WO2013056498A1 - 一种尖晶石型铁酸钴的制备方法 - Google Patents

一种尖晶石型铁酸钴的制备方法 Download PDF

Info

Publication number
WO2013056498A1
WO2013056498A1 PCT/CN2011/084607 CN2011084607W WO2013056498A1 WO 2013056498 A1 WO2013056498 A1 WO 2013056498A1 CN 2011084607 W CN2011084607 W CN 2011084607W WO 2013056498 A1 WO2013056498 A1 WO 2013056498A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
alkaline solution
preparation
solution
cobalt
Prior art date
Application number
PCT/CN2011/084607
Other languages
English (en)
French (fr)
Inventor
张荣斌
Original Assignee
成都快典科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都快典科技有限公司 filed Critical 成都快典科技有限公司
Publication of WO2013056498A1 publication Critical patent/WO2013056498A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)

Definitions

  • the invention relates to the field of material preparation, in particular to a method for preparing spinel-type ferrite ferrite.
  • Magnetic nanoparticles are a new type of material developed in recent years. They not only have the basic effects of ordinary nanoparticles, but also have abnormal magnetic properties such as superparamagnetism, low Curie temperature and high magnetic susceptibility. It is widely used in electronic devices and information storage. It also has broad application prospects in the fields of biology and medicine, such as cell separation, immobilized enzymes, immunodiagnosis and tumor targeted therapy. Therefore, the synthesis, properties and applications of nanocrystalline magnetic materials have become one of the hotspots in the field of materials.
  • Spinel-type cobalt ferrite (CoFe 2 0 4 ) has high saturation magnetization and coercivity, large magnetocrystalline anisotropy and magnetostriction, good chemical stability, in magnetic recording, electromagnetic shielding, catalysis , rechargeable batteries, biomedicine and other fields have a wide range of uses, causing great concern.
  • many synthetic methods have been used to prepare magnetic spinel-type ferrite nanocrystals, such as coprecipitation, sol-gel, hydrothermal, combustion, organic acid salt precursors, and the like.
  • the processes of these methods are complicated and the reaction conditions are harsh.
  • the object of the present invention is to provide a method for the above problems.
  • the preparation method of spinel type ferric acid ferrite has mild reaction conditions and does not require high temperature calcination.
  • the prepared ferrite ferrite has small particle size, high activity, low energy consumption, simple equipment, small investment, and easy industrialized production. Good application prospects can be widely applied to different technical fields such as biotechnology and medicine.
  • a method for preparing a spinel type cobalt ferrite comprises the following steps:
  • the metal nitrate solution is composed of cobalt nitrate hexahydrate, iron nitrate nonahydrate and water, the concentration of the cobalt nitrate hexahydrate is 0.300 mol/L, and the concentration of the ferric nitrate nonahydrate is 0.700 mol/L.
  • the concentration of cetyltrimethylammonium bromide was 0.045 mol/L, and the concentration of sodium hydroxide was 0.900 mol/L.
  • the volume ratio of the metal nitrate solution to the alkaline solution is 1:5.
  • the invention improves the reaction condition by simplifying the process flow, simplifies the operation and production equipment, has the characteristics of low energy consumption, small investment, and easy realization of industrial production, and the prepared ferrite ferrite has small particle size and high activity.
  • a method for preparing a spinel type cobalt ferrite comprises the following steps:
  • metal nitrate solution consists of cobalt nitrate hexahydrate, iron nitrate hexahydrate and water, wherein the concentration of cobalt nitrate hexahydrate is 0.300 mol/L, iron nitrate nonahydrate The concentration is 0.700 mol / L) is added to the alkaline solution, constant temperature 100 ° C, reflux 12h;
  • a method for preparing a spinel type cobalt ferrite comprises the following steps:
  • metal nitrate solution consists of cobalt nitrate hexahydrate, iron nitrate hexahydrate and water, wherein the concentration of cobalt nitrate hexahydrate is 0.300 mol/L, iron nitrate nonahydrate The concentration is 0.700 mol / L) is added to the alkaline solution, constant temperature 100 ° C, reflux 12h;
  • a method for preparing a spinel type cobalt ferrite comprises the following steps:
  • metal nitrate solution consists of cobalt nitrate hexahydrate, iron nitrate hexahydrate and water, wherein the concentration of cobalt nitrate hexahydrate is 0.300 mol/L, iron nitrate nonahydrate The concentration is 0.700 mol / L) is added to the alkaline solution, constant temperature 100 ° C, reflux 12h;
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种尖晶石铁酸钴的制备方法,包括如下步骤:(1)将十六烷基三甲基溴化铵和氢氧化钠加入到水中,制备碱性溶液;(2)向碱性溶液中加入金属硝酸盐溶液,恒温100°C,回流12h,制备铁酸钴,其中所述金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成;(3)分离提纯;(4)干燥。该方法反应条件温和,无需高温煅烧,制备的铁酸钴粒径小,活性高,能耗低,设备简单,投资小,容易实现工业化生产。

Description

一种尖晶石型铁酸钴的制备方法
技术领域
本发明涉及材料制备领域,尤其是一种尖晶石型铁酸钴的制备方法。
背景技术
磁性纳米粒子是近年来发展起来的一种新型材料,它不但具有普通纳米粒子所具有的基本效应,还具有异常的磁学性质,如超顺磁性、低居里温度、高磁化率等特性,被广泛应用于电子器件和信息存储等领域。在生物、医药领域也有着广泛的应用前景,如细胞分离、固定化酶、免疫诊断及肿瘤靶向治疗等。因此,纳米晶磁性材料的合成、性能及应用成为当前材料领域研究的热点之一。
尖晶石型铁酸钴(CoFe204)具有高饱和磁化强度和矫顽力、大的磁晶各向异性和磁致伸缩性、良好的化学稳定性,在磁记录、电磁屏蔽、催化、充电电池、生物医药等领域有着广泛的用途,引起了人们极大的关注。目前,许多合成方法已经用于制备磁性尖晶石型铁酸盐纳米晶,例如共沉淀法、溶胶-凝胶法、水热法、燃烧法、有机酸盐前驱物法等。但这些方法的工艺较为复杂,反应条件较为苛刻。
发明内容
本发明的发明目的在于:针对上述存在的问题,提供一种 尖晶石型铁酸钴的制备方法,本方法反应条件温和,无需高温煅烧,制备的铁酸钴粒径小,活性高,能耗低,设备简单,投资小,容易实现工业化生产,具有很好的应用前景,能够广泛应用于生物技术、医药等不同技术领域。
本发明采用的技术方案如下:
一种 尖晶石型铁酸钴的制备方法,包括如下步骤:
(1)制备碱性溶液:将十六烷基三甲基溴化铵和氢氧化钠加入到水中,其中十六烷基三甲基溴化铵的浓度为0.040-0.050mol/L,氢氧化钠的浓度为0.800-1.000mol/L,煮沸10min;
(2)制备铁酸钴:按照金属硝酸盐溶液与碱性溶液1:4-6的体积比,向碱性溶液中加入金属硝酸盐溶液,恒温100℃,回流12h;
(3)分离提纯:采用去离子水和无水乙醇对步骤(2)中得到的产物进行清洗;
(4)干燥:将提纯后的产物再90-120℃干燥10-15h;
所述金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成,所述六水硝酸钴的浓度为0.300mol/L,所述九水硝酸铁的浓度为0.700mol/L。
所述碱性溶液中,十六烷基三甲基溴化铵的浓度为0.045mol/L,氢氧化钠的浓度为0.900mol/L。
所述金属硝酸盐溶液与碱性溶液的体积比为1:5。
本发明通过改变工艺流程,有效降低了反应条件,简化了操作和生产设备,具有能耗低、投资小,容易实现工业化生产的特点,所制备的铁酸钴粒径小,活性高。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例1
一种 尖晶石型铁酸钴的制备方法,包括如下步骤:
(1)制备碱性溶液:将十六烷基三甲基溴化铵和氢氧化钠加入到90ml水中,其中十六烷基三甲基溴化铵的浓度为0.045mol/L,氢氧化钠的浓度为0.900mol/L,煮沸10min;
(2)制备铁酸钴:20ml金属硝酸盐溶液(金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成,其中六水硝酸钴的浓度为0.300mol/L,九水硝酸铁的浓度为0.700mol/L)加入到碱性溶液中,恒温100℃,回流12h;
(3)分离提纯:采用去离子水和无水乙醇对步骤(2)中得到的产物进行清洗;
(4)干燥:将提纯后的产物再90℃干燥15h,即得产品。
实施例2
一种 尖晶石型铁酸钴的制备方法,包括如下步骤:
(1)制备碱性溶液:将十六烷基三甲基溴化铵和氢氧化钠加入到90ml水中,其中十六烷基三甲基溴化铵的浓度为0.050mol/L,氢氧化钠的浓度为1.000mol/L,煮沸10min;
(2)制备铁酸钴:15ml金属硝酸盐溶液(金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成,其中六水硝酸钴的浓度为0.300mol/L,九水硝酸铁的浓度为0.700mol/L)加入到碱性溶液中,恒温100℃,回流12h;
(3)分离提纯:采用去离子水和无水乙醇对步骤(2)中得到的产物进行清洗;
(4)干燥:将提纯后的产物再120℃干燥10h,即得产品。
实施例3
一种 尖晶石型铁酸钴的制备方法,包括如下步骤:
(1)制备碱性溶液:将十六烷基三甲基溴化铵和氢氧化钠加入到100ml水中,其中十六烷基三甲基溴化铵的浓度为0.040mol/L,氢氧化钠的浓度为0.800mol/L,煮沸10min;
(2)制备铁酸钴:20ml金属硝酸盐溶液(金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成,其中六水硝酸钴的浓度为0.300mol/L,九水硝酸铁的浓度为0.700mol/L)加入到碱性溶液中,恒温100℃,回流12h;
(3)分离提纯:采用去离子水和无水乙醇对步骤(2)中得到的产物进行清洗;
(4)干燥:将提纯后的产物再120℃干燥10h,即得产品。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (3)

  1. 一种尖晶石型铁酸钴的制备方法,其特征在于,包括如下步骤:
    ( 1)制备碱性溶液:将十六烷基三甲基溴化铵和氢氧化钠加入到水中,其中十六烷基三甲基溴化铵的浓度为 0.040-0.050mol/L,氢氧化钠的浓度为 0.800-1.000mol/L,煮沸 10min;
    ( 2)制备铁酸钴:按照金属硝酸盐溶液与碱性溶液 1:4-6的体积比,向碱性溶液中加入金属硝酸盐溶液,恒温 100℃,回流 12h;
    ( 3)分离提纯:采用去离子水和无水乙醇对步骤( 2)中得到的产物进行清洗;
    ( 4)干燥:将提纯后的产物再 90-120℃干燥 10-15h;
    所述金属硝酸盐溶液由六水硝酸钴、九水硝酸铁和水组成,所述六水硝酸钴的浓度为 0.300mol/L ,所述九水硝酸铁的浓度为 0.700mol/L 。
  2. 根据权利要求1所述的制备方法,其特征在于,所述碱性溶液中,十六烷基三甲基溴化铵的浓度为 0.045mol/L, 氢氧化钠的浓度为 0.900mol/L 。
  3. 根据权利要求1所述的制备方法,其特征在于 金属硝酸盐溶液与碱性溶液的体积比 为 1:5。
PCT/CN2011/084607 2011-10-18 2011-12-26 一种尖晶石型铁酸钴的制备方法 WO2013056498A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110315635.7 2011-10-18
CN2011103156357A CN103058284A (zh) 2011-10-18 2011-10-18 一种尖晶石型铁酸钴的制备方法

Publications (1)

Publication Number Publication Date
WO2013056498A1 true WO2013056498A1 (zh) 2013-04-25

Family

ID=48101223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084607 WO2013056498A1 (zh) 2011-10-18 2011-12-26 一种尖晶石型铁酸钴的制备方法

Country Status (2)

Country Link
CN (1) CN103058284A (zh)
WO (1) WO2013056498A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718372A (zh) * 2021-08-26 2021-11-30 山东大学 一种低污染高磁性铁酸钴纤维及其制备方法
CN114538528A (zh) * 2022-02-28 2022-05-27 北京科技大学 一种CoFe2O4纳米磁性材料的生产方法
CN116443944A (zh) * 2023-02-13 2023-07-18 中国科学院赣江创新研究院 一种稀土修饰的介孔尖晶石型铁氧体吸波材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105540684A (zh) * 2015-12-23 2016-05-04 苏州冠达磁业有限公司 一种高性能纳米磁性材料的制备方法
CN113200572A (zh) * 2021-05-07 2021-08-03 景德镇陶瓷大学 一种干态低温制备铁酸钴粉体的工艺方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047722B2 (ja) * 1977-06-22 1985-10-23 財団法人生産開発科学研究所 強磁性粒子粉末の製造法
CN101962210A (zh) * 2010-09-20 2011-02-02 烟台大学 单分散铁酸钴纳米粒子的工业化制备方法
CN102190483A (zh) * 2010-03-01 2011-09-21 中国科学院生态环境研究中心 一种由纳米CoFe2O4构成的三维微纳材料及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100554166C (zh) * 2007-02-14 2009-10-28 中国科学院金属研究所 超临界水中纳米铁酸钴的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047722B2 (ja) * 1977-06-22 1985-10-23 財団法人生産開発科学研究所 強磁性粒子粉末の製造法
CN102190483A (zh) * 2010-03-01 2011-09-21 中国科学院生态环境研究中心 一种由纳米CoFe2O4构成的三维微纳材料及制备方法
CN101962210A (zh) * 2010-09-20 2011-02-02 烟台大学 单分散铁酸钴纳米粒子的工业化制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AI, LUNHONG ET AL.: "Low-temperature synthesis, spectral characterization and magnetic properties of CoFe204 nanocrystals", CHINESE JOURNAL OF APPLIED CHEMISTRY, vol. 27, no. 1, January 2010 (2010-01-01), pages 78 - 81 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718372A (zh) * 2021-08-26 2021-11-30 山东大学 一种低污染高磁性铁酸钴纤维及其制备方法
CN114538528A (zh) * 2022-02-28 2022-05-27 北京科技大学 一种CoFe2O4纳米磁性材料的生产方法
CN116443944A (zh) * 2023-02-13 2023-07-18 中国科学院赣江创新研究院 一种稀土修饰的介孔尖晶石型铁氧体吸波材料及其制备方法

Also Published As

Publication number Publication date
CN103058284A (zh) 2013-04-24

Similar Documents

Publication Publication Date Title
Zhang et al. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption
Akhundi et al. Novel magnetically separable g-C3N4/AgBr/Fe3O4 nanocomposites as visible-light-driven photocatalysts with highly enhanced activities
WO2013056498A1 (zh) 一种尖晶石型铁酸钴的制备方法
Bohra et al. Nanostructured ZnFe2O4: an exotic energy material
Wang et al. Preparation of ferrite MFe2O4 (M= Co, Ni) ribbons with nanoporous structure and their magnetic properties
Shekofteh-Gohari et al. Facile preparation of Fe3O4@ AgBr–ZnO nanocomposites as novel magnetically separable visible-light-driven photocatalysts
CN104150540B (zh) 一种重金属离子吸附剂铁氧体空心球MFe2O4
Mao et al. Synthesis of magnetite octahedrons from iron powders through a mild hydrothermal method
Zhu et al. Monodisperse porous pod-like hematite: hydrothermal formation, optical absorbance, and magnetic properties
CN102010015B (zh) 一种磁场诱导磁性纳米线的制备方法
Li et al. Rough porous N-doped graphene fibers modified with Fe-based Prussian blue analog derivative for wide-band electromagnetic wave absorption
CN108393073B (zh) 一种通用磁性吸附剂的制备方法与应用
Wen et al. Hierarchical three-dimensional cobalt phosphate microarchitectures: Large-scale solvothermal synthesis, characterization, and magnetic and microwave absorption properties
CN102745675A (zh) 一种尖晶石型磁性MFe2O4/石墨烯复合材料的制备方法
Dong et al. Magnetic and electrochemical properties of PANI-CoFe2O4 nanocomposites synthesized via a novel one-step solvothermal method
Akhundi et al. Novel magnetic g-C3N4/Fe3O4/AgCl nanocomposites: Facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation
Shabzendedar et al. Core-shell nanocomposite of superparamagnetic Fe3O4 nanoparticles with poly (m-aminobenzenesulfonic acid) for polymer solar cells
Hou et al. Effects of solvents on the synthesis and infrared radiation emissivity of CuFe2O4 spinels
Zhang et al. A facile synthesis of Co3O4 nanoflakes: magnetic and catalytic properties
Wang et al. Facile hydrothermal synthesis of cobalt manganese oxides spindles and their magnetic properties
CN104045336A (zh) 镍铁氧体磁性纳米纤维材料的制备方法
CN105869907B (zh) 一种碳氮共掺杂NiFe2O4/Ni纳米立方结构复合材料的制备方法
Rathi et al. Structural, magnetic, thermal and optical properties of Sn2+ cation doped magnetite nanoparticles
Xiang et al. One-pot solvent-free synthesis of MgFe2O4 nanoparticles from ferrous sulfate waste
Zhang et al. Iron carbide and nitride via a flexible route: synthesis, structure and magnetic properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874284

Country of ref document: EP

Kind code of ref document: A1