WO2016006103A1 - Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device - Google Patents

Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device Download PDF

Info

Publication number
WO2016006103A1
WO2016006103A1 PCT/JP2014/068586 JP2014068586W WO2016006103A1 WO 2016006103 A1 WO2016006103 A1 WO 2016006103A1 JP 2014068586 W JP2014068586 W JP 2014068586W WO 2016006103 A1 WO2016006103 A1 WO 2016006103A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
line
rotor
arc
permanent magnet
Prior art date
Application number
PCT/JP2014/068586
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 石川
馬場 和彦
昌弘 仁吾
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/068586 priority Critical patent/WO2016006103A1/en
Publication of WO2016006103A1 publication Critical patent/WO2016006103A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
  • the magnet insertion holes and permanent magnets have a reverse arc shape, thereby increasing the surface area of the magnets to improve the magnetic force and increasing the magnet torque caused by the magnetic flux.
  • the permanent magnet may move in the magnet insertion hole while the rotor is rotating.
  • a fixing protrusion stopper
  • the projection by providing the projection, the magnetic flux due to the demagnetizing field flows into the magnet end portion through the projection during operation, and the partial demagnetization of the magnet is deteriorated. That is, such protrusions cause demagnetization of the end portions of the permanent magnet, and hinder improvement in the efficiency of the electric motor.
  • the rare earth magnet contains rare earth elements (rare earth) such as neodymium (Nd), dysprosium (Dy), and terbium (Tb).
  • rare earth elements such as neodymium (Nd), dysprosium (Dy), and terbium (Tb).
  • rare earth elements have problems of price increase and supply instability, and in the future, electric motors using rare earth magnets with reduced contents of Dy and Tb, and electric motors not using rare earth magnets will be used. Development is expected to proceed.
  • ferrite magnets As an electric motor not using a rare earth magnet, for example, there is a policy of using an inexpensive ferrite magnet mainly composed of iron oxide. However, compared to rare earth magnets, ferrite magnets have a residual magnetic flux density of about 1/3 and a coercive force of about 1/3. Therefore, in an electric motor using a ferrite magnet, deterioration of efficiency and demagnetization resistance are the main issues.
  • Patent Document 1 As a technique for improving the efficiency of a permanent magnet embedded electric motor using a ferrite magnet, there is a technique disclosed in Patent Document 1, for example.
  • this permanent magnet embedded type electric motor three thin arc-shaped magnets are provided per pole to secure the q-axis magnetic flux and improve the reluctance torque.
  • the thickness of one magnet is thin, so that it is easily affected by the demagnetizing field generated from the stator winding during operation. There is a risk of demagnetization of the magnet. Therefore, in the permanent magnet embedded type electric motor, it is necessary to mitigate the influence of the demagnetizing field received by the magnet.
  • an object of the present invention is to provide a permanent magnet embedded type electric motor that can ensure high demagnetization resistance without depending on a rare earth magnet.
  • an embedded permanent magnet electric motor of the present invention includes a stator and a rotor that is rotatably provided to face the stator, and the rotor includes a plurality of permanent magnets and a rotor core.
  • the rotor core has a plurality of magnet insertion holes, the permanent magnet is inserted into the magnet insertion hole, and the outline of the magnet insertion hole is the rotation center of the rotor
  • the hole includes an inner hole line and an outer hole line
  • the permanent magnet includes a magnet inner surface and a magnet outer surface
  • the magnet inner surface is the hole.
  • the hole inner line is constituted by a first arc having a radius r1
  • the hole outer line is constituted by a second arc having a radius r2.
  • a compressor according to the present invention for achieving the same object includes an electric motor and a compression element in a sealed container, and the electric motor is the above-described permanent magnet embedded electric motor according to the present invention.
  • the refrigerating and air-conditioning apparatus according to the present invention for achieving the same object includes the above-described compressor according to the present invention as a component of the refrigeration circuit.
  • 3 to 5 are views showing a part of the rotor in the cross section shown in FIG. 1, the hatching is omitted in order to give priority to the clarity of the drawing.
  • FIG. 1 is a view showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a single rotor in FIG.
  • the embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided facing the stator 3.
  • the stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9.
  • the plurality of tooth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
  • the stator winding 3a is wound around each of the plurality of tooth portions 7 by a so-called distributed winding method.
  • the distributed winding method is a winding method in which windings are distributed and distributed over a plurality of tooth portions 7 of the stator 3. This distributed winding method is superior to the concentrated winding method in that it uses reluctance torque.
  • the rotor 5 has a rotor core 11 and a shaft 13.
  • the shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11.
  • An air gap 15 is secured between the outer peripheral surface of the rotor 5 and the inner peripheral surface of the stator 3.
  • the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable about the rotation center line CL (rotor center of the rotor, shaft axis). Specifically, a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5.
  • the stator 3 has a stator core 17.
  • the stator core 17 is configured by punching electromagnetic steel sheets into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
  • the rotor 5 is fitted to the shaft 13.
  • the rotor 5 has a rotor core 11, and the rotor core 11 is also configured by punching electromagnetic steel plates into a predetermined shape and laminating a predetermined number of electromagnetic steel plates while being fastened by caulking.
  • inter-wall thin portion 18 Between the rotor outer peripheral surface 25 and a hole side line 57 described later, there is an inter-wall thin portion 18 (see FIG. 3) having a uniform thickness. Each of these inter-electrode thin portions 18 serves as a leakage magnetic flux path between adjacent magnetic poles, and is preferably as thin as possible.
  • a plurality of permanent magnets 19 (for the number of poles) magnetized so that N poles and S poles are alternately provided are provided in the rotor core 11.
  • Each of the permanent magnets 19 is composed of a sintered ferrite magnet, and is curved in an arc shape as viewed in FIG. 1, and is arranged so that the arc-shaped convex portion side faces the center side of the rotor 5. More specifically, the rotor core 11 has a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. .
  • the permanent magnet 19 is composed of a ferrite magnet. Since the ferrite magnet contains iron oxide (Fe 2 O 3 ) as a main component, it is cheaper than a rare earth magnet used in a general permanent magnet embedded electric motor, and the supply performance is stable. In addition, since the ferrite magnet is easy to form an arc-shaped magnet, a magnet that can be inserted into a magnet insertion hole having a reverse arc shape as in the present embodiment can be configured.
  • the plurality of permanent magnets 19 and the plurality of magnet insertion holes 21 are both configured in a reverse arc shape that is opposite to the arc of the rotor outer peripheral surface 25 when viewed in the radially inner and outer directions. That is, the plurality of permanent magnets 19 and the plurality of magnet insertion holes 21 are formed in an arc shape that is convex toward the center side of the rotor 5 (ie, a direction that is concave toward the radially outer side, ie, the rotor outer peripheral surface 25 side). As shown in FIG. 1, one permanent magnet 19 is inserted into one magnet insertion hole 21.
  • the number of magnetic poles of the rotor 5 is not limited as long as it is two or more.
  • a six-pole configuration is shown as an example, and as shown in FIGS. 1 and 2, the rotor 5 is provided with six magnet insertion holes 21 spaced apart at equal angular intervals. ing. That is, the six magnet insertion holes 21 are arranged so as to be separated from the adjacent magnet insertion holes 21 at an angular interval of 60 degrees. Further, the six permanent magnets 19 are arranged so that the N pole and the S pole are alternately switched along the circumferential direction of the rotor with respect to the direction of the magnetic pole in the radial direction.
  • FIG. 3 is a diagram showing a curved aspect of the magnet insertion hole.
  • FIG. 4 is a view showing a state in which a magnet is inserted into the magnet insertion hole in FIG. 3.
  • the permanent magnets 19 each have a magnet inner surface 43, a magnet outer surface 45, and a pair of magnet side surfaces 47. Further, each of the magnet insertion holes 21 has a hole inner line 53, a hole outer line 55, and a pair of hole side lines 57 as the outline of the hole when viewed from the plane having the rotation center line CL as a perpendicular line. .
  • the magnet insertion hole 21 extends in the same cross-sectional shape in the direction in which the rotation center line CL extends.
  • “inside” and “outside” on the magnet inner side surface and the magnet outer side surface indicate whether they are the inner side or the outer side in the radial direction in a relative comparison with respect to the plane having the rotation center line CL as a perpendicular line. “Inside” and “Outside” in the hole inner line and the hole outer line also indicate whether they are the radially inner side or the outer side relative to the rotation center line CL as a perpendicular line. It shall be.
  • the hole outer line 55 is configured by a first arc having a radius r1.
  • the hole inner line 53 is configured by a second arc having a radius r2. The first arc and the second arc protrude toward the rotation center of the rotor.
  • the center O1 of the first arc of radius r1 and the center O2 of the second arc of radius r2 are located on the magnetic pole center line ML of the corresponding magnetic pole, and the center O1 of the first arc of radius r1 is the radius It is located radially outward from the center O2 of the second arc of r2.
  • the center O1 of the first arc with the radius r1 is located radially outside the rotor outer peripheral surface 25, and the center O2 of the second arc with the radius r2 is located radially inward of the rotor outer peripheral surface 25. is doing.
  • the permanent magnet 19 and the magnet insertion hole 21 are formed symmetrically with respect to the corresponding magnetic pole center line ML.
  • the distance x1 in the magnetic pole center line ML direction between the center O1 of the first arc of radius r1 in the magnet insertion hole 21 and the rotation center line CL is the center O2 of the second arc of radius r2.
  • the distance x2 between the rotation center line CL and the magnetic pole center line ML is larger than the radius r1 of the first arc and the radius r2 of the second arc. That is, the magnet insertion holes 21 are formed so as to satisfy the relationship of x1> x2 and x1-x2> r1-r2.
  • FIG. 4 shows a state where a magnet is inserted into the magnet insertion hole satisfying the above relationship.
  • the thickness of the magnet is non-uniform, that is, the thickness at the center of the magnet is maximized, and the thickness of the magnet is reduced toward the end of the magnet.
  • the end of the magnet insertion hole on the rotor outer peripheral surface 25 side is prevented from being sharp,
  • the large magnetic resistance of the thin portion 18 can be maintained and the generation of leakage magnetic flux can be suppressed.
  • the following advantages are obtained.
  • the surface area of the magnet can be increased, so that the magnetic force can be improved and the magnet torque caused by the magnet magnetic flux can be increased.
  • the center of the radius of the first arc of the hole outer line and the center of the radius of the second arc of the hole inner line at different positions, the magnet thickness becomes uneven, and the magnet insertion hole Since the rotating magnet can be fixed without providing a magnet fixing protrusion (stopper) on the magnet, partial demagnetization at the magnet end due to the protrusion (stopper) is suppressed, and the demagnetization resistance of the magnet end is improved. Can be made.
  • the ferrite magnet is excellent in arc-shaped formability, the reverse arc-shaped magnet as described above can be easily configured.
  • FIG. 5 is a diagram of the same mode as FIG. 4 regarding the second embodiment of the present invention.
  • the second embodiment is configured in the same manner as the first embodiment described above except for the parts described below.
  • the magnet insertion hole 22 is provided with recesses 46 at both ends of the hole outer line 55 (each end on the rotor outer peripheral surface 25 side).
  • Each of the recesses 46 extends from the corresponding end of the hole outer line 55 along the rotor outer peripheral surface 25 toward the corresponding magnetic pole center line ML.
  • the gap 62 between the magnet side surface 47 and the hole side line 57 is expanded as compared with the first embodiment by the presence of the recess 46.
  • the advantages similar to those of the above-described first embodiment are also obtained by the permanent magnet embedded electric motor of the second embodiment configured as described above. Further, in the second embodiment, since the gap is expanded as described above, the magnetic resistance of the thin electrode portion can be further increased. Therefore, the leakage flux can be reduced to achieve a more efficient permanent. A magnet-embedded electric motor can be obtained.
  • Embodiment 3 a rotary compressor equipped with the above-described permanent magnet embedded electric motor according to the first or second embodiment will be described.
  • this invention includes the compressor carrying the permanent magnet embedded type electric motor of Embodiment 1 or Embodiment 2 mentioned above, the classification of a compressor is not limited to a rotary compressor. .
  • FIG. 6 is a longitudinal sectional view of a rotary compressor equipped with an embedded permanent magnet electric motor.
  • the rotary compressor 100 includes an embedded permanent magnet electric motor 1 (electric element) and a compression element 103 in an airtight container 101.
  • refrigerating machine oil that lubricates each sliding portion of the compression element 103 is stored at the bottom of the sealed container 101.
  • the compression element 103 includes, as main elements, a cylinder 105 provided in a vertically stacked state, a rotation shaft 107 that is a shaft that is rotated by the embedded permanent magnet electric motor 1, a piston 109 that is inserted into the rotation shaft 107, A vane (not shown) that divides the inside of the cylinder 105 into a suction side and a compression side, and a pair of upper and lower frames 111 and 113 that are rotatably inserted into the rotary shaft 107 and close the axial end surface of the cylinder 105. , And mufflers 115 respectively mounted on the upper frame 111 and the lower frame 113.
  • the stator 3 of the permanent magnet embedded electric motor 1 is directly attached and held on the sealed container 101 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal fixed to the sealed container 101.
  • the rotor 5 is disposed on the inner diameter side of the stator 3 via a gap, and a bearing portion (an upper frame 111 and a lower frame 113) of the compression element 103 via a rotation shaft 107 (shaft 13) at the center of the rotor 5. ) Is held in a freely rotatable state.
  • the refrigerant gas supplied from the accumulator 117 is sucked into the cylinder 105 through a suction pipe 119 fixed to the sealed container 101.
  • the permanent magnet embedded electric motor 1 is rotated by energization of the inverter, so that the piston 109 fitted to the rotating shaft 107 is rotated in the cylinder 105.
  • the refrigerant is compressed in the cylinder 105.
  • the refrigerant passes through the muffler 115, the refrigerant rises in the sealed container 101. At this time, refrigeration oil is mixed in the compressed refrigerant.
  • the mixture of the refrigerant and the refrigerating machine oil passes through the air holes 71 provided in the rotor core 11, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 121. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 121 provided in the sealed container 101.
  • any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired.
  • the low GWP refrigerant there are the following refrigerants.
  • HFO is an abbreviation for Hydro-Fluoro-Olefin
  • Olefin is an unsaturated hydrocarbon having one double bond.
  • the GFO of HFO-1234yf is 4.
  • Hydrocarbon having a carbon double bond in the composition for example, R1270 (propylene).
  • GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
  • the rotary compressor according to the third embodiment configured as described above has the same advantages as those of the first embodiment described above. Also, since the compressor for refrigeration and air conditioning is used from low to high temperatures, motors using magnets whose coercive force decreases at low temperatures, such as ferrite magnets, must strictly evaluate the demagnetization resistance at low temperatures. There is. In this respect, the embedded permanent magnet electric motor of the present invention has improved demagnetization resistance at low temperatures, so that it has a more beneficial effect when mounted on a compressor for refrigerating and air conditioning used from low to high temperatures. Will be.
  • Embodiment 4 FIG.
  • the present invention can also be implemented as a refrigeration air conditioner including the above-described compressor according to the third embodiment as a component of the refrigeration circuit.
  • the structure of components other than the compressor in the refrigeration circuit of the refrigeration air conditioner is not particularly limited.

Abstract

In this electric motor with an embedded permanent magnet, the hole interior line (53) of a magnet insertion hole (21) is formed from a first circular arc having a radius (r1), a hole exterior line (55) is formed from a second circular arc having a radius (r2), the first circular arc and the second circular arc protrude toward the center of rotation of a rotor, the center (O1) of the first circular arc and the center (O2) of the second circular arc are positioned on a magnetic pole center line (ML), the distance (x1) in the magnetic pole center line (ML) direction between the center (O1) of the first circular arc and a rotation center line (CL) is larger than the distance (x2) in the magnetic pole center line (ML) direction between the center (O2) of the second circular arc and the rotation center line (CL), and the distance (x1) - the distance (x2) > the radius (r1) - the radius (r2).

Description

永久磁石埋込型電動機、圧縮機及び冷凍空調装置Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
 本発明は、永久磁石埋込型電動機、圧縮機及び冷凍空調装置に関するものである。 The present invention relates to a permanent magnet embedded electric motor, a compressor, and a refrigeration air conditioner.
 近年、省エネ意識の高まりから高効率な電動機が要求されるようになっている。既存の永久磁石埋込型電動機の中には、磁石挿入孔及び永久磁石を逆円弧形状とすることで、磁石の表面積を稼いで磁力を向上させ、磁石磁束に起因するマグネットトルクを増加させる永久磁石埋込型電動機がある、一方、このような永久磁石埋込型電動機では、ロータ回転中に永久磁石が磁石挿入孔内で移動することがあるため、それを防ぐべく、磁石挿入孔に磁石固定用の突起(ストッパ)を設けている。しかしならが、突起を設けることで、運転時に反磁界による磁束が突起を経由して磁石端部に流れ込んでしまうため、磁石の部分減磁が悪化する。すなわち、かかる突起は、永久磁石の端部の減磁を招くこととなり、電動機の効率の向上を阻害する。 In recent years, a highly efficient electric motor has been required due to an increase in energy saving awareness. In existing permanent magnet embedded motors, the magnet insertion holes and permanent magnets have a reverse arc shape, thereby increasing the surface area of the magnets to improve the magnetic force and increasing the magnet torque caused by the magnetic flux. On the other hand, in such a permanent magnet embedded motor, the permanent magnet may move in the magnet insertion hole while the rotor is rotating. A fixing protrusion (stopper) is provided. However, by providing the projection, the magnetic flux due to the demagnetizing field flows into the magnet end portion through the projection during operation, and the partial demagnetization of the magnet is deteriorated. That is, such protrusions cause demagnetization of the end portions of the permanent magnet, and hinder improvement in the efficiency of the electric motor.
 上記とは別に、ロータに残留磁束密度及び保磁力の高い希土類磁石を用いることで高効率化を実現した永久磁石埋込型電動機が多く提案されている。残留磁束密度と保磁力とを高めるため、希土類磁石には、ネオジム(Nd)、ジスプロシウム(Dy)、テルビウム(Tb)といった希土類元素(レアアース)が含有されている。 Apart from the above, many permanent magnet embedded motors have been proposed that achieve high efficiency by using rare earth magnets with high residual magnetic flux density and coercive force for the rotor. In order to increase the residual magnetic flux density and the coercive force, the rare earth magnet contains rare earth elements (rare earth) such as neodymium (Nd), dysprosium (Dy), and terbium (Tb).
 しかしながら、現在、希土類元素は、価格高騰や供給不安定性の問題を抱えており、将来的には、DyやTbの含有量を削減した希土類磁石を用いた電動機や、希土類磁石を用いない電動機の開発が進む見込みである。 However, currently, rare earth elements have problems of price increase and supply instability, and in the future, electric motors using rare earth magnets with reduced contents of Dy and Tb, and electric motors not using rare earth magnets will be used. Development is expected to proceed.
 希土類磁石を用いない電動機として、例えば酸化鉄を主成分とした安価なフェライト磁石を用いる方策がある。しかし、希土類磁石と比較してフェライト磁石は残留磁束密度が約1/3、保磁力が約1/3となる。従って、フェライト磁石を用いた電動機は、効率と減磁耐力の悪化が主な課題点となる。 As an electric motor not using a rare earth magnet, for example, there is a policy of using an inexpensive ferrite magnet mainly composed of iron oxide. However, compared to rare earth magnets, ferrite magnets have a residual magnetic flux density of about 1/3 and a coercive force of about 1/3. Therefore, in an electric motor using a ferrite magnet, deterioration of efficiency and demagnetization resistance are the main issues.
 また、フェライト磁石を用いた永久磁石埋込型電動機の高効率化技術として、例えば特許文献1に開示の技術がある。この永久磁石埋込型電動機では、1極当たり、円弧状の薄い3枚の磁石を設けて、q軸磁束を確保しリラクタンストルクを向上させている。 Further, as a technique for improving the efficiency of a permanent magnet embedded electric motor using a ferrite magnet, there is a technique disclosed in Patent Document 1, for example. In this permanent magnet embedded type electric motor, three thin arc-shaped magnets are provided per pole to secure the q-axis magnetic flux and improve the reluctance torque.
特開2011-083066号公報JP 2011-083066 A
 しかしながら、上述したように、1極当たり、薄い3枚の磁石を用いる場合、1枚の磁石の厚さは薄くなるため、運転中にステータ巻線から発生する反磁界の影響を受けやすくなり、磁石の減磁が発生する恐れがある。そのため、永久磁石埋込型電動機においては、磁石が受ける反磁界の影響を緩和する必要がある。 However, as described above, when three thin magnets are used per pole, the thickness of one magnet is thin, so that it is easily affected by the demagnetizing field generated from the stator winding during operation. There is a risk of demagnetization of the magnet. Therefore, in the permanent magnet embedded type electric motor, it is necessary to mitigate the influence of the demagnetizing field received by the magnet.
 本発明では、上記課題点を解決するため、希土類磁石に依存することなく高い減磁耐力を確保することができる、永久磁石埋込型電動機を提供することを目的とする。 In order to solve the above-described problems, an object of the present invention is to provide a permanent magnet embedded type electric motor that can ensure high demagnetization resistance without depending on a rare earth magnet.
 上述した目的を達成するため、本発明の永久磁石埋込型電動機は、ステータと、前記ステータに対向して回転可能に設けられたロータとを備え、前記ロータは、複数の永久磁石と、ロータコアとを有しており、前記ロータコアは、複数の磁石挿入孔を有しており、前記永久磁石は、前記磁石挿入孔に挿入されており、前記磁石挿入孔のアウトラインは、前記ロータの回転中心線CLを垂線とする面においてみて、孔内側ラインと、孔外側ラインとを含んでおり、前記永久磁石は、磁石内側面と、磁石外側面とを含んでおり、前記磁石内側面は前記孔内側ラインに接触し、前記磁石外側面は前記孔外側ラインに接触しており、前記孔内側ラインは半径r1の第1円弧により構成され、前記孔外側ラインは半径r2の第2円弧により構成されており、前記第1円弧および前記第2円弧は、前記ロータの回転中心に向けて突出しており、前記第1円弧の中心O1と、前記第2円弧の中心O2とは、磁極中心線ML上に位置しており、前記第1円弧の中心O1と、前記回転中心線CLとの、前記磁極中心線ML方向の距離x1は、前記第2円弧の中心O2と、前記回転中心線CLとの、前記磁極中心線ML方向の距離x2よりも大きく、且つ、前記距離x1-前記距離x2は、前記半径r1-前記半径r2よりも大きい。
 さらに、同目的を達成するための本発明に係る圧縮機は、密閉容器内に、電動機と、圧縮要素とを備え、当該電動機は、上述した本発明に係る永久磁石埋込型電動機である。
 さらに、同目的を達成するための本発明に係る冷凍空調装置は、上記の本発明に係る圧縮機を、冷凍回路の構成要素として含むものである。
In order to achieve the above-described object, an embedded permanent magnet electric motor of the present invention includes a stator and a rotor that is rotatably provided to face the stator, and the rotor includes a plurality of permanent magnets and a rotor core. The rotor core has a plurality of magnet insertion holes, the permanent magnet is inserted into the magnet insertion hole, and the outline of the magnet insertion hole is the rotation center of the rotor When viewed in a plane with the line CL as a perpendicular, the hole includes an inner hole line and an outer hole line, the permanent magnet includes a magnet inner surface and a magnet outer surface, and the magnet inner surface is the hole. Contacting the inner line, the magnet outer surface is in contact with the hole outer line, the hole inner line is constituted by a first arc having a radius r1, and the hole outer line is constituted by a second arc having a radius r2. Wait The first arc and the second arc protrude toward the rotation center of the rotor, and the center O1 of the first arc and the center O2 of the second arc are located on the magnetic pole center line ML. The distance x1 between the center O1 of the first arc and the rotation center line CL in the magnetic pole center line ML direction is the distance between the center O2 of the second arc and the rotation center line CL. The distance x2 in the magnetic pole center line ML direction is larger than the distance x2, and the distance x1−the distance x2 is larger than the radius r1−the radius r2.
Furthermore, a compressor according to the present invention for achieving the same object includes an electric motor and a compression element in a sealed container, and the electric motor is the above-described permanent magnet embedded electric motor according to the present invention.
Furthermore, the refrigerating and air-conditioning apparatus according to the present invention for achieving the same object includes the above-described compressor according to the present invention as a component of the refrigeration circuit.
 本発明によれば、希土類磁石に依存することなく高い減磁耐力を確保することができる。 According to the present invention, high demagnetization resistance can be ensured without depending on the rare earth magnet.
本発明の実施の形態1の永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。It is a figure which shows the cross section orthogonal to the rotation centerline of the permanent magnet embedded electric motor of Embodiment 1 of this invention. 図1におけるロータ単体を示す図である。It is a figure which shows the rotor single-piece | unit in FIG. 磁石挿入孔の湾曲態様を示す図である。It is a figure which shows the curve aspect of a magnet insertion hole. 図3における磁石挿入孔に磁石を挿入した状態を示す図である。It is a figure which shows the state which inserted the magnet in the magnet insertion hole in FIG. 本発明の実施の形態2に関する、図4と同態様の図である。It is a figure of the same aspect as FIG. 4 regarding Embodiment 2 of this invention. 永久磁石埋込型電動機を搭載した本発明の実施の形態3のロータリ圧縮機の縦断面図である。It is a longitudinal cross-sectional view of the rotary compressor of Embodiment 3 of this invention carrying a permanent magnet embedded type electric motor.
 以下、本発明の実施の形態について添付図面に基づいて説明する。なお、図中、同一符号は同一又は対応部分を示すものとする。なお、図3~図5は何れも、図1に示す断面におけるロータの一部を示す図であるが、図の明瞭性を優先し、ハッチングは省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, the same reference numerals indicate the same or corresponding parts. 3 to 5 are views showing a part of the rotor in the cross section shown in FIG. 1, the hatching is omitted in order to give priority to the clarity of the drawing.
 実施の形態1.
 図1は、本発明の実施の形態1の永久磁石埋込型電動機の回転中心線と直交する断面を示す図である。図2は、図1におけるロータ単体を示す図である。
Embodiment 1 FIG.
FIG. 1 is a view showing a cross section orthogonal to the rotation center line of the permanent magnet embedded electric motor according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing a single rotor in FIG.
 永久磁石埋込型電動機1は、ステータ3と、ステータ3に対向して回転可能に設けられたロータ5とを備える。ステータ3は、複数のティース部7を有している。複数のティース部7はそれぞれ、対応するスロット部9を介して別のティース部7と隣り合っている。複数のティース部7と複数のスロット部9とは、周方向に交互に且つ等間隔で並ぶように配置されている。 The embedded permanent magnet electric motor 1 includes a stator 3 and a rotor 5 that is rotatably provided facing the stator 3. The stator 3 has a plurality of tooth portions 7. Each of the plurality of tooth portions 7 is adjacent to another tooth portion 7 via a corresponding slot portion 9. The plurality of tooth portions 7 and the plurality of slot portions 9 are arranged so as to be alternately arranged at equal intervals in the circumferential direction.
 複数のティース部7には、それぞれ、ステータ巻線3aが、いわゆる分布巻方式で巻かれている。分布巻方式は、ステータ3の複数のティース部7に渡って分布して巻線が施されている巻き方である。この分布巻方式は、集中巻方式と比較し、リラクタンストルクの利用に優れる特徴を持っている。 The stator winding 3a is wound around each of the plurality of tooth portions 7 by a so-called distributed winding method. The distributed winding method is a winding method in which windings are distributed and distributed over a plurality of tooth portions 7 of the stator 3. This distributed winding method is superior to the concentrated winding method in that it uses reluctance torque.
 ロータ5は、ロータコア11と、シャフト13とを有している。シャフト13は、ロータコア11の軸心部に、焼嵌、圧入等により連結されており、ロータコア11に回転エネルギーを伝達する。ロータ5の外周面と、ステータ3の内周面との間には、エアギャップ15が確保されている。 The rotor 5 has a rotor core 11 and a shaft 13. The shaft 13 is connected to the axial center portion of the rotor core 11 by shrink fitting, press fitting, or the like, and transmits rotational energy to the rotor core 11. An air gap 15 is secured between the outer peripheral surface of the rotor 5 and the inner peripheral surface of the stator 3.
 このような構成において、ロータ5は、エアギャップ15を介したステータ3の内側で、回転中心線CL(ロータの回転中心、シャフトの軸線)を中心に回転自在に保持されている。具体的には、ステータ3に、指令回転数に同期した周波数の電流を通電することにより、回転磁界を発生させ、ロータ5を回転させる。 In such a configuration, the rotor 5 is held inside the stator 3 via the air gap 15 so as to be rotatable about the rotation center line CL (rotor center of the rotor, shaft axis). Specifically, a current of a frequency synchronized with the command rotational speed is supplied to the stator 3 to generate a rotating magnetic field and rotate the rotor 5.
 ステータ3と、ロータ5との構成を詳細に説明する。ステータ3は、ステータコア17を有する。ステータコア17は、電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。 The configuration of the stator 3 and the rotor 5 will be described in detail. The stator 3 has a stator core 17. The stator core 17 is configured by punching electromagnetic steel sheets into a predetermined shape and laminating a predetermined number of electromagnetic steel sheets while being fastened with caulking.
 ステータ3の中心付近には、回転可能に保持されたシャフト13が配置されている。そして、そのシャフト13にロータ5が嵌合されている。ロータ5は、ロータコア11を有しており、そのロータコア11もまた、ステータコア17同様、電磁鋼板を所定の形状に打ち抜き、所定枚数の電磁鋼板をカシメで締結しながら積層して構成される。 Near the center of the stator 3, a shaft 13 that is rotatably held is disposed. The rotor 5 is fitted to the shaft 13. The rotor 5 has a rotor core 11, and the rotor core 11 is also configured by punching electromagnetic steel plates into a predetermined shape and laminating a predetermined number of electromagnetic steel plates while being fastened by caulking.
 ロータ外周面25と後述する孔サイドライン57との間は、一様な肉厚の極間薄肉部18(図3参照)が存在する。これらの極間薄肉部18はそれぞれ、隣接する磁極間での漏れ磁束の経路となるため、できるだけ薄いことが好ましい。 Between the rotor outer peripheral surface 25 and a hole side line 57 described later, there is an inter-wall thin portion 18 (see FIG. 3) having a uniform thickness. Each of these inter-electrode thin portions 18 serves as a leakage magnetic flux path between adjacent magnetic poles, and is preferably as thin as possible.
 ロータコア11の内部には、N極とS極とが交互になるように着磁された複数の(極数分の)永久磁石19が設けられている。永久磁石19はそれぞれ、焼結フェライト磁石から構成されており、図1においてみて、弧状に湾曲しており、その弧形状の凸部側がロータ5の中心側に向くように配置されている。より詳細には、ロータコア11には、複数の永久磁石19に対応した数の磁石挿入孔21が形成されており、複数の磁石挿入孔21にはそれぞれ、対応する永久磁石19が挿入されている。 A plurality of permanent magnets 19 (for the number of poles) magnetized so that N poles and S poles are alternately provided are provided in the rotor core 11. Each of the permanent magnets 19 is composed of a sintered ferrite magnet, and is curved in an arc shape as viewed in FIG. 1, and is arranged so that the arc-shaped convex portion side faces the center side of the rotor 5. More specifically, the rotor core 11 has a number of magnet insertion holes 21 corresponding to the plurality of permanent magnets 19, and the corresponding permanent magnets 19 are inserted into the plurality of magnet insertion holes 21, respectively. .
 永久磁石19は、フェライト磁石で構成されている。フェライト磁石は、酸化鉄(Fe23)を主成分とするため、一般的な永久磁石埋込型電動機に用いられる希土類磁石よりも安価であり、供給性が安定している。またフェライト磁石は、円弧形状の磁石を形成し易いため、本実施の形態のような逆円弧態様の磁石挿入孔にも挿入可能な磁石が構成できる。 The permanent magnet 19 is composed of a ferrite magnet. Since the ferrite magnet contains iron oxide (Fe 2 O 3 ) as a main component, it is cheaper than a rare earth magnet used in a general permanent magnet embedded electric motor, and the supply performance is stable. In addition, since the ferrite magnet is easy to form an arc-shaped magnet, a magnet that can be inserted into a magnet insertion hole having a reverse arc shape as in the present embodiment can be configured.
 複数の永久磁石19及び複数の磁石挿入孔21は共に、ロータ外周面25の円弧と径方向の内外方向でみて逆向きとなる逆円弧態様に構成されている。すなわち、複数の永久磁石19及び複数の磁石挿入孔21はロータ5の中心側に凸となる向き(径方向外側すなわちロータ外周面25側に凹となる向き)の弧状に形成されている。また、図1に示されているように、一つの磁石挿入孔21につき一つの永久磁石19が挿入されている。 The plurality of permanent magnets 19 and the plurality of magnet insertion holes 21 are both configured in a reverse arc shape that is opposite to the arc of the rotor outer peripheral surface 25 when viewed in the radially inner and outer directions. That is, the plurality of permanent magnets 19 and the plurality of magnet insertion holes 21 are formed in an arc shape that is convex toward the center side of the rotor 5 (ie, a direction that is concave toward the radially outer side, ie, the rotor outer peripheral surface 25 side). As shown in FIG. 1, one permanent magnet 19 is inserted into one magnet insertion hole 21.
 ロータ5の磁極数は、2極以上であればいくつでもよい。本説明では、一例として6極の構成を示しており、図1及び図2に示されているように、ロータ5には、6つの磁石挿入孔21が等角度間隔で離隔するように設けられている。すなわち、6つの磁石挿入孔21は、それぞれが、60度の角度間隔で隣り合う磁石挿入孔21と離隔しているように配置されている。また、6つの永久磁石19は、径方向の磁極の向きに関し、ロータ周方向に沿ってN極とS極とが交互に入れ替わるように配置されている。 The number of magnetic poles of the rotor 5 is not limited as long as it is two or more. In this description, a six-pole configuration is shown as an example, and as shown in FIGS. 1 and 2, the rotor 5 is provided with six magnet insertion holes 21 spaced apart at equal angular intervals. ing. That is, the six magnet insertion holes 21 are arranged so as to be separated from the adjacent magnet insertion holes 21 at an angular interval of 60 degrees. Further, the six permanent magnets 19 are arranged so that the N pole and the S pole are alternately switched along the circumferential direction of the rotor with respect to the direction of the magnetic pole in the radial direction.
 次に、永久磁石及び磁石挿入孔の詳細について説明する。図3は、磁石挿入孔の湾曲態様を示す図である。図4は、図3における磁石挿入孔に磁石を挿入した状態を示す図である。 Next, details of the permanent magnet and the magnet insertion hole will be described. FIG. 3 is a diagram showing a curved aspect of the magnet insertion hole. FIG. 4 is a view showing a state in which a magnet is inserted into the magnet insertion hole in FIG. 3.
 永久磁石19はそれぞれ、磁石内側面43と、磁石外側面45と、一対の磁石サイド面47とを有している。また、磁石挿入孔21はそれぞれ、回転中心線CLを垂線とする面でみて、孔の輪郭として、孔内側ライン53と、孔外側ライン55と、一対の孔サイドライン57とを有している。磁石挿入孔21は、回転中心線CLの延びる方向に、同一断面形状で延びている。 The permanent magnets 19 each have a magnet inner surface 43, a magnet outer surface 45, and a pair of magnet side surfaces 47. Further, each of the magnet insertion holes 21 has a hole inner line 53, a hole outer line 55, and a pair of hole side lines 57 as the outline of the hole when viewed from the plane having the rotation center line CL as a perpendicular line. . The magnet insertion hole 21 extends in the same cross-sectional shape in the direction in which the rotation center line CL extends.
 なお、磁石内側面および磁石外側面における「内側」および「外側」は、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しており、孔内側ラインおよび孔外側ラインにおける「内側」および「外側」もまた、回転中心線CLを垂線とする面でみて、相対的な比較で径方向の内側および外側の何れであるかを示しているものとする。 In addition, “inside” and “outside” on the magnet inner side surface and the magnet outer side surface indicate whether they are the inner side or the outer side in the radial direction in a relative comparison with respect to the plane having the rotation center line CL as a perpendicular line. “Inside” and “Outside” in the hole inner line and the hole outer line also indicate whether they are the radially inner side or the outer side relative to the rotation center line CL as a perpendicular line. It shall be.
 図4に示されるように、永久磁石19が対応する磁石挿入孔21に挿入された状態では、磁石サイド面47と孔サイドライン57との間には空隙部61が形成され、磁石外側面45と孔外側ライン55とが接触し、磁石内側面43と孔内側ライン53とが接触する。 As shown in FIG. 4, when the permanent magnet 19 is inserted into the corresponding magnet insertion hole 21, a gap portion 61 is formed between the magnet side surface 47 and the hole side line 57, and the magnet outer surface 45. And the hole outside line 55 are in contact with each other, and the magnet inner side surface 43 and the hole inside line 53 are in contact with each other.
 孔外側ライン55は、半径r1の第1円弧によって構成されている。一方、孔内側ライン53は、半径r2の第2円弧によって構成されている。第1円弧および第2円弧は、ロータの回転中心に向けて突出している。 The hole outer line 55 is configured by a first arc having a radius r1. On the other hand, the hole inner line 53 is configured by a second arc having a radius r2. The first arc and the second arc protrude toward the rotation center of the rotor.
 半径r1の第1円弧の中心O1と、半径r2の第2円弧の中心O2とは、対応する磁極の磁極中心線ML上に位置しており、半径r1の第1円弧の中心O1は、半径r2の第2円弧の中心O2よりも径方向外側に位置している。また、半径r1の第1円弧の中心O1は、ロータ外周面25よりも径方向外側に位置しており、半径r2の第2円弧の中心O2は、ロータ外周面25よりも径方向内側に位置している。 The center O1 of the first arc of radius r1 and the center O2 of the second arc of radius r2 are located on the magnetic pole center line ML of the corresponding magnetic pole, and the center O1 of the first arc of radius r1 is the radius It is located radially outward from the center O2 of the second arc of r2. The center O1 of the first arc with the radius r1 is located radially outside the rotor outer peripheral surface 25, and the center O2 of the second arc with the radius r2 is located radially inward of the rotor outer peripheral surface 25. is doing.
 また、ロータ5の回転中心線CLを垂線とする断面においてみて、すなわち図3においてみて、永久磁石19及び磁石挿入孔21は、対応する磁極中心線MLによる線対称に形成されている。 Further, when viewed in a cross section in which the rotation center line CL of the rotor 5 is a perpendicular line, that is, in FIG. 3, the permanent magnet 19 and the magnet insertion hole 21 are formed symmetrically with respect to the corresponding magnetic pole center line ML.
 図3に示されるように、磁石挿入孔21における半径r1の第1円弧の中心O1と、回転中心線CLとの、磁極中心線ML方向の距離x1は、半径r2の第2円弧の中心O2と、回転中心線CLとの、磁極中心線ML方向の距離x2よりも大きい。また、距離x1-距離x2は、第1円弧の半径r1-第2円弧の半径r2よりも、大きい。すなわち、磁石挿入孔21はそれぞれ、x1>x2、かつ、x1-x2>r1-r2の関係性を満たすように形成されている。 As shown in FIG. 3, the distance x1 in the magnetic pole center line ML direction between the center O1 of the first arc of radius r1 in the magnet insertion hole 21 and the rotation center line CL is the center O2 of the second arc of radius r2. And the distance x2 between the rotation center line CL and the magnetic pole center line ML. The distance x1−the distance x2 is larger than the radius r1 of the first arc and the radius r2 of the second arc. That is, the magnet insertion holes 21 are formed so as to satisfy the relationship of x1> x2 and x1-x2> r1-r2.
 磁石挿入孔21の寸法の上記関係性を満たすメリットを説明するため、図4に、上記関係性を満たす磁石挿入孔に磁石を挿入した状態を示す。まず、前述したx1>x2を満たすことで、磁石の厚さは不均一になっており、すなわち磁石中央の厚さが最大となり、磁石端部になるにつれて磁石厚さが薄くなる。このような磁石形状とすることで、ロータ回転中に磁石挿入孔内部で磁石が移動しようとする際、磁石が磁石挿入孔内部で引っかかるため、磁石挿入孔内での磁石の移動を抑制することができる。なお、x1とx2の差が大きい程、磁石挿入孔の中央厚さと端部厚さの差が大きくなるため、x1-x2が大きい方が磁石固定の信頼性が向上するといえる。しかし、単にx1>x2を満たすだけでは、磁石挿入孔のロータ外周面25側の端部が先鋭状となる可能性がある。磁石挿入孔のロータ外周面25側の端部が先鋭状となると、磁石挿入孔のロータ外周面25側の端部と、ロータ外周面25との間の、鉄心部分である薄肉部の磁気抵抗が小さくなるため、磁石からの磁束の漏れ経路となり、漏れ磁束の増加による効率悪化を招く。そこで、本実施の形態1では、x1-x2>r1-r2を満たす様に寸法を定めることで、磁石挿入孔のロータ外周面25側の端部が先鋭状となることを回避し、極間薄肉部18の大きな磁気抵抗を維持し、漏れ磁束の発生を抑制することができる。 In order to explain the merits satisfying the above relationship of the dimensions of the magnet insertion hole 21, FIG. 4 shows a state where a magnet is inserted into the magnet insertion hole satisfying the above relationship. First, by satisfying x1> x2 described above, the thickness of the magnet is non-uniform, that is, the thickness at the center of the magnet is maximized, and the thickness of the magnet is reduced toward the end of the magnet. By adopting such a magnet shape, when the magnet tries to move inside the magnet insertion hole while the rotor is rotating, the magnet is caught inside the magnet insertion hole, so that the movement of the magnet inside the magnet insertion hole is suppressed. Can do. The larger the difference between x1 and x2, the greater the difference between the center thickness and the end thickness of the magnet insertion hole. Therefore, it can be said that the larger x1-x2 is, the more reliable the magnet fixing is. However, simply satisfying x1> x2 may cause the end of the magnet insertion hole on the rotor outer peripheral surface 25 side to be sharp. When the end of the magnet insertion hole on the rotor outer peripheral surface 25 side is sharp, the magnetoresistance of the thin portion that is the iron core portion between the end of the magnet insertion hole on the rotor outer peripheral surface 25 side and the rotor outer peripheral surface 25 Therefore, the magnetic flux leaks from the magnet, resulting in a deterioration in efficiency due to an increase in the magnetic flux leakage. Therefore, in the first embodiment, by setting the dimensions so as to satisfy x1-x2> r1-r2, the end of the magnet insertion hole on the rotor outer peripheral surface 25 side is prevented from being sharp, The large magnetic resistance of the thin portion 18 can be maintained and the generation of leakage magnetic flux can be suppressed.
 以上に説明した本実施の形態1の永久磁石埋込型電動機によれば、次のような利点が得られる。磁石挿入孔及び永久磁石を逆円弧形状とすることで、磁石の表面積を稼ぐことができるため、磁力を向上させることができ、磁石磁束に起因するマグネットトルクを増加させることができる。また、孔外側ラインの第1円弧の半径の中心と、孔内側ラインの第2円弧の半径の中心とを、相互に異なる位置に配置することで、磁石厚さが不均等となり、磁石挿入孔に磁石固定用の突起(ストッパ)を設けることなく回転中の磁石を固定できるため、突起(ストッパ)に起因した磁石端部での部分減磁を抑制し、磁石端部の減磁耐力を向上させることができる。さらに、磁石挿入孔先端から周方向に空隙を3≦θ≦5[deg]拡張させることで、薄肉に発生する漏れ磁束を抑制できるため、磁力増加によりマグネットトルクを向上させることができる。また、フェライト磁石は、円弧形状の成形性に優れているため、上述したような逆円弧形状の磁石を容易に構成することができる。 According to the permanent magnet embedded type electric motor of the first embodiment described above, the following advantages are obtained. By making the magnet insertion hole and the permanent magnet into a reverse arc shape, the surface area of the magnet can be increased, so that the magnetic force can be improved and the magnet torque caused by the magnet magnetic flux can be increased. Further, by arranging the center of the radius of the first arc of the hole outer line and the center of the radius of the second arc of the hole inner line at different positions, the magnet thickness becomes uneven, and the magnet insertion hole Since the rotating magnet can be fixed without providing a magnet fixing protrusion (stopper) on the magnet, partial demagnetization at the magnet end due to the protrusion (stopper) is suppressed, and the demagnetization resistance of the magnet end is improved. Can be made. Furthermore, by expanding the gap 3 ≦ θ ≦ 5 [deg] in the circumferential direction from the tip of the magnet insertion hole, it is possible to suppress the leakage magnetic flux generated in the thin wall, and thus it is possible to improve the magnet torque by increasing the magnetic force. Moreover, since the ferrite magnet is excellent in arc-shaped formability, the reverse arc-shaped magnet as described above can be easily configured.
 実施の形態2.
 次に、本発明の実施の形態2について説明する。図5は、本発明の実施の形態2に関する、図4と同態様の図である。本実施の形態2は、以下に説明する部分を除いては、上述した実施の形態1と同様に構成されているものとする。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. FIG. 5 is a diagram of the same mode as FIG. 4 regarding the second embodiment of the present invention. The second embodiment is configured in the same manner as the first embodiment described above except for the parts described below.
 図5に示されるように、本実施の形態2では、磁石挿入孔22は、孔外側ライン55の両端部(ロータ外周面25側の端部それぞれ)に、凹部46が設けられている。凹部46はそれぞれ、孔外側ライン55の対応する端部から、対応する磁極中心線MLに向けて、ロータ外周面25に沿うように延びている。磁石サイド面47と孔サイドライン57との間の空隙部62は、凹部46の存在の分だけ、実施の形態1の態様よりも拡張されている。 As shown in FIG. 5, in the second embodiment, the magnet insertion hole 22 is provided with recesses 46 at both ends of the hole outer line 55 (each end on the rotor outer peripheral surface 25 side). Each of the recesses 46 extends from the corresponding end of the hole outer line 55 along the rotor outer peripheral surface 25 toward the corresponding magnetic pole center line ML. The gap 62 between the magnet side surface 47 and the hole side line 57 is expanded as compared with the first embodiment by the presence of the recess 46.
 このように構成された本実施の形態2の永久磁石埋込型電動機によっても、上述した実施の形態1と同様な利点が得られている。さらに、本実施の形態2では、上記のように空隙部が拡張されていることで、極間薄肉部の磁気抵抗をさらに大きくすることができるため、漏れ磁束の低減により、さらに高効率な永久磁石埋込型電動機を得ることができる。 The advantages similar to those of the above-described first embodiment are also obtained by the permanent magnet embedded electric motor of the second embodiment configured as described above. Further, in the second embodiment, since the gap is expanded as described above, the magnetic resistance of the thin electrode portion can be further increased. Therefore, the leakage flux can be reduced to achieve a more efficient permanent. A magnet-embedded electric motor can be obtained.
 実施の形態3.
 次に、本発明の実施の形態3として、上述した実施の形態1または実施の形態2の永久磁石埋込型電動機を搭載したロータリ圧縮機について説明する。なお、本発明は、上述した実施の形態1または実施の形態2の永久磁石埋込型電動機を搭載した圧縮機を含むものであるが、圧縮機の種別は、ロータリ圧縮機に限定されるものではない。
Embodiment 3 FIG.
Next, as a third embodiment of the present invention, a rotary compressor equipped with the above-described permanent magnet embedded electric motor according to the first or second embodiment will be described. In addition, although this invention includes the compressor carrying the permanent magnet embedded type electric motor of Embodiment 1 or Embodiment 2 mentioned above, the classification of a compressor is not limited to a rotary compressor. .
 図6は、永久磁石埋込型電動機を搭載したロータリ圧縮機の縦断面図である。ロータリ圧縮機100は、密閉容器101内に、永久磁石埋込型電動機1(電動要素)と、圧縮要素103とを備えている。図示はしないが、密閉容器101の底部に、圧縮要素103の各摺動部を潤滑する冷凍機油が貯留されている。 FIG. 6 is a longitudinal sectional view of a rotary compressor equipped with an embedded permanent magnet electric motor. The rotary compressor 100 includes an embedded permanent magnet electric motor 1 (electric element) and a compression element 103 in an airtight container 101. Although not shown, refrigerating machine oil that lubricates each sliding portion of the compression element 103 is stored at the bottom of the sealed container 101.
 圧縮要素103は、主な要素として、上下積層状態に設けられたシリンダ105と、永久磁石埋込型電動機1により回転するシャフトである回転軸107と、回転軸107に嵌挿されるピストン109と、シリンダ105内を吸入側と圧縮側に分けるベーン(図示せず)と、回転軸107が回転自在に嵌挿され、シリンダ105の軸方向端面を閉塞する上下一対の上部フレーム111及び下部フレーム113と、上部フレーム111及び下部フレーム113にそれぞれ装着されたマフラ115とを含んでいる。 The compression element 103 includes, as main elements, a cylinder 105 provided in a vertically stacked state, a rotation shaft 107 that is a shaft that is rotated by the embedded permanent magnet electric motor 1, a piston 109 that is inserted into the rotation shaft 107, A vane (not shown) that divides the inside of the cylinder 105 into a suction side and a compression side, and a pair of upper and lower frames 111 and 113 that are rotatably inserted into the rotary shaft 107 and close the axial end surface of the cylinder 105. , And mufflers 115 respectively mounted on the upper frame 111 and the lower frame 113.
 永久磁石埋込型電動機1のステータ3は、密閉容器101に焼嵌または溶接等の方法により直接取り付けられ保持されている。ステータ3のコイルには、密閉容器101に固定されるガラス端子から電力が供給される。 The stator 3 of the permanent magnet embedded electric motor 1 is directly attached and held on the sealed container 101 by a method such as shrink fitting or welding. Electric power is supplied to the coil of the stator 3 from a glass terminal fixed to the sealed container 101.
 ロータ5は、ステータ3の内径側に、空隙を介して配置されており、ロータ5の中心部の回転軸107(シャフト13)を介して圧縮要素103の軸受け部(上部フレーム111及び下部フレーム113)により回転自在な状態で保持されている。 The rotor 5 is disposed on the inner diameter side of the stator 3 via a gap, and a bearing portion (an upper frame 111 and a lower frame 113) of the compression element 103 via a rotation shaft 107 (shaft 13) at the center of the rotor 5. ) Is held in a freely rotatable state.
 次に、かかるロータリ圧縮機100の動作について説明する。アキュムレータ117から供給された冷媒ガスは、密閉容器101に固定された吸入パイプ119よりシリンダ105内へ吸入される。インバータの通電によって永久磁石埋込型電動機1が回転されていることで、回転軸107に嵌合されたピストン109がシリンダ105内で回転される。それにより、シリンダ105内では冷媒の圧縮が行われる。冷媒は、マフラ115を経た後、密閉容器101内を上昇する。このとき、圧縮された冷媒には冷凍機油が混入している。この冷媒と冷凍機油との混合物は、ロータコア11に設けた風穴71を通過する際に、冷媒と冷凍機油との分離を促進され、冷凍機油が吐出パイプ121へ流入するのを防止できる。このようにして、圧縮された冷媒が、密閉容器101に設けられた吐出パイプ121を通って冷凍サイクルの高圧側へと供給される。 Next, the operation of the rotary compressor 100 will be described. The refrigerant gas supplied from the accumulator 117 is sucked into the cylinder 105 through a suction pipe 119 fixed to the sealed container 101. The permanent magnet embedded electric motor 1 is rotated by energization of the inverter, so that the piston 109 fitted to the rotating shaft 107 is rotated in the cylinder 105. Thereby, the refrigerant is compressed in the cylinder 105. After the refrigerant passes through the muffler 115, the refrigerant rises in the sealed container 101. At this time, refrigeration oil is mixed in the compressed refrigerant. When the mixture of the refrigerant and the refrigerating machine oil passes through the air holes 71 provided in the rotor core 11, the separation of the refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil can be prevented from flowing into the discharge pipe 121. In this way, the compressed refrigerant is supplied to the high-pressure side of the refrigeration cycle through the discharge pipe 121 provided in the sealed container 101.
 尚、ロータリ圧縮機100の冷媒には、従来からあるR410A、R407C、R22等を用いてもよいが、低GWP(地球温暖化係数)の冷媒等などいかなる冷媒も適用できる。地球温暖化防止の観点からは、低GWP冷媒が望まれている。低GWP冷媒の代表例として、以下の冷媒がある。
(1)組成中に炭素の二重結合を有するハロゲン化炭化水素:例えば、HFO-1234yf(CF3CF=CH2)である。HFOは、Hydro-Fluoro-Olefinの略で、Olefinは、二重結合を一つ持つ不飽和炭化水素のことである。尚、HFO-1234yfのGWPは4である。
(2)組成中に炭素の二重結合を有する炭化水素:例えば、R1270(プロピレン)である。尚、GWPは3で、HFO-1234yfより小さいが、可燃性はHFO-1234yfより大きい。
(3)組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくともいずれかを含む混合物:例えば、HFO-1234yfとR32との混合物等である。HFO-1234yfは、低圧冷媒のため圧損が大きくなり、冷凍サイクル(特に、蒸発器において)の性能が低下しやすい。そのため、HFO-1234yfより高圧冷媒であるR32又はR41等との混合物が実用上は有力になる。
In addition, although conventional R410A, R407C, R22, etc. may be used as the refrigerant of the rotary compressor 100, any refrigerant such as a low GWP (global warming potential) refrigerant can be applied. From the viewpoint of preventing global warming, a low GWP refrigerant is desired. As typical examples of the low GWP refrigerant, there are the following refrigerants.
(1) Halogenated hydrocarbon having a carbon double bond in the composition: for example, HFO-1234yf (CF3CF = CH2). HFO is an abbreviation for Hydro-Fluoro-Olefin, and Olefin is an unsaturated hydrocarbon having one double bond. The GFO of HFO-1234yf is 4.
(2) Hydrocarbon having a carbon double bond in the composition: for example, R1270 (propylene). GWP is 3, which is smaller than HFO-1234yf, but flammability is larger than HFO-1234yf.
(3) a mixture containing at least one of a halogenated hydrocarbon having a carbon double bond in the composition or a hydrocarbon having a carbon double bond in the composition: for example, a mixture of HFO-1234yf and R32 is there. Since HFO-1234yf is a low-pressure refrigerant, its pressure loss is large, and the performance of the refrigeration cycle (especially in an evaporator) tends to deteriorate. Therefore, a mixture with R32 or R41, which is a high-pressure refrigerant, is more effective than HFO-1234yf in practical use.
 以上に構成された本実施の形態3に係るロータリ圧縮機においても、上述した実施の形態1と同様な利点を有する。また、冷凍空調用圧縮機は、低温から高温下で使用されるため、フェライト磁石のように低温で保磁力の低下する磁石を用いた電動機は、低温下での減磁耐力を厳しく評価する必要がある。この点、本発明の永久磁石埋込型電動機は、低温での減磁耐力を改善させているため、低温から高温まで用いる冷凍空調用圧縮機に搭載されることで、より有益な作用を発揮することとなる。 The rotary compressor according to the third embodiment configured as described above has the same advantages as those of the first embodiment described above. Also, since the compressor for refrigeration and air conditioning is used from low to high temperatures, motors using magnets whose coercive force decreases at low temperatures, such as ferrite magnets, must strictly evaluate the demagnetization resistance at low temperatures. There is. In this respect, the embedded permanent magnet electric motor of the present invention has improved demagnetization resistance at low temperatures, so that it has a more beneficial effect when mounted on a compressor for refrigerating and air conditioning used from low to high temperatures. Will be.
 実施の形態4.
 また、本発明は、上述した実施の形態3の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置として実施することも可能である。なお、冷凍空調装置の冷凍回路における、圧縮機以外の構成要素の構成は、特に、限定されるものではない。
Embodiment 4 FIG.
The present invention can also be implemented as a refrigeration air conditioner including the above-described compressor according to the third embodiment as a component of the refrigeration circuit. In addition, the structure of components other than the compressor in the refrigeration circuit of the refrigeration air conditioner is not particularly limited.
 以上、好ましい実施の形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の改変態様を採り得ることは自明である。 Although the contents of the present invention have been specifically described with reference to the preferred embodiments, various modifications can be made by those skilled in the art based on the basic technical idea and teachings of the present invention. It is self-explanatory.
 1 永久磁石埋込型電動機、3 ステータ、5 ロータ、11 ロータコア、19 永久磁石、21、22 磁石挿入孔、25 ロータ外周面、43 磁石内側面、45 磁石外側面、46 凹部、53 孔内側ライン、55 孔外側ライン、100 ロータリ圧縮機、101 密閉容器、103 圧縮要素。 1 permanent magnet embedded motor, 3 stator, 5 rotor, 11 rotor core, 19 permanent magnet, 21, 22 magnet insertion hole, 25 rotor outer peripheral surface, 43 magnet inner surface, 45 magnet outer surface, 46 recess, 53 hole inner line , 55 outer hole line, 100 rotary compressor, 101 sealed container, 103 compression element.

Claims (5)

  1.  ステータと、
     前記ステータに対向して回転可能に設けられたロータとを備え、
     前記ロータは、複数の永久磁石と、ロータコアとを有しており、
     前記ロータコアは、複数の磁石挿入孔を有しており、
     前記永久磁石は、前記磁石挿入孔に挿入されており、
     前記磁石挿入孔のアウトラインは、前記ロータの回転中心線CLを垂線とする面においてみて、孔内側ラインと、孔外側ラインとを含んでおり、
     前記永久磁石は、磁石内側面と、磁石外側面とを含んでおり、
     前記磁石内側面は前記孔内側ラインに接触し、前記磁石外側面は前記孔外側ラインに接触しており、
     前記孔内側ラインは半径r1の第1円弧により構成され、前記孔外側ラインは半径r2の第2円弧により構成されており、
     前記第1円弧および前記第2円弧は、前記ロータの回転中心に向けて突出しており、
     前記第1円弧の中心O1と、前記第2円弧の中心O2とは、磁極中心線ML上に位置しており、
     前記第1円弧の中心O1と、前記回転中心線CLとの、前記磁極中心線ML方向の距離x1は、前記第2円弧の中心O2と、前記回転中心線CLとの、前記磁極中心線ML方向の距離x2よりも大きく、且つ、前記距離x1-前記距離x2は、前記半径r1-前記半径r2よりも大きい、
    永久磁石埋込型電動機。
    A stator,
    A rotor provided rotatably against the stator,
    The rotor has a plurality of permanent magnets and a rotor core,
    The rotor core has a plurality of magnet insertion holes,
    The permanent magnet is inserted into the magnet insertion hole,
    The outline of the magnet insertion hole includes a hole inner line and a hole outer line as viewed in a plane having the rotation center line CL of the rotor as a perpendicular.
    The permanent magnet includes a magnet inner surface and a magnet outer surface,
    The magnet inner surface is in contact with the hole inner line, the magnet outer surface is in contact with the hole outer line,
    The hole inner line is constituted by a first arc having a radius r1, and the hole outer line is constituted by a second arc having a radius r2.
    The first arc and the second arc protrude toward the rotation center of the rotor;
    The center O1 of the first arc and the center O2 of the second arc are located on the magnetic pole center line ML,
    The distance x1 between the center O1 of the first arc and the rotation center line CL in the magnetic pole center line ML direction is the magnetic pole center line ML between the center O2 of the second arc and the rotation center line CL. A distance x2 in the direction, and the distance x1−the distance x2 is larger than the radius r1−the radius r2.
    Permanent magnet embedded motor.
  2.  前記永久磁石は、フェライト磁石である、
    請求項1の永久磁石埋込型電動機。
    The permanent magnet is a ferrite magnet,
    The embedded permanent magnet electric motor according to claim 1.
  3.  前記磁石挿入孔は、前記孔外側ラインの両端部に、凹部が設けられており、
     前記凹部は、前記孔外側ラインの対応する端部から、対応する磁極中心線MLに向けて、前記ロータの外周面に沿うように延びている、
    請求項1又は2の永久磁石埋込型電動機。
    The magnet insertion hole is provided with recesses at both ends of the hole outer line,
    The concave portion extends from the corresponding end portion of the hole outer line along the outer peripheral surface of the rotor toward the corresponding magnetic pole center line ML.
    The permanent magnet embedded type electric motor according to claim 1 or 2.
  4.  密閉容器内に、電動機と、圧縮要素とを備えた圧縮機であって、
     前記電動機は、請求項1~3の何れか一項の永久磁石埋込型電動機である、
    圧縮機。
    A compressor having an electric motor and a compression element in a sealed container,
    The electric motor is an embedded permanent magnet electric motor according to any one of claims 1 to 3.
    Compressor.
  5.  請求項4の圧縮機を冷凍回路の構成要素として含む、冷凍空調装置。 A refrigeration air conditioner comprising the compressor of claim 4 as a component of a refrigeration circuit.
PCT/JP2014/068586 2014-07-11 2014-07-11 Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device WO2016006103A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068586 WO2016006103A1 (en) 2014-07-11 2014-07-11 Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068586 WO2016006103A1 (en) 2014-07-11 2014-07-11 Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device

Publications (1)

Publication Number Publication Date
WO2016006103A1 true WO2016006103A1 (en) 2016-01-14

Family

ID=55063774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068586 WO2016006103A1 (en) 2014-07-11 2014-07-11 Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device

Country Status (1)

Country Link
WO (1) WO2016006103A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163423A1 (en) * 2016-03-25 2017-09-28 三菱電機株式会社 Rotor, electric motor, compressor, and refrigerator/air-conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268873A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Compressor motor and its application
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2008092744A (en) * 2006-10-05 2008-04-17 Daido Steel Co Ltd Rotor structure of motor
JP2013212035A (en) * 2012-03-30 2013-10-10 Daikin Ind Ltd Motor and compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001268873A (en) * 2000-03-21 2001-09-28 Matsushita Electric Ind Co Ltd Compressor motor and its application
JP2004343861A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Permanent magnet synchronous motor
JP2008092744A (en) * 2006-10-05 2008-04-17 Daido Steel Co Ltd Rotor structure of motor
JP2013212035A (en) * 2012-03-30 2013-10-10 Daikin Ind Ltd Motor and compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163423A1 (en) * 2016-03-25 2017-09-28 三菱電機株式会社 Rotor, electric motor, compressor, and refrigerator/air-conditioner
CN108781008A (en) * 2016-03-25 2018-11-09 三菱电机株式会社 Rotor, motor, compressor and refrigerating and air-conditioning
GB2564263A (en) * 2016-03-25 2019-01-09 Mitsubishi Electric Corp Rotor, electric motor, compressor, and refrigerator/air-conditioner
CN108781008B (en) * 2016-03-25 2020-07-31 三菱电机株式会社 Rotor, motor, compressor, and refrigeration air conditioner
US11121593B2 (en) 2016-03-25 2021-09-14 Mitsubishi Electric Corporation Rotor, motor, compressor, and refrigeration air conditioner
GB2564263B (en) * 2016-03-25 2023-02-01 Mitsubishi Electric Corp Rotor, motor, compressor, and refrigeration air conditioner

Similar Documents

Publication Publication Date Title
JP6169286B1 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6184591B2 (en) Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
JP6109338B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP5944014B2 (en) Permanent magnet embedded electric motor and compressor
JP6080967B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6188927B2 (en) Permanent magnet embedded electric motor, compressor, refrigeration air conditioner
JP6037361B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2015037127A1 (en) Permanent magnet-embedded electric motor, compressor, and refrigerating and air-conditioning device
JP5971669B2 (en) Permanent magnet embedded motor and compressor
JP6494871B2 (en) Stator, electric motor, compressor, and refrigeration air conditioner
JP5971666B2 (en) Permanent magnet embedded motor and compressor
JP6339103B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6612215B2 (en) Rotor, permanent magnet embedded motor and compressor
JP6223568B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2016006103A1 (en) Electric motor with embedded permanent magnet, compressor, and refrigerating and air conditioning device
WO2015198444A1 (en) Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
JP7154373B2 (en) Electric motors, compressors, and air conditioners

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14897281

Country of ref document: EP

Kind code of ref document: A1