WO2013058324A1 - Sealant for liquid crystal dropping process, vertical-conduction material, and liquid crystal display element - Google Patents

Sealant for liquid crystal dropping process, vertical-conduction material, and liquid crystal display element Download PDF

Info

Publication number
WO2013058324A1
WO2013058324A1 PCT/JP2012/076962 JP2012076962W WO2013058324A1 WO 2013058324 A1 WO2013058324 A1 WO 2013058324A1 JP 2012076962 W JP2012076962 W JP 2012076962W WO 2013058324 A1 WO2013058324 A1 WO 2013058324A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
acrylate
weight
crystal dropping
Prior art date
Application number
PCT/JP2012/076962
Other languages
French (fr)
Japanese (ja)
Inventor
山本 拓也
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201280013972.3A priority Critical patent/CN103443698B/en
Priority to KR1020137018709A priority patent/KR101393761B1/en
Priority to JP2012549190A priority patent/JP5255732B1/en
Publication of WO2013058324A1 publication Critical patent/WO2013058324A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method which is excellent in adhesiveness and straight line drawing properties. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • Patent Document 1 and Patent Document 2 a method for manufacturing a liquid crystal display element such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from the conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used.
  • a photocurable resin, a photopolymerization initiator, a thermosetting resin, and a liquid crystal dropping method called a dropping method using a light and heat combined curing type sealant containing a thermosetting agent are being replaced.
  • a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing.
  • a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing.
  • heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
  • the sealant In a liquid crystal display element, the sealant is required to have excellent straight line drawing properties, and at the time of manufacturing, it is required to increase the dispensing speed in order to improve the process efficiency.
  • the sealant cannot be drawn in a straight line stably, resulting in a problem of disconnection failure or waviness in the sealant line after drawing. there were.
  • a filler is blended in the sealant, and in order to improve the straight line drawing property, it is conceivable to reduce the amount of the filler to be blended in the sealant, but if the amount of the filler is reduced, the sealant There is a problem that the agent is inferior in adhesion to the substrate and the alignment film.
  • An object of this invention is to provide the sealing compound for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property. Moreover, an object of this invention is to provide the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
  • the present invention relates to a curable resin containing a resorcinol-type epoxy (meth) acrylate and a resin having an epoxy group, inorganic fine particles whose surface is treated with hexamethyldisilazane, and / or a surface having 3-glycol. It contains surface-treated inorganic fine particles containing inorganic fine particles treated with cidoxypropyltrimethoxysilane, and the surface-treated inorganic fine particles are a sealing agent for liquid crystal dropping method having an average particle diameter of 0.1 ⁇ m or more.
  • the present invention is described in detail below.
  • This inventor obtains the sealing agent for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property by using combining the curable resin containing a resorcinol type epoxy (meth) acrylate, and specific surface treatment inorganic fine particles. As a result, the present invention has been completed.
  • the reason why the straight line drawing property of the sealant is improved by using a combination of resorcinol type epoxy (meth) acrylate and surface-treated inorganic fine particles is considered as follows.
  • resorcinol-type epoxy (meth) acrylate has a higher polarity than a resin usually used in a sealing agent for a liquid crystal dropping method, and therefore, when used in combination with a surface treatment inorganic fine particle having a low polarity, repulsion between the particle and the resin is caused. It is presumed that this was due to an increase in the apparent viscosity.
  • the sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
  • the curable resin contains resorcinol type epoxy (meth) acrylate.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
  • resorcinol-type epoxy (meth) acrylate examples include those obtained by reacting (meth) acrylic acid and resorcinol-type epoxy resin in the presence of a basic catalyst according to a conventional method.
  • the “(meth) acryl” means acryl or methacryl.
  • Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
  • mold epoxy (meth) acrylate in the said curable resin is 20 weight%. If the content of the resorcinol-type epoxy (meth) acrylate is less than 20% by weight, the obtained liquid crystal dropping method sealant is inferior in straight line drawing property, and breaks during drawing or waviness after drawing. There are things to do.
  • the more preferable lower limit of the content of the resorcinol type epoxy (meth) acrylate is 50% by weight, and the more preferable lower limit is 70% by weight.
  • mold epoxy (meth) acrylate in the said curable resin is 90 weight%.
  • the obtained sealing agent for liquid crystal dropping method has improved adhesion and moisture resistance.
  • mold epoxy (meth) acrylate is 85 weight%.
  • the curable resin preferably contains bisphenol A type epoxy (meth) acrylate.
  • bisphenol A type epoxy (meth) acrylate By containing resorcinol-type epoxy (meth) acrylate and bisphenol A-type epoxy (meth) acrylate, the resulting sealant for liquid crystal dropping method has better straight line drawing properties at the time of dispensing, and liquid crystal contamination And the adhesion is also good.
  • the minimum with preferable content of the bisphenol A type epoxy (meth) acrylate in the said curable resin is 10 weight%.
  • the content of the bisphenol A-type epoxy (meth) acrylate is less than 10% by weight, the obtained liquid crystal dropping method sealing agent has high thixotropic properties, and has a cleaning property such as a syringe or a nozzle used for coating. May get worse.
  • the minimum with more preferable content of the said bisphenol A type epoxy (meth) acrylate is 20 weight%.
  • the upper limit with preferable content of the bisphenol A type epoxy (meth) acrylate in the said curable resin is 60 weight%.
  • the content of the bisphenol A type epoxy (meth) acrylate is 60% by weight or less, the viscosity becomes a suitable range, and the coating property of the obtained liquid crystal dropping method sealing agent is improved.
  • the upper limit with more preferable content of the said bisphenol A type epoxy (meth) acrylate is 50 weight%.
  • the curable resin contains a resin having an epoxy group.
  • the resin having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin, and propylene oxide.
  • Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like. As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example. As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example. Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Tohto Kasei Co., Ltd.). Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA). Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like. Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC). Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • epiclone HP7200 made by DIC
  • examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Tohto Kasei Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy resins examples include ZX-1542 (manufactured by Tohto Kasei Co., Ltd.), Epicron 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611 ( Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Tohto Kasei Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032 ( These include Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation), and the like.
  • resin which has an epoxy group and a (meth) acryloyloxy group in 1 molecule may contain resin which has the said epoxy group.
  • examples of such a compound include a partial (meth) acryl-modified epoxy resin obtained by reacting a part of an epoxy group of a compound having two or more epoxy groups with (meth) acrylic acid.
  • Examples of the commercially available partial (meth) acryl-modified epoxy resin include UVACURE 1561 (manufactured by Daicel Cytec).
  • the minimum with preferable content of resin which has an epoxy group in the said curable resin is 5 weight%, and a preferable upper limit is 50 weight%.
  • a preferable upper limit is 50 weight%.
  • the content of the resin having an epoxy group is 5% by weight or more, the adhesiveness and moisture resistance of the obtained liquid crystal dropping method sealing agent are improved.
  • the content of the resin having an epoxy group is 50% by weight or less, the sealing agent is hardly eluted into the liquid crystal, and it is possible to suppress the occurrence of display unevenness and the like in the obtained liquid crystal display element.
  • a more preferable lower limit of the content of the resin having an epoxy group is 10% by weight, a more preferable upper limit is 42% by weight, and a still more preferable lower limit is 20% by weight.
  • the said curable resin may contain other (meth) acrylic resins other than the said resorcinol type
  • the other (meth) acrylic resin any resin having an acryloyloxy group or a methacryloyloxy group can be used without particular limitation.
  • the resorcinol-type epoxy (meth) acrylate and the bisphenol A-type epoxy can be used. Examples include other epoxy (meth) acrylates other than (meth) acrylate, (meth) acrylic acid esters, and the like.
  • epoxy (meth) acrylate for example, (meth) acrylic acid and epoxy resins other than the resorcinol type epoxy resin and the bisphenol A type epoxy resin among the resins having the above-mentioned epoxy group, according to a conventional method What is obtained by making it react in presence of a basic catalyst is mentioned.
  • Examples of the (meth) acrylic acid ester include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and a (meth) acrylic acid derivative having a hydroxyl group with isocyanate.
  • Examples include urethane (meth) acrylate.
  • Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (Meth) acrylate, phenoxye
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decandiol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (me ) Acrylate, propylene oxide-added bisphenol A di (meth) acrylate,
  • ester compound having three or more functional groups examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri.
  • Examples of the isocyanate used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4 ′.
  • MDI Diisocyanate
  • polymeric MDI polymeric MDI
  • 1,5-naphthalene diisocyanate norbornane diisocyanate
  • tolidine diisocyanate xylylene diisocyanate (XDI)
  • hydrogenated XDI lysine diisocyanate
  • triphenylmethane triisocyanate tris (Isocyanate phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,10-undecane triisocyanate Etc.
  • polyols such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like Chain-extended isocyanate compounds obtained by reaction with excess isocyanate can also be used.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate and 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc.
  • Mono (meth) acrylates of dihydric alcohols mono (meth) acrylates or di (meth) acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy ) Epoxy (meth) acrylates such as acrylate.
  • urethane (meth) acrylate examples include, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate.
  • a reaction is performed for 2 hours with reflux stirring at 60 ° C., and then 51 parts by weight of 2-hydroxyethyl acrylate is added, and the reaction is performed for 2 hours with stirring at 90 ° C. while feeding air. Can be mentioned.
  • urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL 230, EBECRYL 270, EBECRYL 4858.
  • the upper limit with the preferable ratio of the epoxy group with respect to the total amount of the (meth) acryloyloxy group and an epoxy group in the said whole curable resin is 50 mol%.
  • the ratio of the epoxy group is 50 mol% or less, the solubility of the sealing agent in the liquid crystal is lowered, liquid crystal contamination is suppressed, and the display performance of the obtained liquid crystal display element is improved.
  • a more preferable upper limit of the ratio of the epoxy group is 20 mol%.
  • the sealing agent for liquid crystal dropping method of the present invention comprises a surface treatment containing inorganic fine particles whose surface is treated with hexamethyldisilazane and / or inorganic fine particles whose surface is treated with 3-glycidoxypropyltrimethoxysilane. Contains inorganic fine particles.
  • the surface-treated inorganic fine particles have roles such as improvement of adhesion due to stress dispersion effect, improvement of linear expansion coefficient, and the like.
  • the sealing agent for liquid crystal dropping method of the present invention is excellent in adhesiveness and linear drawing by using surface-treated inorganic fine particles in combination with resorcinol type epoxy (meth) acrylate.
  • inorganic fine particles considering the dispersibility in the above-described hydrophilic curable resin, which is the main component of the sealing agent of the present invention, the drawing property of the sealing agent for the liquid crystal dropping method of the present invention, etc.
  • inorganic fine particles are preferable.
  • examples of such inorganic fine particles include silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, barium sulfate, gypsum, calcium silicate,
  • examples include talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride. Of these, talc and silica are preferable, and silica is more preferable from the viewpoint of adhesiveness.
  • the lower limit of the average particle diameter of the surface-treated inorganic fine particles is 0.1 ⁇ m.
  • the obtained liquid crystal dropping method sealing agent is inferior in adhesion to the substrate and the alignment film.
  • a preferable lower limit of the average particle diameter of the surface-treated inorganic fine particles is 0.3 ⁇ m, and a more preferable lower limit is 0.4 ⁇ m.
  • the preferable upper limit of the average particle diameter of the surface-treated inorganic fine particles is 1.0 ⁇ m. When the average particle diameter of the surface-treated inorganic fine particles exceeds 1.0 ⁇ m, the obtained sealing agent for liquid crystal dropping method may be inferior in linear drawing performance.
  • a more preferable upper limit of the average particle diameter of the surface-treated inorganic fine particles is 0.8 ⁇ m, and a more preferable upper limit is 0.7 ⁇ m.
  • the average particle diameter means an average value of particle diameters of 10 particles observed at a magnification of 10,000 using a scanning electron microscope.
  • S-4300 manufactured by Hitachi High-Technologies Corporation
  • S-4300 manufactured by Hitachi High-Technologies Corporation
  • the variation coefficient (hereinafter also referred to as CV value) of the particle diameter of the surface-treated inorganic fine particles is preferably 15% or less.
  • CV value of the particle diameter of the surface-treated inorganic fine particles exceeds 15%, the obtained liquid crystal dropping method sealant may be inferior in linear drawing due to large variation in the size of the surface-treated inorganic fine particles.
  • a CV value is a numerical value calculated
  • CV value of particle diameter (%) (standard deviation of particle diameter / average particle diameter) ⁇ 100
  • the shape of the surface-treated inorganic fine particles is not particularly limited, but is preferably spherical.
  • the spherical shape means that the aspect ratio (major diameter / thickness) of the particles is less than 1.05.
  • the aspect ratio can be obtained by observing with the above-described scanning electron microscope.
  • the surface-treated inorganic fine particles are treated with hexamethyldisilazane-treated inorganic fine particles (hereinafter also referred to as hexamethyldisilazane-treated inorganic fine particles) and / or with a surface treated with 3-glycidoxypropyltrimethoxysilane.
  • Inorganic fine particles hereinafter also referred to as 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles).
  • the seal for the liquid crystal dropping method of the present invention is used.
  • the agent is excellent in straight line drawing properties and adhesiveness.
  • the hexamethyldisilazane-treated inorganic fine particles may be prepared by synthesizing inorganic fine particles (hereinafter also referred to as raw material inorganic fine particles) such as silica by a method such as a sol-gel method, A method of spraying disilazane, a method of adding raw material inorganic fine particles in an organic solvent such as alcohol or toluene, and further adding hexamethyldisilazane and water, followed by evaporating and drying the water and organic solvent with an evaporator, etc. Can be produced.
  • the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles are prepared by synthesizing raw inorganic fine particles by a method such as a sol-gel method, and water and 3-glycidoxypropyltrimethoxysilane in a state where the raw inorganic fine particles are fluidized. Spraying the mixture liquid, or adding raw inorganic fine particles to an organic solvent such as alcohol or toluene, adding 3-glycidoxypropyltrimethoxysilane and water, and then evaporating the water and organic solvent. It can be produced by evaporating and drying with, for example.
  • the content of the surface-treated inorganic fine particles is preferably 20 parts by weight and preferably 160 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the surface-treated silica is less than 20 parts by weight, the obtained sealing agent for liquid crystal dropping method may be inferior in adhesion to the substrate or the alignment film.
  • content of the said surface treatment silica exceeds 160 weight part, the sealing compound for liquid crystal dropping methods obtained may become inferior to linear drawing property.
  • the sealing agent for liquid crystal dropping method of the present invention contains the hexamethyldisilazane-treated inorganic fine particles
  • the preferred lower limit of the content of the hexamethyldisilazane-treated inorganic fine particles is 20 with respect to 100 parts by weight of the curable resin. Part by weight, the preferred upper limit is 150 parts by weight.
  • the content of the hexamethyldisilazane-treated inorganic fine particles is 20 parts by weight or more, the adhesion of the obtained sealing agent for liquid crystal dropping method to the substrate or alignment film is improved.
  • the content of the hexamethyldisilazane-treated inorganic fine particles is 150 parts by weight or less, the linear drawing property of the obtained sealing agent for liquid crystal dropping method is improved.
  • the more preferable lower limit of the content of the hexamethyldisilazane-treated inorganic fine particles is 40 parts by weight, the more preferable upper limit is 130 parts by weight, the still more preferable lower limit is 50 parts by weight, and the still more preferable upper limit is 100 parts by weight.
  • the sealing agent for liquid crystal dropping method of the present invention contains the above-mentioned 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles
  • the content of the above-mentioned 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is A preferable lower limit is 30 parts by weight and a preferable upper limit is 160 parts by weight with respect to parts by weight.
  • the content of the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is 30 parts by weight or more, the adhesiveness of the obtained liquid crystal dropping method sealing agent to the substrate and the alignment film is improved.
  • the linear drawing property of the obtained liquid crystal dropping method sealing agent is improved.
  • the more preferable lower limit of the content of the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is 50 parts by weight, the more preferable upper limit is 140 parts by weight, the still more preferable lower limit is 60 parts by weight, and the still more preferable upper limit is 110 parts by weight. .
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a thermosetting agent and / or a radical polymerization initiator.
  • thermosetting agent examples include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
  • organic acid hydrazide examples include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like.
  • organic acid hydrazides examples include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.) and the like. .
  • thermosetting agent With respect to the content of the thermosetting agent, a preferable lower limit is 1 part by weight and a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the resin having an epoxy group.
  • the content of the thermosetting agent is 1 part by weight or more, the thermosetting property of the obtained liquid crystal dropping method sealing agent is improved.
  • the content of the thermosetting agent is 50 parts by weight or less, the viscosity becomes a suitable range, and the applicability of the obtained liquid crystal dropping method sealing agent is improved.
  • the upper limit with more preferable content of the said thermosetting agent is 30 weight part.
  • radical polymerization initiator examples include a photo radical polymerization initiator and a thermal radical polymerization initiator.
  • photo radical polymerization initiator examples include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
  • examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACUREOXE01, Lucin TPO (all from BASF M Examples include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
  • IRGACURE651, IRGACURE907, benzoin isopropyl ether, and lucillin TPO are preferable because of the wide absorption wavelength range.
  • These radical photopolymerization initiators may be used alone or in combination of two or more.
  • the thermal radical polymerization initiator what consists of an azo compound, an organic peroxide, etc. is mentioned, for example.
  • a polymer azo initiator composed of a polymer azo compound is preferable.
  • the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more.
  • the said number average molecular weight is a value calculated
  • Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK). Moreover, since the said polymeric azo initiator normally decomposes
  • the preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000.
  • the number average molecular weight of the polymer azo initiator is 1000 or more, adverse effects on the liquid crystal due to the polymer azo initiator can be suppressed.
  • the polymer azo initiator has a number average molecular weight of 300,000 or less, it can be easily mixed into the curable resin.
  • the more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
  • Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
  • Examples of such polymer azo initiators include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid).
  • Examples include polycondensates of polydimethylsiloxane having a terminal amino group.
  • Examples of commercially available polymer azo initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). It is done.
  • the organic peroxide is not particularly limited, and examples thereof include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, and peroxydicarbonate.
  • a preferable minimum is 0.1 weight part and a preferable upper limit is 30 weight part with respect to 100 weight part of said curable resins.
  • the content of the radical polymerization initiator is 0.1 parts by weight or more, the polymerizability of the obtained sealing agent for liquid crystal dropping method is improved.
  • the content of the radical polymerization initiator is 30 parts by weight or less, residual unreacted radical polymerization initiator is suppressed, and the weather resistance of the obtained liquid crystal dropping method sealing agent is improved.
  • the minimum with more preferable content of the said radical polymerization initiator is 1 weight part, A more preferable upper limit is 10 weight part, Furthermore, a preferable upper limit is 5 weight part.
  • the sealing agent for liquid crystal dropping method of the present invention may contain a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • silane coupling agent since it is excellent in the effect which improves adhesiveness with a board
  • -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used.
  • These silane coupling agents may be used alone or in combination of two or more.
  • the sealing agent for liquid crystal dropping method of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea, an antifoamer, a leveling agent, and a polymerization inhibitor.
  • a reactive diluent for adjusting the viscosity
  • a spacer such as polymer beads for adjusting the panel gap
  • 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea, an antifoamer, a leveling agent, and a polymerization inhibitor.
  • the sealing agent for liquid crystal dropping method of the present invention has a preferable lower limit of viscosity of 200,000 mPa ⁇ s and a preferable upper limit of 600,000 mPa ⁇ s measured at 25 ° C. and 1.0 rpm using an E-type viscometer. .
  • the viscosity is 200,000 mPa ⁇ s or more
  • the seal pattern formed using the obtained sealing agent for liquid crystal dropping method can be sufficiently maintained until it is heated and cured.
  • the said viscosity being 600,000 mPa * s or less, the applicability
  • the E-type viscometer for example, 5XHBDV-III + CP (manufactured by Brookfield, rotor No. CP-51) can be used.
  • the preferable lower limit of the thixotropic index (TI value) is 1.0 and the preferable upper limit of the sealing agent for liquid crystal dropping method of the present invention is 3.0.
  • the TI value is 1.0 or more, the viscosity of the sealing agent for liquid crystal dropping method is in a suitable range at the time of application, and the applicability of the obtained sealing agent for liquid crystal dropping method is improved. Defoaming is facilitated when the TI value is 3.0 or less.
  • the “thixotropic index (TI value)” refers to the viscosity measured at 25 ° C. and 0.5 rpm using an E-type viscometer under the conditions of 25 ° C. and 5.0 rpm. It is the value divided by the measured viscosity.
  • the volume resistance value of the cured product is preferably 1 ⁇ 10 13 ⁇ ⁇ cm or more, and the dielectric constant at 100 kHz is preferably 3 or more.
  • the volume resistance value is 1 ⁇ 10 13 ⁇ ⁇ cm or more, it means that the liquid crystal dropping method sealing agent contains almost no ionic impurities. Occurrence of display unevenness due to the elution of the ionic impurities into the liquid crystal can be prevented.
  • the dielectric constant of the liquid crystal is usually about ⁇ // (parallel) is about 10 and ⁇ (vertical) is about 3.5. Therefore, the dielectric constant of the sealing agent for liquid crystal dropping method of the present invention is 3 or more. As a result, it is possible to prevent display unevenness due to the sealing agent eluting into the liquid crystal.
  • Examples of the method for producing the sealant for the liquid crystal dropping method of the present invention include a curable resin and a surface treatment using a mixer such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, and a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, and a three roll.
  • Examples thereof include a method of mixing inorganic fine particles with an additive such as a thermosetting agent and / or a radical polymerization initiator and a silane coupling agent added as necessary.
  • a vertical conduction material can be manufactured by mix
  • the vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing compound for liquid crystal dropping method of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
  • the liquid crystal dropping method sealing agent of the present invention is applied to one of the transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing, dispenser coating, or the like. Then, a step of forming a rectangular seal pattern, the liquid crystal dropping method sealing agent of the present invention is applied in an uncured state, and liquid crystal microdrops are dropped onto the entire surface of the transparent substrate, and the other transparent substrate is immediately applied.
  • the sealing compound for liquid crystal dropping methods excellent in adhesiveness and linear drawing property can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.
  • hexamethyldisilazane-treated silica 100 parts by weight of silica particles having an average particle diameter of 0.7 ⁇ m synthesized by the sol-gel method are placed in a Henschel mixer, and 0.5 parts by weight of water and 10 parts by weight of hexamethyldisilazane are sprayed while stirring in a nitrogen atmosphere. The mixture was heated at 80 ° C. for 80 minutes, cooled, and crushed with a ball mill to prepare hexamethyldisilazane-treated silica (average particle size 0.7 ⁇ m).
  • silica particles having an average particle size of 0.05 ⁇ m, silica particles having an average particle size of 0.1 ⁇ m, silica particles having an average particle size of 0.4 ⁇ m, and silica particles having an average particle size of 1.0 ⁇ m are synthesized by the sol-gel method. The same operation was performed to prepare hexamethyldisilazane-treated silica having average particle sizes of 0.05 ⁇ m, 0.1 ⁇ m, 0.4 ⁇ m, and 1.0 ⁇ m, respectively.
  • silica treated with 3-glycidoxypropyltrimethoxysilane 100 parts by weight of silica particles having an average particle diameter of 0.7 ⁇ m synthesized by the sol-gel method are put in a mixer, and 10 parts by weight of water and 2 parts by weight of 3-glycidoxypropyltrimethoxysilane are sprayed while stirring in a nitrogen atmosphere. The mixture was heated at 150 ° C. for 80 minutes, cooled, and crushed with a ball mill to prepare 3-glycidoxypropyltrimethoxysilane-treated silica (average particle size 0.7 ⁇ m).
  • silica particles having an average particle size of 0.05 ⁇ m, silica particles having an average particle size of 0.1 ⁇ m, silica particles having an average particle size of 0.4 ⁇ m, and silica particles having an average particle size of 1.0 ⁇ m are synthesized by the sol-gel method. The same operation was performed to prepare 3-glycidoxypropyltrimethoxysilane-treated silica having average particle sizes of 0.05 ⁇ m, 0.1 ⁇ m, 0.4 ⁇ m, and 1.0 ⁇ m, respectively.
  • talc treated with hexamethyldisilazane 100 parts by weight of talc particles (manufactured by Nippon Talc Co., Ltd., “SG-2000”) are placed in a mixer, and 0.5 parts by weight of water and 10 parts by weight of hexamethyldisilazane are sprayed while stirring in a nitrogen atmosphere at 150 ° C. After heating for 80 minutes, the mixture was cooled and crushed with a ball mill to prepare hexamethyldisilazane-treated talc (average particle size: 1.0 ⁇ m).
  • Example 1 As the curable resin, 70 parts by weight of resorcinol type epoxy acrylate (curable resin A), 20 parts by weight of bisphenol A type epoxy acrylate (curable resin B), and 50% partially acrylic modified bisphenol A type epoxy resin (curable resin) D) 10 parts by weight was mixed in a predetermined container, mixed and stirred with a planetary stirrer, and then 2,2-dimethoxy-2-phenylacetophenone (manufactured by BASF Japan, “Irgacure 651” as a photo radical polymerization initiator).
  • Examples 2 to 25, Comparative Examples 1 to 8 The curable resin and the filler were the materials and blending ratios described in Tables 1 to 4, and each material was treated with a planetary stirrer (Shinky Co., “Awatori Kentaro”) in the same manner as in Example 1. After mixing and stirring, the mixture was further mixed uniformly with a ceramic three roll to prepare the sealing agents for liquid crystal dropping methods of Examples 2 to 25 and Comparative Examples 1 to 8.
  • a planetary stirrer Sudky Co., “Awatori Kentaro”
  • Adhesiveness 1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.) is added to the sealing agent for liquid crystal dropping method obtained in each example and each comparative example, and two sheets of alkali glass with a TN alignment film A test piece (30 ⁇ 40 mm) was finely dropped on one side and the other glass test piece was bonded in a cross shape to the sample, and irradiated with 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, and then 120 ° C. The adhesive test piece was obtained by heating for 60 minutes.
  • SI-H055 silica spacer
  • a tensile test (5 mm / min) was performed on the obtained adhesive test piece with a chuck arranged vertically.
  • the value obtained by dividing the obtained measured value (kgf) by the cross-sectional area (cm 2 ) of seal application is 30 kgf / cm 2 or more, “ ⁇ ”, and 15 kgf / cm 2 or more and less than 30 kgf / cm 2 the " ⁇ ", was to evaluate the case was less than 10kgf / cm 2 or more 15kgf / cm 2 as " ⁇ ", " ⁇ " the case was less than 10kgf / cm 2.
  • a transparent electrode substrate with an ITO thin film was coated with a sealing agent so as to draw a rectangular frame (coating speed 100 mm / sec), and the other transparent substrate was applied.
  • bonding was performed at 23 ° C. under a reduced pressure of 5.0 Pa using a vacuum bonding apparatus, and the cells after bonding were irradiated with 3000 mJ / cm 2 ultraviolet rays using a metal halide lamp, and then heated at 120 ° C. for 60 minutes.
  • the sealant was thermally cured, and five liquid crystal cells were produced for each sealant.
  • liquid crystal contamination (specific resistance retention)
  • JC-5001LA liquid crystal dropping method sealing agent obtained in each Example and each Comparative Example
  • 0.02 g of the liquid crystal dropping method sealing agent obtained in each Example and each Comparative Example was added and shaken. Heated at 0 ° C. for 1 hour. After returning to room temperature (25 ° C.), a liquid crystal specific resistance measuring device (manufactured by KEITHLEY Instruments, “6517A”) and a liquid electrode (manufactured by Ando Electric, “LE-21 type”) as the electrode are used, and the standard temperature and humidity The liquid crystal specific resistance of the liquid crystal part was measured in the state (20 ° C., 65% RH).
  • the bonded cells were irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to thermally cure the sealing agent, thereby producing five liquid crystal display elements for each sealing agent.
  • the obtained liquid crystal display element was driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed. The case where no color unevenness was observed at all around the sealant part was evaluated as “ ⁇ ”, the case where slightly light color unevenness was observed as “ ⁇ ”, and the case where clear dark color unevenness was observed as “X”.
  • the sealing compound for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property can be provided.
  • the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.

Abstract

Provided is a sealant for a liquid crystal dropping process, having excellent adhesion and line drawing properties. Also provided are a vertical-conduction material and liquid crystal display element manufactured using the sealant for a liquid crystal dropping process. A sealant for a liquid crystal dropping process, comprising: a curable resin containing resorcinol-type epoxy (meth)acrylate and a resin having an epoxy group; and surface-treated inorganic particles containing inorganic particles surface-treated with hexamethyldisilazane, and/or inorganic particles surface-treated with 3‑glycidoxypropyltrimethoxysilane; the surface-treated inorganic particles having an average particle diameter of at least 0.1 µm.

Description

液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
本発明は、接着性及び直線描画性に優れる液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子に関する。 The present invention relates to a sealant for a liquid crystal dropping method which is excellent in adhesiveness and straight line drawing properties. Moreover, this invention relates to the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
近年、液晶表示セル等の液晶表示素子の製造方法は、タクトタイム短縮、使用液晶量の最適化といった観点から、従来の真空注入方式から、例えば、特許文献1、特許文献2に開示されているような光硬化性樹脂、光重合開始剤、熱硬化性樹脂、及び、熱硬化剤を含有する光、熱併用硬化型のシール剤を用いた滴下工法と呼ばれる液晶滴下方式にかわりつつある。 In recent years, a method for manufacturing a liquid crystal display element such as a liquid crystal display cell has been disclosed in, for example, Patent Document 1 and Patent Document 2 from the conventional vacuum injection method from the viewpoint of shortening tact time and optimizing the amount of liquid crystal used. Such a photocurable resin, a photopolymerization initiator, a thermosetting resin, and a liquid crystal dropping method called a dropping method using a light and heat combined curing type sealant containing a thermosetting agent are being replaced.
滴下工法では、まず、2枚の電極付き透明基板の一方に、ディスペンスにより長方形状のシールパターンを形成する。次いで、シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下し、すぐに他方の透明基板を重ねあわせ、シール部に紫外線等の光を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。基板の貼り合わせを減圧下で行うようにすれば、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。 In the dropping method, first, a rectangular seal pattern is formed on one of two transparent substrates with electrodes by dispensing. Next, a liquid crystal micro-droplet is dropped on the entire surface of the transparent substrate frame with the sealant being uncured, and the other transparent substrate is immediately overlaid, and the seal portion is irradiated with light such as ultraviolet rays to perform temporary curing. . Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. If the substrates are bonded together under reduced pressure, a liquid crystal display element can be manufactured with extremely high efficiency, and this dripping method is currently the mainstream method for manufacturing liquid crystal display elements.
液晶表示素子において、シール剤には直線描画性に優れることが求められており、また、製造時には工程の効率化の為にディスペンスを高速化することが求められている。しかしながら、従来のシール剤を高速に描画した場合、シール剤を安定的に直線描画することができず、断線不良が発生したり、描画後のシール剤のラインにうねりが生じたりするという問題があった。シール剤には通常、充填剤が配合されており、直線描画性を向上させるためには、シール剤に配合する充填剤の量を減らすことが考えられるが、充填剤の量を減らすと、シール剤が基板や配向膜に対する接着性に劣るものとなるという問題があった。 In a liquid crystal display element, the sealant is required to have excellent straight line drawing properties, and at the time of manufacturing, it is required to increase the dispensing speed in order to improve the process efficiency. However, when the conventional sealant is drawn at high speed, the sealant cannot be drawn in a straight line stably, resulting in a problem of disconnection failure or waviness in the sealant line after drawing. there were. Normally, a filler is blended in the sealant, and in order to improve the straight line drawing property, it is conceivable to reduce the amount of the filler to be blended in the sealant, but if the amount of the filler is reduced, the sealant There is a problem that the agent is inferior in adhesion to the substrate and the alignment film.
特開2001-133794号公報JP 2001-133794 A 国際公開第02/092718号パンフレットInternational Publication No. 02/092718 Pamphlet
本発明は、接着性及び直線描画性に優れる液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することを目的とする。 An object of this invention is to provide the sealing compound for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property. Moreover, an object of this invention is to provide the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods.
本発明は、レゾルシノール型エポキシ(メタ)アクリレートと、エポキシ基を有する樹脂とを含有する硬化性樹脂、並びに、表面をヘキサメチルジシラザンで処理された無機微粒子、及び/又は、表面を3-グリシドキシプロピルトリメトキシシランで処理された無機微粒子を含有する表面処理無機微粒子を含有し、上記表面処理無機微粒子は、平均粒子径が0.1μm以上である液晶滴下工法用シール剤である。
以下に本発明を詳述する。
The present invention relates to a curable resin containing a resorcinol-type epoxy (meth) acrylate and a resin having an epoxy group, inorganic fine particles whose surface is treated with hexamethyldisilazane, and / or a surface having 3-glycol. It contains surface-treated inorganic fine particles containing inorganic fine particles treated with cidoxypropyltrimethoxysilane, and the surface-treated inorganic fine particles are a sealing agent for liquid crystal dropping method having an average particle diameter of 0.1 μm or more.
The present invention is described in detail below.
本発明者は、レゾルシノール型エポキシ(メタ)アクリレートを含有する硬化性樹脂と、特定の表面処理無機微粒子とを組み合わせて用いることにより、接着性及び直線描画性に優れる液晶滴下工法用シール剤を得ることができることを見出し、本発明を完成させるに至った。
レゾルシノール型エポキシ(メタ)アクリレートと表面処理無機微粒子とを組み合わせて用いることによって、シール剤の直線描画性が向上する理由としては、以下のことが考えられる。即ち、レゾルシノール型エポキシ(メタ)アクリレートは、液晶滴下工法用シール剤で通常用いられる樹脂に比べて極性が高いため、極性の低い表面処理無機微粒子と併用することにより、粒子と樹脂間の反発が大きくなり、見かけの粘度が下がったためであると推定される。
This inventor obtains the sealing agent for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property by using combining the curable resin containing a resorcinol type epoxy (meth) acrylate, and specific surface treatment inorganic fine particles. As a result, the present invention has been completed.
The reason why the straight line drawing property of the sealant is improved by using a combination of resorcinol type epoxy (meth) acrylate and surface-treated inorganic fine particles is considered as follows. That is, resorcinol-type epoxy (meth) acrylate has a higher polarity than a resin usually used in a sealing agent for a liquid crystal dropping method, and therefore, when used in combination with a surface treatment inorganic fine particle having a low polarity, repulsion between the particle and the resin is caused. It is presumed that this was due to an increase in the apparent viscosity.
本発明の液晶滴下工法用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、レゾルシノール型エポキシ(メタ)アクリレートを含有する。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。また、本明細書において上記「エポキシ(メタ)アクリレート」とは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
The sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
The curable resin contains resorcinol type epoxy (meth) acrylate.
In the present specification, the “(meth) acrylate” means acrylate or methacrylate. In the present specification, the “epoxy (meth) acrylate” represents a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid.
上記レゾルシノール型エポキシ(メタ)アクリレートとしては、例えば、(メタ)アクリル酸とレゾルシノール型エポキシ樹脂とを、常法に従って塩基性触媒の存在下で反応させることにより得られるものが挙げられる。なお、本明細書において、上記「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。 Examples of the resorcinol-type epoxy (meth) acrylate include those obtained by reacting (meth) acrylic acid and resorcinol-type epoxy resin in the presence of a basic catalyst according to a conventional method. In the present specification, the “(meth) acryl” means acryl or methacryl.
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。 Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
上記硬化性樹脂中におけるレゾルシノール型エポキシ(メタ)アクリレートの含有量の好ましい下限は20重量%である。上記レゾルシノール型エポキシ(メタ)アクリレートの含有量が20重量%未満であると、得られる液晶滴下工法用シール剤が、直線描画性に劣るものとなり、描画時に断線したり、描画後にうねりが生じたりすることがある。上記レゾルシノール型エポキシ(メタ)アクリレートの含有量のより好ましい下限は50重量%、更に好ましい下限は70重量%である。
また、上記硬化性樹脂中におけるレゾルシノール型エポキシ(メタ)アクリレートの含有量の好ましい上限は90重量%である。上記レゾルシノール型エポキシ(メタ)アクリレートの含有量が90重量%以下であることにより、得られる液晶滴下工法用シール剤が接着性や耐湿性が向上する。上記レゾルシノール型エポキシ(メタ)アクリレートの含有量のより好ましい上限は85重量%である。
The minimum with preferable content of the resorcinol type | mold epoxy (meth) acrylate in the said curable resin is 20 weight%. If the content of the resorcinol-type epoxy (meth) acrylate is less than 20% by weight, the obtained liquid crystal dropping method sealant is inferior in straight line drawing property, and breaks during drawing or waviness after drawing. There are things to do. The more preferable lower limit of the content of the resorcinol type epoxy (meth) acrylate is 50% by weight, and the more preferable lower limit is 70% by weight.
Moreover, the upper limit with preferable content of a resorcinol type | mold epoxy (meth) acrylate in the said curable resin is 90 weight%. When the content of the resorcinol-type epoxy (meth) acrylate is 90% by weight or less, the obtained sealing agent for liquid crystal dropping method has improved adhesion and moisture resistance. The upper limit with more preferable content of the said resorcinol type | mold epoxy (meth) acrylate is 85 weight%.
上記硬化性樹脂は、ビスフェノールA型エポキシ(メタ)アクリレートを含有することが好ましい。レゾルシノール型エポキシ(メタ)アクリレートとビスフェノールA型エポキシ(メタ)アクリレートとを含有することにより、得られる液晶滴下工法用シール剤は、ディスペンス時の直線描画性がより優れるものとなり、更に、液晶汚染性と接着性も良好となる。 The curable resin preferably contains bisphenol A type epoxy (meth) acrylate. By containing resorcinol-type epoxy (meth) acrylate and bisphenol A-type epoxy (meth) acrylate, the resulting sealant for liquid crystal dropping method has better straight line drawing properties at the time of dispensing, and liquid crystal contamination And the adhesion is also good.
上記ビスフェノールA型エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL 3700(ダイセル・サイテック社製)等が挙げられる。 As what is marketed among the said bisphenol A type epoxy (meth) acrylate, EBECRYL 3700 (made by Daicel-Cytec) etc. are mentioned, for example.
上記硬化性樹脂中におけるビスフェノールA型エポキシ(メタ)アクリレートの含有量の好ましい下限は10重量%である。上記ビスフェノールA型エポキシ(メタ)アクリレートの含有量が10重量%未満であると、得られる液晶滴下工法用シール剤が、チクソトロピー性が高くなり、塗布の際に用いるシリンジやノズル等の洗浄性が悪化することがある。上記ビスフェノールA型エポキシ(メタ)アクリレートの含有量のより好ましい下限は20重量%である。
また、上記硬化性樹脂中におけるビスフェノールA型エポキシ(メタ)アクリレートの含有量の好ましい上限は60重量%である。上記ビスフェノールA型エポキシ(メタ)アクリレートの含有量が60重量%以下であることにより、粘度が好適な範囲となって、得られる液晶滴下工法用シール剤の塗布性が向上する。上記ビスフェノールA型エポキシ(メタ)アクリレートの含有量のより好ましい上限は50重量%である。
The minimum with preferable content of the bisphenol A type epoxy (meth) acrylate in the said curable resin is 10 weight%. When the content of the bisphenol A-type epoxy (meth) acrylate is less than 10% by weight, the obtained liquid crystal dropping method sealing agent has high thixotropic properties, and has a cleaning property such as a syringe or a nozzle used for coating. May get worse. The minimum with more preferable content of the said bisphenol A type epoxy (meth) acrylate is 20 weight%.
Moreover, the upper limit with preferable content of the bisphenol A type epoxy (meth) acrylate in the said curable resin is 60 weight%. When the content of the bisphenol A type epoxy (meth) acrylate is 60% by weight or less, the viscosity becomes a suitable range, and the coating property of the obtained liquid crystal dropping method sealing agent is improved. The upper limit with more preferable content of the said bisphenol A type epoxy (meth) acrylate is 50 weight%.
上記硬化性樹脂は、エポキシ基を有する樹脂を含有する。
上記エポキシ基を有する樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物等が挙げられる。
The curable resin contains a resin having an epoxy group.
Examples of the resin having an epoxy group include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A type epoxy resin, hydrogenated bisphenol type epoxy resin, and propylene oxide. Addition bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, orthocresol novolac type epoxy Resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphthalenephenol novolac epoxy resin, glycy Examples thereof include a zilamine type epoxy resin, an alkyl polyol type epoxy resin, a rubber-modified epoxy resin, and a glycidyl ester compound.
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(東都化成社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(東都化成社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(東都化成社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(東都化成社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも東都化成社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも東都化成社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
As what is marketed among the said bisphenol F type epoxy resins, Epicoat 806, Epicoat 4004 (all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
As what is marketed among the said bisphenol S-type epoxy resins, Epicron EXA1514 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
As what is marketed among the said hydrogenated bisphenol type | mold epoxy resins, Epicron EXA7015 (made by DIC Corporation) etc. are mentioned, for example.
Examples of commercially available propylene oxide-added bisphenol A type epoxy resins include EP-4000S (manufactured by ADEKA).
Examples of commercially available resorcinol type epoxy resins include EX-201 (manufactured by Nagase ChemteX Corporation).
Examples of commercially available biphenyl type epoxy resins include Epicoat YX-4000H (manufactured by Mitsubishi Chemical Corporation).
Examples of commercially available sulfide type epoxy resins include YSLV-50TE (manufactured by Tohto Kasei Co., Ltd.).
Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Tohto Kasei Co., Ltd.).
Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
As what is marketed among the said dicyclopentadiene novolak-type epoxy resins, epiclone HP7200 (made by DIC) etc. are mentioned, for example.
Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Tohto Kasei Co., Ltd.).
Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
Examples of commercially available alkyl polyol type epoxy resins include ZX-1542 (manufactured by Tohto Kasei Co., Ltd.), Epicron 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611 ( Nagase ChemteX Corporation).
Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Tohto Kasei Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Tohto Kasei Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032 ( These include Mitsubishi Chemical Corporation), EXA-7120 (DIC Corporation), TEPIC (Nissan Chemical Corporation), and the like.
また、上記エポキシ基を有する樹脂として、1分子中にエポキシ基と(メタ)アクリロイルオキシ基とを有する樹脂を含有してもよい。このような化合物としては、例えば、2以上のエポキシ基を有する化合物の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得られる部分(メタ)アクリル変性エポキシ樹脂等が挙げられる。なかでも、ビスフェノールA型の部分(メタ)アクリル変性エポキシ樹脂(部分(メタ)アクリル変性ビスフェノールA型エポキシ樹脂)を含有することが好ましい。 Moreover, you may contain resin which has an epoxy group and a (meth) acryloyloxy group in 1 molecule as resin which has the said epoxy group. Examples of such a compound include a partial (meth) acryl-modified epoxy resin obtained by reacting a part of an epoxy group of a compound having two or more epoxy groups with (meth) acrylic acid. Especially, it is preferable to contain the bisphenol A type partial (meth) acryl modified epoxy resin (partial (meth) acryl modified bisphenol A type epoxy resin).
上記部分(メタ)アクリル変性エポキシ樹脂のうち、市販されているものとしては、例えば、UVACURE1561(ダイセル・サイテック社製)が挙げられる。 Examples of the commercially available partial (meth) acryl-modified epoxy resin include UVACURE 1561 (manufactured by Daicel Cytec).
上記硬化性樹脂中におけるエポキシ基を有する樹脂の含有量の好ましい下限は5重量%、好ましい上限は50重量%である。上記エポキシ基を有する樹脂の含有量が5重量%以上であることにより、得られる液晶滴下工法用シール剤の接着性や耐湿性が向上する。上記エポキシ基を有する樹脂の含有量が50重量%以下であることにより、シール剤が液晶へ溶出し難くなり、得られる液晶表示素子に表示ムラ等が生じることを抑制できる。上記エポキシ基を有する樹脂の含有量のより好ましい下限は10重量%、より好ましい上限は42重量%であり、更に好ましい下限は20重量%である。 The minimum with preferable content of resin which has an epoxy group in the said curable resin is 5 weight%, and a preferable upper limit is 50 weight%. When the content of the resin having an epoxy group is 5% by weight or more, the adhesiveness and moisture resistance of the obtained liquid crystal dropping method sealing agent are improved. When the content of the resin having an epoxy group is 50% by weight or less, the sealing agent is hardly eluted into the liquid crystal, and it is possible to suppress the occurrence of display unevenness and the like in the obtained liquid crystal display element. A more preferable lower limit of the content of the resin having an epoxy group is 10% by weight, a more preferable upper limit is 42% by weight, and a still more preferable lower limit is 20% by weight.
また、上記硬化性樹脂は、上記レゾルシノール型エポキシ(メタ)アクリレートや上記ビスフェノールA型エポキシ(メタ)アクリレート以外のその他の(メタ)アクリル樹脂を含有してもよい。
上記その他の(メタ)アクリル樹脂としては、アクリロイルオキシ基又はメタクリロイルオキシ基を有する樹脂であれば、特に限定なく使用することができ、例えば、上記レゾルシノール型エポキシ(メタ)アクリレートや上記ビスフェノールA型エポキシ(メタ)アクリレート以外のその他のエポキシ(メタ)アクリレートや、(メタ)アクリル酸エステル等が挙げられる。
Moreover, the said curable resin may contain other (meth) acrylic resins other than the said resorcinol type | mold epoxy (meth) acrylate and the said bisphenol A type | mold epoxy (meth) acrylate.
As the other (meth) acrylic resin, any resin having an acryloyloxy group or a methacryloyloxy group can be used without particular limitation. For example, the resorcinol-type epoxy (meth) acrylate and the bisphenol A-type epoxy can be used. Examples include other epoxy (meth) acrylates other than (meth) acrylate, (meth) acrylic acid esters, and the like.
上記その他のエポキシ(メタ)アクリレートとしては、例えば、(メタ)アクリル酸と、上述したエポキシ基を有する樹脂のうち、レゾルシノール型エポキシ樹脂やビスフェノールA型エポキシ樹脂以外のエポキシ樹脂とを、常法に従って塩基性触媒の存在下で反応させることにより得られるものが挙げられる。 As said other epoxy (meth) acrylate, for example, (meth) acrylic acid and epoxy resins other than the resorcinol type epoxy resin and the bisphenol A type epoxy resin among the resins having the above-mentioned epoxy group, according to a conventional method What is obtained by making it react in presence of a basic catalyst is mentioned.
上記(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and a (meth) acrylic acid derivative having a hydroxyl group with isocyanate. Examples include urethane (meth) acrylate.
上記エステル化合物のうち1官能のものとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。 Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and isobutyl (meth) ) Acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, Methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethyl carbitol (Meth) acrylate, phenoxyethyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2, 2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, imide (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl ( (Meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) Chryrate, isononyl (meth) acrylate, isomyristyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, 2-phenoxyethyl (meth) acrylate, bicyclopentenyl (meth) acrylate, isodecyl (meth) acrylate, diethylaminoethyl (meth) ) Acrylate, dimethylaminoethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxy Examples thereof include propyl phthalate, glycidyl (meth) acrylate, and 2- (meth) acryloyloxyethyl phosphate.
上記エステル化合物のうち2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3―プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエンルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional ester compound include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decandiol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (me ) Acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadiene rudi (meth) acrylate, 1,3-butylene Glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) Acrylate, polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate Polybutadiene di (meth) acrylate.
上記エステル化合物のうち3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。 Examples of the ester compound having three or more functional groups include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri. (Meth) acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ditrimethylolpropane tetra (meth) ) Acrylate, pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, propylene oxide De additional glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, and the like.
上記ウレタン(メタ)アクリレートの原料となるイソシアネートとしては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイオシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。 Examples of the isocyanate used as a raw material for the urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4 ′. Diisocyanate (MDI), hydrogenated MDI, polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (Isocyanate phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,10-undecane triisocyanate Etc. The.
また、上記ウレタン(メタ)アクリレートの原料となるイソシアネートとしては、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も使用することができる。 In addition, as an isocyanate that is a raw material of the urethane (meth) acrylate, polyols such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol, carbonate diol, polyether diol, polyester diol, polycaprolactone diol, and the like Chain-extended isocyanate compounds obtained by reaction with excess isocyanate can also be used.
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate, include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth). Hydroxyalkyl (meth) acrylates such as acrylate and 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, polyethylene glycol, etc. Mono (meth) acrylates of dihydric alcohols, mono (meth) acrylates or di (meth) acrylates of trihydric alcohols such as trimethylolethane, trimethylolpropane and glycerin, and bisphenol A type epoxy ) Epoxy (meth) acrylates such as acrylate.
上記ウレタン(メタ)アクリレートとしては、具体的には例えば、トリメチロールプロパン134重量部、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、イソホロンジイソシアネート666重量部を加え、60℃で還流攪拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込みながら90℃で還流攪拌しながら2時間反応させることにより得られるもの等が挙げられる。 Specific examples of the urethane (meth) acrylate include, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, 0.01 part by weight of dibutyltin dilaurate as a reaction catalyst, and 666 parts by weight of isophorone diisocyanate. In addition, a reaction is performed for 2 hours with reflux stirring at 60 ° C., and then 51 parts by weight of 2-hydroxyethyl acrylate is added, and the reaction is performed for 2 hours with stirring at 90 ° C. while feeding air. Can be mentioned.
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL 230、EBECRYL 270、EBECRYL 4858、EBECRYL 8402、EBECRYL 8804、EBECRYL 8803、EBECRYL 8807、EBECRYL 9260、EBECRYL 1290、EBECRYL 5129、EBECRYL 4842、EBECRYL 210、EBECRYL 4827、EBECRYL 6700、EBECRYL 220、EBECRYL 2220(いずれもダイセル・サイテック社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。 Commercially available urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL 230, EBECRYL 270, EBECRYL 4858. , EBECRYL 8402, EBECRYL 8804, EBECRYL 8803, EBECRYL 8807, EBECRYL 9260, EBECRYL 1290, EBECRYL 5129, EBECRYL 4842, EBECRYL 482 Resin UN-9000H, Art Resin UN-9000A, Art Res UN-7100, Art Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-122P, U-108A U-340P, U-4HA, U-6HA, U-324A, U-15HA, UA-5201P, UA-W2A, U-1084A, U-6LPA, U-2HA, U-2PHA, UA-4100, UA -7100, UA-4200, UA-4400, UA-340P, U-3HA, UA-7200, U-2061BA, U-10H, U-122A, U-340A, U-108, U-6H, UA-4000 (All made by Shin-Nakamura Chemical Co., Ltd.), AH-600, AT-600, UA-306H, AI-600, A-101T, UA-101I, UA-306T, UA-306I (all manufactured by Kyoeisha Chemical Co., Ltd.).
上記硬化性樹脂全体における(メタ)アクリロイルオキシ基とエポキシ基との合計量に対するエポキシ基の比率の好ましい上限は50モル%である。上記エポキシ基の比率が50モル%以下であることにより、シール剤の液晶に対する溶解性が低くなって液晶汚染を抑制し、得られる液晶表示素子の表示性能が向上する。上記エポキシ基の比率のより好ましい上限は20モル%である。 The upper limit with the preferable ratio of the epoxy group with respect to the total amount of the (meth) acryloyloxy group and an epoxy group in the said whole curable resin is 50 mol%. When the ratio of the epoxy group is 50 mol% or less, the solubility of the sealing agent in the liquid crystal is lowered, liquid crystal contamination is suppressed, and the display performance of the obtained liquid crystal display element is improved. A more preferable upper limit of the ratio of the epoxy group is 20 mol%.
本発明の液晶滴下工法用シール剤は、表面をヘキサメチルジシラザンで処理された無機微粒子、及び/又は、表面を3-グリシドキシプロピルトリメトキシシランで処理された無機微粒子を含有する表面処理無機微粒子を含有する。上記表面処理無機微粒子は、応力分散効果による接着性の改善、線膨張率の改善等の役割を有する。本発明の液晶滴下工法用シール剤は、表面処理無機微粒子を、レゾルシノール型エポキシ(メタ)アクリレートと組み合わせて用いることにより、接着性及び直線描画性に優れるものとなる。
上記無機微粒子としては、本発明のシール剤の主成分である上述した親水性の硬化性樹脂中への分散性、本発明の液晶滴下工法用シール剤の描画性等を考慮すると、親水性の無機微粒子であることが好ましい。このような無機微粒子としては、例えば、シリカ、珪藻土、アルミナ、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、炭酸マグネシウム、硫酸バリウム、石膏、珪酸カルシウム、タルク、ガラスビーズ、セリサイト活性白土、ベントナイト、窒化アルミニウム、窒化珪素等が挙げられる。なかでも、タルク、シリカが好ましく、接着性の観点からシリカがより好ましい。
The sealing agent for liquid crystal dropping method of the present invention comprises a surface treatment containing inorganic fine particles whose surface is treated with hexamethyldisilazane and / or inorganic fine particles whose surface is treated with 3-glycidoxypropyltrimethoxysilane. Contains inorganic fine particles. The surface-treated inorganic fine particles have roles such as improvement of adhesion due to stress dispersion effect, improvement of linear expansion coefficient, and the like. The sealing agent for liquid crystal dropping method of the present invention is excellent in adhesiveness and linear drawing by using surface-treated inorganic fine particles in combination with resorcinol type epoxy (meth) acrylate.
As the inorganic fine particles, considering the dispersibility in the above-described hydrophilic curable resin, which is the main component of the sealing agent of the present invention, the drawing property of the sealing agent for the liquid crystal dropping method of the present invention, etc. Inorganic fine particles are preferable. Examples of such inorganic fine particles include silica, diatomaceous earth, alumina, zinc oxide, iron oxide, magnesium oxide, tin oxide, titanium oxide, magnesium hydroxide, aluminum hydroxide, magnesium carbonate, barium sulfate, gypsum, calcium silicate, Examples include talc, glass beads, sericite activated clay, bentonite, aluminum nitride, and silicon nitride. Of these, talc and silica are preferable, and silica is more preferable from the viewpoint of adhesiveness.
上記表面処理無機微粒子の平均粒子径の下限は0.1μmである。上記表面処理無機微粒子の平均粒子径が0.1μm未満であると、得られる液晶滴下工法用シール剤が基板や配向膜に対する接着性に劣るものとなる。上記表面処理無機微粒子の平均粒子径の好ましい下限は0.3μm、より好ましい下限は0.4μmである。
また、上記表面処理無機微粒子の平均粒子径の好ましい上限は1.0μmである。上記表面処理無機微粒子の平均粒子径が1.0μmを超えると、得られる液晶滴下工法用シール剤が直線描画性に劣るものとなることがある。上記表面処理無機微粒子の平均粒子径のより好ましい上限は0.8μm、更に好ましい上限は0.7μmである。
なお、本明細書において上記平均粒子径は、走査型電子顕微鏡を用いて、1万倍の倍率で観察した粒子10個の粒子径の平均値を意味する。上記走査型電子顕微鏡としては、S-4300(日立ハイテクノロジーズ社製)等を用いることができる。
The lower limit of the average particle diameter of the surface-treated inorganic fine particles is 0.1 μm. When the average particle diameter of the surface-treated inorganic fine particles is less than 0.1 μm, the obtained liquid crystal dropping method sealing agent is inferior in adhesion to the substrate and the alignment film. A preferable lower limit of the average particle diameter of the surface-treated inorganic fine particles is 0.3 μm, and a more preferable lower limit is 0.4 μm.
Moreover, the preferable upper limit of the average particle diameter of the surface-treated inorganic fine particles is 1.0 μm. When the average particle diameter of the surface-treated inorganic fine particles exceeds 1.0 μm, the obtained sealing agent for liquid crystal dropping method may be inferior in linear drawing performance. A more preferable upper limit of the average particle diameter of the surface-treated inorganic fine particles is 0.8 μm, and a more preferable upper limit is 0.7 μm.
In the present specification, the average particle diameter means an average value of particle diameters of 10 particles observed at a magnification of 10,000 using a scanning electron microscope. As the scanning electron microscope, S-4300 (manufactured by Hitachi High-Technologies Corporation) or the like can be used.
上記表面処理無機微粒子の粒子径の変動係数(以下、CV値ともいう)は15%以下であることが好ましい。上記表面処理無機微粒子の粒子径のCV値が15%を超えると、表面処理無機微粒子の大きさに大きなバラツキにより、得られる液晶滴下工法用シール剤が直線描画性に劣るものとなることがある。
なお、本明細書においてCV値とは、下記式により求められる数値のことである。
 粒子径のCV値(%)=(粒子径の標準偏差/平均粒子径)×100
The variation coefficient (hereinafter also referred to as CV value) of the particle diameter of the surface-treated inorganic fine particles is preferably 15% or less. When the CV value of the particle diameter of the surface-treated inorganic fine particles exceeds 15%, the obtained liquid crystal dropping method sealant may be inferior in linear drawing due to large variation in the size of the surface-treated inorganic fine particles. .
In addition, in this specification, a CV value is a numerical value calculated | required by a following formula.
CV value of particle diameter (%) = (standard deviation of particle diameter / average particle diameter) × 100
上記表面処理無機微粒子の形状は特に限定されないが、球状であることが好ましい。
なお、本明細書において上記球状とは、粒子のアスペクト比(長径/厚み)が1.05未満であることを意味する。上記アスペクト比は、上述した走査型電子顕微鏡で観察することで求めることができる。
The shape of the surface-treated inorganic fine particles is not particularly limited, but is preferably spherical.
In the present specification, the spherical shape means that the aspect ratio (major diameter / thickness) of the particles is less than 1.05. The aspect ratio can be obtained by observing with the above-described scanning electron microscope.
上記表面処理無機微粒子は、表面をヘキサメチルジシラザンで処理された無機微粒子(以下、ヘキサメチルジシラザン処理無機微粒子ともいう)、及び/又は、表面を3-グリシドキシプロピルトリメトキシシランで処理された無機微粒子(以下、3-グリシドキシプロピルトリメトキシシラン処理無機微粒子ともいう)を含有する。
上記ヘキサメチルジシラザン処理無機微粒子、及び/又は、上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子と、上述したレゾルシノール型エポキシ樹脂とを組み合わせて用いることにより、本発明の液晶滴下工法用シール剤は直線描画性及び接着性に優れるものとなる。
The surface-treated inorganic fine particles are treated with hexamethyldisilazane-treated inorganic fine particles (hereinafter also referred to as hexamethyldisilazane-treated inorganic fine particles) and / or with a surface treated with 3-glycidoxypropyltrimethoxysilane. Inorganic fine particles (hereinafter also referred to as 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles).
By using the hexamethyldisilazane-treated inorganic fine particles and / or the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles in combination with the aforementioned resorcinol-type epoxy resin, the seal for the liquid crystal dropping method of the present invention is used. The agent is excellent in straight line drawing properties and adhesiveness.
上記ヘキサメチルジシラザン処理無機微粒子は、例えば、シリカ等の原料となる無機微粒子(以下、原料無機微粒子ともいう)をゾルゲル法等の方法で合成し、原料無機微粒子を流動させた状態でヘキサメチルジシラザンを噴霧させる方法や、アルコール、トルエン等の有機溶媒中に原料無機微粒子を加え、更に、ヘキサメチルジシラザンと水とを加えた後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等により作製することができる。 The hexamethyldisilazane-treated inorganic fine particles may be prepared by synthesizing inorganic fine particles (hereinafter also referred to as raw material inorganic fine particles) such as silica by a method such as a sol-gel method, A method of spraying disilazane, a method of adding raw material inorganic fine particles in an organic solvent such as alcohol or toluene, and further adding hexamethyldisilazane and water, followed by evaporating and drying the water and organic solvent with an evaporator, etc. Can be produced.
上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子は、例えば、原料無機微粒子をゾルゲル法等の方法で合成し、原料無機微粒子を流動させた状態で水と3-グリシドキシプロピルトリメトキシシランの混合液を噴霧させる方法や、アルコール、トルエン等の有機溶媒中に原料無機微粒子を加え、更に、3-グリシドキシプロピルトリメトキシシランと水とを加えた後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等により作製することができる。 The 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles are prepared by synthesizing raw inorganic fine particles by a method such as a sol-gel method, and water and 3-glycidoxypropyltrimethoxysilane in a state where the raw inorganic fine particles are fluidized. Spraying the mixture liquid, or adding raw inorganic fine particles to an organic solvent such as alcohol or toluene, adding 3-glycidoxypropyltrimethoxysilane and water, and then evaporating the water and organic solvent. It can be produced by evaporating and drying with, for example.
本発明の液晶滴下工法用シール剤における上記表面処理無機微粒子の含有量は、硬化性樹脂100重量部に対して、好ましい下限が20重量部、好ましい上限が160重量部である。上記表面処理シリカの含有量が20重量部未満であると、得られる液晶滴下工法用シール剤が基板や配向膜に対する接着性に劣るものとなることがある。上記表面処理シリカの含有量が160重量部を超えると、得られる液晶滴下工法用シール剤が直線描画性に劣るものとなることがある。 In the sealing agent for liquid crystal dropping method of the present invention, the content of the surface-treated inorganic fine particles is preferably 20 parts by weight and preferably 160 parts by weight with respect to 100 parts by weight of the curable resin. When the content of the surface-treated silica is less than 20 parts by weight, the obtained sealing agent for liquid crystal dropping method may be inferior in adhesion to the substrate or the alignment film. When content of the said surface treatment silica exceeds 160 weight part, the sealing compound for liquid crystal dropping methods obtained may become inferior to linear drawing property.
本発明の液晶滴下工法用シール剤が上記ヘキサメチルジシラザン処理無機微粒子を含有する場合、上記ヘキサメチルジシラザン処理無機微粒子の含有量は、硬化性樹脂100重量部に対して、好ましい下限が20重量部、好ましい上限が150重量部である。上記ヘキサメチルジシラザン処理無機微粒子の含有量が20重量部以上であることにより、得られる液晶滴下工法用シール剤の基板や配向膜に対する接着性が向上する。上記ヘキサメチルジシラザン処理無機微粒子の含有量が150重量部以下であることにより、得られる液晶滴下工法用シール剤の直線描画性が向上する。上記ヘキサメチルジシラザン処理無機微粒子の含有量のより好ましい下限は40重量部、より好ましい上限は130重量部、更に好ましい下限は50重量部、更に好ましい上限は100重量部である。 When the sealing agent for liquid crystal dropping method of the present invention contains the hexamethyldisilazane-treated inorganic fine particles, the preferred lower limit of the content of the hexamethyldisilazane-treated inorganic fine particles is 20 with respect to 100 parts by weight of the curable resin. Part by weight, the preferred upper limit is 150 parts by weight. When the content of the hexamethyldisilazane-treated inorganic fine particles is 20 parts by weight or more, the adhesion of the obtained sealing agent for liquid crystal dropping method to the substrate or alignment film is improved. When the content of the hexamethyldisilazane-treated inorganic fine particles is 150 parts by weight or less, the linear drawing property of the obtained sealing agent for liquid crystal dropping method is improved. The more preferable lower limit of the content of the hexamethyldisilazane-treated inorganic fine particles is 40 parts by weight, the more preferable upper limit is 130 parts by weight, the still more preferable lower limit is 50 parts by weight, and the still more preferable upper limit is 100 parts by weight.
本発明の液晶滴下工法用シール剤が上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子を含有する場合、上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子の含有量は、硬化性樹脂100重量部に対して、好ましい下限が30重量部、好ましい上限が160重量部である。上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子の含有量が30重量部以上であることにより、得られる液晶滴下工法用シール剤の基板や配向膜に対する接着性が向上する。上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子の含有量が160重量部以下であることにより、得られる液晶滴下工法用シール剤の直線描画性が向上する。上記3-グリシドキシプロピルトリメトキシシラン処理無機微粒子の含有量のより好ましい下限は50重量部、より好ましい上限は140重量部、更に好ましい下限は60重量部、更に好ましい上限は110重量部である。 When the sealing agent for liquid crystal dropping method of the present invention contains the above-mentioned 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles, the content of the above-mentioned 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is A preferable lower limit is 30 parts by weight and a preferable upper limit is 160 parts by weight with respect to parts by weight. When the content of the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is 30 parts by weight or more, the adhesiveness of the obtained liquid crystal dropping method sealing agent to the substrate and the alignment film is improved. When the content of the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is 160 parts by weight or less, the linear drawing property of the obtained liquid crystal dropping method sealing agent is improved. The more preferable lower limit of the content of the 3-glycidoxypropyltrimethoxysilane-treated inorganic fine particles is 50 parts by weight, the more preferable upper limit is 140 parts by weight, the still more preferable lower limit is 60 parts by weight, and the still more preferable upper limit is 110 parts by weight. .
本発明の液晶滴下工法用シール剤は、熱硬化剤及び/又はラジカル重合開始剤を含有することが好ましい。 The sealing agent for liquid crystal dropping method of the present invention preferably contains a thermosetting agent and / or a radical polymerization initiator.
上記熱硬化剤としては、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、固形の有機酸ヒドラジドが好適に用いられる。 Examples of the thermosetting agent include organic acid hydrazides, imidazole derivatives, amine compounds, polyhydric phenol compounds, acid anhydrides, and the like. Among these, solid organic acid hydrazide is preferably used.
上記有機酸ヒドラジドとしては、例えば、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド、アジピン酸ジヒドラジド、マロン酸ジヒドラジド等が挙げられる。上記有機酸ヒドラジドのうち市販されているものとしては、例えば、アミキュアVDH、アミキュアUDH(いずれも、味の素ファインテクノ社製)、SDH、IDH、ADH(いずれも、大塚化学社製)等が挙げられる。 Examples of the organic acid hydrazide include 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin, sebacic acid dihydrazide, isophthalic acid dihydrazide, adipic acid dihydrazide, malonic acid dihydrazide, and the like. Examples of commercially available organic acid hydrazides include Amicure VDH, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.), SDH, IDH, ADH (all manufactured by Otsuka Chemical Co., Ltd.) and the like. .
上記熱硬化剤の含有量は、上記エポキシ基を有する樹脂100重量部に対して、好ましい下限が1重量部、好ましい上限が50重量部である。上記熱硬化剤の含有量が1重量部以上であることにより、得られる液晶滴下工法用シール剤の熱硬化性が向上する。上記熱硬化剤の含有量が50重量部以下であることにより、粘度が好適な範囲となって、得られる液晶滴下工法用シール剤の塗布性が向上する。上記熱硬化剤の含有量のより好ましい上限は30重量部である。 With respect to the content of the thermosetting agent, a preferable lower limit is 1 part by weight and a preferable upper limit is 50 parts by weight with respect to 100 parts by weight of the resin having an epoxy group. When the content of the thermosetting agent is 1 part by weight or more, the thermosetting property of the obtained liquid crystal dropping method sealing agent is improved. When the content of the thermosetting agent is 50 parts by weight or less, the viscosity becomes a suitable range, and the applicability of the obtained liquid crystal dropping method sealing agent is improved. The upper limit with more preferable content of the said thermosetting agent is 30 weight part.
上記ラジカル重合開始剤としては、光ラジカル重合開始剤、熱ラジカル重合開始剤が挙げられる。 Examples of the radical polymerization initiator include a photo radical polymerization initiator and a thermal radical polymerization initiator.
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
また、上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACUREOXE01、ルシリンTPO(いずれもBASF Japan社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。なかでも、吸収波長域が広いことから、IRGACURE651、IRGACURE907、ベンゾインイソプロピルエーテル、ルシリンTPOが好適である。これらの光ラジカル重合開始剤は単独で用いてもよいし、2種以上を組み合わせて使用してもよい。
Examples of the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACUREOXE01, Lucin TPO (all from BASF M Examples include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.). Among these, IRGACURE651, IRGACURE907, benzoin isopropyl ether, and lucillin TPO are preferable because of the wide absorption wavelength range. These radical photopolymerization initiators may be used alone or in combination of two or more.
上記熱ラジカル重合開始剤としては、例えば、アゾ化合物、有機過酸化物等からなるものが挙げられる。なかでも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。
なお、本明細書において高分子アゾ開始剤とは、アゾ基を有し、熱によって(メタ)アクリロイルオキシ基を硬化させることができるラジカルを生成する、数平均分子量が300以上の化合物を意味する。本明細書において、上記数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による数平均分子量を測定する際に用いるカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。
また、上記高分子アゾ開始剤は、通常、光照射によっても分解してラジカルを発生することから、光ラジカル重合開始剤としても機能し得る。
As said thermal radical polymerization initiator, what consists of an azo compound, an organic peroxide, etc. is mentioned, for example. Among these, a polymer azo initiator composed of a polymer azo compound is preferable.
In the present specification, the polymer azo initiator means a compound having an azo group and generating a radical capable of curing a (meth) acryloyloxy group by heat and having a number average molecular weight of 300 or more. . In this specification, the said number average molecular weight is a value calculated | required by polystyrene conversion by measuring with gel permeation chromatography (GPC). Examples of the column used when measuring the number average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK).
Moreover, since the said polymeric azo initiator normally decomposes | disassembles also by light irradiation and generate | occur | produces a radical, it can function also as a radical photopolymerization initiator.
上記高分子アゾ開始剤の数平均分子量の好ましい下限は1000、好ましい上限は30万である。上記高分子アゾ開始剤の数平均分子量が1000以上であることにより、高分子アゾ開始剤による液晶に悪影響を抑制できる。上記高分子アゾ開始剤の数平均分子量が30万以下であることにより、硬化性樹脂へ混合しやすくなる。上記高分子アゾ開始剤の数平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は9万である。 The preferable lower limit of the number average molecular weight of the polymeric azo initiator is 1000, and the preferable upper limit is 300,000. When the number average molecular weight of the polymer azo initiator is 1000 or more, adverse effects on the liquid crystal due to the polymer azo initiator can be suppressed. When the polymer azo initiator has a number average molecular weight of 300,000 or less, it can be easily mixed into the curable resin. The more preferable lower limit of the number average molecular weight of the polymeric azo initiator is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 90,000.
上記高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、ポリエチレンオキサイド構造を有するものが好ましい。このような高分子アゾ開始剤としては、例えば、4,4’-アゾビス(4-シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4’-アゾビス(4-シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記高分子アゾ開始剤のうち市販されているものとしては、例えば、VPE-0201、VPE-0401、VPE-0601、VPS-0501、VPS-1001(いずれも和光純薬工業社製)等が挙げられる。
Examples of the polymer azo initiator include those having a structure in which a plurality of units such as polyalkylene oxide and polydimethylsiloxane are bonded via an azo group.
As the polymer azo initiator having a structure in which a plurality of units such as polyalkylene oxide are bonded via the azo group, those having a polyethylene oxide structure are preferable. Examples of such polymer azo initiators include polycondensates of 4,4′-azobis (4-cyanopentanoic acid) and polyalkylene glycol, and 4,4′-azobis (4-cyanopentanoic acid). Examples include polycondensates of polydimethylsiloxane having a terminal amino group.
Examples of commercially available polymer azo initiators include VPE-0201, VPE-0401, VPE-0601, VPS-0501, and VPS-1001 (all manufactured by Wako Pure Chemical Industries, Ltd.). It is done.
上記有機過酸化物は特に限定されず、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。 The organic peroxide is not particularly limited, and examples thereof include ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, peroxy ester, diacyl peroxide, and peroxydicarbonate.
上記ラジカル重合開始剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限が0.1重量部、好ましい上限が30重量部である。上記ラジカル重合開始剤の含有量が0.1重量部以上であることにより、得られる液晶滴下工法用シール剤の重合性が向上する。上記ラジカル重合開始剤の含有量が30重量部以下であることにより、未反応のラジカル重合開始剤の残留を抑制し、得られる液晶滴下工法用シール剤の耐候性が向上する。上記ラジカル重合開始剤の含有量のより好ましい下限は1重量部、より好ましい上限は10重量部であり、更に好ましい上限は5重量部である。 Although content of the said radical polymerization initiator is not specifically limited, A preferable minimum is 0.1 weight part and a preferable upper limit is 30 weight part with respect to 100 weight part of said curable resins. When the content of the radical polymerization initiator is 0.1 parts by weight or more, the polymerizability of the obtained sealing agent for liquid crystal dropping method is improved. When the content of the radical polymerization initiator is 30 parts by weight or less, residual unreacted radical polymerization initiator is suppressed, and the weather resistance of the obtained liquid crystal dropping method sealing agent is improved. The minimum with more preferable content of the said radical polymerization initiator is 1 weight part, A more preferable upper limit is 10 weight part, Furthermore, a preferable upper limit is 5 weight part.
本発明の液晶滴下工法用シール剤は、シランカップリング剤を含有してもよい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。 The sealing agent for liquid crystal dropping method of the present invention may contain a silane coupling agent. The silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
上記シランカップリング剤としては、基板等との接着性を向上させる効果に優れ、硬化性樹脂と化学結合することにより液晶中への硬化性樹脂の流出を抑制することができることから、例えば、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が好適に用いられる。これらのシランカップリング剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As said silane coupling agent, since it is excellent in the effect which improves adhesiveness with a board | substrate etc. and it can suppress the outflow of curable resin in a liquid crystal by chemically bonding with curable resin, it is 3 for example. -Aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxysilane and the like are preferably used. These silane coupling agents may be used alone or in combination of two or more.
本発明の液晶滴下工法用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素等の硬化促進剤、消泡剤、レベリング剤、重合禁止剤等の添加剤を含有してもよい。 The sealing agent for liquid crystal dropping method of the present invention further comprises a reactive diluent for adjusting the viscosity, a spacer such as polymer beads for adjusting the panel gap, 3-P-chlorophenyl-1,1- You may contain additives, such as hardening accelerators, such as a dimethyl urea, an antifoamer, a leveling agent, and a polymerization inhibitor.
本発明の液晶滴下工法用シール剤は、E型粘度計を用いて25℃において1.0rpmの条件で測定した粘度の好ましい下限が20万mPa・s、好ましい上限が60万mPa・sである。上記粘度が20万mPa・s以上であることにより、得られる液晶滴下工法用シール剤を用いて形成したシールパターンを、加熱硬化するまで充分に維持できる。上記粘度が60万mPa・s以下であることにより、液晶滴下工法用シール剤の塗布性が向上する。
なお、上記E型粘度計としては、例えば、5XHBDV-III+CP(ブルックフィールド社製、ローターNo.CP-51)等を用いることができる。 
The sealing agent for liquid crystal dropping method of the present invention has a preferable lower limit of viscosity of 200,000 mPa · s and a preferable upper limit of 600,000 mPa · s measured at 25 ° C. and 1.0 rpm using an E-type viscometer. . When the viscosity is 200,000 mPa · s or more, the seal pattern formed using the obtained sealing agent for liquid crystal dropping method can be sufficiently maintained until it is heated and cured. By the said viscosity being 600,000 mPa * s or less, the applicability | paintability of the sealing compound for liquid crystal dropping methods improves.
As the E-type viscometer, for example, 5XHBDV-III + CP (manufactured by Brookfield, rotor No. CP-51) can be used.
また、本発明の液晶滴下工法用シール剤は、チクソトロピックインデックス(TI値)の好ましい下限が1.0、好ましい上限が3.0である。上記TI値が1.0以上であることにより、塗布時に液晶滴下工法用シール剤の粘度が好適な範囲となって、得られる液晶滴下工法用シール剤の塗布性が向上する。上記TI値が3.0以下であることにより、脱泡が容易となる。
なお、本明細書において上記「チクソトロピックインデックス(TI値)」とは、E型粘度計を用いて、25℃、0.5rpmの条件で測定した粘度を、25℃、5.0rpmの条件で測定した粘度で除した値である。
Moreover, the preferable lower limit of the thixotropic index (TI value) is 1.0 and the preferable upper limit of the sealing agent for liquid crystal dropping method of the present invention is 3.0. When the TI value is 1.0 or more, the viscosity of the sealing agent for liquid crystal dropping method is in a suitable range at the time of application, and the applicability of the obtained sealing agent for liquid crystal dropping method is improved. Defoaming is facilitated when the TI value is 3.0 or less.
In the present specification, the “thixotropic index (TI value)” refers to the viscosity measured at 25 ° C. and 0.5 rpm using an E-type viscometer under the conditions of 25 ° C. and 5.0 rpm. It is the value divided by the measured viscosity.
本発明の液晶滴下工法用シール剤は、硬化物の体積抵抗値が1×1013Ω・cm以上であり、かつ、100kHzにおける誘電率が3以上であることが好ましい。上記体積抵抗値が1×1013Ω・cm以上であると、液晶滴下工法用シール剤がイオン性の不純物をほとんど含有していないことを意味し、例えば、上下導通材料として用いた場合、通電時に該イオン性の不純物が液晶中へ溶出することによる表示ムラの発生を防止できる。また、液晶の誘電率は、通常ε//(パラレル)が10、ε⊥(垂直)が3.5程度であることから、本発明の液晶滴下工法用シール剤の誘電率が3以上であることにより、シール剤が液晶中へ溶出することによる表示ムラの発生を防止できる。 In the sealing agent for liquid crystal dropping method of the present invention, the volume resistance value of the cured product is preferably 1 × 10 13 Ω · cm or more, and the dielectric constant at 100 kHz is preferably 3 or more. When the volume resistance value is 1 × 10 13 Ω · cm or more, it means that the liquid crystal dropping method sealing agent contains almost no ionic impurities. Occurrence of display unevenness due to the elution of the ionic impurities into the liquid crystal can be prevented. The dielectric constant of the liquid crystal is usually about ε // (parallel) is about 10 and ε⊥ (vertical) is about 3.5. Therefore, the dielectric constant of the sealing agent for liquid crystal dropping method of the present invention is 3 or more. As a result, it is possible to prevent display unevenness due to the sealing agent eluting into the liquid crystal.
本発明の液晶滴下工法用シール剤を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリウムミキサー、ニーダー、3本ロール等の混合機を用いて、硬化性樹脂と、表面処理無機微粒子と、熱硬化剤及び/又はラジカル重合開始剤や必要に応じて添加するシランカップリング剤等の添加剤とを混合する方法等が挙げられる。 Examples of the method for producing the sealant for the liquid crystal dropping method of the present invention include a curable resin and a surface treatment using a mixer such as a homodisper, a homomixer, a universal mixer, a planetarium mixer, a kneader, and a three roll. Examples thereof include a method of mixing inorganic fine particles with an additive such as a thermosetting agent and / or a radical polymerization initiator and a silane coupling agent added as necessary.
本発明の液晶滴下工法用シール剤に導電性微粒子を配合することにより、上下導通材料を製造することができる。本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。 A vertical conduction material can be manufactured by mix | blending electroconductive fine particles with the sealing compound for liquid crystal dropping methods of this invention. The vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
上記導電性微粒子は特に限定されず、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。 The conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
本発明の液晶滴下工法用シール剤及び/又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の電極と配向膜とを有する透明基板の一方に、本発明の液晶滴下工法用シール剤をスクリーン印刷、ディスペンサー塗布等により塗布し、長方形状のシールパターンを形成する工程、本発明の液晶滴下工法用シール剤が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ね合わせる工程、及び、本発明の液晶滴下工法用シール剤のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
The liquid crystal display element using the sealing compound for liquid crystal dropping method of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
As a method for producing the liquid crystal display element of the present invention, for example, the liquid crystal dropping method sealing agent of the present invention is applied to one of the transparent substrates having an electrode such as an ITO thin film and an alignment film by screen printing, dispenser coating, or the like. Then, a step of forming a rectangular seal pattern, the liquid crystal dropping method sealing agent of the present invention is applied in an uncured state, and liquid crystal microdrops are dropped onto the entire surface of the transparent substrate, and the other transparent substrate is immediately applied. The step of superimposing, the step of irradiating the seal pattern portion of the sealant for the liquid crystal dropping method of the present invention with light such as ultraviolet rays to temporarily cure the sealant, and the temporary curing by heating the temporarily cured sealant And a method having a step of causing the reaction to occur.
本発明によれば、接着性及び直線描画性に優れる液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal dropping methods excellent in adhesiveness and linear drawing property can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(レゾルシノール型エポキシアクリレート(硬化性樹脂A)の合成)
レゾルシノール型エポキシ樹脂(ナガセケムテックス製、「デナコールEX-201」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸649重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、レゾルシノール型エポキシアクリレート(硬化性樹脂A)を得た。
(Synthesis of resorcinol type epoxy acrylate (curable resin A))
1000 parts by weight of resorcinol type epoxy resin (manufactured by Nagase ChemteX, “Denacol EX-201”), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 649 parts by weight of acrylic acid, The reaction was carried out by stirring at 90 ° C. for 5 hours while feeding air. In order to adsorb ionic impurities in the reaction product, 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., “Siritin V85”). Resorcinol type epoxy acrylate (curable resin A) was obtained.
(ビスフェノールA型エポキシアクリレート(硬化性樹脂B)の合成)
ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート828EL」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸424重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、ビスフェノールA型エポキシアクリレート(硬化性樹脂B)を得た。
(Synthesis of bisphenol A type epoxy acrylate (curable resin B))
1000 parts by weight of a bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “Epicoat 828EL”), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 424 parts by weight of acrylic acid, The mixture was reacted by stirring at 90 ° C. for 5 hours while feeding. In order to adsorb ionic impurities in the reaction product, 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., “Siritin V85”). A bisphenol A type epoxy acrylate (curable resin B) was obtained.
(ビスフェノールF型エポキシアクリレート(硬化性樹脂C)の合成)
ビスフェノールF型エポキシ樹脂(三菱化学社製、「エピコート806」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸462重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、ビスフェノールF型エポキシアクリレート(硬化性樹脂C)を得た。
(Synthesis of bisphenol F type epoxy acrylate (curable resin C))
1000 parts by weight of a bisphenol F type epoxy resin (Mitsubishi Chemical Co., Ltd., “Epicoat 806”), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 462 parts by weight of acrylic acid, The mixture was reacted by stirring at 90 ° C. for 5 hours while feeding. In order to adsorb ionic impurities in the reaction product, 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., “Siritin V85”). A bisphenol F type epoxy acrylate (curable resin C) was obtained.
(部分アクリル変性ビスフェノールA型エポキシ樹脂(硬化性樹脂D)の合成)
ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート828EL」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸212重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、50%部分アクリル変性ビスフェノールA型エポキシ樹脂(硬化性樹脂D)を得た。
(Synthesis of partially acrylic-modified bisphenol A type epoxy resin (curable resin D))
1000 parts by weight of a bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “Epicoat 828EL”), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 212 parts by weight of acrylic acid, The mixture was reacted by stirring at 90 ° C. for 5 hours while feeding. In order to adsorb ionic impurities in the reaction product, 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., “Siritin V85”). 50% partially acrylic modified bisphenol A type epoxy resin (curable resin D) was obtained.
(部分アクリル変性レゾルシノール型エポキシ樹脂(硬化性樹脂E)の合成)
レゾルシノール型エポキシ樹脂(ナガセケムテックス製、「デナコールEX-201」)1000重量部、重合禁止剤としてp-メトキシフェノール2重量部、反応触媒としてトリエチルアミン2重量部、及び、アクリル酸325重量部を、空気を送り込みながら90℃で5時間還流攪拌して反応させた。得られた樹脂100重量部を、反応物中のイオン性不純物を吸着させる為にクオルツとカオリンの天然結合物(ホフマンミネラル社製、「シリチンV85」)10重量部が充填されたカラムで濾過し、50%部分アクリル変性レゾルシノール型エポキシ樹脂(硬化性樹脂E)を得た。
(Synthesis of partially acrylic modified resorcinol type epoxy resin (curable resin E))
1000 parts by weight of resorcinol type epoxy resin (manufactured by Nagase ChemteX, “Denacol EX-201”), 2 parts by weight of p-methoxyphenol as a polymerization inhibitor, 2 parts by weight of triethylamine as a reaction catalyst, and 325 parts by weight of acrylic acid, The reaction was carried out by stirring at 90 ° C. for 5 hours while feeding air. In order to adsorb ionic impurities in the reaction product, 100 parts by weight of the obtained resin was filtered through a column packed with 10 parts by weight of a natural combination of quartz and kaolin (manufactured by Hoffman Mineral Co., Ltd., “Siritin V85”). 50% partially acrylic modified resorcinol type epoxy resin (curable resin E) was obtained.
(ヘキサメチルジシラザン処理シリカの調製)
ゾルゲル法で合成した平均粒子径0.7μmのシリカ粒子100重量部をヘンシェルミキサーに入れ、窒素雰囲気下にて攪拌しながら水0.5重量部及びヘキサメチルジシラザン10重量部を噴霧し、260℃で80分間加熱した後に冷却し、ボールミルで解砕して、ヘキサメチルジシラザン処理シリカ(平均粒子径0.7μm)を調製した。
また、同様にゾルゲル法で合成した平均粒子径0.05μmのシリカ粒子、平均粒子径0.1μmのシリカ粒子、平均粒子径0.4μmのシリカ粒子、平均粒子径1.0μmのシリカ粒子についても同様の操作を行い、平均粒子径0.05μm、0.1μm、0.4μm、1.0μmのヘキサメチルジシラザン処理シリカをそれぞれ調製した。
(Preparation of hexamethyldisilazane-treated silica)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm synthesized by the sol-gel method are placed in a Henschel mixer, and 0.5 parts by weight of water and 10 parts by weight of hexamethyldisilazane are sprayed while stirring in a nitrogen atmosphere. The mixture was heated at 80 ° C. for 80 minutes, cooled, and crushed with a ball mill to prepare hexamethyldisilazane-treated silica (average particle size 0.7 μm).
Similarly, silica particles having an average particle size of 0.05 μm, silica particles having an average particle size of 0.1 μm, silica particles having an average particle size of 0.4 μm, and silica particles having an average particle size of 1.0 μm are synthesized by the sol-gel method. The same operation was performed to prepare hexamethyldisilazane-treated silica having average particle sizes of 0.05 μm, 0.1 μm, 0.4 μm, and 1.0 μm, respectively.
(3-グリシドキシプロピルトリメトキシシラン処理シリカの調製)
ゾルゲル法で合成した平均粒子径0.7μmのシリカ粒子100重量部をミキサーに入れ、窒素雰囲気下にて攪拌しながら水10重量部及び3-グリシドキシプロピルトリメトキシシラン2重量部を噴霧し、150℃で80分間加熱した後に冷却し、ボールミルで解砕して、3-グリシドキシプロピルトリメトキシシラン処理シリカ(平均粒子径0.7μm)を調製した。
また、同様にゾルゲル法で合成した平均粒子径0.05μmのシリカ粒子、平均粒子径0.1μmのシリカ粒子、平均粒子径0.4μmのシリカ粒子、平均粒子径1.0μmのシリカ粒子についても同様の操作を行い、平均粒子径0.05μm、0.1μm、0.4μm、1.0μmの3-グリシドキシプロピルトリメトキシシラン処理シリカをそれぞれ調製した。
(Preparation of silica treated with 3-glycidoxypropyltrimethoxysilane)
100 parts by weight of silica particles having an average particle diameter of 0.7 μm synthesized by the sol-gel method are put in a mixer, and 10 parts by weight of water and 2 parts by weight of 3-glycidoxypropyltrimethoxysilane are sprayed while stirring in a nitrogen atmosphere. The mixture was heated at 150 ° C. for 80 minutes, cooled, and crushed with a ball mill to prepare 3-glycidoxypropyltrimethoxysilane-treated silica (average particle size 0.7 μm).
Similarly, silica particles having an average particle size of 0.05 μm, silica particles having an average particle size of 0.1 μm, silica particles having an average particle size of 0.4 μm, and silica particles having an average particle size of 1.0 μm are synthesized by the sol-gel method. The same operation was performed to prepare 3-glycidoxypropyltrimethoxysilane-treated silica having average particle sizes of 0.05 μm, 0.1 μm, 0.4 μm, and 1.0 μm, respectively.
(3-アミノプロピルトリメトキシシラン処理シリカの調製)
3-グリシドキシプロピルトリメトキシシラン2重量部に代えて、3-アミノプロピルトリメトキシシラン2重量部を用いたこと以外は、「3-グリシドキシプロピルトリメトキシシラン処理シリカの調製」と同様にして、3-アミノプロピルトリメトキシシラン処理シリカ(平均粒子径0.7μm)を調製した。
(Preparation of silica treated with 3-aminopropyltrimethoxysilane)
Same as “Preparation of silica treated with 3-glycidoxypropyltrimethoxysilane” except that 2 parts by weight of 3-aminopropyltrimethoxysilane was used instead of 2 parts by weight of 3-glycidoxypropyltrimethoxysilane. Then, 3-aminopropyltrimethoxysilane-treated silica (average particle size 0.7 μm) was prepared.
(メタクリロキシプロピルトリメトキシシラン処理シリカの調製)
3-グリシドキシプロピルトリメトキシシラン2重量部に代えて、メタクリロキシプロピルトリメトキシシラン2重量部を用いたこと以外は、「3-グリシドキシプロピルトリメトキシシラン処理シリカの調製」と同様にして、メタクリロキシプロピルトリメトキシシラン処理シリカ(平均粒子径0.7μm)を調製した。
(Preparation of methacryloxypropyltrimethoxysilane-treated silica)
Except that 2 parts by weight of methacryloxypropyltrimethoxysilane was used in place of 2 parts by weight of 3-glycidoxypropyltrimethoxysilane, the same as “Preparation of silica treated with 3-glycidoxypropyltrimethoxysilane” was performed. Thus, methacryloxypropyltrimethoxysilane-treated silica (average particle size 0.7 μm) was prepared.
(ヘキサメチルジシラザン処理タルクの調製)
タルク粒子(日本タルク社製、「SG-2000」)100重量部をミキサーに入れ、窒素雰囲気下にて攪拌しながら水0.5重量部及びヘキサメチルジシラザン10重量部を噴霧し、150℃で80分間加熱した後に冷却し、ボールミルで解砕し、ヘキサメチルジシラザン処理タルク(平均粒子径1.0μm)を調製した。
(Preparation of talc treated with hexamethyldisilazane)
100 parts by weight of talc particles (manufactured by Nippon Talc Co., Ltd., “SG-2000”) are placed in a mixer, and 0.5 parts by weight of water and 10 parts by weight of hexamethyldisilazane are sprayed while stirring in a nitrogen atmosphere at 150 ° C. After heating for 80 minutes, the mixture was cooled and crushed with a ball mill to prepare hexamethyldisilazane-treated talc (average particle size: 1.0 μm).
(3-グリシドキシプロピルトリメトキシシラン処理タルクの調製)
タルク粒子(日本タルク社製、「SG-2000」)100重量部をミキサーに入れ、窒素雰囲気下にて攪拌しながら水10重量部及び3-グリシドキシトリメトキシシラン2重量部を噴霧し、150℃で80分間加熱した後に冷却し、ボールミルで解砕し、3-グリシドキシプロピルトリメトキシシラン処理タルク(平均粒子径1.0μm)を調製した。
(Preparation of 3-glycidoxypropyltrimethoxysilane-treated talc)
100 parts by weight of talc particles (“SG-2000” manufactured by Nippon Talc Co., Ltd.) are placed in a mixer, and 10 parts by weight of water and 2 parts by weight of 3-glycidoxytrimethoxysilane are sprayed while stirring under a nitrogen atmosphere. After heating at 80 ° C. for 80 minutes, the mixture was cooled and crushed with a ball mill to prepare 3-glycidoxypropyltrimethoxysilane-treated talc (average particle size: 1.0 μm).
(実施例1)
硬化性樹脂として、レゾルシノール型エポキシアクリレート(硬化性樹脂A)70重量部、ビスフェノールA型エポキシアクリレート(硬化性樹脂B)20重量部、及び、50%部分アクリル変性ビスフェノールA型エポキシ樹脂(硬化性樹脂D)10重量部とを所定の容器に配合し、遊星式攪拌装置にて混合攪拌した後、光ラジカル重合開始剤として2,2-ジメトキシ-2-フェニルアセトフェノン(BASF Japan社製、「イルガキュア651」)1重量部を配合して加熱混合させ、シランカップリング剤としてγ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製、「KBM-403」)1重量部を混合攪拌し、充填剤としてヘキサメチルジシラザン処理シリカ(平均粒子径0.7μm)15重量部、及び、熱硬化剤としてマロン酸ジヒドラジド(日本ファインケム社製)0.8重量部を、遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合攪拌した後、セラミック3本ロールにて均一に混合してシール剤を得た。
Example 1
As the curable resin, 70 parts by weight of resorcinol type epoxy acrylate (curable resin A), 20 parts by weight of bisphenol A type epoxy acrylate (curable resin B), and 50% partially acrylic modified bisphenol A type epoxy resin (curable resin) D) 10 parts by weight was mixed in a predetermined container, mixed and stirred with a planetary stirrer, and then 2,2-dimethoxy-2-phenylacetophenone (manufactured by BASF Japan, “Irgacure 651” as a photo radical polymerization initiator). ”) 1 part by weight was mixed and heated and mixed, and 1 part by weight of γ-glycidoxypropyltrimethoxysilane (“ KBM-403 ”manufactured by Shin-Etsu Silicone Co., Ltd.) as a silane coupling agent was mixed and stirred as a filler. 15 parts by weight of hexamethyldisilazane-treated silica (average particle size 0.7 μm) and thermosetting After mixing and stirring 0.8 parts by weight of malonic acid dihydrazide (manufactured by Nihon Finechem Co., Ltd.) using a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Netaro”), uniformly with a ceramic three roll A sealant was obtained by mixing.
(実施例2~25、比較例1~8)
硬化性樹脂及び充填剤を、表1~4に記載された材料及び配合比とし、実施例1と同様にして、各材料を遊星式撹拌機(シンキー社製、「あわとり練太郎」)を用いて混合攪拌した後、更にセラミック3本ロールにて均一に混合することにより実施例2~25、比較例1~8の液晶滴下工法用シール剤を調製した。
(Examples 2 to 25, Comparative Examples 1 to 8)
The curable resin and the filler were the materials and blending ratios described in Tables 1 to 4, and each material was treated with a planetary stirrer (Shinky Co., “Awatori Kentaro”) in the same manner as in Example 1. After mixing and stirring, the mixture was further mixed uniformly with a ceramic three roll to prepare the sealing agents for liquid crystal dropping methods of Examples 2 to 25 and Comparative Examples 1 to 8.
<評価>
実施例及び比較例で得られた液晶滴下工法用シール剤について以下の評価を行った。結果を表1~4に示した。
<Evaluation>
The following evaluation was performed about the sealing agent for liquid crystal dropping methods obtained by the Example and the comparative example. The results are shown in Tables 1 to 4.
(接着性)
各実施例及び各比較例で得られた液晶滴下工法用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、2枚のTN配向膜付きアルカリガラス試験片(30×40mm)のうち一方に微小滴下し、これにもう一方のガラス試験片を十字状に貼り合わせたものに、メタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによって接着試験片を得た。得られた接着試験片に対して、上下に配したチャックにて引っ張り試験(5mm/min)を行った。得られた測定値(kgf)をシール塗布断面積(cm)で除した値が30kgf/cm以上であった場合を「◎」、15kgf/cm以上30kgf/cm未満であった場合を「○」、10kgf/cm以上15kgf/cm未満であった場合を「△」、10kgf/cm未満であった場合を「×」として評価した。
(Adhesiveness)
1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.) is added to the sealing agent for liquid crystal dropping method obtained in each example and each comparative example, and two sheets of alkali glass with a TN alignment film A test piece (30 × 40 mm) was finely dropped on one side and the other glass test piece was bonded in a cross shape to the sample, and irradiated with 3000 mJ / cm 2 of ultraviolet rays with a metal halide lamp, and then 120 ° C. The adhesive test piece was obtained by heating for 60 minutes. A tensile test (5 mm / min) was performed on the obtained adhesive test piece with a chuck arranged vertically. The value obtained by dividing the obtained measured value (kgf) by the cross-sectional area (cm 2 ) of seal application is 30 kgf / cm 2 or more, “◎”, and 15 kgf / cm 2 or more and less than 30 kgf / cm 2 the "○", was to evaluate the case was less than 10kgf / cm 2 or more 15kgf / cm 2 as "△", "×" the case was less than 10kgf / cm 2.
(描画性)
各実施例及び各比較例で得られた液晶滴下工法用シール剤に、シリカスペーサー(積水化学工業社製、「SI-H055」)を1重量%配合し、脱泡処理をしてシール剤中の泡を取り除いた。その後、内径300μmの精密ノズル(武蔵エンジニアリング社製、「NH-0.3」を装着したディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、再び脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いてITO薄膜付きの透明電極基板に長方形の枠を描く様にシール剤を塗布し(塗布速度100mm/sec)、他方の透明基板を、真空貼り合わせ装置にて23℃、5.0Paの減圧下にて貼り合わせた。貼り合わせた後のセルをメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによってシール剤を熱硬化させ、液晶セルを各シール剤につき5枚ずつ作製した。この液晶セル内のシール剤を観察し、シール剤に断線不良も端部のうねりもなくきれいなラインが描けていた場合を「◎」、断線不良はないがシール剤の端部にわずかにうねりが生じていた場合を「○」、断線不良はないがシール剤の端部にはっきりとうねりが生じていた場合を「△」、断線不良が生じていた場合を「×」として評価した。
(Drawability)
1% by weight of a silica spacer (“SI-H055” manufactured by Sekisui Chemical Co., Ltd.) is added to the liquid crystal dropping method sealing agent obtained in each Example and each Comparative Example, and defoaming treatment is performed in the sealing agent. The foam was removed. After that, it was filled into a dispensing syringe (“PSY-10E” manufactured by Musashi Engineering Co., Ltd.) equipped with a precision nozzle (manufactured by Musashi Engineering Co., Ltd., “NH-0.3”), and defoamed again. Next, using a dispenser (Musashi Engineering Co., Ltd., “SHOTMASTER300”), a transparent electrode substrate with an ITO thin film was coated with a sealing agent so as to draw a rectangular frame (coating speed 100 mm / sec), and the other transparent substrate was applied. Then, bonding was performed at 23 ° C. under a reduced pressure of 5.0 Pa using a vacuum bonding apparatus, and the cells after bonding were irradiated with 3000 mJ / cm 2 ultraviolet rays using a metal halide lamp, and then heated at 120 ° C. for 60 minutes. Thus, the sealant was thermally cured, and five liquid crystal cells were produced for each sealant. When the sealant was observed and a clean line was drawn on the sealant with no disconnection and no waviness at the end, “◎”, when there was no disconnection but there was a slight waviness at the end of the sealant Was evaluated as “◯”, a case where there was no disconnection failure but the end of the sealant was clearly wavy, and a case where a disconnection failure occurred was evaluated as “X”.
(液晶汚染性(比抵抗保持率))
サンプル瓶に液晶(チッソ社製、「JC-5001LA」)1.0gを入れ、各実施例及び各比較例で得られた液晶滴下工法用シール剤0.02gを加えて振とうした後、120℃で1時間加熱した。室温(25℃)に戻ってから、液晶比抵抗測定装置(KEITHLEY Instruments社製、「6517A」)、電極に液体用電極(安藤電気社製、「LE-21 型」)を用い、標準温度湿度状態(20℃、65%RH)で液晶部分の液晶比抵抗を測定した。下記式により液晶比抵抗保持率を求め、液晶比抵抗保持率が0.1より高かった場合を「○」、液晶比抵抗保持率が0.1以下であった場合を「△」として液晶汚染性を評価した。
 液晶比抵抗保持率=(シール剤添加後の使用液晶比抵抗/シール剤未添加での使用液晶比抵抗)×100
(Liquid crystal contamination (specific resistance retention))
In a sample bottle, 1.0 g of liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) was added, and 0.02 g of the liquid crystal dropping method sealing agent obtained in each Example and each Comparative Example was added and shaken. Heated at 0 ° C. for 1 hour. After returning to room temperature (25 ° C.), a liquid crystal specific resistance measuring device (manufactured by KEITHLEY Instruments, “6517A”) and a liquid electrode (manufactured by Ando Electric, “LE-21 type”) as the electrode are used, and the standard temperature and humidity The liquid crystal specific resistance of the liquid crystal part was measured in the state (20 ° C., 65% RH). The liquid crystal resistivity holding ratio is obtained by the following formula. When the liquid crystal resistivity holding ratio is higher than 0.1, “◯” is given, and when the liquid crystal resistivity holding ratio is 0.1 or less, “△” is given. Sex was evaluated.
Liquid crystal specific resistance retention ratio = (use liquid crystal specific resistance after addition of sealant / use liquid crystal specific resistance without addition of sealant) × 100
(液晶表示素子の色むら評価)
各実施例及び各比較例で得られたシール剤をディスペンス用のシリンジ(武蔵エンジニアリング社製、「PSY-10E」)に充填し、脱泡処理を行った。次いで、ディスペンサー(武蔵エンジニアリング社製、「SHOTMASTER300」)を用いてITO薄膜付きの透明電極基板に長方形の枠を描く様にシール剤を塗布した。続いて、TN液晶(チッソ社製、「JC-5001LA」)の微小滴を液晶滴下装置にて滴下塗布し、他方の透明基板を、真空張り合わせ装置にて5Paの減圧下にて張り合わせた。張り合わせ後のセルをメタルハライドランプにて3000mJ/cmの紫外線を照射した後、120℃で60分加熱することによってシール剤を熱硬化させ、液晶表示素子を各シール剤につき5枚ずつ作製した。得られた液晶表示素子をAC3.5Vの電圧駆動をさせ、中間調のシール剤周辺を目視で観察した。シール剤部周辺に色むらが全く見られなかった場合を「○」、少し薄い色むらが見えた場合を「△」、はっきりとした濃い色むらがあった場合を「×」として評価した。
(Evaluation of color unevenness of liquid crystal display elements)
The sealing agent obtained in each Example and each Comparative Example was filled in a syringe for dispensing (manufactured by Musashi Engineering, “PSY-10E”) and subjected to defoaming treatment. Next, a sealant was applied to a transparent electrode substrate with an ITO thin film in a rectangular frame using a dispenser (manufactured by Musashi Engineering Co., Ltd., “SHOTMASTER 300”). Subsequently, fine droplets of TN liquid crystal (manufactured by Chisso Corporation, “JC-5001LA”) were dropped and applied with a liquid crystal dropping device, and the other transparent substrate was bonded with a vacuum bonding device under a reduced pressure of 5 Pa. The bonded cells were irradiated with 3000 mJ / cm 2 ultraviolet rays with a metal halide lamp, and then heated at 120 ° C. for 60 minutes to thermally cure the sealing agent, thereby producing five liquid crystal display elements for each sealing agent. The obtained liquid crystal display element was driven with a voltage of AC 3.5 V, and the periphery of the halftone sealant was visually observed. The case where no color unevenness was observed at all around the sealant part was evaluated as “◯”, the case where slightly light color unevenness was observed as “Δ”, and the case where clear dark color unevenness was observed as “X”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
本発明によれば、接着性及び直線描画性に優れる液晶滴下工法用シール剤を提供する事ができる。また、本発明によれば、該液晶滴下工法用シール剤を用いて製造される上下導通材料及び液晶表示素子を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the sealing compound for liquid crystal dropping methods which is excellent in adhesiveness and linear drawing property can be provided. Moreover, according to this invention, the vertical conduction material and liquid crystal display element which are manufactured using this sealing compound for liquid crystal dropping methods can be provided.

Claims (9)

  1. レゾルシノール型エポキシ(メタ)アクリレートと、エポキシ基を有する樹脂とを含有する硬化性樹脂、並びに、表面をヘキサメチルジシラザンで処理された無機微粒子、及び/又は、表面を3-グリシドキシプロピルトリメトキシシランで処理された無機微粒子を含有する表面処理無機微粒子を含有し、
    前記表面処理無機微粒子は、平均粒子径が0.1μm以上である
    ことを特徴とする液晶滴下工法用シール剤。
    A curable resin containing a resorcinol-type epoxy (meth) acrylate and a resin having an epoxy group, inorganic fine particles treated with hexamethyldisilazane on the surface, and / or 3-glycidoxypropyltrimethyl on the surface. Contains surface-treated inorganic fine particles containing inorganic fine particles treated with methoxysilane,
    The surface-treated inorganic fine particles have an average particle size of 0.1 μm or more.
  2. 無機微粒子は、シリカであることを特徴とする請求項1記載の液晶滴下工法用シール剤。 The sealing agent for liquid crystal dropping method according to claim 1, wherein the inorganic fine particles are silica.
  3. 表面処理無機微粒子の含有量が、硬化性樹脂100重量部に対して20~160重量部であることを特徴とする請求項1又は2記載の液晶滴下工法用シール剤。 3. The sealing agent for liquid crystal dropping method according to claim 1, wherein the content of the surface-treated inorganic fine particles is 20 to 160 parts by weight with respect to 100 parts by weight of the curable resin.
  4. 硬化性樹脂中におけるレゾルシノール型エポキシ(メタ)アクリレートの含有量が20重量%以上であることを特徴とする請求項1、2又は3記載の液晶滴下工法用シール剤。 4. The sealing agent for liquid crystal dropping method according to claim 1, wherein the content of resorcinol type epoxy (meth) acrylate in the curable resin is 20% by weight or more.
  5. 硬化性樹脂は、ビスフェノールA型エポキシ(メタ)アクリレートを含有することを特徴とする請求項1、2、3又は4記載の液晶滴下工法用シール剤。 The sealing agent for liquid crystal dropping method according to claim 1, wherein the curable resin contains bisphenol A type epoxy (meth) acrylate.
  6. 硬化性樹脂中におけるビスフェノールA型エポキシ(メタ)アクリレートの含有量が10重量%以上であることを特徴とする請求項5記載の液晶滴下工法用シール剤。 6. The sealing agent for liquid crystal dropping method according to claim 5, wherein the content of bisphenol A type epoxy (meth) acrylate in the curable resin is 10% by weight or more.
  7. 表面処理無機微粒子は、平均粒子径が1.0μm以下であることを特徴とする請求項1、2、3、4、5又は6記載の液晶滴下工法用シール剤。 7. The sealing agent for liquid crystal dropping method according to claim 1, wherein the surface-treated inorganic fine particles have an average particle size of 1.0 [mu] m or less.
  8. 請求項1、2、3、4、5、6又は7記載の液晶滴下工法用シール剤と、導電性微粒子とを含有することを特徴とする上下導通材料。 A vertical conduction material comprising the sealing agent for a liquid crystal dropping method according to claim 1, 2, 3, 4, 5, 6 or 7, and conductive fine particles.
  9. 請求項1、2、3、4、5、6若しくは7記載の液晶滴下工法用シール剤及び/又は請求項8記載の上下導通材料を用いて製造されることを特徴とする液晶表示素子。 A liquid crystal display element manufactured using the sealing agent for liquid crystal dropping method according to claim 1, 2, 3, 4, 5, 6 or 7, and / or the vertical conduction material according to claim 8.
PCT/JP2012/076962 2011-10-20 2012-10-18 Sealant for liquid crystal dropping process, vertical-conduction material, and liquid crystal display element WO2013058324A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280013972.3A CN103443698B (en) 2011-10-20 2012-10-18 Sealant for liquid crystal dripping process, upper and lower conductive material and liquid crystal display cells
KR1020137018709A KR101393761B1 (en) 2011-10-20 2012-10-18 Sealant for liquid crystal dropping process, vertical-conduction material, and liquid crystal display element
JP2012549190A JP5255732B1 (en) 2011-10-20 2012-10-18 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011230935 2011-10-20
JP2011-230935 2011-10-20

Publications (1)

Publication Number Publication Date
WO2013058324A1 true WO2013058324A1 (en) 2013-04-25

Family

ID=48140967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076962 WO2013058324A1 (en) 2011-10-20 2012-10-18 Sealant for liquid crystal dropping process, vertical-conduction material, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP5255732B1 (en)
KR (1) KR101393761B1 (en)
CN (1) CN103443698B (en)
TW (1) TWI422640B (en)
WO (1) WO2013058324A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218447A (en) * 2015-05-25 2016-12-22 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017026736A (en) * 2015-07-21 2017-02-02 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2023210628A1 (en) * 2022-04-26 2023-11-02 サカタインクス株式会社 Phenoxy(meth)acrylate resin, composition, cured object, and method for producing phenoxy(meth)acrylate resin

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102026518B1 (en) * 2014-09-24 2019-09-27 세키스이가가쿠 고교가부시키가이샤 Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
CN107111193A (en) * 2015-05-20 2017-08-29 积水化学工业株式会社 Sealing material for liquid crystal display device, up and down conductive material and liquid crystal display cells
JP2023511775A (en) * 2019-09-05 2023-03-22 詮達化学股▲フン▼有限公司 Organic-inorganic mixed material, method for preparing same, and method for preparing starting material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010083965A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Resin composition, cured body, and laminate
JP2011107197A (en) * 2009-11-12 2011-06-02 Sekisui Chem Co Ltd Sealing agent for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101508883B (en) * 2001-05-16 2012-11-07 积水化学工业株式会社 Curing resin composition and sealants and end-sealing materials for displays
WO2004108790A1 (en) * 2003-06-04 2004-12-16 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
CN100454116C (en) * 2004-03-22 2009-01-21 日本化药株式会社 Sealing material for liquid crystal and method for producing same
JP2007156184A (en) * 2005-12-06 2007-06-21 Sekisui Chem Co Ltd Sealing agent for liquid crystal display element, vertically conducting material and liquid crystal display element
US8084530B2 (en) * 2007-06-15 2011-12-27 Sekisui Chemical Co., Ltd. Sealing agent for optical semiconductor element, and optical semiconductor element
KR20100074227A (en) * 2007-10-01 2010-07-01 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Sealing agent for display element
KR100990015B1 (en) * 2007-10-19 2010-10-26 제이에스알 가부시끼가이샤 Sealing material for liquid crystal display device, and liquid crystal display device
CN102216841B (en) * 2008-11-21 2013-09-18 积水化学工业株式会社 Sealing agent for one drop fill, and liquid crystal display element
JP4590030B1 (en) * 2009-05-15 2010-12-01 積水化学工業株式会社 Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006120998A1 (en) * 2005-05-09 2006-11-16 Sekisui Chemical Co., Ltd. Sealing material for the liquid crystal dispensing method, transferring material and liquid crystal display devices
JP2010083965A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Resin composition, cured body, and laminate
JP2011107197A (en) * 2009-11-12 2011-06-02 Sekisui Chem Co Ltd Sealing agent for liquid-crystal dropping process, vertical-conduction material, and liquid-crystal display element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218447A (en) * 2015-05-25 2016-12-22 積水化学工業株式会社 Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2017026736A (en) * 2015-07-21 2017-02-02 日本化薬株式会社 Liquid crystal sealant and liquid crystal display cell using the same
WO2023210628A1 (en) * 2022-04-26 2023-11-02 サカタインクス株式会社 Phenoxy(meth)acrylate resin, composition, cured object, and method for producing phenoxy(meth)acrylate resin

Also Published As

Publication number Publication date
JPWO2013058324A1 (en) 2015-04-02
KR101393761B1 (en) 2014-05-12
TWI422640B (en) 2014-01-11
KR20130090926A (en) 2013-08-14
CN103443698A (en) 2013-12-11
TW201321444A (en) 2013-06-01
CN103443698B (en) 2017-03-15
JP5255732B1 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
CN107636524B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP6730133B2 (en) Liquid crystal display element sealant, vertical conduction material and liquid crystal display element
JP5255732B1 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
CN110168441B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
KR102215671B1 (en) Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element
WO2013024762A1 (en) Sealing agent for liquid crystal display element and liquid crystal display element
JP6539160B2 (en) Sealant for liquid crystal display element and vertical conduction material
CN108351561B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5784936B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
JP6163045B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
TW201831594A (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP6523167B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
WO2017073548A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
JP5756693B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
WO2016186127A1 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP2012173488A (en) Sealing agent for liquid crystal dropping method, and manufacturing method of liquid crystal display
JP6918693B2 (en) Light-shielding sealant for liquid crystal display elements, vertical conductive materials, and liquid crystal display elements
JP5660923B2 (en) Sealing agent for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP7000164B2 (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5559458B2 (en) Sealant for liquid crystal dropping method, vertical conduction material, and liquid crystal display element
JP6747862B2 (en) Sealant for liquid crystal display element, vertical conduction material, and liquid crystal display element
JP5340500B2 (en) Liquid crystal dropping method sealing agent, vertical conduction material, and liquid crystal display element
CN107683435B (en) Sealing agent for liquid crystal display element, vertical conduction material, and liquid crystal display element
WO2017119260A1 (en) Sealing agent for liquid crystal display elements, vertically conducting material and liquid crystal display element
WO2016190398A1 (en) Sealing agent for liquid crystal dropping methods, vertically conducting material, and liquid crystal display element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012549190

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137018709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842075

Country of ref document: EP

Kind code of ref document: A1