WO2013061502A1 - アンテナ装置及び無線通信装置 - Google Patents

アンテナ装置及び無線通信装置 Download PDF

Info

Publication number
WO2013061502A1
WO2013061502A1 PCT/JP2012/005538 JP2012005538W WO2013061502A1 WO 2013061502 A1 WO2013061502 A1 WO 2013061502A1 JP 2012005538 W JP2012005538 W JP 2012005538W WO 2013061502 A1 WO2013061502 A1 WO 2013061502A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
antenna device
radiator
loop
radiation
Prior art date
Application number
PCT/JP2012/005538
Other languages
English (en)
French (fr)
Inventor
健一 浅沼
山本 温
坂田 勉
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/989,460 priority Critical patent/US9019163B2/en
Priority to CN201280003892XA priority patent/CN103229356A/zh
Publication of WO2013061502A1 publication Critical patent/WO2013061502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/005Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present disclosure mainly relates to an antenna device for mobile communication such as a mobile phone and a wireless communication device including the antenna device.
  • the mobile wireless communication devices such as mobile phones are rapidly becoming smaller and thinner.
  • portable wireless communication devices have been transformed into data terminals that are used not only as conventional telephones but also for sending and receiving e-mails and browsing web pages on the WWW (World Wide Web).
  • the amount of information handled has increased from conventional voice and text information to photographs and moving images, and further improvements in communication quality are required.
  • a multiband antenna device that supports a plurality of wireless communication schemes and a small antenna device have been proposed.
  • an array antenna apparatus that reduces electromagnetic coupling and enables high-speed wireless communication when a plurality of these antenna apparatuses are arranged has been proposed.
  • the invention of Patent Document 1 is a dual-frequency antenna, a feed line formed by printing on the surface of a dielectric substrate, an inner radiating element connected to the feed line, an outer radiating element, and a print on the surface of the dielectric substrate.
  • the inductor provided between the radiating elements and the predetermined capacitance between the radiating elements form a parallel resonant circuit and can operate in a multiband.
  • Patent Document 2 The invention of Patent Document 2 is characterized in that a radiating element is formed in a loop shape, and its open end is brought close to the vicinity of the power supply unit to form a predetermined capacity, thereby generating a fundamental mode and a higher-order mode associated therewith. And By integrally forming a loop-shaped radiating element on a dielectric or magnetic block, it is possible to operate in a multiband while being small.
  • JP 2001-185938 A Japanese Patent No. 4432254
  • 3G-LTE 3rd Generation Partnership Project Long Term Evolution
  • 3G-LTE employs a MIMO (Multiple Input Multiple Output) antenna device that uses multiple antennas to simultaneously transmit and receive multiple channels of radio signals using space division multiplexing as a new technology for achieving high-speed wireless transmission.
  • MIMO Multiple Input Multiple Output
  • the MIMO antenna apparatus includes a plurality of antennas on the transmitter side and the receiver side, and enables a high transmission rate by spatially multiplexing data streams.
  • the MIMO antenna apparatus Since the MIMO antenna apparatus operates a plurality of antennas at the same frequency at the same time, the electromagnetic coupling between the antennas becomes very strong in a situation where the antennas are mounted close to each other in a small mobile phone.
  • the electromagnetic coupling between the antennas becomes strong, the radiation efficiency of the antennas deteriorates.
  • the received radio wave becomes weak and the transmission speed is reduced. Therefore, there is a need for a technique for reducing electromagnetic coupling between antennas by downsizing the antennas and substantially increasing the distance between the antennas.
  • the radiating element becomes large in order to reduce the operating frequency in the low band. Also, the slit between the inner radiating element and the outer radiating element does not contribute to the radiation.
  • the antenna is miniaturized by providing a loop element on a dielectric or magnetic block, but the impedance of the antenna is reduced due to the dielectric or magnetic substance. As a result, the radiation characteristics in the resonance frequency bands of the fundamental mode and the higher-order mode are degraded. Further, with such a configuration, the Q value of the resonance of the antenna is high, and the operating frequency band cannot be made ultra-wide.
  • an antenna device that can easily achieve an ultra-wide operating frequency band and can achieve both multi-band and miniaturization.
  • This disclosure provides an antenna device that can solve the above-described problems, achieve both multiband and miniaturization, and provide a wireless communication device including such an antenna device.
  • the antenna device is: In an antenna device comprising at least one radiator and a ground conductor, Each radiator above is A loop-shaped radiating conductor having an inner circumference and an outer circumference, the radiating conductor provided to the ground conductor so as to have a portion electromagnetically coupled close to the ground conductor; At least one capacitor inserted in place along the loop of the radiating conductor; At least one inductor inserted along a loop of the radiation conductor at a predetermined position different from the position of the capacitor; A feeding point provided on the radiation conductor at a position close to the ground conductor; In the antenna device, the radiating conductor and the grounding conductor are connected to each other along the loop of the radiating conductor at a portion where the radiating conductor and the grounding conductor of each radiator are close to each other as the distance from the feeding point increases.
  • Each radiator is excited at a first frequency and a second frequency higher than the first frequency;
  • a first current flows through a first path along the inner circumference of the loop of the radiation conductor, including the inductor and the capacitor,
  • each radiator is excited at the second frequency, it includes the capacitor, does not include the inductor, and is a section along the outer periphery of the loop of the radiation conductor between the feeding point and the inductor.
  • a capacitance distributed between the radiation conductor and the ground conductor in a portion where the second current flows through the second path including the section and the radiation conductor and the ground conductor of each radiator are close to each other.
  • a resonance circuit is formed by the inductance distributed in the radiation conductor, In each of the radiators, the loop of the radiation conductor, the inductor, and the capacitor resonate at the first frequency, and a portion of the loop of the radiation conductor included in the second path, the capacitor, and the resonance The circuit is configured to resonate at the second frequency.
  • the antenna device of the present disclosure it is possible to provide an antenna device that can operate in multiple bands while having a small and simple configuration. According to the antenna device of the present disclosure, it is possible to further increase the operating frequency band of the high frequency band.
  • FIG. 2 is a diagram showing a current path when the antenna apparatus of FIG. 1 operates at a low-band resonance frequency f1.
  • FIG. 2 is a diagram illustrating a current path when the antenna device of FIG. 1 operates at a high-band resonance frequency f2.
  • FIG. 11 is a diagram illustrating a current path when the antenna apparatus of FIG. 10 operates at a high-band resonance frequency f2. It is the schematic which shows the antenna apparatus which concerns on the 1st modification of 2nd Embodiment. It is the schematic which shows the antenna apparatus which concerns on the 2nd modification of 2nd Embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of a wireless communication apparatus according to a fifth embodiment, the wireless communication apparatus including the antenna apparatus of FIG. 1.
  • FIG. 1 is a schematic diagram illustrating an antenna device according to the first embodiment.
  • the antenna device of this embodiment performs dual band operation at the low-band resonance frequency f1 and the high-band resonance frequency f2 while using the single radiator 40, and the high-band operation band including the high-band resonance frequency f2 is super high. It is characterized by having a wider bandwidth.
  • a radiator 40 includes a first radiation conductor 1 having a predetermined width and a predetermined electrical length, a second radiation conductor 2 having a predetermined width and a predetermined electrical length, and radiation conductors 1 and 2 at predetermined positions. Are connected to each other, and an inductor L1 that connects the radiation conductors 1 and 2 to each other at a position different from that of the capacitor C1.
  • the radiation conductors 1 and 2, the capacitor C1, and the inductor L1 form a loop surrounding the central portion.
  • the capacitor C1 is inserted at a predetermined position of the loop-shaped radiation conductor, and the inductor L1 is inserted at a position different from the position where the capacitor C1 is inserted.
  • the loop-shaped radiation conductor Since the loop-shaped radiation conductor has a predetermined width, the loop-shaped radiation conductor has an inner periphery close to the central hollow portion and an outer periphery remote from the central hollow portion. Further, the loop-shaped radiation conductor is provided to the ground conductor G1 so that a part thereof is close to the ground conductor G1 and is electromagnetically coupled to the ground conductor G1.
  • a signal source Q1 that generates a high-frequency signal having a low-frequency resonance frequency f1 and a high-frequency resonance frequency f2 is connected to a feeding point P1 on the radiation conductor 1 and on a ground conductor G1 provided close to the radiator 40. To the connection point P2.
  • the feed point P1 is provided on the radiation conductor 1 at a position close to the ground conductor G1.
  • the signal source Q1 schematically shows a wireless communication circuit connected to the antenna device of FIG. 1, and excites the radiator 40 at either the low-band resonance frequency f1 or the high-band resonance frequency f2.
  • a matching circuit (not shown) may be further connected between the antenna device and the radio communication circuit.
  • the antenna device is configured such that the radiating conductors 1 and 2 and the ground conductor G1 move away from the feeding point P1 along the loop-shaped radiating conductor in a portion where the radiating conductors 1 and 2 and the ground conductor G1 are close to each other. It is characterized in that the distance between them increases gradually.
  • the distance from the ground conductor G1 gradually increases as the distance from the feeding point P1 along the radiating conductor loop increases.
  • the outer periphery of the loop-shaped radiation conductor is formed.
  • the current path when excited at the low-band resonance frequency f1 is different from the current path when excited at the high-band resonance frequency f2, and thus dual band operation can be effectively realized.
  • FIG. 2 is a schematic diagram showing an antenna device according to a comparative example of the first embodiment.
  • the radiator 50 of FIG. 2 is such that the distance from the ground conductor G1 gradually increases as the distance from the feed point P1 along the loop of the radiating conductor in the portion where the radiating conductors 1 and 2 and the ground conductor G1 are close to each other.
  • 1 has the same configuration as the radiator 40 of FIG. 1 except that the outer periphery of the loop-shaped radiation conductor is not formed.
  • the current path when excited at the low-band resonance frequency f1 is different from the current path when excited at the high-band resonance frequency f2, and thus dual band operation can be effectively realized. .
  • FIG. 3 is a diagram showing a current path when the antenna apparatus of FIG. 1 operates at the low-band resonance frequency f1.
  • a current having a low frequency component has a property that it can pass through an inductor (low impedance) but difficult to pass through a capacitor (high impedance).
  • the current I1 when the antenna device operates at the low-band resonance frequency f1 includes the inductor L1 and flows along a path along the inner periphery of the loop-shaped radiation conductor. Specifically, the current I1 flows from the feed point P1 to the point connected to the inductor L1 in the radiation conductor 1, passes through the inductor L1, and from the point connected to the inductor L1 in the radiation conductor 2 to the point connected to the capacitor C1.
  • the radiator 40 has an electrical length from the feeding point P1 to the point connected to the inductor L1 in the radiating conductor 1, an electrical length from the feeding point P1 to the point connected to the capacitor C1, and the electrical power of the inductor L1.
  • the sum of the length, the electrical length of the capacitor C1, and the electrical length from the point connected to the inductor L1 to the point connected to the capacitor C1 in the radiation conductor 2 becomes the electrical length that resonates at the low-band resonance frequency f1.
  • the resonating electrical length is, for example, 0.2 to 0.25 times the operating wavelength ⁇ 1 of the low-band resonance frequency f1.
  • the radiator 40 operates in the loop antenna mode, a long resonance length can be ensured while having a small shape, so that excellent characteristics can be realized even when the antenna device operates at the low-band resonance frequency f1. Also, the radiator 40 has a high Q value when operating in the loop antenna mode. In the loop-shaped radiation conductor, the radiation efficiency of the antenna device improves as the diameter of the loop increases.
  • FIG. 4 is a diagram showing a current path when the antenna apparatus of FIG. 1 operates at the high-band resonance frequency f2.
  • a current having a high frequency component has the property that it can pass through a capacitor (low impedance) but is difficult to pass through an inductor (high impedance).
  • the current I2 when the antenna device operates at the high-band resonance frequency f2 includes a capacitor C1, does not include the inductor L1, and is a section along the outer periphery of the loop-shaped radiation conductor, and the feeding point P1 It flows through a path including a section between the inductor L1.
  • the current I2 flows from the feeding point P1 to the point connected to the capacitor C1 in the radiating conductor 1, passes through the capacitor C1, and is connected to the predetermined position (for example, connected to the inductor L1) from the point connected to the capacitor C1 in the radiating conductor 2. Flow to the point).
  • the current I2 flows strongly around the outer periphery of the loop-shaped radiation conductor.
  • a current I3 flows toward the connection point P2 (that is, in a direction opposite to the current I2) in a portion close to the radiator 40 on the ground conductor G1. Accordingly, currents I2 and I3 having opposite phases flow in a portion where the loop-shaped radiation conductor and the ground conductor G1 are close to each other.
  • a resonance circuit is formed by the capacitance distributed between the radiating conductors 1 and 2 and the ground conductor G1 and the inductance distributed in the radiating conductors 1 and 2. It is formed.
  • the radiator 40 is matched by the resonance circuit.
  • FIG. 5 is a diagram showing an equivalent circuit when the antenna apparatus of FIG. 1 operates at the high-band resonance frequency f2.
  • the current I2 flows as shown in FIG. 4, so that the radiation conductors 1 and 2 and the ground conductor G1 are close to each other along the loop-shaped radiation conductor.
  • a minute capacitance Ce is continuously distributed between the radiation conductors 1 and 2 and the ground conductor G1.
  • the minute inductance Le is continuously distributed along the loop-shaped radiating conductor.
  • the input impedance of the antenna device is the radiation resistance Rr of the antenna device and a portion remote from the ground conductor G1 in the loop-shaped radiation conductor (that is, the radiation conductor 2). It is determined by the inductance La, the minute inductance Le, and the minute capacitance Ce. As a result, a wide-band resonance circuit is formed by the inductances La and Le and the capacitor Ce, and the high-band operation band including the high-band resonance frequency f2 can be increased.
  • the radiator 40 when the antenna device operates at the high-band resonance frequency f2, the current I2 flows through the current path as shown in FIG. 4, and the portion of the loop-shaped radiation conductor through which the current I2 flows, the capacitor C1, Are configured to resonate at a high-frequency resonance frequency f2.
  • the radiator 40 takes into consideration the matching by the resonance circuit described above, the electrical length from the feeding point P1 to the point connected to the capacitor C1 in the radiation conductor 1, the electrical length of the capacitor C1, and the radiation conductor. 2 so that the sum of the electrical length of the portion through which the current I2 flows (for example, the electrical length from the point connected to the capacitor C1 to the point connected to the inductor L1) becomes an electrical length that resonates at the high-band resonance frequency f2.
  • the resonant electrical length is, for example, 0.25 times the operating wavelength ⁇ 2 of the high-band resonance frequency f2.
  • the current I2 flows through the current path as shown in FIG. 4, so that the radiator 40 operates in the monopole antenna mode, that is, the current mode.
  • the antenna device of the present embodiment forms a current path through the inductor L1 when operating at the low-band resonance frequency f1, and forms a current path through the capacitor C1 when operating at the high-band resonance frequency f2.
  • the radiator 40 operates in a magnetic current mode by forming a loop-shaped current path, and resonates at the low-band resonance frequency f1.
  • radiator 40 operates in a current mode by forming a non-loop current path (monopole antenna mode), and resonates at high-band resonance frequency f2.
  • the loop-shaped radiating conductor is formed so that the distance from the ground conductor G1 gradually increases as the distance from the feeding point P1 increases along the radiating conductor loop.
  • an antenna element length of about ( ⁇ 1) / 4 is required when operating at the low-band resonance frequency f1 (operating wavelength ⁇ 1).
  • a loop current path is required.
  • the vertical and horizontal lengths of the radiator 40 can be reduced to about ( ⁇ 1) / 15.
  • the low-band resonance frequency f1 and the high-band resonance frequency f2 can be adjusted using the matching effect (particularly the matching effect by the capacitor C1) by the inductor L1 and the capacitor C1.
  • the antenna device operates at the low-band resonance frequency f1
  • the current is supplied from the point connected to the inductor L1 to the point connected to the capacitor C1 in the radiating conductor 2, and from the point connected to the capacitor C1 in the radiating conductor 1.
  • the current flowing to the point P1 is connected to the current flowing from the feeding point P1 to the point connected to the inductor L1 in the radiation conductor 1, thereby forming a loop-shaped current path.
  • the capacitor C1 allows high frequency components to pass therethrough, when the capacitance of the capacitor C1 is reduced, the electrical length is shortened and the resonance frequency of the radiator 40 is shifted to a higher frequency. Since the voltage at the feeding point P1 is minimum in the radiator 40, the resonance frequency of the radiator 40 can be lowered by separating the position where the capacitor C1 is loaded from the feeding point P1.
  • the capacitor C1 is closer to the feeding point P1 than the inductor L1. For this reason, when the antenna apparatus of FIG. 1 operates at the high-frequency resonance frequency f2, the current I2 flows from the feeding point P1 to the inductor L1 (that is, the open end is away from the ground conductor G1). VSWR is lower than when operating at f1, and matching becomes easier.
  • the antenna device of the present embodiment can use a frequency in the 800 MHz band as the low-frequency resonance frequency f1 and a frequency in the 2000-MHz band as the high-frequency resonance frequency f2, as will be described in Examples below. It is not limited to these frequencies.
  • Each of the radiating conductors 1 and 2 is not limited to the strip shape shown in FIG. 1 and the like as long as a predetermined electric length can be secured between the capacitor C1 and the inductor L1. Good.
  • the plane including the radiator 40 and the plane including the ground conductor G1 are shown to be in the same plane.
  • the arrangement of the radiator 40 and the ground conductor G1 is limited to such a configuration.
  • the distance between the radiating conductors 1 and 2 and the ground conductor G1 gradually increases as the distance from the feeding point P1 along the loop-shaped radiating conductor is increased.
  • the plane including the radiator 40 may have a predetermined angle with respect to the plane including the ground conductor G1.
  • the dual-band operation is effectively realized by operating the radiator 40 as either the loop antenna mode or the monopole antenna mode according to the operating frequency. Miniaturization can be achieved. Furthermore, the high frequency band including the high frequency resonance frequency f2 can be increased.
  • FIG. 6 is a schematic diagram illustrating an antenna apparatus according to a first modification of the first embodiment
  • FIG. 7 is a schematic diagram illustrating an antenna apparatus according to a second modification of the first embodiment. is there.
  • the method for adjusting the resonance frequency of the antenna device can be summarized as follows. In order to lower the low-frequency resonance frequency f1, the capacitance of the capacitor C1, the inductance of the inductor L1, the electrical length of the radiating conductor 1, and the electrical length of the radiating conductor 2 are increased. That is effective. In order to lower the high-band resonance frequency f2, it is effective to increase the electrical length of the radiation conductor 2 and to separate the capacitor C1 from the feeding point P1.
  • FIG. 1 In order to lower the low-frequency resonance frequency f1, the capacitance of the capacitor C1, the inductance of the inductor L1, the electrical length of the radiating conductor 1, and the electrical length of the radiating conductor 2 are increased. That is effective. In order to lower the high-band resonance frequency f2, it
  • FIG. 6 shows an antenna apparatus including a radiator 41 configured to lower the low-band resonance frequency f1.
  • the low frequency resonance frequency f ⁇ b> 1 is reduced by increasing the electrical length of the radiation conductor 2.
  • FIG. 7 shows an antenna device including a radiator 42 configured to reduce the high-band resonance frequency f2.
  • the high-band resonance frequency f2 is lowered by separating the capacitor C1 from the feeding point P1.
  • each current path when the antenna device operates at each of the low-frequency resonance frequency f1 and the high-frequency resonance frequency f2 is used.
  • the electrical length must be clearly different.
  • the electrical length of the radiation conductor 2 is preferably longer than the electrical length of the radiation conductor 1.
  • FIG. 8 is a schematic diagram showing an antenna device according to a third modification of the first embodiment.
  • the capacitor C1 is closer to the feeding point P1 than the inductor L1, but in the antenna device of FIG. 8, the inductor L1 is provided closer to the feeding point P1 than the capacitor C1.
  • the antenna device of FIG. 8 operates at the low-band resonance frequency f1
  • the current I1 once flows from the feed point P1 to the capacitor C1 (that is, the open end is away from the ground conductor G1), so that the high-band resonance The VSWR is lower than when operating at the frequency f2, and matching is facilitated.
  • the radiator 40 is operated as either a loop antenna mode or a monopole antenna mode according to the operating frequency, thereby effectively realizing dual band operation and miniaturization of the antenna apparatus. Can be achieved. Furthermore, also in the antenna device of FIG. 8, the high frequency band including the high frequency resonance frequency f2 can be increased.
  • FIG. 9 is a schematic diagram showing an antenna apparatus according to a fourth modification of the first embodiment.
  • the capacitor C1 and the inductor L1 of the radiator 44 are provided along the loop-shaped radiation conductor at portions where the radiation conductor and the ground conductor G1 are close to each other, and the feeding point P1 is between the capacitor C1 and the inductor L1. Is provided.
  • the current path when the antenna device operates at the low-band resonance frequency f1 and when the antenna device operates at the high-band resonance frequency f2 The current path is separated, and the open ends of both are separated from the ground conductor G1.
  • the VSWR is lowered at both the low-band resonance frequency f1 and the high-band resonance frequency f2, and matching is easily achieved.
  • the feeding point is preferably as the distance from the feeding point P1 to the at least one is increased along the loop of the radiating conductor.
  • the outer periphery of the loop-shaped radiating conductor is formed so that the distance from the ground conductor G1 gradually increases as it proceeds in the direction from P1 toward the capacitor C1 (left side).
  • the loop-shaped radiation is such that the distance from the ground conductor G1 gradually increases toward the left side from the feeding point P1.
  • FIG. 10 is a schematic diagram showing an antenna apparatus according to a fifth modification of the first embodiment.
  • the loop-shaped radiation is performed so that the distance from the ground conductor G1 gradually increases as it proceeds in the direction (right side) from the feeding point P1 toward the inductor L1.
  • the outer periphery of the conductor is formed.
  • the antenna device of FIG. 10 also provides the same effect as the antenna device of FIG.
  • FIG. 11 is a schematic diagram illustrating an antenna device according to the second embodiment.
  • the distance from the ground conductor G1 gradually increases as the distance from the feeding point P1 along the loop of the radiation conductor in the portion where the radiation conductors 1 and 2 and the ground conductor G1 are close to each other.
  • An outer periphery of a loop-shaped radiation conductor is formed.
  • the embodiment of the present disclosure is not limited to gradually increasing the distance between the radiation conductors 1 and 2 and the ground conductor G1 due to the shape of the outer periphery of the loop-shaped radiation conductor.
  • a radiator 60 is provided for the ground conductor G1 so that the distance from the ground plane of the ground conductor G1 gradually increases as the distance from the feeding point P1 along the radiation conductor increases.
  • the radiating conductors 1 and 2 of the radiator 60, the capacitor C1, and the inductor L1 are the radiators of FIG. 2 except that the inductor L1 is provided closer to the feeding point P1 than the capacitor C1. 50 is configured in the same manner.
  • the ground surface of the ground conductor G1 is provided on the first surface (plane or curved surface).
  • the loop-shaped radiation conductor is provided on a second surface (plane or curved surface) at least partially opposed to the first surface, and is remote from the feeding point P1 along the loop-shaped radiation conductor. Accordingly, the distance from the ground plane of the ground conductor G1 is gradually increased. Therefore, in the antenna apparatus of FIG. 11, the surface (second surface) including the loop-shaped radiation conductor has a predetermined angle with respect to the surface (first surface) including the ground surface of the ground conductor G1.
  • FIG. 12 is a diagram showing a current path when the antenna apparatus of FIG. 11 operates at the high-band resonance frequency f2.
  • the current I2 flows on the radiator 60 in the same manner as in FIG. 4, and the connection point P2 is located near the radiator 60 on the ground conductor G1.
  • a current I3 flows toward (ie, in a direction opposite to the current I2).
  • + and-charges are distributed in the portion where the radiating conductor 1 and the radiating conductor 2 (not shown) and the ground conductor G1 are close to each other, and the electric flux This creates a continuously distributed capacitor.
  • a resonance circuit is formed by the capacitance distributed between the radiation conductor and the ground conductor G1 and the inductance distributed in the radiation conductor.
  • the radiator 60 when the antenna device operates at the high-band resonance frequency f2, the portion of the loop-shaped radiation conductor through which the current I2 flows, the capacitor C1, and the above-described resonance circuit resonate at the high-band resonance frequency f2. Configured.
  • the antenna device of FIG. 11 can effectively perform dual-band operation by operating the radiator 60 as either the loop antenna mode or the monopole antenna mode according to the operating frequency.
  • the antenna device can be downsized. Further, by providing the radiation conductor so that the distance from the ground surface of the ground conductor G1 gradually increases as the distance from the feed point P1 along the loop-shaped radiation conductor, the high frequency operation including the high frequency resonance frequency f2 is increased. The bandwidth can be increased.
  • FIG. 13 is a schematic diagram illustrating an antenna apparatus according to a first modification of the second embodiment
  • FIG. 14 is a schematic diagram illustrating an antenna apparatus according to a second modification of the second embodiment. is there.
  • the loop-shaped radiation conductor in the radiator 60 of FIG. 11 may be bent at at least one place.
  • the antenna device of FIG. 13 has a radiator 61 in which the radiating conductors 1 and 2 of the radiator 60 of FIG. 11 are bent along a straight line parallel to the Y axis, and further curved at a portion facing the ground plane of the ground conductor G1.
  • the radiator 61 of FIG. 13 is provided such that its open end is remote from the ground conductor G1.
  • the antenna device 14 is provided such that its open end is positioned on the ground conductor G1. According to the antenna device of FIG. 13, it is possible to make the operating band of the high frequency band including the high frequency resonance frequency f2 ultra-wide while realizing a low attitude of the antenna device. Further, according to the antenna device of FIG. 14, even under conditions where the antenna device must be within the area of the ground conductor G1, the antenna device can be lowered and the high frequency band including the high frequency resonance frequency f2 can be realized. The operating band can be made ultra-wide.
  • FIG. 15 is a schematic diagram illustrating an antenna device according to a third modification of the second embodiment.
  • the loop-shaped radiation conductor in the radiator 60 of FIG. 11 may be curved in at least one place.
  • the antenna device of FIG. 15 includes a radiator 62 in which the loop-shaped radiation conductor in the radiator 60 of FIG. 11 is curved along a straight line parallel to the Y axis.
  • the area of the portion where the radiation conductor and the ground plane of the ground conductor G1 face each other is smaller than in the case of FIG.
  • the position where the radiation conductor is bent and the degree of bending can be increased or decreased according to the size of the capacitance to be formed between the radiation conductor and the ground plane of the ground conductor G1.
  • the size of the antenna device can be reduced according to the size and shape (for example, a shape including a curved line and a curved surface) of the housing of the antenna device.
  • FIG. 16 is a schematic diagram showing an antenna apparatus according to a fourth modification of the second embodiment.
  • the antenna device of FIG. 16 shows a case where a ground conductor G2 formed of a conductor block having a predetermined thickness is used as the ground conductor.
  • Radiator 61 is configured similarly to the case of FIG.
  • the thickness of the ground conductor G2 in the Z direction is equal to or greater than the length of the radiator 61 in the Z direction.
  • FIG. 16 also shows a current path when the antenna device operates at the high-band resonance frequency f2. When the antenna device operates at the high-band resonance frequency f2, the current I2 flows on the radiator 61 as in the case of FIG.
  • the connection point P2 A current I3 flows toward (ie, in a direction opposite to the current I2).
  • a resonance circuit is formed by the capacitance distributed between the radiation conductor and the ground conductor G2 and the inductance distributed in the radiation conductor.
  • the antenna device of FIG. 16 when the antenna device operates at the high-band resonance frequency f2, the portion of the loop-shaped radiation conductor through which the current I2 flows, the capacitor C1, and the above-described resonance circuit resonate at the high-band resonance frequency f2. Configured.
  • the antenna device of FIG. 16 also operates the dual band operation effectively by operating the radiator 60 as either the loop antenna mode or the monopole antenna mode according to the operating frequency.
  • the antenna device can be downsized.
  • the high frequency band including the high frequency resonance frequency f2 can be increased.
  • FIG. 17 is a schematic diagram showing an antenna apparatus according to a fifth modification of the second embodiment.
  • the antenna device of FIG. 17 is a combination of the first embodiment and the second embodiment.
  • the radiator 63 gradually increases in distance from the ground surface of the ground conductor G1 as it moves away from the feeding point P1 along the loop-shaped radiation conductor, similarly to the radiator 60 of FIG. 11.
  • the feeding point P1 along the loop of the radiating conductor is provided in a portion where the radiating conductors 1 and 2 and the ground conductor G1 are close to each other.
  • the outer periphery of the loop-shaped radiation conductor is formed so that the distance from the ground conductor G1 gradually increases as the distance from the ground is increased.
  • the distance between the radiating conductors 1 and 2 and the ground conductor G1 gradually increases along the loop-shaped radiating conductor from the feeding point P1 in the first direction (the direction from the feeding point P1 to the capacitor C1).
  • the radiating conductors 1 and 2 and the ground conductor G1 are arranged along the loop-shaped radiating conductor from the feeding point toward the second direction opposite to the first direction (the direction from the feeding point P1 toward the inductor L1).
  • the distance between increases gradually.
  • the antenna device of FIGS. 1 and 11 is also effectively dual by operating the radiator 63 as either the loop antenna mode or the monopole antenna mode according to the operating frequency.
  • the band operation can be realized and the antenna device can be miniaturized.
  • the high frequency band including the high frequency resonance frequency f2 can be increased.
  • FIG. 18 is a schematic diagram showing an antenna apparatus according to a sixth modification of the second embodiment.
  • the ground surface of the ground conductor G1 is provided on the first surface (plane or curved surface).
  • the ground plane of the ground conductor G1 is provided in parallel to the YZ plane.
  • the loop-shaped radiation conductor of the radiator 64 is on a second surface (planar surface or curved surface) having a predetermined distance with respect to the first surface, for example, on a second surface parallel to the first surface.
  • the ground conductor G1 and the loop-shaped radiation conductor are provided close to each other at their edge portions.
  • the radiation conductor 1a is a portion bent along a straight line parallel to the edge portion toward the ground plane of the ground conductor G1 at the edge portion close to the ground conductor G1 (a portion parallel to the XY plane in FIG. 18). ) And a feeding point is provided at the end of the bent portion (position closest to the ground plane of the ground conductor G1). 18 to 21, the power supply point is represented by the signal source Q1 for simplification of illustration.
  • the bent portion of the radiation conductor 1a is formed such that the distance from the ground surface of the ground conductor G1 gradually increases as the distance from the feeding point along the loop-shaped radiation conductor increases.
  • FIG. 19 is a schematic diagram showing an antenna apparatus according to a seventh modification of the second embodiment.
  • the radiation conductor 1a is bent along a straight line parallel to an edge portion where the ground conductor G1 and the loop-shaped radiation conductor are close to each other and face each other, but the radiation of the radiator 65 of FIG.
  • the conductor 1b has a portion bent along a straight line (straight line parallel to the Z direction) perpendicular to the edge portion toward the ground plane of the ground conductor G1.
  • the bent portion of the radiating conductor 1b is formed such that the distance from the ground plane of the ground conductor G1 gradually increases as the distance from the feeding point increases along the loop-shaped radiating conductor.
  • FIG. 20 is a schematic diagram showing an antenna device according to an eighth modification of the second embodiment.
  • the radiation conductor 1c of the radiator 66 of FIG. 20 is a combination of the radiation conductor 1a of FIG. 18 and the radiation conductor 1b of FIG. Specifically, the radiating conductor 1c is bent along a straight line that is bent along a straight line parallel to an edge portion where the ground conductor G1 and the loop-shaped radiating conductor are close to each other and opposed to each other, and a straight line perpendicular to the edge portion. And have a portion.
  • the radiation conductor 1c is not limited to a configuration in which a plate-like conductor is bent, and may be configured by a solid conductor block.
  • FIG. 21 is a schematic diagram showing an antenna device according to a ninth modification of the second embodiment.
  • 21 is a combination of the radiator 40 of FIG. 1 and the radiator 66 of FIG.
  • the radiator 67 in FIG. 21 has a bent portion in the same manner as the radiator 66 in FIG. 20, and in addition, the radiation conductors 1 and 2 and the ground conductor G1 are adjacent to each other in the radiation conductor.
  • the outer circumference of the loop-shaped radiation conductor is formed so that the distance from the ground conductor G1 gradually increases as the distance from the feeding point P1 increases along the loop.
  • the antenna devices of FIGS. 18 to 21 are also effective by operating the radiators 64 to 67 as either the loop antenna mode or the monopole antenna mode according to the operating frequency.
  • the dual band operation can be realized and the antenna device can be miniaturized.
  • the high frequency band including the high frequency resonance frequency f2 can be increased.
  • FIG. 22 is a schematic diagram illustrating an antenna device according to the third embodiment.
  • the distance from the ground conductor G1 gradually increases as the distance from the feeding point P1 along the loop of the radiation conductor in the portion where the radiation conductors 1 and 2 and the ground conductor G1 are close to each other.
  • An outer periphery of a loop-shaped radiation conductor is formed.
  • the embodiment of the present disclosure is not limited to gradually increasing the distance between the radiating conductors 1 and 2 and the ground conductor G1 due to the shape of the outer periphery of the loop-shaped radiating conductor. The distance between the radiating conductors 1 and 2 and the ground conductor may be gradually increased. Referring to FIG.
  • the ground conductor G3 has an edge portion close to the radiating conductors 1 and 2 of the radiator 70, and the edge portion radiates as the distance from the feeding point P1 increases along the loop-shaped radiating conductor. It is formed so that the distance from the distance gradually increases.
  • FIG. 23 is a schematic diagram showing an antenna apparatus according to a modification of the third embodiment.
  • the radiation conductor is provided so that the distance from the ground surface of the ground conductor G1 gradually increases as the distance from the feeding point P1 is increased along the loop-shaped radiation conductor.
  • the embodiment of the present disclosure is not limited to gradually increasing the distance between the radiating conductors 1 and 2 and the ground conductor G1 depending on the position of the radiating conductor with respect to the ground plane of the ground conductor G1. Depending on the shape, the distance between the radiation conductors 1 and 2 and the ground conductor may be gradually increased. Referring to FIG.
  • the ground surface of the ground conductor G4 is provided on the first surface (plane or curved surface).
  • the loop-shaped radiation conductor is provided on a second surface (a flat surface or a curved surface) at least partially opposed to the first surface. Further, the ground plane of the ground conductor G4 is formed such that the distance from the radiation conductor gradually increases as the distance from the feed point P1 increases along the loop-shaped radiation conductor.
  • the radiators 70 to 71 operate in either the loop antenna mode or the monopole antenna mode according to the operating frequency, as in the antenna devices of the first and second embodiments.
  • the dual band operation can be effectively realized and the antenna device can be downsized.
  • the high frequency band including the high frequency resonance frequency f2 can be increased.
  • the capacitor C1 and the inductor L1 can use, for example, discrete circuit elements, but are not limited thereto.
  • modified examples of the capacitor C1 and the inductor L1 will be described with reference to FIGS.
  • FIG. 24 is a schematic diagram illustrating an antenna apparatus according to a sixth modification of the first embodiment
  • FIG. 25 is a schematic diagram illustrating an antenna apparatus according to a seventh modification of the first embodiment. is there.
  • the radiator 80 of the antenna apparatus of FIG. 24 includes a capacitor C2 formed by the proximity of the radiation conductors 1 and 2.
  • the radiator 81 of the antenna apparatus of FIG. 25 includes a capacitor C3 formed by the proximity of the radiation conductors 1 and 2.
  • the radiating conductors 1 and 2 are brought close to each other to generate a predetermined capacitance between the radiating conductors 1 and 2, thereby providing virtual capacitors C2 and C3 between the radiating conductors 1 and 2. May be formed.
  • FIG. 26 is a schematic diagram illustrating an antenna device according to an eighth modification of the first embodiment.
  • a radiator 82 of the antenna apparatus of FIG. 26 includes a capacitor C4 formed in the vicinity of the radiation conductors 1 and 2.
  • an interdigit type conductor portion (a configuration in which finger-like conductors are alternately fitted) is formed. May be.
  • the capacitance can be increased as compared with the capacitors C2 and C3 of FIGS.
  • the capacitor formed by the adjacent portions of the radiation conductors 1 and 2 is not limited to the linear conductor portion as shown in FIGS. 24 and 25 or the interdigit type conductor portion as shown in FIG. It may be formed by a part.
  • the distance between the radiating conductors 1 and 2 is changed according to the position, and thereby the capacitance between the radiating conductors 1 and 2 is changed according to the position on the radiating conductors 1 and 2. May be.
  • FIG. 27 is a schematic diagram showing an antenna apparatus according to a ninth modification of the first embodiment.
  • the radiator 83 of the antenna apparatus of FIG. 27 includes an inductor L2 formed by a strip conductor.
  • FIG. 28 is a schematic diagram illustrating an antenna apparatus according to a tenth modification of the first embodiment.
  • the radiator 84 of the antenna apparatus of FIG. 28 includes an inductor L3 formed by a meandering conductor. The inductance of the inductors L2 and L3 increases as the width of the conductors forming the inductors L2 and L3 is reduced and the length of the conductor is increased.
  • capacitors C2 to C4 and the inductors L2 and L3 shown in FIGS. 24 to 28 may be combined.
  • the capacitor C2 in FIG. 24 and the inductor L2 in FIG. A radiator may be configured.
  • FIG. 29 is a schematic diagram showing an antenna apparatus according to an eleventh modification of the first embodiment.
  • the radiator 85 of the antenna device of FIG. 29 includes a capacitor C4 formed in the vicinity of the radiation conductors 1 and 2 and an inductor L3 formed of a meandering conductor.
  • both the capacitor and the inductor can be formed as a conductor pattern on the dielectric substrate, there are effects such as cost reduction and manufacturing variation reduction.
  • FIG. 30 is a schematic diagram showing an antenna apparatus according to a twelfth modification of the first embodiment.
  • the radiator 86 of the antenna apparatus of FIG. 30 includes a plurality of capacitors C5 and C6.
  • the antenna device according to the present embodiment is not limited to including a single capacitor and a single inductor, but includes a multi-stage capacitor including a plurality of capacitors and / or a multi-stage inductor including a plurality of inductors. May be.
  • capacitors C5 and C6 connected to each other by a third radiation conductor 3 having a predetermined electrical length are inserted instead of the capacitor C1 of FIG. In other words, capacitors C5 and C6 are respectively inserted at different positions in the loop-shaped radiation conductor.
  • FIG. 31 is a schematic diagram illustrating an antenna device according to a thirteenth modification of the first embodiment.
  • the radiator 87 of the antenna device of FIG. 31 includes a plurality of inductors L4 and L5.
  • inductors L4 and L5 connected to each other by a third radiation conductor 3 having a predetermined electrical length are inserted instead of the inductor L1 of FIG.
  • inductors L4 and L5 are respectively inserted at different positions in the loop-shaped radiation conductor.
  • a plurality of capacitors and a plurality of inductors may be inserted at different positions in the loop-shaped radiation conductor.
  • the capacitor and the inductor can be inserted at three or more different positions in consideration of the current distribution on the radiator, so that the low-band resonance frequency f1 and There is an effect that fine adjustment of the high-frequency resonance frequency f2 is facilitated.
  • FIG. 32 is a schematic diagram showing an antenna apparatus according to a fourteenth modification of the first embodiment.
  • FIG. 32 shows an antenna device having a microstrip line feed line.
  • the antenna device of this modification includes a microstrip line feed line including a ground conductor G1 and a strip conductor S1 provided on the ground conductor G1 via a dielectric substrate B1.
  • the antenna device of this modification may have a planar configuration in order to reduce the posture of the antenna device, that is, the ground conductor G1 is formed on the back surface of the printed wiring board, and the strip conductor S1 and the radiator are formed on the surface thereof. 40 may be integrally formed.
  • the feed line is not limited to a microstrip line, and may be a coplanar line, a coaxial line, or the like.
  • FIG. 33 is a schematic diagram showing an antenna apparatus according to a fifteenth modification of the first embodiment.
  • 33 is an antenna device configured as a dipole antenna including a first radiator 40A corresponding to the radiator 40 of FIG. 1 and a second radiator 40B provided in place of the ground conductor of FIG. Indicates.
  • the left radiator 40A in FIG. 33 is configured similarly to the radiator 40 in FIG.
  • the radiator 40B on the right side of FIG. 33 is also configured in the same manner as the radiator 40 of FIG. 1, and includes a first radiation conductor 11, a second radiation conductor 12, a capacitor C11, and an inductor L11.
  • Radiators 40A and 40B are provided adjacent to each other so as to have electromagnetically coupled portions close to each other.
  • the feed point P1 of the radiator 40A and the feed point P11 of the radiator 40B are provided close to each other, and the signal source Q1 is connected to the feed point P1 of the radiator 40A and the feed point P11 of the radiator 40B.
  • the distance between the radiation conductors of the radiators 40A and 40B gradually increases as they are remote from the feed points P1 and P11 along the loop-shaped radiation conductor.
  • the antenna device of this modification can operate in a balance mode by having a dipole configuration, and can suppress unnecessary radiation.
  • FIG. 34 is a schematic diagram showing an antenna apparatus according to a sixteenth modification of the first embodiment.
  • FIG. 34 shows an antenna device capable of operating in four bands.
  • the left radiator 40C in FIG. 34 is configured in the same manner as the radiator 40 in FIG.
  • the radiator 40D on the right side of FIG. 34 is also configured similarly to the radiator 40 of FIG. 1, and includes a first radiation conductor 21, a second radiation conductor 22, a capacitor C21, and an inductor L21.
  • the electrical length of the loop formed by the radiation conductors 21 and 22, the capacitor C21, and the inductor L21 in the radiator 40D is the same as that of the loop formed by the radiation conductors 1 and 2, the capacitor C1, and the inductor L1 in the radiator 40C. Different from electrical length.
  • the signal source Q21 is connected to a feeding point P1 on the radiation conductor 1 and a feeding point P21 on the radiation conductor 21, and is also connected to a connection point P2 on the ground conductor G1.
  • the signal source Q21 generates a high-frequency signal having a low-frequency resonance frequency f1 and a high-frequency resonance frequency f2, and is different from the low-frequency resonance frequency f21 different from the low-frequency resonance frequency f1 and different from the high-frequency resonance frequency f2.
  • the high-band resonance frequency f22 is generated.
  • the radiator 40C operates in the loop antenna mode at the low-band resonance frequency f1, and operates in the monopole antenna mode at the high-band resonance frequency f2.
  • radiator 40D operates in a loop antenna mode at low-band resonance frequency f21, and operates in a monopole antenna mode at high-band resonance frequency f22.
  • the antenna device according to the present modification can operate in four bands. According to the antenna device of this modification, further providing a multiband is possible by further providing a radiator.
  • FIG. 35 is a schematic diagram showing an antenna apparatus according to a tenth modification of the second embodiment.
  • the antenna device of FIG. 35 includes a short-circuit conductor 88a that connects the radiation conductor 1 of the radiator 88 to the ground conductor G1 in addition to the configuration of the antenna device of FIG. 11, and is configured as an inverted F-type antenna device. It is characterized by that.
  • the short-circuit conductor 88a can be connected to an arbitrary position on the radiation conductor 1 (that is, the radiation conductor having the feeding point P1). Although there is an effect of increasing the radiation resistance by short-circuiting a part of the radiator with the ground conductor, the basic operation principle of the antenna device according to the present embodiment is not impaired.
  • the short-circuit conductor 88a is applicable not only to the antenna device of FIG. 11 but also to antenna devices of other embodiments and modifications.
  • FIG. 36 is a schematic diagram showing an antenna device according to the fourth embodiment.
  • the antenna device of the present embodiment includes two radiators 90A and 90B configured on the same principle as the radiator 40 of FIG. 1, and these radiators 90A and 90B are independently provided by separate signal sources Q31 and Q32. It is characterized by being excited.
  • a radiator 90A includes a first radiation conductor 31 having a predetermined electrical length, a second radiation conductor 32 having a predetermined electrical length, and a capacitor C31 that connects the radiation conductors 31 and 32 to each other at a predetermined position. And an inductor L31 that connects the radiation conductors 31 and 32 to each other at a position different from the capacitor C31.
  • the radiation conductors 31 and 32, the capacitor C31, and the inductor L31 form a loop surrounding the central portion. In other words, the capacitor C31 is inserted at a predetermined position of the loop-shaped radiation conductor, and the inductor L31 is inserted at a position different from the position where the capacitor C31 is inserted.
  • the signal source Q1 is connected to a feeding point P31 on the radiation conductor 31 and is connected to a connection point P32 on the ground conductor G1 provided in the vicinity of the radiator 90A.
  • the capacitor C31 is provided closer to the feeding point P31 than the inductor L31.
  • Radiator 90B is configured similarly to radiator 90A, and includes a first radiation conductor 33, a second radiation conductor 34, a capacitor C32, and an inductor L32. In the radiator 90B, the radiation conductors 33 and 34, the capacitor C32, and the inductor L32 form a loop surrounding the central portion.
  • the signal source Q2 is connected to a feeding point P33 on the radiation conductor 33 and is connected to a connection point P34 on the ground conductor G1 provided close to the radiator 90B.
  • the capacitor C32 is provided closer to the feeding point P33 than the inductor L32.
  • the signal sources Q31 and Q32 generate a high-frequency signal that is a transmission signal of the MIMO communication method, generate a high-frequency signal having the same low-frequency resonance frequency f1, and generate a high-frequency signal having the same high-frequency resonance frequency f2.
  • the loop-shaped radiation conductors of radiators 90A and 90B are configured symmetrically with respect to a predetermined reference axis (vertical dotted line in FIG. 36), for example.
  • the radiation conductors 31 and 33 and the feeding portions are provided close to the reference axis, and the radiation conductors 32 and 34 are provided remotely from the reference axis.
  • the feeding points P31 and P33 are provided at symmetrical positions with respect to the reference axis B15.
  • the electromagnetic coupling between the radiators 90A and 90B is made by configuring the shapes of the radiators 90A and 90B such that the distance between the radiators 90A and 90B gradually increases as the distance from the feeding points P31 and P32 increases along the reference axis. Can be reduced. Furthermore, since the distance between the two feeding points P31 and P33 is small, the area for installing the feeding line routed from the wireless communication circuit (not shown) can be minimized.
  • FIG. 37 is a schematic diagram showing an antenna apparatus according to a first modification of the fourth embodiment.
  • radiators 90A and 90B are not arranged symmetrically, but are arranged in the same direction (that is, asymmetrically).
  • the radiation patterns thereof are asymmetrical, and there is an effect of lowering the correlation between signals transmitted and received by the radiators 90A and 90B.
  • the reception performance according to the MIMO communication method cannot be maximized.
  • FIG. 38 is a schematic diagram showing an antenna apparatus according to a comparative example of the fourth embodiment.
  • the radiating conductors 32 and 34 not provided with the feeding point are arranged so as to be close to each other.
  • the correlation between signals transmitted and received by the radiators 90A and 90B can be reduced.
  • the open ends of the radiators 90A and 90B that is, the ends of the radiation conductors 32 and 34
  • the electromagnetic coupling between the radiators 90A and 90B increases.
  • FIG. 39 is a schematic diagram showing an antenna apparatus according to a second modification of the fourth embodiment.
  • the antenna device of the present modification has the positions of the capacitor C32 and the inductor L32 instead of the radiator 90B of FIG.
  • the radiator 90C is configured to be asymmetric with respect to the positions of the capacitor C31 and the inductor L31 of the radiator 90A.
  • radiator 90A When radiator 90A operates in the loop antenna mode due to the current input from signal source Q31, the magnetic field generated by radiator 90A causes an induced current in the same direction as the current on radiator 90A in radiator 90B of FIG. This induced current flows to the signal source Q32. When a large induced current flows on radiator 90B, electromagnetic coupling between radiators 90A and 90B increases.
  • the antenna apparatus of FIG. 36 operates at the high-band resonance frequency f2
  • radiator 90A when the antenna apparatus of FIG. 36 operates at the high-band resonance frequency f2
  • the current input from signal source Q31 flows in a direction remote from radiator 90B, and thus radiator 90A.
  • 90B is small, and the induced current flowing through the radiator 90B and the signal source Q32 is also small.
  • radiator 90A when traveling in the corresponding direction from the feed points P31 and P33 along the symmetric radiating conductor loops of the radiators 90A and 90C (for example, the radiators) 90A proceeds counterclockwise and radiator 90C proceeds clockwise), radiator 90A has feeding point P31, inductor L31, and capacitor C31 in order, and radiator 90C has feeding point P33, capacitor C32, and inductor L32.
  • radiator 90A capacitor C31 is provided closer to feed point P31 than inductor L31, while in radiator 90C, inductor L32 is provided closer to feed point P33 than capacitor C32.
  • the electromagnetic coupling between the radiators 90A and 90C is reduced by configuring the capacitors and inductors asymmetrically between the radiators 90A and 90C.
  • a current having a low frequency component has a property that it can pass through an inductor but is difficult to pass through a capacitor. Therefore, when the antenna apparatus of FIG. 39 operates at the low-band resonance frequency f1, even if the radiator 90A operates in the loop antenna mode due to the current input from the signal source Q31, the induced current on the radiator 90C becomes small. In addition, the current flowing from the radiator 90C to the signal source Q32 is also reduced. Thus, the electromagnetic coupling between the radiators 90A and 90C when the antenna apparatus of FIG. 39 operates at the low-band resonance frequency f1 is reduced. When the antenna apparatus of FIG. 39 operates at the high-band resonance frequency f2, the electromagnetic coupling between the radiators 90A and 90C is small.
  • any of the radiating conductors 31 to 34 may be bent at at least one place, and when the antenna device operates at the high-band resonance frequency f2, depending on the frequency, the current may be Instead of flowing to the position of the inductor L31, it may flow to the tip (upper end) of the radiation conductor 32 or to a predetermined position on the radiation conductor 32, for example, a position where the radiation conductor is bent.
  • FIG. 54 is a block diagram showing a configuration of a wireless communication apparatus according to the fifth embodiment, which includes the antenna apparatus of FIG.
  • the wireless communication apparatus according to the present embodiment may be configured as a mobile phone as shown in FIG. 54, for example.
  • 54 includes an antenna device of FIG. 1, a wireless transmission / reception circuit 101, a baseband signal processing circuit 102 connected to the wireless transmission / reception circuit 101, a speaker 103 connected to the baseband signal processing circuit 102, and And a microphone 104.
  • a feeding point P1 of the radiator 40 of the antenna device and a connection point P2 of the ground conductor G1 are connected to the radio transmission / reception circuit 101 instead of the signal source Q1 of FIG.
  • a wireless broadband router device or a high-speed wireless communication device for M2M is implemented as a wireless communication device, a speaker, a microphone, and the like are not necessarily provided.
  • An LED (light emitting diode) or the like can be used in order to confirm the communication status according to.
  • the wireless communication apparatus to which the other antenna apparatus can be applied is not limited to the one illustrated above.
  • the dual-band operation can be effectively realized and the wireless communication can be performed by operating the radiator 40 as either the loop antenna mode or the monopole antenna mode according to the operating frequency. Miniaturization of the device can be achieved. Furthermore, the high frequency band including the high frequency resonance frequency f2 can be increased.
  • any other antenna device disclosed herein or a modification thereof can be used.
  • each embodiment and each modification described above may be combined.
  • the antenna device of the first embodiment and the antenna device of FIG. 22 are combined, and the radiation conductors 1 and 2 and the ground conductor G1 are remote from the feeding point P1 along the loop-shaped radiation conductor in a portion close to each other. Accordingly, both the outer periphery of the loop-shaped radiator and the edge portion of the ground conductor may be formed so that the distance between the radiation conductors 1 and 2 and the ground conductor G1 gradually increases.
  • the antenna device of the second embodiment and the antenna device of FIG. 23 are combined, and the portion where the radiating conductors 1 and 2 and the ground conductor G1 face each other from the feeding point P1 along the loop-shaped radiating conductor. Both the radiating conductor of the radiator and the ground plane of the ground conductor may be formed such that the distance between the radiating conductors 1, 2 and the grounding conductor G1 gradually increases as the distance increases.
  • the software used in the simulation was “CST Microwave Studio”, and transient analysis was performed using this software. Convergence determination was performed using a threshold value at a point where the reflected energy at the feeding point is ⁇ 40 dB or less with respect to the input energy. The sub-mesh method was used to model the part where the current flows strongly.
  • FIG. 40 is a perspective view showing an antenna apparatus according to a first comparative example used in the simulation
  • FIG. 41 is a top view showing a detailed configuration of the radiator 51 of the antenna apparatus of FIG.
  • the capacitor C1 has a capacitance of 1 pF
  • the inductor L1 has an inductance of 3 nH.
  • the capacitance of the capacitor C1 and the inductance of the inductor L1 are the same in other simulations.
  • FIG. 42 is a graph showing the frequency characteristics of the reflection coefficient S11 of the antenna apparatus of FIG.
  • FIG. 43 is a top view showing the radiator 52 of the antenna device according to the second comparative example used in the simulation.
  • the radiator 52 of FIG. 43 is provided with respect to the ground conductor G1 similarly to the radiator 51 of FIG. 40 (the same applies to other simulations).
  • FIG. 44 is a graph showing the frequency characteristics of the reflection coefficient S11 of the antenna apparatus of FIG.
  • FIG. 45 is a top view showing the radiator 53 of the antenna device according to the third comparative example used in the simulation.
  • the vicinity of the open end is formed in a tapered shape on the outer periphery of the loop-shaped radiation conductor.
  • FIG. 47 is a top view showing the radiator 54 of the antenna device according to the fourth comparative example used in the simulation. Also in the antenna device of FIG.
  • FIG. 48 is a graph showing the frequency characteristics of the reflection coefficient S11 of the antenna device of FIG.
  • the low-band resonance frequency f1 983 MHz
  • the reflection coefficient S11 ⁇ 7.9 dB
  • the high-band resonance frequency f2 2103 MHz
  • the antenna device of FIGS. 45 and 47 has the high-band resonance frequency f2. It can be seen that the operating frequency band is slightly widened by forming the vicinity of the open end in a tapered shape. However, it has not been possible to realize a noticeable broadband.
  • FIG. 49 is a top view showing the radiator 46 of the antenna device according to the first example of the first embodiment used in the simulation.
  • FIG. 51 is a top view showing the radiator 47 of the antenna device according to the second example of the first embodiment used in the simulation.
  • FIG. 52 is a graph showing frequency characteristics of the reflection coefficient S11 of the antenna device of FIG.
  • the bandwidth can be more effectively increased.
  • the bandwidth increase is not sufficient. This is because the current path when the antenna device operates at the high-band resonance frequency f2 passes through the capacitor C1, and the current does not flow strongly through the portion of the radiating conductor near the inductor L1.
  • FIG. 53 is a graph showing the frequency characteristics of the reflection coefficient S11 of the antenna device according to the example of the second embodiment used in the simulation.
  • the radiation conductor 1c of FIG. 20 is used instead of the radiation conductor 1 of the radiator 46 of FIG.
  • the reflection coefficient S11 ⁇ 18.7 dB
  • the reflection coefficient S11 ⁇ 45.8 dB.
  • the dual-band characteristics can be effectively realized, and the operating frequency band including the high-band resonance frequency f2 can be increased to an ultra-wide band of 1810 to 2620 MHz. From the above results, in the antenna device according to the embodiment of the present disclosure, it is possible to provide an antenna device that can operate in a multiband while having a small and simple configuration, and further exceeds the high-frequency operating frequency band. The bandwidth can be increased.
  • Table 1 summarizes the operating bandwidth when the antenna device operates at the high-band resonance frequency f2 (that is, the frequency band where S11 ⁇ ⁇ 10 dB).
  • the distance between the radiating conductors 1 and 2 and the ground conductor G1 increases as the distance from the feeding point P1 along the loop-shaped radiating conductor increases.
  • the frequency characteristic of the antenna device designed this time is an example, and is not limited to this frequency characteristic.
  • the performance can be enhanced by optimally tuning the matching circuit and the like according to the required system such as cellular, wireless LAN, and GPS frequency bands.
  • the antenna device and the wireless communication device disclosed herein have the following configurations.
  • An antenna device is an antenna device including at least one radiator and a ground conductor.
  • Each radiator above is A loop-shaped radiating conductor having an inner circumference and an outer circumference, the radiating conductor provided to the ground conductor so as to have a portion electromagnetically coupled close to the ground conductor; At least one capacitor inserted in place along the loop of the radiating conductor; At least one inductor inserted along a loop of the radiation conductor at a predetermined position different from the position of the capacitor; A feeding point provided on the radiation conductor at a position close to the ground conductor; In the antenna device, the radiating conductor and the grounding conductor are connected to each other along the loop of the radiating conductor at a portion where the radiating conductor and the grounding conductor of each radiator are close to each other as the distance from the feeding point increases.
  • Each radiator is excited at a first frequency and a second frequency higher than the first frequency;
  • a first current flows through a first path along the inner circumference of the loop of the radiation conductor, including the inductor and the capacitor,
  • each radiator is excited at the second frequency, it includes the capacitor, does not include the inductor, and is a section along the outer periphery of the loop of the radiation conductor between the feeding point and the inductor.
  • a capacitance distributed between the radiation conductor and the ground conductor in a portion where the second current flows through the second path including the section and the radiation conductor and the ground conductor of each radiator are close to each other.
  • a resonance circuit is formed by the inductance distributed in the radiation conductor, In each of the radiators, the loop of the radiation conductor, the inductor, and the capacitor resonate at the first frequency, and a portion of the loop of the radiation conductor included in the second path, the capacitor, and the resonance The circuit is configured to resonate at the second frequency.
  • An antenna device is the antenna device according to the first aspect, wherein an outer periphery of the radiating conductor loop of each radiator is remote from the feeding point along the radiating conductor loop. As the distance increases, the distance from the ground conductor gradually increases.
  • the antenna device is the antenna device according to the first aspect, wherein the ground conductor has an edge portion close to the radiation conductor of each radiator, The edge portion is formed such that a distance from the radiation conductor gradually increases as the distance from the feeding point is increased along a loop of the radiation conductor of each radiator.
  • An antenna device is the antenna device according to any one of the first to third aspects.
  • a ground plane of the ground conductor is provided on the first plane;
  • the radiation conductor of each radiator is provided on a second surface at least partially opposed to the first surface, and the grounding as the distance from the feed point increases along the loop of the radiation conductor.
  • the conductor is provided such that the distance from the ground surface gradually increases.
  • An antenna device is the antenna device according to any one of the first to third aspects.
  • a ground plane of the ground conductor is provided on the first plane;
  • the radiation conductor of each radiator is provided on a second surface at least partially opposed to the first surface;
  • the ground plane of the ground conductor is formed such that the distance from the radiation conductor gradually increases as the distance from the feeding point increases along the loop of the radiation conductor.
  • An antenna device is the antenna device according to any one of the first to fifth aspects, wherein the first feeding point from the feeding point along the loop of the radiation conductor of each radiator is The distance between the radiation conductor and the ground conductor gradually increases in the direction, and the distance from the feed point to the second direction opposite to the first direction along the loop of the radiation conductor. The distance between the radiating conductor and the ground conductor gradually increases.
  • the antenna device is the antenna device according to any one of the first to sixth aspects, wherein the capacitor and the inductor of each radiator are arranged along a loop of the radiation conductor.
  • the radiating conductor and the grounding conductor are provided in close proximity to each other, and the feeding point is provided between the capacitor and the inductor.
  • An antenna device is the antenna device according to any one of the first to seventh aspects.
  • the radiation conductor includes a first radiation conductor and a second radiation conductor,
  • the capacitor is formed by a capacitance generated between the first and second radiation conductors.
  • the antenna device is the antenna device according to any one of the first to eighth aspects, in which the inductor is formed of a strip conductor.
  • the antenna device is the antenna device according to any one of the first to eighth aspects, in which the inductor is formed of a meander conductor.
  • An antenna device is the antenna device according to any one of the first to tenth aspects, wherein the printed wiring includes the ground conductor and a feed line connected to the feed point. Equipped with a substrate, The radiator is formed on the printed wiring board.
  • An antenna device is the antenna device according to any one of the first to tenth aspects, comprising: a first radiator; and a second radiator instead of the ground conductor. It is a dipole antenna including.
  • An antenna device is the antenna device according to any one of the first to twelfth aspects, and includes a plurality of radiators, and the plurality of radiators includes a plurality of first antennas different from each other. And a plurality of second frequencies different from each other.
  • the antenna device is the antenna apparatus according to any one of the first to thirteenth aspects, and is configured as an inverted F-type antenna.
  • the antenna device according to a fifteenth aspect of the present disclosure is the antenna device according to any one of the first to fourteenth aspects, wherein the radiation conductor is bent at at least one place.
  • the antenna device is the antenna device according to any one of the first to fourteenth aspects, wherein the radiating conductor is curved at at least one place.
  • An antenna device is the antenna device according to any one of the first to sixteenth aspects, comprising a plurality of radiators connected to different signal sources. .
  • An antenna device is the antenna device according to the seventeenth aspect, in which the first radiator and the second radiator each having radiation conductors configured symmetrically with respect to a predetermined reference axis With a radiator, The feeding points of the first and second radiators are provided at positions symmetrical with respect to the reference axis, The radiating conductors of the first and second radiators are arranged such that the first and second radiators move away from the feeding point of the first radiator and the feeding point of the second radiator along the reference axis.
  • the distance between the radiators has a shape that increases gradually.
  • An antenna device is the antenna device according to the seventeenth or eighteenth aspect, comprising a first radiator and a second radiator, and the antenna device according to the first and second radiators.
  • the loops of each radiating conductor are configured substantially symmetrically with respect to a predetermined reference axis;
  • the first radiator includes the feed point, the inductor, and the capacitor when proceeding in a corresponding direction from the feed points along the symmetric radiation conductor loops of the first and second radiators.
  • the feeding point, the capacitor, and the inductor are sequentially arranged.
  • a wireless communication device includes the antenna device according to any one of the first to nineteenth aspects.
  • the antenna device of the present disclosure can operate in a multiband while having a small and simple configuration.
  • the antenna device of the present disclosure is low-coupled between the antenna elements, and can operate to simultaneously transmit and receive a plurality of radio signals.
  • the antenna device of the present disclosure can be mounted as a mobile phone, for example, or can be mounted as a wireless LAN device or a smartphone.
  • This antenna device can be mounted on, for example, a wireless communication device for performing MIMO communication.
  • the antenna device is not limited to MIMO, and an adaptive array antenna or maximum ratio capable of simultaneously executing communication for a plurality of applications (multi-application). It can also be mounted on an array antenna device such as a combined diversity antenna or a phased array antenna.

Abstract

 放射器(40)は、ループ状の放射導体(1,2)と、キャパシタ(C1)と、インダクタ(L1)と、放射導体(1)上に設けられた給電点(P1)とを備える。放射器(40)の放射導体(1,2)と接地導体(G1)とが互いに近接した部分において、ループ状放射導体に沿って給電点(P1)から遠隔するにつれて、放射導体(1,2)と接地導体(G1)との間の距離が次第に増大するように構成される。放射器(40)は、放射器(40)が低域共振周波数(f1)で励振されるとき、インダクタ(L1)及びキャパシタ(C1)を含み、放射導体のループの内周に沿う経路を電流が流れる。放射器(40)が高域共振周波数(f2)で励振されるとき、キャパシタ(C1)を含み、インダクタ(L1)を含まず、放射導体のループの外周に沿った区間であって、一端を給電点(P1)とする区間を含む経路を電流が流れる。

Description

アンテナ装置及び無線通信装置
 本開示は、主として携帯電話機などの移動体通信用のアンテナ装置とそれを備えた無線通信装置に関する。
 携帯電話機等の携帯無線通信装置の小型化、薄型化が急速に進んでいる。また、携帯無線通信装置は、従来の電話機として使用されるのみならず、電子メールの送受信やWWW(ワールドワイドウェブ)によるウェブページの閲覧などを行うデータ端末機に変貌を遂げている。取り扱う情報も従来の音声や文字情報から写真や動画像へと大容量化を遂げており、通信品質のさらなる向上が求められている。このような状況にあって、複数の無線通信方式をサポートするマルチバンドアンテナ装置や、小型のアンテナ装置が提案されている。さらに、これらのアンテナ装置を複数配置した場合において電磁結合を低減し、高速無線通信が可能なアレーアンテナ装置が提案されている。
 特許文献1の発明は、2周波共用アンテナにおいて、誘電体基板の表面にプリント化して形成された給電線路、該給電線路に接続する内側放射素子、及び外側放射素子と、誘電体基板表面にプリント化して形成された内側放射素子と外側放射素子との間隙で両放射素子を接続するインダクタと、誘電体基板の裏面にプリント化して形成された給電線路、該給電線路に接続する内側放射素子、及び外側放射素子と、誘電体基板裏面にプリント化して形成された内側放射素子と外側放射素子との間隙で両放射素子を接続するインダクタとを備えることを特徴とする。特許文献1の2周波共用アンテナによれば、放射素子間に設けられたインダクタと放射素子間の所定の容量とが並列共振回路を形成し、マルチバンドで動作することができる。
 特許文献2の発明は、放射素子をループ状に形成し、その開放端を給電部付近に近接させて所定の容量を形成することで、基本モードとそれに伴う高次モードを発生させることを特徴とする。誘電体あるいは磁性体のブロック上にループ状の放射素子を一体形成することで、小型でありながらマルチバンドで動作することができる。
特開2001-185938号公報 特許第4432254号公報
 近年、携帯電話機によるデータ伝送の高速化のニーズが高まり、次世代携帯電話規格である3G-LTE(3rd Generation Partnership Project Long Term Evolution)が検討されてきた。3G-LTEでは、無線伝送の高速化を実現するための新技術として、複数のアンテナを用いて複数のチャンネルの無線信号を空間分割多重により同時に送受信するMIMO(Multiple Input Multiple Output)アンテナ装置の採用が決定している。MIMOアンテナ装置は、送信機側と受信機側で複数のアンテナを備え、空間的にデータストリームを多重することで伝送速度の高速化を可能にする。MIMOアンテナ装置は複数のアンテナを同一の周波数で同時に動作させるので、小型な携帯電話機内にアンテナが近接して実装される状況下ではアンテナ間の電磁結合が非常に強くなる。アンテナ間の電磁結合が強くなるとアンテナの放射効率が劣化する。それに伴い、受信電波が弱くなり伝送速度の低下を招く。そこで、アンテナを小型化し、アンテナ間距離を実質的に遠ざけることでアンテナ間の電磁結合を低減する手法が必要となる。
 また、1つのアンテナをGPSやセルラー、無線LANなど複数の無線システムで使用するためには、非常に広い動作帯域幅(超広帯域)を有するアンテナの開発が必要である。
 特許文献1の2周波共用アンテナでは、低域の動作周波数を低くするには、放射素子が大きくなってしまう。また、内側放射素子と外側放射素子との間のスリットは放射に寄与しない。
 特許文献2のマルチバンドアンテナでは、誘電体あるいは磁性体のブロック上にループ素子を設けることでアンテナの小型化を実現しているが、誘電体あるいは磁性体に起因してアンテナのインピーダンスが低下するので、基本モード及び高次モードの共振周波数帯での放射特性が低下してしまう。また、このような構成では、アンテナの共振のQ値が高く、動作周波数帯を超広帯域化することはできない。
 従って、動作周波数帯の超広帯域化が容易であり、かつ、マルチバンド化と小型化との両方を達成することができるアンテナ装置を提供することが望まれる。
 本開示では、以上の問題点を解決し、マルチバンド化と小型化との両方を達成することができるアンテナ装置を提供し、また、そのようなアンテナ装置を備えた無線通信装置を提供する。
 本開示に係るアンテナ装置は、
 少なくとも1つの放射器と接地導体とを備えたアンテナ装置において、
 上記各放射器は、
 内周及び外周を有するループ状の放射導体であって、上記接地導体に近接して電磁的に結合した部分を有するように上記接地導体に対して設けられた放射導体と、
 上記放射導体のループに沿って所定位置に挿入された少なくとも1つのキャパシタと、
 上記放射導体のループに沿って、上記キャパシタの位置とは異なる所定位置に挿入された少なくとも1つのインダクタと、
 上記接地導体に近接した位置において、上記放射導体上に設けられた給電点とを備え、
 上記アンテナ装置は、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体のループに沿って上記給電点から遠隔するにつれて、上記放射導体と上記接地導体との間の距離が次第に増大するように構成され、
 上記各放射器は、第1の周波数と、上記第1の周波数より高い第2の周波数とで励振され、
 上記各放射器が上記第1の周波数で励振されるとき、上記インダクタ及び上記キャパシタを含み、上記放射導体のループの内周に沿う第1の経路を第1の電流が流れ、
 上記各放射器が上記第2の周波数で励振されるとき、上記キャパシタを含み、上記インダクタを含まず、上記放射導体のループの外周に沿った区間であって上記給電点と上記インダクタとの間の区間を含む第2の経路を第2の電流が流れ、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体と上記接地導体との間に分布する容量と上記放射導体に分布するインダクタンスとにより共振回路が形成され、
 上記各放射器は、上記放射導体のループと上記インダクタと上記キャパシタが上記第1の周波数で共振し、上記放射導体のループのうちの上記第2の経路に含まれる部分と上記キャパシタと上記共振回路とが上記第2の周波数で共振するように構成されることを特徴とする。
 本開示のアンテナ装置によれば、小型かつ簡単な構成でありながら、マルチバンドで動作可能なアンテナ装置を提供することができる。本開示のアンテナ装置によれば、さらに、高域の動作周波数帯を超広帯域化することができる。
第1の実施形態に係るアンテナ装置を示す概略図である。 第1の実施形態の比較例に係るアンテナ装置を示す概略図である。 図1のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。 図1のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 図1のアンテナ装置が高域共振周波数f2で動作するときの等価回路を示す図である。 第1の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態に係るアンテナ装置を示す概略図である。 図10のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。 第2の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第6の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。 第3の実施形態に係るアンテナ装置を示す概略図である。 第3の実施形態の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第6の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第11の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第12の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第13の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第14の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第15の変形例に係るアンテナ装置を示す概略図である。 第1の実施形態の第16の変形例に係るアンテナ装置を示す概略図である。 第2の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。 第4の実施形態に係るアンテナ装置を示す概略図である。 第4の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。 第4の実施形態の比較例に係るアンテナ装置を示す概略図である。 第4の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。 シミュレーションで用いた第1の比較例に係るアンテナ装置を示す斜視図である。 図40のアンテナ装置の放射器51の詳細構成を示す上面図である。 図40のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第2の比較例に係るアンテナ装置の放射器52を示す上面図である。 図43のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第3の比較例に係るアンテナ装置の放射器53を示す上面図である。 図45のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第4の比較例に係るアンテナ装置の放射器54を示す上面図である。 図47のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第1の実施形態の第1の実施例に係るアンテナ装置の放射器46を示す上面図である。 図49のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第1の実施形態の第2の実施例に係るアンテナ装置の放射器47を示す上面図である。 図51のアンテナ装置の反射係数S11の周波数特性を示すグラフである。 シミュレーションで用いた第2の実施形態の実施例に係るアンテナ装置の反射係数S11の周波数特性を示すグラフである。 第5の実施形態に係る無線通信装置であって、図1のアンテナ装置を備えた無線通信装置の構成を示すブロック図である。
 以下、実施形態に係るアンテナ装置及び無線通信装置について図面を参照しながら説明する。なお、同様の構成要素については同一の符号を付している。
第1の実施形態.
 図1は、第1の実施形態に係るアンテナ装置を示す概略図である。本実施形態のアンテナ装置は、単一の放射器40を用いながら低域共振周波数f1及び高域共振周波数f2でデュアルバンド動作することと、高域共振周波数f2を含む高域の動作帯域が超広帯域化されていることとを特徴とする。
 図1において、放射器40は、所定幅及び所定電気長を有する第1の放射導体1と、所定幅及び所定電気長を有する第2の放射導体2と、所定の位置で放射導体1,2を互いに接続するキャパシタC1と、キャパシタC1とは異なる位置で放射導体1,2を互いに接続するインダクタL1とを有する。放射器40において、放射導体1,2とキャパシタC1とインダクタL1とにより、中央部分を包囲するループが形成される。言い換えると、ループ状の放射導体の所定の位置にキャパシタC1が挿入され、キャパシタC1が挿入された位置とは異なる位置においてインダクタL1が挿入されている。ループ状の放射導体は、所定幅を有するので、中央の中空部分に近接した内周と、中央の中空部分から遠隔した外周とを有する。ループ状の放射導体は、さらに、その一部が接地導体G1に近接して接地導体G1に電磁的に結合するように接地導体G1に対して設けられる。低域共振周波数f1及び高域共振周波数f2の高周波信号を発生する信号源Q1は、放射導体1上の給電点P1に接続されるとともに、放射器40に近接して設けられた接地導体G1上の接続点P2に接続される。給電点P1は、放射導体1上において、接地導体G1に近接した位置に設けられる。信号源Q1は、図1のアンテナ装置に接続された無線通信回路を概略的に示し、低域共振周波数f1及び高域共振周波数f2のいずれかで放射器40を励振させる。必要に応じて、アンテナ装置と無線通信回路との間にさらに整合回路(図示せず)が接続されてもよい。さらに、アンテナ装置は、放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って給電点P1から遠隔するにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大するように構成されることを特徴とする。このため、放射導体1,2と接地導体G1とが互いに近接した部分(例えば互いに対向した部分)において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成される。放射器40において、低域共振周波数f1で励振するときの電流経路は、高域共振周波数f2で励振するときの電流経路とは異なり、これにより、効果的にデュアルバンド動作を実現することができる。
 図2は、第1の実施形態の比較例に係るアンテナ装置を示す概略図である。本願出願人は、国際出願PCT/JP2012/000500において、単一の放射器をデュアルバンド動作させることを特徴とするアンテナ装置を提案し、図2はこのアンテナ装置を示す。図2の放射器50は、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成されていないことを除いて、図1の放射器40と同様の構成を有する。放射器50において、低域共振周波数f1で励振するときの電流経路は、高域共振周波数f2で励振するときの電流経路とは異なり、これにより、効果的にデュアルバンド動作を実現することができる。
 図3は、図1のアンテナ装置が低域共振周波数f1で動作するときの電流経路を示す図である。低い周波数成分を有する電流は、インダクタは通過できる(低インピーダンス)がキャパシタは通過しづらい(高インピーダンス)という性質がある。このため、アンテナ装置が低域共振周波数f1で動作するときの電流I1は、インダクタL1を含み、ループ状の放射導体の内周に沿う経路を流れる。詳しくは、電流I1は、放射導体1において給電点P1からインダクタL1に接続された点まで流れ、インダクタL1を通り、放射導体2においてインダクタL1に接続された点からキャパシタC1に接続された点まで流れる。さらに、キャパシタの両端の電位差に起因して放射導体1においてキャパシタC1に接続された点から給電点P1まで電流が流れて、電流I1に接続される。このため、実質的には、電流I1はキャパシタも通るとみなすことができる。このとき、電流I1は、ループ状の放射導体において、中央の中空部分に近接した内周のエッジを強く流れる。また、接地導体G1上の放射器40に近接した部分において、接続点P2に向かって電流I3が流れる。放射器40は、アンテナ装置が低域共振周波数f1で動作するとき、図3に示すような電流経路で電流I1が流れ、ループ状の放射導体及びインダクタL1及びキャパシタC1が低域共振周波数f1で共振するように構成される。詳しくは、放射器40は、放射導体1において給電点P1からインダクタL1に接続された点までの電気長と、給電点P1からキャパシタC1に接続された点までの電気長と、インダクタL1の電気長と、キャパシタC1の電気長と、放射導体2においてインダクタL1に接続された点からキャパシタC1に接続された点までの電気長との和が、低域共振周波数f1で共振する電気長になるように構成される。この共振する電気長は、例えば、低域共振周波数f1の動作波長λ1の0.2~0.25倍である。アンテナ装置が低域共振周波数f1で動作するとき、図3に示すような電流経路で電流I1が流れることにより、放射器40はループアンテナモードで、すなわち磁流モードで動作する。
 放射器40がループアンテナモードで動作することによって、小型形状でありながら長い共振長を確保できるので、アンテナ装置が低域共振周波数f1で動作するときでも良好な特性を実現できる。また、放射器40はループアンテナモードで動作するとき、高いQ値を有する。ループ状の放射導体において、ループの径が大きくなるほど、アンテナ装置の放射効率が向上する。
 図4は、図1のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。高い周波数成分を有する電流は、キャパシタは通過できる(低インピーダンス)がインダクタは通過しづらい(高インピーダンス)という性質がある。このため、アンテナ装置が高域共振周波数f2で動作するときの電流I2は、キャパシタC1を含み、インダクタL1を含まず、ループ状の放射導体の外周に沿った区間であって、給電点P1とインダクタL1との間の区間を含む経路を流れる。すなわち、電流I2は、放射導体1において給電点P1からキャパシタC1に接続された点まで流れ、キャパシタC1を通り、放射導体2においてキャパシタC1に接続された点から所定位置(例えば、インダクタL1に接続された点)まで流れる。このとき、電流I2はループ状の放射導体の外周を強く流れる。また、このとき、接地導体G1上の放射器40に近接した部分において、接続点P2に向かって(すなわち電流I2とは逆向きに)電流I3が流れる。従って、ループ状の放射導体と接地導体G1とが互いに近接した部分において互いに逆相の電流I2,I3が流れる。互いに逆相の電流I2,I3が流れるという現象を、電荷に置き換えて考えると、図4に示すように、ループ状の放射導体と接地導体G1とが互いに近接した部分に+及び-の電荷が分布しており、これが信号源Q1の駆動電圧の極性によって時間的に変動していることになる。このとき、ループ状の放射導体と接地導体G1との間に図中矢印で示すような電束が生じている。これにより、ループ状の放射導体と接地導体G1との間に並列に、連続的に分布したキャパシタを構成することと等価になる。放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体1,2と接地導体G1との間に分布する容量と、放射導体1,2に分布するインダクタンスとにより、共振回路が形成される。この共振回路により放射器40が整合されることになる。
 図5は、図1のアンテナ装置が高域共振周波数f2で動作するときの等価回路を示す図である。アンテナ装置が高域共振周波数f2で動作するとき、電流I2は図4に示すように流れるので、放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って放射導体1,2と接地導体G1との間に微小容量Ceが連続的に分布する。さらに、放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って微小インダクタンスLeが連続的に分布する。従って、アンテナ装置が高域共振周波数f2で動作するとき、アンテナ装置の入力インピーダンスは、アンテナ装置の放射抵抗Rrと、ループ状の放射導体において接地導体G1から遠隔した部分(すなわち、放射導体2の先端部)のインダクタンスLaと、微小インダクタンスLeと、微小容量Ceとによって決まる。結果的に、インダクタンスLa,Leと容量Ceとにより広帯域の共振回路が形成され、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 放射器40は、アンテナ装置が高域共振周波数f2で動作するとき、図4に示すような電流経路で電流I2が流れ、ループ状の放射導体のうちの電流I2が流れる部分とキャパシタC1と前述の共振回路(図5)とが高域共振周波数f2で共振するように構成される。詳しくは、放射器40は、前述の共振回路による整合を考慮に入れて、放射導体1において給電点P1からキャパシタC1に接続された点までの電気長と、キャパシタC1の電気長と、放射導体2において電流I2が流れる部分の電気長(例えばキャパシタC1に接続された点からインダクタL1に接続された点までの電気長)との和が、高域共振周波数f2で共振する電気長になるように構成される。この共振する電気長は、例えば、高域共振周波数f2の動作波長λ2の0.25倍である。アンテナ装置が高域共振周波数f2で動作するとき、図4に示すような電流経路で電流I2が流れることにより、放射器40はモノポールアンテナモードで、すなわち電流モードで動作する。
 このように、本実施形態のアンテナ装置は、低域共振周波数f1で動作するときにはインダクタL1を通る電流経路を形成し、高域共振周波数f2で動作するときにはキャパシタC1を通る電流経路を形成し、これにより効果的にデュアルバンド動作を実現する。放射器40は、ループ状の電流経路を形成することで磁流モードで動作し、低域共振周波数f1で共振する。一方、放射器40は、非ループ状の電流経路(モノポールアンテナモード)を形成することで電流モードで動作し、高域共振周波数f2で共振する。さらに、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周を形成したことにより(テーパー形状)、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 従来技術では、低域側共振周波数f1(動作波長λ1)で動作するときに(λ1)/4程度のアンテナ素子長が必要であったところ、本実施形態のアンテナ装置では、ループ状の電流経路を形成することにより、放射器40の縦横の長さを(λ1)/15程度まで小型化することができる。
 ここで、図1のアンテナ装置のインダクタL1及びキャパシタC1による整合効果を説明する。低域共振周波数f1及び高域共振周波数f2は、インダクタL1及びキャパシタC1による整合効果(特にキャパシタC1による整合効果)を用いて調整可能である。アンテナ装置が低域共振周波数f1で動作するとき、放射導体2においてインダクタL1に接続された点からキャパシタC1に接続された点まで流れる電流と、放射導体1においてキャパシタC1に接続された点から給電点P1まで流れる電流とは、放射導体1において給電点P1からインダクタL1に接続された点まで流れる電流と接続され、これにより、ループ状の電流経路が形成される。キャパシタC1の両端(放射導体1の側及び放射導体2の側)には電位差が生じるので、キャパシタC1の容量によりアンテナ装置の入力インピーダンスのリアクタンス成分を制御する効果がある。キャパシタC1の容量が大きいほど、放射器40の共振周波数が低下する。一方、アンテナ装置が高域共振周波数f2で動作するとき、電流は、放射導体1において給電点P1からキャパシタC1に接続された点まで流れ、キャパシタC1を通り、放射導体2においてキャパシタC1に接続された点からインダクタL1に接続された点まで流れる。キャパシタC1は高い周波数成分を通過させるので、キャパシタC1の容量を小さくすると、電気長が短くなり放射器40の共振周波数が高い周波数にシフトする。放射器40において給電点P1の電圧が最小であるので、キャパシタC1を装荷する位置を給電点P1から離すことで、放射器40の共振周波数を下げることができる。
 図1のアンテナ装置では、キャパシタC1がインダクタL1よりも給電点P1に近接している。このため、図1のアンテナ装置が高域共振周波数f2で動作するとき、電流I2が給電点P1からインダクタL1まで流れる(すなわち、開放端が接地導体G1から離れている)ので、低域共振周波数f1で動作するときよりもVSWRが低くなり、整合がとりやすくなる。
 放射器40においてキャパシタC1及びインダクタL1の間の距離を離して大きなループを形成すると、アンテナ装置の放射効率が向上する。
 本実施形態のアンテナ装置は、後述の実施例で説明するように、低域共振周波数f1として800MHz帯の周波数を使用し、高域共振周波数f2として2000MHz帯の周波数を使用することができるが、これらの周波数に限定されるものではない。
 放射導体1,2のそれぞれは、キャパシタC1とインダクタL1との間に所定電気長を確保することができるのであれば、図1等に示すストリップ形状に限らず任意の形状を有していてもよい。
 図1のアンテナ装置では、放射器40を含む面と接地導体G1を含む面とが同一平面内にあるように示しているが、放射器40及び接地導体G1の配置はこのようなものに限定されない。放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って給電点P1から遠隔するにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大するように構成されるのであれば、任意の配置をとることができる。例えば、放射器40を含む面が、接地導体G1を含む面に対して所定角度を有していてもよい。
 本実施形態のアンテナ装置によれば、放射器40を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図6は、第1の実施形態の第1の変形例に係るアンテナ装置を示す概略図であり、図7は、第1の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。アンテナ装置の共振周波数の調整方法を、以下のようにまとめることができる。低域共振周波数f1を低くするためには、キャパシタC1の容量を大きくすること、インダクタL1のインダクタンスを大きくすること、放射導体1の電気長を長くすること、放射導体2の電気長を長くすること、などが有効である。高域共振周波数f2を低くするためには、放射導体2の電気長を長くすること、給電点P1からキャパシタC1を離すこと、などが有効である。図6は、低域共振周波数f1を低下させるように構成された放射器41を備えたアンテナ装置を示す。図6のアンテナ装置では、放射導体2の電気長を長くすることにより低域共振周波数f1を低下させている。図7は、高域共振周波数f2を低下させるように構成された放射器42を備えたアンテナ装置を示す。図7のアンテナ装置では、給電点P1からキャパシタC1を離すことにより高域共振周波数f2を低下させている。
 なお、アンテナ装置が磁流モード及び電流モードのいずれで動作するのかを確実に切り換えるためには、アンテナ装置が低域共振周波数f1及び高域共振周波数f2のそれぞれで動作するときの各電流経路の電気長を明確に相違させる必要がある。このためには、放射導体1の電気長より放射導体2の電気長が長いほうが好ましい。また、放射導体1上における給電点P1からインダクタL1までの電気長及び給電点P1からキャパシタC1までの電気長を短くすると、アンテナ装置が低域共振周波数f1で動作するときには給電点P1からインダクタL1に向かって電流が流れやすくなり、アンテナ装置が高域共振周波数f2で動作するときには給電点P1からキャパシタC1に向かって電流が流れやすくなり、余分な方向へ向かって流れる電流が生じにくくなる。
 図8は、第1の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。図1のアンテナ装置では、キャパシタC1がインダクタL1よりも給電点P1に近接していたが、図8のアンテナ装置では、インダクタL1がキャパシタC1よりも給電点P1に近接して設けられている。このため、図8のアンテナ装置が低域共振周波数f1で動作するとき、電流I1が給電点P1からいったんキャパシタC1まで流れる(すなわち、開放端が接地導体G1から離れている)ので、高域共振周波数f2で動作するときよりもVSWRが低くなり、整合がとりやすくなる。図8のアンテナ装置においても、放射器40を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、図8のアンテナ装置においても、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図9は、第1の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。放射器44のキャパシタC1及びインダクタL1は、ループ状の放射導体に沿って、放射導体と接地導体G1とが互いに近接した部分にそれぞれ設けられ、給電点P1は、キャパシタC1及びインダクタL1の間に設けられている。図9のアンテナ装置では、キャパシタC1及びインダクタL1の両方が接地導体G1に近接したことにより、アンテナ装置が低域共振周波数f1で動作するときの電流経路と高域共振周波数f2で動作するときの電流経路とが分離し、両者の開放端が接地導体G1から離れるように構成されている。従って、低域共振周波数f1及び高域共振周波数f2の両方においてVSWRが低くなり、整合がとりやすくなる。さらに、図9のアンテナ装置では、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から少なくとも一方に向かって遠隔するにつれて、好ましくは給電点P1からキャパシタC1に向かう方向(左側)に進むにつれて、接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成される。図9のアンテナ装置によれば、放射導体1,2と接地導体G1とが互いに近接した部分において、給電点P1から左側に進むにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周を形成したことにより、アンテナ装置が低域共振周波数f1で動作するときの整合と高域共振周波数f2で動作するときの整合とをバランスよく実現しつつ、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図10は、第1の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。図10のアンテナ装置では、図9のアンテナ装置の構成に加えて、給電点P1からインダクタL1に向かう方向(右側)に進むにつれて、接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成される。図10のアンテナ装置も、図9のアンテナ装置と同様の効果をもたらす。
第2の実施形態.
 図11は、第2の実施形態に係るアンテナ装置を示す概略図である。図1のアンテナ装置では、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成されている。しかしながら、本開示の実施形態は、ループ状の放射導体の外周の形状により放射導体1,2と接地導体G1との間の距離を次第に増大させることに限定されず、第2の実施形態では、放射導体に沿って給電点P1から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように接地導体G1に対して放射器60を設けることを特徴とする。
 図11において、放射器60の放射導体1,2、キャパシタC1、及びインダクタL1は、インダクタL1がキャパシタC1よりも給電点P1に近接して設けられていることを除いて、図2の放射器50と同様に構成される。接地導体G1の接地面は、第1の面(平面又は曲面)上に設けられる。ループ状の放射導体は、第1の面に対して少なくとも部分的に対向した第2の面(平面又は曲面)上に設けられ、かつ、ループ状の放射導体に沿って給電点P1から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように設けられる。従って、図11のアンテナ装置では、ループ状の放射導体を含む面(第2の面)は、接地導体G1の接地面を含む面(第1の面)に対して所定角度を有する。
 図12は、図11のアンテナ装置が高域共振周波数f2で動作するときの電流経路を示す図である。アンテナ装置が高域共振周波数f2で動作するとき、放射器60上では、図4の場合と同様に電流I2が流れ、また、接地導体G1上の放射器60に近接した部分において、接続点P2に向かって(すなわち電流I2とは逆向きに)電流I3が流れる。電流I2,I3が流れることにより、図12に示すように、放射導体1及び放射導体2(図示せず)と接地導体G1とが互いに近接した部分に+及び-の電荷が分布して電束が生じ、これにより、連続的に分布したキャパシタが構成される。放射導体と接地導体G1とが互いに近接した部分において、放射導体と接地導体G1との間に分布する容量と、放射導体に分布するインダクタンスとにより、共振回路が形成される。放射器60は、アンテナ装置が高域共振周波数f2で動作するとき、ループ状の放射導体のうちの電流I2が流れる部分とキャパシタC1と前述の共振回路とが高域共振周波数f2で共振するように構成される。
 図11のアンテナ装置もまた、図1のアンテナ装置と同様に、放射器60を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、ループ状の放射導体に沿って給電点P1から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように放射導体を設けることにより、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図13は、第2の実施形態の第1の変形例に係るアンテナ装置を示す概略図であり、図14は、第2の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。図11の放射器60におけるループ状の放射導体は、少なくとも1カ所で折り曲げられていてもよい。図13のアンテナ装置は、図11の放射器60の放射導体1,2をY軸に平行な直線に沿って折り曲げ、さらに接地導体G1の接地面に対向した部分において湾曲させた放射器61を備える。図13の放射器61は、その開放端が接地導体G1から遠隔するように設けられている。一方、図14の放射器61は、その開放端が接地導体G1上に位置するように設けられている。図13のアンテナ装置によれば、アンテナ装置の低姿勢化を実現しつつ、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。また、図14のアンテナ装置によれば、アンテナ装置を接地導体G1の面積内に収めなければならない条件下においても、アンテナ装置の低姿勢化を実現しつつ、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図15は、第2の実施形態の第3の変形例に係るアンテナ装置を示す概略図である。図11の放射器60におけるループ状の放射導体は、少なくとも1カ所で湾曲していてもよい。図15のアンテナ装置は、図11の放射器60におけるループ状の放射導体をY軸に平行な直線の周りに沿って湾曲させた放射器62を備える。
 図13~図15のアンテナ装置によれば、放射導体と接地導体G1の接地面とが互いに対向する部分の面積が、図11の場合よりも減少している。放射導体と接地導体G1の接地面との間に形成すべき容量の大きさに応じて、放射導体を折り曲げる位置や湾曲させる程度を増減させることができる。
 図13~図15のアンテナ装置によれば、アンテナ装置の筐体の寸法や形状(例えば曲線及び曲面を含む形状)に応じて、アンテナ装置のサイズを削減することができる。
 図16は、第2の実施形態の第4の変形例に係るアンテナ装置を示す概略図である。図16のアンテナ装置は、接地導体として、所定の厚さを有する導体ブロックにてなる接地導体G2を用いた場合を示す。放射器61は、図13の場合と同様に構成される。接地導体G2のZ方向の厚さは、放射器61のZ方向の長さと同等又はそれ以上である。図16では、さらに、アンテナ装置が高域共振周波数f2で動作するときの電流経路も示している。アンテナ装置が高域共振周波数f2で動作するとき、放射器61上では、図12の場合と同様に電流I2が流れ、また、接地導体G2上の放射器61に近接した部分において、接続点P2に向かって(すなわち電流I2とは逆向きに)電流I3が流れる。放射導体と接地導体G2とが互いに近接した部分において、放射導体と接地導体G2との間に分布する容量と、放射導体に分布するインダクタンスとにより、共振回路が形成される。放射器61は、アンテナ装置が高域共振周波数f2で動作するとき、ループ状の放射導体のうちの電流I2が流れる部分とキャパシタC1と前述の共振回路とが高域共振周波数f2で共振するように構成される。図16のアンテナ装置もまた、図1のアンテナ装置と同様に、放射器60を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図17は、第2の実施形態の第5の変形例に係るアンテナ装置を示す概略図である。図17のアンテナ装置は、第1の実施形態と第2の実施形態との組み合わせである。図17のアンテナ装置において、放射器63は、図11の放射器60と同様に、ループ状の放射導体に沿って給電点P1から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するようにループ状の放射導体が設けられ、さらに、図1の放射器40と同様に、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成される。従って、ループ状の放射導体に沿って給電点P1から第1の方向(給電点P1からキャパシタC1に向かう方向)に向かうにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大し、ループ状の放射導体に沿って給電点から第1の方向とは逆の第2の方向(給電点P1からインダクタL1に向かう方向)に向かうにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大する。図17のアンテナ装置もまた、図1及び図11のアンテナ装置と同様に、放射器63を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図18は、第2の実施形態の第6の変形例に係るアンテナ装置を示す概略図である。接地導体G1の接地面は、第1の面(平面又は曲面)上に設けられる。図18では、接地導体G1の接地面は、YZ平面に平行に設けられる。放射器64のループ状の放射導体は、第1の面に対して所定距離を有する第2の面(平面又は曲面)上に、例えば第1の面に対して平行な第2の面上に設けられ、接地導体G1及びループ状の放射導体は、それらのエッジ部において互いに近接して対向している。さらに、放射導体1aは、接地導体G1に近接したエッジ部において、接地導体G1の接地面に向かって、エッジ部に平行な直線に沿って折り曲げられた部分(図18ではXY平面に平行な部分)を有し、この折り曲げられた部分の先端(接地導体G1の接地面に最も近接した位置)において給電点が設けられる。図18~図21では、図示の簡単化のために信号源Q1により給電点を表す。放射導体1aの折り曲げられた部分は、ループ状の放射導体に沿って給電点から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように形成される。
 図19は、第2の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。図18の放射器64では、接地導体G1及びループ状の放射導体が互いに近接して対向したエッジ部に平行な直線に沿って放射導体1aを折り曲げていたが、図19の放射器65の放射導体1bは、接地導体G1の接地面に向かって、エッジ部に垂直な直線(Z方向に平行な直線)に沿って折り曲げられた部分を有する。放射導体1bの折り曲げられた部分は、ループ状の放射導体に沿って給電点から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように形成される。
 図20は、第2の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。図20の放射器66の放射導体1cは、図18の放射導体1aと図19の放射導体1bとの組み合わせである。詳しくは、放射導体1cは、接地導体G1及びループ状の放射導体が互いに近接して対向したエッジ部に平行な直線に沿って折り曲げられた部分と、エッジ部に垂直な直線に沿って折り曲げられた部分とを有する。放射導体1cは、板状導体を折り曲げた構成に限定されず、中実な導体ブロックにて構成されてもよい。
 図21は、第2の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。図21の放射器67は、図1の放射器40と図20の放射器66との組み合わせである。詳しくは、図21の放射器67は、図20の放射器66と同様に折り曲げられた部分を有することに加えて、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成されている。
 図18~図21のアンテナ装置もまた、図1のアンテナ装置と同様に、放射器64~67を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
第3の実施形態.
 図22は、第3の実施形態に係るアンテナ装置を示す概略図である。図1のアンテナ装置では、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周が形成されている。しかしながら、本開示の実施形態は、ループ状の放射導体の外周の形状により放射導体1,2と接地導体G1との間の距離を次第に増大させることに限定されず、接地導体の外周の形状により放射導体1,2と接地導体との間の距離を次第に増大させてもよい。図22を参照すると、接地導体G3は、放射器70の放射導体1,2に近接したエッジ部を有し、エッジ部は、ループ状の放射導体に沿って給電点P1から遠隔するにつれて放射導体からの距離が次第に増大するように形成されている。
 図23は、第3の実施形態の変形例に係るアンテナ装置を示す概略図である。図11のアンテナ装置では、ループ状の放射導体に沿って給電点P1から遠隔するにつれて接地導体G1の接地面からの距離が次第に増大するように放射導体を設けている。しかしながら、本開示の実施形態は、接地導体G1の接地面に対する放射導体の位置により放射導体1,2と接地導体G1との間の距離を次第に増大させることに限定されず、接地導体の接地面の形状により放射導体1,2と接地導体との間の距離を次第に増大させてもよい。図23を参照すると、放射器71の放射器60の放射導体1,2、キャパシタC1、及びインダクタL1は、図11の放射器60と同様に構成される。接地導体G4の接地面は、第1の面(平面又は曲面)上に設けられる。ループ状の放射導体は、第1の面に対して少なくとも部分的に対向した第2の面(平面又は曲面)上に設けられる。さらに、接地導体G4の接地面は、ループ状の放射導体に沿って給電点P1から遠隔するにつれて放射導体からの距離が次第に増大するように形成される。
 図22及び図23のアンテナ装置によっても、第1及び第2の実施形態のアンテナ装置と同様に、放射器70~71を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、アンテナ装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
変形例.
 以下、図24~図35を参照して、本開示の実施形態のさらなる変形例について説明する。
 キャパシタC1及びインダクタL1は、例えばディスクリートな回路素子を使用可能であるが、それに限定されるものではない。以下、図24~図31を参照してキャパシタC1及びインダクタL1の変形例について説明する。
 図24は、第1の実施形態の第6の変形例に係るアンテナ装置を示す概略図であり、図25は、第1の実施形態の第7の変形例に係るアンテナ装置を示す概略図である。図24のアンテナ装置の放射器80は、放射導体1,2の近接部によって形成されるキャパシタC2を含む。図25のアンテナ装置の放射器81は、放射導体1,2の近接部によって形成されるキャパシタC3を含む。図24及び図25に示すように、放射導体1,2を互いに近接させて放射導体1,2間に所定の容量を生じさせることにより、放射導体1,2間に仮想的なキャパシタC2,C3を形成してもよい。放射導体1,2間の距離を近接させるほど、また、近接する面積を増大させるほど、仮想的なキャパシタC2,C3の容量は増大する。さらに、図26は、第1の実施形態の第8の変形例に係るアンテナ装置を示す概略図である。図26のアンテナ装置の放射器82は、放射導体1,2の近接部に形成されるキャパシタC4を含む。図26に示すように、放射導体1,2間に生じる容量により仮想的なキャパシタC4を形成する際に、インターディジット型の導体部分(指状の導体が交互に嵌合した構成)を形成してもよい。図30のキャパシタC4によれば、図24及び図25のキャパシタC2,C3よりも容量を増大させることができる。放射導体1,2の近接部によって形成されるキャパシタは、図24及び図25のような直線状の導体部分や、図30のようなインターディジット型の導体部分に限らず、他の形状の導体部分によって形成されてもよい。例えば、図24のアンテナ装置において、放射導体1,2間の距離を位置に応じて変化させ、これにより、放射導体1,2間の容量を放射導体1,2上の位置に応じて変化させてもよい。
 図27は、第1の実施形態の第9の変形例に係るアンテナ装置を示す概略図である。図27のアンテナ装置の放射器83は、ストリップ導体によって形成されるインダクタL2を含む。図28は、第1の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。図28のアンテナ装置の放射器84は、メアンダ状導体によって形成されるインダクタL3を含む。インダクタL2,L3を形成する導体の幅を細くするほど、また、導体の長さを長くするほど、インダクタL2,L3のインダクタンスは増大する。
 図24~図28に示すキャパシタC2~C4及びインダクタL2,L3を組み合わせてもよく、例えば、図1のキャパシタC1及びインダクタL1に代えて、図24のキャパシタC2及び図27のインダクタL2を備えた放射器を構成してもよい。
 図29は、第1の実施形態の第11の変形例に係るアンテナ装置を示す概略図である。図29のアンテナ装置の放射器85は、放射導体1,2の近接部に形成されるキャパシタC4と、メアンダ状導体によって形成されるインダクタL3とを含む。図29のアンテナ装置によれば、キャパシタ及びインダクタの両方を誘電体基板上の導体パターンとして形成することができるので、コストの削減や、製造ばらつきの低減といった効果がある。
 図30は、第1の実施形態の第12の変形例に係るアンテナ装置を示す概略図である。図30のアンテナ装置の放射器86は、複数のキャパシタC5,C6を備えている。本実施形態のアンテナ装置は、単一のキャパシタ及び単一のインダクタを備えることに限定されず、複数のキャパシタを含む多段構成のキャパシタ、及び/又は、複数のインダクタを含む多段構成のインダクタを備えてもよい。図30において、図1のキャパシタC1に代えて、所定電気長を有する第3の放射導体3によって互いに接続されたキャパシタC5,C6が挿入されている。言い換えると、ループ状の放射導体における異なる位置にキャパシタC5,C6がそれぞれ挿入されている。複数のインダクタを含む場合も、図30の変形例と同様に構成される。図31は、第1の実施形態の第13の変形例に係るアンテナ装置を示す概略図である。図31のアンテナ装置の放射器87は、複数のインダクタL4,L5を備えている。図31において、図1のインダクタL1に代えて、所定電気長を有する第3の放射導体3によって互いに接続されたインダクタL4,L5が挿入されている。言い換えると、ループ状の放射導体における異なる位置にインダクタL4,L5がそれぞれ挿入されている。図30及び図31のアンテナ装置と同様に、ループ状の放射導体における異なる位置に複数のキャパシタ及び複数のインダクタを挿入してもよい。図30及び図31のアンテナ装置によれば、放射器上の電流分布を考慮してキャパシタ及びインダクタを3つ以上の異なる位置に挿入することができるので、設計の際に低域共振周波数f1及び高域共振周波数f2の微調整が容易になるという効果がある。
 図32は、第1の実施形態の第14の変形例に係るアンテナ装置を示す概略図である。図32は、マイクロストリップ線路の給電線路を備えたアンテナ装置を示す。本変形例のアンテナ装置は、接地導体G1と、接地導体G1上に誘電体基板B1を介して設けられたストリップ導体S1とからなるマイクロストリップ線路の給電線路を備える。本変形例のアンテナ装置は、アンテナ装置を低姿勢化するために平面構成を有してもよく、すなわち、プリント配線基板の裏面に接地導体G1を形成し、その表面にストリップ導体S1及び放射器40を一体的に形成してもよい。給電線路はマイクロストリップ線路に限らず、コプレーナ線路、同軸線路などでもよい。
 図33は、第1の実施形態の第15の変形例に係るアンテナ装置を示す概略図である。図33は、図1の放射器40に対応する第1の放射器40Aと、図1の接地導体に代えて設けられた第2の放射器40Bとを備えたダイポールアンテナとして構成されたアンテナ装置を示す。図33の左側の放射器40Aは、図1の放射器40と同様に構成される。図33の右側の放射器40Bもまた、図1の放射器40と同様に構成され、第1の放射導体11と、第2の放射導体12と、キャパシタC11と、インダクタL11とを有する。放射器40A,40Bは、互いに近接して電磁的に結合した部分を有するように隣接して設けられる。放射器40Aの給電点P1と放射器40Bの給電点P11は互いに近接して設けられ、信号源Q1は、放射器40Aの給電点P1と放射器40Bの給電点P11とにそれぞれ接続される。各放射器40A,40Bの放射導体が互いに近接した部分において、ループ状の放射導体に沿って給電点P1,P11からそれぞれ遠隔するにつれて、各放射器40A,40Bの放射導体間の距離が次第に増大する。本変形例のアンテナ装置は、ダイポール構成を有することでバランスモードで動作することができ、不要輻射を抑圧することができる。
 図34は、第1の実施形態の第16の変形例に係るアンテナ装置を示す概略図である。図34は、4バンドのマルチバンドで動作可能なアンテナ装置を示す。図34の左側の放射器40Cは、図1の放射器40と同様に構成される。図34の右側の放射器40Dもまた、図1の放射器40と同様に構成され、第1の放射導体21と、第2の放射導体22と、キャパシタC21と、インダクタL21とを有する。ただし、放射器40Dにおいて放射導体21,22とキャパシタC21とインダクタL21とにより形成されるループの電気長は、放射器40Cにおいて放射導体1,2とキャパシタC1とインダクタL1とにより形成されるループの電気長とは異なる。信号源Q21は、放射導体1上の給電点P1及び放射導体21上の給電点P21に接続されるとともに、接地導体G1上の接続点P2に接続される。信号源Q21は、低域共振周波数f1及び高域共振周波数f2の高周波信号を発生するとともに、低域共振周波数f1とは異なる別の低域共振周波数f21と、高域共振周波数f2とは異なる別の高域共振周波数f22とを発生する。放射器40Cは、低域共振周波数f1においてループアンテナモードで動作し、高域共振周波数f2においてモノポールアンテナモードで動作する。また、放射器40Dは、低域共振周波数f21においてループアンテナモードで動作し、高域共振周波数f22においてモノポールアンテナモードで動作する。これにより、本変形例のアンテナ装置は、4バンドのマルチバンドで動作することができる。本変形例のアンテナ装置によれば、さらに放射器を設けることにより、さらなるマルチバンド化が可能である。
 図35は、第2の実施形態の第10の変形例に係るアンテナ装置を示す概略図である。図35のアンテナ装置は、図11のアンテナ装置の構成を備えたことに加えて、放射器88の放射導体1を接地導体G1に接続する短絡導体88aを備え、逆F型アンテナ装置として構成されたことを特徴とする。短絡導体88aは、放射導体1(すなわち、給電点P1を有する放射導体)上の任意の位置に接続することができる。放射器の一部を接地導体と短絡することで放射抵抗を高くする効果があるが、本実施形態に係るアンテナ装置の基本的な動作原理を損なうものではない。短絡導体88aは、図11のアンテナ装置に限らず、他の実施形態及び変形例のアンテナ装置に適用可能である。
第4の実施形態.
 図36は、第4の実施形態に係るアンテナ装置を示す概略図である。本実施形態のアンテナ装置は、図1の放射器40と同様の原理で構成された2つの放射器90A,90Bを備え、これらの放射器90A,90Bは別個の信号源Q31,Q32によって独立に励振されることを特徴とする。
 図36において、放射器90Aは、所定電気長を有する第1の放射導体31と、所定電気長を有する第2の放射導体32と、所定の位置で放射導体31,32を互いに接続するキャパシタC31と、キャパシタC31とは異なる位置で放射導体31,32を互いに接続するインダクタL31とを有する。放射器90Aにおいて、放射導体31,32とキャパシタC31とインダクタL31とにより、中央部分を包囲するループが形成される。言い換えると、ループ状の放射導体の所定の位置にキャパシタC31が挿入され、キャパシタC31が挿入された位置とは異なる位置においてインダクタL31が挿入されている。信号源Q1は、放射導体31上の給電点P31に接続されるとともに、放射器90Aに近接して設けられた接地導体G1上の接続点P32に接続される。図36のアンテナ装置では、キャパシタC31はインダクタL31よりも給電点P31に近接して設けられる。放射器90Bは、放射器90Aと同様に構成され、第1の放射導体33と、第2の放射導体34と、キャパシタC32と、インダクタL32とを有する。放射器90Bにおいて、放射導体33,34とキャパシタC32とインダクタL32とにより、中央部分を包囲するループが形成される。信号源Q2は、放射導体33上の給電点P33に接続されるとともに、放射器90Bに近接して設けられた接地導体G1上の接続点P34に接続される。図20のアンテナ装置では、キャパシタC32はインダクタL32よりも給電点P33に近接して設けられる。信号源Q31,Q32は、例えばMIMO通信方式の送信信号である高周波信号を発生し、同じ低域共振周波数f1の高周波信号を発生するとともに、同じ高域共振周波数f2の高周波信号を発生する。
 放射器90A,90Bのループ状の放射導体は、例えば、所定の基準軸(図36の縦の点線)に対して対称に構成される。この基準軸に近接して放射導体31,33及び給電部(給電点P31,P33、接続点P32,P33)が設けられ、この基準軸から遠隔して放射導体32,34が設けられる。給電点P31,P33は、基準軸B15に対して対称な位置に設けられる。放射器90A,90Bの形状を、基準軸に沿って給電点P31,P32から遠ざかるにつれて放射器90A,90B間の距離が次第に増大するように構成することで、放射器90A,90B間の電磁結合を低減することができる。さらに、2つの給電点P31,P33間の距離が小さいので、無線通信回路(図示せず)から引き回される給電線路を設置する面積を最小化することができる。
 図37は、第4の実施形態の第1の変形例に係るアンテナ装置を示す概略図である。本変形例のアンテナ装置では、放射器90A,90Bを対称に配置するのではなく、同じ向きで(すなわち非対称に)配置している。放射器90A,90Bの配置を非対称にすることでそれらの放射パターンを非対称にし、各放射器90A,90Bで送受信される信号間の相関を下げる効果がある。ただし、送信信号間及び受信信号間に電力差が生じるので、MIMO通信方式に係る受信性能を最大化することはできない。なお、本変形例のアンテナ装置と同様に3つ以上の放射器を配置してもよい。
 図38は、第4の実施形態の比較例に係るアンテナ装置を示す概略図である。図38のアンテナ装置では、給電点を設けていない放射導体32,34が互いに近接するように配置している。給電点P31,P33間の距離を離すことで、各放射器90A,90Bで送受信される信号間の相関を低減できる。ただし、各放射器90A,90Bの開放端(すなわち放射導体32,34の端部)が対向しているので、放射器90A,90B間の電磁結合は大きくなってしまう。
 図39は、第4の実施形態の第2の変形例に係るアンテナ装置を示す概略図である。本変形例のアンテナ装置は、低域共振周波数f1で動作するときの2つの放射器間の電磁結合を低減するために、図36の放射器90Bに代えて、キャパシタC32及びインダクタL32の位置を、放射器90AのキャパシタC31及びインダクタL31の位置に対して非対称に構成した放射器90Cを備えたことを特徴とする。
 比較のため、まず、図36のアンテナ装置が低域共振周波数f1で動作するとき、例えば一方の信号源Q31のみを動作させる場合を考える。信号源Q31から入力される電流により放射器90Aがループアンテナモードで動作すると、放射器90Aによって発生される磁界により、図36の放射器90Bでは、放射器90A上の電流と同じ向きの誘導電流が流れ、この誘導電流は信号源Q32まで流れる。放射器90B上に大きな誘導電流が流れることにより、放射器90A,90B間の電磁結合が高くなる。一方、図36のアンテナ装置が高域共振周波数f2で動作するときは、放射器90Aにおいて、信号源Q31から入力される電流は、放射器90Bからは遠隔した方向に流れ、従って、放射器90A,90B間の電磁結合は小さく、放射器90Bや信号源Q32に流れる誘導電流も小さい。
 再び図39を参照すると、本変形例のアンテナ装置では、放射器90A,90Cの互いに対称な各放射導体のループに沿って各給電点P31,P33から対応する向きに進むとき(例えば、放射器90Aでは反時計回りに進み、放射器90Cでは時計回りに進むとき)、放射器90Aでは給電点P31、インダクタL31、キャパシタC31が順に位置し、放射器90Cでは給電点P33、キャパシタC32、インダクタL32が順に位置する。また、放射器90Aにおいて、キャパシタC31はインダクタL31よりも給電点P31に近接して設けられる一方、放射器90Cにおいて、インダクタL32はキャパシタC32よりも給電点P33に近接して設けられる。このように、放射器90A,90C間でキャパシタ及びインダクタの位置を非対称に構成したことにより、放射器90A,90C間の電磁結合を低減する。
 前述のように、低い周波数成分を有する電流は、インダクタは通過できるがキャパシタは通過しづらいという性質がある。従って、図39のアンテナ装置が低域共振周波数f1で動作するとき、信号源Q31から入力される電流により放射器90Aがループアンテナモードで動作しても、放射器90C上の誘導電流は小さくなり、また、放射器90Cから信号源Q32に流れる電流も小さくなる。このように、図39のアンテナ装置が低域共振周波数f1で動作するときの放射器90A,90C間の電磁結合は小さくなる。図39のアンテナ装置が高域共振周波数f2で動作するときは、放射器90A,90C間の電磁結合は小さい。
 アンテナ装置のサイズを削減するために、放射導体31~34のいずれかを少なくとも1カ所で折り曲げてもよく、また、アンテナ装置が高域共振周波数f2で動作するとき、その周波数によっては、電流は、インダクタL31の位置まで流れることなく、放射導体32の先端(上端)まで、又は放射導体32上の所定位置、例えば放射導体を折り曲げた位置まで流れてもよい。
第5の実施形態.
 図54は、第5の実施形態に係る無線通信装置であって、図1のアンテナ装置を備えた無線通信装置の構成を示すブロック図である。本実施形態に係る無線通信装置は、例えば図54に示すように携帯電話機として構成されてもよい。図54の無線通信装置は、図1のアンテナ装置と、無線送受信回路101と、無線送受信回路101に接続されたベースバンド信号処理回路102と、ベースバンド信号処理回路102に接続されたスピーカ103及びマイクロホン104とを備える。アンテナ装置の放射器40の給電点P1及び接地導体G1の接続点P2は、図1の信号源Q1に代えて、無線送受信回路101に接続される。なお、無線通信装置として、ワイヤレスブロードバンドルータ装置や、M2M(マシン・ツー・マシン)目的の高速無線通信装置などを実施する場合には、スピーカ及びマイクロホンなどは必ずしも設けなくてもよく、無線通信装置による通信状況を確認するためにLED(発光ダイオード)などを用いることができる。図1他のアンテナ装置を適用可能な無線通信装置は、以上に例示したものに限定されない。
 本実施形態の無線通信装置によれば、放射器40を動作周波数に応じてループアンテナモード及びモノポールアンテナモードのいずれかとして動作させることで、効果的にデュアルバンド動作を実現するとともに、無線通信装置の小型化を達成することができる。さらに、高域共振周波数f2を含む高域の動作帯域を超広帯域化することができる。
 図54の無線通信装置は、図1のアンテナ装置に代えて、ここに開示した他の任意のアンテナ装置又はその変形を用いることができる。
 以上説明した各実施形態及び各変形例を組み合わせてもよい。例えば、第1の実施形態のアンテナ装置と図22のアンテナ装置とを組み合わせ、放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って給電点P1から遠隔するにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大するように、ループ状の放射器の外周と接地導体のエッジ部との両方を形成してもよい。同様に、第2の実施形態のアンテナ装置と図23のアンテナ装置とを組み合わせ、放射導体1,2と接地導体G1とが互いに対向した部分において、ループ状の放射導体に沿って給電点P1から遠隔するにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大するように、放射器の放射導体と接地導体の接地面との両方を形成してもよい。
 以下、本開示の実施形態に係るアンテナ装置のシミュレーション結果について説明する。シミュレーションで用いたソフトウェアは「CST Microwave Studio」であり、これを用いてトランジェント解析を行った。給電点の反射エネルギーが入力エネルギーに対して-40dB以下となる点をしきい値として収束判定を行った。サブメッシュ法により電流が強く流れる部分は細かくモデリングした。
 図40は、シミュレーションで用いた第1の比較例に係るアンテナ装置を示す斜視図であり、図41は、図40のアンテナ装置の放射器51の詳細構成を示す上面図である。キャパシタC1は1pFの容量を有し、インダクタL1は3nHのインダクタンスを有するものを用いた。キャパシタC1の容量及びインダクタL1のインダクタンスは、他のシミュレーションでも同じである。図42は、図40のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=1035MHzのとき、反射係数S11=-13.1dBになり、高域共振周波数f2=1844MHzのとき、反射係数S11=-10.6dBになった。図43は、シミュレーションで用いた第2の比較例に係るアンテナ装置の放射器52を示す上面図である。図43の放射器52は、図40の放射器51と同様に接地導体G1に対して設けられる(他のシミュレーションでも同様)。図44は、図43のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=949MHzのとき、反射係数S11=-7.6dBになり、高域共振周波数f2=2050MHzのとき、反射係数S11=-18.2dBになった。図42及び図43によれば、比較例のアンテナ装置でも、効果的にデュアルバンド特性を実現できていることがわかる。
 図45は、シミュレーションで用いた第3の比較例に係るアンテナ装置の放射器53を示す上面図である。図45のアンテナ装置では、ループ状の放射導体の外周において開放端付近をテーパー形状に形成している。図46は、図45のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=1040MHzのとき、反射係数S11=-11.1dBになり、高域共振周波数f2=1914MHzのとき、反射係数S11=-12.1dBになった。図47は、シミュレーションで用いた第4の比較例に係るアンテナ装置の放射器54を示す上面図である。図47のアンテナ装置でも、ループ状の放射導体の外周において開放端付近をテーパー形状に形成している。図48は、図47のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=983MHzのとき、反射係数S11=-7.9dBになり、高域共振周波数f2=2103MHzのとき、反射係数S11=-19.3dBになった。図46及び図48によれば、効果的にデュアルバンド特性を実現できていることがわかる。また、図42及び図43のグラフと比較すると、アンテナ装置が低域共振周波数f1で動作するときの特性に大きな変化は見られないが、図45及び図47のアンテナ装置が高域共振周波数f2で動作するときには、開放端付近をテーパー形状に形成したことにより、動作周波数帯がわずかに広がっていることがわかる。ただし、際立った広帯域化は実現できていない。
 図49は、シミュレーションで用いた第1の実施形態の第1の実施例に係るアンテナ装置の放射器46を示す上面図である。図50は、図49のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=1043MHzのとき、反射係数S11=-16.2dBになり、高域共振周波数f2=1903MHzのとき、反射係数S11=-15.1dBになった。図51は、シミュレーションで用いた第1の実施形態の第2の実施例に係るアンテナ装置の放射器47を示す上面図である。図52は、図51のアンテナ装置の反射係数S11の周波数特性を示すグラフである。低域共振周波数f1=985MHzのとき、反射係数S11=-10.5dBになり、高域共振周波数f2=2051MHzのとき、反射係数S11=-26.2dBになった。図50及び図52によれば、効果的にデュアルバンド特性を実現できていることがわかる。図46及び図48のグラフと比較すると、アンテナ装置が低域共振周波数f1で動作するときの特性に大きな変化は見られないが、図49及び図51のアンテナ装置では、放射導体1,2と接地導体G1とが互いに近接した部分において、放射導体のループに沿って給電点P1から遠隔するにつれて接地導体G1からの距離が次第に増大するようにループ状の放射導体の外周を形成したことにより、図49及び図51のアンテナ装置が第2の共振周波数f2で動作するとき、より効果的に広帯域化できていることが判る。しかしながら、接地導体G1の近傍にインダクタL1がある図49のアンテナ装置では、広帯域化は十分とはいえない。これは、アンテナ装置が高域共振周波数f2で動作するときの電流経路がキャパシタC1を通過するからであり、インダクタL1近辺の放射導体の部分に電流が強く流れていないからである。
 図53は、シミュレーションで用いた第2の実施形態の実施例に係るアンテナ装置の反射係数S11の周波数特性を示すグラフである。図53のシミュレーションでは、図49の放射器46の放射導体1に代えて、図20の放射導体1cを用いた。低域共振周波数f1=1010MHzのとき、反射係数S11=-18.7dBになり、高域共振周波数f2=2037MHzのとき、反射係数S11=-45.8dBになった。図53によれば、効果的にデュアルバンド特性を実現でき、かつ、高域共振周波数f2を含む動作周波数帯も1810~2620MHzと超広帯域化することができた。以上の結果より、本開示の実施形態に係るアンテナ装置では、小型かつ簡単な構成でありながら、マルチバンドで動作可能なアンテナ装置を提供することができ、さらに、高域の動作周波数帯を超広帯域化することができる。
 参考として、アンテナ装置が高域共振周波数f2で動作するときの動作帯域幅(すなわち、S11≦-10dBとなる周波数帯)を表1にまとめる。
[表1]
―――――――――――――
図42  170MHz
図44  680MHz
図46  406MHz
図48  740MHz
図50  577MHz
図52  864MHz
図53  1079MHz
―――――――――――――
 シミュレーション結果によれば、放射導体1,2と接地導体G1とが互いに近接した部分において、ループ状の放射導体に沿って給電点P1から遠隔するにつれて、放射導体1,2と接地導体G1との間の距離が次第に増大するようにアンテナ装置を構成したことにより、アンテナ装置が低域共振周波数f1で動作するときの特性を損なうことなく、高域共振周波数f2を含む動作周波数帯を超広帯域化できるという格別の効果が得られることを、様々なアンテナモデルで確認することができた。
 なお、今回設計したアンテナ装置の周波数特性は一例であり、この周波数特性に限られるものではない。セルラーや無線LAN、GPSの周波数帯など求められるシステムに応じて整合回路なども含めて最適にチューニングをすることにより、性能を高めることが可能である。
まとめ.
 ここに開示したアンテナ装置及び無線通信装置は、以下の構成を備えたことを特徴とする。
 本開示の第1の態様に係るアンテナ装置は、少なくとも1つの放射器と接地導体とを備えたアンテナ装置において、
 上記各放射器は、
 内周及び外周を有するループ状の放射導体であって、上記接地導体に近接して電磁的に結合した部分を有するように上記接地導体に対して設けられた放射導体と、
 上記放射導体のループに沿って所定位置に挿入された少なくとも1つのキャパシタと、
 上記放射導体のループに沿って、上記キャパシタの位置とは異なる所定位置に挿入された少なくとも1つのインダクタと、
 上記接地導体に近接した位置において、上記放射導体上に設けられた給電点とを備え、
 上記アンテナ装置は、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体のループに沿って上記給電点から遠隔するにつれて、上記放射導体と上記接地導体との間の距離が次第に増大するように構成され、
 上記各放射器は、第1の周波数と、上記第1の周波数より高い第2の周波数とで励振され、
 上記各放射器が上記第1の周波数で励振されるとき、上記インダクタ及び上記キャパシタを含み、上記放射導体のループの内周に沿う第1の経路を第1の電流が流れ、
 上記各放射器が上記第2の周波数で励振されるとき、上記キャパシタを含み、上記インダクタを含まず、上記放射導体のループの外周に沿った区間であって上記給電点と上記インダクタとの間の区間を含む第2の経路を第2の電流が流れ、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体と上記接地導体との間に分布する容量と上記放射導体に分布するインダクタンスとにより共振回路が形成され、
 上記各放射器は、上記放射導体のループと上記インダクタと上記キャパシタが上記第1の周波数で共振し、上記放射導体のループのうちの上記第2の経路に含まれる部分と上記キャパシタと上記共振回路とが上記第2の周波数で共振するように構成されることを特徴とする。
 本開示の第2の態様に係るアンテナ装置は、第1の態様に係るアンテナ装置において、上記各放射器の上記放射導体のループの外周は、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記接地導体からの距離が次第に増大するように形成されたことを特徴とする。
 本開示の第3の態様に係るアンテナ装置は、第1の態様に係るアンテナ装置において、 上記接地導体は、上記各放射器の上記放射導体に近接したエッジ部を有し、
 上記エッジ部は、上記各放射器の上記放射導体のループに沿って上記給電点から遠隔するにつれて上記放射導体からの距離が次第に増大するように形成されたことを特徴とする。
 本開示の第4の態様に係るアンテナ装置は、第1~第3のいずれか1つの態様に係るアンテナ装置において、
 上記接地導体の接地面は第1の面上に設けられ、
 上記各放射器の上記放射導体は、上記第1の面に対して少なくとも部分的に対向した第2の面上に設けられ、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記接地導体の接地面からの距離が次第に増大するように設けられたことを特徴とする。
 本開示の第5の態様に係るアンテナ装置は、第1~第3のいずれか1つの態様に係るアンテナ装置において、
 上記接地導体の接地面は第1の面上に設けられ、
 上記各放射器の上記放射導体は、上記第1の面に対して少なくとも部分的に対向した第2の面上に設けられ、
 上記接地導体の接地面は、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記放射導体からの距離が次第に増大するように形成されたことを特徴とする。
 本開示の第6の態様に係るアンテナ装置は、第1~第5のいずれか1つの態様に係るアンテナ装置において、上記各放射器の上記放射導体のループに沿って上記給電点から第1の方向に向かうにつれて、上記放射導体と上記接地導体との間の距離が次第に増大し、上記放射導体のループに沿って上記給電点から上記第1の方向とは逆の第2の方向に向かうにつれて、上記放射導体と上記接地導体との間の距離が次第に増大することを特徴とする。
 本開示の第7の態様に係るアンテナ装置は、第1~第6のいずれか1つの態様に係るアンテナ装置において、上記各放射器の上記キャパシタ及び上記インダクタは、上記放射導体のループに沿って、上記放射導体と上記接地導体とが互いに近接した部分にそれぞれ設けられ、上記給電点は、上記キャパシタ及び上記インダクタの間に設けられたことを特徴とする。
 本開示の第8の態様に係るアンテナ装置は、第1~第7のいずれか1つの態様に係るアンテナ装置において、
 上記放射導体は、第1の放射導体と第2の放射導体とを含み、
 上記キャパシタは、上記第1及び第2の放射導体の間に生じる容量によって形成されることを特徴とする。
 本開示の第9の態様に係るアンテナ装置は、第1~第8のいずれか1つの態様に係るアンテナ装置において、上記インダクタはストリップ導体で構成されることを特徴とする。
 本開示の第10の態様に係るアンテナ装置は、第1~第8のいずれか1つの態様に係るアンテナ装置において、上記インダクタはメアンダ状導体で構成されることを特徴とする。
 本開示の第11の態様に係るアンテナ装置は、第1~第10のいずれか1つの態様に係るアンテナ装置において、上記接地導体と、上記給電点に接続された給電線路とを備えたプリント配線基板を備え、
 上記放射器は上記プリント配線基板上に形成されたことを特徴とする。
 本開示の第12の態様に係るアンテナ装置は、第1~第10のいずれか1つの態様に係るアンテナ装置において、第1の放射器と、上記接地導体に代えて第2の放射器とを含むダイポールアンテナであることを特徴とする。
 本開示の第13の態様に係るアンテナ装置は、第1~第12のいずれか1つの態様に係るアンテナ装置において、複数の放射器を備え、上記複数の放射器は、互いに異なる複数の第1の周波数と、互いに異なる複数の第2の周波数とを有することを特徴とする。
 本開示の第14の態様に係るアンテナ装置は、第1~第13のいずれか1つの態様に係るアンテナ装置において、逆F型アンテナとして構成されたことを特徴とする。
 本開示の第15の態様に係るアンテナ装置は、第1~第14のいずれか1つの態様に係るアンテナ装置において、上記放射導体は少なくとも1カ所で折り曲げられていることを特徴とする。
 本開示の第16の態様に係るアンテナ装置は、第1~第14のいずれか1つの態様に係るアンテナ装置において、上記放射導体は少なくとも1カ所で湾曲していることを特徴とする。
 本開示の第17の態様に係るアンテナ装置は、第1~第16のいずれか1つの態様に係るアンテナ装置において、互いに異なる信号源に接続された複数の放射器を備えたことを特徴とする。
 本開示の第18の態様に係るアンテナ装置は、第17の態様に係るアンテナ装置において、所定の基準軸に対して互いに対称に構成された放射導体をそれぞれ有する第1の放射器及び第2の放射器を備え、
 上記第1及び第2の放射器の各給電点は、上記基準軸に対して対称な位置に設けられ、
 上記第1及び第2の放射器の各放射導体は、上記基準軸に沿って上記第1の放射器の給電点及び上記第2の放射器の給電点から遠ざかるにつれて上記第1及び第2の放射器の間の距離が次第に増大する形状を有することを特徴とする。
 本開示の第19の態様に係るアンテナ装置は、第17又は第18の態様に係るアンテナ装置において、第1の放射器及び第2の放射器を備え、上記第1及び第2の放射器の各放射導体のループは所定の基準軸に対して互いに実質的に対称に構成され、
 上記第1及び第2の放射器の上記互いに対称な各放射導体のループに沿って上記各給電点から対応する向きに進むとき、上記第1の放射器では上記給電点、上記インダクタ、上記キャパシタが順に位置し、上記第2の放射器では上記給電点、上記キャパシタ、上記インダクタが順に位置することを特徴とする。
 本開示の第20の態様に係る無線通信装置は、第1~第19のいずれか1つの態様に係るアンテナ装置を備えたことを特徴とする。
 以上説明したように、本開示のアンテナ装置は、小型かつ簡単な構成でありながら、マルチバンドで動作可能である。また、本開示のアンテナ装置は、複数の放射器を備えた場合には、アンテナ素子間で互いに低結合であり、複数の無線信号を同時に送受信するように動作可能である。また、本開示によれば、そのようなアンテナ装置を備えた無線通信装置を提供することができる。
 本開示のアンテナ装置及びそれを用いた無線通信装置によれば、例えば携帯電話機として実装することができ、あるいは、無線LAN用の装置、スマートフォン等として実装することもできる。このアンテナ装置は、例えばMIMO通信を行うための無線通信装置に搭載することができるが、MIMOに限らず、複数のアプリケーションのための通信を同時に実行可能(マルチアプリケーション)なアダプティブアレーアンテナや最大比合成ダイバーシチアンテナ、フェーズドアレーアンテナといったアレーアンテナ装置に搭載することも可能である。
1,1a,1b,1c,2,3,11,12,21,22,31~34…放射導体、
40~47,50~54,60~67,70,71,80~88,90A~90C…放射器、
88a…短絡導体、
101…無線送受信回路、
102…ベースバンド信号処理回路、
103…スピーカ、
104…マイクロホン、
B1…誘電体基板、
C1~C6,C11,C21,C31,C32…キャパシタ、
Ce…容量、
L1~L5,L11,L21,L31,L32…インダクタ、
La,Le…インダクタンス、
G1~G4…接地導体、
P1,P11,P21,P31,P33…給電点、
P2,P32,P34…接続点、
Q1,Q21,Q31,Q32…信号源、
Rr…放射抵抗、
S1…ストリップ導体。

Claims (20)

  1.  少なくとも1つの放射器と接地導体とを備えたアンテナ装置において、
     上記各放射器は、
     内周及び外周を有するループ状の放射導体であって、上記接地導体に近接して電磁的に結合した部分を有するように上記接地導体に対して設けられた放射導体と、
     上記放射導体のループに沿って所定位置に挿入された少なくとも1つのキャパシタと、
     上記放射導体のループに沿って、上記キャパシタの位置とは異なる所定位置に挿入された少なくとも1つのインダクタと、
     上記接地導体に近接した位置において、上記放射導体上に設けられた給電点とを備え、
     上記アンテナ装置は、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体のループに沿って上記給電点から遠隔するにつれて、上記放射導体と上記接地導体との間の距離が次第に増大するように構成され、
     上記各放射器は、第1の周波数と、上記第1の周波数より高い第2の周波数とで励振され、
     上記各放射器が上記第1の周波数で励振されるとき、上記インダクタ及び上記キャパシタを含み、上記放射導体のループの内周に沿う第1の経路を第1の電流が流れ、
     上記各放射器が上記第2の周波数で励振されるとき、上記キャパシタを含み、上記インダクタを含まず、上記放射導体のループの外周に沿った区間であって上記給電点と上記インダクタとの間の区間を含む第2の経路を第2の電流が流れ、上記各放射器の上記放射導体と上記接地導体とが互いに近接した部分において、上記放射導体と上記接地導体との間に分布する容量と上記放射導体に分布するインダクタンスとにより共振回路が形成され、
     上記各放射器は、上記放射導体のループと上記インダクタと上記キャパシタが上記第1の周波数で共振し、上記放射導体のループのうちの上記第2の経路に含まれる部分と上記キャパシタと上記共振回路とが上記第2の周波数で共振するように構成されることを特徴とするアンテナ装置。
  2.  上記各放射器の上記放射導体のループの外周は、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記接地導体からの距離が次第に増大するように形成されたことを特徴とする請求項1記載のアンテナ装置。
  3.  上記接地導体は、上記各放射器の上記放射導体に近接したエッジ部を有し、
     上記エッジ部は、上記各放射器の上記放射導体のループに沿って上記給電点から遠隔するにつれて上記放射導体からの距離が次第に増大するように形成されたことを特徴とする請求項1記載のアンテナ装置。
  4.  上記接地導体の接地面は第1の面上に設けられ、
     上記各放射器の上記放射導体は、上記第1の面に対して少なくとも部分的に対向した第2の面上に設けられ、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記接地導体の接地面からの距離が次第に増大するように設けられたことを特徴とする請求項1~3のうちのいずれか1つに記載のアンテナ装置。
  5.  上記接地導体の接地面は第1の面上に設けられ、
     上記各放射器の上記放射導体は、上記第1の面に対して少なくとも部分的に対向した第2の面上に設けられ、
     上記接地導体の接地面は、上記放射導体のループに沿って上記給電点から遠隔するにつれて上記放射導体からの距離が次第に増大するように形成されたことを特徴とする請求項1~3のうちのいずれか1つに記載のアンテナ装置。
  6.  上記各放射器の上記放射導体のループに沿って上記給電点から第1の方向に向かうにつれて、上記放射導体と上記接地導体との間の距離が次第に増大し、上記放射導体のループに沿って上記給電点から上記第1の方向とは逆の第2の方向に向かうにつれて、上記放射導体と上記接地導体との間の距離が次第に増大することを特徴とする請求項1~5のうちのいずれか1つに記載のアンテナ装置。
  7.  上記各放射器の上記キャパシタ及び上記インダクタは、上記放射導体のループに沿って、上記放射導体と上記接地導体とが互いに近接した部分にそれぞれ設けられ、上記給電点は、上記キャパシタ及び上記インダクタの間に設けられたことを特徴とする請求項1~6のうちのいずれか1つに記載のアンテナ装置。
  8.  上記放射導体は、第1の放射導体と第2の放射導体とを含み、
     上記キャパシタは、上記第1及び第2の放射導体の間に生じる容量によって形成されることを特徴とする請求項1~7のいずれか1つに記載のアンテナ装置。
  9.  上記インダクタはストリップ導体で構成されることを特徴とする請求項1~8のいずれか1つに記載のアンテナ装置。
  10.  上記インダクタはメアンダ状導体で構成されることを特徴とする請求項1~8のいずれか1つに記載のアンテナ装置。
  11.  上記アンテナ装置は、上記接地導体と、上記給電点に接続された給電線路とを備えたプリント配線基板を備え、
     上記放射器は上記プリント配線基板上に形成されたことを特徴とする請求項1~10のいずれか1つに記載のアンテナ装置。
  12.  上記アンテナ装置は、第1の放射器と、上記接地導体に代えて第2の放射器とを含むダイポールアンテナであることを特徴とする請求項1~10のいずれか1つに記載のアンテナ装置。
  13.  上記アンテナ装置は複数の放射器を備え、上記複数の放射器は、互いに異なる複数の第1の周波数と、互いに異なる複数の第2の周波数とを有することを特徴とする請求項1~12のいずれか1つに記載のアンテナ装置。
  14.  上記アンテナ装置は逆F型アンテナとして構成されたことを特徴とする請求項1~13のいずれか1つに記載のアンテナ装置。
  15.  上記放射導体は少なくとも1カ所で折り曲げられていることを特徴とする請求項1~14のいずれか1つに記載のアンテナ装置。
  16.  上記放射導体は少なくとも1カ所で湾曲していることを特徴とする請求項1~14のいずれか1つに記載のアンテナ装置。
  17.  上記アンテナ装置は、互いに異なる信号源に接続された複数の放射器を備えたことを特徴とする請求項1~16のいずれか1つに記載のアンテナ装置。
  18.  上記アンテナ装置は、所定の基準軸に対して互いに対称に構成された放射導体をそれぞれ有する第1の放射器及び第2の放射器を備え、
     上記第1及び第2の放射器の各給電点は、上記基準軸に対して対称な位置に設けられ、
     上記第1及び第2の放射器の各放射導体は、上記基準軸に沿って上記第1の放射器の給電点及び上記第2の放射器の給電点から遠ざかるにつれて上記第1及び第2の放射器の間の距離が次第に増大する形状を有することを特徴とする請求項17記載のアンテナ装置。
  19.  上記アンテナ装置は、第1の放射器及び第2の放射器を備え、上記第1及び第2の放射器の各放射導体のループは所定の基準軸に対して互いに実質的に対称に構成され、
     上記第1及び第2の放射器の上記互いに対称な各放射導体のループに沿って上記各給電点から対応する向きに進むとき、上記第1の放射器では上記給電点、上記インダクタ、上記キャパシタが順に位置し、上記第2の放射器では上記給電点、上記キャパシタ、上記インダクタが順に位置することを特徴とする請求項17又は18記載のアンテナ装置。
  20.  請求項1~19のうちのいずれか1つに記載のアンテナ装置を備えたことを特徴とする無線通信装置。
PCT/JP2012/005538 2011-10-27 2012-08-31 アンテナ装置及び無線通信装置 WO2013061502A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/989,460 US9019163B2 (en) 2011-10-27 2012-08-31 Small antenna apparatus operable in multiple bands including low-band frequency and high-band frequency with ultra wide bandwidth
CN201280003892XA CN103229356A (zh) 2011-10-27 2012-08-31 天线装置以及无线通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-235902 2011-10-27
JP2011235902 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013061502A1 true WO2013061502A1 (ja) 2013-05-02

Family

ID=48167360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005538 WO2013061502A1 (ja) 2011-10-27 2012-08-31 アンテナ装置及び無線通信装置

Country Status (4)

Country Link
US (1) US9019163B2 (ja)
JP (1) JPWO2013061502A1 (ja)
CN (1) CN103229356A (ja)
WO (1) WO2013061502A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151139A1 (ja) * 2014-03-31 2015-10-08 日本電気株式会社 アンテナ及びアンテナアレイ、無線通信装置
JP2018117260A (ja) * 2017-01-19 2018-07-26 Necプラットフォームズ株式会社 アンテナ装置および無線通信装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205429169U (zh) * 2013-12-26 2016-08-03 株式会社村田制作所 天线装置及电子设备
US10693218B2 (en) * 2014-07-01 2020-06-23 Microsoft Technology Licensing, Llc Structural tank integrated into an electronic device case
EP2963736A1 (en) * 2014-07-03 2016-01-06 Alcatel Lucent Multi-band antenna element and antenna
US9985341B2 (en) 2015-08-31 2018-05-29 Microsoft Technology Licensing, Llc Device antenna for multiband communication
CN114639953A (zh) * 2016-02-19 2022-06-17 株式会社友华 天线装置
CN106374226B (zh) * 2016-09-30 2024-04-16 深圳市信维通信股份有限公司 用于第五代无线通信的双频阵列天线
USD803198S1 (en) * 2016-10-11 2017-11-21 Airgain Incorporated Antenna
WO2019003683A1 (ja) * 2017-06-27 2019-01-03 株式会社村田製作所 デュアルバンド対応アンテナ装置
WO2019008171A1 (en) * 2017-07-06 2019-01-10 Fractus Antennas, S.L. MODULAR MULTI-STAGE ANTENNA SYSTEM AND COMPONENT FOR WIRELESS COMMUNICATIONS
CN115939736A (zh) 2017-07-06 2023-04-07 伊格尼恩有限公司 用于无线通信的模块化多级天线系统和组件
US10320069B2 (en) * 2017-09-11 2019-06-11 Apple Inc. Electronic device antennas having distributed capacitances
TWI656696B (zh) 2017-12-08 2019-04-11 財團法人工業技術研究院 多頻多天線陣列
WO2019183798A1 (zh) * 2018-03-27 2019-10-03 华为技术有限公司 一种天线
CN108832315A (zh) * 2018-06-20 2018-11-16 袁涛 宽频段的单频ism电小天线
US11342949B2 (en) 2018-06-25 2022-05-24 Sonova Ag Transmission system for a body-worn electronic device
CN109273830A (zh) * 2018-10-12 2019-01-25 重庆传音科技有限公司 天线及移动设备
CN111987463A (zh) * 2019-05-23 2020-11-24 康普技术有限责任公司 用于基站天线的紧凑多频带和双极化辐射元件
CN110165409B (zh) * 2019-05-31 2021-06-01 歌尔科技有限公司 一种天线装置及通信设备
CN113381217B (zh) * 2020-02-25 2023-08-04 泰科电子(上海)有限公司 连接器和线缆
EP3920326A1 (en) * 2020-06-05 2021-12-08 Continental Automotive GmbH Antenna arrangement for electronic vehicle key

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213820A (ja) * 1995-02-06 1996-08-20 Nippon Sheet Glass Co Ltd 自動車電話用ガラスアンテナ装置
WO2007091578A1 (ja) * 2006-02-08 2007-08-16 Nec Corporation アンテナ装置及びそれを用いた通信装置
JP2009111999A (ja) * 2007-10-10 2009-05-21 Hitachi Metals Ltd マルチバンドアンテナ
JP2009206847A (ja) * 2008-02-28 2009-09-10 Harada Ind Co Ltd 携帯端末用アンテナ
JP2009239463A (ja) * 2008-03-26 2009-10-15 Konica Minolta Holdings Inc アンテナ装置及び電子機器
JP2010041359A (ja) * 2008-08-05 2010-02-18 Fujikura Ltd 多周波アンテナ
WO2010137061A1 (ja) * 2009-05-26 2010-12-02 株式会社 東芝 アンテナ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777324B2 (ja) * 1988-03-23 1995-08-16 セイコーエプソン株式会社 腕装着型無線機
JP2001185938A (ja) 1999-12-27 2001-07-06 Mitsubishi Electric Corp 2周波共用アンテナ、多周波共用アンテナ、および2周波または多周波共用アレーアンテナ
CN101641827B (zh) * 2007-03-23 2016-03-02 株式会社村田制作所 天线以及无线通信机
JP4389275B2 (ja) * 2007-08-24 2009-12-24 株式会社村田製作所 アンテナ装置及び無線通信機
US8471768B2 (en) * 2009-12-22 2013-06-25 Nokia Corporation Method and apparatus for an antenna
US8933853B2 (en) * 2011-07-11 2015-01-13 Panasonic Intellectual Property Corporation Of America Small antenna apparatus operable in multiple bands

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213820A (ja) * 1995-02-06 1996-08-20 Nippon Sheet Glass Co Ltd 自動車電話用ガラスアンテナ装置
WO2007091578A1 (ja) * 2006-02-08 2007-08-16 Nec Corporation アンテナ装置及びそれを用いた通信装置
JP2009111999A (ja) * 2007-10-10 2009-05-21 Hitachi Metals Ltd マルチバンドアンテナ
JP2009206847A (ja) * 2008-02-28 2009-09-10 Harada Ind Co Ltd 携帯端末用アンテナ
JP2009239463A (ja) * 2008-03-26 2009-10-15 Konica Minolta Holdings Inc アンテナ装置及び電子機器
JP2010041359A (ja) * 2008-08-05 2010-02-18 Fujikura Ltd 多周波アンテナ
WO2010137061A1 (ja) * 2009-05-26 2010-12-02 株式会社 東芝 アンテナ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151139A1 (ja) * 2014-03-31 2015-10-08 日本電気株式会社 アンテナ及びアンテナアレイ、無線通信装置
JPWO2015151139A1 (ja) * 2014-03-31 2017-04-13 日本電気株式会社 アンテナ及びアンテナアレイ、無線通信装置
US10476132B2 (en) 2014-03-31 2019-11-12 Nec Corporation Antenna, antenna array, and radio communication apparatus
JP2018117260A (ja) * 2017-01-19 2018-07-26 Necプラットフォームズ株式会社 アンテナ装置および無線通信装置

Also Published As

Publication number Publication date
US9019163B2 (en) 2015-04-28
CN103229356A (zh) 2013-07-31
JPWO2013061502A1 (ja) 2015-04-02
US20130249753A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2013061502A1 (ja) アンテナ装置及び無線通信装置
JP5826823B2 (ja) アンテナ装置及び無線通信装置
US10819031B2 (en) Printed circuit board antenna and terminal
JP5260811B1 (ja) アンテナ装置及び無線通信装置
AU2012330892B2 (en) Capacitively coupled compound loop antenna
WO2013051188A1 (ja) アンテナ装置及び無線通信装置
WO2011102143A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
JP5526131B2 (ja) アンテナ装置及び無線通信装置
WO2013051187A1 (ja) アンテナ装置及び無線通信装置
WO2012140814A1 (ja) アンテナ装置及び無線通信装置
US9306275B2 (en) Multi-antenna and electronic device
JPWO2012104941A1 (ja) アンテナ装置及び無線通信装置
WO2013175903A1 (ja) アンテナ装置及びmimo無線装置
US10320057B2 (en) Antenna device, wireless communication device, and band adjustment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013523805

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13989460

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12844469

Country of ref document: EP

Kind code of ref document: A1