WO2015198444A1 - Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device - Google Patents

Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device Download PDF

Info

Publication number
WO2015198444A1
WO2015198444A1 PCT/JP2014/066975 JP2014066975W WO2015198444A1 WO 2015198444 A1 WO2015198444 A1 WO 2015198444A1 JP 2014066975 W JP2014066975 W JP 2014066975W WO 2015198444 A1 WO2015198444 A1 WO 2015198444A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
rotor
permanent magnet
hole
electric motor
Prior art date
Application number
PCT/JP2014/066975
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 仁吾
和慶 土田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/066975 priority Critical patent/WO2015198444A1/en
Publication of WO2015198444A1 publication Critical patent/WO2015198444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
  • the side ends of the magnet and the magnet insertion hole are arranged close to the outer peripheral surface of the rotor. Since the magnet and the side end of the magnet insertion hole on the outer periphery of the rotor have a low permeability with respect to the iron core at the center of the magnetic pole, the magnetic flux generated by the stator coil is difficult to interlink. Therefore, the magnetic flux when the stator is energized tends to concentrate on the rotor core part adjacent to the side end of the magnet insertion hole, and when the magnetic flux generated by the stator coil increases, the side end of the permanent magnet adjacent to the iron core part It may become easy to demagnetize.
  • the present invention has been made in view of such circumstances, and in a rotor having a magnet insertion hole formed in a convex shape toward the center side of the rotor, while avoiding a decrease in the magnetic flux amount of the permanent magnet.
  • An object of the present invention is to provide a high-efficiency permanent magnet embedded electric motor that is difficult to demagnetize.
  • the present invention provides an embedded permanent magnet electric motor including a rotor having a plurality of permanent magnets and a stator, wherein the rotor includes a rotor iron core, and the rotor iron core includes a plurality of magnets.
  • Each of the permanent magnets is inserted into the magnet insertion hole, and each of the magnet insertion holes is formed in a convex shape toward the center side of the rotor.
  • Each has a hole inner line, a hole outer line, and a pair of hole side lines, each of the hole outer lines includes a pair of recesses at the end, and the depth of the recess is 10 to 40% of the thickness of the permanent magnet.
  • the compressor of the present invention for achieving the same object is a compressor provided with an electric motor and a compression element in an airtight container, and the electric motor is the above-described permanent magnet embedded type of the present invention. It is an electric motor.
  • the refrigerating and air-conditioning apparatus of the present invention for achieving the same object includes the above-described compressor of the present invention as a component of the refrigeration circuit.
  • the imbalance of the magnetic flux density on the outer surface of the rotor can be suppressed and the vibration can be reduced without substantially changing the effect of reducing the magnetic attractive force generated by the stator magnetic flux.
  • FIG. 1 it is a figure which expands and shows a rotor.
  • FIG. 2 it is a figure which expands and shows a magnet insertion hole.
  • FIG. 3 it is a figure which shows the state by which the permanent magnet is not inserted in the magnet insertion hole. It is a figure of the same aspect as FIG. 3, and is a figure explaining the dimension of each part of a magnet insertion hole. It is a figure corresponding to FIG. 2 regarding the 1st related technique which does not have a recessed part in a magnet insertion hole. It is a figure explaining one advantage of this Embodiment 1.
  • FIG. 1 it is a figure which expands and shows a rotor.
  • FIG. 3 it is a figure which expands and shows a magnet insertion hole.
  • FIG. 3 it is a figure which shows the state by which the permanent magnet is not inserted in the magnet insertion hole.
  • FIG. 3 it is a figure of the same aspect as FIG. 3, and is a figure explaining the dimension of each
  • FIG. It is a figure explaining another one advantage of this Embodiment 1.
  • FIG. It is a figure corresponding to FIG. 2 regarding the 2nd related technique in which the recessed part of the magnet insertion hole was formed in the inappropriate aspect. It is a graph which shows the relationship between the induced voltage before demagnetizing current supply, and D / T ratio. It is a graph which shows the relationship between the induced voltage after energization of a demagnetizing current, and D / T ratio. It is a longitudinal cross-sectional view of the rotary compressor of Embodiment 2 of this invention. It is a figure which shows the refrigerating air conditioner of Embodiment 3 of this invention.
  • FIG. 1 is a view showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged view of the rotor in FIG.
  • FIG. 3 is an enlarged view of the magnet insertion hole in FIG.
  • FIG. 4 is a diagram showing a state where no permanent magnet is inserted into the magnet insertion hole in FIG. 3.
  • the embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided to face the stator 3.
  • the stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9.
  • the plurality of teeth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
  • a known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
  • the rotor 5 has a rotor iron core 11 and a shaft 13.
  • the shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11.
  • An air gap 15 is secured between the outer peripheral surface of the rotor and the inner peripheral surface of the stator.
  • the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable about a rotation center line (rotation center of the rotor) CL. Specifically, a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5.
  • the air gap 15 between the stator 3 and the rotor 5 is a gap of 0.3 to 1 mm.
  • the stator 3 has a stator iron core 17.
  • the stator iron core 17 is formed by punching electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm per sheet into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
  • an electromagnetic steel sheet having a thickness of 0.35 mm is used.
  • the stator iron core 17 is formed with nine tooth portions 7 arranged at substantially equal intervals in the circumferential direction on the radially inner side.
  • the teeth part 7 is formed radially.
  • a corresponding slot portion 9 is formed in a region between adjacent tooth portions 7 in the stator core 17.
  • Each tooth portion 7 extends in the radial direction and protrudes toward the rotation center line CL. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a is formed. Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction.
  • a stator winding (not shown) that constitutes a coil (not shown) that generates a rotating magnetic field is wound around the teeth portion 7.
  • the coil is formed by winding a magnet wire directly around a tooth portion via an insulator. This winding method is called concentrated winding.
  • the coil is connected to a three-phase Y connection.
  • the number of turns and the wire diameter of the coil are determined according to the required characteristics (rotation speed, torque, etc.), voltage specifications, and the cross-sectional area of the slot.
  • the divided teeth are developed in a strip shape to facilitate winding, and a magnet wire having a wire diameter of about 1.0 mm is wound around the teeth of each magnetic pole for about 80 turns. After winding, the divided teeth are rounded and welded.
  • the stator is configured.
  • the rotor 5 is fitted to the shaft 13.
  • the rotor 5 has a rotor iron core 11, and the rotor iron core 11 is also punched out from a magnetic steel sheet having a thickness of about 0.1 to 0.7 mm into a predetermined shape, like the stator iron core 17, and a predetermined number of electromagnetic cores. It is constructed by laminating steel plates with caulking. Here, an electromagnetic steel sheet having a thickness of 0.35 mm is used.
  • the rotor 5 is a magnet-embedded type, and a plurality (six in this example) of permanent magnets 19 magnetized so that N poles and S poles are alternately arranged inside the rotor core 11. Is provided.
  • Each of the permanent magnets 19 is curved in an arc shape when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line, and the convex portion side of the arc shape is disposed on the center side of the rotor 5. Further, each of the permanent magnets 19 is curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
  • a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19 are formed in the rotor core 11, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. Yes.
  • One permanent magnet 19 is inserted into one magnet insertion hole 21.
  • the recess 61 and the magnet insertion hole 21 are curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
  • the number of magnetic poles of the rotor 5 may be any number as long as it is 2 or more, but in this example, the case of 6 poles is illustrated.
  • a ferrite magnet is used as the permanent magnet 19, and the inner and outer peripheral surfaces of the ferrite magnet are formed in a constant concentric arc shape, and the thickness T in the curved radial direction of the ferrite magnet is uniformly maintained at about 6 mm. I try to do it.
  • the permanent magnet 19 a magnet to which an orientation magnetic field is applied from the center of a concentric arc as shown by an arrow MD in FIG. 3 is used, and a magnet is inserted into a magnet insertion hole having a shape along the magnet. Is inserted.
  • the magnet type may be, for example, a rare earth magnet mainly composed of neodymium, iron, or boron, and the shape of the magnet is not limited to an arc shape, but may be a flat plate or a flat plate. It is also possible to form a magnetic pole by arranging a plurality of the above.
  • the caulking 33 is provided on the magnetic pole center line MC, thereby fixing the lamination of the iron core portion on the radially outer side of the magnet insertion hole 21 in the rotor 5 and suppressing deformation during manufacture.
  • a plurality of air holes 35 and a plurality of rivet holes 37 arranged alternately at equal intervals in the circumferential direction are provided on the radially inner side of the magnet insertion hole 21, and the caulking 33 corresponds to the corresponding rivet hole 37. It is also provided between the pair of magnet insertion holes 21.
  • the permanent magnet 19 and the magnet insertion hole 21 are formed symmetrically with respect to the corresponding magnetic pole center line ML when viewed in a cross section with the rotation center line CL of the rotor 5 as a perpendicular line.
  • the permanent magnets 19 each have an inner outer surface 43, an outer outer surface 45, and a pair of side outer surfaces 47 as viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line. It should be noted that the outer side and the inner side of the inner outer surface and the outer outer surface indicate whether they are the inner side or the outer side in the radial direction in a relative comparison when viewed from a plane having the rotation center line CL as a perpendicular line.
  • Each of the magnet insertion holes 21 has a hole inner line 53, a hole outer line 55, and a pair of hole side lines 57 as the outline of the hole when viewed in a cross section with the rotation center line CL of the rotor 5 as a perpendicular line. is doing. It should be noted that the outer side and the inner side of the hole inner line and the hole outer line also indicate whether they are the radially inner side or the outer side in a relative comparison with respect to the plane having the rotation center line CL as a perpendicular line. To do.
  • the outer outer surface 45 is mostly constituted by a first arc surface having a first arc radius
  • the hole outer line 55 is also mostly constituted by a first arc surface 55a having a first arc radius.
  • the inner outer surface 43 includes a second arc surface 43a having a second arc radius larger than the first arc radius, and a straight surface 49.
  • the hole inner line 53 has a second arc radius.
  • a second arc surface 53a and a straight surface 59 are included.
  • the permanent magnet 19 Since the permanent magnet 19 is inserted into the magnet insertion hole 21, the first arc radius and the second arc radius related to the magnet insertion hole 21, and the first arc radius and the second arc radius related to the permanent magnet 19, Are not the same when viewed strictly, but the permanent magnet 19 is fitted into the magnet insertion hole 21 and, for the sake of easy understanding of the explanation, the same language is used on the permanent magnet side and the magnet insertion hole side. Shall be used.
  • the first arc radius and the second arc radius have a common radius center, and the common radius center is on the outer side in the radial direction than the permanent magnet 19 and the magnet insertion hole 21 and corresponds. It exists on the magnetic pole center line ML.
  • the inner outer surface 43 (hole inner line 53) and the outer outer surface 45 (hole outer line 55) are concentrically formed, and the center of the first arc surface and the center of the second arc surface are made of permanent magnets. It coincides with the alignment center (alignment focal point).
  • symbol MD in FIG. 3 has shown the direction of orientation typically.
  • the arc shape regarding a magnet insertion hole and a permanent magnet is an example of the shape of a magnet insertion hole and a permanent magnet, and this invention uses the rotor which has such a substantially arc-shaped magnet insertion hole and a permanent magnet.
  • the rotor includes a magnet insertion hole and a permanent magnet that are formed in a convex shape toward the center of the rotor.
  • the straight surface 49 and the straight surface 59 extend in a direction perpendicular to the magnetic pole center line ML when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line.
  • pair of side outer surfaces 47 respectively connect corresponding end portions of the inner outer surface 43 and the outer outer surface 45
  • the pair of hole side lines 57 respectively correspond to the corresponding ends of the hole inner line 53 and the hole outer line 55. The parts are tied together.
  • Each of the hole outer lines 55 of the magnet insertion hole 21 includes a first arc surface 55a that occupies most of the hole outer line 55 and a pair of recesses 61.
  • the pair of recesses 61 are located on both sides of the first arc surface 55 a of the hole outer line 55, that is, located at the corresponding hole side line 57 end of the hole outer line 55.
  • Each of the recesses 61 extends toward the corresponding magnetic pole center line ML in the circumferential direction.
  • the bottoms of the recesses 61 are each formed in an arc shape.
  • the concave portion 61 of the magnet insertion hole 21 and the outer outer surface 45 of the permanent magnet 19 are greatly separated from each other.
  • a gap 61 a that is a nonmagnetic region is formed between the outer surface 45 and the outer surface 45.
  • D / T corresponds to 16.7%.
  • the depth D of the recess 61 indicates the distance between the bottom of the recess 61 and the outer outer surface 45 of the permanent magnet 19 when the permanent magnet 19 is inserted into the magnet insertion hole 21. When there is a notch or chamfer at the magnet end, the distance between the bottom of the recess and the outer outer surface of the permanent magnet at the portion excluding them becomes the depth of the recess.
  • the depth of the concave portion is the distance between the virtual surface obtained by extending the outer outer surface of the magnet to the facing surface of the concave portion and the bottom portion of the concave portion.
  • the magnet thickness T means the magnet thickness at the thickest part of the magnet. When there are notches, chamfers, etc. at the end of the magnet, the thickness at those removed sites is the magnet thickness.
  • the hole side line 57 of the magnet insertion hole 21 is disposed close to the rotor outer peripheral surface 5a. Between the hole side line 57 of the magnet insertion hole 21 and the rotor outer peripheral surface 5a, the side wall thin portion 11a having a uniform thickness exists. Each of these side end thin portions 11a serves as a path for a short-circuit magnetic flux between adjacent magnetic poles, and is preferably as thin as possible.
  • the minimum width that can be pressed is set to about 0.35 mm of the thickness of the electromagnetic steel sheet.
  • FIG. 6 is a view corresponding to FIG. 2 relating to the first related technique in which the magnet insertion hole has no recess.
  • FIG. 7 is a diagram for explaining one advantage of the first embodiment
  • FIG. 8 is a diagram for explaining another advantage of the first embodiment.
  • FIG. 9 is a view corresponding to FIG. 2 relating to a second related technique in which the concave portion of the magnet insertion hole is formed in an inappropriate manner.
  • FIG. 10 is a graph of the induced voltage characteristics before the current of the demagnetization phase is passed through the rotor when D / T is changed.
  • the induced voltage on the vertical axis in FIG. 10 is based on the induced voltage when the D / T with no recess is 0% as a reference 100%.
  • the induced voltage is a voltage generated by a magnetic flux interlinked with the stator from the rotor when the rotor rotates, and the effective magnetic flux amount interlinked with the stator can be evaluated by the magnitude of the induced voltage.
  • the recess when the recess is deep (when D / T exceeds 40%), the recess hinders the magnetic flux from the rotor to the stator, and the induced voltage is greatly reduced.
  • the magnetic flux when the stator is energized tends to concentrate on the iron core portion between the end of the magnet insertion hole near the outer periphery of the rotor and the outer periphery of the rotor, and when the magnetic flux M4 generated by the stator coil increases, the magnetic flux approaches the iron core portion.
  • the end portion of the permanent magnet in the above described example, the portion corresponding to the side outer surface 47 is easily demagnetized.
  • the recess 61 described above since the recess 61 described above is provided, a gap 61a is generated at the boundary between the hole outer line 55 and the hole side line 57. As described above, the magnetic flux M5 generated in the stator coil is less likely to be linked to the end portion of the permanent magnet, so that it is difficult to demagnetize. This will be described with reference to FIG.
  • FIG. 11 is a graph of induced voltage characteristics after a current of a demagnetization phase is passed through the rotor when D / T is changed.
  • the motor current when the same torque is generated can be reduced, and as a result, the copper loss generated in the motor coil and the current loss generated in the inverter are reduced.
  • a highly efficient motor and compressor can be configured.
  • the design can be made with the same output as the conventional one, so that a small motor can be configured.
  • the demagnetization characteristic is improved, the motor can be configured not to be demagnetized even when a larger current is applied to the motor than before, so that the reliability as a compressor as described later can be improved.
  • the operating range can be expanded. In particular, it is effective for ferrite magnets with low coercivity and rare earth magnets used at high temperatures.
  • the rare earth magnet has a characteristic that the coercive force decreases as the temperature increases.
  • Embodiment 2 a rotary compressor equipped with the above-described permanent magnet embedded motor according to the first embodiment will be described.
  • the type of the compressor is not limited to the rotary compressor.
  • FIG. 12 is a longitudinal sectional view of a rotary compressor equipped with a permanent magnet embedded type electric motor.
  • the rotary compressor 260 is provided with the permanent magnet embedded electric motor (electric element) 1 of the first embodiment and the compression element 262 in the sealed container 261.
  • refrigerating machine oil that lubricates each sliding portion of the compression element is stored at the bottom of the sealed container 261.
  • the compression element 262 includes, as main elements, a cylinder 263 provided in a vertically stacked state, a rotation shaft 264 that is the shaft 13 that is rotated by the permanent magnet embedded electric motor 1, and a piston 265 that is fitted into the rotation shaft 264.
  • 267 and mufflers 268 mounted on the upper frame 266 and the lower frame 267, respectively.
  • the stator 3 of the permanent magnet embedded motor 1 is directly attached and held in the sealed container 261 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal 269 fixed to the hermetic container 261.
  • the rotor 5 is disposed on the inner diameter side of the stator 3 via a gap (air gap 15), and a bearing portion (upper frame and lower frame) of the compression element 262 via a rotation shaft 264 at the center of the rotor 5. Is held in a freely rotatable state.
  • the refrigerant gas supplied from the accumulator 270 is sucked into the cylinder 263 through a suction pipe 271 fixed to the sealed container 261.
  • the piston 265 fitted to the rotating shaft 264 is rotated in the cylinder 263.
  • the refrigerant is compressed in the cylinder 263.
  • the refrigerant ascends in the sealed container 261 after passing through the muffler. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air hole provided in the rotor core, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 272. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 272 provided in the sealed container 261.
  • any refrigerant such as a low GWP (global warming potential) refrigerant can be applied.
  • a low GWP refrigerant is desired.
  • the low GWP refrigerant there are the following refrigerants.
  • HFO-1234yf (CF3CF CH2).
  • HFO is an abbreviation for Hydro-Fluoro-Olefin, and Olefin is an unsaturated hydrocarbon having one double bond.
  • the GFO of HFO-1234yf is 4.
  • Hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene).
  • GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
  • Embodiment 3 FIG. Moreover, as illustrated in FIG. 13, the present invention can be implemented as a refrigerating and air-conditioning apparatus 380 that includes the above-described compressor 260 as a component of a refrigeration circuit.
  • the refrigeration circuit of the refrigerating and air-conditioning apparatus 380 includes at least a condenser 381, an evaporator 382, and an expansion device 383.
  • the components other than the compressor including the condenser 381, the evaporator 382, and the expansion device 383 are configured. Is not particularly limited.

Abstract

An interior permanent magnet electric motor (1) is equipped with a rotor (5) having a plurality of permanent magnets (19) and a stator (3). The rotor is equipped with a rotor iron core. The rotor iron core has a plurality of magnet insertion holes (21). The permanent magnets are inserted into the respective magnet insertion holes. The magnet insertion holes are each formed in a shape protruding toward the center side of the rotor. The magnet insertion holes each have a hole inside line (53), a hole outside line (55), and a pair of hole side-lines (57). The hole outside line includes a pair of recess portions (61) at the ends thereof. The depth of the recess portions is 10-40% of the thickness of the permanent magnets.

Description

永久磁石埋込型電動機、圧縮機、冷凍空調装置Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
 本発明は、永久磁石埋込型電動機、圧縮機、冷凍空調装置に関するものである。 The present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
 永久磁石埋込型電動機においては、磁石挿入孔が径方向内側に凸状となるように形成される場合、磁石及び磁石挿入孔の側端部が、ロータ外周面に近接して配置される。ロータ外周における、磁石及び磁石挿入孔の側端部は、磁極中心の鉄心部に対して透磁率が低いため、ステータコイルにより発生する磁束が鎖交しにくい。そのため、ステータ通電時の磁束は、磁石挿入孔の側端部に隣接するロータ鉄心部分に集中し易く、ステータコイルにより発生する磁束が大きくなると、その鉄心部分に近接する永久磁石の側端部が減磁し易くなることがある。 In the permanent magnet embedded type electric motor, when the magnet insertion hole is formed to be convex inward in the radial direction, the side ends of the magnet and the magnet insertion hole are arranged close to the outer peripheral surface of the rotor. Since the magnet and the side end of the magnet insertion hole on the outer periphery of the rotor have a low permeability with respect to the iron core at the center of the magnetic pole, the magnetic flux generated by the stator coil is difficult to interlink. Therefore, the magnetic flux when the stator is energized tends to concentrate on the rotor core part adjacent to the side end of the magnet insertion hole, and when the magnetic flux generated by the stator coil increases, the side end of the permanent magnet adjacent to the iron core part It may become easy to demagnetize.
 特許文献1の電動機においては、ロータの軸方向からみて、磁極のそれぞれにおいて、磁石及び磁石挿入孔がロータの内周側に向かって凸状であって、磁石の端部が、先端に向かって幅が狭くなっており、磁石の端部は、磁極の中心線側の部分に切り欠きが形成されている。このような切り欠きによって、減磁しやすい部分を小さくすることを企図していた。すなわち、磁石を減磁しにくくすることで、磁束のバラツキが生じるのを抑制し、ひいては、モータ性能の低下を制することを企図していた。 In the electric motor of Patent Document 1, as viewed from the axial direction of the rotor, in each of the magnetic poles, the magnet and the magnet insertion hole are convex toward the inner peripheral side of the rotor, and the end of the magnet is directed toward the tip. The width is narrow, and the end of the magnet has a notch formed at the center line side of the magnetic pole. By such a notch, an attempt was made to reduce the portion that is easily demagnetized. That is, by making it difficult for the magnet to be demagnetized, it has been intended to suppress the occurrence of magnetic flux variations and thus to suppress the reduction in motor performance.
特開2013-212035号JP 2013-212035 A
 しかしながら、特許文献1に開示の構成では、磁石の減磁し易い部分に切欠きを設けていることから、磁石のサイズが小さくなり、磁石から発生する磁束量を低下させることとなり、小型で高効率なモータの構成が困難になるという別の問題を発生させる。 However, in the configuration disclosed in Patent Document 1, since the notch is provided in the portion where the magnet is easily demagnetized, the size of the magnet is reduced, and the amount of magnetic flux generated from the magnet is reduced. Another problem is that it is difficult to construct an efficient motor.
 本発明は、このような事情を考慮してなされたものであり、ロータの中心側に向けて凸状に形成された磁石挿入孔を有するロータにおいて、永久磁石の磁束量の低下を避けながらも、減磁し難い高効率な永久磁石埋込型電動機を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a rotor having a magnet insertion hole formed in a convex shape toward the center side of the rotor, while avoiding a decrease in the magnetic flux amount of the permanent magnet. An object of the present invention is to provide a high-efficiency permanent magnet embedded electric motor that is difficult to demagnetize.
 上述した目的を達成するため、本発明は、複数の永久磁石を有するロータと、ステータとを備える永久磁石埋込型電動機において、前記ロータは、ロータ鉄心を備え、前記ロータ鉄心は、複数の磁石挿入孔を有し、前記永久磁石はそれぞれ、前記磁石挿入孔に挿入されており、前記磁石挿入孔はそれぞれ、前記ロータの中心側に向けて凸状に形成されており、前記磁石挿入孔はそれぞれ、孔内側ラインと、孔外側ラインと、一対の孔サイドラインとを有しており、前記孔外側ラインはそれぞれ、端部に一対の凹部を含んでおり、前記凹部の深さは、前記永久磁石の厚みの10~40%である。
 さらに、同目的を達成するための本発明の圧縮機は、密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、前記電動機は、上述した本発明の永久磁石埋込型電動機である。
 さらに、同目的を達成するための本発明の冷凍空調装置は、上述した本発明の圧縮機を冷凍回路の構成要素として含む。
In order to achieve the above-mentioned object, the present invention provides an embedded permanent magnet electric motor including a rotor having a plurality of permanent magnets and a stator, wherein the rotor includes a rotor iron core, and the rotor iron core includes a plurality of magnets. Each of the permanent magnets is inserted into the magnet insertion hole, and each of the magnet insertion holes is formed in a convex shape toward the center side of the rotor. Each has a hole inner line, a hole outer line, and a pair of hole side lines, each of the hole outer lines includes a pair of recesses at the end, and the depth of the recess is 10 to 40% of the thickness of the permanent magnet.
Furthermore, the compressor of the present invention for achieving the same object is a compressor provided with an electric motor and a compression element in an airtight container, and the electric motor is the above-described permanent magnet embedded type of the present invention. It is an electric motor.
Furthermore, the refrigerating and air-conditioning apparatus of the present invention for achieving the same object includes the above-described compressor of the present invention as a component of the refrigeration circuit.
 本発明によれば、ステータ磁束により発生する磁気吸引力を低減する効果をほとんど変えることなく、ロータ外周表面の磁束密度のアンバランスを抑制し、振動を小さくすることができる。 According to the present invention, the imbalance of the magnetic flux density on the outer surface of the rotor can be suppressed and the vibration can be reduced without substantially changing the effect of reducing the magnetic attractive force generated by the stator magnetic flux.
本発明の実施の形態1の永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。It is a figure which shows the cross section orthogonal to the rotation centerline of the permanent magnet embedded electric motor of Embodiment 1 of this invention. 図1において、ロータを拡大して示す図である。In FIG. 1, it is a figure which expands and shows a rotor. 図2において、磁石挿入孔を拡大して示す図である。In FIG. 2, it is a figure which expands and shows a magnet insertion hole. 図3において、磁石挿入孔に永久磁石が挿入されていない状態を示す図である。In FIG. 3, it is a figure which shows the state by which the permanent magnet is not inserted in the magnet insertion hole. 図3と同態様の図であり、磁石挿入孔の各部の寸法を説明する図である。It is a figure of the same aspect as FIG. 3, and is a figure explaining the dimension of each part of a magnet insertion hole. 磁石挿入孔に凹部を有しない第1の関連技術に関する、図2に対応する図である。It is a figure corresponding to FIG. 2 regarding the 1st related technique which does not have a recessed part in a magnet insertion hole. 本実施の形態1の一つの利点を説明する図である。It is a figure explaining one advantage of this Embodiment 1. FIG. 本実施の形態1の他の一つの利点を説明する図である。It is a figure explaining another one advantage of this Embodiment 1. FIG. 磁石挿入孔の凹部が不適切な態様で形成された第2の関連技術に関する、図2に対応する図である。It is a figure corresponding to FIG. 2 regarding the 2nd related technique in which the recessed part of the magnet insertion hole was formed in the inappropriate aspect. 減磁電流通電前の誘起電圧と、D/T比との関係を示す、グラフである。It is a graph which shows the relationship between the induced voltage before demagnetizing current supply, and D / T ratio. 減磁電流通電後の誘起電圧と、D/T比との関係を示す、グラフである。It is a graph which shows the relationship between the induced voltage after energization of a demagnetizing current, and D / T ratio. 本発明の実施の形態2のロータリ圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the rotary compressor of Embodiment 2 of this invention. 本発明の実施の形態3の冷凍空調装置を示す図である。It is a figure which shows the refrigerating air conditioner of Embodiment 3 of this invention.
 以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts.
 実施の形態1.
 図1は、本発明の実施の形態1の永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。図2は、図1において、ロータを拡大して示す図である。図3は、図2において、磁石挿入孔を拡大して示す図である。図4は、図3において、磁石挿入孔に永久磁石が挿入されていない状態を示す図である。
Embodiment 1 FIG.
FIG. 1 is a view showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to Embodiment 1 of the present invention. FIG. 2 is an enlarged view of the rotor in FIG. FIG. 3 is an enlarged view of the magnet insertion hole in FIG. FIG. 4 is a diagram showing a state where no permanent magnet is inserted into the magnet insertion hole in FIG. 3.
 図1~図4に示されるように、永久磁石埋込型電動機1は、ステータ3と、そのステータ3に対向して回転可能に設けられたロータ5とを備えている。ステータ3は、複数のティース部7を有している。複数のティース部7はそれぞれ、対応するスロット部9を介して別のティース部7と隣り合っている。複数のティース部7と複数のスロット部9とが周方向に交互に且つ等間隔で並ぶように配置されている。複数のティース部7には、それぞれ、図示省略する公知のステータ巻線が公知の態様で巻回されている。 As shown in FIGS. 1 to 4, the embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided to face the stator 3. The stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9. The plurality of teeth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction. A known stator winding (not shown) is wound around each of the plurality of tooth portions 7 in a known manner.
 ロータ5は、ロータ鉄心11と、シャフト13とを有している。シャフト13は、ロータ鉄心11の軸心部に、焼嵌、圧入等により連結されており、ロータ鉄心11に回転エネルギーを伝達する。ロータの外周面と、ステータの内周面との間には、エアギャップ15が確保されている。 The rotor 5 has a rotor iron core 11 and a shaft 13. The shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11. An air gap 15 is secured between the outer peripheral surface of the rotor and the inner peripheral surface of the stator.
 このような構成において、ロータ5は、エアギャップ15を介したステータ3の内側で、回転中心線(ロータの回転中心)CLを中心に回転自在に保持されている。具体的には、ステータ3に、指令回転数に同期した周波数の電流を通電することにより、回転磁界を発生させ、ロータ5を回転させる。ステータ3とロータ5との間のエアギャップ15は、0.3~1mmの空隙である。 In such a configuration, the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable about a rotation center line (rotation center of the rotor) CL. Specifically, a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5. The air gap 15 between the stator 3 and the rotor 5 is a gap of 0.3 to 1 mm.
 次に、ステータ3と、ロータ5との構成を詳細に説明する。ステータ3は、ステータ鉄心17を有する。ステータ鉄心17は、一枚あたりの厚さが0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。ここでは、板厚が0.35mmの電磁鋼板を用いている。 Next, the configuration of the stator 3 and the rotor 5 will be described in detail. The stator 3 has a stator iron core 17. The stator iron core 17 is formed by punching electromagnetic steel sheets having a thickness of about 0.1 to 0.7 mm per sheet into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking. Here, an electromagnetic steel sheet having a thickness of 0.35 mm is used.
 ステータ鉄心17には、その径方向内側に周方向に略等間隔に並ぶ9個のティース部7が形成されている。ティース部7は、放射状に形成されている。そして、ステータ鉄心17において隣り合うティース部7の間の領域に、対応するスロット部9が形成されている。 The stator iron core 17 is formed with nine tooth portions 7 arranged at substantially equal intervals in the circumferential direction on the radially inner side. The teeth part 7 is formed radially. A corresponding slot portion 9 is formed in a region between adjacent tooth portions 7 in the stator core 17.
 ティース部7はそれぞれ、径方向に延びており、回転中心線CLに向けて突出する。また、ティース部7の大部分は、径方向外側から径方向内側にかけて略等しい周方向の幅を有しているが、ティース部7の最も径方向内側となる先端部には、ティース歯先部7aが形成されている。ティース歯先部7aはそれぞれ、その両側部が周方向に広がる傘状の形状に形成されている。 Each tooth portion 7 extends in the radial direction and protrudes toward the rotation center line CL. Further, most of the tooth portion 7 has a substantially equal circumferential width from the radially outer side to the radially inner side, but the tooth tip portion is located at the tip end that is the radially inner side of the tooth portion 7. 7a is formed. Each of the tooth tip portions 7a is formed in an umbrella shape in which both side portions extend in the circumferential direction.
 ティース部7には、回転磁界を発生させるコイル(図示せず)を構成するステータ巻線(図示せず)が巻かれている。コイルは、マグネットワイヤーを、絶縁体を介してティース部に直接巻き付けて形成される。この巻線方式を、集中巻線という。そして、コイルは、3相Y結線に結線される。コイルのターン数や線径は、要求される特性(回転数やトルク等)、電圧仕様、スロットの断面積に応じて定まる。ここでは、巻線し易いように分割ティースを帯状に展開し、線径φ1.0mm程度のマグネットワイヤーを各磁極のティース部に80ターン程度巻き付け、巻線後、分割ティースを環状に丸め、溶接してステータを構成している。 A stator winding (not shown) that constitutes a coil (not shown) that generates a rotating magnetic field is wound around the teeth portion 7. The coil is formed by winding a magnet wire directly around a tooth portion via an insulator. This winding method is called concentrated winding. The coil is connected to a three-phase Y connection. The number of turns and the wire diameter of the coil are determined according to the required characteristics (rotation speed, torque, etc.), voltage specifications, and the cross-sectional area of the slot. Here, the divided teeth are developed in a strip shape to facilitate winding, and a magnet wire having a wire diameter of about 1.0 mm is wound around the teeth of each magnetic pole for about 80 turns. After winding, the divided teeth are rounded and welded. Thus, the stator is configured.
 ステータ3の中心付近には、回転可能に保持されたシャフト13が配置されている。そして、そのシャフト13にロータ5が嵌合されている。ロータ5は、ロータ鉄心11を有しており、そのロータ鉄心11もまた、ステータ鉄心17と同様、厚さ0.1~0.7mm程度の電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。ここでは、板厚が0.35mmの電磁鋼板を用いている。 Near the center of the stator 3, a shaft 13 that is rotatably held is disposed. The rotor 5 is fitted to the shaft 13. The rotor 5 has a rotor iron core 11, and the rotor iron core 11 is also punched out from a magnetic steel sheet having a thickness of about 0.1 to 0.7 mm into a predetermined shape, like the stator iron core 17, and a predetermined number of electromagnetic cores. It is constructed by laminating steel plates with caulking. Here, an electromagnetic steel sheet having a thickness of 0.35 mm is used.
 ロータ5は、磁石埋込型であり、ロータ鉄心11の内部には、N極とS極とが交互になるように着磁された複数の(本具体例では6個の)の永久磁石19が設けられている。永久磁石19はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、円弧状に湾曲しており、その円弧形状の凸部側がロータ5の中心側に配置されている。また、永久磁石19はそれぞれ、対応する磁極中心線MCに対して線対称となるように湾曲している。 The rotor 5 is a magnet-embedded type, and a plurality (six in this example) of permanent magnets 19 magnetized so that N poles and S poles are alternately arranged inside the rotor core 11. Is provided. Each of the permanent magnets 19 is curved in an arc shape when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line, and the convex portion side of the arc shape is disposed on the center side of the rotor 5. Further, each of the permanent magnets 19 is curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
 より詳細には、ロータ鉄心11には、複数の永久磁石19に対応した数の磁石挿入孔21が形成されており、複数の磁石挿入孔21にはそれぞれ、対応する永久磁石19が挿入されている。一つの磁石挿入孔21につき一つの永久磁石19が挿入されている。また、これより分かるように、凹部61また、磁石挿入孔21はそれぞれ、対応する磁極中心線MCに対して線対称となるように湾曲している。 More specifically, a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19 are formed in the rotor core 11, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. Yes. One permanent magnet 19 is inserted into one magnet insertion hole 21. As can be seen, the recess 61 and the magnet insertion hole 21 are curved so as to be line symmetric with respect to the corresponding magnetic pole center line MC.
 なお、ロータ5の磁極数は、2極以上であればいくつでもよいが、本例では、6極の場合を例示している。ここでは、永久磁石19にフェライト磁石を使用し、フェライト磁石の内周面と外周面とを一定の同心円弧状に形成し、フェライト磁石の湾曲径方向の厚みTを一様に6mm程度に維持されるようにしている。 The number of magnetic poles of the rotor 5 may be any number as long as it is 2 or more, but in this example, the case of 6 poles is illustrated. Here, a ferrite magnet is used as the permanent magnet 19, and the inner and outer peripheral surfaces of the ferrite magnet are formed in a constant concentric arc shape, and the thickness T in the curved radial direction of the ferrite magnet is uniformly maintained at about 6 mm. I try to do it.
 また、永久磁石19には、図3に矢印MDで示されるように同心円弧の中心から配向磁場を印加した磁石を用いており、且つ、その磁石に沿った形状の磁石挿入孔に対し、磁石を挿入している。 Further, as the permanent magnet 19, a magnet to which an orientation magnetic field is applied from the center of a concentric arc as shown by an arrow MD in FIG. 3 is used, and a magnet is inserted into a magnet insertion hole having a shape along the magnet. Is inserted.
 なお、磁石の種類は、例えば、ネオジウム、鉄、ボロンを主成分とする希土類磁石を用いて良いし、磁石の形状に関しても、円弧形状に限定することは無く、平板状のものや、平板状のものを複数枚配置して磁極を構成した形でも良い。 The magnet type may be, for example, a rare earth magnet mainly composed of neodymium, iron, or boron, and the shape of the magnet is not limited to an arc shape, but may be a flat plate or a flat plate. It is also possible to form a magnetic pole by arranging a plurality of the above.
 磁極中心線MC上には、カシメ33が設けられており、これにより、ロータ5における磁石挿入孔21の径方向外側の鉄心部分の積層を固定し、製造時の変形を抑制している。 The caulking 33 is provided on the magnetic pole center line MC, thereby fixing the lamination of the iron core portion on the radially outer side of the magnet insertion hole 21 in the rotor 5 and suppressing deformation during manufacture.
 磁石挿入孔21の径方向内側には、周方向に交互に等間隔で並ぶ複数の風穴35と複数のリベット穴37とが設けられており、カシメ33は、対応するリベット穴37と、対応する一対の磁石挿入孔21との間にも、設けられている。 A plurality of air holes 35 and a plurality of rivet holes 37 arranged alternately at equal intervals in the circumferential direction are provided on the radially inner side of the magnet insertion hole 21, and the caulking 33 corresponds to the corresponding rivet hole 37. It is also provided between the pair of magnet insertion holes 21.
 次に、永久磁石19および磁石挿入孔21ついて詳細に説明する。永久磁石19および磁石挿入孔21はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、対応する磁極中心線MLによる線対称に形成されている。 Next, the permanent magnet 19 and the magnet insertion hole 21 will be described in detail. The permanent magnet 19 and the magnet insertion hole 21 are formed symmetrically with respect to the corresponding magnetic pole center line ML when viewed in a cross section with the rotation center line CL of the rotor 5 as a perpendicular line.
 永久磁石19はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、内側外面43と、外側外面45と、一対のサイド外面47とを有している。なお、内側外面および外側外面における外側および内側は、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しているものとする。 The permanent magnets 19 each have an inner outer surface 43, an outer outer surface 45, and a pair of side outer surfaces 47 as viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line. It should be noted that the outer side and the inner side of the inner outer surface and the outer outer surface indicate whether they are the inner side or the outer side in the radial direction in a relative comparison when viewed from a plane having the rotation center line CL as a perpendicular line.
 また、磁石挿入孔21はそれぞれ、ロータ5の回転中心線CLを垂線とする断面においてみて、孔の輪郭として、孔内側ライン53と、孔外側ライン55と、一対の孔サイドライン57とを有している。なお、孔内側ラインおよび孔外側ラインにおける外側および内側もまた、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しているものとする。 Each of the magnet insertion holes 21 has a hole inner line 53, a hole outer line 55, and a pair of hole side lines 57 as the outline of the hole when viewed in a cross section with the rotation center line CL of the rotor 5 as a perpendicular line. is doing. It should be noted that the outer side and the inner side of the hole inner line and the hole outer line also indicate whether they are the radially inner side or the outer side in a relative comparison with respect to the plane having the rotation center line CL as a perpendicular line. To do.
 外側外面45は、その大部分が、第1円弧半径による第1円弧面によって構成されており、孔外側ライン55もまた、その大部分が、第1円弧半径による第1円弧面55aによって構成されている。一方、内側外面43は、第1円弧半径よりも大きい第2円弧半径による第2円弧面43aと、ストレート面49とで構成されており、同様に、孔内側ライン53は、第2円弧半径による第2円弧面53aと、ストレート面59とで構成されている。 The outer outer surface 45 is mostly constituted by a first arc surface having a first arc radius, and the hole outer line 55 is also mostly constituted by a first arc surface 55a having a first arc radius. ing. On the other hand, the inner outer surface 43 includes a second arc surface 43a having a second arc radius larger than the first arc radius, and a straight surface 49. Similarly, the hole inner line 53 has a second arc radius. A second arc surface 53a and a straight surface 59 are included.
 なお、磁石挿入孔21内に永久磁石19が挿入される関係にあるため、磁石挿入孔21に関する第1円弧半径及び第2円弧半径と、永久磁石19に関する第1円弧半径及び第2円弧半径とは、極めて厳密にみると同一ではないが、永久磁石19は磁石挿入孔21に嵌め込まれる関係にあり、且つ、説明を分かり易くする都合上、永久磁石側と磁石挿入孔側とで共通の文言を用いるものとする。 Since the permanent magnet 19 is inserted into the magnet insertion hole 21, the first arc radius and the second arc radius related to the magnet insertion hole 21, and the first arc radius and the second arc radius related to the permanent magnet 19, Are not the same when viewed strictly, but the permanent magnet 19 is fitted into the magnet insertion hole 21 and, for the sake of easy understanding of the explanation, the same language is used on the permanent magnet side and the magnet insertion hole side. Shall be used.
 第1円弧半径と、第2円弧半径とは、共通の半径中心を有しており、その共通の半径中心は、永久磁石19及び磁石挿入孔21よりも径方向外側に在り、且つ、対応する磁極中心線ML上に在る。換言すると、内側外面43(孔内側ライン53)と、外側外面45(孔外側ライン55)とは、同心円状に構成され、第1円弧面の中心と第2円弧面の中心は、永久磁石の配向中心(配向焦点)に一致している。なお、図3における符号MDの矢印は、配向の方向を模式的に示している。 The first arc radius and the second arc radius have a common radius center, and the common radius center is on the outer side in the radial direction than the permanent magnet 19 and the magnet insertion hole 21 and corresponds. It exists on the magnetic pole center line ML. In other words, the inner outer surface 43 (hole inner line 53) and the outer outer surface 45 (hole outer line 55) are concentrically formed, and the center of the first arc surface and the center of the second arc surface are made of permanent magnets. It coincides with the alignment center (alignment focal point). In addition, the arrow of the code | symbol MD in FIG. 3 has shown the direction of orientation typically.
 なお、磁石挿入孔および永久磁石に関する円弧形状は、磁石挿入孔および永久磁石の形状の一例であり、本発明は、このような概ね円弧状の磁石挿入孔および永久磁石を有するロータを用いることに限定されるものではなく、ロータの中心側に向けて凸状に形成された磁石挿入孔および永久磁石を有するロータを広く含むものである。 In addition, the arc shape regarding a magnet insertion hole and a permanent magnet is an example of the shape of a magnet insertion hole and a permanent magnet, and this invention uses the rotor which has such a substantially arc-shaped magnet insertion hole and a permanent magnet. The rotor includes a magnet insertion hole and a permanent magnet that are formed in a convex shape toward the center of the rotor.
 ストレート面49及びストレート面59は、ロータ5の回転中心線CLを垂線とする断面においてみて、磁極中心線MLと直交する方向に延びている。 The straight surface 49 and the straight surface 59 extend in a direction perpendicular to the magnetic pole center line ML when viewed in a cross section having the rotation center line CL of the rotor 5 as a perpendicular line.
 また、一対のサイド外面47はそれぞれ、内側外面43および外側外面45の対応する端部同士を結んでおり、一対の孔サイドライン57はそれぞれ、孔内側ライン53および孔外側ライン55の対応する端部同士を結んでいる。 Further, the pair of side outer surfaces 47 respectively connect corresponding end portions of the inner outer surface 43 and the outer outer surface 45, and the pair of hole side lines 57 respectively correspond to the corresponding ends of the hole inner line 53 and the hole outer line 55. The parts are tied together.
 磁石挿入孔21の孔外側ライン55はそれぞれ、孔外側ライン55の大部分を占める第1円弧面55aと、一対の凹部61とを含んでいる。一対の凹部61は、孔外側ライン55の第1円弧面55aの両側に位置しており、すなわち、孔外側ライン55のうちの対応する孔サイドライン57側の端部に位置している。凹部61はそれぞれ、周方向における対応する磁極中心線MLに向けて延びている。凹部61の底部はそれぞれ、円弧状に形成されている。 Each of the hole outer lines 55 of the magnet insertion hole 21 includes a first arc surface 55a that occupies most of the hole outer line 55 and a pair of recesses 61. The pair of recesses 61 are located on both sides of the first arc surface 55 a of the hole outer line 55, that is, located at the corresponding hole side line 57 end of the hole outer line 55. Each of the recesses 61 extends toward the corresponding magnetic pole center line ML in the circumferential direction. The bottoms of the recesses 61 are each formed in an arc shape.
 図5に示されるように、磁石挿入孔21に永久磁石19が挿入された状態で、磁石挿入孔21の凹部61と、永久磁石19の外側外面45とは大きく離れており、凹部61と外側外面45との間には、非磁性領域である空隙61aが生じている。 As shown in FIG. 5, in a state where the permanent magnet 19 is inserted into the magnet insertion hole 21, the concave portion 61 of the magnet insertion hole 21 and the outer outer surface 45 of the permanent magnet 19 are greatly separated from each other. A gap 61 a that is a nonmagnetic region is formed between the outer surface 45 and the outer surface 45.
 凹部61の深さDは、永久磁石19の厚みTより小さく、永久磁石19の厚みT=6mmに対して、例えば、凹部61の深さD=1mmである。D/Tは16.7%に相当する。凹部61の深さDは、磁石挿入孔21に永久磁石19が挿入された状態での、凹部61の底部と永久磁石19の外側外面45との距離を示す。なお、磁石端部に切欠きや面取りがある場合は、それらを除いた部位での、凹部の底部と永久磁石の外側外面との距離が、凹部の深さとなる。あるいは、凹部の内側(凹部の対面)に、磁石の外側外面が存在しない場合は、凹部の深さは、磁石の外側外面を凹部の対面まで延長した仮想面と、凹部の底部との距離を意味する。また、磁石厚さTは、磁石の最も厚い部位での磁石厚さを意味する。磁石端部に切欠きや面取り等がある場合は、それらの除いた部位での厚さが、磁石厚さである。 The depth D of the recess 61 is smaller than the thickness T of the permanent magnet 19, and for example, the depth D of the recess 61 is 1 mm with respect to the thickness T = 6 mm of the permanent magnet 19. D / T corresponds to 16.7%. The depth D of the recess 61 indicates the distance between the bottom of the recess 61 and the outer outer surface 45 of the permanent magnet 19 when the permanent magnet 19 is inserted into the magnet insertion hole 21. When there is a notch or chamfer at the magnet end, the distance between the bottom of the recess and the outer outer surface of the permanent magnet at the portion excluding them becomes the depth of the recess. Alternatively, when the outer outer surface of the magnet does not exist inside the concave portion (facing the concave portion), the depth of the concave portion is the distance between the virtual surface obtained by extending the outer outer surface of the magnet to the facing surface of the concave portion and the bottom portion of the concave portion. means. The magnet thickness T means the magnet thickness at the thickest part of the magnet. When there are notches, chamfers, etc. at the end of the magnet, the thickness at those removed sites is the magnet thickness.
 磁石挿入孔21の孔サイドライン57は、ロータ外周面5aに近接して配置されている。磁石挿入孔21の孔サイドライン57とロータ外周面5aとの間は、一様な肉厚の側端薄肉部11aが存在する。これらの側端薄肉部11aはそれぞれ、隣接する磁極間での短絡磁束の経路となるため、できるだけ薄いことが好ましい。ここではプレス可能な最小幅として電磁鋼板の板厚程度0.35mmに設定している。 The hole side line 57 of the magnet insertion hole 21 is disposed close to the rotor outer peripheral surface 5a. Between the hole side line 57 of the magnet insertion hole 21 and the rotor outer peripheral surface 5a, the side wall thin portion 11a having a uniform thickness exists. Each of these side end thin portions 11a serves as a path for a short-circuit magnetic flux between adjacent magnetic poles, and is preferably as thin as possible. Here, the minimum width that can be pressed is set to about 0.35 mm of the thickness of the electromagnetic steel sheet.
 次に、図6に示す第1の関連技術と、図9に示す第2の関連技術とを参照しながら、本実施の形態1の永久磁石埋込型電動機の作用について説明する。図6は、磁石挿入孔に凹部を有しない第1の関連技術に関する、図2に対応する図である。図7は、本実施の形態1の一つの利点を説明する図であり、図8は、本実施の形態1の他の一つの利点を説明する図である。図9は、磁石挿入孔の凹部が不適切な態様で形成された第2の関連技術に関する、図2に対応する図である。 Next, the operation of the embedded permanent magnet electric motor according to the first embodiment will be described with reference to the first related technique shown in FIG. 6 and the second related technique shown in FIG. FIG. 6 is a view corresponding to FIG. 2 relating to the first related technique in which the magnet insertion hole has no recess. FIG. 7 is a diagram for explaining one advantage of the first embodiment, and FIG. 8 is a diagram for explaining another advantage of the first embodiment. FIG. 9 is a view corresponding to FIG. 2 relating to a second related technique in which the concave portion of the magnet insertion hole is formed in an inappropriate manner.
 まず、図6に示す第1の関連技術のように、磁石挿入孔の孔外側ラインの端部に凹部が設けられていない場合、ロータの中心側に向けて凸状に形成された永久磁石挿入孔を有するロータにおいては、特に、孔外側ラインと孔サイドラインとの境界部が磁石に近いため、磁石表面から発生した磁石磁束M1が、磁石側面に短絡しやすい不都合がある。 First, as in the first related art shown in FIG. 6, when a recess is not provided at the end of the hole outer line of the magnet insertion hole, the permanent magnet inserted in a convex shape toward the center side of the rotor In a rotor having a hole, in particular, the boundary between the hole outer line and the hole side line is close to the magnet, so that the magnet magnetic flux M1 generated from the magnet surface tends to be short-circuited to the magnet side surface.
 これに対して、本実施の形態1では、上述した凹部61が設けられていることによって、孔外側ライン55と孔サイドライン57との境界部に空隙61aが生じているので、図7に示されるように、磁石表面から発生した磁石磁束M2が、磁石側面に短絡し難くなり、ステータに鎖交する有効磁束量を増加させることができる。 On the other hand, in the first embodiment, since the above-described recess 61 is provided, a gap 61a is generated at the boundary between the hole outer line 55 and the hole side line 57. As described above, it is difficult for the magnetic flux M2 generated from the magnet surface to be short-circuited to the magnet side surface, and the amount of effective magnetic flux linked to the stator can be increased.
 しかしながら、その一方で、図9に示す第2の関連技術のように、凹部が深すぎる場合、ロータから磁石磁束M3が発生するための開口幅(一対の凹部の底部の間隔)が狭くなり、ステータへの鎖交磁束量が低下する問題がある。すなわち、凹部が、ロータからステータに渡る磁束M3の妨げとなり、誘起電圧が低下してしまうという好ましくない問題がある。これに関し、図10を参照しながら説明する。 However, on the other hand, as in the second related technique shown in FIG. 9, when the concave portion is too deep, the opening width (the interval between the bottom portions of the pair of concave portions) for generating the magnet magnetic flux M3 from the rotor is narrowed. There is a problem that the amount of flux linkage to the stator is reduced. That is, there is an unfavorable problem that the concave portion hinders the magnetic flux M3 from the rotor to the stator, and the induced voltage decreases. This will be described with reference to FIG.
 図10は、D/Tを変化させた場合の、ロータに減磁位相の電流を通電する前の誘起電圧特性のグラフである。なお、図10における縦軸の誘起電圧は、凹部がないD/Tが0%の場合の誘起電圧を基準100%としている。誘起電圧は、ロータ回転時の、ロータからステータに鎖交する磁束によって発生する電圧であり、誘起電圧の大きさによって、ステータに鎖交した有効磁束量を評価することができる。図10に示されるように、凹部が深い場合(D/Tが40%を超える場合)、凹部が、ロータからステータに渡る磁束の妨げとなり、誘起電圧が大きく低下している一方、本実施の形態1では、D/Tを10~40%とすることで、凹部を設けていない場合(D/T=0%の場合)と比べて、永久磁石の端部の漏れ磁束を抑制することができ、誘起電圧を大きくすることが可能となっている。 FIG. 10 is a graph of the induced voltage characteristics before the current of the demagnetization phase is passed through the rotor when D / T is changed. Note that the induced voltage on the vertical axis in FIG. 10 is based on the induced voltage when the D / T with no recess is 0% as a reference 100%. The induced voltage is a voltage generated by a magnetic flux interlinked with the stator from the rotor when the rotor rotates, and the effective magnetic flux amount interlinked with the stator can be evaluated by the magnitude of the induced voltage. As shown in FIG. 10, when the recess is deep (when D / T exceeds 40%), the recess hinders the magnetic flux from the rotor to the stator, and the induced voltage is greatly reduced. In the first aspect, by setting D / T to 10 to 40%, it is possible to suppress the leakage magnetic flux at the end of the permanent magnet as compared with the case where no recess is provided (D / T = 0%). It is possible to increase the induced voltage.
 また、図6に戻り、第1の関連技術のように、凹部が設けられていない場合、ロータの中心側に向けて凸状に形成された永久磁石挿入孔を有するロータでは、磁石及び磁石挿入孔における、ロータ外周に近い端部(上記の説明例では、サイド外面47や孔サイドライン57に相当する部分)は、磁極中心の鉄心部に対して透磁率が低いため、ステータコイルにより発生する磁束M4が鎖交しにくい。そのため、ステータ通電時の磁束は、磁石挿入孔におけるロータ外周に近い端部と、ロータ外周との間の鉄心部分に集中し易く、ステータコイルにより発生する磁束M4が大きくなると、当該鉄心部分に近接する永久磁石の端部(上記の説明例では、サイド外面47に相当する部分)が減磁しやすいという不都合がある。 Returning to FIG. 6, when a recess is not provided as in the first related art, in a rotor having a permanent magnet insertion hole formed in a convex shape toward the center side of the rotor, a magnet and a magnet are inserted. The end portion of the hole close to the outer periphery of the rotor (in the example described above, the portion corresponding to the side outer surface 47 and the hole side line 57) is generated by the stator coil because the permeability is lower than the iron core at the center of the magnetic pole. Magnetic flux M4 is difficult to interlink. Therefore, the magnetic flux when the stator is energized tends to concentrate on the iron core portion between the end of the magnet insertion hole near the outer periphery of the rotor and the outer periphery of the rotor, and when the magnetic flux M4 generated by the stator coil increases, the magnetic flux approaches the iron core portion. There is an inconvenience that the end portion of the permanent magnet (in the above described example, the portion corresponding to the side outer surface 47) is easily demagnetized.
 これに対して、本実施の形態1では、上述した凹部61が設けられていることによって、孔外側ライン55と孔サイドライン57との境界部に空隙61aが生じているので、図8に示されるように、ステータコイルで発生した磁束M5が、永久磁石の端部に鎖交し難くなり、減磁し難い構成にすることができる。これに関し、図11を参照しながら説明する。 On the other hand, in the first embodiment, since the recess 61 described above is provided, a gap 61a is generated at the boundary between the hole outer line 55 and the hole side line 57. As described above, the magnetic flux M5 generated in the stator coil is less likely to be linked to the end portion of the permanent magnet, so that it is difficult to demagnetize. This will be described with reference to FIG.
 図11は、D/Tを変化させた場合の、ロータに減磁位相の電流を通電した後の誘起電圧特性のグラフである。図11から分かるように、凹部がない(D/T=0%)場合に対して、凹部を設けたほうが減磁量が小さく、誘起電圧は大きくなる。また、その一方で、凹部が深い(D/Tが40%よりも大きい)場合、上記図10と同様、凹部がロータからステータに渡る磁束の妨げとなるため、誘起電圧が低下する。これにより、D/T=10~40%が好ましい範囲である。すなわち、本実施の形態1では、D/Tを10~40%とすることで、減磁電流の通電前、および、減磁電流の通電後の両方において、凹部がない場合に対して誘起電圧を向上させることができ、効率および信頼性を向上させることが可能となっている。 FIG. 11 is a graph of induced voltage characteristics after a current of a demagnetization phase is passed through the rotor when D / T is changed. As can be seen from FIG. 11, the amount of demagnetization is smaller and the induced voltage is larger when the recess is provided, compared to the case where there is no recess (D / T = 0%). On the other hand, when the recessed portion is deep (D / T is larger than 40%), the recessed portion interferes with the magnetic flux from the rotor to the stator as in FIG. Accordingly, D / T = 10 to 40% is a preferable range. That is, in the first embodiment, by setting D / T to 10 to 40%, the induced voltage is compared with the case where there is no recess both before and after the demagnetizing current. It is possible to improve efficiency and reliability.
 そして、上記のように誘起電圧を向上させることで、同一トルクを発生させる場合のモータ電流を小さくすることができ、結果として、モータのコイルで発生する銅損、インバータで発生する通電ロスを低減することができ、高効率なモータ、及び、圧縮機を構成することができる。また、誘起電圧が向上した分、モータに使用されている磁石量、モータ体積を小さくしても、従来と同等の出力で設計できるため、小型なモータを構成することができる。さらに、減磁特性が向上することで、モータに対し従来より大きな電流を通電しても減磁しない構成とすることができるため、後述するような圧縮機としての信頼性を向上させることができるとともに、運転範囲の拡大を図ることができる。特に、保磁力の低いフェライト磁石、高温化で使用する希土類磁石に効果的である。なお、希土類磁石は、高温化で、保磁力が低下する特性を有する。 And by improving the induced voltage as described above, the motor current when the same torque is generated can be reduced, and as a result, the copper loss generated in the motor coil and the current loss generated in the inverter are reduced. Thus, a highly efficient motor and compressor can be configured. In addition, even if the amount of magnets used in the motor and the motor volume are reduced by the amount of improvement in the induced voltage, the design can be made with the same output as the conventional one, so that a small motor can be configured. Further, since the demagnetization characteristic is improved, the motor can be configured not to be demagnetized even when a larger current is applied to the motor than before, so that the reliability as a compressor as described later can be improved. At the same time, the operating range can be expanded. In particular, it is effective for ferrite magnets with low coercivity and rare earth magnets used at high temperatures. In addition, the rare earth magnet has a characteristic that the coercive force decreases as the temperature increases.
 以上説明したように、本実施の形態1によれば、ロータの中心側に向けて凸状に形成された磁石挿入孔を有するロータにおいて、永久磁石の磁束量の低下を避けながらも、減磁し難い高効率な永久磁石埋込型電動機を得ることができる。 As described above, according to the first embodiment, in a rotor having a magnet insertion hole formed in a convex shape toward the center side of the rotor, demagnetization while avoiding a decrease in the magnetic flux amount of the permanent magnet. It is difficult to obtain a highly efficient permanent magnet embedded motor.
 実施の形態2.
 次に、上述した実施の形態1の永久磁石埋込型電動機を搭載したロータリ圧縮機について説明する。なお、本発明は、圧縮機の種別は、ロータリ圧縮機に限定されるものではない。
Embodiment 2. FIG.
Next, a rotary compressor equipped with the above-described permanent magnet embedded motor according to the first embodiment will be described. In the present invention, the type of the compressor is not limited to the rotary compressor.
 図12は、永久磁石埋込型電動機を搭載したロータリ圧縮機の縦断面図である。ロータリ圧縮機260は、密閉容器261内に、上記実施の形態1の永久磁石埋込型電動機(電動要素)1と、圧縮要素262とを備えている。図示はしないが、密閉容器261の底部に、圧縮要素各摺動部を潤滑する冷凍機油が貯留されている。 FIG. 12 is a longitudinal sectional view of a rotary compressor equipped with a permanent magnet embedded type electric motor. The rotary compressor 260 is provided with the permanent magnet embedded electric motor (electric element) 1 of the first embodiment and the compression element 262 in the sealed container 261. Although not shown, refrigerating machine oil that lubricates each sliding portion of the compression element is stored at the bottom of the sealed container 261.
 圧縮要素262は、主な要素として、上下積層状態に設けられたシリンダ263と、永久磁石埋込型電動機1により回転するシャフト13である回転軸264と、回転軸264に嵌挿されるピストン265と、シリンダ263内を吸入側と圧縮側とに分けるベーン(図示せず)と、回転軸264が回転自在に嵌挿され、シリンダ263の軸方向端面を閉塞する上下一対の上部フレーム266及び下部フレーム267と、上部フレーム266及び下部フレーム267にそれぞれ装着されたマフラ268とを含んでいる。 The compression element 262 includes, as main elements, a cylinder 263 provided in a vertically stacked state, a rotation shaft 264 that is the shaft 13 that is rotated by the permanent magnet embedded electric motor 1, and a piston 265 that is fitted into the rotation shaft 264. A pair of upper and lower upper frames 266 and 266, each of which includes a vane (not shown) that divides the inside of the cylinder 263 into a suction side and a compression side, and a rotary shaft 264 that is rotatably inserted and closes an axial end surface of the cylinder 263. 267 and mufflers 268 mounted on the upper frame 266 and the lower frame 267, respectively.
 永久磁石埋込型電動機1のステータ3は、密閉容器261に焼嵌または溶接等の方法により直接取り付けられ保持されている。ステータ3のコイルには、密閉容器261に固定されるガラス端子269から電力が供給される。 The stator 3 of the permanent magnet embedded motor 1 is directly attached and held in the sealed container 261 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal 269 fixed to the hermetic container 261.
 ロータ5は、ステータ3の内径側に、空隙(エアギャップ15)を介して配置されており、ロータ5の中心部の回転軸264を介して圧縮要素262の軸受け部(上部フレーム及び下部フレーム)により回転自在な状態で保持されている。 The rotor 5 is disposed on the inner diameter side of the stator 3 via a gap (air gap 15), and a bearing portion (upper frame and lower frame) of the compression element 262 via a rotation shaft 264 at the center of the rotor 5. Is held in a freely rotatable state.
 次に、かかるロータリ圧縮機の動作について説明する。アキュムレータ270から供給された冷媒ガスは、密閉容器261に固定された吸入パイプ271よりシリンダ263内へ吸入される。インバータの通電によって永久磁石埋込型電動機1が回転されていることで、回転軸264に嵌合されたピストン265がシリンダ263内で回転される。それにより、シリンダ263内では冷媒の圧縮が行われる。 Next, the operation of the rotary compressor will be described. The refrigerant gas supplied from the accumulator 270 is sucked into the cylinder 263 through a suction pipe 271 fixed to the sealed container 261. When the embedded permanent magnet electric motor 1 is rotated by energization of the inverter, the piston 265 fitted to the rotating shaft 264 is rotated in the cylinder 263. Thereby, the refrigerant is compressed in the cylinder 263.
 冷媒は、マフラを経た後、密閉容器261内を上昇する。このとき、圧縮された冷媒には冷凍機油が混入している。この冷媒と冷凍機油との混合物は、ロータ鉄心に設けた風穴を通過する際に、冷媒と冷凍機油との分離を促進され、冷凍機油が吐出パイプ272へ流入するのを防止できる。このようにして、圧縮された冷媒が、密閉容器261に設けられた吐出パイプ272を通って冷凍サイクルの高圧側へと供給される。 The refrigerant ascends in the sealed container 261 after passing through the muffler. At this time, refrigeration oil is mixed in the compressed refrigerant. When the mixture of the refrigerant and the refrigerating machine oil passes through the air hole provided in the rotor core, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 272. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 272 provided in the sealed container 261.
 尚、ロータリ圧縮機の冷媒には、従来からあるR410A、R407C、R22等を用いてもよいが、低GWP(地球温暖化係数)の冷媒等などいかなる冷媒も適用できる。地球温暖化防止の観点からは、低GWP冷媒が望まれている。低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素:例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略で、Olefinは、二重結合を一つ持つ不飽和炭化水素のことである。尚、HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素:例えば、R1270(プロピレン)である。尚、GWPは3で、HFO-1234yfより小さいが、可燃性はHFO-1234yfより大きい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物:例えば、HFO-1234yfとR32との混合物等である。HFO-1234yfは、低圧冷媒のため圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、HFO-1234yfより高圧冷媒であるR32又はR41等との混合物が実用上は有力になる。
In addition, although conventional R410A, R407C, R22, etc. may be used as the refrigerant of the rotary compressor, any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired. As typical examples of the low GWP refrigerant, there are the following refrigerants.
(1) Halogenated hydrocarbon having a carbon double bond in the composition: for example, HFO-1234yf (CF3CF = CH2). HFO is an abbreviation for Hydro-Fluoro-Olefin, and Olefin is an unsaturated hydrocarbon having one double bond. The GFO of HFO-1234yf is 4.
(2) Hydrocarbon having a carbon double bond in the composition: for example, R1270 (propylene). GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
(3) a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition: for example, a mixture of HFO-1234yf and R32 is there. Since HFO-1234yf is a low-pressure refrigerant, its pressure loss is large, and the performance of the refrigeration cycle (especially in an evaporator) tends to deteriorate. Therefore, a mixture with R32 or R41, which is a high-pressure refrigerant, is more effective than HFO-1234yf in practical use.
 以上に構成されたロータリ圧縮機においても、上述した永久磁石埋込型電動機を用いることで、上記実施の形態1と同様な利点を得ることができる。 Even in the rotary compressor configured as described above, the same advantages as those of the first embodiment can be obtained by using the above-described permanent magnet embedded type electric motor.
 実施の形態3.
 また、本発明は、図13に例示するように、上述した圧縮機260を冷凍回路の構成要素として含む、冷凍空調装置380として実施することも可能である。なお、冷凍空調装置380の冷凍回路には、凝縮器381、蒸発器382、膨張装置383を少なくとも含むが、これら凝縮器381、蒸発器382、膨張装置383を含む圧縮機以外の構成要素の構成は、特に、限定されるものではない。
Embodiment 3 FIG.
Moreover, as illustrated in FIG. 13, the present invention can be implemented as a refrigerating and air-conditioning apparatus 380 that includes the above-described compressor 260 as a component of a refrigeration circuit. The refrigeration circuit of the refrigerating and air-conditioning apparatus 380 includes at least a condenser 381, an evaporator 382, and an expansion device 383. The components other than the compressor including the condenser 381, the evaporator 382, and the expansion device 383 are configured. Is not particularly limited.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
 1 永久磁石埋込型電動機、3 ステータ、5 ロータ、5a ロータ外周面、11 ロータ鉄心、19 永久磁石、21 磁石挿入孔、53 孔内側ライン、55 孔外側ライン、57 孔サイドライン、61 凹部、260 ロータリ圧縮機、261 密閉容器、380 冷凍空調装置。 1 permanent magnet embedded motor, 3 stator, 5 rotor, 5a rotor outer peripheral surface, 11 rotor iron core, 19 permanent magnet, 21 magnet insertion hole, 53 hole inner line, 55 hole outer line, 57 hole side line, 61 recess, 260 rotary compressor, 261 closed container, 380 refrigeration air conditioner.

Claims (5)

  1.  複数の永久磁石を有するロータと、ステータとを備える永久磁石埋込型電動機において、
     前記ロータは、ロータ鉄心を備え、
     前記ロータ鉄心は、複数の磁石挿入孔を有し、
     前記永久磁石はそれぞれ、前記磁石挿入孔に挿入されており、
     前記磁石挿入孔はそれぞれ、前記ロータの中心側に向けて凸状に形成されており、
     前記磁石挿入孔はそれぞれ、孔内側ラインと、孔外側ラインと、一対の孔サイドラインとを有しており、
     前記孔外側ラインはそれぞれ、端部に一対の凹部を含んでおり、
     前記凹部の深さは、前記永久磁石の厚みの10~40%である、
    永久磁石埋込型電動機。
    In an embedded permanent magnet electric motor comprising a rotor having a plurality of permanent magnets and a stator,
    The rotor includes a rotor core;
    The rotor iron core has a plurality of magnet insertion holes,
    Each of the permanent magnets is inserted into the magnet insertion hole,
    Each of the magnet insertion holes is formed in a convex shape toward the center side of the rotor,
    Each of the magnet insertion holes has a hole inner line, a hole outer line, and a pair of hole side lines,
    Each of the hole outer lines includes a pair of recesses at the end,
    The depth of the recess is 10 to 40% of the thickness of the permanent magnet.
    Permanent magnet embedded motor.
  2.  前記磁石挿入孔に前記永久磁石が挿入された状態で、前記凹部と前記永久磁石との間には、空隙が生じている、
    請求項1の永久磁石埋込型電動機。
    In the state where the permanent magnet is inserted into the magnet insertion hole, a gap is generated between the concave portion and the permanent magnet.
    The embedded permanent magnet electric motor according to claim 1.
  3.  前記永久磁石は、フェライト磁石、もしくは、希土類磁石である、
    請求項1~2の何れか一項の永久磁石埋込型電動機。
    The permanent magnet is a ferrite magnet or a rare earth magnet,
    The embedded permanent magnet electric motor according to any one of claims 1 to 2.
  4.  密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、
     前記電動機は、請求項1~3の何れか一項の永久磁石埋込型電動機である、
    圧縮機。
    A compressor having an electric motor and a compression element in a sealed container,
    The electric motor is an embedded permanent magnet electric motor according to any one of claims 1 to 3.
    Compressor.
  5.  請求項4の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置。 A refrigeration air conditioner comprising the compressor of claim 4 as a component of a refrigeration circuit.
PCT/JP2014/066975 2014-06-26 2014-06-26 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device WO2015198444A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066975 WO2015198444A1 (en) 2014-06-26 2014-06-26 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066975 WO2015198444A1 (en) 2014-06-26 2014-06-26 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device

Publications (1)

Publication Number Publication Date
WO2015198444A1 true WO2015198444A1 (en) 2015-12-30

Family

ID=54937574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066975 WO2015198444A1 (en) 2014-06-26 2014-06-26 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device

Country Status (1)

Country Link
WO (1) WO2015198444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877534A (en) * 2017-03-16 2017-06-20 安徽美芝制冷设备有限公司 Rotor, motor, compressor and refrigerator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066284A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Permanent magnet motor
JPH11122852A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Permanent magnet embedding rotor
JP2003204638A (en) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp Permanent-magnet motor, manufacturing method for the permanent-magnet motor, compressor, and refrigeration cycle device
WO2012157107A1 (en) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 Method for manufacturing rotor and cutting apparatus
JP2013162557A (en) * 2012-02-01 2013-08-19 Suzuki Motor Corp Electric rotary machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066284A (en) * 1996-08-23 1998-03-06 Matsushita Electric Ind Co Ltd Permanent magnet motor
JPH11122852A (en) * 1997-10-13 1999-04-30 Matsushita Electric Ind Co Ltd Permanent magnet embedding rotor
JP2003204638A (en) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp Permanent-magnet motor, manufacturing method for the permanent-magnet motor, compressor, and refrigeration cycle device
WO2012157107A1 (en) * 2011-05-19 2012-11-22 トヨタ自動車株式会社 Method for manufacturing rotor and cutting apparatus
JP2013162557A (en) * 2012-02-01 2013-08-19 Suzuki Motor Corp Electric rotary machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877534A (en) * 2017-03-16 2017-06-20 安徽美芝制冷设备有限公司 Rotor, motor, compressor and refrigerator

Similar Documents

Publication Publication Date Title
JP6169286B1 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6184591B2 (en) Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
JP6188927B2 (en) Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
JP6009088B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6109338B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2017077590A1 (en) Stator, motor, compressor and refrigerating air-conditioner
JP5944014B2 (en) Permanent magnet embedded electric motor and compressor
JP6037361B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP5971669B2 (en) Permanent magnet embedded motor and compressor
JP6328257B2 (en) Permanent magnet embedded electric motor, compressor, and refrigeration air conditioner
JP2010068600A (en) Permanent magnet motor and hermetic compressor
JP6289694B2 (en) Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
JP5971666B2 (en) Permanent magnet embedded motor and compressor
JP6339103B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2020021693A1 (en) Electric motor, compressor, and air conditioner
JP6223568B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2015198444A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
JP7154373B2 (en) Electric motors, compressors, and air conditioners
WO2016006103A1 (en) Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14895903

Country of ref document: EP

Kind code of ref document: A1