WO2013061711A1 - エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ - Google Patents

エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ Download PDF

Info

Publication number
WO2013061711A1
WO2013061711A1 PCT/JP2012/073814 JP2012073814W WO2013061711A1 WO 2013061711 A1 WO2013061711 A1 WO 2013061711A1 JP 2012073814 W JP2012073814 W JP 2012073814W WO 2013061711 A1 WO2013061711 A1 WO 2013061711A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid material
viscosity
surface energy
liquid
Prior art date
Application number
PCT/JP2012/073814
Other languages
English (en)
French (fr)
Inventor
野村 茂樹
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2013502728A priority Critical patent/JP5484630B2/ja
Priority to US14/348,724 priority patent/US9182590B2/en
Priority to CN201280038988.XA priority patent/CN103748510B/zh
Publication of WO2013061711A1 publication Critical patent/WO2013061711A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • G02B26/005Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid based on electrowetting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/348Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on the deformation of a fluid drop, e.g. electrowetting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • B01L3/502792Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics for moving individual droplets on a plate, e.g. by locally altering surface tension
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/06Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of fluids in transparent cells
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/24Liquid filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0048Photosensitive materials characterised by the solvents or agents facilitating spreading, e.g. tensio-active agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a method for manufacturing an electrowetting element and an electrowetting display.
  • This application is filed on October 24, 2011, on Japanese Patent Application No. 2011-233199 filed in Japan, on February 28, 2012, on Japanese Patent Application No. 2012-041772 filed in Japan, on April 26, 2012.
  • Priority is claimed based on Japanese Patent Application No. 2012-101291 filed in Japan and Japanese Patent Application No. 2012-151661 filed in Japan on July 5, 2012, the contents of which are incorporated herein by reference.
  • an electrowetting element using an electrowetting effect has attracted attention.
  • an electrowetting element is filled with a high surface energy liquid having a relatively high surface energy and a low surface energy liquid having a relatively low surface energy that do not mix with each other between a pair of substrates.
  • One substrate includes an electrode layer on the surface and a hydrophobic intermediate layer (insulating layer) formed on the surface of the electrode layer.
  • the electrowetting element when a voltage is applied between the hydrophilic liquid and the electrode layer via the hydrophobic intermediate layer, the hydrophilic liquid is attracted to the hydrophobic intermediate layer, and the hydrophilic liquid and the hydrophobic liquid are separated. It has the characteristic that the interface shape between changes.
  • An electrowetting element is used for an optical lens, a display element, etc. using such a characteristic (nonpatent literature 1).
  • Patent Documents 1 and 2 As a method for manufacturing the electrowetting element as described above, those disclosed in Patent Documents 1 and 2 below are known.
  • the substrate surface is covered with a high surface energy liquid (water), and an opening is disposed on the upper surface of the substrate surface.
  • the substrate surface has a hydrophobic first region, and each first region is surrounded by a hydrophilic second region (pixel wall).
  • the oil is moved from the injector filled with the low surface energy liquid (oil) while being discharged along the substrate surface, the low surface energy liquid droplet is drawn into the first region and is in contact with the first region.
  • the high surface energy liquid is replaced by a layer of low surface energy liquid.
  • Patent Document 2 discloses a method of manufacturing an electrowetting device using first and second liquids, one of which is conductive (high surface energy) and the other is insulating (low surface energy).
  • the present invention has been made in view of such circumstances, and an electrowetting element can be efficiently and easily manufactured, and a good responsiveness of the electrowetting element can be ensured. It is an object to provide a method for manufacturing a wetting element and an electrowetting display.
  • An electrowetting element manufacturing method comprising a step of reducing viscosity by applying a stimulus to at least one of liquid materials.
  • At least one of the first liquid material and the second liquid material is gelled or highly viscous, and can be handled in a solid or solid manner. Therefore, it is possible to avoid an essential problem in the production of an electrowetting element, in which two types of liquids are handled at the same time. Since it is not necessary to handle two types of liquids at the same time, the process becomes simple and simple, and it is possible to apply an existing manufacturing apparatus as it is, and there is also a problem that affects the performance of the element such as image unevenness due to uneven liquid injection amount. It can be greatly reduced.
  • the responsiveness is achieved. It is possible to manufacture an electrowetting element excellent in the above. In other words, one type of liquid can be handled during the manufacturing process, or a simple manufacturing method that does not handle the liquid can be used, but ultimately, the liquid material that has been gelled or thickened is stimulated. By using a low-viscosity liquid, the operability and responsiveness of the manufactured electrowetting element can be sufficiently ensured.
  • the predetermined amount of the liquid material disposed in the region surrounded by the partition walls partitioning the cell is an amount that does not allow the liquid material to overflow into the region surrounded by the adjacent partition walls, It means the amount that can be adjusted according to the hiding property of the dye, the operability as electrowetting, and the size of the low surface energy liquid droplet after the operation.
  • the bonding process between the first substrate and the second substrate is performed via the gelled or highly viscous first liquid material. Can be prevented from being biased. Therefore, for example, when the element manufactured according to the present invention is used for a display device, a high-quality one without display unevenness can be provided. Further, since the first liquid material is less likely to sag in a gel state or a high viscosity state, handling of the first substrate on which the first liquid material is disposed is facilitated, and the bonding process of the substrates can be performed. It can be done in a short time. Therefore, even an electrowetting element having a large substrate can be efficiently and easily manufactured.
  • a predetermined amount of gelation or a viscosity of 1 Pa ⁇ s or more is increased in a region surrounded by a partition wall that partitions the cell formed on the second substrate. Disposing the second liquid material; Disposing the first liquid material in a region surrounded by the partition; The method for manufacturing an electrowetting element according to the first aspect, further comprising a step of bonding the first substrate and the second substrate.
  • the first liquid material is disposed in the region where the gelled or highly viscous second liquid material is disposed. Therefore, the first liquid material is disposed. In doing so, it is possible to prevent the liquid material from being scattered or biased. Therefore, for example, when an element manufactured according to the present invention is used in a display device, a high-quality one without display unevenness and defects can be provided. Moreover, since the second liquid material is in a gel state or a high-viscosity state, the step of arranging the first liquid material can be performed easily and in a short time. Therefore, even an electrowetting element having a large substrate can be efficiently and easily manufactured.
  • a predetermined amount of gelation or a viscosity of 1 Pa ⁇ s or more is increased in the region surrounded by the partition walls that partition the cells formed on the second substrate. Disposing the second liquid material; Disposing the first liquid material on one side of the first substrate; And a step of bonding the first substrate and the second substrate through the first liquid material.
  • the method of manufacturing an electrowetting element according to the first aspect is there.
  • the second liquid material that has been gelled or made highly viscous is disposed in a region surrounded by partition walls that define cells formed on the second substrate,
  • the process is extremely simple and the production of the electrowetting element in a large amount and in a short time is possible. Is possible.
  • the second liquid material provided on the second substrate is gelled or highly viscous and can be handled in the same manner as a solid. It can be prevented from flowing or scattering. Therefore, even an electrowetting element having a large substrate can be efficiently and easily manufactured.
  • a predetermined amount of gelation or a viscosity of 1 Pa ⁇ s or more is increased in a region surrounded by partition walls that partition the cells formed on the second substrate.
  • Disposing a mixed liquid of the first liquid material and the second liquid material Disposing the first liquid material in a region surrounded by the partition walls, or disposing the first liquid material on one surface side of the first substrate;
  • the method for manufacturing an electrowetting element according to the first aspect further comprising a step of bonding the first substrate and the second substrate.
  • the mixture of the first and second liquid materials that have been gelled or thickened is placed in a cell, and the gelled or highly viscous first
  • the first liquid material is disposed on the second substrate on which the mixture of the two liquid materials is disposed, and the first substrate is disposed through the first liquid material. Since the first and second liquid materials that have been gelled or increased in viscosity are not swollen or scattered when installed, a high-quality display device free from display unevenness and defects can be provided.
  • the mixture of the first and second liquid materials that have been gelled or increased in viscosity is disposed in the cell of the second substrate, while the first liquid material is provided on the first substrate.
  • the second substrate can be bonded through the first liquid material provided on the substrate material.
  • the first and second liquid materials placed on the second substrate are gelled or made highly viscous, the first and first liquid materials can be reversed even if they are reversed and bonded to the first substrate.
  • the liquid material of 2 does not flow down or is biased, and a high-quality display device free from display villages and defects can be provided. In this way, the first and second liquid materials do not flow, scatter, or soar in a gel state or a high viscosity state, so that handling when installing the first liquid becomes easy.
  • the bonding step can be performed in a short time. Therefore, even an electrowetting element having a large substrate can be efficiently and easily manufactured.
  • a predetermined amount of gelation or a viscosity of 1 Pa ⁇ s or more is increased in a region surrounded by the partition walls defining the cells formed on the second substrate.
  • the second liquid material that has been gelled or made highly viscous is in a region surrounded by the partition that partitions the cells formed on the second substrate.
  • a method of manufacturing an electrowetting element including a step of providing a first liquid material that has been gelled or made highly viscous on the first substrate and bonding them together. Since the second substrate, the second liquid material provided on the first substrate, and the first liquid material are respectively gelled or highly viscous, the first and second substrates can be handled easily. Thus, the substrate bonding process can be performed in a short time.
  • first liquid material and the second liquid material are gelled or increased in viscosity, the respective liquids do not rise, scatter, or become unbalanced during bonding. It is possible to provide a high-quality electrowetting element free from defects and defects.
  • the first liquid material that has been gelled or increased in viscosity to 1 Pa ⁇ s or higher and the second liquid material that has been gelled or increased in viscosity to 1 Pa ⁇ s or higher.
  • the first substrate and the second substrate are bonded using the laminated body made of the first and second liquid materials that are gelled or made highly viscous. Since the alignment process is performed, a stable liquid amount can be installed in the display cell, and a high-quality electrowetting element free from display unevenness and defects can be provided. In addition, since a gel or high viscosity laminate is used, an electrowetting element can be manufactured by a process suitable for mass production such as transfer. Therefore, even an electrowetting element having a large substrate can be efficiently and easily manufactured.
  • the bonding step is performed in a state where the laminated body is transferred to one of the first substrate and the second substrate. This is a method for manufacturing an electrowetting element.
  • the bonding step is preferably performed in a state where the laminate is transferred to one of the first substrate and the second substrate. According to this configuration, since the stacked body is transferred to the first substrate or the second substrate, the bonding process of the first substrate and the second substrate can be performed quickly and easily.
  • the stimulus is at least one selected from the group consisting of contact with a chemical substance, irradiation of electromagnetic waves, heat, sound waves, vibration, electric field, and magnetic field.
  • the method for producing an electrowetting element according to any one of the first to eighth aspects.
  • the viscosity of at least one of the first liquid material and the second liquid material can be reduced by a simple process such as contact with a chemical substance or irradiation of electromagnetic waves. Responsiveness in the change of the interface shape between the first liquid material and the second liquid material can be improved during operation of the ting element, that is, when a voltage is applied to the cell.
  • the gelling agent or the thickening agent for the second liquid material causes the second liquid material to gel or increase the viscosity to 1 Pa ⁇ s or more
  • the method for producing an electrowetting element according to any one of the first, third, fourth, sixth and ninth aspects, which is a gelling agent or a thickening agent that dissolves in one liquid material. is there.
  • the second liquid material that has been gelled or made highly viscous is the first liquid material.
  • the gelling agent or the thickening agent is transferred to the first liquid.
  • the second liquid material that has been gelled or increased in viscosity becomes a liquid having a sufficiently low viscosity to operate as an electrowetting element.
  • the gelling agent or the thickening agent dissolves in the first liquid material, the first liquid material also operates as an electrowetting element without gelling or increasing the viscosity of the first liquid material. It becomes a sufficiently low viscosity liquid to do so.
  • the gelling agent or the thickening agent is a gelling agent or a thickening agent represented by the following general formula (1). It is a manufacturing method of the electrowetting element as described in above.
  • X ⁇ represents a monovalent anionic group.
  • R 1 represents a monovalent substituent having 1 to 9 carbon atoms, may contain at least one selected from the group consisting of oxygen, nitrogen and sulfur, and may contain a cyclic structure.
  • R 2 represents a monovalent substituent having 1 to 20 carbon atoms.
  • a twelfth aspect of the present invention is the method for producing an electrowetting element according to the eleventh aspect, wherein X ⁇ is a conjugate base of an acid having an aromatic group.
  • a thirteenth aspect of the present invention is the electrowetting electrode according to the eleventh or twelfth aspect, wherein R 1 is any one of a methyl group, an isopropyl group, an isobutyl group, a sec-butyl group, and a benzyl group. It is a manufacturing method of a ting element.
  • a fourteenth aspect of the present invention is the method for producing an electrowetting element according to any one of the first to thirteenth aspects, wherein R 2 is a linear alkyl group having 6 to 20 carbon atoms. It is.
  • the gelling agent or the thickening agent contains a compound represented by the following structural formula (2). It is a manufacturing method.
  • the gelling agent or the thickening agent is a mixture of the compound represented by the structural formula (2) and a steroid compound or a phenolic compound. 15. A method for producing an electrowetting element according to 15th aspect.
  • a seventeenth aspect of the present invention is the method for producing an electrowetting element according to the sixteenth aspect, wherein the phenolic compound is hydroquinone or resorcinol.
  • the gelling agent or the thickening agent contains a compound represented by the following general formula (3). It is a manufacturing method.
  • n represents an integer of 1 to 3
  • R represents a monovalent organic group
  • Y represents an arbitrary monovalent substituent.
  • the nineteenth aspect of the present invention is the method for producing an electrowetting element according to the eighteenth aspect, wherein Y is any one of a methyl group, a chloro group and a bromo group.
  • the twentieth manufacturing method of the present invention is the method for manufacturing an electrowetting element according to the eighteenth aspect, wherein R is an aliphatic hydrocarbon having 6 to 20 carbon atoms or an aralkyl group.
  • the first liquid material gelling agent or the thickening agent causes the first liquid material to gel or increase in viscosity to 1 Pa ⁇ s or more
  • the electrowetting element manufacturing method according to any one of the first, second, fourth, and fifth embodiments, which is a gelling agent or a thickening agent that dissolves in the liquid material.
  • the gelled or highly viscous first liquid material is the second liquid material.
  • the gelling agent or the thickening agent is transferred to the second liquid material.
  • the first liquid material that has been gelled or increased in viscosity becomes a low-viscosity liquid that is sufficient to operate as an electrowetting element.
  • the gelling agent or the thickening agent dissolves in the second liquid material, the second liquid material also operates as an electrowetting element without gelling or increasing the viscosity of the second liquid material. It becomes a sufficiently low viscosity liquid to do so.
  • a stimulus to the cell, the viscosity of at least one of the first liquid material and the second liquid material that has been gelled or increased in viscosity is reduced. 22.
  • the viscosity of at least one of the first liquid material and the second liquid material can be reduced by a simple process such as applying a stimulus, the first liquid material and the second liquid material can be reduced when a voltage is applied to the cell.
  • the responsiveness in the change of the interface shape in the first liquid material and the second liquid material can be improved.
  • a twenty-third aspect of the present invention is an electrowetting display comprising an electrowetting element manufactured by the method for manufacturing an electrowetting element according to any one of the first to twenty-second aspects. is there.
  • the electrowetting display of the present invention since it is composed of the electrowetting element manufactured by the above-described method, it is possible to display a high-quality image without display unevenness and defects.
  • an electrowetting element can be easily manufactured.
  • the electrowetting element manufactured by the manufacturing method of the present invention has no increase in applied voltage or delay in operation, and for example, when used as a display element, high quality display is possible.
  • FIG. 1 is a diagram showing a cross-sectional configuration of the electrowetting display according to the first embodiment.
  • FIG. 2 is a diagram for explaining the operation concept of the electrowetting display.
  • FIG. 3 is a diagram illustrating a manufacturing process of the electrowetting display according to the first embodiment.
  • FIG. 4 is an explanatory diagram of the manufacturing process subsequent to FIG.
  • FIG. 5 is an explanatory diagram of the manufacturing process subsequent to FIG.
  • FIG. 6 is an explanatory diagram of the manufacturing process subsequent to FIG.
  • FIG. 7 is a diagram illustrating a manufacturing process of the electrowetting display according to the second embodiment.
  • FIG. 8 is a diagram illustrating a manufacturing process of the electrowetting display according to the third embodiment.
  • FIG. 9 is a diagram illustrating a manufacturing process of the electrowetting display according to the fourth embodiment.
  • FIG. 10 is a diagram illustrating manufacturing steps of the electrowetting display according to the fifth embodiment.
  • FIG. 1 shows an example of the structure of an electrowetting display as an example of the structure of an electrowetting element manufactured according to the present invention.
  • FIG. 2 is a diagram for explaining the operation concept of the electrowetting display. In FIG. 2, the illustration of the configuration of a portion unnecessary for description is simplified.
  • the electrowetting display 100 includes a first substrate 110 and a second substrate 120, and these substrates 110 and 120 are arranged to face each other with a high surface energy liquid 130 interposed therebetween.
  • the high surface energy liquid 130 is disposed in a region partitioned by the sealing material 140 provided along the outer periphery of the substrates 110 and 120.
  • the high surface energy liquid 130 has a relatively high surface energy relative to the low surface energy liquid 131 described later.
  • the “cell” means a region where the high surface energy liquid 130 and the low surface energy liquid 131 generated between the first substrate 110 and the second substrate 120 are disposed.
  • the first substrate 110 has a base 110A and a common electrode 111.
  • the second substrate 120 includes a base material 120A, a TFT 121, a wiring part 122, a planarization film 123, a pixel electrode 124, a common electrode 125, and an insulating film 126.
  • the surface of the insulating film 126 is subjected to water repellency treatment.
  • the water repellent treatment is not particularly limited, and a known method can be used. In the present embodiment, for example, application of a fluororesin and heat treatment are performed.
  • 120 A of said base materials are comprised from what is normally used as a panel substrate of a display apparatus, such as glass, a resin molding, and a film, for example. In this embodiment, for example, glass is used.
  • the pixel electrode 124 and the common electrode 125 are formed on the planarizing film 123, and are connected to the TFT 121 and the wiring part 122 through the contact hole 123a.
  • the material constituting the common electrode 111 is preferably a transparent electrode, and a typical example is ITO (tin-doped indium oxide).
  • ITO in-doped indium oxide
  • the electrowetting display 100 is a so-called transmissive display including a light source (not shown) on the back side of the second substrate 120.
  • Al is used as the electrode material
  • the electrowetting display 100 is a so-called reflective display that reflects external light on the electrode surface.
  • the present invention can be applied to a transmissive, reflective, or transflective display.
  • the first substrate 110 is mainly composed of a base material 110A.
  • 110 A of said base materials are comprised from what is normally used as a panel substrate of a display apparatus, such as glass, a resin molding, and a film, for example. In this embodiment, for example, glass is used.
  • a pixel wall 127 is formed on the insulating film 126 of the second substrate 120.
  • the pixel wall 127 is formed in a lattice shape and partitions a plurality of pixels G on the second substrate 120.
  • the pixel wall 127 is not in contact with the first substrate 110 as shown in FIG. 1, but the upper portion of the pixel wall 127 is partly or entirely with the first substrate 110 as necessary. It may be a structure that touches.
  • a pair of pixel electrode 124 and common electrode 125 are arranged in each pixel G.
  • a low surface energy liquid 131 is stored in a region (pixel G) partitioned by the pixel wall 127.
  • the pixel wall 127 has a surface familiar with the high surface energy liquid 130.
  • a capacitor having the pixel electrode 124 and the high surface energy liquid 130 as electrodes and the insulating film 126 as a dielectric is obtained.
  • the high surface energy liquid 130 is attracted by electrostatic action due to the polarization of the insulating film 126, and as a result, the low surface energy liquid 131 on the pixel electrode is pushed onto the common electrode 125, and the liquid interface shape changes.
  • the light passing through each pixel G transmits the low surface energy liquid 131 and the low surface energy liquid 131. It is possible to switch between the substantially transparent state.
  • the low surface energy liquid 131 contains a low surface energy solvent and a coloring material.
  • the low surface energy solvent is not particularly limited as long as the surface energy value is 35 mJ / m 2 or less. If it exceeds 35 mJ / m 2 , it may be mixed with a high surface energy liquid. More preferably a surface energy value is less than 30 mJ / m 2, even more preferably 20 mJ / m 2 or less.
  • the melting point is preferably ⁇ 10 ° C. or less, more preferably ⁇ 20 ° C. or less. Is ⁇ 40 ° C. or lower.
  • the boiling point is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 150 ° C. or higher.
  • the viscosity is preferably 300 mPa ⁇ S or less, more preferably 100 mPa ⁇ S or less, and even more preferably 30 mPa ⁇ S or less. Preferably there is.
  • the low surface energy solvent is exemplified below, but the present invention is not limited thereto.
  • linear or branched alkanes such as heptane, octane, nonane, decane, undecane, dodecane
  • cyclic alkanes such as cyclohexane, cycloheptane, octamethyltrisiloxane, decamethyltetrasiloxane, decamethylcyclopentasiloxane, dodecamethylpentasiloxane
  • silicones such as fluorocarbons.
  • the coloring material is not particularly limited, and various pigments and dyes such as inorganic materials such as titanium oxide and carbon black, and organic materials such as phthalocyanine, azos, and anthraquinone can be used.
  • As a solution characteristic used for electrowetting it is necessary to dissolve or disperse in a low surface energy liquid, but not to dissolve or disperse in a high surface energy liquid, and a hydrophobic surface-treated pigment or a hydrophobic dye is appropriately used.
  • preferred in the present invention is a combination of a linear or branched alkane and a hydrophobic pigment such as carbon black, or an alkyl group-modified dye, but the present invention is limited to this. It is not a thing.
  • the high surface energy liquid 130 contains a high surface energy solvent as a main component, and additives such as an electrolyte and a surfactant may be added as necessary.
  • the high surface energy solvent is not particularly limited as long as the surface energy value is 45 mJ / m 2 or more. If it is less than 45 mJ / m 2, it may be mixed with a low surface energy solvent. More preferable to be 55 mJ / m 2 or more as the surface energy values, 65 mJ / m 2 or more is more preferable.
  • the melting point is preferably ⁇ 10 ° C. or lower, more preferably ⁇ 20 ° C. or lower, still more preferably ⁇ 40. It is below °C.
  • the boiling point is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 150 ° C. or higher.
  • the high surface energy solvent is exemplified below, but the present invention is not limited thereto.
  • examples thereof include water or an aqueous electrolyte solution, polyhydric alcohols such as ethylene glycol and propylene glycol. These high surface energy solvents may be used alone or in combination of two or more. Further, additives, ions, and the like may be added to increase the surface energy and adjust the melting point and boiling point.
  • the surface energy value itself is not large, there are liquids that have high polarity and do not mix with the low surface energy liquid 131, and these can also be used as 130.
  • low molecular alcohols such as methanol and ethanol, or a mixture thereof.
  • a second substrate 120 manufactured by a conventional method is prepared, and pixel walls 127 are formed on the second substrate 120.
  • the height of the pixel wall 127 is not particularly limited. However, the height is set such that the low surface energy liquid does not overflow to the adjacent pixel and the pixel wall is not shielded when viewed from an oblique direction. It is preferable to do. Since the height of the pixel wall 127 depends on the interval between the pixel walls and the amount of the low surface energy liquid, it cannot be generally described. However, as an example, it is preferably 2 to 80 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably. 2 to 30 ⁇ m.
  • the thinner the pixel wall 127 the higher the aperture ratio, so that a high-contrast image can be obtained.
  • the pixel wall 127 is thin, the manufacturing method becomes difficult, and there is a possibility of bending, collapse, breakage, etc.
  • the thickness is preferably 2 to 30 ⁇ m, more preferably 5 to 25 ⁇ m.
  • the thickness is preferably 30 to 1000 ⁇ m, more preferably 50 to 300 ⁇ m, and still more preferably 80 to 160 ⁇ m.
  • the bottom of the pixel G is water repellent and the side surface is hydrophilic.
  • the surface of the second substrate 120 may be subjected to a water repellency treatment by a known method such as a fluororesin treatment in advance, and after the pixel wall 127 is formed, a pixel is formed using a known method.
  • a water repellent material may be applied to the bottom or water repellent treatment may be performed.
  • the pixel wall 127 is often a resist material, in general, it is often a hydrophilic material.
  • a hydrophilic treatment plasma treatment, corona treatment, etc.
  • a low surface energy liquid 131 is injected into each region defined by the pixel wall 127 of the second substrate 120.
  • an ink jet apparatus IJ may be used.
  • the pixel G may be filled with the low surface energy liquid 131 dissolved in the volatile solvent, and then the volatile solvent may be volatilized by heating or the like to form a desired low surface energy liquid 131 layer.
  • the method is not particularly limited as long as the desired low surface energy liquid 131 can be injected into the pixel G.
  • Other methods for disposing the low surface energy liquid 131 in the pixel G include screen printing, flexographic printing, gravure printing, curtain coating, dispensing, and the like.
  • a low surface energy liquid 131 containing each color material may be injected into a desired position by an ink jet device, and a monochrome, monocolor, or color filter may be used. Can be used, the low surface energy liquid 131 diluted with a volatile solvent is poured over the entire substrate, and then the solvent is volatilized.
  • the amount of the low surface energy liquid 131 injected into the pixel G is adjusted according to the hiding property of the dye, the operability as electrowetting, and the size of the low surface energy liquid droplet after the operation.
  • the hiding property of the dye is low, the amount of the low surface energy liquid 131 needs to be increased.
  • the amount is increased, the operation becomes slow, a high drive voltage is required, or the low surface energy after the operation is reduced.
  • the droplet of energetic liquid becomes large and the height of the pixel wall 127 is required, and the viewing angle and contrast are lowered.
  • the amount of the low surface energy liquid 131 to be injected into the preferred pixel G (the liquid thickness in the pixel G) cannot be generally described because it is affected by various factors as described above.
  • the thickness is preferably 1 to 15 ⁇ m, more preferably 2 to 8 ⁇ m, still more preferably 3 to 5 ⁇ m.
  • the high surface energy liquid 130 it is difficult to introduce the high surface energy liquid 130 as it is into the structure shown in FIG. 4 thus obtained.
  • the high surface energy liquid 130 is introduced into the low surface energy liquid 131 disposed on the second substrate 120 with a constant thickness, the high surface energy liquid 130 jumps out of the pixel G or moves to another pixel G due to the inflow of the high surface energy liquid 130.
  • the low surface energy liquid 131 often has a lighter specific gravity than the high surface energy liquid 130, and the low surface energy liquid 131 floats due to the momentum of inflow.
  • the change in the amount of the low surface energy liquid 131 due to the inflow of the high surface energy liquid 130 causes unevenness of an image when viewed as a display device.
  • it can be avoided by introducing 130 at a very slow speed. It takes time, and a dedicated device for that purpose is required.
  • the present invention eliminates such problems. That is, the first substrate 110 and the second substrate 120 are bonded through the high surface energy liquid 130. Specifically, as shown in FIG. 5, a sealing material 140 is disposed along the outer periphery on the common electrode 111 side of the first substrate 110. Inside the first substrate 110 including the sealing material 140, a high-viscosity material 130A made of a high surface energy liquid 130 that is gelled or adjusted to have a viscosity of 1 Pa ⁇ s or more is disposed.
  • the high-viscosity material 130A needs to not flow even if it is inverted, and includes materials adjusted to a paste, gel, semi-solid, quasi-solid, or the like.
  • 130A obtained by gelling or increasing the viscosity of the high surface energy liquid 130 is prepared, the 130A is disposed on the first substrate 110, the first substrate 110 is turned upside down, and the first substrate 110 is interposed through the sealant 140. The substrate 110 and the second substrate 120 are bonded together. At this time, since 130A is in a gel state or a high-viscosity state, the thickness does not change greatly even when upside down.
  • the arrangement on the low surface energy liquid 131 in the high surface energy liquid 130 can use a simple and excellent method such as a bonding process. It has become.
  • the bonding angle may be adjusted in order to prevent inflow of bubbles at the time of bonding, a substantially vacuum atmosphere may be set at the time of bonding, and air may be vented to a part of the first substrate 110 or the sealing material 140. May be provided.
  • the high surface energy liquid 130 is highly viscous or gelled. That is, the operation speed becomes slow, and in some cases, there is a possibility that the device does not operate.
  • the interface shape between the high surface energy liquid 130 and the low surface energy liquid 131 may not easily change even when a voltage is applied. Even if the interface shape can be changed by applying a high voltage, there is a possibility that the original state cannot be restored when the voltage is released.
  • a stimulating responsive gelling agent or thickening agent is used as the gelling agent or thickening agent.
  • Stimulus responsiveness refers to the state of the high-viscosity material 130A that is in a high-viscosity state or in a gelled state at the time of manufacture.
  • the high surface energy liquid 130 having a reduced viscosity is preferably one that does not reversibly change to a high viscosity liquid or gel once it has become a low viscosity liquid or sol.
  • the method for producing an electrowetting element of the present invention uses a stimulus-responsive gelling agent or a thickening agent, the electrowetting element can be produced efficiently and easily, and Since the gelling agent or the thickening agent is responsive to stimuli, the responsiveness of the electrowetting element can be improved efficiently and easily by giving a specific stimulus to the gelling agent or the thickening agent. Can do.
  • the stimulus mentioned here include contact with a chemical substance, electromagnetic waves such as ultraviolet light, visible light, and infrared light, heat, sound waves, fluctuations, electric fields, and magnetic fields.
  • electromagnetic waves such as ultraviolet light, visible light, and infrared light
  • heat sound waves
  • fluctuations electric fields
  • magnetic fields and magnetic fields.
  • the high-viscosity liquid or gel body (high-viscosity material 130A) of the high surface energy liquid 130 in the cell can penetrate the first substrate 110 or the second substrate 120 to act. Stimulation is preferred.
  • the viscosity when the high-viscosity liquid or gel is made into a low-viscosity liquid or sol by stimulation is preferably 300 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 30 mPa ⁇ s or less.
  • the response due to the contact with the chemical substance includes, for example, the response due to the contact with the low surface energy liquid 131 and the contact with the pixel wall 127. More specifically, it is preferable that the gelling agent or the high viscosity agent is soluble in the low surface energy liquid 131. That is, when the gelling agent or the thickening agent is used to gel or increase the viscosity of the high surface energy liquid 130 and is soluble in the low surface energy liquid 131, it is gelled or increased in viscosity. When the high surface energy liquid 130 comes into contact with the low surface energy liquid 131, the gelling agent dissolves and migrates to the low surface energy liquid 131, and the viscosity of the high surface energy liquid 130 is greatly reduced. In this way, it is possible to realize a high surface energy liquid 130 that is in a gel state or a high viscosity state during the process and in a low viscosity state during use.
  • Hydrocarbons such as tetracosane, octacosane, dotriacontane, and hexatriacontane are used as such a gelling agent, and alcohol such as methanol and ethanol or a mixture of these alcohols and water is used as the high surface energy liquid 130.
  • alcohol such as methanol and ethanol or a mixture of these alcohols and water is used as the high surface energy liquid 130.
  • the surface energy liquid 131 linear hydrocarbons such as octane, nonane, decane, undecane, and dodecane, and cyclic hydrocarbons such as cyclohexane can be used (Langmuir, Vol. 16, p. 352, 2000).
  • chemical substances such as acids, bases, salts, oxidizing agents, reducing agents, etc. are contained or applied in the low surface energy liquid 131 or on the surface of the pixel wall 127 and contact with the high surface energy liquid 130.
  • acids, bases, and salts do not particularly affect the low surface energy liquid 131, and the high surface energy liquid 130 dissolves and dissociates and can be used effectively.
  • a gelling agent that combines cetyltrimethylammonium bromide (CTAB) and trans-ortho-methoxycinnamic acid (Journal of AmericanhChemical Society, Vol. 129). No. 6, page 1553, 2007).
  • CTAB cetyltrimethylammonium bromide
  • This gelling agent gels an aqueous or polar solvent in a normal environment, but when irradiated with ultraviolet light with a mercury lamp or the like, it isomerizes into a cis form and becomes a liquid with a relatively low viscosity.
  • the low surface viscosity of the high surface energy liquid 130 proceeds at the stage of forming the cell as shown in FIG. You may perform a heating, a rocking
  • a photoresponsive high viscosity agent or gelling agent when used, as shown in FIG. 6A, light energy such as ultraviolet light, visible light, infrared light, etc. is applied as necessary. By giving the above-mentioned stimulation.
  • light energy is applied from the first substrate 110 (base material 110A) side. Since the base material 110A constituting the first substrate 110 is made of light-transmitting glass, the light energy is transmitted through the first substrate 110 and is well irradiated to the high-viscosity material 130A filled therein. .
  • the high-viscosity material 130A changes to the state of the high surface energy liquid 130 by reducing the viscosity as shown in FIG. 6B. Thereby, the high surface energy liquid 130 can be favorably disposed on the low surface energy liquid 131.
  • the high surface energy liquid 130 is adjusted to a viscosity of 1 Pa ⁇ s or more, and the high viscosity material 130A made of a high viscosity or gel material is used to form the first substrate 110 and the second substrate 120. Since the bonding is performed, the high-viscosity material 130A disposed on the first substrate 110 does not fall even if it is on the lower side. Therefore, the first substrate 110 and the second substrate 120 can be easily bonded using the roll-to-roll method. it can. Therefore, even when large substrates are used as the first substrate 110 and the second substrate 120, they can be manufactured efficiently and easily.
  • the method of disposing the high-viscosity material 130A on one side of the first substrate 110 is not limited to the above-described method.
  • a method of applying using a roll coater, a die coater, or the like may be used.
  • the process of disposing the high-viscosity material 130A on one side of the first substrate 110 and the process of applying the low surface energy liquid 131 in the pixels G surrounded by the pixel walls 127 of the second substrate 120 are performed first. May be performed simultaneously or in parallel.
  • FIG. 7 is a diagram showing a manufacturing process according to the present embodiment, and illustration of the common electrode 111 is omitted.
  • the same members as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
  • a second substrate 120 manufactured by a conventional method is prepared, and pixel walls 127 are formed on the second substrate 120.
  • a high-viscosity material 131A made of a low surface energy liquid 131 having a viscosity of 1 Pa ⁇ s or higher is disposed in each pixel G of the second substrate 120.
  • the high-viscosity material 131A includes a material adjusted to a gel shape that does not flow even when inverted.
  • the high-viscosity material 131 ⁇ / b> A is a material that is responsive to stimulation and whose viscosity is reduced by chemical or physical stimulation to become the low surface energy liquid 131.
  • the high-viscosity material 131A In the arrangement of the high-viscosity material 131A, known coating methods and printing methods can be used as appropriate. These installation methods are not particularly limited as long as the high-viscosity material 131A can be disposed in the pixel G, and screen printing, flexographic printing, gravure printing, dispensing, or the like can be used. As an example of the installation method, for example, an inkjet device IJ may be used as shown in FIG.
  • the high-viscosity material 131A When installing the high-viscosity material 131A, the high-viscosity material 131A may be installed in a gel state or in a high-viscosity state, or after the high-viscosity material 131A is heated to lower viscosity or sol. May be.
  • the pixel G may be filled with the high-viscosity material 131A dissolved in the volatile solvent, and then the volatile solvent may be volatilized by heating or the like to form a desired
  • the high surface energy liquid 130 is injected onto the high viscosity material 131 ⁇ / b> A disposed in the partition region (pixel G) of the pixel wall 127.
  • the ink jet apparatus IJ is used in the present embodiment.
  • the method is not particularly limited as long as the high surface energy liquid 130 can be injected into the pixel G, and other methods such as screen printing, flexographic printing, gravure printing, and dispensing can be used.
  • a stable electrowetting element can be manufactured without floating from the bottom surface of the pixel G.
  • the high-viscosity or gelled high-viscosity material 131A is advantageous when manufacturing the high surface energy liquid 130.
  • the gel-like low surface energy liquid 131 is moved, It can be difficult to deform.
  • the device is operated by applying a high voltage, it does not return to the original state after the voltage is released, and as a result, it may be difficult to operate as a display element due to a reversible interface shape change.
  • the high-viscosity or gelled high-viscosity material 131A has a property of becoming a low-viscosity liquid by giving a predetermined stimulus (specifically, the state of the low surface energy liquid 131 Is used).
  • the high-viscosity material 131A having a reduced viscosity is preferably one that does not reversibly change to a high-viscosity liquid or gel once it has become a low-viscosity liquid or sol.
  • Stimulations applied here include stimulation by various chemical substances such as polar substances, acids, bases, oxidizing agents, reducing agents, electromagnetic waves such as ultraviolet light, visible light, infrared light, heat, sound waves, fluctuations, electric fields, magnetic fields
  • the method is not limited as long as the high-viscosity material 131 ⁇ / b> A can be a low-viscosity low-surface energy liquid 131.
  • the substance used for the stimulation by a chemical substance is illustrated below, this invention is not limited to this, What is necessary is just to be able to make the high viscosity material 131A low viscosity.
  • the polar substance, acid, and base used in the present invention include a hydroxyl group, an amino group or a salt thereof, a carboxyl group or a salt thereof, a sulfonic acid group or a salt thereof, a phosphonic acid group or a salt thereof, an amide bond, a urethane bond, Examples include compounds having a urea bond, a nitro group, a mercapto group, a phenol group, and the like.
  • a compound having a low corrosive hydroxyl group and a carboxyl group is preferable, and among them, a compound having a hydroxyl group is more preferable.
  • the oxidizing agent that can be used in the present invention include m-chloroperbenzoic acid, peracetic acid, and hydrogen peroxide.
  • sodium borohydride is mentioned as a reducing agent which can be used by this invention.
  • the stimulus by the chemical substance in the present invention is not limited to those in which the gelling agent or the like changes due to the reaction by contact with the chemical substance. It also includes the case of dissolution or transition to a phase containing these substances. In consideration of the stability of the electrowetting element, it is preferable to use a chemical substance having chemical substance responsiveness accompanied by dissolution or migration, among the stimulations by the chemical substance in the present invention.
  • the viscosity when the high-viscosity liquid or gel is made into a low-viscosity liquid or sol by stimulation is preferably 300 mPa ⁇ s or less, more preferably 100 mPa ⁇ s or less, and even more preferably 30 mPa ⁇ s or less.
  • the low surface energy liquid 131 is gelled or increased in viscosity, and the high surface energy liquid 130 is formed.
  • examples thereof include a gelling agent or a thickening agent that dissolves.
  • the first substrate 110 may be installed immediately, the first substrate 110 may be down, and the second substrate 120 may be up.
  • the gelling agent or the high viscosity agent is dissolved in the high surface energy liquid 130 more easily than the low surface energy liquid 131 and is distributed.
  • the solubility is not particularly limited, but is preferably 1% by weight or more, more preferably 5% by weight or more. Dissolution preferably occurs at room temperature, but may be warmed to the extent that it does not interfere with production.
  • the high surface energy liquid 130 Since the high viscosity agent is dissolved in the high surface energy liquid 130, the high surface energy liquid 130 is not increased in viscosity and does not reversely transfer to the low surface energy liquid 131 to form 131A again.
  • hydroxycarboxylic acid-based materials such as 12-hydroxystearic acid, N-lauroyl-L- Amides such as glutamic acid- ⁇ , ⁇ -dibutylamide, N-2-ethylhexyl-L-glutamic acid dibutylamide, tetradodecylammonium bromide, substituted cinnamic acids and alkyl or aralkylamine salts, 1,1-cyclobutanedicarboxylic acid and cyclohexyl Salts of amines, ammonium salts such as salts of malonic acid and long-chain alkyl (eg hexadecyl) amine, polyhydric hydroxyl groups such as 1,3; 2,4-dibenzylidene-D-sorbitol, butane-1,2, 3,4-tetracarboxy
  • Carboxylic acid esters amino acid surfactants, complex salts of sodium di-2-ethylhexylsulfosuccinate with steroid compounds, phenols, hydroquinone, resorcinol, etc., complex salts of trimethylstearylammonium chloride and decanoic acid, arjunolates Bis (alkylamidated amino acid) phthalamide, amino acid alkyl modified products, and the like, but are not limited to these as long as they meet the object of the present invention.
  • the amino acid surfactant-based high viscosity or gelling agent includes, for example, a gelling agent represented by the following general formula (1) (Colloid Poly. Sci. 276: 252 (1998)). .
  • X ⁇ represents a monovalent anionic group.
  • R 1 represents a monovalent substituent having 1 to 9 carbon atoms, may contain at least one selected from the group consisting of oxygen, nitrogen and sulfur, and may contain a cyclic structure.
  • R 2 represents a monovalent substituent having 1 to 20 carbon atoms.
  • the gelling agent of the formula (1) is obtained by dehydrating and condensing an amino acid having an R 1 structure and an alcohol corresponding to the ester structure of R 2 under an acid condition, and performing ion exchange of X ⁇ as necessary. Easy to synthesize.
  • X ⁇ is not particularly limited as long as it is a monovalent anion.
  • a conjugate base of an acid having an aromatic group is preferable because gelation ability tends to be high.
  • Specific examples of the conjugate base of an acid having an aromatic group include, but are not limited to, paratoluenesulfonate, benzenesulfonate, benzenephosphonate, and benzoate.
  • p-toluenesulfonate does not require ion exchange after synthesis, is available in large quantities, and is low in cost, so that it can be particularly preferably used.
  • R 1 represents a monovalent substituent having 1 to 9 carbon atoms and may contain at least one selected from the group consisting of oxygen, nitrogen and sulfur, and may contain a cyclic structure.
  • the structure of R 1 depends on the structure of the amino acid used as a raw material.
  • the amino acid used as a raw material is preferably D-form or L-form, and DL-form is not preferred because gelation ability is lowered.
  • R 1 is an alkyl group because they can be used relatively stably.
  • R 1 is preferably a methyl group, isopropyl group, isobutyl group, sec-butyl group, or benzyl group, and can be synthesized using alanine, valine, leucine, isoleucine, and phenylalanine as raw materials.
  • R 1 is an isobutyl group, that is, a material using leucine as a raw material has appropriate solubility and polarity, and can be preferably used as a gelling agent.
  • R 2 may be a monovalent substituent having 1 to 20 carbon atoms.
  • a straight-chain alkyl group having 6 to 20 carbon atoms can be preferably used because it has high gel stability and is easy to synthesize. Further, since the gel transition temperature of the gelling agent can be adjusted by adjusting the number of carbon atoms, selection and adjustment of the carbon chain length are important.
  • amino acid-based surfactant type gelling agents may be used alone, or may be used in combination with one another in order to adjust the gelation temperature or the like, or may be used in combination with other types of gelling agents.
  • a complex salt of sodium di-2-ethylhexylsulfosuccinate and a steroid compound or phenolic compound gels the low surface energy liquid 131 to form a semi-solid 131A, and the high surface energy liquid 130 Therefore, it can be suitably used in the present invention (Shih-Huang Tung et al., Soft Matter, 2008, Vol. 4, page 1086).
  • Sodium di-2-ethylhexylsulfosuccinate is a substance represented by the following formula (2) and is easily available.
  • Sodium di-2-ethylhexyl sulfosuccinate gels low surface energy liquids when used in combination with steroidal compounds such as sodium deoxycholate or phenolic compounds such as cresol, aminophenol, hydroquinone and resorcinol. can do.
  • the amount of the additive used together with sodium di-2-ethylhexylsulfosuccinate is preferably in the range of 1% by weight to 150% by weight with respect to sodium di-2-ethylhexylsulfosuccinate by weight, and 5% by weight. The range is more preferably in the range of ⁇ 100% by weight, and still more preferably in the range of 10% by weight to 50% by weight.
  • alkyl-substituted cinnamic acids such as 3-methyl cinnamic acid and 4-methyl cinnamic acid
  • halogen-substituted cinnamic acids such as 3-chloro cinnamic acid, 3-bromo cinnamic acid, 4-chloro cinnamic acid and 4-bromo cinnamic acid Salts of nitro group-substituted cinnamic acids such as 4-nitrocinnamic acid
  • long-chain alkyl amines such as hexadecylamine
  • alicyclic alkyl-substituted amines such as dicyclohexylamine
  • aralkyl-substituted amines such as dibenzylamine
  • n represents an integer of 1 to 3
  • R represents a monovalent organic group
  • Y represents an arbitrary monovalent substituent.
  • R representing a monovalent organic group examples include aliphatic hydrocarbons having 6 to 20 carbon atoms or aralkyl groups.
  • Specific examples of the aliphatic hydrocarbon having 6 to 20 carbon atoms include n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Examples thereof include an n-dodecyl group, an n-tetradecyl group, an n-hexadecyl group, an n-octadecyl group, an n-eicosyl group, a cyclohexyl group, and a cyclooctyl group.
  • n-hexadecyl group, n-octadecyl group and cyclohexyl group are preferable.
  • Specific examples of the aralkyl group include a benzyl group, a phenylethyl group, a naphthylmethyl group, and a naphthylethyl group, and among these, a benzyl group is preferable.
  • Y representing an arbitrary monovalent group is, for example, a lower alkyl group having 1 to 6 carbon atoms or a halogeno group.
  • the lower alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a heptyl group. Among these, a methyl group, an ethyl group, and the like can be given. A propyl group is preferred, and a methyl group is more preferred.
  • the halogeno group include a fluoro group, a chloro group, and a bromo group, and among these, a chloro group or a bromo group is preferable.
  • these gelling agents or thickening agents may have a surface active action and may affect the physical properties of the high surface energy liquid 130, it is preferable to use the minimum necessary amount. .
  • the necessary minimum amount cannot be generally stated because this concentration varies depending on the type of low surface energy liquid 131, high surface energy liquid 130, and type of thickening agent used. 0.001 wt% to 10 wt% is preferable, and 0.01 wt% to 5 wt% is more preferable.
  • a physical responsive high viscosity agent can be preferably used.
  • a physical responsive high viscosity agent there is a stilbene compound E-SGP of the following formula (4) (Chem. Commun, 2004, pages 1608 to 1609).
  • This gelling agent becomes a solution when dissolved in an organic solvent (low surface energy liquid 131) at a high temperature, and gels when cooled to room temperature, but becomes a low viscosity liquid when irradiated with ultraviolet rays. Therefore, when it is injected and printed in the pixel by some method at a high temperature and cooled to room temperature, it becomes a gel.
  • the high surface energy liquid 130 is injected into the pixel and later irradiated with ultraviolet rays, it becomes a sol (liquid) by isomerization and dimerization of stilbene.
  • a compound in which cholesterol is bound to azobenzene through an ester bond is also reduced in viscosity by gelling the low surface energy liquid 131 and isomerizing the azobenzene with light (J. Am. Chem. Soc., 1994, 116, 6664).
  • the salt of 9-anthracenecarboxylic acid and aliphatic amine is similarly converted into a low-viscosity liquid by gelling the low surface energy liquid 131 and reacting (dimerizing) the 9,10 positions of anthracene with light.
  • this gelling agent 9-anthracenecarboxylic acid and aliphatic amine which are raw materials can be easily obtained, and the synthesis of a salt is also easy, so that it can be preferably used.
  • the salt of 9-anthracenecarboxylic acid and aliphatic amine is dimerized by light irradiation to form a sol, and then the dimer is dissolved in the high surface energy liquid 130 and transferred. For this reason, when a gelling agent comprising a salt of 9-anthracenecarboxylic acid and an aliphatic amine is used, there is no possibility of regelation and it can be preferably used.
  • the first substrate 110 and the second substrate 120 are bonded together via the sealing material 140.
  • the above-mentioned stimulation was given by giving light energy, such as ultraviolet light, visible light, and infrared light, as needed.
  • light energy is applied from the first substrate 110 (base material 110A) side. Since the base material 110A constituting the first substrate 110 is made of light-transmitting glass, the light energy is transmitted through the first substrate 110 and is well irradiated to the high-viscosity material 131A filled therein. .
  • the high-viscosity material 131A changes into the state of the low surface energy liquid 131 by reducing viscosity. Thereby, the low surface energy liquid 131 and the high surface energy liquid 130 can be favorably stacked.
  • the high surface energy liquid 130 is disposed on the high viscosity material 131A using the high viscosity material 131A obtained by gelling or increasing the viscosity of the low surface energy liquid 131 to 1 Pa ⁇ s or higher.
  • the low surface energy liquid 131 is used as it is, it can be stacked while preventing the floating of the 131 and the movement between pixels, and the bonding process of the first substrate 110 and the second substrate 120 can be performed in a short time. Therefore, even when large substrates are used as the first substrate 110 and the second substrate 120, they can be manufactured efficiently and easily.
  • the high-viscosity material 131A is converted into the low-viscosity low-surface energy material 131 by chemical or physical stimulation after the cell is manufactured, it can operate well as an electrowetting element.
  • FIG. 8 is a diagram showing a manufacturing process according to the present embodiment, and illustration of the common electrode 111 is omitted.
  • the same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals, and detailed description thereof is omitted or simplified.
  • a second substrate 120 manufactured by a conventional method is prepared, and pixel walls 127 are formed on the second substrate 120.
  • the mixed high-viscosity material 132 ⁇ / b> A is disposed in each pixel G of the second substrate 120.
  • the mixed high viscosity material 132A includes a high surface energy liquid 130 adjusted to a viscosity of 1 Pa ⁇ s or more, a low surface energy liquid 131, and a gelling agent or a high viscosity agent capable of increasing the viscosity of the high surface energy liquid 130. And consist of Here, the mixed high-viscosity material 132A having a viscosity of 1 Pa ⁇ s or more includes a material adjusted to a gel that does not flow even when inverted.
  • the thickening agent is a material that dissolves in the low surface energy liquid 131. If the amount of the low surface energy liquid 131 introduced is too large, gelation cannot be performed, and therefore the amount of the low surface energy liquid 131 introduced is adjusted as appropriate.
  • an inkjet device IJ may be used as in the second embodiment of the present invention.
  • the method is not particularly limited as long as the mixed high-viscosity material 132A can be disposed in the pixel G, and other methods such as screen printing, flexographic printing, gravure printing, and dispensing can be used.
  • the high surface energy liquid 130 is injected onto the mixed high viscosity material 132 ⁇ / b> A disposed in the partition region (pixel G) of the pixel wall 127.
  • the injection is not particularly limited as long as the high surface energy liquid 130 can be injected into the pixel G, and in addition to the injection by the ink jet apparatus (IJ) shown in FIG. 8B, screen printing, flexographic printing. Gravure printing method, dispensing method, etc. can be used.
  • a stable electrowetting element can be manufactured without floating from the bottom surface of the pixel G due to the inflow of the energy liquid 130.
  • the high-viscosity or gelled mixed high-viscosity material 132A is added with the high surface energy liquid 130 to obtain the state shown in FIG. 8B, whereby the high surface energy liquid 130 flows into the mixed high-viscosity material 132A.
  • Viscosity decreases.
  • the thickening agent dissolves in the low surface energy liquid 131, and further the lowering of the viscosity and separation proceed, and finally the low surface viscosity liquid 130 and the low surface energy liquid 131 are separated.
  • the electrowetting element is in a good state to operate.
  • the viscosities of the finally obtained high surface energy liquid 130 and low surface energy liquid 131 are the same as in the first and second embodiments.
  • the first substrate may be placed downward so that the low surface energy liquid 131 does not float. Also in this embodiment, neither regelation nor re-high viscosity occurs.
  • thickening agent that increases the viscosity or gelation of the high surface energy liquid 130 and dissolves in the low surface energy liquid 131 to form the mixed high viscosity material 132A
  • specific examples of the thickening agent that increases the viscosity or gelation of the high surface energy liquid 130 and dissolves in the low surface energy liquid 131 to form the mixed high viscosity material 132A include tetracosane, octacosane, Long chain hydrocarbon materials such as dotriacontane and hexatriacontane can be mentioned, but the material is not limited to these as long as the purpose of the present invention is met.
  • These gelling agents are reported in the magazine “Lnagmuir” 2000, Vol. 16, page 352.
  • the ratio of the high surface energy liquid 130 and the low surface energy liquid 131 is preferably in the range of 3: 1 to 30: 1.
  • the mixed high-viscosity material 132A made of a high-viscosity or gel-like substance is used by adjusting the mixture of the low surface energy liquid 131 and the high surface energy liquid 130 to a viscosity of 1 Pa ⁇ s or more, Since the high surface energy liquid 130 is disposed on the mixed high viscosity material 132A, the bonding process of the first substrate 110 and the second substrate 120 is shortened while the high surface energy liquid 130 and the low surface energy liquid 131 are uniformly disposed. Can be done in time. Therefore, even when a large substrate is used as the first substrate 110 and the second substrate 120 as shown in FIG. 8C, it can be manufactured efficiently and easily.
  • FIG. 9 is a diagram showing a manufacturing process according to the present embodiment, and illustration of the common electrode 111 is omitted.
  • the same reference numerals are given to the same members as those in the above embodiment, and the detailed description thereof is omitted or simplified.
  • each of the pixels G of the second substrate 120 is made of a high-viscosity or gelled low surface energy liquid 131 having a viscosity of 1 Pa ⁇ s or more, as in the second embodiment.
  • a highly viscous material 131A is disposed.
  • the first substrate 110 and the second substrate 120 are bonded together via the high surface energy liquid 130.
  • a high-viscosity material 130 ⁇ / b> A made of a high-viscosity or gelled high-surface energy liquid 130 with a viscosity of 1 Pa ⁇ s or more inside the first substrate 110 including the sealing material 140.
  • the first substrate 110 and the second substrate 120 are bonded together via the high viscosity material 130A.
  • the bonding angle may be devised so that bubbles or the like do not enter, or the bonding may be performed under a substantially vacuum.
  • the first substrate 110 on which the high viscosity material 130A is arranged is turned upside down, and the first substrate 110 and the second substrate are interposed via the sealing material 140. 120 and pasted together.
  • the high-viscosity material 130A since the high-viscosity material 130A is in a high-viscosity state, the thickness does not change greatly even when it is turned upside down.
  • the high-viscosity material 130A may be applied to the second substrate 120 on which the high-viscosity material 131A is arranged by a known method, and then the first substrate 110 may be bonded from above.
  • a stimulus-responsive material that responds to chemical stimulation and / or physical stimulation is used as the thickening agent or gelling agent.
  • a thickening agent that dissolves the high-viscosity material 130A in the low surface energy liquid 131 and a thickening agent that dissolves the high-viscosity material 131A in 130 are used, high viscosity is applied to each layer in the state of FIG. The transition of the agent begins, and the viscosity reduction starts. Heating or rocking may be performed in order to promote the migration of the thickening agent.
  • the first substrate 110 and the second substrate 120 are bonded together to obtain the state shown in FIG.
  • Light energy capable of acting through the first substrate 110 or the second substrate 120 is applied to the viscous material 130A and the high-viscosity material 131A.
  • light energy is applied from the first substrate 110 side as necessary.
  • the light energy passes through the base material 110A constituting the first substrate 110, and is well irradiated to the high viscosity material 130A and the high viscosity material 131A filled therein.
  • the high-viscosity material 130A and the high-viscosity material 131A change to the high surface energy liquid 130 and the low surface energy liquid 131, respectively, by reducing the viscosity.
  • a structure in which the high surface energy liquid 130 is well disposed on the low surface energy liquid 131 can be obtained.
  • the high-viscosity material 130A and the high-viscosity material 131A made of a high-viscosity or gel-like substance, in which the high surface energy liquid 130 and the low surface energy liquid 131 are respectively adjusted to a viscosity of 1 Pa ⁇ s or more are used. Since the first substrate 110 and the second substrate 120 are bonded together, the high-viscosity material 130A disposed on the first substrate 110 does not fall even if it is on the lower side. Therefore, the first substrate can be easily used using the roll-to-roll method. 110 and the second substrate 120 can be bonded together.
  • the first substrate 110 and the second substrate 120 can be easily handled at the time of bonding, and the substrates can be attached.
  • the alignment process can be performed in a short time. Therefore, even when large substrates are used as the first substrate 110 and the second substrate 120, they can be manufactured efficiently and easily.
  • FIG. 10 is a diagram showing a manufacturing process according to the present embodiment, and illustration of the common electrode 111 is omitted.
  • the same reference numerals are given to the same members as those in the above embodiment, and the detailed description thereof is omitted or simplified.
  • the second substrate 120 manufactured by the conventional method is prepared, and the pixel wall 127 is formed on the second substrate 120.
  • the first substrate 110 is made of a laminate of physical viscosity responsiveness (photoresponsiveness) high-viscosity materials 130A and 131A according to the embodiment.
  • the stacked body 135 is disposed.
  • the high-viscosity materials 130A and 131A are made into a high-viscosity or gel-like substance by adjusting the high surface energy liquid 130 and the low surface energy liquid 131, respectively, to a viscosity of 1 Pa ⁇ s or more.
  • the stacked body 135 may be directly formed on the first substrate 110, or may be transferred to the first substrate 110 after being formed on another substrate.
  • the stacked body 135 is formed on another substrate (not shown) and then transferred onto the first substrate 110. In this way, by transferring the stacked body 135 onto the first substrate 110, a bonding process of the first substrate 110 and the second substrate 120 described later can be easily performed.
  • the laminate 135 may use a film-like or plate-like base material as a substrate.
  • the first substrate 110 on which the laminate 135 is disposed is turned upside down, and FIG. ), The first substrate 110 and the second substrate 120 are bonded to each other through the sealing material 140.
  • the laminated body 135 is in a high viscosity state, the thickness does not change greatly even when the stack 135 is turned upside down.
  • the stacked body 135 (high-viscosity materials 130A and 131A) in the cell Light energy that can act through the first substrate 110 or the second substrate 120 is applied as necessary.
  • light energy is applied from the first substrate 110 side.
  • the light energy passes through the base material 110A constituting the first substrate 110, and is satisfactorily irradiated to the stacked body 135 (high viscosity materials 130A and 131A) filled therein.
  • the high-viscosity materials 130A and 131A change to the high surface energy liquid 130 and the low surface energy liquid 131, respectively, by reducing the viscosity.
  • a structure in which the high surface energy liquid 130 is well disposed on the low surface energy liquid 131 can be obtained.
  • the first substrate 110 and the second substrate 120 are bonded using the laminate 135 composed of the high surface energy liquid 130 and the low surface energy liquid 131 adjusted to have a viscosity of 1 Pa ⁇ s or more.
  • the high surface energy liquid 130 and the low surface energy liquid 131 can be arranged uniformly, and the first substrate 110 and the second substrate 120 can be bonded in a short time. Therefore, even when large substrates are used as the first substrate 110 and the second substrate 120, they can be manufactured efficiently and easily.
  • the case where the first substrate 110 and the second substrate 120 are bonded together with the stacked body 135 transferred to the first substrate 110 has been described as an example.
  • the first substrate 110 and the second substrate 120 may be bonded together by transferring to the side.
  • the pixel wall 127 may be provided on the first substrate 110 side.
  • Example 1 First, the 2nd board
  • the surface of the second substrate was made water repellent by spin coating using a Teflon (registered trademark) solution: AF1600 (manufactured by DuPont).
  • the thickness of the water repellent layer was adjusted to 1 ⁇ m.
  • a pixel wall 127 having a height of 20 ⁇ m and a width of 10 ⁇ m was formed on the second substrate 120 by using a photoresist: SU-8 (manufactured by Kayaku Microchem Co., Ltd.) to obtain the structure shown in FIG.
  • the interval between the pixel walls was 80 ⁇ m. This corresponds to a resolution of about 300 pixels (pixels) per inch.
  • a pigment mixture in which carbon black having a hydrophobic surface was dissolved in undecane at a concentration of 5 wt% was used as the low surface energy liquid 131 on the second substrate 120 on which the pixel walls 127 were formed.
  • the carbon black undecane solution is diluted to 5 times volume with hexane, filled into the second substrate 120 on which the pixel wall 127 is formed as shown in FIG. 4, and hot air at 60 ° C. is blown to volatilize the hexane, A low surface energy liquid 131 having a thickness of 4 ⁇ m was formed.
  • A785 manufactured by Sekisui Chemical Co., Ltd. was applied as a photocurable sealant 140 along the outer periphery of the first substrate 110 on the common electrode 111 side with a dispenser to form a seal pattern.
  • the first substrate 110 and the second substrate 120 on which the high-viscosity material 130A was installed were bonded together.
  • an air vent hole was formed in a part of the sealing material 140, and after excess air was expelled, sealing was performed using the same sealing material.
  • the sealing material 140 is cured by irradiating 1000 mJ light with an ultra-high pressure mercury lamp having a center wavelength of 365 nm, and at the same time, the high-viscosity material 130A is liquefied. Obtaining display 100 was obtained.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 2 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • a pigment mixture in which carbon black having a hydrophobic surface was dissolved in undecane at a concentration of 5 wt% was used as the low surface energy liquid 131 on the second substrate 120 on which the pixel walls 127 were formed.
  • 4% by weight of stilbene compound E-SGP and 0.2% by weight of N, N-dimethyldodecylamine were added to the carbon black undecane solution with respect to the low surface energy liquid 131 and heated to 120 ° C.
  • the heated low surface energy liquid 131 was discharged to the pixel G with an inkjet apparatus. Then, the 2nd board
  • a seal pattern was formed around the second substrate using a sealant 140 (A785 (manufactured by Sekisui Chemical Co., Ltd.)).
  • a high surface energy liquid 130 was injected into the seal pattern. Since the high-viscosity material 131A is gelled, it does not float or deviate from the pixels even when the high surface energy liquid 130 is injected.
  • the sealing material 140 was cured by irradiating with 1000 mJ light with an ultra-high pressure mercury lamp having a center wavelength of 365 nm, and at the same time, the high-viscosity material 131A was liquefied to obtain the electrowetting display 100.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 3 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • a high-viscosity material 131A obtained by gelling the low surface energy liquid 131 on the second substrate 120 on which the pixel wall 127 was formed was produced in the same manner as in Example 2. Separately, a seal pattern was formed on the first substrate 110 in the same manner as in Example 1.
  • a high-viscosity material 130A obtained by gelling the high surface energy liquid 130 was formed in the same manner as in Example 1 and bonded to the second substrate 120. At this time, an air vent hole was formed in a part of the sealing material 140, and after excess air was expelled, sealing was performed using the same sealing material.
  • the ultra-high pressure mercury lamp having a center wavelength of 365 nm is irradiated with light of 1000 mJ to cure the sealing material 140, and at the same time, the high-viscosity materials 130A and 131A are liquefied to obtain the electrowetting display 100. It was.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the high surface energy liquid 130 and the low surface energy liquid 131 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 4 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • a seal pattern was formed on the first substrate 110 in the same manner as in Example 1. Further, separately from this, 130A obtained by gelling the high surface energy liquid 130 was applied to a polyethylene terephthalate film with a thickness of 20 ⁇ m. On the high surface energy liquid 130, 4 ⁇ m of 131 A gelled with the low surface energy liquid 131 was applied to form the laminate 135.
  • the film (laminated body 135) coated with this gel was transferred to the first substrate 110, and then the first substrate 110 and the second substrate 120 were bonded together via the film. At this time, an air vent hole was formed in a part of the sealing material 140, and after excess air was expelled, sealing was performed using the same sealing material.
  • the sealing material 140 is cured by irradiating light of 1000 mJ with an ultrahigh pressure mercury lamp having a center wavelength of 365 nm, and at the same time, the high surface energy liquids 130 and 131 are liquefied, whereby the electrowetting display 100 is made. Obtained.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 5 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained. A pigment mixture in which carbon black having a hydrophobic surface was dissolved in cyclohexane at a concentration of 5% by weight was used as the low surface energy liquid 131 on the second substrate 120 on which the pixel walls 127 were formed.
  • a seal pattern was formed around the second substrate using a sealant 140 (A785 (manufactured by Sekisui Chemical Co., Ltd.)).
  • a high-viscosity material 131A was injected into the seal pattern. Since the high-viscosity material 131A is gelled, it does not float or deviate from the pixels even when the high surface energy liquid 130 is injected. Subsequently, as shown in FIG. 7C, the first substrate 110 and the second substrate 120 were bonded together with the sealing material 140 interposed therebetween.
  • the sealing material 140 was cured by irradiating with 1000 mJ light with an ultra-high pressure mercury lamp having a center wavelength of 365 nm, and at the same time, the high-viscosity material 131A was liquefied to obtain the electrowetting display 100.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 6 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • the low surface energy liquid 131 a pigment mixture in which carbon black having a hydrophobic surface was dissolved in undecane at a concentration of 5% by weight was used and disposed in the pixels of the second substrate using an inkjet device.
  • the first substrate 110 and the second substrate 120 on which the high-viscosity material 130A was installed were bonded together.
  • an air vent hole was formed in a part of the sealing material 140, and after excess air was expelled, sealing was performed using the same sealing material.
  • the substrate was heated to 50 ° C., and the high-viscosity material 130A was liquefied to obtain the electrowetting display 100.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz was applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between 131 and 130 changed in response to the voltage rise and fall, as shown in FIG. Such opening and closing of the pixel region could be observed.
  • Example 7 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • a pigment mixture in which carbon black having a hydrophobic surface was dissolved in cyclohexane at a concentration of 5 wt% was used as the low surface energy liquid 131 on the second substrate 120 on which the pixel walls 127 were formed.
  • 5% by weight of 12-hydroxystearic acid was added to the carbon black cyclohexane solution, and the low surface energy liquid 131 heated at 70 ° C. was discharged to the pixels G by the ink jet apparatus. Then, the 2nd board
  • a seal pattern was formed around the second substrate using a sealant 140 (A785 (manufactured by Sekisui Chemical Co., Ltd.)).
  • a mixture of 95% ethanol and 5% water was injected as a high surface energy liquid 130 into this seal pattern. Since the high-viscosity material 131A is gelled, it does not float or deviate from the pixels even when the high surface energy liquid 130 is injected.
  • the first substrate 110 and the second substrate 120 were bonded together with the sealing material 140 interposed therebetween.
  • the substrate is allowed to stand at room temperature for 30 minutes with the second substrate facing up so that the low surface energy liquid 131 does not float, the high-viscosity material 131A liquefies and the electrowetting display 100 is obtained. It was.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 8 A second substrate 120 manufactured by a conventional method was prepared. The surface of the second substrate was made water repellent by the same method as in Example 1. The thickness of the water repellent layer was adjusted to 1 ⁇ m. A pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • the low surface energy liquid 131 a pigment mixture in which carbon black having a hydrophobic surface was dissolved in cyclohexane at a concentration of 5 wt% was used.
  • the high surface energy liquid 130 a mixture of 95% ethanol and 5% water was used. Tetracosane was used as a thickening agent.
  • the first substrate 110 and the second substrate 120 were bonded together with the sealing material 140 interposed therebetween. Thereafter, when the second substrate is placed on the upper side so that the low surface energy liquid 131 does not float, the mixed high-viscosity liquid 132A is liquefied when left at 50 ° C. for 30 minutes, and the electrowetting display 100 is liquefied. Got.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz was applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between 131 and 130 changed in response to the voltage rise and fall, as shown in FIG. Such opening and closing of the pixel region could be observed.
  • Example 9 (Synthesis of gelling agent) A 200 mL eggplant flask was charged with 3.29 g (25 mmol) of L-leucine, 9.34 g (50 mmol) of 1-dodecanol, 5.71 g (30 mmol) of p-toluenesulfonic acid, and 60 mL of toluene. A dehydrator was installed, and the solution was vigorously returned to an oil bath at 140 ° C. for 6 hours. The reaction mixture was cooled, the solvent was distilled off under reduced pressure, and the resulting solid was recrystallized from cyclohexane and then acetone. 9.0 g of fibrous crystals were obtained. The yield was 76%. The structure and purity were confirmed by each magnetic resonance spectrum (manufactured by JEOL, ECX-400).
  • a second substrate 120 manufactured by a conventional method was prepared.
  • the surface of the second substrate was made water repellent by the same method as in Example 1.
  • the thickness of the water repellent layer was adjusted to 1 ⁇ m.
  • a pixel wall 127 is formed on the second substrate 120 in the same manner as in the first embodiment, and the structure shown in FIG. 3 is obtained.
  • a pigment mixture in which carbon black having a hydrophobic surface was dissolved in octane at a concentration of 5 wt% was used as the low surface energy liquid 131 on the second substrate 120 on which the pixel wall 127 was formed.
  • 1% by weight of the synthesized gelling agent (dodecyl- (s) -2-ammonium-2-isobutylacetate p-toluenesulfonate) was added to the carbon black octane solution, and the mixture was heated and stirred at 80 ° C. to obtain a uniform liquid. It was.
  • This gelling agent-containing low surface energy liquid 131 was discharged to the pixels G by an ink jet apparatus while being heated. Then, the 2nd board
  • a seal pattern was formed around the second substrate using a sealant 140 (A785 (manufactured by Sekisui Chemical Co., Ltd.)). Methanol (manufactured by Wako Pure Chemical Industries, Ltd.) was injected as a high surface energy liquid 130 into the seal pattern. Since the high-viscosity material 131A is gelled, it does not float or deviate from the pixels even when the high surface energy liquid 130 is injected. Subsequently, as shown in FIG. 7C, the first substrate 110 and the second substrate 120 were bonded together with the sealing material 140 interposed therebetween.
  • a sealant 140 A785 (manufactured by Sekisui Chemical Co., Ltd.)
  • Methanol manufactured by Wako Pure Chemical Industries, Ltd.
  • the electrowetting display 100 obtained by the above process was observed with a microscope, it was confirmed that the low surface energy liquid 131 was uniformly stored in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 10 (Synthesis of gelling agent) A gelling agent was synthesized in the same manner as in Example 9 except that 12.15 g (50 mmol) of 1-hexadecanol was used as the alcohol. 9.4 g of fibrous crystals were obtained. The yield was 67%.
  • Example 9 A display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (hexadecyl- (s) -2-ammonium-2-isobutyl acetate p-toluenesulfonate) was used.
  • the gelling agent synthesized above hexadecyl- (s) -2-ammonium-2-isobutyl acetate p-toluenesulfonate
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 11 (Synthesis of gelling agent) A gelling agent was synthesized in the same manner as in Example 9 except that 7.92 g (50 mmol) of 1-decanol was used as the alcohol. 6.5 g of fibrous crystals were obtained.
  • Example 9 A display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (decyl- (s) -2-ammonium-2-isobutyl acetate p-toluenesulfonate) was used.
  • the gelling agent synthesized above decyl- (s) -2-ammonium-2-isobutyl acetate p-toluenesulfonate
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 12 (Synthesis of gelling agent) A gelling agent was synthesized in the same manner as in Example 9 except that 2.95 g (25 mmol) of L-valine was used as an amino acid. 8.1 g of fibrous crystals were obtained. The yield was 70%.
  • Example 9 A display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (dodecyl- (s) -2-ammonium-2-isopropyl acetate p-toluenesulfonate) was used.
  • the gelling agent synthesized above dodecyl- (s) -2-ammonium-2-isopropyl acetate p-toluenesulfonate
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • 30 Hz is applied to the pixel electrode 124 of the electrowetting display 100 with a pulse voltage of 0 V / 30 V, the interface shape between the low surface energy liquid 131 and the high surface energy liquid 130 changes in response to the voltage up and down. It changed, and the opening and closing of the pixel region as shown in FIG. 2 could be observed.
  • Example 13 Adjustment of gelling agent
  • AOT Sodium di-2-ethylhexylsulfosuccinate
  • hydroquinone hydroquinone
  • a display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (5: 1 mixture of AOT and hydroquinone) was used.
  • the gelling agent synthesized above 5: 1 mixture of AOT and hydroquinone
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • Example 14 Adjustment of gelling agent
  • AOT and resorcinol were mixed at a weight ratio of 5: 1 and stirred in ethanol at 60 ° C. for 1 hour, and then ethanol was volatilized at room temperature.
  • the obtained semi-solid product was dried at 60 ° C. under reduced pressure for 12 hours to obtain a film-form gelling agent.
  • Example 9 A display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (5: 1 mixture of AOT and resorcinol) was used.
  • the gelling agent synthesized above 5: 1 mixture of AOT and resorcinol
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • Example 15 (Adjustment of gelling agent) 4-Methylcinnamic acid was dissolved in methanol and dibenzylamine was added slowly. The mixed solution was slightly exothermic due to heat of neutralization, and then stirred at 60 ° C. for 1 hour to complete neutralization. Thereafter, methanol was volatilized at room temperature. The obtained solid was dried at 60 ° C. under reduced pressure for 12 hours to obtain a film-like gelling agent.
  • Example 9 A display cell was synthesized in the same manner as in Example 9, except that the gelling agent (4-methylcinnamic acid / dibenzylamine salt) synthesized above was used.
  • the gelling agent 4-methylcinnamic acid / dibenzylamine salt
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • Example 16 Adjustment of gelling agent
  • 3-chlorocinnamic acid was used instead of 4-methyl cinnamic acid.
  • Example 9 A display cell was synthesized in the same manner as in Example 9 except that the gelling agent synthesized above (3-chlorocinnamic acid / dibenzylamine salt) was used.
  • the gelling agent synthesized above 3-chlorocinnamic acid / dibenzylamine salt
  • the high-viscosity material 131A was gelled with a gelling agent, it did not float or deviate from the pixels even when the high surface energy liquid 130 was injected.
  • an electrowetting display 100 was produced in the same manner as in Example 9.
  • the obtained electrowetting display 100 was observed with a microscope, it was confirmed that the low surface energy liquid 131 was stored uniformly in the pixels G surrounded by the pixel walls 127 without unevenness.
  • the electrowetting element manufactured by the manufacturing method of the present invention can be suitably used as, for example, a display element because there is no increase in applied voltage or delay in operation.
  • Electrowetting display 110 ... 1st board

Abstract

 対向配置される第1の基板及び第2の基板間に形成されたセル内に、互いが混ざり合わない第1の液体材料及び該第1の液体材料に対して表面エネルギーの低い第2の液体材料を含み、前記第1の液体材料及び前記第2の液体材料の少なくとも一方がゲル化又は高粘度化されており、前記セル内に電圧を印加することで前記第1の液体材料及び前記第2の液体材料における界面形状が変化するエレクトロウェッティング素子の製造方法であって、 ゲル化又は高粘度化された、前記第1の液体材料及び前記第2の液体材料の少なくとも一方に対して、刺激を付与することにより低粘度化する工程を備えることを特徴とするエレクトロウェッティング素子の製造方法に関する。 本発明によれば、エレクトロウェッティング素子を容易に製造でき、本発明によって製造されたエレクトロウェッティング素子は、印加電圧の上昇や、動作の遅滞などがない。

Description

エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ
 本発明は、エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイに関する。本願は、2011年10月24日に、日本に出願された特願2011-233199号、2012年2月28日に、日本に出願された特願2012-041772号、2012年4月26日に、日本に出願された特願2012-101291号、及び2012年7月5日に、日本に出願された特願2012-151661号に基づき優先権を主張し、その内容をここに援用する。
 近年、エレクトロウェッティング効果を利用したエレクトロウェッティング素子が注目されている。一般に、エレクトロウェッティング素子は、一対の基板間にお互いに混じり合わない相対的に表面エネルギーが高い高表面エネルギーの液体と、相対的に表面エネルギーが低い低表面エネルギーの液体とが満たされてなり、一方の基板は、表面に電極層と、電極層の表面に形成された疎水性中間層(絶縁層)とを備えている。エレクトロウェッティング素子は、疎水性中間層を介して親水性の液体と電極層との間に電圧を印加すると親水性液体が疎水性中間層に引き寄せられ、親水性の液体と疎水性の液体との間の界面形状が変化する特性を有する。エレクトロウェッティング素子は、このような特性を利用して光学レンズや表示素子等に用いられる(非特許文献1)。
 上述したようなエレクトロウェッティング素子を製造するための方法としては下記特許文献1、2に開示されるものが知られている。
 特許文献1に開示の製造方法においては、基板表面が高表面エネルギーの液体(水)で覆われ、基板表面の上部に開口部が配置されている。なお、基板表面は疎水性の第一領域を有し、各第一領域は、親水性の第二領域(画素壁)に囲まれている。
 そして、基板表面に沿って低表面エネルギー液体(オイル)を満たした注入器からオイルを排出させながら移動させると、低表面エネルギー液体の液滴が第一領域に引き込まれ、第一領域に接していた高表面エネルギー液体は低表面エネルギー液体の層に置換されるようになっている。
 また、特許文献2においては、一方が導電性(高表面エネルギー)で他方が絶縁性(低表面エネルギー)である第1、第2の液体を用いるエレクトロウェッティングデバイスの製造方法が開示されており、液導入口と液排出口とを有する容器を作製する工程と、第1の液体を容器内部に充填した後第2の液体を導入し、導入後液導入口と液排出口を閉塞して容器内部を密閉する工程とを含んでいる。
国際公開第05/098797号 特開2008-170586号公報
「Electro-wetting displays」、「Applied Physics Letters Vol.38 Issue 4」、1981年、G. Beni、S. Hackwood著、American Institute ofPhysics発行、207-209頁(URL:http://www.jpo.go.jp/shiryou/s_sonota/hyoujun_gijutsu/electronicpaper/4-4-4.pdf#1)
 しかしながら、上記特許文献1に開示されている方法では、高表面エネルギー液体(水)を満たした基板に、低表面エネルギー液体(オイル)を導入して置換される工程を確実に行うためには、各液体の量(厚み)や導入速度を考慮する必要があり、比較的時間がかかり、大型基板への適用が難しいという問題があった。
 また、上記特許文献2に開示されている方法では、液導入口などを別途設ける必要があるため、基板の構造が複雑となり、製造工程も増え、最終的にできる素子の開口率が低下するといった問題があった。
 このようなエレクトロウェッティング素子の製造における問題の本質は、エレクトロウェッティング素子を製造する際に、2種類の液体を同時に取り扱う必要があるために発生するものであった。
 本発明はこのような事情に鑑みてなされたものであって、エレクトロウェッティング素子を効率的かつ容易に製造することができ、かつ、当該エレクトロウェッティング素子の良好な応答性を確保できる、エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイを提供することを目的とする。
 本発明の第1の態様は、対向配置される第1の基板及び第2の基板間に形成されたセル内に、互いが混ざり合わない第1の液体材料及び該第1の液体材料に対して表面エネルギーの低い第2の液体材料を含み、前記第1の液体材料及び前記第2の液体材料の少なくとも一方がゲル化又は高粘度化されており、前記セル内に電圧を印加することで前記第1の液体材料及び前記第2の液体材料における界面形状が変化するエレクトロウェッティング素子の製造方法であって、ゲル化又は高粘度化された、前記第1の液体材料及び前記第2の液体材料の少なくとも一方に対して、刺激を付与することにより低粘度化する工程を備えることを特徴とするエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、第1の液体材料及び第2の液体材料の少なくとも一方がゲル化又は高粘度化されており、固体もしくは固体に準じた取り扱いが可能となるので、2種類の液体を同時に取り扱うという、エレクトロウェッティング素子製造における本質的な問題を回避することができる。2種類の液体を同時に取り扱う必要がなくなるため、工程は簡略且つ簡易となり、既存の製造装置をそのまま適用することが可能になり、液体注入量の偏りによる画像ムラなど素子の性能に影響する問題も大幅に低減することが可能となる。本発明においては、ゲル化又は高粘度化された、第1の液体材料及び第2の液体材料の少なくとも一方に対して、刺激を付与することにより低粘度化する工程を有することから、応答性に優れたエレクトロウェッティング素子を製造することが可能となる。即ち、製造途上においては一種類の液体を取り扱うか、又は、液体を取り扱わない簡易な製造方法をとることができる一方で、最終的にはゲル化又は高粘度化された液体材料に刺激を与えて低粘度の液体とすることにより、製造されたエレクトロウェッティング素子の動作性、応答性を十分に確保することができる。
 本発明の第2の態様は、前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に所定量の前記第2の液体材料を配置する工程と、
 前記第1の基板の一方面側に、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料を配置する工程と、
 前記ゲル化又は高粘度化された第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本明細書中において、セルを区画する隔壁に囲まれた領域内に配置する液体材料の所定量とは、隣の隔壁に囲まれた領域内に液体材料があふれることがない量であって、色素の隠蔽性とエレクトロウェッティングとしての動作性、及び動作後の低表面エネルギー液体の液滴の大きさに応じて調整できる量を意味する。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化された第1の液体材料を介して第1の基板と第2の基板との貼り合せ工程を行うので、液体材料に偏りが生じるのを防止できる。よって、例えば本発明により製造した素子を表示装置に用いた場合に表示ムラの無い高品質なものを提供できる。また、第1の液体材料はゲル状態又は高粘度状態で液ダレが生じ難くなっているので、第1の液体材料が配置された第1の基板の取り扱いが容易となり、基板の貼り合せ工程を短時間で行うことができる。したがって、大型の基板を有するエレクトロウェッティング素子であっても、効率的かつ容易に製造することができる。
 本発明の第3の態様は、前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
 前記隔壁に囲まれた領域に前記第1の液体材料を配置する工程と、
 前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化された第2の液体材料を配置した領域内に第1の液体材料を配置するので、第1の液体材料を配置する際、液体材料の飛散や偏りが生じるのを防止できる。よって、例えば本発明により製造した素子を表示装置に用いた場合に表示ムラや欠陥の無い高品質なものを提供できる。また、第2の液体材料がゲル状態又は高粘度状態となっているので、第1の液体材料の配置工程を簡便且つ短時間で行うことができる。したがって、大型の基板を有するエレクトロウェッティング素子であっても、効率的かつ容易に製造することができる。
 本発明の第4の態様は、前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
 前記第1の基板の一方面側に、前記第1の液体材料を配置する工程と、
 前記第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化された第2の液体材料を第2の基板に形成されたセル区画する隔壁に囲まれた領域内に配置し、一方、第1の基板に第1の液体材料を配置し、第2の基板を第1の基板に貼り合せるため、工程として極めて簡便であり、大量に且つ短時間にエレクトロウェッティング素子の製造が可能である。第2の基板を第1の基板に貼り合せる際、第2の基板に設けられた第2の液体材料はゲル化又は高粘度化されており、固体と同様に扱えるため、貼り合せの際に流れたり、飛び散ったりすることを防止できる。したがって、大型の基板を有するエレクトロウェッティング素子であっても、効率的かつ容易に製造することができる。
 本発明の第5の態様は、前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料と第2の液体材料の混合液体を配置する工程と、
 前記隔壁に囲まれた領域に前記第1の液体材料を配置する工程、又は前記第1の基板の一方面側に、前記第1の液体材料を配置する工程と、
 前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化されたた第1、2の液体材料の混合体をセル内に配置し、このゲル化又は高粘度化した第1、2の液体材料の混合体が配置された第2の基板上に第1の液体材料を設置し、第1の液体材料を介して第1の基板を設置するため、第1の液体材料を設置する際、ゲル化又は高粘度化された第1,2の液体材料は舞い上がったり飛散したりして偏ることがないため、表示ムラや欠陥のない高品質な表示デバイスを提供できる。また更に、ゲル化又は高粘度化した第1、2の液体材料の混合体を第2基板のセル内に配置し、一方、第1の基板上に第1の液体材料を設け、この第1の基板材料に設けられた第1の液体材料を介して、第2基板を貼り合せることができる。この際、第2の基板に設置した第1、2の液体材料はゲル化又は高粘度化されているため、第2基板を反転して第1の基板側に貼り合せても第1、第2の液体材料は流れ落ちたり偏ったりすることはなく、表示村や欠陥のない高品質な表示デバイスを提供できる。このように、第1、第2の液体材料はゲル状態又は高粘度状態で流れたり、飛散したり、舞い上がったりすることがないため、第1の液体を設置する時の取り扱いが容易となり、基板の貼り合せ工程を短時間で行うことができる。
 したがって、大型の基板を有するエレクトロウェッティング素子であっても、効率的かつ容易に製造することができる。
 本発明の第6の態様は、前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
 前記第1の基板の一方面側に、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料を配置する工程と、
 前記ゲル化又は高粘度化を行った前記第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化を行った第2の液体材料を前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に設け、一方、前記第1の基板にゲル化又は高粘度化を行った第1の液体材料を設け、この両者を貼り合せる工程を含むエレクトロウェッティング素子の製造方法である。それぞれ、前記第2の基板、第1の基板に設けられた第2の液体材料、第1の液体材料がゲル化又は高粘度化されているため、第1、第2の基板の取り扱いが容易となり、基板の貼り合せ工程を短時間で行うことができる。また、第1の液体材料、第2の液体材料がゲル化又は高粘度化されているため、貼り合せの際、それぞれの液体が舞い上がったり、飛散したり、偏ったりすることがなく、表示ムラや欠陥のない高品質なエレクトロウェッティング素子を提供することができる。
 本発明の第7の態様は、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料と、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料とを積層することで積層体を形成する工程と、
 前記積層体を用いて、前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする前記第1の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明のエレクトロウェッティング素子の製造方法によれば、ゲル化又は高粘度化されたた第1及び第2の液体材料からなる積層体を用いて第1の基板と第2の基板との貼り合せ工程を行うので、安定した液体量を表示セルに設置することができ、表示ムラや欠陥のない、高品質なエレクトロウェッティング素子を提供することができる。また、ゲル状態又は高粘度状態の積層体を用いるため、転写などの大量生産に適した工程によりエレクトロウェッティング素子を製造することが可能となる。したがって、大型の基板を有するエレクトロウェッティング素子であっても、効率的かつ容易に製造することができる。
 本発明の第8の態様は、前記貼り合せ工程は、前記第1の基板及び前記第2の基板の一方に前記積層体を転写した状態で行うことを特徴とする前記第7の態様に記載のエレクトロウェッティング素子の製造方法である。
 上記エレクトロウェッティング素子の製造方法においては、前記貼り合せ工程は、前記第1の基板及び前記第2の基板の一方に前記積層体を転写した状態で行うのが好ましい。
 この構成によれば、積層体が第1の基板或いは第2の基板に転写されるので、第1の基板及び第2の基板の貼り合せ工程を高速且つ容易に行うことができる。
 本発明の第9の態様は、前記刺激が、化学物質との接触、電磁波の照射、熱、音波、振動、電場及び磁場からなる群より選択される少なくとも1つであることを特徴とする前記第1~8の態様のいずれか1つに記載のエレクトロウェッティング素子の製造方法である。
 この構成によれば、化学物質との接触、電磁波の照射等といった簡便な工程により、前記第1の液体材料及び前記第2の液体材料の少なくとも一方の粘度を低下させることができるので、エレクトロウェッティング素子の動作時、すなわち、セル内に電圧を印加した際に、第1の液体材料及び第2の液体材料における界面形状の変化における応答性を向上させることができる。
 本発明の第10の態様は、前記第2の液体材料のゲル化剤又は高粘度化剤が、前記第2の液体材料をゲル化又は1Pa・s以上に高粘度化させ、且つ、前記第1の液体材料に溶解するゲル化剤又は高粘度化剤であることを特徴とする前記第1、3、4、6又は9のいずれか1つの態様に記載のエレクトロウェッティング素子の製造方法である。
 この構成によれば、第2の液体材料のゲル化剤又は高粘度化剤が第1の液体材料に溶解するので、ゲル化又は高粘度化された第2の液体材料が第1の液体材料と接触することにより、ゲル化剤又は高粘度化剤が第1の液体に移行する。その結果、ゲル化又は高粘度化されていた第2の液体材料は、エレクトロウェッティング素子として動作するのに十分低粘度な液体となる。一方、ゲル化剤又は高粘度化剤は、第1の液体材料に溶解するため、第1の液体材料をゲル化又は高粘度化することなく、第1の液体材料もエレクトロウェッティング素子として動作するのに十分低粘度な液体となる。
 本発明の第11の態様は、前記ゲル化剤又は高粘度化剤が、次の一般式(1)で示されるゲル化剤又は高粘度化剤であることを特徴とする前記第10の態様に記載のエレクトロウェッティング素子の製造方法である。
Figure JPOXMLDOC01-appb-C000004
 式(1)において、Xは一価の陰イオン基を表す。Rは炭素数1~9の一価の置換基を表し、酸素、窒素及びイオウからなる群より選択される少なくとも1つを含んでいてもよく、環状構造を含んでいてもよい。Rは炭素数1~20の一価の置換基を表す。
 本発明の第12の態様は、Xが芳香族基を有する酸の共役塩基であることを特徴とする前記第11の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第13の態様は、Rがメチル基、イソプロピル基、イソブチル基、sec-ブチル基、ベンジル基のいずれかであることを特徴とする前記第11又は12の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第14の態様は、Rが炭素数6~20の直鎖アルキル基であることを特徴とする前記第1~13のいずれか1つの態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第15の態様は、前記ゲル化剤又は高粘度化剤が次の構造式(2)で示される化合物を含むことを特徴とする前記第10の態様に記載のエレクトロウェッティング素子の製造方法である。
Figure JPOXMLDOC01-appb-C000005
 本発明の第16の態様は、前記ゲル化剤又は高粘度化剤が、前記構造式(2)で示される化合物と、ステロイド化合物又はフェノール性化合物との混合物であることを特徴とする前記第15の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第17の態様は、前記フェノール性化合物が、ヒドロキノン又はレソルシノールであることを特徴とする前記第16の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第18の態様は、前記ゲル化剤又は高粘度化剤が次の一般式(3)で示される化合物を含むことを特徴とする前記第10の態様に記載のエレクトロウェッティング素子の製造方法である。
Figure JPOXMLDOC01-appb-C000006
 式中、nは1~3の整数を表し、Rは一価の有機基を示し、Yは一価の任意の置換基を示す。
 本発明の第19の態様は、Yがメチル基、クロロ基又はブロモ基のいずれかである前記第18の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第20の製造方法は、Rが炭素数6~20の脂肪族炭化水素又はアラルキル基である前記第18の態様に記載のエレクトロウェッティング素子の製造方法である。
 本発明の第21の態様は、前記第1の液体材料ゲル化剤又は高粘度化剤が、該第1の液体材料をゲル化又は1Pa・s以上に高粘度化させ、且つ、前記第2の液体材料に溶解するゲル化剤又は高粘度化剤である前記第1、2、4、5、のいずれか1つの態様に記載のエレクトロウェッティング素子の製造方法である。
 この構成によれば、第1の液体材料のゲル化剤又は高粘度化剤が第2の液体材料に溶解するので、ゲル化又は高粘度化された第1の液体材料が第2の液体材料と接触することにより、ゲル化剤又は高粘度化剤が第2の液体材料に移行する。その結果、ゲル化又は高粘度化されていた第1の液体材料は、エレクトロウェッティング素子として動作するのに十分な低粘度の液体となる。一方、ゲル化剤又は高粘度化剤は、第2の液体材料に溶解するため、第2の液体材料をゲル化又は高粘度化することなく、第2の液体材料もエレクトロウェッティング素子として動作するのに十分低粘度な液体となる。
 本発明の第22の態様は、前記セル内に刺激を付与することにより、ゲル化又は高粘度化された、前記第1の液体材料及び前記第2の液体材料の少なくとも一方を低粘度化する工程が、前記第1の基板及び前記第2の基板の貼り合せ工程後に行われることを特徴とする、前記第1~21のいずれか1つの態様に記載のエレクトロウェッティング素子の製造方法である。
 この構成によれば、刺激を付与するといった簡便な工程により、第1の液体材料及び第2の液体材料の少なくとも一方の粘度を低下させることができるので、セル内に電圧を印加した際に第1の液体材料及び第2の液体材料における界面形状の変化における応答性を向上させることができる。
 本発明の第23の態様は、前記第1~22のいずれか1つの態様に記載のエレクトロウェッティング素子の製造法により製造されたエレクトロウェッティング素子からなることを特徴とするエレクトロウェッティングディスプレイである。
 本発明のエレクトロウェッティングディスプレイによれば、上述の方法により製造されたエレクトロウェッティング素子から構成されるので、表示ムラや欠陥の無い高品質な画像を表示することができる。
 本発明によれば、エレクトロウェッティング素子を容易に製造できる。本発明の製造方法で製造したエレクトロウェッティング素子は、印加電圧の上昇や、動作の遅滞などがなく、例えば表示素子として用いた場合、高品質な表示が可能となる。
図1は、第1実施形態に係るエレクトロウェッティングディスプレイの断面構成を示す図である。 図2は、エレクトロウェッティングディスプレイの動作概念を説明するための図である。 図3は、第1実施形態に係るエレクトロウェッティングディスプレイの製造工程を示す図である。 図4は、図3に続く製造工程の説明図である。 図5は、図4に続く製造工程の説明図である。 図6は、図5に続く製造工程の説明図である。 図7は、第2実施形態に係るエレクトロウェッティングディスプレイの製造工程を示す図である。 図8は、第3実施形態に係るエレクトロウェッティングディスプレイの製造工程を示す図である。 図9は、第4実施形態に係るエレクトロウェッティングディスプレイの製造工程を示す図である。 図10は、第5実施形態に係るエレクトロウェッティングディスプレイの製造工程を示す図である。
 以下、本発明のエレクトロウェッティング素子の製造方法に係る実施形態について説明する。
 (第1実施形態)
 図1は本発明により製造されたエレクトロウェッティング素子の構造の一例として、エレクトロウェッティングディスプレイの構造例を示すものである。また、図2はエレクトロウェッティングディスプレイの動作概念を説明するための図である。なお、図2においては説明に不要な部分の構成については図示を簡略化している。
 図1に示すようにエレクトロウェッティングディスプレイ100は、第1基板110と、第2基板120とを有し、これら基板110、120が高表面エネルギー液体130を介して対向配置されている。高表面エネルギー液体130は、基板110、120の外周に沿って設けられたシール材140で区画される領域に配置されている。ここで、高表面エネルギー液体130とは、後述する低表面エネルギー液体131に対して相対的に表面エネルギーが高いものである。なお、本明細書において、「セル」とは、第1基板110及び第2基板120間に生じる高表面エネルギー液体130及び低表面エネルギー液体131が配置される領域を意味する。
 第1基板110は、基材110A、コモン電極111を有している。第2基板120は、基材120A、TFT121、配線部122、平坦化膜123、画素電極124、コモン電極125及び絶縁膜126を有している。絶縁膜126の表面は撥水化処理されている。撥水化処理は特に限定されず公知の方法を用いることができるが、本実施形態では例えばフッ素樹脂の塗布及び熱処理を行った。上記基材120Aは、例えば、ガラスや樹脂成型体やフィルム等、表示装置のパネル基板として通常使用されるものから構成される。本実施形態では例えばガラスを用いた。画素電極124、及びコモン電極125は、平坦化膜123上に形成されており、コンタクトホール123aを介してTFT121及び配線部122に接続されている。
 コモン電極111を構成する材料としては、透明電極が好ましく、代表例はITO(スズドープ酸化インジウム)である。一方、画素電極124、コモン電極125を構成する材料としては、ITOやAl等が用いられる。電極材料としてITOを用いた場合、エレクトロウェッティングディスプレイ100は、第2基板120の背面側に光源(不図示)を備えた所謂透過型のディスプレイとなる。また、電極材料としてAlを用いた場合、エレクトロウェッティングディスプレイ100は、外光を電極表面で反射する所謂反射型のディスプレイとなる。本発明は透過型、反射型、又は半透過反射型のディスプレイに適用可能である。
 第1基板110は、基材110Aを主体に構成される。上記基材110Aは、例えば、ガラスや樹脂成型体やフィルム等、表示装置のパネル基板として通常使用されるものから構成される。本実施形態では例えばガラスを用いた。
 第2基板120の上記絶縁膜126上には、画素壁127が形成されている。画素壁127は格子状に形成されており、第2基板120上に複数の画素Gを区画している。ここで、本実施形態では画素壁127は図1のように第1基板110と接していないものを用いたが、必要に応じて、画素壁127の上部が第1基板110と一部又は全部が接する構造にしてもよい。画素電極124及びコモン電極125は各画素G内に一対ずつ配置されている。画素壁127で区画された領域(画素G)には、低表面エネルギー液体131が格納されている。画素壁127は高表面エネルギー液体130となじみのよい表面を有している。
 画素電極124に所定電圧を印加することで、図2に示すように、画素電極124と高表面エネルギー液体130を電極、絶縁膜126を誘電体としたキャパシタとなる。絶縁膜126の分極により高表面エネルギー液体130が静電作用で引きつけられ、その結果、画素電極上の低表面エネルギー液体131がコモン電極125上に押しのけられ、液体界面形状が変化する。以上のように、画素G内の低表面エネルギー液体131を選択的にコモン電極125上に移動させることで、各画素Gを通る光が低表面エネルギー液体131を透過する状態と低表面エネルギー液体131を略透過する状態とを切り替えることが可能となる。
 上記低表面エネルギー液体131は、低表面エネルギー溶媒と着色材料とを含有する。
 低表面エネルギー溶媒は特に限定されず表面エネルギー値が35mJ/m以下であればよい。35mJ/mを超えると、高表面エネルギー液体と混合してしまう可能性がある。表面エネルギー値としては30mJ/m以下であることがより好ましく、20mJ/m以下であることが更に好ましい。
 また、上記低表面エネルギー液体131は、通常使用及び保管時に固化・結晶化したり、気化・沸騰することは好ましくないため、融点は-10℃以下が好ましく、より好ましくは-20℃以下、更に好ましくは-40℃以下である。沸点は80℃以上が好ましく、より好ましくは120℃以上、更に好ましくは150℃以上である。
 さらに、低表面エネルギー液体131は粘度が高いと動作速度が低下するため、動作温度範囲にて、好ましくは300mPa・S以下、より好ましくは100mPa・S以下、更に好ましくは30mPa・S以下の粘度であることが好ましい。
 低表面エネルギー溶媒を以下に例示するが、本発明はこれに限定されるものではない。
 例えば、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン等の直鎖あるいは分岐アルカン、シクロヘキサン、シクロヘプタンなどの環状アルカン、オクタメチルトリシロキサン、デカメチルテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルペンタシロキサンなどのシリコーン類、フルオロカーボン等が挙げられる。これらの低表面エネルギー溶媒は、単独で用いてもよいし、2種以上を併用してもよい。
 また、上記着色材料は特に限定されず、例えば、酸化チタンやカーボンブラックなどの無機系、フタロシアニンやアゾ類、アントラキノン等の有機系等、各種の顔料や染料が利用できる。エレクトロウェッティングに用いられる溶液特性として、低表面エネルギー液体に溶解あるいは分散するが、高表面エネルギー液体には溶解・分散しない必要があり、適宜疎水性表面処理顔料や疎水性染料が用いられる。
 これらの組み合わせのうち、本発明において好ましいのは、直鎖あるいは分岐アルカンと、カーボンブラックなどの疎水性顔料、あるいは、アルキル基変成された染料の組み合わせであるが、本発明はこれに限定されるものではない。
 さらに、低表面エネルギー溶媒に必要に応じて酸化防止剤、紫外線防止剤、安定剤、分散安定剤、界面活性剤、疎水性電解質等の添加剤を加えてもよい。
 一方、上記高表面エネルギー液体130は、高表面エネルギー溶媒を主成分とするもので、必要に応じて電解質や界面活性剤等の添加剤を加えてもよい。高表面エネルギー溶媒は特に限定されず、表面エネルギー値が45mJ/m以上であればよい。45mJ/m未満であれば、低表面エネルギー溶媒と混合してしまう可能性がある。表面エネルギー値としては55mJ/m以上であるとより好ましく、65mJ/m以上が更に好ましい。
 低表面エネルギー溶媒と同様、通常使用及び保管時に固化・結晶化したり、気化・沸騰することは好ましくないため、融点は-10℃以下が好ましく、より好ましくは-20℃以下、更に好ましくは-40℃以下である。沸点は80℃以上が好ましく、より好ましくは120℃以上、更に好ましくは150℃以上である。
 高表面エネルギー溶媒を以下に例示するが、本発明はこれに限定されるものではない。
 例えば、水あるいは電解質水溶液、エチレングリコール、プロピレングリコール等の多価アルコール類などが挙げられる。これらの高表面エネルギー溶媒は、単独で用いてもよいし、2種類以上を併用してもよい。また、表面エネルギーを高めたり、融点や沸点を調整するために添加剤やイオン等を加えてもよい。なお、表面エネルギー値自体は大きくないが、極性が高く、低表面エネルギー液体131と混ざらない液体も存在し、これらも130として使用することが可能である。具体的にはメタノール、エタノール等の低分子アルコール、あるいはその混合物などである。
 続いて、上記エレクトロウェッティングディスプレイ100の第1の製造方法について図3乃至図6を参照しながら説明する。
 まず、図3に示すように従来の手法により製造した第2基板120を用意し、第2基板120に画素壁127を形成する。
 ここで画素壁127の高さは特に限定されないが、低表面エネルギー液体が隣の画素にあふれることがなく、一方、斜め方向から見たときに画素壁による遮蔽が起こらないような高さを設定することが好ましい。画素壁127の高さとしては、画素壁の間隔、低表面エネルギー液体の量によるため、一概に言えないが、一例としてあげると、好ましくは2~80μm、より好ましくは2~50μm、更に好ましくは2~30μmである。
 また、画素壁127の幅は薄い方が開口率が高くなることでコントラストの高い画像が得られるものの、薄くすると製造方法が難しくなり、また、たわみ、倒れ、破断等の可能性があるため、好ましくは2~30μm、より好ましくは5~25μmである。
 画素壁127の間隔は、狭い方が高精細な画像が得られる一方、狭すぎると開口率が小さくなり、また、視野角も狭くなるためコントラストが低下し、電極等の製造も難しくなる。このため、好ましくは30~1000μm、より好ましくは50~300μm、更に好ましくは80~160μmである。
 また、ここで、画素Gの底部が撥水性であり、側面が親水性であることが好ましい。このため、第2基板120の表面はあらかじめフッ素樹脂処理等、公知の方法により撥水化処理が施されていてもよく、また、画素壁127を形成した後に、公知の方法を用いて、画素底部に撥水化材を塗布したり、撥水化処理してもよい。なお、画素壁127はレジスト材料である場合が多いため、一般に親水性材料である場合が多いが、必要に応じて親水化処理(プラズマ処理、コロナ処理など)を行ってもよい。
 続いて、図4に示すように第2基板120の画素壁127で区画された各領域内に低表面エネルギー液体131を注入する。注入においては、インクジェット装置IJを用いてもよい。また、揮発性溶媒に溶解した低表面エネルギー液体131を画素Gに満たし、その後加熱等により揮発性溶媒を揮発させ、所望の低表面エネルギー液体131層を形成してもよい。このように、所望の低表面エネルギー液体131を画素G内に注入できる方法であれば、特に制限されない。画素G内に低表面エネルギー液体131を配置する方法は、他に、スクリーン印刷、フレキソ印刷、グラビア印刷法、カーテンコート法、ディスペンス法等を用いることができる。
 また、例えば、カラーに対応した表示を行いたいのであれば、インクジェット装置にて所望の位置に各色色材を含んだ低表面エネルギー液体131を注入すればよいし、モノクローム、モノカラー、あるいはカラーフィルターを用いる場合には、揮発性溶媒で希釈した低表面エネルギー液体131を基板全体に注ぎ込み、その後溶媒を揮発させる方法をとることができる。
 画素G内に注入する低表面エネルギー液体131の量は、色素の隠蔽性とエレクトロウェッティングとしての動作性、及び動作後の低表面エネルギー液体の液滴の大きさに応じて調整する。色素の隠蔽性が低い場合は、低表面エネルギー液体131の量は多くする必要があるが、一方、量を多くすると動作が遅くなったり、高い駆動電圧が必要となったり、動作後の低表面エネルギー液体の液滴が大きくなり、画素壁127の高さが必要となり、視野角やコントラストを低下させる。好ましい画素G内に注入する低表面エネルギー液体131の量(画素G中の液体厚さ)は、上記のように種々の因子に作用されるため一概に言えないが、一例を挙げるとすれば、1~15μmの厚みが好ましく、より好ましくは2~8μm、更に好ましくは3~5μmである。
 ところで、この様にして得られた図4に示す構造体に、高表面エネルギー液体130をそのまま液体として導入することは困難である。厚みを一定として第2基板120に配置された低表面エネルギー液体131に高表面エネルギー液体130を導入する場合、高表面エネルギー液体130の流入の勢いにより画素G内から飛び出したり別の画素Gに移動したりする可能性が高いためである。また、一般に低表面エネルギー液体131は高表面エネルギー液体130よりも比重が軽い場合が多く、流入の勢いにより低表面エネルギー液体131が浮き上がってしまう。このように、高表面エネルギー液体130の流入により低表面エネルギー液体131の設置量が変化してしまうことは、表示デバイスとしてみれば画像のムラとなる。このような高表面エネルギー液体130の導入による低表面エネルギー液体131の体積変化等を防ぐためには、非常にゆっくりとした速度で130を導入することにより回避することができるが、そのためには製造に時間がかかってしまい、また、そのための専用の装置が必要となってしまう。
 本発明はこのような問題点を解消したものである。
 即ち、高表面エネルギー液体130を介して第1基板110と第2基板120とを貼り合せる。具体的には図5に示すように、第1基板110のコモン電極111側に、外周に沿ってシール材140を配置する。このシール材140を含む第1基板110の内部に、ゲル化又は1Pa・s以上の粘度に調整した高表面エネルギー液体130からなる高粘度材料130Aを配置する。ここで、高粘度材料130Aとは、倒立させても流れないことが必要であり、ペースト状、ゲル状、半固体状、擬固体状等に調整されたものを含む。
 このように高表面エネルギー液体130をゲル化又は高粘度化した130Aを調製し、前記130Aを第1基板110に配置し、前記第1基板110を上下反転し、シール材140を介して第1基板110と第2基板120とを貼り合せる。このとき、130Aは、ゲル状態又は高粘度状態であるため、上下反転がされた場合であっても、厚みが大きく変化することが無い。
 本実施形態では、ゲル又は高粘度材料130Aを用いることで高表面エネルギー液体130における低表面エネルギー液体131上への配置が、貼り合せ工程という簡便且つ生産性に優れた方法を用いることが可能となっている。なお、貼り合せの際、気泡の流入を防ぐため、貼り合せ角度を調整しても良く、貼り合せ時に略真空雰囲気にしても良く、また、第1基板110又はシール材140の一部に空気抜きの孔を設けてもよい。
 このように、高表面エネルギー液体130を高粘度化、あるいはゲル化させることは製造時には大きなメリットとなる。一方、エレクトロウェッティング素子を特に表示素子として用いる場合、高表面エネルギー液体130が高粘度化、あるいはゲル化していることはデメリットとなる。即ち、動作速度が遅くなり、場合によっては動作しないおそれもある。高表面エネルギー液体130が高粘度あるいはゲル状の素子を形成した場合、電圧を印加しても高表面エネルギー液体130と低表面エネルギー液体131の界面形状が変化し難くなるおそれもある。また、高電圧をかけて界面形状を変化させることが可能であったとしても、電圧を解除した場合に元の状態に戻らなくなる可能性もある。
 そこで、本実施形態では、高表面エネルギー液体130をゲル化又は高粘度化させる際、ゲル化剤又は高粘度化剤として刺激応答性のゲル化剤又は高粘度化剤を用いている。ここで言う刺激応答性とは、製造時には高粘度状態、あるいはゲル化状態である高粘度材料130Aの状態を保持するものの、その後、特定の刺激を与えることにより、低粘度化、液状化(ゾル化)することで上記高表面エネルギー液体130の状態に戻るものであることを指す。また、低粘度化した高表面エネルギー液体130は、一旦低粘度液体又はゾルとなった後は、高粘度液体やゲルに可逆的変化しないものが好ましい。
 すなわち、本発明のエレクトロウェッティング素子の製造方法は、刺激応答性のゲル化剤又は高粘度化剤を用いているので、エレクトロウェッティング素子を効率的かつ容易に製造することができ、かつ、ゲル化剤又は高粘度化剤は、刺激応答性であるため、特定の刺激をゲル化剤又は高粘度化剤に与えることにより、エレクトロウェッティング素子の応答性を効率的かつ容易に向上させることができる。
 ここで言う刺激の具体的な例としては、化学物質との接触、紫外光、可視光、赤外光等の電磁波、熱、音波、揺動、電場、磁場等である。特に、セルの外部から刺激を与える場合には、セル内の高表面エネルギー液体130の高粘度液体あるいはゲル体(高粘度材料130A)に第1基板110又は第2基板120を貫通して作用可能な刺激が好ましい。
 高粘度液体又はゲルを刺激により低粘度液体又はゾルとした場合の粘度は、300mPa・s以下にすることが好ましく、100mPa・s以下がより好ましく、30mPa・s以下が更に好ましい。
 ゲル化剤又は高粘度化剤を低粘度化する際に、第1の液体材料及び第2の液体材料の少なくとも一方に与える刺激としては、化学物質との接触又は電磁波の照射が好ましい。
 これらのうち、化学物質との接触による応答は、例えば、低表面エネルギー液体131との接触、画素壁127との接触による応答が挙げられる。更に具体的には、ゲル化剤又は高粘度化剤が低表面エネルギー液体131に溶けるものであることが好ましい。即ち、ゲル化剤又は高粘度化剤が高表面エネルギー液体130をゲル化又は高粘度化させるものであり、かつ、低表面エネルギー液体131に溶けるものであった場合、ゲル化又は高粘度化された高表面エネルギー液体130が低表面エネルギー液体131に接触すると、ゲル化剤が低表面エネルギー液体131に溶解、移行し、高表面エネルギー液体130の粘度が大幅に低下する。このようにして、工程時には、ゲル状態又は高粘度状態であり、使用時には低粘度状態となる高表面エネルギー液体130を実現することができる。
 このようなゲル化剤としてテトラコサン、オクタコサン、ドトリアコンタン、ヘキサトリアコンタンなどの炭化水素類を用い、高表面エネルギー液体130としてメタノール、エタノール等のアルコールあるいはこれらアルコールと水との混合物を用い、低表面エネルギー液体131としてオクタン、ノナン、デカン、ウンデカン、ドデカンなどの直鎖炭化水素、シクロヘキサンなどの環状炭化水素を用いることができる(ラングミュア(Lnagmuir)、第16巻、352ページ、2000年)。
 また更に、低表面エネルギー液体131中、あるいは、画素壁127表面に、酸、塩基、塩、酸化剤、還元剤などの化学物質を含有、あるいは塗布させておき、高表面エネルギー液体130と接触した際、ゲル化剤又は高粘度化剤と反応させ、低粘度化させる方法も用いることが可能である。酸、塩基、塩は特に低表面エネルギー液体131には作用を及ぼさず、高表面エネルギー液体130では溶解、解離して作用するものであり有効に用いることができる。
 また、光などの外部刺激による応答の例の一つとして、臭化セチルトリメチルアンモニウム(CTAB)とトランス-オルソ-メトキシシンナム酸を組み合わせたゲル化剤がある(Journal of American Chemical Society、129巻、6号、1553ページ、2007年)。このゲル化剤は通常の環境では水系・あるいは極性溶媒をゲル化するが、水銀灯等にて紫外光を照射すると、シス体に異性化し、比較的低粘度の液体となる。
 本実施形態において、化学物質接触応答性の高粘度化剤やゲル化剤に関しては、図5(b)のようにセルを形成した段階で高表面エネルギー液体130の低粘度化が進行するが、必要に応じて、加熱、揺動などを行ってもよい。
 一方、光応答性の高粘度化剤あるいはゲル化剤を用いた場合には、図6(a)に示すように、必要に応じて紫外光、可視光、赤外光等といった光エネルギーを付与することで上述の刺激を与えた。本実施形態では、第1基板110(基材110A)側から光エネルギーを付与した。第1基板110を構成する基材110Aは光透過性を有するガラスから構成されることから光エネルギーは第1基板110を透過し、内部に充填されている高粘度材料130Aに良好に照射される。これにより、高粘度材料130Aは、図6(b)に示すように、低粘度化することで高表面エネルギー液体130の状態へと変化する。これにより、低表面エネルギー液体131上に高表面エネルギー液体130を良好に配置することができる。
 本実施形態によれば、上記高表面エネルギー液体130を1Pa・s以上の粘度に調整することで高粘度あるいはゲル状物質からなる高粘度材料130Aを用いて第1基板110及び第2基板120の貼り合せを行うので、第1基板110に配置した高粘度材料130Aは下側にしても落下しないので、ロールトゥロール方式を用いて容易に第1基板110及び第2基板120を貼り合せることができる。したがって、第1基板110及び第2基板120として大型の基板を用いた場合であっても、効率的かつ容易に製造することができる。
 なお、第1基板110の片面に高粘度材料130Aを配置する方法は上述の方法に限定されることはなく、例えば、ロールコーターやダイコーター等を用いて塗布する方法等を用いてもよい。
 また、第1基板110の片面に高粘度材料130Aを配置する工程と、第2基板120の画素壁127に囲まれた画素G内に低表面エネルギー液体131を塗布する工程は、いずれを先に行ってもよいし、同時並行して行ってもよい。
(第2実施形態)
 続いて、本発明の第2実施形態として、上記エレクトロウェッティングディスプレイ100の第2の製造方法について説明する。図7は本実施形態に係る製造工程を示す図であり、コモン電極111の図示は省略している。ここで、第1実施形態と同一の部材については同じ符号を付し、その詳細な説明については省略若しくは簡略化するものとする。
 本実施形態に係る製造方法では、まず、図3に示したように従来の手法により製造した第2基板120を用意し、第2基板120に画素壁127を形成する。続いて、図7(a)に示すように第2基板120の各画素G内に、1Pa・s以上の粘度に高粘度化された低表面エネルギー液体131からなる高粘度材料131Aを配置する。ここで、高粘度材料131Aとは、倒立させても流れないゲル状に調整されたものを含むものである。高粘度材料131Aは、刺激応答性であって、化学的あるいは物理的刺激により粘度が低下し、低表面エネルギー液体131となる材料である。
 なお、高粘度材料131Aの配置においては、既知の塗工方法、印刷方法を適宜用いることができる。これらの設置方法は、高粘度材料131Aを画素G内に配置できる方法であれば、特に制限されず、スクリーン印刷、フレキソ印刷、グラビア印刷法、ディスペンス法等を用いることができる。設置方法の一例として、例えば、図7に示したようにインクジェット装置IJを用いてもよい。
 高粘度材料131Aを設置する際には、高粘度材料131Aをゲル状態あるいは高粘度状態で設置してもよく、また、高粘度材料131Aを加熱して低粘度化あるいはゾル化させてから設置してもよい。また、揮発性溶媒に溶解した高粘度材料131Aを画素Gに満たし、その後加熱等により揮発性溶媒を揮発させ、所望の高粘度材料131A層を形成してもよい。
 続いて、図7(b)に示すように、画素壁127の区画領域(画素G)内に配置された高粘度材料131A上に高表面エネルギー液体130を注入する。注入においては、本実施形態では、インクジェット装置IJを用いた。なお、高表面エネルギー液体130を画素G内に注入できる方法であれば、特に制限されず、他に、スクリーン印刷、フレキソ印刷、グラビア印刷法、ディスペンス法等を用いることができる。
 このように低表面エネルギー液体131を高粘度状態又はゲル状態とすることにより、上述のように高表面エネルギー液体130を上部から注ぎ込んだ場合であっても、高表面エネルギー液体130の流入の勢いにより画素Gの底面から浮き上がったりすることがなく、安定したエレクトロウェッティング素子を製造することができる。
 ところで、高粘度化あるいはゲル化した高粘度材料131Aは、高表面エネルギー液体130を導入する製造時には有利であるが、エレクトロウェッティング素子として動作させるときには、ゲル状態の低表面エネルギー液体131を移動、変形させることは困難となるおそれがある。また、高電圧印加により動作させたとしても、電圧解除後、元に戻らず、結果として可逆的な界面形状変化による表示素子としては動作が困難となるおそれがある。
 そこで、本実施形態では、高粘度化あるいはゲル化された高粘度材料131Aについて所定の刺激を与えることで低粘度の液体となる性能を有するもの(具体的には、低表面エネルギー液体131の状態となるもの)を用いている。また、低粘度化した高粘度材料131Aは、一旦低粘度液体又はゾルとなった後は、高粘度液体やゲルに可逆的変化しないものが好ましい。
 ここで加える刺激としては、極性物質、酸、塩基、酸化剤、還元剤などの各種化学物質による刺激、紫外光、可視光、赤外光等の電磁波、熱、音波、揺動、電場、磁場等の物理的刺激があげられるが、高粘度材料131Aが低粘度の低表面エネルギー液体131とすることができる方法であれば限定されるものではない。
 化学物質による刺激に用いられる物質を以下に例示するが、本発明はこれに限定されるものではなく、高粘度材料131Aを低粘度化できるものであればよい。本発明に用いられる極性物質、酸、塩基としては、例えば、水酸基、アミノ基又はその塩、カルボキシル基又はその塩、スルホン酸基又はその塩、ホスホン酸基又はその塩、アミド結合、ウレタン結合、尿素結合、ニトロ基、メルカプト基、フェノール基等を有する化合物が挙げられ、これらのうち、腐食性の少ない水酸基、カルボキシル基を有する化合物が好ましく、その中でも水酸基を有する化合物がより好ましい。
 また、本発明で用いることができる酸化剤としては、m-クロロ過安息香酸、過酢酸、過酸化水素などが挙げられる。
 さらに、本発明で用いることができる還元剤としては、水素化ホウ素ナトリウムが挙げられる。
 なお、本発明における化学物質による刺激とは、化学物質との接触によりゲル化剤等が反応により変化するものに限定されるものではなく、それらの化学物質と接触することにより、ゲル化剤が溶解したり、それらの物質を含む相に移行する場合も含まれる。エレクトロウェッティング素子の安定性を考慮すれば、本発明における化学物質による刺激の中でも、溶解や移行を伴う化学物質応答性を有する化学物質を用いることが好ましい。
 物理的刺激を与える場合は、セル内の高粘度材料131Aの高粘度液体あるいはゲル体に第1基板110又は第2基板120を貫通して作用可能な刺激が好ましい。
 高粘度液体又はゲルを刺激により低粘度液体又はゾルとした場合の粘度は、300mPa・s以下にすることが好ましく、100mPa・s以下がより好ましく、30mPa・s以下が更に好ましい。
 このうち、化学物質による刺激応答により、溶解あるいは相移行するゲル化剤又は高粘度化剤としては、例えば、低表面エネルギー液体131をゲル化又は高粘度化させ、かつ、高表面エネルギー液体130に溶解するゲル化剤又は高粘度化剤が挙げられる。このような高粘度化剤を用いると、図7(b)の状態とすると、ゲル化剤又は高粘度化剤が131Aから高表面エネルギー液体130に移行し、131Aは低粘度の低表面エネルギー液体131となる。この際、高粘度化剤の移行を促進するため、加温したり,揺動したりしてもよい。また、一般的に低表面エネルギー液体131は高表面エネルギー液体130よりも比重が低く、高粘度化剤移行に伴い低表面エネルギー液体131が浮き上がる場合があるため、図7(b)とした後、すぐに第1基板110を設置し、第1基板110を下に、第2基板120を上にしてもよい。
 ここで、前記ゲル化剤又は高粘度化剤が、高表面エネルギー液体130に溶解するとは、低表面エネルギー液体131よりも高表面エネルギー液体130に溶解しやすく、分配されることが重要である。溶解度には特に限定は無いが、好ましくは1重量%以上の溶解度であり、より好ましくは5重量%以上の溶解度である。溶解は、室温で起こることが好ましいが、製造の妨げにならない範囲で加温してもよい。
 高粘度化剤は高表面エネルギー液体130に溶解するため、高表面エネルギー液体130を高粘度化することはなく、また、低表面エネルギー液体131に逆移行し、131Aを再度形成することはない。
 このような、低表面エネルギー液体131を高粘度化あるいはゲル化し、高表面エネルギー液体130に溶解する材料の具体例としては、12-ヒドロキシステアリン酸などのヒドロキシカルボン酸系、N-ラウロイル-L-グルタミン酸-α、γ-ジブチルアミド、N-2-エチルヘキシル-L-グルタミン酸ジブチルアミドなどのアミド類、テトラドデシルアンモニウムブロミド、置換桂皮酸類とアルキルあるいはアラルキルアミンの塩、1,1-シクロブタンジカルボン酸とシクロヘキシルアミンの塩、マロン酸と長鎖アルキル(例えばヘキサデシル)アミンの塩などのアンモニウム塩系、1,3;2,4-ジベンジリデン-D-ソルビトールなどの多価水酸基系、ブタン-1,2,3,4-テトラカルボン酸-ジラウリルエステルなどの多価カルボン酸エステル、アミノ酸系界面活性剤系、ジ-2-エチルヘキシルスルホコハク酸ナトリウムとステロイド化合物、フェノール類、ヒドロキノン、レソルシノールなどとの複合塩、トリメチルステアリルアンモニウムクロリドとデカン酸の複合塩、アルジュノール酸エステル類、ビス(アルキルアミド化アミノ酸)フタルアミド、アミノ酸アルキル変成物などが挙げられるが、本発明の目的に沿うものであればこれらに限定されるものではない。
 このうち、アミノ酸系界面活性剤系高粘度化あるいはゲル化剤とは、例えば、次の一般式(1)で示されるゲル化剤が挙げられる(Colloid Polym.Sci. 276:252(1998))。
Figure JPOXMLDOC01-appb-C000007
 式(1)において、Xは一価の陰イオン基を表す。Rは炭素数1~9の一価の置換基を表し、酸素、窒素及びイオウからなる群より選択される少なくとも1つを含んでいてもよく、環状構造を含んでいてもよい。Rは炭素数1~20の一価の置換基を表す。
 式(1)のゲル化剤は、R構造を有するアミノ酸と、Rのエステル構造に対応するアルコールを酸条件にて脱水縮合し、必要に応じてXのイオン交換を行うことで、容易に合成できる。
 ここで、Xは一価の陰イオンであれば特に制限は無いが、芳香族基を有する酸の共役塩基が、ゲル化能が高くなる傾向があるため好ましい。芳香族基を有する酸の共役塩基とは、具体的にはパラトルエンスルホネート、ベンゼンスルホネート、ベンゼンホスホネート、ベンゾエートなどが挙げられるが、これに限定されるものではない。このうち、パラトルエンスルホネートが合成後のイオン交換が必要なく、大量入手可能で低コストであるため、特に好ましく用いることができる。
 また、Rは炭素数1~9の一価の置換基を表し、酸素、窒素及びイオウからなる群より選択される少なくとも1つを含んでいてもよく、環状構造を含んでいてもよい。Rの構造は、原料として用いるアミノ酸の構造に依存する。原料として用いるアミノ酸はD体、又はL体であることが好ましく、DL体はゲル化能力が低下するため、好ましくない。
 これらアミノ酸のうち、Rがアルキル基であるものが、比較的安定して用いることができるため、好ましい。Rとしては、具体的には、メチル基、イソプロピル基、イソブチル基、sec-ブチル基、ベンジル基が好ましく、それぞれ、アラニン、バリン、ロイシン、イソロイシン、フェニルアラニンを原料とすれば合成可能である。このうち、Rがイソブチル基、即ち、ロイシンを原料としたものが、適度な溶解度と極性を有し、ゲル化剤として好ましく用いることができる。
 更に、Rは炭素数1~20の一価の置換基であればよい。特に、炭素数6~20の直鎖アルキル基である場合、ゲルの安定性が高く、合成も容易であるため、好ましく用いることができる。また、この炭素原子の数を調整することにより、ゲル化剤のゲル転移温度を調整することができるため、炭素鎖長の選択と調整は重要である。
 これらアミノ酸系界面活性剤型ゲル化剤は、単独で用いても、ゲル化温度等の調整のため、複数を混合して用いてもよく、他種のゲル化剤と併用してもよい。
 また、ジ-2-エチルヘキシルスルホコハク酸ナトリウムとステロイド化合物、あるいはフェノール性化合物との複合塩も同様に、低表面エネルギー液体131をゲル化して半固体状131Aを形成し、かつ、高表面エネルギー液体130には溶解するため、本発明において好適に用いることができる(Shih-Huang Tungら、Soft Matter、2008年、4巻、1086ページ)。
 ジ-2-エチルヘキシルスルホコハク酸ナトリウムは下記式(2)で示される物質であり、容易に入手可能である。
Figure JPOXMLDOC01-appb-C000008
 ジ-2-エチルヘキシルスルホコハク酸ナトリウムは、デオキシコール酸ナトリウムなどのステロイド化合物、あるいはクレゾール、アミノフェノール、ヒドロキノン、レソルシノールなどのフェノール性化合物などの添加剤と併用することにより、低表面エネルギー液体をゲル化することができる。ジ-2-エチルヘキシルスルホコハク酸ナトリウムと共に用いられる添加剤の量は、重量比でジ-2-エチルヘキシルスルホコハク酸ナトリウムに対して、1重量%~150重量%の範囲であることが好ましく、5重量%~100重量%の範囲であることがより好ましく、10重量%~50重量%の範囲であることが更に好ましい。用いられる添加剤の種類や量により、ゲルの物性を調整することが可能であるため、非常に汎用性に富んだ高粘度化剤、ゲル化剤とすることができる。
 また更に、3-メチル桂皮酸、4-メチル桂皮酸などのアルキル置換桂皮酸、3-クロロ桂皮酸、3-ブロモ桂皮酸、4-クロロ桂皮酸、4-ブロモ桂皮酸などのハロゲン置換桂皮酸、4-ニトロ桂皮酸などのニトロ基置換桂皮酸と、ヘキサデシルアミン等の長鎖アルキルアミン、ジシクロヘキシルアミンなどの脂環式アルキル置換アミン、ジベンジルアミンなどのアラルキル置換アミンの塩は低表面エネルギー液体をゲル化することが出来る(例えば、Crystal Growth & Design、第6巻、第9号、2114ページ、2006年発行)。この塩は、下記一般式(3)で示される構造の化合物である。
Figure JPOXMLDOC01-appb-C000009
 式中、nは1~3の整数を表し、Rは一価の有機基を示し、Yは一価の任意の置換基を示す。
 一価の有機基を示すRとしては、例えば、炭素数6~20の脂肪族炭化水素、又はアラルキル基等が挙げられる。炭素数6~20の脂肪族炭化水素としては、具体的には、例えば、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-テトラデシル基、n-ヘキサデシル基、n-オクタデシル基、n-エイコシル基、シクロヘキシル基、シクロオクチル基等が挙げられるがこれらに限定されず、分岐等があっても良い。これらのうち、n-ヘキサデシル基、n-オクタデシル基、シクロヘキシル基が好ましい。また、アラルキル基としては、具体的には、例えば、ベンジル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基等が挙げられ、これらのうち、ベンジル基が好ましい。
一価の任意の基を示すYとしては、例えば、炭素数1~6の低級アルキル基又はハロゲノ基を示す。炭素数1~6の低級アルキル基としては、具体的には、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基等が挙げられ、これらのうち、メチル基、エチル基、プロピル基が好ましく、メチル基がより好ましい。また、ハロゲノ基としては、具体的には、例えば、フルオロ基、クロロ基、ブロモ基等が挙げられ、これらのうち、クロロ基又はブロモ基が好ましい。
 これらのゲル化剤又は高粘度化剤は界面活性作用を有する可能性があり、また、高表面エネルギー液体130の物性に影響を与える可能性もあるため、必要最小限の量を用いることが好ましい。必要最小限の量とは、用いる低表面エネルギー液体131、高表面エネルギー液体130の種類、高粘度化剤の種類によりこの濃度は異なるため一概に言えないが、通常、低表面エネルギー液体131に対して0.001重量%~10重量%が好ましく、0.01重量%~5重量%がより好ましい。
 また、物理応答性の高粘度化剤も好ましく用いることができる。このような刺激応答性ゲル化剤の一つとして、下記式(4)のスチルベン化合物E-SGPがある(Chem.Commun,2004,1608~1609頁)。
Figure JPOXMLDOC01-appb-C000010
 このゲル化剤は有機溶媒(低表面エネルギー液体131)に高温で溶解すると溶液となり、室温まで冷やすとゲル化するが、紫外線を照射することにより、低粘度の液体となる。従って、高温の時に画素内に何らかの方法で注入・印刷し、室温に冷却するとゲルとなる。ここで高表面エネルギー液体130を画素に注入し、後に紫外線を照射すると、スチルベンの異性化及び二量化によりゾル(液体)となる。
 また、アゾベンゼンにコレステロールをエステル結合にて結合した化合物も同様に、低表面エネルギー液体131をゲル化し、光でアゾベンゼンが異性化することにより、低粘度化する(J.Am.Chem.Soc.,1994年、第116巻、6664ページ)。
 また更に、9-アントラセンカルボン酸と脂肪族アミンの塩も同様に、低表面エネルギー液体131をゲル化し、光でアントラセンの9,10位が反応(2量化)することにより、ゲルが低粘度液体になる(Org.Biomol.Chem.,2003年、第1巻、2745ページ)。このゲル化剤は、原料である9-アントラセンカルボン酸、及び脂肪族アミンが容易に入手でき、また、塩の合成も簡単であるため、好ましく用いることができる。この9-アントラセンカルボン酸と脂肪族アミンの塩は、光照射により二量化し、ゾルとなった後、2量体は高表面エネルギー液体130に溶解し,移行する。このため、9-アントラセンカルボン酸と脂肪族アミンの塩からなるゲル化剤を用いた場合、再ゲル化の可能性はなく、好ましく用いることができる。
 本実施形態では、図7(c)に示すように、シール材140を介して第1基板110と第2基板120とを貼り合せる。その後、紫外光、可視光、赤外光等といった光エネルギーを必要に応じて付与することで上述の刺激を与えた。
 本実施形態では、第1基板110(基材110A)側から光エネルギーを付与した。第1基板110を構成する基材110Aは光透過性を有するガラスから構成されることから光エネルギーは第1基板110を透過し、内部に充填されている高粘度材料131Aに良好に照射される。これにより、高粘度材料131Aは、図7(c)に示すように、低粘度化することで低表面エネルギー液体131の状態へと変化する。これにより、低表面エネルギー液体131と高表面エネルギー液体130とが良好に積層することができる。
 本実施形態によれば、上記低表面エネルギー液体131を1Pa・s以上にゲル化又は高粘度化した高粘度材料131Aを用い、該高粘度材料131A上に高表面エネルギー液体130を配置するので、低表面エネルギー液体131をそのまま用いるのに対し、131の浮き上がりや画素間の移動を防止しつつ積層でき、第1基板110及び第2基板120の貼り合せ工程を短時間で行うことができる。
 したがって、第1基板110及び第2基板120として大型の基板を用いた場合であっても、効率的かつ容易に製造することができる。更に、セル作製後、化学的あるいは物理的刺激により、高粘度材料131Aを低粘度の低表面エネルギー材料131に変換するため、エレクトロウェッティング素子として良好に動作することができる。
(第3実施形態)
 続いて、本発明の第3実施形態として、上記エレクトロウェッティングディスプレイ100の第3の製造方法について説明する。図8は本実施形態に係る製造工程を示す図であり、コモン電極111の図示は省略している。ここで、第1実施形態や第2実施形態と同一の部材については同じ符号を付し、その詳細な説明については省略若しくは簡略化するものとする。
 本実施形態に係る製造方法では、まず、図3に示したように従来の手法により製造した第2基板120を用意し、第2基板120に画素壁127を形成する。続いて、図8(a)に示すように第2基板120の各画素G内に混合高粘度材料132Aを配置する。
 混合高粘度材料132Aは、1Pa・s以上の粘度に調整した高表面エネルギー液体130と、低表面エネルギー液体131と、該高表面エネルギー液体130を高粘度化可能なゲル化剤又は高粘度化剤と、からなる。ここで、1Pa・s以上の粘度の混合高粘度材料132Aとは、倒立させても流れないゲル状に調整されたものを含むものである。
 高表面エネルギー液体130と低表面エネルギー液体131は混じり合わないが、高表面エネルギー液体130を高粘度化することにより、低表面エネルギー液体131を分散させることが可能となる。高粘度化剤は低表面エネルギー液体131に溶解する材料であり、低表面エネルギー液体131の導入量が多すぎるとゲル化できないため、低表面エネルギー液体131の導入量は適宜調整する。
 混合高粘度材料132Aの配置においては、本発明の第2の実施形態と同様、インクジェット装置IJを用いてもよい。混合高粘度材料132Aを画素G内に配置できる方法であれば、特に制限されず、他に、スクリーン印刷、フレキソ印刷、グラビア印刷法、ディスペンス法等を用いることができる。
 続いて、図8(b)に示すように、画素壁127の区画領域(画素G)内に配置された混合高粘度材料132A上に高表面エネルギー液体130を注入する。注入においては、高表面エネルギー液体130を画素G内に注入できる方法であれば、特に制限されず、図8(b)に示したインクジェット装置(IJ)による注入の他に、スクリーン印刷、フレキソ印刷、グラビア印刷法、ディスペンス法等を用いることができる。
 このように低表面エネルギー液体131を含む高粘度状態又はゲル状態である混合高粘度材料132Aを用いることにより、上述のように高表面エネルギー液体130を上部から注ぎ込んだ場合であっても、高表面エネルギー液体130の流入の勢いにより画素G底面から浮き上がったりすることがなく、安定したエレクトロウェッティング素子を製造することができる。
 ところで、高粘度化あるいはゲル化した混合高粘度材料132Aは、高表面エネルギー液体130を加え、図8(b)の状態とすることにより、混合高粘度材料132Aに高表面エネルギー液体130が流入し、粘度が低下する。粘度低下と同時に、高粘度化剤が低表面エネルギー液体131中に溶け込み、更に低粘度化と分離が進み、最終的に低粘度の高表面エネルギー液体130と低表面エネルギー液体131が分離した形となり、エレクトロウェッティング素子が動作するのに良好な状態となる。最終的に得られる高表面エネルギー液体130及び低表面エネルギー液体131の粘度は実施形態1及び2と同じである。なお、この際、第1の基板を設置した図8(c)において、低表面エネルギー液体131が浮き上がらないように、第1の基板を下にしてもよい。
 本実施形態においても、再ゲル化や再高粘度化は発生しない。
 このように、高表面エネルギー液体130を高粘度化あるいはゲル化し、低表面エネルギー液体131に溶解し、両者の混合高粘度材料132Aを形成する高粘度化剤の具体例としては、テトラコサン、オクタコサン、ドトリアコンタン、ヘキサトリアコンタンなどの長鎖炭化水素材料が挙げられるが、本発明の目的に沿うものであれば、これらに限定されるものではない。これらのゲル化剤については、雑誌「ラングミュア(Lnagmuir)」2000年、第16巻、352ページに報告されている。
 これらの混合比率は、用いる高表面エネルギー液体130、低表面エネルギー液体131の種類、高粘度化剤の種類によりこの濃度は異なるため一概に言えないが、通常、高粘度化剤の添加量は高表面エネルギー液体130に対して0.001重量%~10重量%が好ましく、0.01重量%~3重量%がより好ましい。また、高表面エネルギー液体130と低表面エネルギー液体131の比率は3:1~30:1の範囲が好ましい。
 本実施形態によれば、上記低表面エネルギー液体131と高表面エネルギー液体130の混合物を1Pa・s以上の粘度に調整することで高粘度あるいはゲル状物質からなる混合高粘度材料132Aを用い、該混合高粘度材料132A上に高表面エネルギー液体130を配置するので、高表面エネルギー液体130及び低表面エネルギー液体131を均一に配置しつつ、第1基板110及び第2基板120の貼り合せ工程を短時間で行うことができる。したがって、図8(c)に示すように第1基板110及び第2基板120として大型の基板を用いた場合であっても、効率的かつ容易に製造することができる。
 また、高粘度化剤として少量の炭化水素類等を用いることができるため、高表面エネルギー液体130、低表面エネルギー液体131への不純物やイオンの混入を極力抑えることができる点が、第3実施形態の最大の特徴である。
 (第4実施形態)
 続いて、本発明の第4実施形態として、上記エレクトロウェッティングディスプレイ100の製造方法について説明する。図9は本実施形態に係る製造工程を示す図であり、コモン電極111の図示は省略している。ここで、上記実施形態と同一の部材については同じ符号を付し、その詳細な説明については省略若しくは簡略化するものとする。
 本実施形態に係る製造方法では、まず、図3に示したように従来の手法により製造した第2基板120を用意し、第2基板120に画素壁127を形成する。続いて、図9(a)に示すように第2基板120の各画素G内に、第2実施形態と同様、1Pa・s以上の粘度に高粘度化又はゲル化低表面エネルギー液体131からなる高粘度材料131Aを配置する。
 続いて、図9(b)に示すように、高表面エネルギー液体130を介して第1基板110と第2基板120とを貼り合せる。本実施形態では、第1実施形態と同様に、シール材140を含む第1基板110の内部に、1Pa・s以上の粘度に高粘度化又はゲル化高表面エネルギー液体130からなる高粘度材料130Aを配置し、高粘度材料130Aを介して第1基板110と第2基板120とを貼り合せる。貼り合せる際には、気泡等が入らないように貼り合せ角度を工夫したり、略真空下で貼り合せを行ってもよい。
 このように高表面エネルギー液体130を高粘度状態又はゲル状態とすることにより、高粘度材料130Aを配置した第1基板110を上下反転し、シール材140を介して第1基板110と第2基板120とを貼り合せる。このとき、高粘度材料130Aは、高粘度状態であるため、上下反転がされた場合であっても、厚みが大きく変化することが無い。
 また、高粘度材料131Aを配置した第2基板120に、高粘度材料130Aを公知の方法で塗布し、その後第1基板110をその上から貼り合せてもよい。
 本実施形態においても、高粘度化剤又はゲル化剤として、化学的刺激及び/又は物理的刺激に対して応答する刺激応答性の材料を用いる。 
 高粘度材料130Aが低表面エネルギー液体131に溶ける高粘度化剤、高粘度材料131Aが130に溶ける高粘度化剤を用いた場合は、図9(c)の状態にて互いの層に高粘度化剤の移行が始まり、低粘度化が始まる。高粘度化剤の移行を促進するため、加熱や揺動を行ってもよい。
 ゲル化剤又は高粘度化剤が光応答性の場合は、本実施形態においても、第1基板110及び第2基板120を貼り合せ、図9(c)の状態とした後、セル内の高粘度材料130A、高粘度材料131Aに第1基板110又は第2基板120を貫通して作用可能な光エネルギーを付与する。
 本実施形態では、第1基板110側から必要に応じて光エネルギーを付与した。光エネルギーは、第1基板110を構成する基材110Aを透過し、内部に充填されている高粘度材料130A、高粘度材料131Aに良好に照射される。これにより、高粘度材料130A、高粘度材料131Aは、低粘度化することでそれぞれ高表面エネルギー液体130及び低表面エネルギー液体131へと変化する。これにより、低表面エネルギー液体131上に高表面エネルギー液体130を良好に配置された構造を得ることができる。
 本実施形態によれば、上記高表面エネルギー液体130及び低表面エネルギー液体131をそれぞれ1Pa・s以上の粘度に調整した、高粘度あるいはゲル状物質からなる高粘度材料130A、高粘度材料131Aを用いて第1基板110及び第2基板120の貼り合せを行うので、第1基板110に配置した高粘度材料130Aは下側にしても落下しないので、ロールトゥロール方式を用いて容易に第1基板110及び第2基板120を貼り合せることができる。また、高表面エネルギー液体130及び低表面エネルギー液体131は高粘度状態で液ダレが生じ難くなっているので、貼り合せ時の第1基板110及び第2基板120の取り扱いが容易となり、基板の貼り合せ工程を短時間で行うことができる。したがって、第1基板110及び第2基板120として大型のものを用いた場合であっても、効率的かつ容易に製造することができる。
 (第5実施形態)
 続いて、本発明の第5実施形態として、上記エレクトロウェッティングディスプレイ100の製造方法について説明する。図10は本実施形態に係る製造工程を示す図であり、コモン電極111の図示は省略している。ここで、上記実施形態と同一の部材については同じ符号を付し、その詳細な説明については省略若しくは簡略化するものとする。
 本実施形態に係る製造方法では、まず、図3に示したように従来の手法により製造した第2基板120を用意し、第2基板120に画素壁127を形成する。
 本実施形態では、続いて、図10(a)に示すように第1基板110上に上記実施形態に係る、物理刺激応答性(光応答性)の高粘度材料130A、131Aの積層物からなる積層体135を配置する。高粘度材料130A、131Aは、上述のように高表面エネルギー液体130及び低表面エネルギー液体131をそれぞれ1Pa・s以上の粘度に調整することで高粘度あるいはゲル状物質としたものである。なお、積層体135は第1基板110上に直接形成してもよいし、別の基板に形成した後、第1基板110上に転写するようにしても構わない。本実施形態では、積層体135を別の基板(不図示)に形成した後、第1基板110上に転写するようにした。このように第1基板110上に積層体135を転写することで後述の第1基板110及び第2基板120の貼り合せ工程を容易に行うことができる。また、積層体135は、フィルム状、板状の基材を基板として用いてもよい。
 このように高表面エネルギー液体130及び低表面エネルギー液体131を高粘度状態又はゲル状態とした積層体135を用いることにより、積層体135を配置した第1基板110を上下反転し、図10(b)の様に、シール材140を介して第1基板110と第2基板120とを貼り合せる。このとき、積層体135は高粘度状態であるため、上下反転がされた場合であっても、厚みが大きく変化することが無い。
 続いて、図10(c)に示すように、本実施形態においては、第1基板110及び第2基板120を貼り合せた後、セル内の積層体135(高粘度材料130A,131A)に第1基板110又は第2基板120を貫通して作用可能な光エネルギーを必要に応じて付与する。
 本実施形態では、第1基板110側から光エネルギーを付与する。光エネルギーは、第1基板110を構成する基材110Aを透過し、内部に充填されている積層体135(高粘度材料130A,131A)に良好に照射される。これにより、高粘度材料130A、131Aは、低粘度化することでそれぞれ高表面エネルギー液体130及び低表面エネルギー液体131へと変化する。これにより、低表面エネルギー液体131上に高表面エネルギー液体130を良好に配置された構造を得ることができる。
 本実施形態によれば、1Pa・s以上の粘度に調整した高表面エネルギー液体130及び低表面エネルギー液体131からなる積層体135を用いて第1基板110及び第2基板120の貼り合せを行うので、高表面エネルギー液体130及び低表面エネルギー液体131を均一に配置することができ、かつ、第1基板110及び第2基板120の貼り合せを短時間で行うことができる。
 したがって、第1基板110及び第2基板120として大型の基板を用いた場合であっても、効率的かつ容易に製造することができる。
 なお、本実施形態では、積層体135を第1基板110に転写した状態で第1基板110及び第2基板120の貼り合せを行う場合を例に説明したが、積層体135を第2基板120側に転写して第1基板110及び第2基板120の貼り合せを行うようにしても構わない。この場合、図9(b)の場合と異なり、画素壁127を第1基板110側に設けておいてもよい。
 以下、具体的な実施の形態について以下に説明する。なお、本発明はこれに限定されることは無く、発明の趣旨を逸脱しない範囲内において適宜変更可能である。なお、溶媒、試薬は特に記載のない限り和光純薬工業(株)社製のものを、特に精製することなく用いた。
 (実施例1)
 まず、従来の手法により製造した第2基板120を用意した。この第2基板表面は、テフロン(登録商標)溶液:AF1600(デュポン社製)を用いて、スピンコート法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120にフォトレジスト:SU-8(化薬マイクロケム社製)を用いて高さ20μm、幅10μmの画素壁127を形成し、図3に示した構造とした。画素壁の間隔は80μmとした。これは約1インチあたり300画素(ピクセル)の解像度に相当する。
 画素壁127が形成された第2基板120に低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5wt%の濃度でウンデカンに溶解した顔料混合体を用いた。前記カーボンブラックのウンデカン溶液をヘキサンにて5倍容量に希釈し、図4に示したように画素壁127が形成された第2基板120に満たし、60℃の熱風を吹き付けてヘキサンを揮発させ、4μm厚みの低表面エネルギー液体131を形成した。
 これとは別に、第1基板110のコモン電極111側の外周に沿って、光硬化性のシール材140としてA785(積水化学工業社製)を、ディスペンサーで塗布し、シールパターンを形成した。
 このシールパターン内に、臭化セチルトリメチルアンモニウム60mM、トランス-オルソ-メトキシシンナム酸(アルドリッチ社製)50mMを加熱溶解した水溶液を冷却し、ゲル状態となったものを高粘度材料130Aとし、第1基板110の基材110Aの片面にナイフコーターを用いて100μmの塗工厚みとなるように塗布した。
 続いて、図5に示したように、高粘度材料130Aを設置した第1基板110と第2基板120とを貼り合せた。この際、シール材140の一部に空気抜きの孔を形成しておき、余剰の空気を追い出した後、同じシール材を用いて封止した。
 この後、図6に示したように365nmの中心波長を有する超高圧水銀灯によって、1000mJの光を照射してシール材140を硬化させると同時に、高粘度材料130Aを液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例2)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 画素壁127が形成された第2基板120に低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5wt%の濃度でウンデカンに溶解した顔料混合体を用いた。前記カーボンブラックのウンデカン溶液にスチルベン化合物E-SGP4重量%、N,N-ジメチルドデシルアミン0.2重量%を低表面エネルギー液体131に対して加え、120℃まで加熱した。加熱した低表面エネルギー液体131をインクジェット装置にて画素Gに吐出した。その後、第2基板120を室温とし、低表面エネルギー液体131をゲル化させ、高粘度材料131Aを得た。
 この第2基板の周辺にシール材140(A785(積水化学工業社製))を用いてシールパターンを形成した。このシールパターン内に高表面エネルギー液体130を注入した。高粘度材料131Aはゲル化しているため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 この後、365nmの中心波長を有する超高圧水銀灯によって、1000mJの光を照射してシール材140を硬化させると同時に、高粘度材料131Aを液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例3)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 画素壁127が形成された第2基板120に低表面エネルギー液体131をゲル化した高粘度材料131Aを実施例2と同様にして作製した。これとは別に、第1基板110に実施例1と同様にしてシールパターンを形成した。
 このシールパターン内に、高表面エネルギー液体130をゲル化した高粘度材料130Aを実施例1と同様に形成し、第2基板120と貼り合せた。この際、シール材140の一部に空気抜きの孔を形成しておき、余剰の空気を追い出した後、同じシール材を用いて封止した。
 この後、365nmの中心波長を有する超高圧水銀灯によって、1000mJの光を照射してシール材140を硬化させると同時に、高粘度材料130A,131Aを液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、高表面エネルギー液体130と低表面エネルギー液体131との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例4)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 これとは別に、第1基板110に実施例1と同様にしてシールパターンを形成した。さらに、これとは別に、高表面エネルギー液体130をゲル化した130Aをポリエチレンテレフタレートフィルムに20μmの厚さで塗布した。この高表面エネルギー液体130の上に、低表面エネルギー液体131をゲル化した131Aを4μm塗布し、上記積層体135を形成した。
 このゲルを塗布したフィルム(積層体135)を第1基板110に転写した後、該フィルムを介して第1基板110と第2基板120とを貼り合せた。この際、シール材140の一部に空気抜きの孔を形成しておき、余剰の空気を追い出した後、同じシール材を用いて封止した。
 この後、365nmの中心波長を有する超高圧水銀灯によって、1000mJの光を照射してシール材140を硬化させると同時に、高表面エネルギー液体130、131を液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
(実施例5)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 画素壁127が形成された第2基板120に低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5重量%の濃度でシクロヘキサンに溶解した顔料混合体を用いた。前記カーボンブラックのシクロヘキサン溶液に9-アントラセンカルボン酸デシルアンモニウム塩(自家合成品)を0.3重量%加え、80℃まで加熱した。加熱した低表面エネルギー液体131をインクジェット装置にて画素Gに吐出した。その後、第2基板120を室温とし、低表面エネルギー液体131をゲル化させ、高粘度材料131Aを得た。
 この第2基板の周辺にシール材140(A785(積水化学工業社製))を用いてシールパターンを形成した。このシールパターン内に高粘度材料131Aを注入した。高粘度材料131Aはゲル化しているため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、図7(c)に示したように、シール材140を介して第1基板110と第2基板120とを貼り合せた。
 この後、365nmの中心波長を有する超高圧水銀灯によって、1000mJの光を照射してシール材140を硬化させると同時に、高粘度材料131Aを液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
(実施例6)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 このシールパターン内に、テトラコサン0.04Mを加熱溶解したエタノール95%、水5%溶液を冷却し、白濁したゲル状態となったものを高粘度材料130Aとし、第1基板110の基材110Aの片面にナイフコーターを用いて100μmの塗工厚みとなるように塗布した。
 低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5重量%の濃度でウンデカンに溶解した顔料混合体を用い、第2基板の画素内にインクジェット装置を用いて配置した。
 続いて、図5に示したように、高粘度材料130Aを設置した第1基板110と第2基板120とを貼り合せた。この際、シール材140の一部に空気抜きの孔を形成しておき、余剰の空気を追い出した後、同じシール材を用いて封止した。
 この後、基板を50℃に加温し、高粘度材料130Aを液状化することにより、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、131と130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
(実施例7)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 画素壁127が形成された第2基板120に低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5wt%の濃度でシクロヘキサンに溶解した顔料混合体を用いた。前記カーボンブラックのシクロヘキサン溶液に12-ヒドロキシステアリン酸を5重量%加え、70℃にて加熱した低表面エネルギー液体131をインクジェット装置にて画素Gに吐出した。その後、第2基板120を室温とし、低表面エネルギー液体131をゲル化させ、高粘度材料131Aを得た。
 この第2基板の周辺にシール材140(A785(積水化学工業社製))を用いてシールパターンを形成した。このシールパターン内に高表面エネルギー液体130として、エタノール95%、水5%混合物を注入した。高粘度材料131Aはゲル化しているため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、図7(c)に示したように、シール材140を介して第1基板110と第2基板120とを貼り合せた。
 この後、低表面エネルギー液体131が浮き上がらないように、第2基板が上となるようにした状態にて30分室温で静置すると、高粘度材料131Aが液状化し、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
(実施例8)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5wt%の濃度でシクロヘキサンに溶解した顔料混合体を用いた。高表面エネルギー液体130としてエタノール95%、水5%の混合物を用いた。高粘度化剤として、テトラコサンを用いた。
 高表面エネルギー液体130に対して、高粘度化剤2重量%を加え、80℃にて激しく攪拌しながら混合し、更に低表面エネルギー液体131を高表面エネルギー液体130に対して20%加え、更に攪拌した。得られた白濁液体を第2基板の画素Gに流し込み、室温にしたところ、黒色の混合高粘度液体132Aとなった。この第2基板のシールパターン内に高表面エネルギー液体130を注入した。混合高粘度液体132Aはゲル化しているため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
  続いて、図8(c)に示したように、シール材140を介して第1基板110と第2基板120とを貼り合せた。
この後、低表面エネルギー液体131が浮き上がらないように、第2基板が上となるようにした状態にて、30分50℃で放置すると、混合高粘度液体132Aが液状化し、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、131と130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例9)
 (ゲル化剤の合成)
 200mLのナスフラスコに、L-ロイシン3.29g(25mmol)、1-ドデカノール9.34g(50mmol)、p-トルエンスルホン酸5.71g(30mmol)、トルエン60mLを投入した。脱水装置を設置し、オイルバス140℃にて溶液を6時間激しく還留した。反応混合物は、冷却後、溶媒を減圧留去し、得られた固体をシクロヘキサン、続いてアセトンにて再結晶した。9.0gの繊維状結晶を得た。収率76%であった。構造及び純度は各磁気共鳴スペクトル(日本電子製、ECX-400)にて確認した。
 (表示セルの作製、評価)
 従来の手法により製造した第2基板120を用意した。この第2基板表面を実施例1と同様の方法により撥水化した。撥水化層の厚みは1μmとなるように調整した。この第2基板120に実施例1と同様に画素壁127を形成し、図3に示した構造とした。
 画素壁127が形成された第2基板120に低表面エネルギー液体131として、疎水性表面を有するカーボンブラックを5wt%の濃度でオクタンに溶解した顔料混合体を用いた。前記カーボンブラックのオクタン溶液に、合成したゲル化剤(ドデシル-(s)-2-アンモニウム-2-イソブチルアセテート p-トルエンスルホネート)を1重量%加え、80℃にて加熱攪拌し、均一な液体とした。このゲル化剤含有低表面エネルギー液体131を、加熱したままインクジェット装置にて画素Gに吐出した。その後、第2基板120を室温とし、低表面エネルギー液体131をゲル化させ、高粘度材料131Aを得た。
 この第2基板の周辺にシール材140(A785(積水化学工業社製))を用いてシールパターンを形成した。このシールパターン内に高表面エネルギー液体130として、メタノール(和光純薬製)を注入した。高粘度材料131Aはゲル化しているため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、図7(c)に示したように、シール材140を介して第1基板110と第2基板120とを貼り合せた。
 この後、低表面エネルギー液体131が浮き上がらないように、第2基板が上となるようにした状態にて30分室温で静置すると、高粘度材料131Aが液状化して低表面エネルギー液体131となり、エレクトロウェッティングディスプレイ100を得た。
 上記工程により得たエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例10)
 (ゲル化剤の合成)
 アルコールとして1-ヘキサデカノール12.15g(50mmol)を,用いたこと以外は実施例9と同様にしてゲル化剤を合成した。9.4gの繊維状結晶を得た。収率67%であった。
 (表示セルの作製、評価)
 前記にて合成したゲル化剤(ヘキサデシル-(s)-2-アンモニウム-2-イソブチルアセテート p-トルエンスルホネート)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例11)
 (ゲル化剤の合成)
 アルコールとして1-デカノール7.92g(50mmol)を,用いたこと以外は実施例9と同様にしてゲル化剤を合成した。6.5gの繊維状結晶を得た。
 (表示セルの作製、評価)
 前記にて合成したゲル化剤(デシル-(s)-2-アンモニウム-2-イソブチルアセテート p-トルエンスルホネート)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例12)
 (ゲル化剤の合成)
 アミノ酸としてL-バリン2.95g(25mmol)を,用いたこと以外は実施例9と同様にしてゲル化剤を合成した。8.1gの繊維状結晶を得た。収率70%であった。
 (表示セルの作製、評価)
前記にて合成したゲル化剤(ドデシル-(s)-2-アンモニウム-2-イソプロピルアセテート p-トルエンスルホネート)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例13)
 (ゲル化剤の調整)
 ジ-2-エチルヘキシルスルホコハク酸ナトリウム(以下AOTと略する)とヒドロキノンを重量比5:1で混合し、エタノール中60℃で1時間攪拌した後、室温にてエタノールを揮発させた。得られた半固体状物を減圧下60℃にて12時間乾燥し、フィルム状のゲル化剤を得た。
 (表示セルの作製、評価)
前記にて合成したゲル化剤(AOTとヒドロキノンの5:1混合物)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例14)
 (ゲル化剤の調整)
 AOTとレソルシノールを重量比5:1で混合し、エタノール中60℃で1時間攪拌した後、室温にてエタノールを揮発させた。得られた半固体状物を減圧下60℃にて12時間乾燥し、フィルム状のゲル化剤を得た。
 (表示セルの作製、評価)
 前記にて合成したゲル化剤(AOTとレソルシノールの5:1混合物)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例15)
 (ゲル化剤の調整)
 4-メチル桂皮酸をメタノール中に溶解し、ジベンジルアミンをゆっくり添加した。混合溶液は中和熱で若干発熱、その後60℃にて1時間攪拌して中和を完結させた。その後、室温にてメタノールを揮発させた。得られた固体状物を減圧下60℃にて12時間乾燥し、フィルム状のゲル化剤を得た。
 (表示セルの作製、評価)
 前記にて合成したゲル化剤(4-メチル桂皮酸・ジベンジルアミン塩)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 (実施例16)
 (ゲル化剤の調整)
 4-メチル桂皮酸の替わりに3-クロロ桂皮酸を用いたこと以外は、実施例15と同様にしてゲル化剤を調整した。
 (表示セルの作製、評価)
 前記にて合成したゲル化剤(3-クロロ桂皮酸・ジベンジルアミン塩)を用いたこと以外は実施例9と同様にして表示セルを合成した。実施例9同様、高粘度材料131Aはゲル化剤にてゲル化せしめたため、高表面エネルギー液体130を注入しても浮き上がったり、画素から逸脱することはなかった。
 続いて、実施例9と同様にしてエレクトロウェッティングディスプレイ100を作製した。
 得られたエレクトロウェッティングディスプレイ100を顕微鏡で観察したところ、低表面エネルギー液体131がムラなく均一に画素壁127で囲まれた画素G内に格納されていることが確認できた。このエレクトロウェッティングディスプレイ100の画素電極124に0V/30Vのパルス電圧で30ヘルツの印加をしたところ、電圧の上下に応答して、低表面エネルギー液体131と高表面エネルギー液体130との界面形状が変化し、図2に示したような画素領域の開口と閉口とが観察できた。
 本発明の製造方法により製造されたエレクトロウェッテイング素子は、印加電圧の上昇や、操作の遅滞などがないため、例えば、表示素子として好適に用いることができる。
100…エレクトロウェッティングディスプレイ、110…第1基板、120…第2基板、127…画素壁、130…高表面エネルギー液体、130A…高粘度材料、131…低表面エネルギー液体、131A…高粘度材料、135…積層体

Claims (23)

  1.  対向配置される第1の基板及び第2の基板間に形成されたセル内に、互いが混ざり合わない第1の液体材料及び該第1の液体材料に対して表面エネルギーの低い第2の液体材料を含み、前記第1の液体材料及び前記第2の液体材料の少なくとも一方がゲル化又は高粘度化されており、前記セル内に電圧を印加することで前記第1の液体材料及び前記第2の液体材料における界面形状が変化するエレクトロウェッティング素子の製造方法であって、
     ゲル化又は高粘度化された、前記第1の液体材料及び前記第2の液体材料の少なくとも一方に対して、刺激を付与することにより低粘度化する工程を備えることを特徴とするエレクトロウェッティング素子の製造方法。
  2.  前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に所定量の前記第2の液体材料を配置する工程と、
     前記第1の基板の一方面側に、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料を配置する工程と、
     前記ゲル化又は高粘度化された第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  3.  前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
     前記隔壁に囲まれた領域に前記第1の液体材料を配置する工程と、
     前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  4.  前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
     前記第1の基板の一方面側に、前記第1の液体材料を配置する工程と、
     前記第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  5.  前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料と第2の液体材料の混合液体を配置する工程と、
     前記隔壁に囲まれた領域に前記第1の液体材料を配置する工程、又は前記第1の基板の一方面側に、前記第1の液体材料を配置する工程と、
     前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  6.  前記第2の基板に形成された前記セルを区画する隔壁に囲まれた領域内に、所定量のゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料を配置する工程と、
     前記第1の基板の一方面側に、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料を配置する工程と、
     前記ゲル化又は高粘度化を行った前記第1の液体材料を介して前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  7.  ゲル化又は1Pa・s以上の粘度に高粘度化された前記第1の液体材料と、ゲル化又は1Pa・s以上の粘度に高粘度化された前記第2の液体材料とを積層することで積層体を形成する工程と、
     前記積層体を用いて、前記第1の基板と前記第2の基板とを貼り合せる工程と、を備えることを特徴とする請求項1に記載のエレクトロウェッティング素子の製造方法。
  8.  前記貼り合せ工程は、前記第1の基板及び前記第2の基板の一方に前記積層体を転写した状態で行うことを特徴とする請求項7に記載のエレクトロウェッティング素子の製造方法。
  9.  前記刺激が、化学物質との接触、電磁波の照射、熱、音波、振動、電場及び磁場からなる群より選択される少なくとも1つであることを特徴とする請求項1~8のいずれか1項に記載のエレクトロウェッティング素子の製造方法。
  10.  前記第2の液体材料のゲル化剤又は高粘度化剤が、該第2の液体材料をゲル化又は1Pa・s以上に高粘度化させ、且つ、前記第1の液体材料に溶解するゲル化剤又は高粘度化剤であることを特徴とする請求項1、3、4、6又は9に記載のエレクトロウェッティング素子の製造方法。
  11.  前記ゲル化剤又は高粘度化剤が次の一般式(1)で示されるゲル化剤又は高粘度化剤であることを特徴とする請求項10に記載のエレクトロウェッティング素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、Xは一価の陰イオン基を表す。Rは炭素数1~9の一価の置換基を表し、酸素、窒素及びイオウからなる群より選択される少なくとも1つを含んでいてもよく、環状構造を含んでいてもよい。Rは炭素数1~20の一価の置換基を表す。)
  12.  Xが芳香族基を有する酸の共役塩基であることを特徴とする請求項11に記載のエレクトロウェッティング素子の製造方法。
  13.  Rがメチル基、イソプロピル基、イソブチル基、sec-ブチル基、ベンジル基のいずれかであることを特徴とする請求項11又は12に記載のエレクトロウェッティング素子の製造方法。
  14.  Rが炭素数6~20の直鎖アルキル基であることを特徴とする請求項11~13のいずれか一項に記載のエレクトロウェッティング素子の製造方法。
  15.  前記ゲル化剤又は高粘度化剤が次の構造式(2)で示される化合物を含むことを特徴とする請求項10に記載のエレクトロウェッティング素子の製造方法。
    Figure JPOXMLDOC01-appb-C000002
  16.  前記ゲル化剤又は高粘度化剤が、前記構造式(2)で示される化合物と、ステロイド化合物又はフェノール性化合物との混合物であることを特徴とする請求項15に記載のエレクトロウェッティング素子の製造方法。
  17.  フェノール性化合物がヒドロキノン又はレソルシノールであることを特徴とする請求項16に記載のエレクトロウェッティング素子の製造方法。
  18.  前記ゲル化剤又は高粘度化剤が次の一般式(3)で示される化合物を含むことを特徴とする請求項10に記載のエレクトロウェッティング素子の製造方法。
    Figure JPOXMLDOC01-appb-C000003
     式中、nは1~3の整数を表し、Rは一価の有機基を示し、Yは一価の任意の置換基を示す。
  19.  Yがメチル基、クロロ基又はブロモ基のいずれかである請求項18に記載のエレクトロウェッティング素子の製造方法。
  20.  Rが炭素数6~20の脂肪族炭化水素、又はアラルキル基である請求項18に記載のエレクトロウェッティング素子の製造方法。
  21.  前記第1の液体材料のゲル化剤又は高粘度化剤が、該第1の液体材料をゲル化又は1Pa・s以上に高粘度化させ、且つ、前記第2の液体材料に溶解するゲル化剤又は高粘度化剤である請求項1、2、4、5、のいずれか一項に記載のエレクトロウェッティング素子の製造方法。
  22.  前記セル内に刺激を付与することにより、ゲル化又は高粘度化された、前記第1の液体材料及び前記第2の液体材料の少なくとも一方を低粘度化する工程が、前記第1の基板及び前記第2の基板の貼り合せ工程後に行われることを特徴とする、請求項1~21のいずれか一項に記載のエレクトロウェッティング素子の製造方法。
  23.  請求項1~22のいずれか一項に記載のエレクトロウェッティング素子の製造方法により製造されたエレクトロウェッティング素子からなることを特徴とするエレクトロウェッティングディスプレイ。
PCT/JP2012/073814 2011-10-24 2012-09-18 エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ WO2013061711A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013502728A JP5484630B2 (ja) 2011-10-24 2012-09-18 エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ
US14/348,724 US9182590B2 (en) 2011-10-24 2012-09-18 Method for manufacturing electrowetting element and electrowetting display
CN201280038988.XA CN103748510B (zh) 2011-10-24 2012-09-18 电湿润元件的制造方法、及电湿润显示器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011233199 2011-10-24
JP2011-233199 2011-10-24
JP2012-041772 2012-02-28
JP2012041772 2012-02-28
JP2012101291 2012-04-26
JP2012-101291 2012-04-26
JP2012-151661 2012-07-05
JP2012151661 2012-07-05

Publications (1)

Publication Number Publication Date
WO2013061711A1 true WO2013061711A1 (ja) 2013-05-02

Family

ID=48167549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073814 WO2013061711A1 (ja) 2011-10-24 2012-09-18 エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ

Country Status (5)

Country Link
US (1) US9182590B2 (ja)
JP (1) JP5484630B2 (ja)
CN (1) CN103748510B (ja)
TW (1) TWI581005B (ja)
WO (1) WO2013061711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066835A (ja) * 2012-09-25 2014-04-17 Fujifilm Corp エレクトロウェッティング表示装置の製造方法
WO2014080919A1 (ja) * 2012-11-22 2014-05-30 富士フイルム株式会社 エレクトロウェッティング表示用染料組成物及びその製造方法並びにエレクトロウェッティング表示装置
CN105164582A (zh) * 2013-08-20 2015-12-16 积水化学工业株式会社 电湿润元件及电湿润显示器

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178646A (ja) * 2013-03-15 2014-09-25 Fujifilm Corp エレクトロウェッティング表示装置の製造方法
US9625705B2 (en) 2014-04-14 2017-04-18 University Of Cincinnati Dosing and sealing of fluid-based elctro-optical devices and displays
CN104049360A (zh) * 2014-06-10 2014-09-17 京东方科技集团股份有限公司 电润湿显示装置
US9625704B1 (en) 2014-12-19 2017-04-18 Amazon Technologies, Inc. Liquid dispensing method for manufacturing an electrowetting device
US9581804B1 (en) 2014-12-19 2017-02-28 Amazon Technologies, Inc. Liquid dispensing method for manufacturing an electrowetting device
US10018828B2 (en) * 2014-12-22 2018-07-10 Amazon Technologies, Inc. Electrowetting display device with stable display states
US10234678B1 (en) * 2016-04-26 2019-03-19 Amazon Technologies, Inc. Fluid dispensing method for electrowetting element manufacture
CN110494331B (zh) 2017-01-05 2022-08-30 复兴者迈科思公司 数字牌照的电力和通信模式
CA3049420A1 (en) 2017-01-05 2018-07-12 Revivermx, Inc. Digital license plate system with antitheft system
WO2018129352A1 (en) 2017-01-05 2018-07-12 Revivermx, Inc. Thermal control system for a digital license plate
CN107238922A (zh) * 2017-07-14 2017-10-10 京东方科技集团股份有限公司 在电湿润显示基板中填充油墨的方法及制备电湿润显示面板的方法
CN109270680A (zh) * 2018-10-30 2019-01-25 Gr8科技有限公司 一种电润湿显示组件的制造方法
CN112002251B (zh) * 2020-08-06 2022-05-31 Tcl华星光电技术有限公司 显示面板及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350328A (ja) * 2005-06-15 2006-12-28 Samsung Electronics Co Ltd 電気湿潤表示パネルとそれの製造方法
JP2009031795A (ja) * 2007-07-25 2009-02-12 Innolux Display Corp エレクトロウエッティングディスプレイ
JP2009210738A (ja) * 2008-03-03 2009-09-17 Sony Corp 液体光学素子の製造方法
JP2010085966A (ja) * 2008-10-01 2010-04-15 Chunghwa Picture Tubes Ltd 表示媒体および表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921473B1 (en) * 2004-04-30 2014-12-30 Sydney Hyman Image making medium
US8669325B1 (en) * 1999-06-11 2014-03-11 Sydney Hyman Compositions image making mediums and images
JP4849640B2 (ja) 2004-04-08 2012-01-11 サムスン エルシーディー ネザーランズ アール アンド ディー センター ビー.ブイ. ディスプレイデバイス
JP4824935B2 (ja) 2005-02-25 2011-11-30 株式会社リコー ゲル状電解質、及びそれを用いたエレクトロクロミック素子
JP4862659B2 (ja) * 2007-01-10 2012-01-25 ソニー株式会社 エレクトロウェッティングデバイスの製造方法
CN101363960B (zh) * 2007-08-09 2012-03-07 财团法人工业技术研究院 电湿润性显示器及其制造方法
TWI479195B (zh) * 2007-09-12 2015-04-01 Univ Cincinnati 電流體裝置、視覺顯示器及製造與操作該等電流體裝置之方法
CN101968566A (zh) * 2009-07-27 2011-02-09 胜华科技股份有限公司 电湿润显示器
GB0919652D0 (en) * 2009-11-10 2009-12-23 Liquavista Bv Method for making electrowetting display device
JP2011124122A (ja) 2009-12-11 2011-06-23 Konica Minolta Holdings Inc 電気化学デバイス
WO2012039471A1 (ja) * 2010-09-22 2012-03-29 積水化学工業株式会社 エレクトロウェッティングディスプレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350328A (ja) * 2005-06-15 2006-12-28 Samsung Electronics Co Ltd 電気湿潤表示パネルとそれの製造方法
JP2009031795A (ja) * 2007-07-25 2009-02-12 Innolux Display Corp エレクトロウエッティングディスプレイ
JP2009210738A (ja) * 2008-03-03 2009-09-17 Sony Corp 液体光学素子の製造方法
JP2010085966A (ja) * 2008-10-01 2010-04-15 Chunghwa Picture Tubes Ltd 表示媒体および表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014066835A (ja) * 2012-09-25 2014-04-17 Fujifilm Corp エレクトロウェッティング表示装置の製造方法
WO2014080919A1 (ja) * 2012-11-22 2014-05-30 富士フイルム株式会社 エレクトロウェッティング表示用染料組成物及びその製造方法並びにエレクトロウェッティング表示装置
JP2014106246A (ja) * 2012-11-22 2014-06-09 Fujifilm Corp エレクトロウェッティング表示用染料組成物及びその製造方法並びにエレクトロウェッティング表示装置
CN105164582A (zh) * 2013-08-20 2015-12-16 积水化学工业株式会社 电湿润元件及电湿润显示器

Also Published As

Publication number Publication date
US20140226200A1 (en) 2014-08-14
JPWO2013061711A1 (ja) 2015-04-02
CN103748510B (zh) 2016-10-19
JP5484630B2 (ja) 2014-05-07
CN103748510A (zh) 2014-04-23
TW201319615A (zh) 2013-05-16
TWI581005B (zh) 2017-05-01
US9182590B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5484630B2 (ja) エレクトロウェッティング素子の製造方法、及びエレクトロウェッティングディスプレイ
KR101856834B1 (ko) 착색 전기영동 디스플레이
TWI635345B (zh) 用於電泳顯示器之密封組成物
US8446664B2 (en) Electrophoretic media, and materials for use therein
US11098206B2 (en) Electrophoretic media including charge control agents comprising quartenary amines and unsaturated polymeric tails
Wang et al. 59.1: Invited paper: electrophoretic display platform comprising B, W, R particles
CN114375319B (zh) 包含聚氨酯和阳离子掺杂物的粘合剂组合物
JP2011221448A (ja) 電気泳動表示装置の製造方法
CN103091889A (zh) 一种广视角液晶光调制器件
JP4507531B2 (ja) 電気泳動表示装置の製造方法
US20130258267A1 (en) Method for fabricating mesoporous oxide hollow particles and the liquid crystal device comprising the same
KR20130047026A (ko) 전기영동 매질과, 그를 이용한 전기영동 표시 장치 및 제조 방법
TW200540545A (en) Process for the manufacture of electrophoretic displays
Chen et al. Multicolor polymer disperse microencapsulated liquid crystal displays
JP5919172B2 (ja) エレクトロウェッティング素子及びエレクトロウェッティングディスプレイ
KR101908494B1 (ko) 전기영동 표시소자 및 그 제조 방법
JP2014240875A (ja) 表示素子、表示媒体、表示装置、表示セット、表示方法及び消去方法
KR20150123530A (ko) 전기 영동 슬러리 조성물 및 전기 영동 디스플레이 장치의 제조 방법
JP5963238B2 (ja) 光学素子
KR20060121336A (ko) 액정 마이크로 셀의 제조방법 및 정보 디스플레이에의적용방법
TWI512382B (zh) 電泳粒子、電泳粒子製備方法、電泳漿料組成物以及含有該電泳漿料組成物的電泳顯示裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013502728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842856

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842856

Country of ref document: EP

Kind code of ref document: A1