JP2005045984A - Rotor for permanent magnet synchronous motor - Google Patents

Rotor for permanent magnet synchronous motor Download PDF

Info

Publication number
JP2005045984A
JP2005045984A JP2003280307A JP2003280307A JP2005045984A JP 2005045984 A JP2005045984 A JP 2005045984A JP 2003280307 A JP2003280307 A JP 2003280307A JP 2003280307 A JP2003280307 A JP 2003280307A JP 2005045984 A JP2005045984 A JP 2005045984A
Authority
JP
Japan
Prior art keywords
magnet
rotor
magnets
pole
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003280307A
Other languages
Japanese (ja)
Inventor
Motomichi Oto
基道 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003280307A priority Critical patent/JP2005045984A/en
Publication of JP2005045984A publication Critical patent/JP2005045984A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor that allows omission of the post-cutting process after sticking magnets, to obtain high magnetic flux density, and to produce high torque density. <P>SOLUTION: This rotor for a permanent magnet synchronous motor has a rotating shaft, a rotor core, and a plurality of magnetic poles fixed on the outside circumference surface of the rotor core. The magnetic poles are divided into a plurality of permanent magnets per pole, and the magnets are arranged, in such a way that the magnetization direction of each permanent magnet concentrates at magnetic pole center, which is what is called Halbach magnet arrangement. In this rotor, when magnets arranged at the center of the Halbach magnet arrangement constituting one pole are designated as main magnets and other magnets as auxiliary magnets, the thickness of the auxiliary magnets is made smaller than those of the main magnets. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は,いわゆる永久磁石型同期電動機に関し,特にその回転子の構造に関するものである。   The present invention relates to a so-called permanent magnet type synchronous motor, and more particularly to the structure of the rotor.

従来の技術として、永久磁石型同期電動機の回転子の磁石配列には図2のようなものがある。図2はラジアル配向の磁石配列の一例を示している。
図において、回転子20は回転軸21の周囲に回転子鉄心22とその周囲に永久磁石23を偶数個(図では6個の場合を示している。)、磁極の向きを交互に逆にして周方向表面に配列して成るものである。
この構成によると、製造が簡単でコストダウンになるものの、高い磁束密度が得られにくく、したがってモータの高トルク化にあまり有効ではなかった。
As a conventional technique, there is a magnet arrangement of a rotor of a permanent magnet type synchronous motor as shown in FIG. FIG. 2 shows an example of a radially oriented magnet arrangement.
In the figure, the rotor 20 has an even number of rotor cores 22 around the rotating shaft 21 and permanent magnets 23 around the rotor core 21 (six cases are shown in the figure), and the directions of the magnetic poles are alternately reversed. It is arranged on the circumferential surface.
According to this configuration, although the manufacturing is simple and the cost is reduced, it is difficult to obtain a high magnetic flux density. Therefore, it is not very effective for increasing the torque of the motor.

これに対して、このラジアル配向の磁石配列の欠点を解決するものとして、いわゆるHalbach(ハルバッハ)磁石配列が提案されている(例えば、非特許文献1、特許文献1〜3参照)。   On the other hand, so-called Halbach magnet arrangements have been proposed as solutions to the drawbacks of this radially oriented magnet arrangement (see, for example, Non-Patent Document 1 and Patent Documents 1 to 3).

大橋著「希土類磁石の応用」新磁性材料セミナ、2001年11月16日、pp.63−66Ohashi, “Application of Rare Earth Magnets”, New Magnetic Materials Seminar, November 16, 2001, pp. 63-66 特開平5−101956号公報Japanese Patent Laid-Open No. 5-101956 特開2003−124019号公報Japanese Patent Laid-Open No. 2003-124019 特開平10−191585号公報Japanese Patent Laid-Open No. 10-191585

図3は、上記非特許文献1記載のHalbach磁石配列と同じような同期電動機の回転子の1例の横断面図である。
図3において、30は回転子、31は回転軸、32は回転子鉄心である。33は1極分の磁極で、ここでは主磁石(永久磁石)34と3個の補磁石(永久磁石)34’で1極を成している。したがって、ここでは磁極数が6極、1極の分割数が4個の場合のHalbach磁石配列となっている。各永久磁石34の中に描かれている矢印35、35’は各永久磁石の磁化方向を示している。35は磁化方向が垂直方向を向く主磁石の磁化方向、35’は磁化方向が垂直以外の方向を向く補磁石の磁化方向を示している。
このように、Halbach磁石配列は1極当り複数個の永久磁石に分割し、各永久磁石の磁化方向35’を少しずつ変えることにより、磁極中心に磁束が集中するように各永久磁石を配列しているので、高い磁束密度が得られ、モータの高トルク化などに極めて有効である。分割数は、通常1極当り2〜5分割が用いられる。
FIG. 3 is a cross-sectional view of an example of a rotor of a synchronous motor similar to the Halbach magnet arrangement described in Non-Patent Document 1.
In FIG. 3, 30 is a rotor, 31 is a rotating shaft, and 32 is a rotor core. Reference numeral 33 denotes a magnetic pole for one pole, and here a main magnet (permanent magnet) 34 and three auxiliary magnets (permanent magnet) 34 'form one pole. Therefore, here is a Halbach magnet arrangement in which the number of magnetic poles is 6 poles and the number of divisions of 1 pole is 4. Arrows 35 and 35 ′ drawn in each permanent magnet 34 indicate the magnetization direction of each permanent magnet. 35 indicates the magnetization direction of the main magnet whose magnetization direction is perpendicular, and 35 'indicates the magnetization direction of the auxiliary magnet whose magnetization direction is other than perpendicular.
In this way, the Halbach magnet arrangement is divided into a plurality of permanent magnets per pole, and the permanent magnets are arranged so that the magnetic flux is concentrated at the center of the magnetic pole by changing the magnetization direction 35 'of each permanent magnet little by little. Therefore, a high magnetic flux density can be obtained, which is extremely effective for increasing the torque of the motor. Usually, 2 to 5 divisions are used per pole.

図4は図3のHalbach磁石配列回転子を用いた同期電動機の一例を示す横断面図である。図において30はHalbach磁石配列回転子で、31は回転軸、32は回転子鉄心、33は永久磁石、また40は固定子で、41は固定子鉄心、41aはティース、42は固定子巻線である。固定子鉄心42は珪素鋼板などの薄板材を多数枚積層して形成し、固定子40の内側は放射状のティース42aとなっており、そのティース42aにそれぞれ絶縁被覆電線42が巻装されている。固定子40の中央空間内に、表面に永久磁石34がHalbach磁石配列された図3の回転子30が配置されている。そこで固定子巻線32に三相交流電流を流すことにより回転磁界が発生し、回転子30を回転させている。
このようなHalbach磁石配列を持つ同期電動機の回転子30は、ラジアル配向の磁石配列と比較して、高い磁束密度が得られ、モータの高トルク化に極めて有効である。
4 is a cross-sectional view showing an example of a synchronous motor using the Halbach magnet array rotor of FIG. In the figure, 30 is a Halbach magnet array rotor, 31 is a rotating shaft, 32 is a rotor core, 33 is a permanent magnet, 40 is a stator, 41 is a stator core, 41a is a tooth, and 42 is a stator winding. It is. The stator core 42 is formed by laminating a large number of thin plate materials such as silicon steel plates, and the inside of the stator 40 is a radial tooth 42a, and the insulation coated electric wires 42 are wound around the teeth 42a. . In the central space of the stator 40, the rotor 30 of FIG. 3 in which the permanent magnets 34 are arranged on the surface of the Halbach magnet is arranged. Therefore, a rotating magnetic field is generated by passing a three-phase alternating current through the stator winding 32, and the rotor 30 is rotated.
The rotor 30 of the synchronous motor having such a Halbach magnet arrangement can obtain a higher magnetic flux density and is extremely effective in increasing the torque of the motor as compared with a radially oriented magnet arrangement.

図5は、同じくHalbach磁石配列の1例を示すもので、ここでは磁極数が8極、1極の分割数が1個の場合の例を示している。
図において、50は回転子、51は回転軸、52は回転子鉄心である。53は1極分の磁極で、ここでは1個の主磁石(永久磁石)54と1個の補磁石(永久磁石)54’で1極を成している。各磁石54、54’の中に描かれている矢印55、55’はそれぞれ各磁石54、54’の磁化方向を示している。
この場合、主磁石54の厚みH1と補磁石54’の厚みH2は互いに等しく設定され(H1=H2)、また主磁石541と補磁石54’は互いに隙間なく配置されている。これは図3に示したHalbach磁石配列の回転子についても全く同様のことが言える。
FIG. 5 also shows an example of the Halbach magnet arrangement. Here, an example in which the number of magnetic poles is 8 poles and the number of divisions of 1 pole is 1 is shown.
In the figure, 50 is a rotor, 51 is a rotating shaft, and 52 is a rotor core. 53 is a magnetic pole for one pole, and here, one main magnet (permanent magnet) 54 and one auxiliary magnet (permanent magnet) 54 'form one pole. Arrows 55 and 55 'drawn in the magnets 54 and 54' indicate the magnetization directions of the magnets 54 and 54 ', respectively.
In this case, the thickness H1 of the main magnet 54 and the thickness H2 of the auxiliary magnet 54 ′ are set to be equal to each other (H1 = H2), and the main magnet 541 and the auxiliary magnet 54 ′ are arranged with no gap therebetween. The same can be said for the rotor of the Halbach magnet arrangement shown in FIG.

ところが、従来のHalbach磁石配列を用いた回転子は、複数の磁石を貼り付けるために、貼り付け作業のばらつき、磁石の厚みまたは幅の形状誤差等により、主磁石と補磁石との間に段差が生じ、磁石表面で凹凸が生じ易いという問題があった。
磁石貼り付け時に生じた段差は、磁石表面上の磁束分布に歪を生じさせるため、モータ特性に悪影響を与えるという問題がある。
このため磁石表面の段差をなくし、磁束密度の歪が生じないよう、磁石貼り付け後に切削を行わなければならないという問題があった。
本発明はこのような問題点に鑑みてなされたものであり、磁石貼り付け後の切削工程を省き、良好な磁束密度分布を得ることのできるHalbach磁石配列を用いた永久磁石型同期電動機を提供することを目的とする。
However, in the rotor using the conventional Halbach magnet arrangement, since a plurality of magnets are pasted, there is a step between the main magnet and the auxiliary magnet due to variation in pasting work, shape error in the thickness or width of the magnet, and the like. There was a problem that unevenness was likely to occur on the magnet surface.
Since the step generated when the magnet is attached causes distortion in the magnetic flux distribution on the magnet surface, there is a problem in that the motor characteristics are adversely affected.
For this reason, there has been a problem that it is necessary to perform cutting after attaching the magnet so as to eliminate the step on the surface of the magnet and prevent distortion of the magnetic flux density.
The present invention has been made in view of such problems, and provides a permanent magnet type synchronous motor using a Halbach magnet arrangement that can obtain a good magnetic flux density distribution by omitting the cutting process after magnet attachment. The purpose is to do.

上記問題を解決するため、請求項1記載の発明は、回転軸と,回転子鉄心と,前記回転子鉄心の外周面に固定された複数極の磁極を持ち,前記磁極は1極当り複数個の永久磁石に分割されていて,各永久磁石の磁化方向が磁極中心に集中するように配置された磁石配列,いわゆるHalbach磁石配列を備えた永久磁石型同期電動機の回転子において,1極を構成するHalbach磁石配列の中心に配置される磁石を主磁石、他を補磁石とし、主磁石の厚みをH1、補磁石の厚みをH2としたときに、H1>H2としたことを特徴とするものである。
このように補磁石の厚みを主磁石の厚みよりもあらかじめ小さく設定したため、磁石貼り付け時の段差を吸収できるので、回転子製造時の後切削工程を省くことができる。
請求項2記載の永久磁石型同期電動機の発明は、中央部を空けて放射状に延びるティースを内包する環状の固定子鉄心および該ティースに巻装された巻線とから成る固定子と、前記ティースの先端に形成された中央空間に配備される請求項1記載の回転子と、から成ることを特徴とする。
このように補磁石の厚みを主磁石の厚みよりも小さくした回転子を用いるので切削工程を省くことができるため、磁石組み立て後に加工することなく高性能な同期電動機を提供することができる。
In order to solve the above problem, the invention described in claim 1 has a rotating shaft, a rotor iron core, and a plurality of magnetic poles fixed to the outer peripheral surface of the rotor iron core. A permanent magnet type synchronous motor rotor having a magnet array arranged so that the magnetization direction of each permanent magnet is concentrated at the center of the magnetic pole, that is, a so-called Halbach magnet array, constitutes one pole. The magnet arranged at the center of the Halbach magnet arrangement is a main magnet, the other is a supplementary magnet, the thickness of the main magnet is H1, and the thickness of the supplementary magnet is H2. It is.
As described above, since the thickness of the auxiliary magnet is set to be smaller than the thickness of the main magnet in advance, a step at the time of magnet attachment can be absorbed, so that a post-cutting process at the time of manufacturing the rotor can be omitted.
The invention of a permanent magnet type synchronous motor according to claim 2 comprises: a stator comprising an annular stator core including a tooth extending radially from a central portion; and a winding wound around the tooth; The rotor according to claim 1, which is disposed in a central space formed at the tip of the rotor.
In this way, since the rotor having a thickness of the auxiliary magnet smaller than that of the main magnet is used, the cutting process can be omitted, and therefore a high-performance synchronous motor can be provided without processing after magnet assembly.

以上述べたように、本発明によれば、回転軸と,回転子鉄心と,前記回転子鉄心の外周面に固定された複数極の磁極を持ち,前記磁極は1極当り複数個の永久磁石に分割されていて,各永久磁石の磁化方向が磁極中心に集中するように配置された磁石配列,いわゆるHalbach磁石配列を備えた永久磁石型同期電動機の回転子において、1極を構成するHalbach磁石配列の中心に配置される磁石を主磁石、他を補磁石としたとき、補磁石の厚みを主磁石の厚みよりも小さく設定したことにより、磁石貼り付け時の段差を吸収できるため、後切削工程を省くことができるという効果がある。
また、磁石表面における磁束分布の歪みを抑えることができるため、高性能な永久磁石型同期電動機を提供することができる。
As described above, according to the present invention, a rotating shaft, a rotor core, and a plurality of magnetic poles fixed to the outer peripheral surface of the rotor core are provided, and the magnetic poles have a plurality of permanent magnets per pole. In a permanent magnet type synchronous motor rotor provided with a magnet array arranged so that the magnetization direction of each permanent magnet is concentrated at the center of the magnetic pole, that is, a so-called Halbach magnet array, a Halbach magnet constituting one pole When the magnet arranged at the center of the array is the main magnet and the other is the auxiliary magnet, the thickness of the auxiliary magnet is set to be smaller than the thickness of the main magnet, so that the step when the magnet is attached can be absorbed. There is an effect that the process can be omitted.
Moreover, since the distortion of the magnetic flux distribution on the magnet surface can be suppressed, a high-performance permanent magnet type synchronous motor can be provided.

以下、本発明について、図面に基づいて詳細に説明する。
図1は、本発明に係る回転子の断面図である。
図において、10は本発明に係る回転子、11は回転軸、12は回転子鉄心である。13は1極分の磁極で、ここでは1個の主磁石(永久磁石)14と1個の補磁石(永久磁石)14’で1極を成している。各磁石14、14’の中に描かれている矢印15、15’はそれぞれ各磁石14、14’の磁化方向を示している。主磁石15および補磁石15’は回転軸11上に接着などにより貼り付けられている。4は磁石の磁化方向を示しており、いわゆるHalbach磁石配列構造となっている。そして、補磁石15’の厚みH2は主磁石15の厚みH1よりも小さくしている(H1>H2)。
補磁石の厚みH2および主磁石の厚みH1は、磁石表面における磁束密度分布が正弦波になるよう設定する。また、補磁石の厚みH2の決定は有限要素法による解析結果などから求めることができる。
このように補磁石15’の厚みH2を主磁石15の厚みH1よりもあらかじめ小さく設定することにより、磁石貼り付け時の段差を吸収できるため、後切削工程を省くことができる。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view of a rotor according to the present invention.
In the figure, 10 is a rotor according to the present invention, 11 is a rotating shaft, and 12 is a rotor core. Reference numeral 13 denotes a magnetic pole for one pole. Here, one main magnet (permanent magnet) 14 and one auxiliary magnet (permanent magnet) 14 'form one pole. Arrows 15 and 15 'drawn in the magnets 14 and 14' indicate the magnetization directions of the magnets 14 and 14 ', respectively. The main magnet 15 and the auxiliary magnet 15 ′ are attached on the rotating shaft 11 by bonding or the like. Reference numeral 4 denotes the magnetization direction of the magnet, which is a so-called Halbach magnet arrangement structure. The thickness H2 of the auxiliary magnet 15 ′ is smaller than the thickness H1 of the main magnet 15 (H1> H2).
The thickness H2 of the auxiliary magnet and the thickness H1 of the main magnet are set so that the magnetic flux density distribution on the magnet surface is a sine wave. Further, the thickness H2 of the auxiliary magnet can be determined from an analysis result by a finite element method or the like.
Thus, by setting the thickness H2 of the auxiliary magnet 15 ′ to be smaller than the thickness H1 of the main magnet 15 in advance, the step at the time of attaching the magnet can be absorbed, so that the post-cutting step can be omitted.

本発明に係る回転子の断面図である。It is sectional drawing of the rotor which concerns on this invention. 従来技術に係る回転子のラジアル配向の磁石配列の一例を示している。An example of the magnet arrangement of the radial orientation of the rotor which concerns on a prior art is shown. 従来技術に係るHalbach磁石配列の一例を示している。An example of the Halbach magnet arrangement according to the prior art is shown. 図3のHalbach磁石配列回転子を用いた同期電動機の一例を示す横断面図である。It is a cross-sectional view which shows an example of the synchronous motor using the Halbach magnet arrangement | sequence rotor of FIG. 同じくHalbach磁石配列の1例で磁極数が8極、1極の分割数が1個の場合の例を示している。Similarly, in the example of the Halbach magnet arrangement, an example in which the number of magnetic poles is 8 poles and the number of divisions of 1 pole is 1 is shown.

符号の説明Explanation of symbols

10 本発明に係る回転子
11 回転軸
12 回転子鉄心
13 1極分の磁極
14 主磁石
14’ 補磁石
15,15’磁石の磁化方向
H1 主磁石の厚み
H2 補磁石の厚み
DESCRIPTION OF SYMBOLS 10 Rotor which concerns on this invention 11 Rotating shaft 12 Rotor core 13 Magnetic pole for 1 pole 14 Main magnet 14 'Supplementary magnet 15, 15' Magnetization direction H1 Main magnet thickness H2 Thickness of supplementary magnet

Claims (2)

回転軸と,回転子鉄心と,前記回転子鉄心の外周面に固定された複数極の磁極を持ち,前記磁極は1極当り複数個の永久磁石に分割されていて,各永久磁石の磁化方向が磁極中心に集中するように配置された磁石配列,いわゆるHalbach磁石配列を備えた永久磁石型同期電動機の回転子において,
1極を構成するHalbach磁石配列の中心に配置される磁石を主磁石、他を補磁石とし、主磁石の厚みをH1、補磁石の厚みをH2としたときに、
H1>H2
としたことを特徴とする永久磁石型同期電動機の回転子。
A rotating shaft, a rotor core, and a plurality of magnetic poles fixed to the outer peripheral surface of the rotor core, the magnetic poles being divided into a plurality of permanent magnets per pole, and the magnetization direction of each permanent magnet In a rotor of a permanent magnet type synchronous motor having a magnet arrangement arranged so as to concentrate on the magnetic pole center, so-called Halbach magnet arrangement,
When the magnet arranged at the center of the Halbach magnet array constituting one pole is the main magnet, the other is the auxiliary magnet, the thickness of the main magnet is H1, and the thickness of the auxiliary magnet is H2,
H1> H2
A rotor of a permanent magnet type synchronous motor characterized by the above.
中央部を空けて放射状に延びるティースを内包する環状の固定子鉄心と、該ティースに巻装された巻線と、から成る固定子と、
前記ティースの先端に形成された中央空間に配備される請求項1記載の回転子と、から成ることを特徴とする永久磁石型同期電動機。
A stator consisting of an annular stator core containing radially extending teeth spaced apart from the center, and windings wound around the teeth;
A permanent magnet type synchronous motor comprising: the rotor according to claim 1 disposed in a central space formed at a tip of the teeth.
JP2003280307A 2003-07-25 2003-07-25 Rotor for permanent magnet synchronous motor Pending JP2005045984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280307A JP2005045984A (en) 2003-07-25 2003-07-25 Rotor for permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280307A JP2005045984A (en) 2003-07-25 2003-07-25 Rotor for permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2005045984A true JP2005045984A (en) 2005-02-17

Family

ID=34266168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280307A Pending JP2005045984A (en) 2003-07-25 2003-07-25 Rotor for permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2005045984A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019127A (en) * 2005-07-06 2007-01-25 Yaskawa Electric Corp Periodic magnetic field generator and linear motor using the same
JP2007060818A (en) * 2005-08-25 2007-03-08 Toyama Univ Rotating machine supported by magnetic repulsion
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2007215292A (en) * 2006-02-08 2007-08-23 Honda Motor Co Ltd Method and device for manufacturing rotor of motor
JP2007228656A (en) * 2006-02-21 2007-09-06 Railway Technical Res Inst Dynamo-electric machine utilizing inductive repulsion/attraction principle
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
DE102007031745A1 (en) 2007-07-06 2009-01-15 Max Baermann Gmbh Magnetic system for producing two-pole homogeneous magnetic field in inner space, has additional magnets for producing additional magnetic fields, where one field causes change of magnetic field in form of convex and/or concave deformation
CN101834476A (en) * 2010-01-05 2010-09-15 陆美娟 Permanent magnet generator inner rotor using Halback magnetic array
KR101002957B1 (en) * 2008-02-02 2010-12-21 종샨 브로드-오션 모터 컴퍼니 리미티드 Motor rotor structure
JP2011239650A (en) * 2010-05-13 2011-11-24 Masashi Nishimura Rotator embedded with permanent magnet
CN103166406A (en) * 2011-12-09 2013-06-19 同济大学 High-power-density high-efficiency permanent magnet synchronous motor used for vehicle
US8487610B2 (en) 2009-05-07 2013-07-16 Pii Limited Magnetising assembly
US20140084731A1 (en) * 2011-07-08 2014-03-27 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine and manufacturing method thereof
CN103891103A (en) * 2011-10-31 2014-06-25 三菱电机株式会社 Interior permanent magnet embedded motor and compressor
CN104321952A (en) * 2012-05-22 2015-01-28 三菱电机株式会社 Embedded permanent magnet type rotary electric machine
CN105811617A (en) * 2016-04-27 2016-07-27 霍勇贤 Coreless outer rotor with magnetism gathering effect for permanent magnet motor and manufacturing method thereof
WO2020191345A1 (en) * 2019-03-21 2020-09-24 Baker Hughes Oilfield Operations Llc Permanent magnet motor for electrical submersible pump
WO2020195006A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Rotor and motor
EP3761486A1 (en) 2019-07-05 2021-01-06 Siemens Aktiengesellschaft Electric rotating machine with permanent magnets
KR102234182B1 (en) * 2019-11-15 2021-03-31 하이윈 마이크로시스템 코포레이션 Rotor structure of permanent magnet motor
CN112671135A (en) * 2020-12-25 2021-04-16 合肥工业大学 Method for optimizing four-section Halbach array surface-mounted permanent magnet motor
WO2021178466A1 (en) * 2020-03-02 2021-09-10 Falcon Power, LLC Variable torque generation electric machine employing tunable halbach magnet array
JP2021175284A (en) * 2020-04-27 2021-11-01 健吾 大倉 Motor device
CN114011571A (en) * 2021-11-03 2022-02-08 东北大学 Vortex separation device for separating different non-magnetic metals
FR3123519A1 (en) * 2021-05-28 2022-12-02 Valeo Equipements Electriques Moteur ELECTRIC ROTATING MACHINE WITH CO-AXIAL CONFIGURATION

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019127A (en) * 2005-07-06 2007-01-25 Yaskawa Electric Corp Periodic magnetic field generator and linear motor using the same
JP2007060818A (en) * 2005-08-25 2007-03-08 Toyama Univ Rotating machine supported by magnetic repulsion
JP2007110822A (en) * 2005-10-13 2007-04-26 Yaskawa Electric Corp Periodic magnetic field generator, manufacturing method therefor, and linear motor using this periodic magnetic field generator
JP2007215292A (en) * 2006-02-08 2007-08-23 Honda Motor Co Ltd Method and device for manufacturing rotor of motor
JP4728139B2 (en) * 2006-02-21 2011-07-20 公益財団法人鉄道総合技術研究所 Rotating electric machine using the principle of induction repulsive suction
JP2007228656A (en) * 2006-02-21 2007-09-06 Railway Technical Res Inst Dynamo-electric machine utilizing inductive repulsion/attraction principle
JP2007312449A (en) * 2006-05-16 2007-11-29 Yaskawa Electric Corp Periodic magnetic field generator and motor employing the same
DE102007031745A1 (en) 2007-07-06 2009-01-15 Max Baermann Gmbh Magnetic system for producing two-pole homogeneous magnetic field in inner space, has additional magnets for producing additional magnetic fields, where one field causes change of magnetic field in form of convex and/or concave deformation
DE102007031745B4 (en) * 2007-07-06 2013-04-25 Max Baermann Gmbh Magnetic system for generating homogeneous magnetic fields
KR101002957B1 (en) * 2008-02-02 2010-12-21 종샨 브로드-오션 모터 컴퍼니 리미티드 Motor rotor structure
US8487610B2 (en) 2009-05-07 2013-07-16 Pii Limited Magnetising assembly
GB2470054B (en) * 2009-05-07 2013-08-07 Pii Ltd Magnetising assembly
CN101834476A (en) * 2010-01-05 2010-09-15 陆美娟 Permanent magnet generator inner rotor using Halback magnetic array
US9362790B2 (en) 2010-05-13 2016-06-07 Hiroyuki Nishimura Permanent magnet embedded rotor
JP2011239650A (en) * 2010-05-13 2011-11-24 Masashi Nishimura Rotator embedded with permanent magnet
US20140084731A1 (en) * 2011-07-08 2014-03-27 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine and manufacturing method thereof
US9893571B2 (en) 2011-07-08 2018-02-13 Mitsubishi Electric Corporation Permanent magnet type electric rotating machine having main magnets and auxiliary magnets, and manufacturing method thereof
CN103891103B (en) * 2011-10-31 2016-11-16 三菱电机株式会社 Permanent magnet embedded type motor and compressor
CN103891103A (en) * 2011-10-31 2014-06-25 三菱电机株式会社 Interior permanent magnet embedded motor and compressor
CN103166406A (en) * 2011-12-09 2013-06-19 同济大学 High-power-density high-efficiency permanent magnet synchronous motor used for vehicle
CN104321952A (en) * 2012-05-22 2015-01-28 三菱电机株式会社 Embedded permanent magnet type rotary electric machine
US9735631B2 (en) 2012-05-22 2017-08-15 Mitsubishi Electric Corporation Embedded permanent magnet rotary electric machine
CN105811617A (en) * 2016-04-27 2016-07-27 霍勇贤 Coreless outer rotor with magnetism gathering effect for permanent magnet motor and manufacturing method thereof
WO2020191345A1 (en) * 2019-03-21 2020-09-24 Baker Hughes Oilfield Operations Llc Permanent magnet motor for electrical submersible pump
EP3942153A4 (en) * 2019-03-21 2022-12-14 Baker Hughes Oilfield Operations LLC Permanent magnet motor for electrical submersible pump
WO2020195006A1 (en) * 2019-03-28 2020-10-01 日本電産株式会社 Rotor and motor
US11916440B2 (en) 2019-03-28 2024-02-27 Nidec Corporation Rotor and motor
CN113632350A (en) * 2019-03-28 2021-11-09 日本电产株式会社 Rotor and motor
WO2021004690A1 (en) 2019-07-05 2021-01-14 Siemens Aktiengesellschaft Electric rotating machine having permanent magnets
EP3761486A1 (en) 2019-07-05 2021-01-06 Siemens Aktiengesellschaft Electric rotating machine with permanent magnets
KR102234182B1 (en) * 2019-11-15 2021-03-31 하이윈 마이크로시스템 코포레이션 Rotor structure of permanent magnet motor
WO2021178466A1 (en) * 2020-03-02 2021-09-10 Falcon Power, LLC Variable torque generation electric machine employing tunable halbach magnet array
US11532971B2 (en) 2020-03-02 2022-12-20 Falcon Power, LLC Variable torque generation electric machine employing tunable Halbach magnet array
US11750070B2 (en) 2020-03-02 2023-09-05 Falcon Power, LLC Variable torque generation electric machine employing tunable Halbach magnet array
JP2021175284A (en) * 2020-04-27 2021-11-01 健吾 大倉 Motor device
CN112671135A (en) * 2020-12-25 2021-04-16 合肥工业大学 Method for optimizing four-section Halbach array surface-mounted permanent magnet motor
FR3123519A1 (en) * 2021-05-28 2022-12-02 Valeo Equipements Electriques Moteur ELECTRIC ROTATING MACHINE WITH CO-AXIAL CONFIGURATION
CN114011571A (en) * 2021-11-03 2022-02-08 东北大学 Vortex separation device for separating different non-magnetic metals

Similar Documents

Publication Publication Date Title
JP2005045984A (en) Rotor for permanent magnet synchronous motor
JP5414887B2 (en) Permanent magnet synchronous motor
JP5478136B2 (en) Permanent magnet synchronous motor
JP2005143276A (en) Axial gap rotating electric machine
JP2009072010A (en) Axial gap type coreless rotating machine
JP2009247046A (en) Rotary electric machine
JP2006271057A (en) Rotor of permanent magnet synchronous motor
EP0923804B1 (en) Method for manufacturing a dc motor and method for forming a permanent magnet for use in a dc motor
WO2015102106A1 (en) Motor core and motor
JP2009219312A (en) Rotating electric machine and spindle unit using same
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2005151785A (en) Synchronous generator having annular armature coil
JP2004072820A (en) Magnetizing jig for rotor of ac motor, and manufacturing method using it
JP2005045881A (en) Rotary electric machine
CN111030402B (en) Directional silicon steel sheet axial magnetic field motor
JP5433828B2 (en) Rotating machine
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP2008236862A (en) Rotor core, rotor, and rotating machine using the rotor
JP2001298922A (en) Vernier motor
JP2018182118A (en) Magnetizing device and magnetizing method
JP5353804B2 (en) Axial gap type rotating electrical machine and manufacturing method thereof
JPH11332147A (en) Permanent magnet type rotating machine
JP2007288838A (en) Embedded magnet type motor
JP2008219993A (en) Axial gap type rotary electric machine and compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006