WO2017199107A1 - Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales - Google Patents

Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales Download PDF

Info

Publication number
WO2017199107A1
WO2017199107A1 PCT/IB2017/051709 IB2017051709W WO2017199107A1 WO 2017199107 A1 WO2017199107 A1 WO 2017199107A1 IB 2017051709 W IB2017051709 W IB 2017051709W WO 2017199107 A1 WO2017199107 A1 WO 2017199107A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
collaborating
slab
constructing
panel
Prior art date
Application number
PCT/IB2017/051709
Other languages
English (en)
French (fr)
Inventor
Carlos JIMENEZ SARTA
Original Assignee
Soluciones E Innovaciones Estructurales S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soluciones E Innovaciones Estructurales S.A.S. filed Critical Soluciones E Innovaciones Estructurales S.A.S.
Priority to CN201780030613.1A priority Critical patent/CN109415903A/zh
Priority to EP17798830.0A priority patent/EP3498931A4/en
Priority to US16/093,936 priority patent/US11332928B2/en
Priority to MX2018013036A priority patent/MX2018013036A/es
Publication of WO2017199107A1 publication Critical patent/WO2017199107A1/es

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • E04B5/04Load-carrying floor structures formed substantially of prefabricated units with beams or slabs of concrete or other stone-like material, e.g. asbestos cement
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/28Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups combinations of materials fully covered by groups E04C2/04 and E04C2/08
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/02Load-carrying floor structures formed substantially of prefabricated units
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/32Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material
    • E04C2/322Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure formed of corrugated or otherwise indented sheet-like material; composed of such layers with or without layers of flat sheet-like material with parallel corrugations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/02Material constitution of slabs, sheets or the like of ceramics, concrete or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2103/00Material constitution of slabs, sheets or the like
    • E04B2103/06Material constitution of slabs, sheets or the like of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/30Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure
    • E04C2/38Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the shape or structure with attached ribs, flanges, or the like, e.g. framed panels

Definitions

  • the present application refers to a prefabricated panel for lightened and unidirectional mezzanine slabs of composite section type, which combines: an upper collaborating sheet, a lower collaborating sheet and bolts or shear connectors that join the two components, allowing work as a section Composed, obtaining a high efficiency system to withstand demands of bending and cutting moments.
  • these panels have a low unit weight compared to existing systems. This translates into lower loads by own weight and mitigating inertial effects during seismic events, allowing less robust structural solutions, with less demand on the ground and much more economical.
  • Unidirectional slabs lightened with blocks or cassettes (1) such as those illustrated in Figure 1, where a general section of slab manufactured by this system is shown.
  • the lightening elements (1 1) can be: clay, concrete blocks,
  • the composite section system consisting of a collaborating sheet or concrete steel deck + (2), is shown in Figure 2, where a longitudinal section is shown Figure 2A and cross section of the system Figure 2B.
  • the collaborating sheet (21) serves a double function, the first as a form to receive the concrete (22), while it sets, and the second, once the concrete has set, the projections printed on it, prevent the concrete from sliding and obliges to work in solidarity with her, formed a composite system.
  • the maximum light (B) or separation between joists (23) of this plate is equal to or less than 2.5 m.
  • the weight per square meter of the plate varies according to the height of the concrete and the thickness or caliber of the collaborating sheet or Steel deck, which are combined. This category of floor slab handles unit weights within the range of 187.0 kg / m 2 to 286.0 kg / m 2 .
  • the prestressed cellular prefabricated plate system (4) is represented in Figure 4. This figure shows a cross section of one type of this plate for commercial areas.
  • the system consists of slender plates (41) pre-tensioned, made of high strength concrete and lightened with internal voids (42) in the form of tubular.
  • the lights of these plates are within the range of 2000 mm to 9500 mm and the proper weight between 135.0 kg / m 2 and 215.0 kg / m 2 .
  • the weight per square meter of this slab category is within the following range of 241.Okg / m 2 to 255.0kg / m 2
  • the systems in use require emptying of concrete in situ, except that of pre-tensioned cellular plates.
  • the envelope of weight ranges per square meter of the slab systems currently used is 206.0kg / m 2 to 600. Okg / m 2 .
  • prefabricated plates are those reported in Colombian application 06-018544, which discloses prefabricated concrete plates to form flat surfaces for tracks and roads, which comprise a body or volume with a quadrilateral contour and a metallic interior reinforcement and connection means with plates Adjacent of the same nature.
  • Said connection means with adjacent plates of the same nature are formed by a metal plate with extreme angular bends and anchor bolts. These metal plates connect the adjacent plates as a bridge with fixing anchor bolts in the vicinity of their respective attachment edges.
  • the described system focuses on the way in which prefabricated plates can be connected. This system at no time allows to reduce the weight of the plate and preserve a variable range of resistance to shear stresses and compression, which allows to withstand bending due to moments or tendencies to rotation that can be generated at a certain moment.
  • CN201424725 refers to a prefabricated concrete plate with a metal section, comprising a reinforced concrete bottom plate, a concrete top plate and two longitudinal bars of concrete, which are supported between the lower and upper plates through holes arranged on the sides of the longitudinal bars, a floor plate is formed by splicing multiple pieces of prefabricated reinforced concrete plates, a steel bar reinforcement penetrates through holes arranged on the sides of the longitudinal bars to connect with the different prefabricated pieces, then concrete is poured in order to fill and level the hollow cavities formed between the longitudinal bars, relieving the dead weight of the plate of the floor, prolonging its useful life.
  • the application FR19980000526 refers to a panel having a parallelepiped shape with noise absorption (3).
  • the assembly has parallel vertical ribs (30) of the trapezoidal cross section.
  • the underside of the connection section is flat.
  • the construction element is essentially characterized in that it is in the form of a substantially rectangular parallelepiped, and because it comprises two parts, a connection part and a sound absorption part, placed on the noise emission side, and has vertical and parallel ribs of thickness of trapezoidal cross section, while the upper face of said connecting part is in the same plane as the upper face of said absorption part, has a longitudinal recess to receive the mortar or the like, and the lower face of said connecting piece It is in the same plane as the underside of said absorption part, it is flat.
  • This construction element has a projecting part of the side edge that has a vertical groove for receiving a compressible joint.
  • the connection part comprises at least one wide vertical channel axis to receive mortar or the like in order to achieve the construction of the wall.
  • FIGURE 1 Illustrates a schematic section of a lightened unidirectional slab with blocks or cassettes.
  • FIGURE 2A It shows a longitudinal section of a composite section system.
  • FIGURE 2B It shows a cross section of a composite section system.
  • FIGURE 3. Illustrates the elements that make up the easy plate system
  • FIGURE 4. Shows a system of pre-fabricated pre-assembled alveolar plates.
  • FIGURE 5 Shows the longitudinal section of the composite plate panel (5), in accordance with the present application
  • FIGURE 6 Shows the cross section of the composite plate panel (5), in accordance with the present application
  • FIGURE 7 Shows in detail the characteristics of the lower collaborating sheet (52) of the plate panel of the present application
  • FIGURE 8 Illustrates the internal stress distribution for the last moment in the longitudinal section of the composite plate panel according to the present application
  • FIGURE 9 It shows a diagram of the arrangement of the plate panels (5) on the framework of beams (7) that make up the system that constitutes the slab.
  • FIGURE 10 Shows the A-A section of Figure 9, where you can see the positioning of the bolts on the plate and on the beams.
  • FIGURE 1 Shows the B-B section of Figure 9, where you can see the leveling treatment of the central beam.
  • FIGURE 12 Shows a fastening detail of the plate panel (5) on the support beam (71,
  • FIGURE 13 It shows the C-C section, where another view of fixing the plate panel (5) on the support beam (71, 72) is observed.
  • FIGURE 14 It shows the C-C section, where the high modulus putty (9) of elasticity is observed along the central joint of the support beam (71, 72).
  • the composite plate panel (5) of the present invention has been conceived as a prefabricated panel for the plate area in unidirectional lightened slabs.
  • said panel is formed by a top sheet (51) of cementitious nature, and / or polymeric resins, hardened, with thicknesses between 15mm and 20mm, a compressive strength between 27 Mp and 28 Mp, and a specific weight between 1,550.0 kg / m 3 and 1 .600.0 kg / m 3 , hereinafter this sheet will be mentioned as upper collaborating sheet (51), and a lower collaborating sheet (52) made of cool roll steel (CR), which is within the references described in section A.
  • 3.1 AIS1 1996 standard and has a thickness of 0.6 mm to 1.2 mm, or cold rolled stainless steel and whose thickness is within the range of 0.5 mm to 0.8 mm.
  • the cross section of said panel is represented in Figure 6, which shows that the lower collaborating sheet (52) has a series of upper ridges (521) and valleys (522).
  • the upper collaborating sheet (51) is fixed with bolts or shear pins (53) working on the shear and crushing on the upper ridges (521) of the lower collaborating sheet (52), while the valleys (522) are joined by Shear pins or pins (53) to the slab framework beam (7) which can be made of steel or concrete.
  • the shear bolts or pins (53) will withstand the shear stresses that are generated by the solidarity work of the system, under shear conditions.
  • FIG. 7 shows in detail and independently the lower collaborating sheet (52).
  • said sheet includes the ridges (521), which have a height (h) ranging from 100 mm to 150 mm, a width (a) of 185 mm to 250 mm, a distance between crest and crest ( b) from 190 mm to 260 mm, and they have a horizontal flange (54) at each end of the lower collaborating sheet (52), the length of which is 20 mm.
  • the selection of the upper collaborating sheet (51) will be determined by the resistance to compression and shear stresses, according to the LRFD design method, ACI standard. Both collaborating components (51, 52) must comply with the verification of crushing stresses generated by shear pins or pins (53). Under the action of distributed loads on the upper collaborating sheet (51), the internal tensions of the plate panel (5), will present the behavior of a plate with a long / wide ratio> 3, which are assimilated to the behavior of a wide beam, which makes it possible to assume that there is a distribution of similar internal stresses: as shown in Figure 8, stress forces (T) are assumed by the lower collaborating sheet (52) and the largest fraction of compression stresses (C) , for the upper collaborating plate (51). This figure also shows the neutral axis (6) that is located between the compression stresses (C) and the stress forces (T).
  • the plate panel of the present invention is conceived prefabricated and working in a simple support condition, on the slab beam system (7) and attached to them by fasteners or shear connectors on bolts and / or shot nails, joining the lower collaborating sheet (52), to the upper face of the support beam (7), made of concrete or steel.
  • the panel's own weight fluctuates between 40.0kg / m 2 and 48.0kg / m 2 .
  • the weight per square meter of this slab system is in the range of 108.0kg / m 2 to 1 16.0kg / m 2
  • Example 1 Construction Details. Example 1. Arrangement of the plate panels (5) on the beam framework (7) of the slab.
  • the arrangement of the panels (5) of the present invention on the beam framework (7) is illustrated in Figure 9 to form a system that forms the slab.
  • the panel panel (5) Once the panel panel (5) has been selected, according to the light and load requirements, it is placed simply supporting it on the beams (7) of the slab framework, from midline to midline of these, working in a single light. Said beams (71, 72, 7A, 7B) intersect, forming a grid.
  • the joint work of the panel assembly (5) as a flat beam system is obtained by cutting the bolts or shear pins (53) shown in Figure 10: "AA CUT FIGURE 9".
  • the shear bolts or pins (531) guarantee the transfer of shears for solidarity work between the collaborating upper sheet (51) and the collaborating lower sheet (52), while the shear pins or pins (532) are responsible for transferring shears to guarantee solidarity work between plate panels (5), avoiding cracking between joints.
  • These bolts or shear pins (532) prevent the occurrence of different deflections along the longitudinal lines, which delimit the panels (5), avoiding cracking of the floor finishes, along said lines.
  • Figure 1 1 representing a section BB of Figure 9.
  • the plate panels (5) which confine the filling, would work as nurseries.
  • the skids of the lower collaborating sheet (52) against this one will be fixed, with bolts or shear pins (53) duly selected (Bolts Type A490, for metal beams or epoxy anchors or shot nails, for concrete beams).
  • a section (S) made in the upper collaborating sheet (51) is shown, along the edge that faces the central axis of the support beam (7), for the purpose of fixing the central valley (522) of the lower collaborating sheet (52) to the support beam (71, 72), by bolts or shear pins (533) duly selected (Type A490 bolts, for metal structures or epoxy anchors, for structures of concrete) as shown in Figures 12 and 13.
  • the practiced opening (S) is closed again, fixing the cut segment, with epoxy resin.
  • Example 5 Protection against fire To produce fire-resistant panels (5), a fireproof coating is applied to the lower face of the lower collaborating sheet, which guarantees its stability for a time not less than 120 minutes after starting the conflagration ANALYTICAL BEHAVIOR FOUNDATION:
  • the plate panel (5) of the present invention is made up of three components:
  • Upper collaborating sheet (51) Cementitious nature plate, and / or polymer resins, with thicknesses between 15 mm and 20 mm, autoclaved, with compressive strength greater than 27Mp and specific weight between 1,200.0kg / m 3 to 1,600.0kg / m 3 . Its selection is made according to ACI standard 318-11 LRFD method. 2.
  • Lower collaborating sheet (52) In CR steel, in trapezoidal section, within the references described in section A.3.1 1996 AISI standard and thicknesses in the range of 0.6 mm to 1.2 mm, or in stainless steel rolled in cold, with thicknesses of 0.5 mm to 0.8 mm. Your selection will be made according to AISI standard. 3. For the analysis of the flat components of the system, upper collaborating sheet (51) and lower collaborating sheet (52), it is advisable to use the finite element method.
  • Shear transfer bolts 53.
  • Shear pins or pins 531
  • Shear pins or pins work on the transfer of shear between lower collaborating sheets (52).
  • the weight per square meter of this slab system is within the range: 108.0kg / m 2 to 1 16.0kg / m 2 .
  • the collaborating sheet + concrete which has a range for slab weight between 187.0kg / m 2 and 286.0 kg / m 2 .
  • These data allow to demonstrate that the system based on panel (5) of the present application has a weight reduction between 42.2% and 59.4% of the dead load per slab.
  • This important reduction in the weight of the slabs translates into: lower requirement of the structure due to gravitational loads and consequently, lower cost of this, in lower requirements due to inertial loads during seismic events, and consequently, structural solutions less robust, and therefore, lower costs, additionally, less demand to the ground and therefore, less expensive foundation solutions.
  • the concrete emptying activity is eliminated, transforming the operation into an assembly of a low weight system, which will result in fewer resources for the execution of the item or less costs and shorter execution times.
  • the plate panel enhances the moment of inertia of the section, by placing the center of gravity closer to the center of gravity of the upper collaborating sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

La presente solicitud se refiere a un pánel prefabricado (5) para losas de entrepisos aligeradas y unidireccionales de tipo sección compuesta, que comprende una lámina colaborante superior (51 ), una lámina colaborante inferior (52), la cual tiene una serie de crestas superiores (521 ) y valles (522) y pernos de transferencia de cortantes (53) que fijan la lámina colaborante superior (51 ) a las crestas superiores (521 ) de la lámina colaborante inferior (52) y pernos o pasadores de cortante (53), que fijan las láminas colaborantes inferiores (52) a la viga de entramado de losa (7). El trabajo como sección compuesta de las láminas colaborantes superior (51 ) e inferior (52) permite obtener un sistema de alta eficiencia para soportar exigencias de momentos flectores y cortantes, que tiene un bajo peso unitario en comparación con los sistemas existentes, lo que implica menores cargas por peso propio y disminución de los efectos inerciales durante eventos sísmico, al tiempo que constituye una solución estructural menos robustas, con menor exigencia al suelo y mucho más económica, pues reduce los tiempos e insumos, mano de obra y equipos, requeridos para su producción y montaje.

Description

PÁNEL DE PLACAS COMPUESTAS PARA LA CONSTRUCCION DE LOSAS DE ENTRE PISOS ALIGERADAS UNIDIRECCIONALES
SECTOR TECNOLÓGICO:
La presente solicitud se refiere a un pánel prefabricado para losas de entrepisos aligeradas y unidireccionales de tipo sección compuesta, que combina: una lámina colaborante superior, una lámina colaborante inferior y pernos o conectores de cortante que unen los dos componentes, permitiendo el trabajo como sección compuesta, obteniendo un sistema de alta eficiencia para soportar exigencias de momentos flectores y cortantes. En virtud de lo anterior, estos péneles presentan un bajo peso unitario en comparación con los sistemas existentes. Lo anterior se traduce en menores cargas por peso propio y mitigando efectos inerciales durante eventos sísmico, permitiendo soluciones estructural menos robustas, con menor exigencia al suelo y mucho más económica. Adicionalmente, al eliminar el vaciado de concreto durante la ejecución de las losas de entrepisos, de manera total en el caso de estructuras metálicas y de manera significativa, en el caso de estructuras de concreto, se reducen los requerimientos de tiempos e insumos: mano de obra y equipos durante esta actividad, con lo que se disminuyen costos.
ESTADO DE LA TÉCNICA
Entre los sistemas constructivos para losas aligeradas unidireccionales, que constituyen la fracción más importante del total que se ejecutan, se encuentran:
Losas unidireccionales aligeradas con bloques o casetones (1 ), como las que se ilustran en la Figura 1 , donde se muestra una sección general de losa fabricada mediante este sistema. Los elementos de aligeramiento (1 1 ), pueden ser: bloques de arcilla, de concreto,
i mortero, casetones de poliestireno expandido (icopor), casetones de guadua y en general, elementos que conforman un sistema de bajo peso específico, que pueden quedar incorporados a la losa o pueden ser retirados después de fraguado el concreto. Este sistema maneja una baja separación entre las viguetas (12) o longitud de la placa (13), la distancia de separación o ancho (A) del elemento de aligeramiento a lo largo de la placa está comprendido entre 300 mm y 800 mm. Para un espesor de la placa (13) de 50 mm el peso unitario de la placa es de 120.0 kg/m2. El manejar la más baja separación entre viguetas, determina que la losa: placa + viguetas, sea la solución con el mayor peso por unidad de superficie. Esta categoría de losa de entre pisos, maneja pesos unitarios dentro del rango de 300.0kg/m2 a 600.0kg/m2.
El sistema de sección compuesta conformado por una lámina colaborante o steel deck+concreto (2), se muestra en la Figura 2, donde se representa una sección longitudinal Figura 2A y transversal del sistema Figura 2B. La lámina colaborante (21 ) cumple doble función, la primera como formaleta para recibir el concreto (22), mientras éste fragua, y la segunda, una vez fraguado el concreto, los resaltes impresos en ésta, impiden que el concreto se deslice y lo obliga a trabajar solidariamente con ella, conformado un sistema compuesto. La luz máxima (B) o separación entre viguetas (23), de esta placa es igual o menor de 2.5 m. El peso por metro cuadrado de la placa, varía según la altura del concreto y el espesor o calibre de la lámina colaborante o Steel deck, que se combinen. Esta categoría de losa de entre pisos, maneja pesos unitarios dentro del rango de 187.0 kg/m2 a 286.0 kg/m2.
En el mercado nacional existe el sistema: placa fácil (3), cuya sección transversal se ilustra en la Figura 3. El sistema consiste en viguetas de acero en sección "U" (31 ) que, durante el vaciado de la losa, se rellenaran en concreto, estarán separadas a 800mm y soportaran la "placa" conformada por bloques de arcilla (32), con una longitud (A) de 800 mm y un peso unitario de 60.0 kg/m2. La adición de un recubrimiento en concreto (33), de 40 mm, y malla electro soldada, a la "placa", determina un peso unitario de esta, del orden de 96.0 kg/m2, Considerando la separación entre viguetas en perfil "U" (31 ) de 800 mm, Esta categoría de losa de entre pisos, maneja pesos unitarios dentro del rango: de 206.0 kg/m2 a 268.0kg/m2. El sistema de placas prefabricadas alveolares pretensadas (4) está representado en la Figura 4. Esta figura muestra una sección transversal de un tipo de esta placa para áreas comerciales. El sistema consiste en placas esbeltas (41 ) pretrensadas, elaboradas en concreto de altas resistencia y aligeradas con vacíos internos (42) en forma de tubulares. Las luces de estas placas están dentro del rango de 2000 mm a 9500 mm y el peso propio entre 135.0 kg/m2 y 215.0 kg/m2. Para una losa en concreto y estimando secciones de vigas de apoyo de 200mm x 500mm, el peso por metro cuadrado de esta categoría de losa, está dentro del siguiente rango de 241.Okg/m2 a 255.0kg/m2
En general los sistemas en uso, exigen vaciado de concreto in situ, excepto el de las placas pretensadas alveolares. La envolvente de rangos de peso por metro cuadrado de los sistemas de losas que se utilizan actualmente es de 206.0kg/m2 a 600. Okg/m2.
Incluso, se encuentran solicitudes de patentes y de modelos de utilidad que hacen referencia a pisos prefabricados. Tal es el caso de la solicitud CN204781519 (U) que describe una placa de concreto ligero con una pieza prefabricada en sitio, en donde la pieza inferior incluye una armadura (cercha) pre-enterrada y una parte expuesta en concreto ligero. En esta solicitud los elementos que componen el conjunto son moldeados In situ, incluyendo una capa de concreto ordinario, con forma adaptable a un piso. Este piso comprende una barra de acero que conforma la cercha utiliza en los perfiles laminados, la cual conserva una forma triangular. Dichos perfiles están localizados en la parte inferior de la pieza prefabricada de concreto aligerado. Entre las ventajas de este sistema se encuentran: Conectar en su conjunto concreto común con el concreto ligero a través de una cercha de acero, aliviándose el peso del piso. La integridad del conjunto es elevada, además el uso del perfil inferior permite la protección del concreto ligero, aumentando la capacidad de soporte de la construcción, mejorando la durabilidad del concreto aligerado. Sin embargo, este sistema no solo es muy pesado, sino que requiere de una combinación compleja de perfiles y cerchas que deben ser montadas In Situ. Otras placas prefabricadas son las reportadas en la solicitud colombiana 06-018544 que divulga placas prefabricadas en concreto para conformar superficies planas para pistas y carreteras, que comprenden un cuerpo o volumen con un contorno cuadrilátero y un refuerzo interior metálico y unos medios de conexión con placas adyacentes de la misma naturaleza. Dichos medios de conexión con placas adyacentes de la misma naturaleza, están conformados por una platina metálica con dobleces angulares extremos y tornillos de anclaje. Estas platinas metálicas conectan las placas adyacentes a manera de puente con fijación de tornillos de anclaje en proximidad de sus respectivos bordes de adosamiento. El sistema descrito se concentra en la forma en la que pueden conectarse las placas prefabricadas. Este sistema en ningún momento permite reducir el peso de la placa y preservar un rango variable de resistencia a los esfuerzos cortantes y a la compresión, que permita soportar flexión debido a momentos o tendencias a giro que se puedan generar en un determinado instante.
En el estado de la técnica también se identificó la solicitud CO02-043805, que reporta una placa o losa de concreto con refuerzos metálicos en sus flancos y al interior de sus bases planas con flancos biselado y una zona interna rellena con materiales diferentes al concreto que actúan como soliviados (alzados) de peso y aporte de cualidades antiacústicas atérmicas y anti- inflamables para la gama multiuso de este elemento. Aunque esta placa reduce el peso del sistema, no logra llegar a los niveles de reducción de peso alcanzados con la presente solicitud ni aporta a los esfuerzos cortantes y de compresión.
En el estado de la técnica también se reporta CN201424725 se refiere a una placa prefabricada de concreto con una sección metálica, que comprende una placa inferior de concreto reforzada, una placa superior de concreto y dos barras longitudinales de concreto, las cuales se apoyan entre las placas inferior y superior a través de orificios dispuestos en los costados de las barras longitudinales, una placa en el suelo está formada por corte y empalme de múltiples piezas de placas prefabricadas de concreto reforzado, una barra de acero de refuerzo penetra a través de agujeros dispuestos en los costados de las barras longitudinales para conectar con las diferentes piezas prefabricadas, posteriormente se vierte concreto con el objetivo de llenar y nivelar las cavidades huecas formadas entre las barras longitudinales, aliviándose el peso muerto de la placa del piso, prolongando su vida útil. Así mismo, se ha encontrado que la solicitud FR19980000526 se refiere a un pánel que tiene una forma de paralelepípedo con absorción de ruido (3). El conjunto tiene nervaduras verticales paralelas (30) de la sección transversal trapezoidal. La cara inferior de la sección de conexión es plana. El elemento de construcción se caracteriza esencialmente porque es de forma de paralelepípedo sustancialmente rectangular, y porque comprende dos partes, una parte de conexión y una parte de absorción de sonido, colocado en el lado de emisión de ruido, y tiene nervios verticales y paralelas de espesor de sección transversal trapezoidal, mientras que la cara superior de dicha parte de conexión está en el mismo plano que la cara superior de dicha parte absorción, tiene un rebaje longitudinal para recibir el mortero o similar, y la cara inferior de dicha pieza de conexión se encuentra en el mismo plano que la cara inferior de dicha parte de absorción, es plana. Este elemento de construcción presenta una parte saliente del borde lateral que tiene una ranura vertical para recibir una junta compresible. Además, la parte de conexión comprende al menos un eje de canal vertical amplia para recibir mortero o similares con el fin de alcanzar la construcción del muro.
Considerando la información anterior, es evidente que se requiere desarrollar un sistema que ofrezca las propiedades que actualmente brindan los sistemas citados, pero que sea más liviano, lo que conlleva menores costos de transporte, menores exigencias por efectos de cargas inerciales, durante eventos sísmico, sea menos robusto, le genere menos exigencias al suelo y por ende, brinde soluciones de cimentación más económicas.
Así mismo, se busca que dicho sistema sea prefabricado, para eliminar la necesidad de vaciar concreto y de utilizar equipos de apuntalamiento, con lo que se reducen costos, personal y tiempos de montaje.
DESCRIPCIÓN DE LAS FIGURAS
FIGURA 1. Ilustra una sección esquemática de una losa unidireccional aligerada con bloques o casetones.
FIGURA 2A. Muestra una sección longitudinal de un sistema de sección compuesta.
FIGURA 2B. Muestra una sección transversal de un sistema de sección compuesta. FIGURA 3. Ilustra los elementos que componen el sistema placa fácil FIGURA 4. Muestra un sistema de placas prefabricadas alveolares pretensadas.
FIGURA 5. Muestra la sección longitudinal del pánel de placa compuesta (5), de acuerdo con la presente solicitud
FIGURA 6. Muestra la sección transversal del pánel de placa compuesta (5), de acuerdo con la presente solicitud
FIGURA 7. Muestra en detalle las características de la lámina colaborante inferior (52) del pánel de placa de la presente solicitud FIGURA 8. Ilustra la distribución interna de tensiones para momento último en la sección longitudinal del pánel de placa compuesta de acuerdo con la presente solicitud
FIGURA 9. Muestra un esquema de la disposición de los páneles placa (5) sobre el entramado de vigas (7) que conforman el sistema que constituye la losa.
FIGURA 10. Muestra el corte A-A de la Figura 9, donde se puede ver el posicionamiento de los pernos en la placa y en las vigas.
FIGURA 1 1. Muestra el corte B-B de la Figura 9, donde se puede ver el tratamiento de nivelación de la viga central. FIGURA 12. Muestra un detalle de fijación del pánel placa (5) en la viga de soporte (71 ,
72) mediante pernos trabajando al cortante.
FIGURA 13. Muestra el corte C-C, donde se observa otro punto de vista de la fijación del pánel placa (5) en la viga de soporte (71 , 72).
FIGURA 14. Muestra el corte C-C, donde se observa la masilla de alto módulo (9) de elasticidad a lo largo de la junta central de la viga de soporte (71 , 72).
DESCRIPCIÓN DETALLADA DE LA PRESENTE INVENCIÓN
El pánel de placa compuesta (5) de la presente invención ha sido concebido como una pánel prefabricado para el área de placa en losas aligeradas unidireccionales. Como se muestra en la Figura 5, dicho pánel está conformado por una lámina superior (51 ) de naturaleza cementicia, y/o resinas polímeras, endurecida, con espesores entre 15mm y 20mm, una resistencia a la compresión entre 27 Mp y 28 Mp, y un peso específico entre 1 .550,0 kg/m3 y 1 .600,0 kg/m3, en adelante esta lámina será mencionada como lámina colaborante superior (51 ), y una lámina colaborante inferior (52) elaborada en acero cool roll (CR), la cual se encuentra dentro de las referencias descritas en la sección A.3.1 norma AIS1 1996 y tiene un espesor de 0.6 mm a 1 .2 mm, o en acero inoxidable laminado en frió y cuyo espesores está dentro del rango de 0.5 mm a 0.8 mm.
La sección transversal de dicho pánel está representada en la Figura 6, que muestra que la lámina colaborante inferior (52) presenta una serie de crestas superiores (521 ) y valles (522). La lámina colaborante superior (51 ) es fijada con pernos o pasadores de cortante (53) trabajando al cortante y al aplastamiento sobre las crestas superiores (521 ) de la lámina colaborante inferior (52), mientras que los valles (522) se unen mediante pernos o pasadores de cortante (53) a la viga de entramado de losa (7) la cual puede ser de acero o concreto. En este sistema, los pernos o pasadores de cortante (53) soportaran las tensiones de cortantes que se generan por el trabajo solidario del sistema, bajo condiciones de cortante.
La selección de la lámina colaborante inferior (52), estará sujeta a la norma AISI y sus dimensiones variarán dependiendo de las exigencias de cargas y la separación entre apoyos. En la Figura 7 se ilustra en detalle y de forma independiente la lámina colaborante inferior (52). Como se puede observar, dicha lámina incluye las crestas (521 ), las cuales presentan una altura (h) que oscila entre 100 mm y 150 mm, un ancho (a) de 185 mm a 250 mm, una distancia entre cresta y cresta (b) de 190 mm a 260 mm, y tienen en cada uno de los extremos de la lámina colaborante inferior (52) una pestaña horizontal (54), cuya longitud es de 20 mm.
De otra parte, la selección de la lámina colaborante superior (51 ), estará determinada por la resistencia a las tensiones de compresión y cortante, según método de diseño LRFD, norma ACI. Ambos componentes colaborantes (51 , 52) deberán cumplir con la verificación de las tensiones por aplastamiento generadas por los pernos o pasadores de cortante (53). Bajo la acción de cargas distribuidas sobre la lámina colaborante superior (51 ), las tensiones internas del pánel placa (5), presentaran el comportamiento de una placa con una relación largo/ancho > 3 , que se asimilan al comportamiento de una viga ancha, lo cual permite asumir que existe una distribución de tensiones internas similares: como se muestra en la Figura 8, los esfuerzos de tensión (T) son asumidos por la lámina colaborante inferior (52) y la mayor fracción de las tensiones de compresión (C), por la lámina colaborante superior (51 ). Esta figura también muestra el eje neutro (6) que se ubica entre las tensiones de compresión (C) y los esfuerzos de tensión (T).
El pánel placa de la presente invención se concibe prefabricado y trabando en condición de simple apoyo, sobre el sistema de vigas de la losa (7) y sujeto a ellas por fijaciones o conectores de cortante en pernos y/o de clavos disparados, uniendo la lámina colaborante inferior (52), a la cara superior de la viga de apoyo (7), fabricada en en concreto o acero. El peso propio del pánel fluctúa entre 40.0kg/m2 y 48.0kg/m2. Para una losa en concreto, considerando secciones de vigas de apoyo de 150mm x 400mm, el peso por metro cuadrado de este sistema de losa, se encuentra en el rango de 108.0kg/m2 a 1 16.0kg/m2
Ejemplos: Detalles Constructivos. Ejemplo 1. Disposición de los páneles placa (5) sobre el entramado de vigas (7) de la losa.
La disposición de los páneles (5) de la presente invención sobre el entramado de vigas (7) se ilustra en la Figura 9 para formar un sistema que conforma la losa. Una vez seleccionado el pánel de placa (5), según las exigencias de luz y cargas, se coloca simplemente apoyándolo sobre las vigas (7) del entramado de losa, de línea media a línea media de estas, trabajando a una sola luz. Dichas vigas (71 , 72, 7A, 7B) se entrecruzan, formando una cuadrícula. El trabajo solidario del conjunto de páneles (5) como un sistema de vigas planas, se obtiene por el trabajo al cortante de los pernos o pasadores de cortante (53) mostrados en la Figura 10: "CORTE A-A FIGURA 9". Los pernos o pasadores de cortante (531 ) garantizan la transferencia de cortantes para trabajo solidario entre lámina superior colaborante (51 ) y la lámina inferior colaborante (52), mientras que los pernos o pasadores de cortante (532) se encargan de la transferencia de cortantes para garantizar el trabajo solidario entre páneles de placa (5), evitando la fisuración entre juntas. Estos pernos o pasadores de cortante (532) evitan que se presenten deflexiones diferentes a lo largo de las líneas longitudinales, que delimitan los páneles (5), evitando fisuración de los acabados de piso, a lo largo de dichas líneas.
Ejemplo 2. Tratamiento de vigas intermedias (7A.7B) paralelas a los páneles de placa (5)
En relación con el tratamiento de las vigas intermedias (7A, 7B), paralelas a los páneles de placa, estos se muestran en la figura 1 1 que representa un corte B-B de la Figura 9. El tratamiento de nivelación de la viga central (7A), se realizará con un concreto fe = 10Mp, para soportar el acabado de piso. Los páneles de placa (5), que confinan el relleno, trabajarían de guarderas. Posteriormente y una vez fraguado el relleno (R), se fijarán los patines de la lámina colaborante inferior (52) que dan contra este, con pernos o pasadores de cortante (53) debidamente seleccionados (Pernos Tipo A490, para vigas metálicas o anclajes epoxi o clavos disparados, para vigas de concreto). En esta Figura 1 1 también se representa la columna (8), que se eleva sobre el pánel placa (5) en el punto que confluyen la viga central (7A) y la viga de soporte (71 ). Ejemplo 3. Tratamiento de vigas de soporte (71 , 72), perpendiculares a los páneles de placa (5) La forma cómo interactúan el pánel placa de la presente solicitud (5) y las vigas de apoyo (71 , 72) se evidencia en la Figura 12. En ella, se muestra un corte (S) realizado en la lámina colaborante superior (51 ), a lo largo del borde que da contra el eje central de la viga de soporte (7), con el propósito de fijar el valle central (522) de la lámina colaborante inferior (52) a la viga de soporte (71 , 72), mediante pernos o pasadores de cortante (533) debidamente seleccionados (Pernos Tipo A490, para estructuras metálicas o anclajes epoxi, para estructuras de concreto) como se muestra en las Figuras 12 y 13. Una vez realizada la fijación, se cierra nuevamente la abertura practicada (S), fijando el segmento cortado, con resina epóxica.
Ejemplo 4. Tratamiento de juntas a lo largo de la línea central de las vigas de soporte (71 , 72)
Las juntas centrales compartidas, a lo largo de las vigas de soporte (71 , 72), se sellarán con masilla para juntas (9) de alto módulo de elasticidad, tipo Sikabond T2 o similar. (Ver Figura 14)
Ejemplo 5. Protección contra el fuego Para producir páneles (5) resistentes al fuego, a la cara inferior de la lámina colaborante inferior, se le aplica un recubrimiento ignifugo, que garantice su estabilidad por un tiempo no inferior a los 120 minutos después de iniciarse la conflagración. FUNDAMENTO ANALITICO DEL COMPORTAMIENTO:
El pánel de placa (5) de la presente invención, lo conforman tres componentes:
• Lámina colaborante superior (51 ): Placa de naturaleza cementicia, y/o resinas polímeras, con espesores entre 15 mm y 20 mm, curada en autoclave, con resistencia a la compresión superior a 27Mp y peso específico entre 1 .200,0kg/m3 a 1.600,0kg/m3. Su selección se realiza según norma ACI 318-11 método LRFD. 2.
• Lámina colaborante inferior (52): En acero CR, en sección trapezoidal, dentro de las referencias descritas en la sección A.3.1 norma AISI 1996 y espesores dentro del rango de 0.6 mm a 1 ,2 mm, o en acero inoxidable laminado en frió, con espesores de 0.5 mm a 0.8 mm. Su selección se realizará según norma AISI. 3. Para el análisis de los componentes planos del sistema, lámina colaborante superior (51 ) y lámina colaborante inferior (52), es recomendable utilizar el método de elementos finitos.
• Pernos de transferencia de cortantes (53). Dentro de estos existen las siguientes categorías, las cuales son expuestas en las Figuras 10 y 1 1 , ellos son: o Pernos o pasadores de cortante (531 ), trabajan en la transferencia de cortantes entre las láminas colaborante superior (51 ) y lámina colaborante inferior (52).
o Pernos o pasadores de cortante (532), trabajan en la transferencia de cortante entre láminas colaborantes inferiores (52).
Estos pernos son del tipo: tornillo cabeza fresada phllips punta mecha, con diámetro no menor de 5.5 mm, su selección se realizará según norma asic-lrfd. Considerando el pánel (5) definido anteriormente el solicitante ha analizado su comportamiento y ha establecido que dicho pánel y el sistema que lo incluye presentan las siguientes ventajas: · Menor peso por metro cuadrado del sistema.
Peso propio 40.0kg/m2 ~ 48.0kg/m2. Para una losa en concreto, y considerando secciones de vigas de apoyo (71 , 72) de 150 mm x 400 mm, el peso por metro cuadrado de este sistema de losa, está dentro del rango: 108.0kg/m2 a 1 16.0kg/m2.
Comparado con el sistema más liviano de sección compuesta existente, la lámina colaborante+concreto, que presenta un rango para peso de la losa entre 187.0kg/m2 y 286.0 kg/m2. Estos datos permiten evidenciar que el sistema basado en el pánel (5) de la presente solicitud tiene una reducción de peso entre el 42.2% y el 59.4% de la carga muerta por losa. Esta importante reducción en el peso propio de las losas, se traduce en: menor exigencia de la estructura por cargas gravitacionales y en consecuencia, menor costo de esta, en menores exigencias por efectos de cargas inerciales durante eventos sísmico, y en consecuencia, soluciones estructurales menos robustas, y por ende, menores costos, adicionalmente, menor exigencia al suelo y por consiguiente, soluciones de cimentación menos costosas.
Facilidad de ejecución del ítem de losas:
Por tratarse de un sistema prefabricado, se elimina la actividad de vaciado de concreto, transformando la operación en un montaje de un sistema de bajo peso, lo que se traducirá en menos recursos para la ejecución del ítem o menos costos y tiempos de ejecución más cortos.
Así mismo, el pánel de placa potencia el momento de inercia de la sección, al ubicar el centro de gravedad más cerca del centro de gravedad de la lámina colaborante superior.
Capacidad de carga inmediata. En consecuencia, se elimina el requerimiento de equipos de apuntalamiento, lo que implica menores costos por ese concepto.
Rapidez en la puesta al servicio de la losa:
Por tratarse de un sistema prefabricado su disponibilidad es inmediata, permitiendo el inicio de la actividad de acabados en tiempos más cortos.

Claims

REIVINDICACIONES
1 . Un pánel prefabricado de placa (5) para la elaboración de losas, caracterizado porque comprende una lámina colaborante superior (51 ), una lámina colaborante inferior (52), la cual tiene una serie de crestas superiores (521 ) y valles (522) y pernos de transferencia de cortantes (53) que fijan la lámina colaborante superior (51 ) a las crestas superiores (521 ) de la lámina colaborante inferior (52) y pernos o pasadores de cortante (53), que fijan las láminas colaborantes inferiores (52) a la viga de entramado de losa (7).
2. El pánel de acuerdo con la reivindicación 1 , caracterizado porque la lámina colaborante superior (51 ) está elaborada en concreto, constituido por cemento y una resina polyester termo estable.
3. El pánel de acuerdo con la reivindicación 1 o la reivindicación 2, caracterizado porque la lámina colaborante superior (51 ) tiene entre 15mm y 20mm de espesor, una resistencia a la compresión entre 27 Mp y 28 Mp, y un peso específico entre 1 .550,0 kg/m3 y 1 .600,0 kg/m3
4. El pánel de acuerdo con la reivindicación 1 , caracterizado porque la lámina colaborante inferior (52) es una lámina de acero cool roll (CR), que tiene un espesor de 0.6 mm a 1 .2 mm, o en acero inoxidable laminado en frió, cuyo espesor está dentro del rango de 0.5 mm a 0.8 mm.
5. El pánel de acuerdo con la reivindicación 1 , caracterizado porque las crestas (521 ) tiene una altura (h) que oscila entre 100 mm y 150 mm, un ancho (a) de 185 mm a 250 mm, una distancia entre cresta y cresta (b) de 190 mm a 260 mm.
6. El pánel de acuerdo con la reivindicación 1 , caracterizado porque lámina colaborante inferior (52) presenta en cada uno de sus extremos una pestaña horizontal (54) de 20 mm de longitud.
7. El pánel de acuerdo con la reivindicación 1 , caracterizado porque su peso fluctúa entre 40.0kg/m2 y 48.0kg/m2.
8. Sistema para construir una losa, caracterizado porque comprende péneles de placa (5) de acuerdo con una cualquiera de las reivindicaciones 1 a 6 apoyados sobre vigas de losa (7).
9. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque los péneles de placa (5) se sujetan entre sí a través de las crestas de los extremos laterales de sus láminas colaborante inferior (52) mediante pernos o pasadores de cortante (532).
10. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque la lámina colaborante inferior (52) de los péneles de placa (5) se sujetan a la cara superior de la viga de apoyo (7) mediante fijaciones de pernos, pasadores de cortante y/o de clavos disparados (533).
1 1 . Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque a las vigas (7) son de acero o concreto.
12. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque comprende vigas intermedias (7A,7B) paralelas a los péneles de placa (5) y vigas de apoyo (71 ,72) perpendiculares a los péneles de placa (5).
13. Sistema para construir una losa de acuerdo con la reivindicación 12, caracterizado porque las vigas (71 , 72, 7A, 7B) se entrecruzan formando una cuadrícula.
14. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque las columnas (8) se eleva sobre el pánel placa (5) en el punto que confluyen la viga central (7A) y la viga de soporte (71 ).
15. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque los péneles placa (5) están unidos a las vigas de apoyo (71 , 72) mediante pernos o pasadores de cortante (533) que pasan a través de un corte (S) en la lámina colaborante superior (51 ), dicho corte se ubica a lo largo del borde que da contra el eje central de la viga de soporte (7) y permite que se fije el valle central (522) de la lámina colaborante inferior (52) a la viga de soporte (71 , 72).
16. Sistema para construir una losa de acuerdo con la reivindicación 15, caracterizado porque en el sistema instalado, el corte (S) está cubierto con el fragmento que había sido removido para generar el corte (S) y éste se fija con resina epóxica.
17. Sistema para construir una losa de acuerdo con la reivindicación 8, caracterizado porque las juntas centrales compartidas a lo largo de las vigas de soporte (71 , 72) comprenden una masilla para juntas (9) de alto módulo de elasticidad.
18. Sistema para construir una losa de acuerdo con una cualquiera de las reivindicaciones anteriores, caracterizado porque la cara inferior de la lámina colaborante inferior (52) tiene un recubrimiento ignifugo que es una pintura con partículas cerámicas.
PCT/IB2017/051709 2016-05-16 2017-03-24 Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales WO2017199107A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780030613.1A CN109415903A (zh) 2016-05-16 2017-03-24 用于建造单向轻质搁栅板的复合板材
EP17798830.0A EP3498931A4 (en) 2016-05-16 2017-03-24 PANEL OF COMPOSED PLATES FOR THE CONSTRUCTION OF SLABS OF LIGHTWEIGHT INTERMEDIATE FLOORS
US16/093,936 US11332928B2 (en) 2016-05-16 2017-03-24 Panel of compound sheets for the construction of light-weight one-way joist slabs
MX2018013036A MX2018013036A (es) 2016-05-16 2017-03-24 Panel de placas compuestas para la construccion de losas de entre pisos aligeradas unidireccionales.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CO16128043 2016-05-16
CO16128043 2016-05-16

Publications (1)

Publication Number Publication Date
WO2017199107A1 true WO2017199107A1 (es) 2017-11-23

Family

ID=60324923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/051709 WO2017199107A1 (es) 2016-05-16 2017-03-24 Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales

Country Status (2)

Country Link
US (1) US11332928B2 (es)
WO (1) WO2017199107A1 (es)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111560851B (zh) * 2020-04-29 2021-12-14 中交路桥建设有限公司 一种装配式钢混组合梁保通桥梁及施工方法
CN112883620B (zh) * 2021-03-10 2022-06-10 陕西建工集团有限公司 一种有限元分析下非规则板柱剪力墙结构的施工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867433A (en) * 1932-04-30 1932-07-12 Robertson Co H H Building construction
WO1995009954A1 (en) * 1993-10-01 1995-04-13 Scidek Pty. Ltd. Structural member and building structures
US20020088199A1 (en) * 2001-01-11 2002-07-11 Linn Jimmie L. Method of making a wall system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125977A (en) * 1976-10-19 1978-11-21 H. H. Robertson Company Internally composite cellular section and composite slab assembled therefrom
FR2773566B1 (fr) 1998-01-15 2000-04-07 Sud Prefac Element de construction destine a la construction d'une paroi anti-bruit, realise dans un materiau du type beton ou analogue
CA2289234A1 (fr) * 1999-11-23 2001-05-23 Roland Roy Panneau et dalle de soutien
US6718720B1 (en) * 2002-10-02 2004-04-13 Cornerstone Specialty Wood Products Inc. Flooring system and method
CO5650072A1 (es) 2006-02-24 2006-06-30 Brien Jean Paul O Placas prefabricadas en concreto para pistas y carreteras
US20110067328A1 (en) * 2006-06-26 2011-03-24 Naccarato John R Architectural pavements in elevated exterior deck applications
GB2445740A (en) * 2007-01-18 2008-07-23 Intelligent Engineering Flooring panels
WO2008147998A1 (en) * 2007-05-23 2008-12-04 Maxxon Corporation Sound insulation layer for corrugated decking flooring system
US20090151278A1 (en) * 2007-12-18 2009-06-18 Cornerstone Specialty Wood Products, Llc Flooring system and method for installing involving a corrugated member and a panel flooring member
CN201424725Y (zh) 2009-04-24 2010-03-17 湖南高岭建设集团股份有限公司 一种带肋钢筋混凝土预制构件板
CA2780178C (en) * 2009-11-06 2018-02-27 Diversakore Llc Building structures and construction methods
HK1180525A2 (en) * 2012-09-03 2013-10-18 Archibuild Ltd Reinforced architectural panel
US8877329B2 (en) * 2012-09-25 2014-11-04 Romeo Ilarian Ciuperca High performance, highly energy efficient precast composite insulated concrete panels
US9605433B2 (en) * 2012-11-09 2017-03-28 Johns Manville Fire resistant composite boards and methods
US9388562B2 (en) * 2014-05-29 2016-07-12 Rocky Mountain Prestress, LLC Building system using modular precast concrete components
US9797135B2 (en) * 2014-08-05 2017-10-24 Tai Dung Nguyen Pre-fabricated structures and methods
CN204781519U (zh) 2015-06-15 2015-11-18 殷诗宝 一种轻质混凝土组合预制叠合楼板
CA2894301A1 (en) * 2015-06-16 2016-12-16 Michael Dombowsky Composite flooring system and method for installation over semi-rigid substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867433A (en) * 1932-04-30 1932-07-12 Robertson Co H H Building construction
WO1995009954A1 (en) * 1993-10-01 1995-04-13 Scidek Pty. Ltd. Structural member and building structures
US20020088199A1 (en) * 2001-01-11 2002-07-11 Linn Jimmie L. Method of making a wall system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3498931A4 *

Also Published As

Publication number Publication date
US20190177974A1 (en) 2019-06-13
US11332928B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
US6298617B1 (en) High rise building system using steel wall panels
US20210140166A1 (en) Structural Frame for a Building and Method of Constructing the Same
WO2017199107A1 (es) Pánel de placas compuestas para la construcción de losas de entre pisos aligeradas unidireccionales
JP2023514035A (ja) モジュール型複合作用パネル及びそれを用いた構造システム
RU2567797C1 (ru) Здание комплектной поставки
Siddiqi Steel structures
US2353073A (en) Metallic sill member for frames in building constructions
US2752868A (en) Roof construction
RU2197578C2 (ru) Конструктивная система многоэтажного здания и способ его возведения (варианты)
WO2021087630A1 (es) Sistema de muro de corte híbrido para construcción de edificaciones de madera masiva en zonas sísmicas
RU59097U1 (ru) Стеновая панель
RU2187605C2 (ru) Сталебетонный каркас многоэтажного здания
JP2006022572A (ja) 既存建物の外フレーム式の耐震補強構造
CN213682824U (zh) 一种轻质楼面墙体板组合结构体及其轻质楼面墙体板
ES2216668B1 (es) Dispositivo de forjado con formacion de bovedas laminares.
McMullin Timber Lateral Design
NO342700B1 (en) A connection means of a building structure and a method of using same
ES2563248B1 (es) Sistema estructural mediante perfiles metálicos rigidizados y componentes de poliestireno armado
EP3498931A1 (en) Panel of compound sheets for the construction of light-weight one-way joist slabs
RU2653148C1 (ru) Многоэтажное жилое здание
ES1270414U (es) Sistema de edificacion modular
ES2450642B1 (es) Sistema de construcción industrializado de edificaciones
US2966009A (en) Construction units
Mo et al. Stovner Tower–accessible pedestrian walkway
Boothby Contents and Preliminary Pages

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798830

Country of ref document: EP

Effective date: 20181217