WO2013059952A1 - Disipador de tabique - Google Patents

Disipador de tabique Download PDF

Info

Publication number
WO2013059952A1
WO2013059952A1 PCT/CL2012/000058 CL2012000058W WO2013059952A1 WO 2013059952 A1 WO2013059952 A1 WO 2013059952A1 CL 2012000058 W CL2012000058 W CL 2012000058W WO 2013059952 A1 WO2013059952 A1 WO 2013059952A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
elements
plates
contribute
transformed
Prior art date
Application number
PCT/CL2012/000058
Other languages
English (en)
French (fr)
Inventor
Juan Carlos DE LA LLERA Martín
Carl LÜDERS SCHWARZENBERG
José Tomás RODRÍGUEZ VALDÉS
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to MX2014005169A priority Critical patent/MX2014005169A/es
Publication of WO2013059952A1 publication Critical patent/WO2013059952A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/7407Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts
    • E04B2/7453Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling
    • E04B2/7457Removable non-load-bearing partitions; Partitions with a free upper edge assembled using frames with infill panels or coverings only; made-up of panels and a support structure incorporating posts with panels and support posts, extending from floor to ceiling with wallboards attached to the outer faces of the posts, parallel to the partition
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/82Removable non-load-bearing partitions; Partitions with a free upper edge characterised by the manner in which edges are connected to the building; Means therefor; Special details of easily-removable partitions as far as related to the connection with other parts of the building
    • E04B2/821Connections between two opposed surfaces (i.e. floor and ceiling) by means of a device offering a restraining force acting in the plane of the partition
    • E04B2/824Connections between two opposed surfaces (i.e. floor and ceiling) by means of a device offering a restraining force acting in the plane of the partition restrained elastically at one surface and inelastically at the opposing surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/74Removable non-load-bearing partitions; Partitions with a free upper edge
    • E04B2/76Removable non-load-bearing partitions; Partitions with a free upper edge with framework or posts of metal
    • E04B2/766T-connections
    • E04B2/767Connections between wall studs and upper or lower locating rails

Definitions

  • Non-structural partitions are elements that are installed in structures such as elements of separation of environments, protection against fire and noise.
  • This class of partitions unlike structural partitions, are not designed or constructed to withstand significant vertical loads.
  • Non-structural partitions are normally manufactured with low-cost elements and easy installation, such as thin metal or wooden profiles and plasterboard, cardboard or wood and fasteners. Therefore, this class of partitions allows you to easily modify the distribution and uses of the interior space of a home, office or other.
  • the partitions connect the floor with the roof of each floor of a structure and are commonly damaged by the relative displacement between the floors during an earthquake or other source of natural or artificial vibrations. Damage to the partition walls generates significant costs for their repair, which may even include their replacement.
  • non-structural partitions are not designed, manufactured and installed to function as energy dissipation elements. That is why it is proposed to transform them into elements capable of dissipating energy contributing to increase the capacity of a structure to dissipate energy contributing to improve its dynamic performance before a natural or artificial source of vibrations. Additionally, the proposed transformation will help to protect the partitions during the movement of the structure, allowing them to better accommodate the relative displacement between floors that normally causes them to fail. The damage that occurs in non-structural partitions formed by plasterboard and an internal metal or wooden structure, is due to the movement between the floors where the partitions are mounted.
  • Said movement deforms the partitions and causes them to fail due to (i) cutting between the plates, the vertical joints of the plates and the encounters with the walls and door openings causing separation of the partition, cracks and damage of the corners, (ii) by the crushing of the corners of the plates against the ceiling and the walls, and (iii) due to the damage caused by the screws normally used to fix the plasterboard sheets to the internal structure resulting from the relative movement between the two.
  • the principle of operation of this invention is to connect the partitions, such as partitions, to the structural elements (eg tiles, beams, columns, etc.) by means of devices that allow to accommodate relative displacements and dissipate energy.
  • the use of energy dissipators of the hysterical, frictional, viscous, magnetoreological and elastoreological plastic type is proposed.
  • the partitions cannot take large loads or deformations. Therefore, each heatsink connected to a partition will allow a relatively small amount of energy to dissipate.
  • partition dissipation makes it possible to dispense with structures and systems of special joints to accommodate commonly used structural heatsinks. This entails the benefit of reducing the use of materials and allows greater architectural freedom by improving the use of space by not requiring additional invasive structuring to locate the structural heatsinks. Additionally, the installation of dissipative elements in non-structural partitions does not require qualified personnel such as structural dissipators.
  • the present invention is related to the field of devices for energy dissipation in structures resulting from earthquakes, winds or any other natural or artificial cause of vibrations.
  • the proposed device makes it possible to transform partitions such as partitions into elements that contribute to dissipate energy by improving the structural dynamic response.
  • the invention also helps to protect the partitions by considerably reducing their deformation and damage due to displacement of mezzanines.
  • JP 1 137075 patent presents a seismic protection system for partitions, which also allows to dissipate energy.
  • this patent proposes 2 different systems of union between partitions, dissipators formed by blocks of viscoelastic material and the structure using metal profiles type C and L. Using these systems it is possible to join the internal structure or frame that forms the partition with the partition. upper floor slab.
  • the viscous wall proposed in US 5740652 is mounted between two floors of a structure and consists of one or more metal plates attached to the upper floor and immersed in a viscous fluid contained by a rectangular container attached to the lower floor. When the relative movement between the floors occurs, the plates will move with respect to the container by displacing the fluid and dissipating energy.
  • Plates bonded with viscous polymer o Complexity for assembly increasing the amount of operations necessary to install the partition (requiring the polymer to be applied, wait for the polymer to cure, install and remove the plate and internal structure joining screws). o It does not allow to easily accommodate vertical movements when the panels are attached to both the ceiling and the floor.
  • the heatsinks are designed to be connected to structural elements, to develop large dissipative forces and not to be installed in partition walls.
  • the patent [No. 46718, application No. 3404-2007] presents a metallic hysterical energy sink for use in structures. This is located in diagonals especially installed in a structure to take advantage of the relative displacement between floors.
  • This device consists of one or more U-shaped metal plates which is located between two plates parallel to those that are attached at the ends of the Ues. When the relative displacement of one plate with respect to the other occurs, the units deform plastically and roll on the plates dissipating energy.
  • the use of U-shaped heatsinks as energy dissipating devices of structures, partitions is proposed.
  • the present invention is aimed at developing devices for protection of partitions that are easy to install and remove, which helps reduce vibrations in structures by increasing the damping and also allows to protect the partitions during an earthquake.
  • the invention was conceived as a device to be installed between the upper end of the frame of a partition and structure, between partitions and between partitions and structural vertical elements such as columns and walls.
  • the proposed solution of energy dissipation and protection of partitions focuses on taking advantage of the relative movement between floors to dissipate energy. For this, it is proposed to use the partitions as elements that transfer the relative movement of the floor to the ceiling where the heatsinks are located. In order to maximize the energy dissipation capacity, it is necessary to reduce the deformations that the partition wall suffers, thus achieving that the movement between floors is mostly absorbed by the heatsink. The reduction of deformations of the partition requires strengthening both its internal structure and the anchoring system of the structure to the floor, reducing the rotation of the panels. That is why the invention also includes the reinforcement of the partition to maximize the energy dissipated by the proposed heatsinks and the protection of the partition. Additionally, the proposed heatsink can be hidden inside the partition without affecting its aesthetics.
  • the heatsinks proposed to protect partitions and dissipate energy are hysterical, frictional and viscoelastic, which allow large and multiple displacements to be accommodated.
  • Hysterical devices dissipate energy by taking advantage of the plastic deformation of the material from which they are made.
  • the design of the heatsink in terms of its geometry and materiality, is determined based on the maximum cutting force of the partition and the expected mezzanine displacement. Therefore, the design must be optimized in order to ensure the protection of the partition by maximizing dissipative capacity.
  • the frictional dissipation for partitions is oriented to take advantage of the relative movement between the partition and the structure to generate frictional heat.
  • the materials, and geometries from which the heatsinks are made, as well as the normal force between the surfaces will determine the force needed to start dissipating energy as well as the amount of energy dissipated.
  • the proposed viscoelastic heatsink will use blocks of said material attached to the internal structure of the partition and the structure where the partition is installed dissipating energy by deformation of the blocks.
  • the geometry and the type of material from which the blocks are made will determine the amount of energy dissipated.
  • One possible implementation of the hysteretic device is to use one or more U-shaped plates oriented on the main resistant shaft of the partition.
  • the units will be joined at their ends to two plates, one of which will be directly or indirectly attached to the frame of the partition and the other directly or indirectly to the structure.
  • it will force the partition to deform, forcing the heatsink to deform.
  • said deformation of the Ues exceeds a threshold defined by its geometry and materiality, they will begin to deform plastically at time that they roll between the plates dissipating energy and preventing the partition from continuing to deform.
  • the rolling condition allows this heatsink geometry to accommodate large deformations.
  • An additional advantage of the proposed design based on Ues is to allow to accommodate vertical displacements, which will be absorbed by the Ues.
  • the materiality and geometry of the units will determine the amount of energy they dissipate.
  • the materials from which the units are made will preferably be metallic, metal alloys, composite or polymeric materials.
  • the use of other geometries is also proposed for the manufacture of hysteretic heatsinks, these include the location of cut plates similar to an hourglass between two main parallel plates. The latter will be located as in the case of the plates of the Ues, one directly or indirectly attached to the partition and the other to the ceiling.
  • Another heatsink geometry consists of perforated plates, which can also be plastically deformed by lateral deformations.
  • Frictional heatsinks for partitions use 1 or more friction surfaces where the force that opposes the displacement between the partition and the structure dissipating energy will be generated. Frictional heatsinks require a normal force that generates the friction force, which is achieved by pre-tightening the friction surfaces. The normal force and the coefficient of friction that exists between the friction plates determine the minimum force to initiate the displacement as well as the total energy dissipated per deformation cycle.
  • Heatsinks for partitions based on viscoelastic materials will use one or more blocks of said material which is capable of dissipating energy when subjected to a complete deformation cycle.
  • blocks of viscoelastic material When blocks of viscoelastic material are installed in solidarity with the upper part of the internal structure of the partition and the roof of the structure where the partition is mounted, the relative deformation between the two will be used to deform the material.
  • the use of viscoelastic material has the advantage that it tends to restore the partition to its original position.
  • the use of visco-plastic material allows to accommodate vertical displacements acting on the partition.
  • Modularity of the solution can be adapted to the user's requirements.
  • Figure 1 Septum view with a heatsink located at its upper end
  • Figure 1 1 View of the system to control the clamping force between the friction plates
  • Figure 12 View of the system to stiffen the partitions using diagonals
  • Figure 1 shows an elevation of the partition which has a cut that allows to see its interior.
  • the partition is commonly formed by exterior panels (1) which cover the internal structure formed by vertical or upright elements (2) and horizontal elements or channels (3);
  • the term channel is used in this application in generic form to refer to channels as such, in case of being the metal structure, or screeds in case of wood.
  • the panels (1) are attached to the internal structure through the use of self-drilling screws (29).
  • the lower channel (3) is connected to the ground (6) by some system of fixation.
  • the upper channel (3) is connected to the heatsink (4), which is connected to the ceiling (5) by some clamping system (7).
  • the panels (1) are not in contact with either the floor (6) or the ceiling (5).
  • FIG. 2 A view of a possible configuration of the hysterical heatsink is shown in Figure 2.
  • This has two main plates (8) and (9) which are attached to U-shaped plates (10) using some type of permanent joint type welding, glue, rivet, bolt, etc.
  • the U (10) Upon the relative displacement of the upper plate (8) in the direction of the Ues (10) with respect to the lower plate (9), the U (10) will deform plastically bending which will allow them to roll on the plates (8) or (9). Said deformation will be achieved by plastic deformation of the units (10), dissipating energy.
  • FIG. 3 Another configuration of the hysterical heatsink is shown in Figure 3. It has two main plates (8) and (9) which are joined together by dissipating plates shaped like an hourglass (1 1), which will deform plastically when moving the upper plate (8) with respect to the lower one (9) in the direction perpendicular to the faces of the plates (11).
  • the plates (1 1) are fixed to one of the plates (8) or (9) by means of some type of permanent joint type welding, glue, rivet, bolt, etc., and embedded in a hole (12) existing in the other plate (9) or (8) as shown in Figure 4.
  • Figure 5 shows another configuration of the hysterical heatsink located above the septum.
  • the upper and lower plates (8) and (9) are joined by side plates (20), which have a series of elongated perforations (21). These perforations allow these plates (20) to deform plastically by dissipating energy when the upper (8) and lower (9) plates move relative in the direction along said plates (20).
  • Figures 6 and 7 show a possible implementation of the frictional device. This device dissipates energy from the relative movement between plates that rub.
  • the lower plate (9) has a vertical plate (13) attached which fits between 2 vertical plates (14) attached to the upper plate (8).
  • the plates (13) are perforated and by said perforations a bolt (15) with its respective nut (15b) is located, which are responsible for maintaining the contact pressure between the friction plates (13) and (14).
  • the vertical plate (13) or (14) must have an elongated perforation (17) as shown in Figure 8, this to prevent the bolt (15) from preventing said displacement.
  • Another possible configuration is the inversion of the device, in this, the two vertical plates (13) will be connected to the lower plate (9) and the intermediate vertical plate (13) to the upper plate (8).
  • a Beleville type elastic gland, pressure gland or other between the nut (15b) and the plate can be used.
  • FIG. 9 Another configuration of the frictional system is shown in Figures 9 and 10.
  • the dissipative friction is made between an omega-shaped plate (8) and fixed to the ceiling (5) and the partition channel (9).
  • the omega plate (8) has an elongated circular perforation (19) through which a bolt (18) passes through which allows it to move when the relative movement occurs in the main direction of the elongated perforation (19).
  • the bolt also crosses the channel (8) in a circular hole.
  • the bolt (18) is fixed by the nut (18b) and between them exerts the normal force on the omega (8) and the channel (19), which generates the friction force on the surface (22) that finally dissipates Energy.
  • Figure 12 presents a stiffening system consisting of diagonals that are added to the internal structure of the partition.
  • the diagonals (26) are connected to the upper and lower metal channels (3) of the internal partition structure by means of some connection system (29), which may include self-drilling screws, bolts and nuts, rivets, among others.
  • the diagonals (26) may or may not also be attached to the uprights (2) at the point where they intersect.
  • FIG. 13 shows another stiffening option, in which an L-shaped piece (27) is added, which joins both the channel (3) and the post (2) and therefore the floor.
  • the L-shaped piece (27) will be joined by some joint system, which can include self-drilling screws, bolts and nuts, rivets, adhesives among others.
  • the geometry of the piece that reinforces the upright (2) -channel (3) joint can have another shape as shown in the Figure. 14.
  • the piece (28) can be attached laterally to the upright (3) taking advantage of the connection by bolt, rivet or screw of the upright (2) to the channel (3). Again the stiffness of the joint will be increased by fixing the joint piece (28) to the floor.
  • connection of the channel to the floor and ceiling should be reinforced through the use of more joints, which normally corresponds to direct fixing systems inserted by means of fulminant.
  • the last stiffening proposed to improve the dissipative capacity of the partition consists of installing the plasterboard or panels (1) in horizontal orientation instead of the traditional vertical one, this is proposed both for the case in which one or two layers of panels (1) on each side of the partition. It is also considered to combine the orientations of the panels (1) in case two layers are used on each side, oriented one in the vertical direction and the other in the horizontal.
  • Figure 15 shows a side view of a possible configuration of a viscoelastic heatsink.
  • blocks of viscoelastic material (29) adheres at the bottom directly to the partition channel (9), while the upper part adheres to a plate (30) that is fixed to the ceiling (5 ) through some fixing system.
  • the shear deformation will cause the viscoelastic polymer (19) to dissipate energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

La presente invención está orientada a desarrollar dispositivos para protección de tabiques fáciles de instalar y remover, que contribuya a reducir las vibraciones en estructuras aumentando el amortiguamiento y además permitan proteger los tabiques durante un sismo. La invención fue concebida como un dispositivo para ser instalado entre el extremo superior del marco de un tabique y la estructura, entre tabiques y entre tabiques y elementos verticales estructurales tales como columnas y muros.

Description

DISIPADOR DE TABIQUE
MEMORIA DESCRIPTIVA Campo de la Invención
Cuando una estructura vibra producto de un terremoto, viento u otra fuente natural o artificial de vibraciones, ésta requiere disipar energía para volver al estado de inicial de reposo. En una estructura, la energía normalmente es disipada mediante el daño (fisuración y plastificación) de elementos estructurales. Aumentar el amortiguamiento de una estructura permite reducir las deformaciones a las que se verá sometida ésta contribuyendo a reducir el daño de de elementos no estructurales, a proteger a las personas y sus bienes, y por ende, a resguardar la operatibilidad de una de la estructura después de un terremoto u otra fuente fuerte de vibraciones naturales o artificiales.
Los tabiques no estructurales son elementos que se instalan en estructuras como elementos de separación de ambientes, protección contra fuego y ruido. Esta clase de tabiques a diferencia de los tabiques estructurales, no están diseñados ni construidos para soportar cargas verticales importantes. Los tabiques no estructurales son normalmente fabricados con elementos de bajo costo y fácil instalación, tales como perfiles metálicos delgados o de madera y planchas de yeso cartón o madera y elementos de fijación. Por ello, esta clase de tabiques permite modificar fácilmente la distribución y usos del espacio interior de una vivienda, oficina u otro. Los tabiques conectan el suelo con el techo de cada piso de una estructura y comúnmente se dañan producto del desplazamiento relativo entre los pisos durante un sismo u otra fuente de vibraciones naturales o artificiales. El daño de los tabique genera costos importantes para su reparación, la cual puede incluir incluso el reemplazo de los mismos. Tradicionalmente, los tabiques no estructurales no están diseñados, fabricados e instalados para funcionar como elementos de disipación de energía. Es por ello, que se propone transformarlos en elementos capaces de disipar energía contribuyendo aumentar la capacidad de una estructura de disipar energía contribuyendo a mejorar su desempeño dinámico ante una fuente natural o artificial de vibraciones. Adicionalmente, la transformación propuesta contribuirá a proteger los tabiques durante el movimiento de la estructura permitiendo a estos acomodar de mejor manera el desplazamiento relativo entre pisos que normalmente los hace fallar. El daño que ocurre en los tabiques no estructurales formados por planchas de yeso cartón y una estructura interna metálica o de madera, se debe al movimiento entre los pisos donde se montan los tabiques. Dicho movimiento deforma los tabiques y los hace fallar por (i) corte entre las planchas, las juntas verticales de la planchas y los encuentros con los muros y vanos de puertas produciendo separación del tabique, grietas y daño de las esquinas, (ii) por el aplastamiento de las esquinas de las planchas contra el techo y los muros, y (iii) por el daño que causan los tornillos que normalmente se usan para fijar las planchas de yeso cartón a la estructura interna producto del movimiento relativo entre ambos.
El principio de operación de esta invención consiste en conectar los tabiques, como tabiques, a los elementos estructurales (ej. lozas, vigas, columnas, etc.) mediante dispositivos que permitan acomodar desplazamientos relativos y disipar energía. Se propone el uso de disipadores de energía de tipo deformación plástica histerética, friccional, viscosos, magnetoreológicos y elastoreológicos. En general, debido a su materialidad y forma de construcción, los tabiques no pueden tomar grandes cargas ni deformaciones. Por lo tanto, cada disipador conectado a un tabique permitirá disipar una cantidad relativamente pequeña de energía. Sin embargo, dado que en un edificio/estructura se instalan muchos tabiques, esto hace que la capacidad disponible de disipación de energía sea importante. Otra ventaja de esta clase de dispositivos, es que permiten distribuir el amortiguamiento adicional que añaden a la estructura donde se instalen y no concentrarlo en unos pocos puntos, como ocurre cuando se utilizan grandes disipadores estructurales de energía. Por lo tanto, la solución usando disipación en tabiques permite prescindir de estructuraciones y sistemas de uniones especiales para acomodar los disipadores estructurales comúnmente usados. Esto conlleva el beneficio de reducir uso de materiales y permite una mayor libertad arquitectónica mejorando el uso del espacio al no requerir de estructuraciones adicionales invasivas donde ubicar los disipadores estructurales. Adicionalmente, la instalación de elementos disipativos en tabiques no estructurales no requiere de personal calificado como los disipadores estructurales.
La presente invención está relacionada al campo de dispositivos para la disipación de energía en estructuras producto de sismos, vientos o cualquier otra causa natural o artificial de vibraciones. El dispositivo propuesto permite transformar tabiques tales como tabiques, en elementos que contribuyan a disipar energía mejorando la respuesta dinámica estructural. La invención también ayuda a proteger los tabiques al disminuir considerablemente su deformación y daño producto del desplazamiento entrepisos. Para lograr una mayor eficiencia en la disipación de energía y un aumento en la protección de los tabiques, se propone rigidizarlos de manera de aumentar la efectividad de los disipadores, logrando que sean ellos los que absorban la mayoría del desplazamiento relativo entre pisos. Antecedentes
Diversos dispositivos y soluciones se han desarrollado para proteger los tabiques tanto estructurales como no estructurales,de las deformaciones de la estructura donde se instalan, causadas por fuentes naturales o artificiales tales como sismos, vientos, explosiones y otros. Dichas deformaciones, generan esfuerzos de corte y aplastamiento en los tabiques lo que los daña generando fisuras, grietas, desprendimiento de material e incluso el colapso de los mismos.
Múltiples soluciones que se han desarrollado para facilitar la construcción, instalación y protección de tabiques no estructurales. Estas incluyen sistemas modulares de ensamblado (US Pat 5546718 y US Pat 4761922) y desensamblado de tabiques (US Pat 3766696), así como sistemas para montar tabiques prefabricados (US Pat 4625476), entre otros. El desarrollo de sistemas para protección de tabiques de los efectos de sismos, se ha concentrado principalmente en permitir el movimiento relativo entre el sistema que fija el marco o estructura interna del tabique a los elementos estructurales a los cuales se fija esta. Entre ellos destacan los sistemas propuestos en las patentes US 2007/0107325A1, JP 9013550, JP 9310434, JP 8049328, JP 3029789 y JP 10121624. En ellas se proponen sistemas de unión móviles, los que permitan acomodar los movimientos relativos entre los elementos estructurales y los tabiques protegiéndolos, sin embargo dichos sistemas no contribuyen a disipar energía.
La patente JP 1 137075 presenta un sistema de protección sísmica de tabiques, el que también permite disipar energía. Específicamente, en esta patente se proponen 2 diferentes sistemas de unión entre tabiques, disipadores formados por bloques de material viscoelásticos y la estructura usando perfiles metálicos tipo C y L. Usando dichos sistemas se logra unir la estructura interna o marco que forma el tabique con la losa del piso superior. La pared viscosa propuesta en la patente US 5740652 se monta entre dos pisos de una estructura y consiste en una o más placas metálicas unidas al piso superior e inmersas en un fluido viscoso contenido por un recipiente rectangular unido al piso inferior. Al producirse el movimiento relativo entre los pisos, las placas se desplazarán con respecto al recipiente desplazando el fluido y disipando energía.
Otro sistema de disipación de energía para tabiques estructurales, se ha propuesto en [Dienhart, Blasetti y Shenton, J. of Structural Eng. 134, 87 (2008) pp 87-95]. Este sistema, considera que las planchas de yeso cartón están unidas mediante un adhesivo polimérico viscoelástico a la estructura de madera interna del tabique, prescindiendo del uso de tornillos. La unión polimérica permite el movimiento relativo entre las placas y la estructura evitando el daño prematuro de las primeras y disipando energía. Sin embargo, durante la construcción del tabique se deben atornillar las planchas a la estructura durante el curado del adhesivo. Otras conFiguraciones de sistemas disipativos para ser incorporadas en tabiques estructurales de madera fueron propuestas en [Dienhart, Shenton y Elliott, Earthquake Spectra, 15, 1 (1999) pp 67-86] todas basadas en el uso de disipadores de polímeros viscoelásticos. Los cuales son utilizados en diagonales y esquinas de la estructura interna de los tabiques así como en el anclaje de las planchas externas. También, se ha propuesto en uso de disipadores viscosos (sistema pistón-fluido) en tabiques estructurales [Symans, Cofer y Du, Earthquake Spectra, 20, 2, (2004), pp 451-482]. Dicha solución considera la instalación de disipadores viscosos al interior de un tabique. Para ello, se utiliza una estructuración adicional dentro de la estructura interna del tabique para transmitir los desplazamientos relativos de la parte superior a la inferior donde normalmente se instala el disipador. Por último, se propuso un sistema friccional para protección y disipación de energía en tabiques estructurales [Filiatrault, Earthquake Eng. & Structural Dynamics, 19, 2, (1990) pp 259-273]. Este dispositivo, considera rotulas fricciónales ubicadas en las esquinas internas de la estructura de un tabique, las cuales funcionan mediante el giro relativo de los componentes del marco interno disipando energía y reduciendo la deformación del marco.
Las soluciones que se han desarrollado hasta ahora se centran en incorporar sistemas de disipación a tabiques estructurales, las que tienen las siguientes desventajas
• Pared viscosa:
o Dicha solución está concebida como elemento definitivo de una estructura siendo ésta pared más compleja y difícil de instalar que un tabique e. Por lo mismo, estas paredes no permiten modificar fácilmente la estructuración interna del edificio donde se encuentren instaladas lo que es deseable en edificios de planta libre. o Las paredes viscosas para que sean eficientes y económicamente viables deben generar fuerzas de amortiguamiento grandes, lo que requerirá reforzar los elementos estructurales a los cuales se una.
o Variabilidad de la viscosidad del fluido como función de la temperatura y el tiempo.
o Por la complejidad del dispositivo, su gran tamaño y peso, esta solución requiere de mano de obra calificada y equipamiento especial para su instalación, tal como se presenta en la patente US 6457284.
• Placas adheridas con polímero viscoso: o Complejidad para el montaje aumentando la cantidad de operaciones necesarias para instalar el tabique (requiriendo aplicar el polímero, esperar a que cure el polímero, instalar y retirar los tornillos de unión plancha y estructura interna). o No permite acomodar fácilmente movimientos verticales al estar unidos los paneles tanto al techo como al piso.
• Sistema viscoso (amortiguador viscoso):
o Requiere de una estructura interna adicional para acomodar el disipador, lo que aumenta la complejidad de la construcción del tabique
o Para ser eficientes, requieren ser utilizado en tabiques estructurales que tengan alta rigidez, de manera que sean capaces de acomodar las cargas suficientes para que el disipador sea eficiente, lo que previene su uso en tabiques ligeros de perfiles metálicos y placas de yeso cartón
o Requiere más espacio (ancho) que un tabique convencional para acomodar al disipador y el sistema de unión al interior del tabique,
o Para asegurar la correcta instalación del sistema, requiere de mano de obra calificada para su instalación
o Asimetría de fuerzas debido a lo dificultad de instalar dos dispositivos juntos conectando esquinas opuestas de la estructura del tabique
• Sistema friccional
o Debido al bajo nivel de deformación por giro del marco interno del tabique y para lograr que el disipador sea eficiente, se requieren de fuerzas de compresión altas en los elementos de roce. Por lo mismo, se requiere contar con una estructura interna del tabique que sea suficientemente robusta para tomar altas cargas internas lo que aumenta la complejidad de montaje y el uso de materiales. El estado del arte en sistemas de disipación de energía para estructuras es bastante amplio, especialmente en el desarrollo de disipadores que permiten generar grandes fuerzas disipativas y que requieren de refuerzos y sistemas especiales para ser unidos a las estructuras. Entre ellos, se destacan los sistemas de disipación viscosos [www.taylor.com], fricciónales [www.palldynamics.com] y de deformación plástica histerética [www.fip-group.it]. En todos estos casos, los disipadores están pensados para ir conectados a elementos estructurales, desarrollar grandes fuerzas disipativas y no para ser instalados en tabiquesen tabiques . En particular la patente [N° 46718, solicitud N° 3404-2007] se presenta un disipador de energía histerético metálico para ser utilizado en estructuras. Este, se ubica en diagonales especialmentes instaladas en una estructura para aprovechar el desplazamiento relativo entre pisos. Este dispositivo consiste en una o más placas metálicas con forma de U la cual se ubica entre dos placa paralelas a las que se encuentra unidas en los extremos de las Ues. Al producirse el desplazamiento relativo de una placa respecto de la otra, las Ues se deforman plásticamente y ruedan sobre las placas disipando energía. En dicha patente, se propone el uso de los disipadores en forma de U como dispositivos disipadores de energía de estructuras, tabiques.
Resumen de la invención
La presente invención está orientada a desarrollar dispositivos para protección de tabiques fáciles de instalar y remover, que contribuya a reducir las vibraciones en estructuras aumentando el amortiguamiento y además permitan proteger los tabiques durante un sismo. La invención fue concebida como un dispositivo para ser instalado entre el extremo superior del marco de un tabique y la estructura, entre tabiques y entre tabiques y elementos verticales estructurales tales como columnas y muros.
La solución propuesta de disipación de energía y protección de tabiques se enfoca a aprovechar el movimiento relativo entre pisos para disipar energía. Para ello, se propone utilizar a los tabiques como elementos que transfieran el movimiento relativo del piso hasta el techo donde se ubiquen los disipadores. Para maximizar la capacidad de disipación de energía es necesario reducir las deformaciones que sufra el tabique logrando así que el movimiento entre pisos sea mayoritariamente absorbido por el disipador. La reducción de deformaciones del tabique requiere reforzar tanto su estructura interna como el sistema de anclaje de la estructura al piso reduciendo el giro de los paneles. Es por ello que la invención también incluye el reforzamiento del tabique para maximizar la energía disipada por los disipadores propuestos y la protección del tabique. Adicionalmente, el disipador propuesto puede quedar oculto dentro del tabique sin afectar la estética del mismo.
Los disipadores propuestos para proteger tabiques y disipar energía son de tipo histerético, friccional y viscoelástico, los que permiten acomodar grandes y múltiples desplazamientos. Los dispositivos histeréticos disipan energía aprovechando la deformación plástica del material del que estén hechos. El diseño del disipador, en cuanto a su geometría y materialidad, se determinan en base a la fuerza de corte máxima del tabique y al desplazamiento de entrepiso esperado. Por lo tanto, se debe optimizar el diseño de manera de asegurar la protección del tabique maximizando la capacidad disipativa. La disipación friccional para tabiques, se orienta a aprovechar el movimiento relativo entre el tabique y la estructura para generar calor por fricción. Los materiales, y geometrías de que estén hechos los disipadores, así como la fuerza normal entre las superficies determinarán la fuerza necesaria para comenzar a disipar energía así como la cantidad de energía disipada.
El disipador viscoelástico propuesto, utilizará bloques de dicho material unidos a la estructura interna del tabique y la estructura donde se instala el tabique disipando energía mediante la deformación de los bloques. La geometría y el tipo de material del que estén hechos los bloques determinaran la cantidad de energía disipada.
Una posible implementación del dispositivo histerético es usar una o más placas con forma de U orientadas en el eje resistente principal del tabique. Las Ues estarán unidas en sus extremos a dos placas, una de las cuales estará unida directa o indirectamente al marco del tabique y la otra directa o indirectamente a la estructura. De esta manera, al producirse un desplazamiento relativo entre pisos, éste forzará a que el tabique se deforme forzando al disipador a deformarse.. Cuando dicha deformación de las Ues supere un umbral definido por su geometría y materialidad, , estas comenzarán a deformarse plásticamente al tiempo que ruedan entre las placas disipando energía y evitando que el tabique continúe deformándose. La condición de rodadura le permite a esta geometría de disipador acomodar grandes deformaciones. Una ventaja adicional del diseño propuesto en base a Ues, es permitir acomodar desplazamientos verticales, los cuales serán absorbidos por las Ues. La materialidad y geometría de las Ues determinarán la cantidad de energía que disipan. Los materiales de que estén hechas las Ues serán preferentemente metálicos, aleaciones metálicas, materiales compuestos o poliméricos. Se propone también el uso de otras geometrías para la fabricación de disipadores histeréticos, estas incluyen la ubicación de placas cortadas con forma similar a un reloj de arena entre dos placas paralelas principales. Estas últimas se ubicarán al igual que en el caso de las placas de las Ues, una unida directa o indirectamente al tabique y la otra al techo. De esta manera, al generarse el desplazamiento relativo entre el techo y el tabique, se deformarán plásticamente las placas con forma de reloj de arena disipando energía. Otra geometría de disipador consiste en placas perforadas, las que también pueden ser deformadas plásticamente al sufrir deformaciones laterales.
Los disipadores fricciónales para tabiques, utilizan 1 o más superficies de roce donde se generará la fuerza que se oponga al desplazamiento entre el tabique y la estructura disipando energía. Los disipadores fricciónales requieren de una fuerza normal que genere la fuerza de roce, la cual se logra mediante el pre-apriete de las superficies de roce. La fuerza normal y el coeficiente de roce que exista entre las placas de rozamiento determinan la fuerza mínima para iniciar el desplazamiento así como la energía total disipada por ciclo de deformación.
Los disipadores para tabiques basados en materiales viscoelásticos, utilizarán uno o más bloques de dicho material el cual es capaz de disipar energía al ser sometido a un ciclo completo de deformación. Al ser instalados bloques de material viscoelástico solidario a la parte superior de la estructura interna del tabique y al techo de la estructura donde se monta el tabique, se aprovechará la deformación relativa entre ambos para deformar el material. El uso de material viscoelástico tiene como ventaja que tiende a restituir el tabique a su posición original. Además, el uso de material viscolástico permite acomodar desplazamientos verticales actuando sobre el tabique. Para reducir la deformación del tabique y así maximizar la deformación del disipador se propone rigidizar el primero, específicamente la estructura interna del tabique, de manera que la deformación del tabique sea reducida forzando así a deformarse al disipador de menor rigidez. Múltiples soluciones existen para lograr un aumento de rigidez asociado al uso de disipadores en tabiques. En el caso de tabiques cuya estructura interna sea construida tanto de madera como de perfiles metálicos de espesores reducidos, se propone entre otras soluciones: (i) el uso de elementos que rigidicen la unión de los montantes con ambos canales, especialmente con el canal inferior, (ii) rigidizar la unión del canal inferior con el suelo de manera que transmita las cargas a éste último en forma adecuada; (iii) el uso de diagonales que unan la parte superior e inferior de la estructura interna del tabique, (iv) uso de perfiles más gruesos en la estructuración interna del tabique, (v) unir las planchas a los canales, (vi) el uso de adhesivos entre montantes y canales, y entre el canal inferior y el suelo, por último (vii) cambiar la dirección de las planchas, ya que si ellas se colocan de forma horizontal en vez de vertical, se puede aumentar considerablemente su capacidad para tomar carga.
Entre las características principales de la presente invención se encuentra:
Permiten proteger tabiques
Son fáciles de instalar y remover sin requerir de mano de obra especializada
Permiten acomodar grandes desplazamientos
Facilitan distribuir cargas sin que sea necesario redi señar y reforzar la estructura
Modularidad de la solución se puede adaptar a los requerimientos del usuario.
Permiten regular fácilmente la energía disipada a través de: O Fuerza de fluencia del disipador histerético o de la normal del disipador friccional
o Variar el número y tamaño de los disipadores utilizados
o Rigidización del tabique
• Facilidad del disipador histerético para acomodar desplazamientos verticales de las losas
(suelo y techo) a donde se encuentren unidas
• Se puede utilizar en estructuras nuevas o ya existentes (reparación estructural)
Descripción resumida de las Figuras
Figura 1 Vista de tabique con un disipador ubicado en su extremo superior
Figura 2 Vista del disipador plástico-histerético formado por múltiples Ues Figura 3 Vista del disipador plástico-histerético formado por múltiples corbatas
Figura 4 Detalle del disipador de corbata
Figura 5 Vista del disipador friccional Figura 6 Vista en corte del disipador friccional
Figura 7 Vista de una de las placas del disipador friccional con un orificio alargado para permitir el desplazamiento del perno Figura 8 Disipador friccional simplificado
Figura 9 Vista lateral del disipador friccional simplificado Figura lO Vista de un disipador plástico-histerético
Figura 1 1 Vista del sistema para controlar la fuerza de apriete entre las placas de roce Figura 12 Vista del sistema para rigidizar los tabiques usando diagonales
Figura 13 Vista del sistema para rigidizar la unión del montante al canal Figura 14 Vista del sistema alternativo para rigidizar la unión del montante al canal Figura 15 Vista del sistema de disipación utilizando bloques de material viscoelasticos Descripción detallada de las Figuras
La Figura 1 muestra una elevación del tabique el cual cuenta con un corte que permite ver su interior. El tabique está formado comúnmente por paneles exteriores (1) las cuales recubren la estructura interna formada por elementos verticales o montantes (2) y elementos horizontales o canales (3); el término canal se utiliza en esta solicitud en forma genérica para referirse a canales propiamente tal, en caso de ser la estructura metálica, o a soleras en caso de ser de madera. Comúnmente, los paneles (1) van unidos a la estructura interna mediante el uso de tornillos autoperforantes (29). El canal inferior (3) va unido al suelo (6) mediante algún sistema de fijación. El canal (3) superior está unido al disipador (4), el cual está unido al techo (5) mediante algún sistema de sujeción (7). Los paneles (1) no están en contacto ni con el suelo (6) ni con el techo (5). En la Figura 2 se muestra una vista de una configuración posible del disipador histerético. Este cuenta con dos planchas principales (8) y (9) las cuales están unidas a placas en forma de U (10) usando algún tipo de unión permanente tipo soldadura, pegamento, remache, perno, etc. Al producirse el desplazamiento relativo de la placa superior (8) en la dirección de las Ues (10) respecto de la placa inferior (9), las U (10) se deformarán plásticamente doblándose lo que permitirá que rueden sobre las placas (8) o (9). Dicha deformación se logrará mediante deformación plástica de las Ues (10), disipando energía.
Otra configuración del disipador histerético es mostrada en la Figura 3. Esta cuenta con dos placas principales (8) y (9) las cuales están unidas entre sí por placas disipadoras con forma de reloj de arena (1 1), las cuales se deformarán plásticamente al desplazarse la placa superior (8) respecto de la inferior (9) en la dirección perpendicular a las caras de las placas (11). Las placas (1 1) van fijas a una de las placas (8) o (9) mediante algún tipo de unión permanente tipo soldadura, pegamento, remache, perno, etc., y encajadas en una perforación (12) existente en la otra placa (9) u (8) tal como se muestra en la Figura 4. La Figura 5 muestra otra configuración del disipador histerético ubicado sobre el tabique. En esta configuración, las placas superior e inferior (8) y (9) están unidas por placas laterales (20), las cuales tienen una serie de perforaciones alargadas (21). Estas perforaciones le permiten a estas placas (20) deformarse plásticamente disipando energía cuando las placas superior (8) e inferior (9) se desplacen en forma relativa en la dirección a lo largo de dichas placas (20). Las Figuras 6 y 7 muestran una posible implementación del dispositivo friccional. Este dispositivo disipa energía a partir del movimiento relativo entre placas que rozan. En la configuración mostrada, la placa inferior (9) tiene adherida una placa vertical (13) la cual encaja entre 2 placas verticales (14) unidas a la placa superior (8). Las placas (13) están perforadas y por dichas perforaciones se ubica un perno (15) con su respectiva tuerca (15b), los que se encargan de mantener la presión de contacto entre las placas de rozamiento (13) y (14). Para permitir el desplazamiento relativo entre las placas verticales (13) y las placas (14), la placa vertical (13) o las (14) debe contar con una perforación alargada (17) tal como se muestra en la Figura 8, esto para evitar que el perno (15) impida dicho desplazamiento. Otra configuración posible es la inversión del dispositivo, en esta, la dos placas verticales (13) estarán unidas a la placa inferior (9) y la placa vertical intermedia (13) a la placa superior (8). Para asegurar que la presión de contacto generada por el perno (15) se puede utilizar una golilla elástica tipo Beleville, golilla de presión u otra entre la tuerca (15b) y la placa.
Otra configuración del sistema friccional se muestra en las Figuras 9 y 10. En esta configuración, el roce disipativo se realiza entre una placa con forma de omega (8) y fija al techo (5) y el canal de tabique (9). Tal como se ve en la Figura 10, la placa omega (8) cuenta con una perforación circular alargada (19) por donde atraviesa un perno (18) el que permite que éste se traslade al producirse el movimiento relativo en la dirección principal de la perforación alargada (19). El perno también atraviesa el canal (8) en una perforación circular. El perno (18) se encuentra fijado por la tuerca (18b) y entre ambos ejerce la fuerza normal sobre la omega (8) y el canal (19), la que genera la fuerza de roce en la superficie (22) que finalmente disipa energía. Para regular la presión de contacto en las superficies de roce y por ende la fuerza de roce de cualquier sistema disipativo friccional para tabiques, se propone el uso de un elemento elástico entre la tuerca (18b) y la placa con que estaría en contacto dicha tuerca (18b) tal como se presenta en la Figura 11. Al girar la tuerca (15b) por el perno (15), se comprimirá el elemento elástico (23) que se ubique entre la tuerca (18b) y la placa (25) generando una fuerza controlable entre las placas (25) y (26). La fuerza ejercida entre las placas dependerá de la compresión y de la constante elástica del elemento elástico utilizado (23), el cual podrá ser un resorte helicoidal, resorte de Belleville, golilla a presión, golilla de goma u otro A continuación se describen posibles modalidades para rigidizar los tabiques de manera que permita aumentar la eficiencia de los disipadores conectados a ellos en: (i) disipación de energía y (ii) la protección de tabique. La primera forma de rigidizar los tabiques consiste en usar espesores mayores tanto en los montantes (2) como en los canales (3). La Figura 12 presenta un sistema de rigidización consistente en diagonales que se añaden a la estructura interna del tabique. En ella, las diagonales (26) están unidas a las canales metálicas (3) superior e inferior de la estructura interna del tabique mediante algún sistema de conexión (29), el que puede incluir tornillos auto-perforantes, pernos y tuercas, remaches, entre otros. Las diagonales (26) pueden o no ir también unidas a los montantes (2) en el punto donde se intersecten.
Otra manera de rigidizar el tabique es mediante la rigidización de la unión de los montantes (2) a los canales (3). La Figura. 13 muestra otra opción de rigidización, en la cual se agrega una pieza en forma de L (27), la cual se une tanto al canal (3) como al montante (2) y por ende al piso. La pieza en forma de L (27) se unirá mediante algún sistema de unión, el que puede incluir tornillos auto-perforantes, pernos y tuercas, remaches, adhesivos entre otros. La geometría de la pieza que refuerce la unión montante (2) -canal (3) puede tener otra forma tal como la mostrada en la Figura. 14. En esta Figura, la pieza (28) se puede unir en forma lateral al montante (3) aprovechando la unión mediante perno, remache o tornillo del montante (2) al canal (3). Nuevamente se aumentará la rigidez de la unión al fijar la pieza de unión (28) al piso.
Adicionalmente al uso de refuerzos en la estructura interna del tabique, se deberá reforzar la unión del canal al suelo y al techo mediante el uso de más uniones, las que normalmente corresponde sistemas de fijación directo insertados mediante fulminante.
La última rigidización propuesta para mejorar la capacidad disipativa del tabique consiste en instalar las planchas de yeso cartón o paneles (1) en orientación horizontal en vez de la tradicional vertical, esto se propone tanto para el caso en que se utilice una como dos capas de paneles (1) a cada lado del tabique. También se considera combinar las orientaciones de los paneles (1) en caso de que se utilicen dos capas por cada lado, orientando una en la dirección vertical y la otra en la horizontal.
La Figura 15 muestra una vista lateral de una posible configuración de un disipador viscoelástico. En la configuración mostrada, bloques de material viscoelástico (29) se adhiere en la parte inferior directamente al canal del tabique (9), mientras que la parte superior de ellos, se adhiere a una placa (30) que se fija al techo (5) mediante algún sistema de fijación. Al producirse el desplazamiento relativo de la placa superior (30) respecto del canal del tabique (29), se producirá la deformación cortante que hace que el polímero viscoelástico (19) disipe energía. La presente invención ha sido presentada en varias formas usando ejemplos que presentan ciertos niveles de particularidad, se entiende que la invención pueda variar en detalles constructivos para satisfacer necesidades particulares. El ámbito de la invención incluye tanto a los ejemplos específicos antes descritos como a las reivindicaciones que se presentan a continuación.

Claims

Dispositivo para la disipación de energía en estructuras producto de sismos, vientos o cualquier otra causa natural o artificial de vibraciones que permite transformar tabiques en elementos que contribuyan a disipar energía mejorando la respuesta dinámica de estructuras, a través de su conexión directa o indirecta, a elementos estructurales mediante dispositivos que permitan acomodar desplazamientos relativos y disipar energía, dicho dispositivo CARACTERIZADO porque comprende un tabique formado por planchas exteriores (1) las cuales recubren su estructura interna del tabique formada por elementos verticales o montantes
(2) y elementos horizontales o canales inferior y superior (3), donde el canal inferior (3) va unido al suelo (6) mediante un sistema de fijación; al menos un disipador al cual se une el canal superior (3) y que está conectado a la losa del piso superior o al techo de la estructura donde se instale el tabique (5) mediante un sistema de fijación (7).
Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 1 , CARACTERIZADO porque dicho tabique cuenta con al menos un disipador, el cual se instala entre el canal inferior (3) y la losa inferior (6) o piso de la estructura donde se instale el tabique (5) mediante un sistema de fijación (7), y el canal superior del tabique (5), se encuentra unido a la losa del piso superior o al techo de la estructura donde se instale el tabique (5) mediante un sistema de fijación (7).
3. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones anteriores, CARACTERIZADO porque dicho tabique es reforzado para maximizar la energía disipada por dicho disipador.
4. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones anteriores, CARACTERIZADO porque dicho disipador queda oculto dentro del tabique.
5. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones anteriores, CARACTERIZADO porque dicho tabique es rigidizado mediante diagonales (26) que se añaden a la estructura interna del tabique y que se unen a dichos canales (3) superior e inferior de la estructura interna del tabique mediante un sistema de fijación, el que puede incluir tornillos auto-perforantes, pernos y tuercas, remaches, entre otros.
6. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 5, CARACTERIZADO porque dichas diagonales (26) se unen a los montantes (2) en el punto donde se intersectan.
7. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones anteriores, CARACTERIZADO porque se rigidiza la unión de los montantes con los canales y al piso mediante una pieza de sujeción, preferentemente en forma de L (27), la cual se une tanto al montante (2) como al canal inferior (3) y al piso (6), mediante un sistema de fijación, el que puede incluir entre otros a tornillos auto-perforantes, pernos y tuercas, remaches, entre otros.
Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 7, CARACTERIZADO porque dicha pieza de sujeción se une en forma lateral al montante y al canal aprovechando la unión mediante perno, remache o tornillo u otro del montante (2) al canal (3), aumentando la rigidez de la unión al fijar la pieza de sujeción (28) directa o indirectamente al piso (6).
Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 8, CARACTERIZADO porque adicionalmente, se cambia la conexión de dichas planchas a la estructura interna uniéndolas a dichos canales.
10. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicaciones 8 y 9, CARACTERIZADO porque, adicionalmente, se cambia la conexión de dichos montantes a la estructura interna uniéndolas a dichos canales.
1 1. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicaciones 8 a 10, CARACTERIZADO porque las planchas se unen a los canales de forma vertical u horizontal
12. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones anteriores, CARACTERIZADO porque dicho al menos un disipador es del tipo histerético.
13. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 12 CARACTERIZADO porque dicho al menos un disipador del tipo histerético cuenta con dos placas principales (8) y (9) normalmente paralelas entre ellas, las cuales están unidas entre sí mediante placas en forma de U (10). Dichas Ues están orientadas de tal manera que la abertura de las mismas sea paralela a la dirección longitudinal de las placas a las que se unan. Para la unión de las Ues a las placas principales (8) y (9) se propone usar una unión permanente tipo soldadura, pegamento, remache, perno, u otra, de modo que al producirse el desplazamiento relativo de la placa superior (8) en la dirección de las Ues (10) respecto de la placa inferior (9), las Ues (10) se deformarán plásticamente entre las placas (8) o (9) disipando energía.
14. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 12 CARACTERIZADO porque dicho al menos un disipador del tipo histerético cuenta con dos placas principales (8) y (9) las cuales están unidas entre sí por placas disipadoras con forma de reloj de arena (11), las cuales se deformarán plásticamente al desplazarse la placa superior (8) respecto de la inferior (9); dichas placas disipadoras (1 1) van fijas en un extremo a una de las placas principales (8) o (9) mediante soldadura, pegamento, remache, perno, etc. y encajadas en su otro extremo a una perforación (12) existente en la otra placa principal.
15. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 14 CARACTERIZADO dichas placas disipadoras (1 1) van fijas en ambos extremos a las placas principales (8, 9).
16. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 12 CARACTERIZADO porque dicho al menos un disipador del tipo histerético cuenta con placas superior e inferior (8) y (9) las que están unidas por placas laterales (20), las que a su vez tienen una serie de perforaciones alargadas (21) las que permiten a dichas placas laterales (20) deformarse plásticamente disipando energía cuando las placas superior (8) e inferior (9) se desplacen en forma relativa en la dirección longitudinal de dichas placas laterales del tabique.
17. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones 1 a 1 1, CARACTERIZADO porque dicho al menos un disipador es del tipo friccional.
18. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 17, CARACTERIZADO porque dicho al menos un disipador del tipo friccional comprende una placa inferior (9) y adherida una placa de rozamiento vertical ascendente (13), la cual encaja entre dos placas de rozamiento verticales descendentes (14) las que a su vez están unidas a una placa superior (8); dicha placa de rozamiento vertical ascendente (13) tiene al menos una perforación alargada y dichas placas de rozamiento vertical descendente tienen al menos una perforación circular, por las cuales atraviesan sistemas de fijación (15) que se encargan de mantener la presión de contacto entre las placas de rozamiento verticales ascendentes y descendentes (13) y (14).
19. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 18, CARACTERIZADO porque dicha al menos una perforación alargada se encuentra implementada en dichas placas verticales descendentes y al menos una perforación circular se encuentra implementada en dicha placa vertical ascendente.
20. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 17, CARACTERIZADO porque dicho al menos un disipador del tipo friccional comprende una placa inferior (9) y adherida una placa de rozamiento vertical descendente (13), la cual encaja entre dos placas de rozamiento verticales ascendentes (14) las que a su vez están unidas a una placa superior (8); dicha placa de rozamiento vertical descendente (13) tiene al menos una perforación alargada y dichas placas de rozamiento vertical ascendente tienen al menos una perforación circular, por las cuales atraviesan dichos sistemas de fijación (15) los que en su interacción con sus respectivas tuercas (15b) se encargan de mantener la presión de contacto entre las placas de rozamiento verticales ascendentes y descendentes (13) y (14).
21. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 18, CARACTERIZADO porque dicha al menos una perforación alargada se encuentra implementada en dichas placas verticales ascendentes y al menos una perforación circular se encuentra implementada en dicha placa vertical descendente.
22. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 17, CARACTERIZADO porque dicho al menos un disipador del tipo friccional comprende al menos dos perfiles, uno en forma de omega y el otro en forma de C ,uno de los cuales está unido al techo directa o indirectamente y el otro está unido a la estructura del tabique en forme directa o indirecta; uno de los perfiles cuenta con al menos una perforación circular, y el otro con al menos una perforación alargada (19); por entre dichas perforaciones, atraviesa un sistema de fijación (18) y debido a la geometría alargada de una de las perforaciones, dicho sistema de fijación (18) puede trasladarse a lo largo de la perforación alargada (19) al producirse el desplazamiento relativo de los perfiles omega y C (9). Dicho sistema de fijación está formado por un perno y una tuerca (18b) los cuales aseguran el contacto entre los perfiles y mantienen una fuerza de contacto que produce una fuerza normal sobre la el perfil (8) o (9) opuesto, de modo que se produce una fuerza de roce en la superficie (22) la cual disipe energía al producirse el desplazamiento relativo de los perfiles .
23. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones 18 a 22, CARACTERIZADO porque para regular la presión de contacto en las superficies de roce y por ende la fuerza de roce en dicho disipador de tipo friccional, se incorpora en el elemento de fijación un elemento elástico entre la tuerca (18b) y el perfil o placa con que estaría en contacto dicha tuerca (18b), o bien, entre la cabeza de dicho perno y el perfil o placa.
24. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 23 CARACTERIZADO porque dicho elemento elástico es un resorte helicoidal, resorte de Belleville, golilla a presión, golilla de goma u otro.
25. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones 16 a 23 CARACTERIZADO porque dichos elementos de fijación son pernos y tuercas.
26. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones 1 a 10, CARACTERIZADO porque dicho al menos un disipador es de material viscoelástico.
27. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según la reivindicación 25, CARACTERIZADO porque el disipador de material viscoelástico se adhiere al canal del tabique (9) y a una placa superior (30) que se fija al techo (5).
28. Dispositivo para la disipación de energía que permite transformar tabiques en elementos que contribuyan a disipar energía, según las reivindicaciones 25 y 26,
CARACTERIZADO porque dicho disipador viscoelástico consiste de al menos un bloque de dicho material, los que estarán distribuidos a lo largo de la placa superior.
PCT/CL2012/000058 2011-10-27 2012-10-10 Disipador de tabique WO2013059952A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MX2014005169A MX2014005169A (es) 2011-10-27 2012-10-10 Disparador de tabique.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2687-2011 2011-10-27
CL26872011 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013059952A1 true WO2013059952A1 (es) 2013-05-02

Family

ID=48167014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2012/000058 WO2013059952A1 (es) 2011-10-27 2012-10-10 Disipador de tabique

Country Status (1)

Country Link
WO (1) WO2013059952A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530683A (en) * 2014-12-24 2016-03-30 Zero Bills Home Ltd Building construction
CN106401025A (zh) * 2016-10-12 2017-02-15 上海市建筑装饰工程集团有限公司 预防隔墙开裂的轻钢龙骨系统的施工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137075A (ja) * 1987-11-24 1989-05-30 Kajima Corp 制震間仕切壁
US4959934A (en) * 1988-01-27 1990-10-02 Kajima Corporation Elasto-plastic damper for use in structure
US5509238A (en) * 1993-08-03 1996-04-23 Tis Techniche Idraulico Stradali S.P.A. Multidirectional mechanical device dissipating energy, particularly for the constraint of structures in seismic zones
US20050086895A1 (en) * 2003-10-27 2005-04-28 Elliot A. C. Compression post for structural shear wall
US20070107325A1 (en) * 2003-12-05 2007-05-17 Placoplatre Device for the earthquake-resistant mounting of a partition
US20080016794A1 (en) * 2004-03-03 2008-01-24 Robert Tremblay Self-Centering Energy Dissipative Brace Apparatus With Tensioning Elements
MX2008015118A (es) * 2007-11-27 2009-05-28 Univ Pontificia Catolica Chile Disparador metalico de energia construido de forma modular, para reducir vibraciones en estructuras inducidas por sismos, viento, y otras fuentes mediante comportamiento histeretico del metal, que comprende al menos un modulo que consta de dos placas
JP2011144556A (ja) * 2010-01-14 2011-07-28 Panahome Corp 制振装置及びそれを用いた間仕切り壁

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137075A (ja) * 1987-11-24 1989-05-30 Kajima Corp 制震間仕切壁
US4959934A (en) * 1988-01-27 1990-10-02 Kajima Corporation Elasto-plastic damper for use in structure
US5509238A (en) * 1993-08-03 1996-04-23 Tis Techniche Idraulico Stradali S.P.A. Multidirectional mechanical device dissipating energy, particularly for the constraint of structures in seismic zones
US20050086895A1 (en) * 2003-10-27 2005-04-28 Elliot A. C. Compression post for structural shear wall
US20070107325A1 (en) * 2003-12-05 2007-05-17 Placoplatre Device for the earthquake-resistant mounting of a partition
US20080016794A1 (en) * 2004-03-03 2008-01-24 Robert Tremblay Self-Centering Energy Dissipative Brace Apparatus With Tensioning Elements
MX2008015118A (es) * 2007-11-27 2009-05-28 Univ Pontificia Catolica Chile Disparador metalico de energia construido de forma modular, para reducir vibraciones en estructuras inducidas por sismos, viento, y otras fuentes mediante comportamiento histeretico del metal, que comprende al menos un modulo que consta de dos placas
JP2011144556A (ja) * 2010-01-14 2011-07-28 Panahome Corp 制振装置及びそれを用いた間仕切り壁

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530683A (en) * 2014-12-24 2016-03-30 Zero Bills Home Ltd Building construction
CN106401025A (zh) * 2016-10-12 2017-02-15 上海市建筑装饰工程集团有限公司 预防隔墙开裂的轻钢龙骨系统的施工方法
CN106401025B (zh) * 2016-10-12 2019-02-19 上海市建筑装饰工程集团有限公司 预防隔墙开裂的轻钢龙骨系统的施工方法

Similar Documents

Publication Publication Date Title
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
US20130014636A1 (en) Blast absorbing cladding
KR101348577B1 (ko) 건물의 개구부에 설치된 수평보형 댐퍼를 이용한 내진보강방법
CN209277282U (zh) 一种阻尼器装配式框架节点的连接结构
US20090084056A1 (en) Brace Assembly Having Ductile Anchor
CN106401021A (zh) 装配式混凝土开缝剪力墙
KR101372087B1 (ko) 단위 모듈러 지진하중 흡수장치를 이용한 철골구조물 보강방법
CN205577143U (zh) 一种具有震后自复位功能的钢木混合抗震墙
CN113502980A (zh) 一种调节式消能预制墙柱
CN201439618U (zh) 抗风制震摩擦阻尼装置
WO2013059952A1 (es) Disipador de tabique
CN107882177A (zh) 自复位混凝土框架柱滑移节点
CN114165093A (zh) 一种装配式的减震结构及可恢复功能的剪力墙
CN105442721A (zh) 一种正交胶合木剪力墙耗能连接件
JP6912102B2 (ja) エネルギー吸収機構及び木造建物
JP2011038294A (ja) 付加質量制震建物
JP2001173130A (ja) 履歴減衰型せん断ダンパー
CN206408775U (zh) 带有阻尼的可恢复功能梁
CN212613011U (zh) 一种装配式减震框架
JP6535157B2 (ja) 耐震構造、建築用パネル及び建物
JP5183094B2 (ja) 制振構造体及び金属構造部材
CN108678487A (zh) 连接扭曲异形钢屋盖与高层建筑的波纹状金属板减震器
JP2005330696A (ja) 制震装置
KR101442487B1 (ko) 댐퍼고정 장치와 수평보형 댐퍼를 이용한 구조물 내진보강방법
WO2017199107A1 (es) Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14090421

Country of ref document: CO

Ref document number: 000609-2014

Country of ref document: PE

Ref document number: MX/A/2014/005169

Country of ref document: MX

122 Ep: pct application non-entry in european phase

Ref document number: 12844626

Country of ref document: EP

Kind code of ref document: A1