WO2013057504A1 - Ensemble base flexible - Google Patents
Ensemble base flexible Download PDFInfo
- Publication number
- WO2013057504A1 WO2013057504A1 PCT/GB2012/052592 GB2012052592W WO2013057504A1 WO 2013057504 A1 WO2013057504 A1 WO 2013057504A1 GB 2012052592 W GB2012052592 W GB 2012052592W WO 2013057504 A1 WO2013057504 A1 WO 2013057504A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base
- base assembly
- assembly according
- base element
- flexible base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01F—ADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
- E01F9/00—Arrangement of road signs or traffic signals; Arrangements for enforcing caution
- E01F9/60—Upright bodies, e.g. marker posts or bollards; Supports for road signs
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01F—ADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
- E01F9/00—Arrangement of road signs or traffic signals; Arrangements for enforcing caution
- E01F9/60—Upright bodies, e.g. marker posts or bollards; Supports for road signs
- E01F9/623—Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by form or by structural features, e.g. for enabling displacement or deflection
- E01F9/627—Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by form or by structural features, e.g. for enabling displacement or deflection self-righting after deflection or displacement
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01F—ADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
- E01F9/00—Arrangement of road signs or traffic signals; Arrangements for enforcing caution
- E01F9/60—Upright bodies, e.g. marker posts or bollards; Supports for road signs
- E01F9/658—Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by means for fixing
- E01F9/673—Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by means for fixing for holding sign posts or the like
- E01F9/681—Upright bodies, e.g. marker posts or bollards; Supports for road signs characterised by means for fixing for holding sign posts or the like the sign posts being fastened by removable means, e.g. screws or bolts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24273—Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
- Y10T428/24322—Composite web or sheet
Definitions
- the present invention relates to a flexible base assembly and in particular to a two-part base assembly comprising a flexible base element and an insert element, wherein the insert element is partially located within the base element.
- Flexible base assemblies have been known for some time. They are typically used to support street furniture, such as road signs and traffic delineators and are designed to deform and then recover if impacted by a vehicle or other moving object.
- a flexible base assembly including a base element comprising a resiliently deformable body and an insert element, wherein a portion of the insert element is located within the body of the base element, the insert element includes one or more apertures therein and portions of the base element body are located within the apertures.
- the flexible base assembly of the present invention requires only two components, wherein the required features of the base assembly are provided by the interengagement of these components.
- the resiliently deformable base is adapted to permit deflection of the insert element (in any direction) as a result of an impact, typically an impact to a body carried by the insert element.
- the base element is adapted to deform in response to a force applied to the insert element and to return to a rest configuration when the force is removed. It thereby urges the insert element back to its rest configuration when the force of the impact is removed. Therefore, for an upstanding insert element (e.g.
- the base assembly of the present invention permits deflection of the insert element via resilient deformation of the base element.
- the arrangement of a resiliently deformable base element with a relatively rigid insert element provides the base assembly with an ability to withstand impacts from any direction.
- the resiliently deformable body of the base element permits the base assembly to recover its original configuration following an impact, typically to a body carried by the insert element e.g. by a vehicle, from any direction. Additionally, the location of portions of the base element body in the aperture(s) formed in the insert element effectively "locks" together the insert element and the base element and resists rotational forces applied to the insert element about its longitudinal (e.g.vertical) axis. This provides a self-fronting arrangement. It will be appreciated from the foregoing that all or part of the apertures defined by the insert element are in the portion of the insert element which is located within the body of the base element.
- aperture includes a through-hole formed through a portion of the insert element, a cavity formed in a portion of the insert element and a notch formed in a peripheral edge portion of the insert element.
- the or each aperture is in the form of a through-hole or a bore extending through a portion of the insert element, and the respective portion of the base element body extends the entire length of the through-hole.
- each end of the portion of the base element body within the through-hole is connected to a respective portion of the base element body, which results in the base element body within the through-hole acting similarly to a spring which is anchored at both ends.
- the portion of the base element body located within the through-hole resists movement of the insert element relative to the base element, particularly rotation of the insert element about its longitudinal axis relative to the base element. A resistance to rotation of the insert element relative to the base element provides a self-fronting property of the base assembly.
- the insert element includes a flange located in use within the body of the base element.
- the flange being located within the body of the base element helps to resist the unwanted removal of the insert element from the base element. It also provides a greater surface area of the insert element, thus increasing the area of contact between the insert element and the base element.
- one or more of the insert element apertures are formed in the flange. Each of such apertures may be in the form of a through-hole through a portion of the flange.
- the flange may include one or more apertures in the form of cavities defined by the flange and/or notches defined in a peripheral edge portion of the flange.
- the body of the base element is formed from an elastomeric material. Such an arrangement allows for the flexible base assembly to be deformed and recover without the need for any additional components.
- the base element body may be selected from any known elastomer possessing the desired properties.
- elastomers that could be used to form the base element body include rubber materials such as unsaturated rubbers (i.e. rubbers that can be cured by a vulcanisation process) or saturated rubbers that are not able to undergo vulcanisation.
- the elastomer is selected from polyisoprene, polybutadiene, chloroprene, isobutylene/isoprene copolymer (butyl rubber), halogenated butyl rubber, styrene/butadiene copolymer, nitrile rubber (including halogenated nitrile rubbers), ethylene/propylene copolymer (EPM rubber),
- the elastomer may include one or more filler materials conventionally associated with the relevant elastomer. Such fillers may include carbon black and silica. Additionally or alternatively, the elastomer may include one or more reinforcing materials, such as glass fibres, carbon fibres or the like. Further components may also be present to modify the properties of the elastomer.
- the base element body is suitably formed from an elastomeric polyurethane material, which provides desirable physical properties and demonstrates acceptable resistance to damage from environmental factors, such as liquids (organic and aqueous), light, weather, etc.
- the base element body includes one or more side walls and a top wall, which together define a cavity within the body of the base element.
- the or each side wall is able to act like a spring in the sense that it is able to deform when the base assembly is impacted and then recovers when the cause of the impact is removed.
- one side of the base element is typically compressed and the opposite side is typically stretched.
- the cavity allows for easier deformation of the body of the base element and reduces or minimises the risk of failure of the base element body.
- the elastomer When the body of the base element is formed from an elastomeric material, the elastomer suitably has a hardness measured on the Shore A scale of 40 to 85, more suitably 50 to 75.
- An elastomeric material having a hardness within the specified ranges provides desirable properties for a flexible post assembly in terms of its ability to deform in the event of an impact and then recover to its original or rest configuration.
- a further suitable range of Shore A hardness values is 65 to 75.
- the insert element is formed from a form-sustaining material.
- a form-sustaining material is a material which is able to maintain its original configuration.
- Such materials include rigid materials, such as metals, thermoplastic polymers and reinforced materials, such as carbon reinforced plastic (carbon fibre reinforced polymers) and glass reinforced plastic; and resiliently deformable (semi-rigid) materials, such as elastomers as discussed above.
- the insert element may be formed from a metal, such as steel or aluminium; from a polymer, such as nylon or acrylonitrile/butadiene/styrene copolymer (ABS); a reinforced material, such as a fibre glass material or a carbon fibre material; or an elastomer such as elastomeric polyurethane.
- a metal such as steel or aluminium
- a polymer such as nylon or acrylonitrile/butadiene/styrene copolymer (ABS)
- ABS acrylonitrile/butadiene/styrene copolymer
- a reinforced material such as a fibre glass material or a carbon fibre material
- an elastomer such as elastomeric polyurethane.
- the insert element is formed from a polymeric material (the insert element material) which has a Shore A hardness in the range 70 to 100.
- the insert element material has a greater Shore A hardness value than the base element material.
- the insert element may be harder and/or more rigid than the base element.
- An elastomeric polyurethane material having a Shore A hardness value of 75 to 95 may be used to form the insert element.
- the insert element includes a projecting portion which extends beyond the body of the base element.
- the projecting portion may define a substrate to which a supported body to be carried by the flexible base assembly may be attached.
- Many such supported bodies are adapted to be secured to cylindrical posts.
- the projecting portion of the insert element may be substantially cylindrical.
- other shapes of the projecting portion are possible within the scope of the invention, including portions having triangular, rectangular, hexagonal, etc. cross sectional shapes.
- the projecting portion may include one or more fixing elements adapted to secure a supported body to the insert element.
- the or each fixing element may be relatively simple, such as a bore or through-hole which is adapted to receive therethrough a respective fixing (e.g.
- the or each fixing element may be in the form of a first component of a two component fixing element, wherein the first component is adapted to mate or interengage with a corresponding second component carried by the supported body.
- the supported body may be any supported body adapted to be carried by a flexible base assembly.
- Examples of such supported bodies include street furniture and barrier panels.
- the supported body may be secured or fixed to the flexible base assembly or it may be releasably coupled to the base assembly.
- street furniture is intended to cover items such as traffic signs, traffic bollards, lane delineators, lights and so forth. However, it is not limited to roads and is also intended to cover signs, bollards, delineators, barriers, lights, etc. when used in alternative environments, such as railways and airports.
- street furniture in the context of the present invention includes any supported body adapted to be carried by a base assembly, which is typically upstanding, and which is at risk of being hit by a moving vehicle.
- barriers it is often desired to provide barriers to prevent access to certain restricted areas, where the barriers are designed to fail or collapse in certain situations, such as emergency situations.
- An example of such a situation is crowd control barriers used for example at sports stadia and the like.
- the barriers are used to prevent access, e.g. to the sports pitch or arena.
- the barriers may be deformed or deflected to allow passage to an area of safety.
- the supported body may be a barrier panel or part of a barrier panel.
- the step of moulding the base element body around a portion of the insert element may comprise pouring a base element precursor material into the base element mould and allowing or causing the precursor material to cure in-situ.
- Elastomers typically comprise a precursor material, such as monomers or non-vulcanised unsaturated rubber components, which is then reacted or vulcanised to achieve the final elastomeric product.
- This reaction to convert the precursor material into the final form of the elastomer is referred to herein as "curing".
- the curing step may include the addition of heat, pressure, a catalyst and/or a reactive component.
- the step of providing the insert element may include casting the insert element, extruding the insert element, or it may include machining the insert element from a metal blank.
- the step of providing the insert element may include injection moulding or extruding the insert element.
- the step of providing the insert element may include pouring an insert element precursor material into an insert element mould and allowing or causing the precursor material to cure in-situ.
- a base element which is suitable for use in a flexible base assembly as defined or described anywhere herein, wherein the base element comprises a body formed from a resiliently deformable polymer, and a reinforcing element, and wherein the reinforcing element is embedded in the polymer body.
- a base element When a base element is secured to a substrate (such as a road) and is subject to an impact force (e.g. a shear force, a tensile force and/or a compression force), the impact force typically acts in such a way that the base element is urged away from the substrate to which it is secured. It has been observed that an impact force can cause relatively extreme deformation of the base element and can, in certain cases, result in the base element being ripped from the substrate.
- the location of a reinforcing element in the polymer body of the base element resists deformation of the base element and helps to prevent or resist the base element being forcibly removed from the substrate to which it is anchored.
- the term "embedded in” is intended to mean that at least a portion of the reinforcing element is located within the polymer matrix of the base element body.
- the reinforcing element may be wholly located within the polymer matrix of the base element body, such that the reinforcing element is entirely surrounded by the polymer material.
- the reinforcing element may be partially located within the polymer, such that a portion of the reinforcing element is located within the polymer and a potion of the reinforcing element extends beyond the polymer body.
- the polymer body of the base element includes one or more anchor elements.
- the anchor elements each comprise a through-hole or bore defined by the base element body and through which an anchor bolt or similar may be located.
- the reinforcing element may include anchor elements corresponding to the anchor elements carried by the polymer body.
- the polymer body may include a post member engaging portion adapted to have secured thereto an upstanding post member.
- the upstanding post member may be an insert element as defined and described herein.
- the reinforcing material may be metal or it may be in the form of a thermoplastic polymer (suitably a rigid thermoplastic polymer), optionally itself reinforced with carbon fibres or glass fibres or the like.
- a thermoplastic polymer suitable a rigid thermoplastic polymer
- the reinforcing material is metal.
- the reinforcing material it may be selected from steel and aluminium.
- the reinforcing material may be dispersed throughout the polymer body or it may be in the form of one or more sheets or layers of reinforcing material.
- the reinforcing material may be in the form of a laminate, wherein the layers of the laminate may be the same or different.
- the reinforcing element comprises a single sheet of reinforcing material.
- the single sheet may include voids in which areas of the reinforcing material have been removed from the sheet. Such voids may be useful to achieve the desired reinforcing properties without unduly impacting on the physical properties of the base element.
- a flexible base assembly as defined anywhere herein in connection with the first aspect of the invention, wherein the base element includes a metal reinforcing element embedded therein.
- a flexible base assembly including a base element comprising a resiliently deformable body and an insert element, wherein a portion of the insert element is located within the body of the base element, the insert element includes one or more apertures therein and portions of the base element body are located within the apertures and wherein the base element includes a metal reinforcing element wholly embedded therein, the reinforcing element being in the form of a single sheet.
- Figure 1 is a perspective view of a flexible base assembly according to the invention
- Figure 2 is a cross-sectional view of the assembly shown in Figure 1 ;
- Figure 3 is a perspective view of an insert element forming part of the assembly
- Figure 4 is a cross-sectional view of the insert element shown in Figure 3;
- Figure 5 is a plan view of a reinforcing plate located within the base element of the assembly.
- Figure 6 is a perspective view of the reinforcing plate shown in Figure 5.
- a flexible base assembly 2 according to the first aspect of the invention is shown in Figures 1 and 2.
- the base assembly 2 includes a base element 4 and an insert element 6. As can be seen from Figure 2, a portion 8 of the insert element 6 is located within the body of the base element 4 and a portion 10 of the insert element 6 projects upwardly from the base element 4.
- the body of the base element 4 is formed from a 70 Shore A hardness elastomeric polyurethane polymer material (commercially available under the Vibrathane 8000 trade mark from Chemtura, USA) as a one-piece construction (i.e. a monolithic body). It includes a substantially square mounting portion 12 and an upstanding cylindrical portion 14, the cylindrical portion 14 being formed from a side wall 16 and a top wall 18.
- the top wall 18 defines a circular opening 19 through which the insert element 6 projects.
- the side wall 16 and the top wall 18 together define a cavity 20 within the cylindrical portion 14.
- the measurement of the hardness of the polymer may be carried out according to any known method for measuring hardness based on the Shore A scale.
- the mounting portion 12 of the body of the base element 4 defines therein four mounting holes 22 which are sized and configured to receive therein respective fixings, such as mounting bolts to secure the base element 4 to a substrate (not shown).
- a 6mm thick steel (hot rolled dry mild steel to BS EN 101 1 1 :2008 DD1 1 ) reinforcing plate 24 is located within the polymeric matrix of the mounting portion 12. As can be seen from Figure 2, the mounting plate 24 is entirely surrounded by the polymer material. The steel reinforcing plate 24 is shown in more detail in Figures 5 and 6.
- the reinforcing plate 24 defines a central void 26 which is shaped and sized so as not to interfere with movement of the base element 4 as a whole in the event of an impact.
- the void 26 is defined such that the plate 24 does not extend into the cavity 20 defined by the body of the base element 4.
- the plate 24 also defines therein four holes 28 which correspond to the mounting holes 22 defined by the mounting portion 12. In this way, fixings such as bolts which pass though the holes 22 defined by the polymer body of the mounting portion 12 also pass through the corresponding holes 28 defined by the reinforcing plate 24.
- the insert element 6 is shown in more detail in Figures 3 and 4. As shown in these figures, the insert element 6 has a flange 30 located at one end thereof. When forming part of the flexible base assembly 2 as a whole, the flange 30 is located within the body of the base element 4 as shown in Figure 2.
- the flange 30 defines therein a number of circumferentially equally spaced bores 32 which extend through the flange 30.
- eight equally spaced bores 32 are defined within the flange, although any number of bores may be provided and the bores need not be equally spaced.
- the upwardly projecting portion 10 of the insert element 6 defines therein two holes 34 which extend transversely through the projection portion 10 and which may be used to secure a supported body (not shown) to the flexible base assembly 2.
- the insert element 6 is formed as a one-piece construction (i.e. it is a monolithic element) from an elastomeric polyurethane which has a Shore A hardness value of 90 (also formed from Vibrathane tm 8000 polyurethane from Chemtura, USA).
- a threaded cup 36 is provided in the base of the insert element 6.
- the threaded cup 36 is formed from steel and includes a generally cylindrical body 38 which is hollow and which defines therein a helical thread 40 on its inwardly facing surface.
- the cup 36 further includes a closed flange 42 at one end and is open at the opposite (downwardly facing) end.
- the insert element 6 is formed by pouring a polyurethane precursor into a mould which contains therein the threaded cup 36.
- the polyurethane pre-curser is then caused to cure in the mould such that the threaded cup 36 is fixed within the polymer body of the insert element 6.
- the insert element 6 is removed from its mould and placed within a base element mould. Also located within the base element mould is the reinforcing plate 24. A polyurethane precursor for the body of the base element 4 is then poured into the base element mould such that a portion 8 of the insert element 6 and the reinforcing plate 24 are located within the base element body. The polyurethane pre-curser is then caused to cure in the mould such that the base element is moulded around the reinforcing plate 24 and the portion 10 of the insert element 6.
- the result of pouring the base element precursor material around the insert element 6 is that the polyurethane polymer which forms the body of the base element 4 is located within each of the bores 32.
- a portion 44 of the base element polyurethane body is located above each bore 32
- a portion 46 of the base element polyurethane body is located below each bore 32
- a portion 48 of the base element polyurethane body is located within each bore 32, such that the portion 48 of the polyurethane material within each respective bore 32 links the portions 44 and 46 above and below that bore 32.
- This arrangement interlocks the insert element 6 with the body of the base element 4 and resists rotation of the insert element 6 about its longitudinal axis relative to the base element 4.
- This resistance to rotation provides a self-fronting effect. More specifically, if the insert element 6 is rotated relative to the base element 4, the portions 48 of the polyurethane base element material located within the bores 32 become stretched. When the rotational force is removed or released, the energy stored in the polyurethane material during the stretching process is then released, which urges the insert element 6 to return to its rest position.
- a relatively large surface area circular locking plate 50 is located within the cavity 20 and secured to the insert element 6 via a bolt 52 which screws into the threaded cup 36, the bolt 52 having a helical thread which is complementary to the thread 40 carried by the threaded cup 36.
- the mounting portion 12 of the base element 4 can be formed to have any desired shape, depending upon how it is intended to be fixed to the substrate.
- the fixing elements 34 of the insert element need not be holes; they may be any type of fixing element suitable for securing a body to an insert element.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
- Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
Abstract
La présente invention concerne un ensemble base flexible qui comprend un élément de base comprenant un corps déformable de façon résiliente et un élément rapporté, une partie de l'élément rapporté étant positionnée à l'intérieur du corps de l'élément de base, l'élément rapporté comprenant une ou plusieurs ouvertures, et des parties du corps de l'élément de base étant positionnées à l'intérieur des ouvertures.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/350,591 US20140255648A1 (en) | 2011-10-21 | 2012-10-19 | Flexible Base Assembly |
| EP12791525.4A EP2769021A1 (fr) | 2011-10-21 | 2012-10-19 | Ensemble base flexible |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB1118202.9A GB2491663B (en) | 2011-10-21 | 2011-10-21 | Street furniture base assembly for a post or bollard |
| GB1118202.9 | 2011-10-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2013057504A1 true WO2013057504A1 (fr) | 2013-04-25 |
Family
ID=45373222
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2012/052592 Ceased WO2013057504A1 (fr) | 2011-10-21 | 2012-10-19 | Ensemble base flexible |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20140255648A1 (fr) |
| EP (1) | EP2769021A1 (fr) |
| GB (2) | GB2491663B (fr) |
| WO (1) | WO2013057504A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016041936A1 (fr) * | 2014-09-15 | 2016-03-24 | Traffic Management Products Limited | Ensemble de base monobloc |
| WO2017077314A1 (fr) * | 2015-11-03 | 2017-05-11 | Traffic Management Products Ltd | Système de mobilier urbain |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GR1009060B (el) * | 2016-02-02 | 2017-06-23 | Αφοι Τυρμπα Ε.Ε. Βιομηχανια Πλαστικων | Ευκαμπτο κολωνακι |
| DE102016119325A1 (de) * | 2016-10-11 | 2018-04-12 | Beilharz Gmbh & Co. Kg | Flexibles Verbindungselement für Leitpfosten und Leitpfosten mit flexiblem Verbindungselement |
| CN106759393B (zh) * | 2016-12-15 | 2019-02-26 | 四川航天拓鑫玄武岩实业有限公司 | 一种被动柔性防护立柱 |
| DE102017116102B3 (de) | 2017-07-18 | 2018-11-08 | LTC Consulting UG (haftungsbeschränkt) | Poller und Fixiereinheit hierfür |
| US10830229B1 (en) * | 2019-05-09 | 2020-11-10 | Joseph D. Lurker | Portable inflatable apparatus |
| ES2927157B2 (es) * | 2021-04-30 | 2023-03-07 | Road Steel Eng Sl | Dispositivo de union para poste de estructura soporte del equipamiento de vias de circulacion, y estructura soporte del equipamiento de vias de circulacion que incluye dicho dispositivo de union |
| CA3240388A1 (fr) * | 2021-12-09 | 2023-06-15 | Thomas Ustach | Bollard absorbant les chocs |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3091997A (en) * | 1960-01-19 | 1963-06-04 | Ray H Byrd | Highway picket and reflective marker |
| US4269534A (en) * | 1979-08-20 | 1981-05-26 | Ryan John E | Replaceable guide post |
| DE3505097A1 (de) * | 1985-02-14 | 1986-08-14 | Franz 5000 Köln Linder | Strassenpoller und verfahren zu seiner herstellung |
| US20090279951A1 (en) * | 2008-05-12 | 2009-11-12 | Wheeler Jr Dale Owen | Surface mount traffic channelizer |
| WO2010132264A1 (fr) * | 2009-05-11 | 2010-11-18 | Energy Absorption Systems, Inc. | Poteau amovible et procédé associé d'assemblage et d'utilisation |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1858650A (en) * | 1929-05-13 | 1932-05-17 | American Hard Rubber Co | Steering wheel |
| GB1038866A (en) * | 1962-08-03 | 1966-08-10 | Dunlop Rubber Co | Improvements in or relating to beacons |
| US3913518A (en) * | 1974-05-28 | 1975-10-21 | Nathan W Kaplan | Traffic marker with resilient column |
| JPS6030544B2 (ja) * | 1980-11-27 | 1985-07-17 | 橋本フオ−ミング工業株式会社 | モ−ルデイングの製造方法 |
| DE3202728A1 (de) * | 1982-01-28 | 1983-08-04 | Wilhelm 7150 Backnang Junker | Pfosten fuer verkehrszeichen und verkehrseinrichtungen |
| US5369925A (en) * | 1993-06-01 | 1994-12-06 | Hardy Manufacturing, Inc. | Post protector |
| JPH0790819A (ja) * | 1993-09-27 | 1995-04-04 | Toyo Tire & Rubber Co Ltd | 道路標識構造体及び脱着防止方法 |
| US5468093A (en) * | 1994-08-19 | 1995-11-21 | Voigt Products, Incorporated | Resilient safety barrier |
| JP3205955B2 (ja) * | 1995-12-08 | 2001-09-04 | エヌオーケー株式会社 | 樹脂成形品の軸孔部インサート金具の埋設構造 |
| GB0115551D0 (en) * | 2001-06-26 | 2001-08-15 | Softshock Ltd | Vibration damper |
| US7022270B2 (en) * | 2002-05-22 | 2006-04-04 | W. J. Whatley, Inc. | Method of manufacturing composite utility poles |
| US7849617B2 (en) * | 2007-05-31 | 2010-12-14 | Energy Absorption Systems, Inc. | Self-righting post and method for the assembly and use thereof |
| KR20090016094A (ko) * | 2007-08-10 | 2009-02-13 | 최광철 | 교통안전 규제봉 |
-
2011
- 2011-10-21 GB GB1118202.9A patent/GB2491663B/en active Active
-
2012
- 2012-10-18 GB GB1218736.5A patent/GB2491545B/en active Active
- 2012-10-19 EP EP12791525.4A patent/EP2769021A1/fr not_active Withdrawn
- 2012-10-19 WO PCT/GB2012/052592 patent/WO2013057504A1/fr not_active Ceased
- 2012-10-19 US US14/350,591 patent/US20140255648A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3091997A (en) * | 1960-01-19 | 1963-06-04 | Ray H Byrd | Highway picket and reflective marker |
| US4269534A (en) * | 1979-08-20 | 1981-05-26 | Ryan John E | Replaceable guide post |
| DE3505097A1 (de) * | 1985-02-14 | 1986-08-14 | Franz 5000 Köln Linder | Strassenpoller und verfahren zu seiner herstellung |
| US20090279951A1 (en) * | 2008-05-12 | 2009-11-12 | Wheeler Jr Dale Owen | Surface mount traffic channelizer |
| WO2010132264A1 (fr) * | 2009-05-11 | 2010-11-18 | Energy Absorption Systems, Inc. | Poteau amovible et procédé associé d'assemblage et d'utilisation |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016041936A1 (fr) * | 2014-09-15 | 2016-03-24 | Traffic Management Products Limited | Ensemble de base monobloc |
| WO2017077314A1 (fr) * | 2015-11-03 | 2017-05-11 | Traffic Management Products Ltd | Système de mobilier urbain |
Also Published As
| Publication number | Publication date |
|---|---|
| GB201218736D0 (en) | 2012-12-05 |
| EP2769021A1 (fr) | 2014-08-27 |
| GB2491663A (en) | 2012-12-12 |
| GB201118202D0 (en) | 2011-12-07 |
| US20140255648A1 (en) | 2014-09-11 |
| GB2491545A (en) | 2012-12-05 |
| GB2491663B (en) | 2013-06-12 |
| GB2491545B (en) | 2013-06-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20140255648A1 (en) | Flexible Base Assembly | |
| US7849617B2 (en) | Self-righting post and method for the assembly and use thereof | |
| US7819605B2 (en) | Delineator mounting system | |
| US4645168A (en) | Reinforced support structure for upright highway marker | |
| US7553103B2 (en) | Delineator mounting system | |
| US6758627B2 (en) | Guard rail support, attachment, and positioning spacer block | |
| US6220576B1 (en) | Flexible road safety-guard | |
| US7832713B2 (en) | Guard rail mounting block and guard rail system incorporating the same | |
| US20090279951A1 (en) | Surface mount traffic channelizer | |
| US10246840B2 (en) | One-piece base assembly | |
| GB2512559A (en) | Support platform and method of construction thereof | |
| US10864805B2 (en) | Energy absorber for vehicle doors | |
| JPH10141408A (ja) | 緩衝体 | |
| WO2013036606A1 (fr) | Ensemble amortisseur de quai de chargement | |
| US20100189497A1 (en) | Flexible hinge in traffic control marker | |
| KR101799862B1 (ko) | 개방형 플라스틱 가드레일 | |
| AU2007254656B2 (en) | Guard rail support, attachment, and positioning spacer block | |
| EP3371373B1 (fr) | Système de mobilier urbain | |
| JP2000159074A (ja) | 車輪止め部材 | |
| CA2588638C (fr) | Poteau a redressement automatique, methode d'installation et son utilisation | |
| JP2007332596A (ja) | 車止め支柱 | |
| JP2022543613A (ja) | 衝撃吸収ポスト | |
| KR200228288Y1 (ko) | 폐타이어를 이용한 안전방호대 | |
| KR20050100467A (ko) | 직물로 제조된 차선규제봉 | |
| JP4565129B2 (ja) | 道路用分離帯ブロック |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12791525 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14350591 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012791525 Country of ref document: EP |