WO2013060262A1 - 一种甲基叔丁基醚裂解制异丁烯催化剂、制备方法及应用 - Google Patents

一种甲基叔丁基醚裂解制异丁烯催化剂、制备方法及应用 Download PDF

Info

Publication number
WO2013060262A1
WO2013060262A1 PCT/CN2012/083397 CN2012083397W WO2013060262A1 WO 2013060262 A1 WO2013060262 A1 WO 2013060262A1 CN 2012083397 W CN2012083397 W CN 2012083397W WO 2013060262 A1 WO2013060262 A1 WO 2013060262A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
silicalite
butyl ether
acid
molecular sieve
Prior art date
Application number
PCT/CN2012/083397
Other languages
English (en)
French (fr)
Inventor
张淑梅
乔凯
陈明
翟庆铜
郭长新
王春梅
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110325820.4A external-priority patent/CN103073380B/zh
Priority claimed from CN201110325817.2A external-priority patent/CN103071518B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US14/353,366 priority Critical patent/US9708229B2/en
Priority to KR1020147013089A priority patent/KR102010938B1/ko
Publication of WO2013060262A1 publication Critical patent/WO2013060262A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0354Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J2029/062Mixtures of different aluminosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/12Silica and alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/03Catalysts comprising molecular sieves not having base-exchange properties
    • C07C2529/035Crystalline silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof

Definitions

  • the invention relates to a catalyst for cracking isobutylene of mercapto tert-butyl ether and a preparation method thereof. Background technique
  • Isobutylene is an important organic chemical raw material.
  • High-purity isobutylene is widely used in the production of butyl rubber, polyisobutylene and other products.
  • the high-purity isobutylene produced by the decomposition of mercapto tert-butyl ether (MTBE) is a method with advanced technology and good economy in many processes.
  • the by-product dioxime ether which is a by-product of MTBE cracking, is the main factor affecting the purity of the product isobutylene.
  • the product isobutylene is used in the production of butyl rubber, the requirements for its diterpene ether content are particularly strict. Therefore, it is the core of this technology to develop a catalyst with excellent MTBE cracking conversion rate and isobutylene selectivity to minimize or eliminate the formation of diterpene ether and reduce the burden of subsequent separation of MTBE cracking unit.
  • the catalysts for the MTBE cracking performance are: alumina catalyst, silica catalyst, ion exchange resin catalyst (such as DE 3509292A1, DE 3210435A1, US 4447668A, GB 1482883A, US 4570026A, US 4551567A), Shi Ke An acid salt catalyst (such as JP7626401), an activated carbon catalyst (such as JP7494602), a solid phosphoric acid catalyst (such as CN 96123535.7, EP 0118085A1) and the like.
  • alumina catalyst such as DE 3509292A1, DE 3210435A1, US 4447668A, GB 1482883A, US 4570026A, US 4551567A
  • Shi Ke An acid salt catalyst such as JP7626401
  • an activated carbon catalyst such as JP7494602
  • a solid phosphoric acid catalyst such as CN 96123535.7, EP 0118085A1
  • an alumina-based or silica-based catalyst as the MTBE cracking catalyst.
  • the alumina-based catalyst lowers the catalyst activity due to the large amount of alumina, and the reaction temperature is high.
  • the sterol formed by cleavage will dehydrate under the reaction conditions to form dimethyl ether, which not only reduces the yield of sterol, but also adversely affects product separation.
  • a suitable catalyst such as a silica-based catalyst or a catalyst containing both alumina and silica, is the main choice for improving the by-product of MTBE cracking.
  • the catalyst is prepared by calcining silica gel and hydrothermal treatment, calcining at 350 ⁇ 550 °C for 1 ⁇ 6h, and treating with saturated steam for 1 ⁇ 6h at 200 ⁇ 400 °C. Under the reaction conditions of 180 ⁇ 260°C, 0.1 ⁇ 0.8MPa and MTBE weight hourly space velocity of 2 ⁇ 6h -1 , the conversion of decyl tert-butyl ether and the selectivity of isobutylene are higher, but the secondary is also produced. The amount of the product diterpene ether is 0.30%.
  • the preparation method of the silicon-aluminum catalyst is as follows: First, preparing a silica-alumina sol, neutralizing with ammonia, aging, washing impurities, adding an auxiliary agent, and then treating (the article does not disclose a treatment method), molding, drying,
  • the catalyst was obtained by calcination at 850 °C.
  • the calcination temperature used is above 700 ° C to optimize the activity and selectivity of the catalyst, and when the calcination temperature is lower than 700 ° C, the side reaction activity of the obtained catalyst such as polymerization of isobutylene or dehydration of decyl alcohol increases. , thereby affecting the selectivity of the catalyst, while the deposition of the polymer in the by-products also affects the service life of the catalyst.
  • CN1853772A discloses a modified silica-alumina catalyst for the cracking of decyl-tert-butyl ether to isobutylene and a process for the preparation thereof.
  • the catalyst is obtained by treating amorphous silicon aluminum with saturated steam.
  • the specific surface area of amorphous silicon-aluminum alone is small, and the amount of L acid in the weak acid is relatively high, which not only affects the reactivity and selectivity of the catalyst.
  • the content of diammonium ether as a by-product of MTBE cleavage is still high. Summary of the invention
  • the present invention provides a pyridyl tert-butyl ether cleavage to isobutylene catalyst.
  • the catalyst can greatly reduce the formation of by-product diterpene ether while maintaining good conversion of mercapto tert-butyl ether and high selectivity to isobutylene and decyl alcohol.
  • the invention also relates to the preparation and use of the catalyst.
  • the total infrared acid amount of the weak acid in the present invention refers to the total amount of infrared total acid measured at 160 ° C minus the total amount of infrared acid measured at 250 ° C, and the B l 3 ⁇ 4 / L acid in the weak acid means 160 °.
  • the difference between the amount of B acid measured at C and the amount of B acid measured at 250 ° C and the amount of L acid measured at 160 ° C and the L acid measured at 250 ° C The ratio of the difference in the amount.
  • the total amount of infrared acid, B acid and L acid were determined by infrared spectroscopy using pyridine as a probe molecule.
  • the total amount of infrared acid and the B acid/L acid (molar ratio) described in the present invention are the amounts of acid in the weak acid.
  • the mass ratio of the amorphous silica-alumina to Silicalite-1 is 9.5:1 to 1:1, preferably 9:1 to 4:1.
  • the content of SiO 2 in the amorphous silica-alumina is 60 to 99 wt%, preferably 80 to 95 wt%, most preferably 87 to 93 wt%; and the content of A1 2 0 3 is 1 to 40 wt%, preferably It is 5 to 20 wt%, and most preferably 7 to 13 wt%.
  • the catalyst further comprises an active metal component selected from at least one of a Group III and a Group VIII metal.
  • the active metal component is contained in the catalyst in an amount of from 0.3 to 2.0% by weight based on the active metal element.
  • the first lanthanum metal is at least one selected from the group consisting of Be, Mg and Ca; and the Group VIII metal is at least one selected from the group consisting of Ni, Pd and Pt.
  • step b The material obtained in step b is hydrothermally treated to obtain a catalyst.
  • the silica gel, the aluminum gel and the Silicalite-1 molecular sieve crystallization solution are based on the weight of the dry base, that is, the silica gel is measured by Si0 2 , and the aluminum rubber is represented by A1 2 0 3 , Silicalite-1
  • the molecular sieve crystallizing solution is calculated by Si0 2 , and the weight ratio of the total weight of the silica gel and the aluminum gel to the crystallizing solution of the Silicalite-1 molecular sieve is 9.5:1-1:1, preferably 9:1 ⁇ 4:1; weight ratio of silica gel to aluminum gel 60: 40-99:1, preferably 80: 20-95: 5, most preferably 87: 13-93 : 7.
  • the Silicalite-1 molecular sieve or the Silicalite-1 molecular sieve crystallization solution can be synthesized by hydrothermal method, as follows: at a normal temperature, the concentration of 20-40% by weight of tetrapropylammonium hydroxide Adding the solution to the orthosilicate, or mixing the silica sol with a silica concentration of 20-30% by weight with tetrapropylammonium bromide and sodium hydroxide; the mixed slurry is stirred at 70-90 ° C. ⁇ 4h, then crystallized at 140 ⁇ 160 °C for 36 ⁇ 96h, to obtain Silicalite-1 molecular sieve crystallization solution.
  • the obtained Silicalite-1 molecular sieve crystallization solution is taken out, cooled, separated, washed, dried at 90-120 ° C for 2-6 h, and calcined at 450-600 ° C for 2-6 h to obtain Silicalite-1 molecular sieve.
  • the Silicalite-1 molecular sieve has a specific surface area of 300 to 400 m 2 /g and a pore volume of 0.15 to 0.20 mL/g.
  • the Silicalite-1 molecular sieve is an aluminum-free, all-silicon molecular sieve having an MFI structure.
  • the mixing described in the step a may be carried out by a mechanical mixing method, and the molding may be carried out by a molding method such as tableting, extruding, or rolling.
  • step a it can be dried at 90 ⁇ 120 °C for 2 ⁇ 5h, and can be calcined at 450 ⁇ 600 °C for 3 ⁇ 6h.
  • a process for cracking methyl isobutyl ether to produce isobutylene which comprises subjecting the methyl tert-butyl ether to a cracking reaction in the presence of the above catalyst to obtain isobutylene.
  • silica gel, aluminum gel and Silicalite-1 molecular sieve crystallization solution are mixed and hydrothermally treated as a catalyst, preferably loaded with an appropriate amount of active metal component, which can be used for the MTBE cracking process for isobutene.
  • the catalyst exhibits good catalytic performance, the selectivity of methanol and isobutylene is good, the conversion of MTBE is high, and the catalyst can also inhibit the formation of dimethyl ether as a by-product of the reaction.
  • the use of all-silica Silicalite-1 molecular sieve and amorphous silicon-aluminum composite can improve the acid strength and acid distribution of the catalyst, and is advantageous for hydrothermal treatment due to the coordination effect of Silicalite-1 molecular sieve and amorphous silica-alumina.
  • the catalyst has more B acid centers in the weak acid, and the L acid center is less, that is, the ratio of B acid/L acid in the weak acid is high, on the other hand, the pore structure of the catalyst is improved, and the MTBE is more suitable. And the diffusion of the cleavage product.
  • the hydrothermal treatment in the method provided by the invention also improves the polarity of the surface of the catalyst, especially the polarity of the surface of the Silicalite-1 molecular sieve, so that the surface of the catalyst is more hydrophobic and oleophilic, and the adsorption force to water is significantly weakened.
  • the adsorption of the reactants and the desorption of the product are made easier.
  • the introduction of the active metal component in the catalyst facilitates further increase of the total weak acid and B acid ratio of the catalyst, thereby improving the properties of the catalyst and reducing the amount of by-product dimethyl ether.
  • the catalyst provided by the invention is used for the cracking of methyl tert-butyl ether to produce isobutylene, and exhibits good catalytic performance, which not only improves the cracking activity of MTBE and the selectivity of the product isobutylene, but also reduces the amount of by-product dimethyl ether. . detailed description
  • Si0 2 content was 92.0 wt%
  • A1 2 0 3 content was 8.0 wt%.
  • a tetrapropylammonium hydroxide solution having a concentration of 30% by weight was added to tetraethyl orthosilicate at room temperature, and the mixed slurry was stirred at 80 ° C for 3 h, and then taken out at 150 ° C for 48 h, at 550 ° C.
  • the whole silicon molecular sieve Silicalite-1 was obtained by calcination for 4 h. Its properties are as follows: The specific surface area is 333 m 2 /g, and the pore volume is
  • amorphous silica-alumina SA and Silicalite-1 molecular sieve were mixed in a weight ratio of 9:1, and formed by ball rolling, dried at 110 ° C for 3 h, calcined at 500 ° C for 4 h, and then the material was treated with saturated steam at 200 ° C for 5 h, 110 Drying at °C for 3 h gave catalyst Cl.
  • Catalyst characterization data is shown in Table 1. Pyrolysis of mercapto tert-butyl ether to produce isobutylene
  • Example 3 The same as in Example 1, except that the amorphous silica-alumina SA and the Silicalite-1 molecular sieve were mixed at a weight ratio of 4:1 to obtain a catalyst C-2, and the data is shown in Table 1. The results of the cleavage reaction are shown in Table 2.
  • Example 3 The results of the cleavage reaction are shown in Table 2.
  • Example 2 Same as in Example 2, except that amorphous silica-alumina SA, Silicalite-1 molecular sieve was mixed with cerium oxide, wherein the amount of cerium oxide was 1.8% by weight in terms of cerium. Catalyst C-7 was obtained, and the data is shown in Table 1. The results of the cleavage reaction are shown in Table 2.
  • the molecular sieve crystallization solution Si-1-A is prepared by the following method: adding a tetrapropylammonium hydroxide solution having a concentration of 30 wt% to ethyl orthosilicate at normal temperature, and the mixed slurry is stirred at 80 ° C for 3 h, respectively. Then, it was taken out at 150 ° C for 48 hours to obtain a Silicalite-1 molecular sieve crystallization solution Si-1-A.
  • the cleavage reaction was studied on a microreactor.
  • the reaction conditions were as follows.
  • the volumetric space velocity of the mercapto tert-butyl ether (MTBE) solution was 2.0 h
  • the liquid hourly volume velocity of water was 0.5 h" 1
  • the temperature was 200 °C
  • the pressure was normal pressure.
  • the data is shown in Table 2.
  • Example 10 The same as in Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed at a weight ratio of 15:2:4 on a dry basis. Catalyst C-9 was obtained, and the data is shown in Table 1.
  • Example 10 The same as in Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed at a weight ratio of 15:2:4 on a dry basis. Catalyst C-9 was obtained, and the data is shown in Table 1.
  • Example 10 Example 10
  • Example 11 The same as Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed in a weight ratio of 10:1:2 on a dry basis. Catalyst C-10 was obtained, and the data is shown in Table 1. The results of the cleavage reaction are shown in Table 2.
  • Example 11 The results of the cleavage reaction are shown in Table 2.
  • Example 12 The same as in Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed at a weight ratio of 40:3:10 on a dry basis. Catalyst C-11 was obtained, and the data is shown in Table 1.
  • Example 12 The same as in Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed at a weight ratio of 40:3:10 on a dry basis. Catalyst C-11 was obtained, and the data is shown in Table 1.
  • Example 12 The same as in Example 8, except that the silica sol, the aluminum sol and the Silicalite-1 molecular sieve crystallization solution Si-1-A were mixed at a weight ratio of 40:3:10 on a dry basis. Catalyst C-11 was obtained, and the data is shown in Table 1.
  • Example 13 The same as in Example 9, except that the steam-treated and dried material was immersed in an aqueous solution of nickel chloride and magnesium chloride by a saturated impregnation method, and then dried at 110 ° C for 3 hours to obtain a catalyst C-12.
  • the data is shown in Table 1. .
  • the results of the cleavage reaction are shown in Table 2.
  • Example 15 Same as Example 10, except that the steam-treated and dried material was immersed in an aqueous solution of platinum nitrate by a saturated impregnation method, and then dried at 110 ° C for 3 hours to obtain a catalyst C-14, and the data is shown in Table 1. The results of the cleavage reaction are shown in Table 2.
  • Example 15 Same as Example 10, except that the steam-treated and dried material was immersed in an aqueous solution of platinum nitrate by a saturated impregnation method, and then dried at 110 ° C for 3 hours to obtain a catalyst C-14, and the data is shown in Table 1. The results of the cleavage reaction are shown in Table 2.
  • Example 15 Example 15
  • Example 16 The same as in Example 11, except that the steam-treated and dried material was immersed in an aqueous solution of cerium nitrate by a saturated impregnation method, and then dried at 110 ° C for 3 hours to obtain a catalyst C-15.
  • the data is shown in Table 1.
  • the results of the cleavage reaction are shown in Table 2.
  • Example 8 The same as in Example 8, except that silica sol, aluminum sol, Silicalite-1 molecular sieve crystallization liquid Si-1-A and magnesium oxide were mixed, and the amount of magnesium oxide was 1.8 wt% in terms of magnesium.
  • the weight ratio of silica sol, aluminum sol, Silicalite-1 molecular sieve crystallization solution Si-1-A is 20:2:3 on a dry basis, and the catalyst C-16 is obtained.
  • the data is shown in Table 1.
  • the results of the cleavage reaction are shown in Table 2. Comparative example 1
  • Example 9 Same as Example 9, except that the raw materials are silica sol and aluminum sol, and there is no Silicalite-1 -A
  • the sub-screen crystallization solution; the water vapor-treated and dried material was immersed in an aqueous solution of nickel chloride and magnesium chloride by a saturated impregnation method, and then dried at 110 ° C for 3 hours to obtain a catalyst H-4, and the data is shown in Table 1.
  • the total acid amount described in Table 1 is the total amount of infrared acid in the weak acid, and the B acid/L acid is the B acid/L acid in the weak acid. Comparative example 5
  • amorphous silica-alumina SA and ZSM-5 molecular sieves (the molar ratio of Si0 2 to A1 2 0 3 is 95:5) are mixed in a weight ratio of 9:1, and are formed by ball molding, dried at 110 ° C for 3 hours, and calcined at 500 ° C. 4h, catalyst H-5 was obtained.
  • the results of the cleavage reaction are shown in Table 2. Comparative example 6
  • the catalyst H-5 obtained in Comparative Example 5 was subjected to saturated steam treatment at 200 ° C for 5 hours, and dried at 110 ° C for 3 hours to obtain a catalyst H-6.
  • the results of the cleavage reaction are shown in Table 2.
  • Table 2 Data for the cracking of decyl tert-butyl ether to isobutylene Catalyst Conversion of mercapto tert-butyl ether Isobutene selectivity Content of diterpene ether in the product wt% wt% wt%
  • the catalyst comprising amorphous silicoalumino and Silicalite-1 molecular sieve provided by the present invention is used for the cracking of isobutylene by MTBE, which not only improves MTBE conversion, isobutene selectivity, but also improves the selectivity of MTBE.
  • the effect of reducing by-product diterpenes is very obvious. This indicates that the catalyst provided by the present invention has higher activity and selectivity.
  • the addition of the active metal component can more effectively control the side reaction, further reducing the content of the by-product diterpene ether.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种甲基叔丁基醚裂解制异丁烯催化剂,其包含无定形硅铝和Silicalite-1分子筛,催化剂中弱酸的红外总酸量为0.020-0.080mmol/g,弱酸的B酸/L酸为2.5-4.0。还提供了该催化剂的制备方法和应用。该催化剂对异丁烯的选择性高,甲基叔丁基醚的转化率高,而且还能较好地抑制副产物二甲醚的生成。

Description

一种曱基叔丁基醚裂解制异丁烯催化剂、 制备方法及应用 技术领域
本发明涉及一种用于曱基叔丁基醚裂解制异丁烯催化剂及其制备方法。 背景技术
异丁烯是重要的有机化工原料, 高纯度异丁烯被广泛用于生产丁基橡胶、 聚异丁烯等产品。 曱基叔丁基醚(MTBE ) 裂解制高纯度异丁烯是诸多制法中 技术先进, 经济性较好的一种方法。 MTBE裂解的副产物二曱醚是影响产品异 丁烯纯度的主要因素, 产品异丁烯用于生产丁基橡胶时, 对其二曱醚含量的要 求尤为严格。 因此研制出 MTBE 裂解转化率及异丁烯选择性均优的催化剂使 二曱醚尽量少生成或不生成, 减少 MTBE 裂解装置后续分离的负担, 是该项 技术的核心。
目前, 应用于 MTBE 裂解性能较优良的催化剂有: 氧化铝系催化剂, 氧 化硅系催化剂, 离子交换树脂催化剂 (如 DE 3509292A1 , DE 3210435A1 , US 4447668A, GB 1482883A, US 4570026A, US 4551567A ), 石克酸盐催化剂 (如 JP7626401 ) , 活性炭催化剂 (如 JP7494602 ) , 固体磷酸催化剂 (如 CN 96123535.7, EP 0118085A1 )等。
从催化剂活性、 稳定性、 再生可能性及成本等方面综合考虑, 采用氧化铝 系、 氧化硅系催化剂作为 MTBE裂解催化剂是较优的选择。 氧化铝系催化剂因为 氧化铝的大量存在使催化剂活性降低, 反应温度偏高。 特别是裂解生成的曱醇 在反应条件下会脱水生成二曱醚不仅使曱醇收率降低, 同时对产物分离带来不 利影响。
为降低或消除二曱醚的生成, 除了采用反应过程中注水工艺外, 选择合适 的催化剂, 如氧化硅基催化剂或同时含有氧化铝和氧化硅的催化剂, 是改善 MTBE裂解副产物的主要选择。
CN 96115213.3 中催化剂是将硅胶进行焙烧和水热处理制备的, 在 350~550°C下焙烧 l~6h,在 200~400°C下用饱和水蒸汽处理 l~6h而得的。该催 化剂在 180~260°C、 0.1~0.8MPa, MTBE重时空速 2~6h-1的反应条件下, 曱基 叔丁基醚的转化率和异丁烯的选择性较高,但同时生成的副产物二曱醚的量为 0.30%。
《精细石油化工》 1997 年第 4 期第 1~4 页刘福胜等发表的一篇题目为 "MTBE裂解制异丁烯催化剂的研究进展"中,从"氧化硅系催化体系 "一节可知, 当采用氧化硅系催化剂时, 单独用氧化硅, 几乎没有催化活性。 而在加入少量 氧化铝或用少量氧化铝改性后, 虽然其活性和选择性有较大提高, 但催化剂性 能受氧化硅原料纯度的影响较显著,比如 WO 8700166A1是将铝的可溶性盐溶 液浸渍到高纯度的氧化硅上, 然后经过干燥和焙烧, 制得改性催化剂。
《燃料化学学报》 2003年第 31卷第 2期第 156~160页公开了一篇题目为 "曱基叔丁基醚裂解制备高纯度异丁烯"的文章, 其中的硅铝催化剂中氧化硅含 量为 79wt%~89wt% , 氧化铝含量为 9wt%~12wt% , 还加入其它助剂含量为 10wt%~12wt%。 该硅铝催化剂的制备方法如下: 先制备成硅铝溶胶, 用氨水中 和,再经老化、洗杂质后加入助剂,然后再经处理后(此文章未公开处理方法), 成型, 干燥, 于 850°C焙烧, 制得该催化剂。 上述方法中, 所用的焙烧温度均 在 700°C以上才能使催化剂的活性和选择性达到最佳, 而焙烧温度低于 700°C 时, 所得催化剂的异丁烯聚合或曱醇脱水等副反应活性增加, 从而影响催化剂 的选择性, 同时由于副产物中聚合物的沉积也会影响催化剂的使用寿命。
CN1853772A公开了一种用于曱基叔丁基醚裂解制异丁烯的改性硅铝催化 剂及其制备方法。 该催化剂是用饱和水蒸汽处理无定形硅铝而得的, 由于单独 采用无定形硅铝比表面积较小, 而且弱酸中 L酸量相对较高, 不但影响了催化 剂的反应活性和选择性的提高, 而且 MTBE裂解副产物二曱醚的含量仍较高。 发明内容
针对现有技术中的不足之处,本发明提供了一种曱基叔丁基醚裂解制异丁 烯催化剂。该催化剂在保持良好的曱基叔丁基醚转化率以及较高的异丁烯和曱 醇选择性的同时, 能大幅度减少副产物二曱醚的生成。 本发明还涉及所述催化 剂的制备及应用。
根据本发明的一个方面, 提供了一种曱基叔丁基醚裂解制异丁烯催化剂, 所述催化剂包括无定形硅铝和 Silicalite-1分子筛, 催化剂中弱酸的红外总酸量为 0.020-0.080 mmol/g, B酸 /L酸为 2.5~4.0。
本发明中所述弱酸的红外总酸量是指 160°C时测得的红外总酸量减去 250°C时测得的红外总酸量, 弱酸中的 B l¾/L酸是指 160°C时测得的 B酸量与 250°C时测得的 B酸量的差值与 160 °C时测得的 L酸量与 250°C时测得的 L酸 量的差值的比值。 所述红外总酸量、 B酸和 L酸是采用红外光谱法测定的, 以 吡啶为探针分子。 本发明中所述的红外总酸量以及 B酸 /L酸(摩尔比) 均为 弱酸中的酸量。
在上述催化剂中, 所述无定形硅铝与 Silicalite-1的质量比为 9.5:1~1: 1 , 优选 为 9:1~4: 1。
在上述催化剂中, 所述无定形硅铝中, Si02的含量为 60~99wt%, 优选为 80~95wt % , 最优选 87~93wt %; A1203的含量为 l~40wt % , 优选为 5~20wt % , 最优选 7 ~13wt %。
在上述催化剂中, 所述 Silicalite-1分子筛是不含铝的具有 MFI结构的全硅分 子 , 具有特殊的十元环孔道结构, 良好的热稳定性, 化学稳定性和疏水性。
在上述催化剂中, 所述催化剂还包含活性金属组分, 所述活性金属组分选 自第 ΠΑ族和第 VIII族金属中的至少一种。 所述活性金属组分以活性金属元素计 在催化剂中的含量为 0.3~2.0wt%。所述的第 ΠΑ族金属选自 Be、 Mg和 Ca中的至少 一种; 所述的第 VIII族金属选自 Ni、 Pd和 Pt中的至少一种。
在上述催化剂中,所述催化剂的比表面积为 240~400 m2/g,孔容为 0.3~0.8 mL/g„
在上述催化剂中, 所述的比表面积是根据 ASTM D3663-2003标准采用低 温液氮吸附法测定的, 孔容是根据 ASTM D4222-2003标准采用低温液氮吸附 法测定的。 本发明中原料纯度及产品组成采用气相色谱法分析。
根据本发明的另一个方面, 还提供了一种制备上述催化剂的方法, 包括: a将无定形硅铝和 Silicalite-1分子筛混合, 或将硅胶、 铝胶和 Silicalite-1 分子筛晶化液混合, 成型后, 干燥和焙烧;
b步骤 a所得的物料经水热处理, 得到催化剂。
在上述方法中, 步骤 a中, 所述无定形硅铝可采用现有技术中常规的方法 制备, 如共沉淀法、 分步沉淀法和机械混合法。 一般情况下, 制备无定形硅铝 的焙烧温度低于 700°C , 最好是在 200~600°C。 本发明所用的无定形硅铝也可 以采用硅铝凝胶为原料, 在 200~600°C下焙烧 3~8h而得。 所述无定形硅铝的 性质如下: 比表面积为 240~450m2/g, 孔容为 0.4~0.9mL/g; 优选为: 比表面积 为 270~410m2/g, 孔容为 0.5~0.7mL/g。
在上述方法中, 步骤 a中, 硅胶、 铝胶和 Silicalite-1分子筛晶化液混合物 中以干基的重量为基准, 即硅胶以 Si02计, 铝胶以 A1203计, Silicalite-1分子 筛晶化液以 Si02计,硅胶和铝胶总重量与 Silicalite-1分子筛晶化液的重量比为 9.5:1-1:1 , 优选为 9: 1~4:1 ; 硅胶与铝胶的重量比 60: 40-99: 1 , 优选为 80: 20-95: 5, 最优选 87: 13-93: 7。 所述的硅胶采用硅溶胶。 所述的铝胶可由 常规方法制备的铝溶胶, 比如氯化铝法、 硝酸铝法、 硫酸铝-偏铝酸钠法、 偏 铝酸钠 -二氧化碳法中一种或多种制得。
在上述方法中, 步骤 a中, 所述 Silicalite-1分子筛或 Silicalite-1分子筛晶 化液可以采取水热法合成, 具体如下: 在常温下将浓度为 20~40wt%的四丙基 氢氧化铵溶液加入到正硅酸乙酯中, 或将二氧化硅浓度为 20~30wt %的硅溶胶 与四丙基溴化铵、 氢氧化钠混合; 上述混合浆液在 70~90°C条件下搅拌 2~4h, 然后在 140~160°C自生压力下晶化 36~96h, 即得到 Silicalite-1分子筛晶化液。 将得到的 Silicalite-1 分子筛晶化液取出冷却、 分离、 洗涤, 经 90~120°C干燥 2~6h, 在 450~600°C焙烧 2~6h, 得到 Silicalite-1分子筛。 所述 Silicalite-1分子 筛的比表面积为 300~400m2/g, 孔容为 0.15~0.20mL/g。 所述 Silicalite-1分子筛 是不含铝的具有 MFI结构的全硅分子筛。
在上述方法中,步骤 a中所述的混合可采用机械混合法,成型可采用压片、 挤条、 滚球等成型方法。 步骤 a中可在 90~120°C干燥 2~5h, 可在 450~600°C 焙烧 3~6h。
在上述方法的一个实施例中, 步骤 b 中, 用饱和水蒸汽处理, 温度为 100-600 °C , 时间为 l~10h, 优选温度为 100-300 °C , 时间为 4~8h。 经水热处 理后优选经干燥步骤, 得到本发明的催化剂。 其中所述的干燥条件如下: 在 90~120°C干燥 2.0~6.0h。
在上述方法中, 将含活性金属组分的化合物在 a步或 b步中加入。 通过将 含活性金属组分的化合物的加入催化剂中的方式可以包括浸渍法、混合法中的 一种或多种。 所述的浸渍法可采用饱和浸渍法、 喷浸法、 过饱和浸渍法等。 所 述活性金属组分选自第 ΠΑ族和第 VIII族金属中的至少一种。所述的第 ΠΑ族 金属选自 Be、 Mg、 Ca中的至少一种; 所述的第 VIII族金属选自 Ni、 Pd、 Pt 中的至少一种。 在 a步中加入时, 可以采用混合法, 如将含活性金属组分的化 合物以固体或溶液的方式加入到步骤 a中, 与无定形硅铝和 Silicalite-1分子筛 混合, 或者与硅胶、 铝胶和 Silicalite-1分子筛晶化液混合, 然后成型、 干燥和 焙烧; 也可以采用浸渍法, 如 a步中成型得到的物料浸入含可溶性活性金属盐 的水溶液中, 然后再干燥、 焙烧。 所述可溶性活性金属盐可以为硝酸盐或卤化 物。 在 b步中加入时, 可以采用浸渍法, 如水热处理后的物料浸入含可溶性活 性金属盐的水溶液中, 然后在 90~120°C干燥 2~6h, 在 200~600°C焙烧 3~8h, 制备催化剂。
根据本发明的另一个方面,还提供了一种甲基叔丁基醚裂解制异丁烯的方 法, 包括所述甲基叔丁基醚在上述催化剂的存在下进行裂解反应制得异丁烯。
在上述方法中,所述反应条件为,甲基叔丁基醚液时体积空速为 Ο. ^ό.ΟΙι-1, 水的液时体积空速为( Ι.Ο Ιι·1 , 温度为 180~360°C , 压力为常压至 1.0MPa。 优 选地, 所述甲基叔丁基醚液时体积空速为 2.0~4.0 h"1 , 水的液时体积空速为 0.1~0.5h , 温度为 210~270°C , 压力为常压至 0.6 MPa。
在本发明中, 将硅胶、 铝胶和 Silicalite-1分子筛晶化液混合成型并经水热 处理后作为催化剂, 优选负载适量的活性金属组分, 可用于 MTBE 裂解制异 丁烯过程。 该催化剂表现出了较好的催化性能, 甲醇和异丁烯的选择性好, MTBE转化率高, 而且该催化剂还能较好地抑制反应副产物二甲醚的生成。
在本发明中, 采用的 Silicalite-1分子筛为不含铝的全硅分子筛, 具有 MFI 结构, 具有良好的热稳定性, 化学稳定性和疏水性。 而硅铝分子 如 Y型分子 筛、 β分子筛、 ZSM-5分子筛中由于有铝的存在, 不但会影响催化剂的酸性质, 还会提高催化剂的亲水性, 这些对 MTBE裂解反应不利。
在本发明催化剂中, 采用全硅 Silicalite-1分子筛与无定形硅铝复合, 能够 改善了催化剂的酸强度和酸分布, 并由于 Silicalite-1分子筛与无定形硅铝的协 调作用,有利于水热处理进一步调节催化剂的酸性质,使催化剂弱酸中的 B酸 中心较多, 而 L酸中心较少, 即弱酸中 B酸 /L酸的比值高, 另一方面改善了 催化剂的孔结构, 更加适宜 MTBE及裂解产物的扩散。 此外, 通过本发明提 供的方法中的水热处理还改善了催化剂表面的极性, 尤其是 Silicalite-1分子筛 表面的极性, 使催化剂表面憎水亲油性更强, 对水的吸附力明显减弱, 同时使 反应物的吸附和产物的脱附更容易。 在催化剂中引入活性金属组分后, 有利于 进一步提高催化剂的弱酸总量及 B 酸比值, 从而改善催化剂的性质, 减 少副产物二甲醚的生成量。
通过本发明提供的催化剂用于甲基叔丁基醚裂解制异丁烯,表现出良好的 催化性能, 不但提高了 MTBE 的裂解活性和产物异丁烯的选择性, 而且减少 了副产物二甲醚的生成量。 具体实施方式
下面结合实施例对本发明进行进一步说明,但并不构成对本发明的任何限 制。 本发明红外总酸、 B 酸和 L 酸的具体测定方法是根据东北大学出版社于 2000年 7月出版的《催化剂分析》一书中第 90-92页红外酸度测定方法测定的, 具体如下:
1. 样品的制备: 取磨细后样品 (粒度小于 200 目 ) 20毫克, 压成直径为 20毫米薄片置于红外吸收池内, 再取 200毫克样品(片状)装入石英弹簧下端 的吊杯中, 系统抽空至 1x10 2Pa, 加热到 500 °C恒温 1小时, 净化样品, 除去 覆盖在试样表面上的吸附物和水等;
2.在上述抽空条件下降到室温, 吸附吡啶 5分钟, 然后升温到 160°C , 平 衡 1小时, 脱附物理吸附的吡啶, 利用吡啶重量吸附法求得总酸量, 记录上述 条件下所得的红外光谱图, 其中 B 酸对应的谱带 1545cm-1 , L酸对应的谱带 1455cm"1 , 由此, 得到 160°C时的总酸量、 B酸量和 L酸量;
3. 继续升温至 250°C , 平衡 1小时, 脱附物理吸附的吡啶, 记录上述条件 下所得的红外光谱图, 利用吡啶重量吸附法求得总酸量, 记录上述条件下所得 的红外光语图, 其中 B 酸对应的语带 1545cm-1 , L酸对应的语带 1455cm-1 , 由此, 得到 250°C时的总酸量、 B酸量和 L酸量。 实施例 1 催化剂的制备
以硅和铝的重含量比以 Si02和 A1203计为 92.0: 8.0的硅铝凝胶为原料, 在 450 °C下焙烧 4h得到无定形硅铝 SA, SA的比表面积为 277m2/g, 孔容为
0.59mL/g, Si02含量为 92.0 wt%, A1203含量为 8.0 wt%。
在常温下将浓度为 30wt%的四丙基氢氧化铵溶液加入到正硅酸乙酯中,混 合浆液分别在 80°C搅拌 3h, 然后在 150°C下晶化 48h取出, 在 550°C焙烧 4h 得到全硅分子筛 Silicalite-1 , 其性质如下: 比表面积为 333m2/g , 孔容为
0.17mL/g„
将无定形硅铝 SA与 Silicalite-1分子筛以 9:1重量比混合, 并滚球成型, 110°C干燥 3h, 500°C焙烧 4h, 然后物料于 200 °C下饱和水蒸汽处理 5h, 110°C 干燥 3h, 得到催化剂 C-l。 催化剂表征数据见表 1。 曱基叔丁基醚裂解制异丁烯
在微反应器上进行裂解反应研究。反应条件如下, 曱基叔丁基醚(MTBE ) 液时体积空速为 2.5 h"1 , 水的液时体积空速为 0.5 h"1 , 温度为 225 °C , 压力为 0.2MPa。 试验结果如表 2中所示。 实施例 2
同实施例 1 , 不同之处在于, 无定形硅铝 SA与 Silicalite-1分子筛以 4:1 重量比混合, 得到催化剂 C-2, 数据见表 1。 裂解反应的结果数据见表 2。 实施例 3
同实施例 1 , 不同之处在于, 无定形硅铝 SB与 Silicalite-1分子筛以 1:1 重量比混合,无定形硅铝 SB中的 Si02含量为 83.0 wt%, A1203含量为 17.0 wt%, 比表面积为 320m2/g, 孔容为 0.61mL/g。 得到催化剂 C-3 , 数据见表 1。 裂解 反应的结果数据见表 2。 实施例 4
同实施例 3 , 不同之处在于, 无定形硅铝 SB与 Silicalite-1 分子筛以 5:1 重量比混合。 得到催化剂 C-4, 数据见表 1。 裂解反应的结果数据见表 2。 实施例 5
同实施例 1 , 不同之处在于采用饱和浸渍法, 将水蒸气处理并干燥的物料 浸入氯化镍与氯化镁的水溶液中, 然后在 110°C干燥 3h, 得到催化剂 C-5, 数 据见表 1。 裂解反应的结果数据见表 2。 实施例 6
同实施例 2, 不同之处在于采用饱和浸渍法, 将水蒸气处理并干燥的物料 浸入溶液硝酸钯与氯化钙的水溶液中, 然后在 110°C干燥 3h,得到催化剂 C-6, 数据表 1。 裂解反应的结果数据见表 2。 实施例 7
同实施例 2, 不同之处在于将无定形硅铝 SA、 Silicalite-1分子筛与氧化铍 混合, 其中氧化铍的用量以铍计为 1.8wt%。 得到催化剂 C-7, 数据见表 1。 裂 解反应的结果数据见表 2。 硅溶胶、 铝溶胶与 Silicalite-1分子筛晶化液 Si-1-A, 并以干基计为 10: 1 : 5的重量比混合, 滚球成型, 110°C干燥 3h, 500°C焙烧 4h, 然后物料于 300°C 下饱和水蒸汽处理 4h, 110°C干燥 3h, 得到催化剂 C-8。 催化剂表征数据见表 1。 其中分子筛晶化液 Si-1-A通过以下方法制备: 在常温下将浓度为 30wt%的 四丙基氢氧化铵溶液加入到正硅酸乙酯中, 混合浆液分别在 80°C搅拌 3h, 然 后在 150°C下晶化 48h取出, 得到 Silicalite-1分子筛晶化液 Si-1-A。
在微反应器上进行裂解反应研究。反应条件如下, 曱基叔丁基醚(MTBE ) 液时体积空速为 2.0 h , 水的液时体积空速为 0.5 h"1 , 温度为 200°C , 压力为 常压。 裂解反应的结果数据见表 2。 实施例 9
同实施例 8, 不同之处在于将硅溶胶、 铝溶胶与 Silicalite-1分子筛晶化液 Si-1-A以干基计以 15: 2: 4的重量比混合。 得到催化剂 C-9, 数据见表 1。 实施例 10
同实施例 8, 不同之处在于将硅溶胶、 铝溶胶与 Silicalite-1分子筛晶化液 Si-1-A以干基计以 10:1:2的重量比混合。 得到催化剂 C-10, 数据见表 1。 裂解 反应的结果数据见表 2。 实施例 11
同实施例 8, 不同之处在于将硅溶胶、 铝溶胶与 Silicalite-1分子筛晶化液 Si-1-A以干基计以 40:3:10的重量比混合。 得到催化剂 C-11 , 数据见表 1。 实施例 12
同实施例 9, 不同之处在于采用饱和浸渍法, 将水蒸气处理并干燥的物料 浸入氯化镍与氯化镁的水溶液中, 然后在 110°C干燥 3h, 得到催化剂 C-12, 数 据见表 1。 裂解反应的结果数据见表 2。 实施例 13
同实施例 9, 不同之处在于采用饱和浸渍法, 将水蒸气处理并干燥的物料 浸入硝酸钯与氯化钙的水溶液中, 然后在 110°C干燥 3h, 得到催化剂 C-13 , 数 据见表 1。 实施例 14
同实施例 10,不同之处在于采用饱和浸渍法,将水蒸气处理并干燥的物料 浸入硝酸铂的水溶液中,然后在 110°C干燥 3h,得到催化剂 C-14,数据见表 1。 裂解反应的结果数据见表 2。 实施例 15
同实施例 11 , 不同之处在于采用饱和浸渍法,将水蒸气处理并干燥的物料 浸入硝酸铍的水溶液中,然后在 110°C干燥 3h,得到催化剂 C-15,数据见表 1。 裂解反应的结果数据见表 2。 实施例 16
同实施例 8, 不同之处在于将硅溶胶、 铝溶胶、 Silicalite-1 分子筛晶化液 Si-1-A 以及氧化镁混合, 其中氧化镁的用量以镁计为 1.8wt%。 其中硅溶胶、 铝溶胶、 Silicalite-1分子筛晶化液 Si-1-A的重量比以干基计为 20:2:3 , 得到催 化剂 C- 16 , 数据见表 1。 裂解反应的结果数据见表 2。 对比例 1
同实施例 1 , 不同之处在于没有经过饱和水蒸气处理, 得到催化剂 H-1 , 数据见表 1。 裂解反应的结果数据见表 2。 对比例 2
同实施例 9, 不同之处在于没有经过饱和水蒸气处理, 得到催化剂 H-2, 数据见表 1。 裂解反应的结果数据见表 2。 对比例 3
同实施例 5 , 不同之处在于, 催化剂中无 Silicalite-1-A分子筛。 得到的催 化剂 H-3 , 数据见表 1。 裂解反应的结果数据见表 2。 对比例 4
同实施例 9, 不同之处在于: 原料为硅溶胶和铝溶胶, 无 Silicalite-1 -A分 子筛晶化液; 采用饱和浸渍法, 将水蒸气处理并干燥的物料浸入氯化镍与氯化 镁的水溶液中, 然后在 110°C干燥 3h, 得到催化剂 H-4, 数据见表 1。
在微反应器上进行裂解反应研究。 反应条件同实施例 9。 裂解反应的结果 数据见表 2。 表 1 催化剂
Figure imgf000011_0001
*注: 表 1中所述的总酸量为弱酸中的红外总酸量, B酸 /L酸为弱酸中的 B酸 /L酸。 对比例 5
将无定形硅铝 SA与 ZSM-5分子筛 (Si02与 A1203的摩尔比为 95:5 ) 以 9:1重量比混合, 并滚球成型, 110°C干燥 3h, 500°C焙烧 4h, 得到催化剂 H-5。 裂解反应的结果数据见表 2。 对比例 6
将对比例 5所得的催化剂 H-5于 200°C下饱和水蒸汽处理 5h, 110°C干燥 3h, 得到催化剂 H-6。 裂解反应的结果数据见表 2。 表 2 曱基叔丁基醚裂解制异丁烯的数据 催化剂 曱基叔丁基醚转化率 异丁烯选择性 产物中二曱醚的含量 wt% wt% wt%
实施例 1 C-1 99.9 99.9 0.27
实施例 2 C-2 99.9 99.9 0.27
实施例 3 C-3 99.9 99.9 0.29
实施例 4 C-4 99.9 99.9 0.25
实施例 5 C-5 99.9 99.9 0.20
实施例 6 C-6 99.9 99.9 0.19
实施例 Ί C-7 99.9 99.9 0.21
实施例 8 C-8 99.9 99.9 0.28
实施例 10 C-10 99.9 99.9 0.24
实施例 12 C-12 99.9 99.9 0.21
实施例 14 C-14 99.9 99.9 0.19
实施例 15 C-15 99.9 99.9 0.23
实施例 16 C-16 99.9 99.9 0.27
对比例 1 H-1 87.2 99.9 0.40
对比例 2 H-2 89.0 99.9 0.37
对比例 3 H-3 99.6 99.8 0.39
对比例 4 H-4 99.7 99.8 0.36
对比例 5 H-5 80.2 96.5 0.44
对比例 6 H-6 85.1 97.8 0.41 从表 2可以看出,采用本发明提供的包含无定形硅铝和 Silicalite-1分子筛的催 化剂用于 MTBE裂解制异丁烯, 跟现有技术相比, 不但提高了 MTBE转化率、 异 丁烯选择性, 而且对降低副产二曱醚的效果十分明显。 这说明本发明提供的催 化剂具有较高的活性和选择性。 同时, 活性金属组分的加入能够更有效地控制 副反应, 进一步降低副产物二曱醚的含量。

Claims

权利要求书
I. 一种曱基叔丁基醚裂解制异丁烯催化剂, 所述催化剂包括无定形硅铝和
Silicalite- 1分子筛, 催化剂中弱酸的红外总酸量为 0.020~0.080 mmol/g , 弱酸的 B 酸 /L酸为 2.5~4.0。
2. 根据权利要求 1所述的催化剂,其特征在于,所述无定形硅铝与 Silicalite- 1 的质量比为 9.5:1~1:1。
3. 根据权利要求 2所述的催化剂,其特征在于,所述无定形硅铝与 Silicalite- 1 的质量比为 8:1~4: 1。
4. 根据权利要求 1~3 中任意一项所述的催化剂, 其特征在于, 所述无定 形硅铝中, Si02的含量为 60~99wt%, A1203的含量为 l~40wt %。
5. 根据权利要求 4所述的催化剂, 其特征在于, 所述无定形硅铝中, Si02 的含量为 80~95wt % , A1203的含量为 5~20wt %。
6. 根据权利要求 1~5任一项所述的催化剂, 其特征在于, 所述催化剂还包含 活性金属组分, 所述活性金属组分选自第 ΠΑ族和第 VIII族金属中的至少一种。
7. 根据权利要求 6所述的催化剂,其特征在于,所述活性金属组分以活性 金属元素计在催化剂中的含量为 0.3~2.0wt%。
8. 根据权利要求 7所述的催化剂, 其特征在于, 所述的第 ΠΑ族金属选自 Be、 Mg和 Ca中的至少一种; 所述的第 VIII族金属选自 Ni、 Pd和 Pt中的至 少一种。
9. 一种制备权利要求 1~5中任一项所述催化剂的方法, 包括:
a将无定形硅铝和 Silicalite- 1分子筛混合, 或将硅胶、 铝胶和 Silicalite- 1 分子筛晶化液混合, 成型后, 干燥和焙烧;
b步骤 a所得的物料经水热处理, 得到催化剂。
10. 根据权利要求 9所述的方法, 其特征在于, 步骤 b中, 用饱和水蒸汽 处理, 温度为 100~600°C , 时间为 l~10h。
II. 根据权利要求 9或 10所述的方法,其特征在于,将含活性金属组分的 化合物在 a步或 b步中加入。
12. 根据权利要求 11所述的方法,其特征在于,所述活性金属组分选自第 IIA族和第 VIII族金属中的至少一种。
13. 根据权利要求 12所述的方法, 其特征在于, 所述的第 ΠΑ族金属选自
Be、 Mg和 Ca中的至少一种; 所述的第 VIII族金属选自 Ni、 Pd和 Pt中的至 少一种。
14. 一种曱基叔丁基醚裂解制异丁烯的方法, 包括所述曱基叔丁基醚在权 利要求 1~8中任意一项所述的催化剂的存在下进行裂解反应制得异丁烯。
15. 根据权利要求 14所述的方法, 其特征在于, 所述反应条件为, 曱基叔 丁基醚液时体积空速为 Ο. ^ό.ΟΙι·1, 水的液时体积空速为 0~1.0 h"1, 温度为 180~360°C, 压力为常压至 1.0MPa。
16. 根据权利要求 15所述的方法, 其特征在于, 所述反应条件为, 曱基叔 丁基醚液时体积空速为 2.0~4.0 h"1, 水的液时体积空速为 Ο.Ι Ο^Ιι·1, 温度为 210~270°C, 压力为常压至 0.6MPa。
PCT/CN2012/083397 2011-10-25 2012-10-24 一种甲基叔丁基醚裂解制异丁烯催化剂、制备方法及应用 WO2013060262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/353,366 US9708229B2 (en) 2011-10-25 2012-10-24 Catalyst for preparing isobutene by dissociation of methyl tert-butyl ether, preparation method and use thereof
KR1020147013089A KR102010938B1 (ko) 2011-10-25 2012-10-24 메틸 tert-부틸 에테르의 해리에 의해 제조된 이소부텐 촉매 및 그것의 제조 방법 및 용도

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110325820.4A CN103073380B (zh) 2011-10-25 2011-10-25 一种甲基叔丁基醚裂解制异丁烯催化剂的制备方法
CN201110325820.4 2011-10-25
CN201110325817.2A CN103071518B (zh) 2011-10-25 2011-10-25 一种甲基叔丁基醚裂解制异丁烯催化剂及其制备方法
CN201110325817.2 2011-10-25

Publications (1)

Publication Number Publication Date
WO2013060262A1 true WO2013060262A1 (zh) 2013-05-02

Family

ID=48167121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083397 WO2013060262A1 (zh) 2011-10-25 2012-10-24 一种甲基叔丁基醚裂解制异丁烯催化剂、制备方法及应用

Country Status (4)

Country Link
US (1) US9708229B2 (zh)
KR (1) KR102010938B1 (zh)
TW (1) TWI586429B (zh)
WO (1) WO2013060262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453822A (zh) * 2018-10-30 2019-03-12 安徽海德化工科技有限公司 一种由甲基叔丁基醚裂解制异丁烯反应用改性硅胶催化剂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713850B (zh) * 2020-05-26 2023-08-15 中国石油化工股份有限公司 Mtbe裂解制丙烯催化剂及其制备方法和应用
CN117229112A (zh) * 2023-11-13 2023-12-15 山东寿光鲁清石化有限公司 一种甲基叔丁基醚裂解制备异丁烯的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684767A (zh) * 2002-08-29 2005-10-19 阿尔伯麦尔荷兰有限公司 用于生产轻质烯烃的催化剂
CN1853772A (zh) * 2005-04-27 2006-11-01 中国石油化工股份有限公司 用于甲基叔丁基醚裂解制异丁烯的催化剂
FR2894851A1 (fr) * 2005-12-15 2007-06-22 Total France Sa Composition catalytique et procede de craquage catalytique en lit fluidise utilisant une telle composition
FR2894975A1 (fr) * 2006-12-14 2007-06-22 Total France Sa Produit hydrocarbone obtenu par un procede de craquage catalytique en lit fluidise utilisant une composition catalytique particuliere.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8001342A (nl) * 1980-03-06 1980-07-31 Shell Int Research Werkwijze voor het uitvoeren van katalytische omzettingen.
CN101380588B (zh) * 2007-09-04 2010-12-29 中国石油化工股份有限公司 一种加氢裂化催化剂载体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1684767A (zh) * 2002-08-29 2005-10-19 阿尔伯麦尔荷兰有限公司 用于生产轻质烯烃的催化剂
CN1853772A (zh) * 2005-04-27 2006-11-01 中国石油化工股份有限公司 用于甲基叔丁基醚裂解制异丁烯的催化剂
FR2894851A1 (fr) * 2005-12-15 2007-06-22 Total France Sa Composition catalytique et procede de craquage catalytique en lit fluidise utilisant une telle composition
FR2894975A1 (fr) * 2006-12-14 2007-06-22 Total France Sa Produit hydrocarbone obtenu par un procede de craquage catalytique en lit fluidise utilisant une composition catalytique particuliere.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109453822A (zh) * 2018-10-30 2019-03-12 安徽海德化工科技有限公司 一种由甲基叔丁基醚裂解制异丁烯反应用改性硅胶催化剂

Also Published As

Publication number Publication date
US20140275683A1 (en) 2014-09-18
TWI586429B (zh) 2017-06-11
US9708229B2 (en) 2017-07-18
KR102010938B1 (ko) 2019-08-14
KR20140091703A (ko) 2014-07-22
TW201330928A (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
Sushkevich et al. Meerwein–Ponndorf–Verley–Oppenauer reaction of crotonaldehyde with ethanol over Zr-containing catalysts
EP3016738B1 (en) Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material
KR102229053B1 (ko) 개질된 복합 분자체 및 그 제조 방법과 적용, 및 촉매와 그 적용
Jing et al. Direct dehydration of 1, 3-butanediol into butadiene over aluminosilicate catalysts
Yan et al. Synthesis of dimethyl ether from syngas using a hierarchically porous composite zeolite as the methanol dehydration catalyst
JP5354976B2 (ja) 軽質オレフィン類製造用触媒及び軽質オレフィン類の製造方法
TWI586429B (zh) Catalyst for the preparation of isobutene from methyl tertiary butyl ether and its preparation and application
Luo et al. Influence of the ZSM-5 support acidity on the catalytic performance of Pd/ZSM-5 in lean methane oxidation
CN103071518B (zh) 一种甲基叔丁基醚裂解制异丁烯催化剂及其制备方法
Li et al. Mesoporous HBeta zeolite obtained via zeolitic dissolution–recrystallization successive treatment for vapor-phase Doebner–Von Miller reaction to quinolines
WO2021129760A1 (zh) 一种dlm-1分子筛及其制造方法和应用
JP2021070022A (ja) 長鎖直鎖パラフィンの水素化異性化触媒、長鎖直鎖パラフィンの水素化異性化触媒の製造方法、及び長鎖直鎖パラフィンの水素化異性化反応による分岐パラフィンの製造方法
Ishihara et al. Preparation of hierarchical catalysts with the simultaneous generation of microporous zeolite using a template and large mesoporous silica by gel skeletal reinforcement and their reactivity in the catalytic cracking of n-dodecane
CN103073380B (zh) 一种甲基叔丁基醚裂解制异丁烯催化剂的制备方法
Kustova et al. Synthesis and characterization of mesoporous ZSM-5 core-shell particles for improved catalytic properties
Seo et al. Influence of the fluorine loading level on the skeletal isomerization of 1-butene over fluorine-modified alumina
Sadeghpour et al. Three-step short-time temperature-programmed hydrothermal synthesis of ZSM-5 with high durability for conversion of methanol to propylene
CN103071520B (zh) 甲基叔丁基醚裂解制异丁烯催化剂的制备方法
Yan et al. Etherification over Hβ zeolite modified by lanthanum ion exchange combined with low-temperature steam treatment
Guo et al. Shape-selective methylation of 4-methylbiphenyl to 4, 4'-dimethylbiphenyl over zeolite HZSM-5 modified with metal oxides of MgO, CaO, SrO, BaO, and ZnO
CN114433076B (zh) 一种负载型氢解催化剂及其制备方法与应用
Iftitah et al. Cyclization And Hydrogenation Of (+)-Citronellal To Menthols Over ZnBr 2 AND Ni Catalysts Supported On γ-Al 2 O 3
WO2023072041A1 (zh) 加氢-酸催化双功能催化剂及其制备方法和应用
WO2022003922A1 (ja) 1,3-ブタジエン合成触媒、及び1,3-ブタジエンの製造方法
WO2023061256A1 (zh) 硅铝分子筛scm-36、其制造方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844213

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14353366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013089

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12844213

Country of ref document: EP

Kind code of ref document: A1