric machine and compressor using the same
US20180091008A1 (en) * 2015-06-17 2018-03-29 Mitsubishi Electric Corporation Permanent-magnet electric motor
US10491082B2 (en) 2015-06-15 2019-11-26 Mitsubishi Electric Corporation Permanent-magnet electric motor
JPWO2021260882A1 (en) * 2020-06-25 2021-12-30

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001115963A (en) * 1999-10-13 2001-04-27 Daikin Ind Ltd Compressor
JP3832530B2 (en) * 1997-10-06 2006-10-11 株式会社富士通ゼネラル Permanent magnet motor
JP2009038930A (en) * 2007-08-03 2009-02-19 Daikin Ind Ltd Rotor and embedded magnet type motor
JP2010068600A (en) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp Permanent magnet motor and hermetic compressor
JP2012023833A (en) * 2010-07-13 2012-02-02 Asmo Co Ltd Motor and rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3832530B2 (en) * 1997-10-06 2006-10-11 株式会社富士通ゼネラル Permanent magnet motor
JP2001115963A (en) * 1999-10-13 2001-04-27 Daikin Ind Ltd Compressor
JP2009038930A (en) * 2007-08-03 2009-02-19 Daikin Ind Ltd Rotor and embedded magnet type motor
JP2010068600A (en) * 2008-09-09 2010-03-25 Mitsubishi Electric Corp Permanent magnet motor and hermetic compressor
JP2012023833A (en) * 2010-07-13 2012-02-02 Asmo Co Ltd Motor and rotor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037428A1 (en) * 2013-09-13 2015-03-19 三菱電機株式会社 Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP6009088B2 (en) * 2013-09-13 2016-10-19 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
US10008893B2 (en) 2013-09-13 2018-06-26 Mitsubishi Electric Corporation Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP2015082875A (en) * 2013-10-22 2015-04-27 株式会社日立産機システム Permanent-magnet rotary electric machine and compressor using the same
US10491082B2 (en) 2015-06-15 2019-11-26 Mitsubishi Electric Corporation Permanent-magnet electric motor
US20180091008A1 (en) * 2015-06-17 2018-03-29 Mitsubishi Electric Corporation Permanent-magnet electric motor
US10673291B2 (en) 2015-06-17 2020-06-02 Mitsubishi Electric Corporation Permanent-magnet electric motor
JPWO2021260882A1 (en) * 2020-06-25 2021-12-30
WO2021260882A1 (en) * 2020-06-25 2021-12-30 三菱電機株式会社 Electric motor, compressor, and refrigeration cycle device
JP7361921B2 (en) 2020-06-25 2023-10-16 三菱電機株式会社 Electric motors, compressors and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP6109338B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
CN108352737B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
JP6009088B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP5944014B2 (en) Permanent magnet embedded electric motor and compressor
JP5971669B2 (en) Permanent magnet embedded motor and compressor
CN108352741B (en) Motor, rotor, compressor, and refrigeration and air-conditioning apparatus
JPWO2017077590A1 (en) Stator, electric motor, compressor, and refrigeration air conditioner
JP2010068600A (en) Permanent magnet motor and hermetic compressor
WO2015045026A1 (en) Electric motor with embedded permanent magnet, compressor, and refrigeration/air-conditioning device
JP5971666B2 (en) Permanent magnet embedded motor and compressor
JP6824333B2 (en) Electric motors, rotors, compressors and refrigeration and air conditioners
WO2017208291A1 (en) Stator, electric motor, compressor, refrigeration air-conditioner
WO2013114541A1 (en) Embedded permanent magnet electric motor and compressor
JP6339103B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP7150181B2 (en) motors, compressors, and air conditioners
CN107534370B (en) Motor for compressor, and refrigeration cycle device
JP5619305B2 (en) Permanent magnet embedded electric motor and compressor
JP6223568B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
WO2020174647A1 (en) Electric motor, compressor, and air conditioner
WO2015198444A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
WO2016006103A1 (en) Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867502

Country of ref document: EP

Kind code of ref document: A1