WO2013053598A1 - Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules - Google Patents

Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules Download PDF

Info

Publication number
WO2013053598A1
WO2013053598A1 PCT/EP2012/068934 EP2012068934W WO2013053598A1 WO 2013053598 A1 WO2013053598 A1 WO 2013053598A1 EP 2012068934 W EP2012068934 W EP 2012068934W WO 2013053598 A1 WO2013053598 A1 WO 2013053598A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
particles
metal
nanoparticle
dispersion
Prior art date
Application number
PCT/EP2012/068934
Other languages
German (de)
English (en)
Inventor
Franz-Erich Baumann
Klaus-Dieter SCHÜBEL
Harald HÄGER
Beate HESSLING
Juergen Kreutz
Emine KAHRAMAN
Stephanie MÖRTH
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Priority to EP12766641.0A priority Critical patent/EP2766411A1/fr
Publication of WO2013053598A1 publication Critical patent/WO2013053598A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins

Definitions

  • the invention relates to a method for producing a polymer nanoparticle compound by so-called "tumbling" of a nanoparticle dispersion onto a thermoplastic polymer.
  • thermoplastic materials with nanoparticles sometimes also referred to as nanoscale particles, provides access to novel materials with application-related interesting features
  • Photoactive nanoparticles for example, metal oxides or lanthanum hexaboride also allows corresponding moldings by means of laser marking,
  • Laser engraving, three-dimensional (3D) laser engraving or laser structuring to edit or to connect by laser welding (WO 2005084955;
  • Weight percent of inorganic or organic fillers, additives, dyes, pigments, etc. in thermoplastic polymers is carried out according to the prior art via a powder metering in a single or Mehrschneckencompounder.
  • Weight percent of inorganic or organic fillers, additives, dyes, pigments, etc. in thermoplastic polymers is carried out according to the prior art via a powder metering in a single or Mehrschneckencompounder.
  • small amounts less than 5 weight percent and typically less than about 2 weight percent
  • small amounts typically less than about 0.5 weight percent
  • Safety aspects of the nanoparticles also adds to the difficulties with the low dosage.
  • thermoplastic molding composition so
  • nanoparticle-containing molding composition which comprises the following steps: a) a thermoplastic molding composition in the form of compact particles is provided; b) a dispersion of nanoparticles in a dispersant is applied to the
  • the dispersant is removed at a temperature of at least 50 ° C.
  • the molding material particles may be at a temperature level of, for example, 0 ° C to 160 ° C. Usually they are at a temperature level of 20 ° C to a maximum of 80 ° C.
  • the dispersion may be poured, dropped, sprayed or applied in any other suitable manner. It is advantageous if the molding material particles are moved mechanically.
  • Dispersant can be accelerated by means of an inert purge gas and / or by applying vacuum. Alternatively, the dispersant may also be removed by reflow in a conveying aggregate such as an extruder and applying a vacuum.
  • the useful temperature range is limited here by the melting or softening range of the molding composition and upwards by the temperature at which the molding material begins to decompose.
  • step d) is carried out without melting the molding material particles
  • the product which now consists of molding material particles with nanoparticles embedded in the edge zone, can be converted into a homogeneous composition with nanoparticles in granular form or directly by conventional shaping methods such as injection molding, extrusion through a further compounding step or blow molds are converted into moldings or semi-finished products.
  • step d) has been carried out with melting in a conveying aggregate and applying a vacuum, the product
  • Granule form or directly by conventional shaping processes in moldings or semi-finished be reworked.
  • the invention thus also relates to the modified molding compound particles which are obtained when step d) is carried out without melting the molding compound particles;
  • These molding compound particles differ from conventionally produced nanoparticle - containing molding material particles in that
  • the invention further provides a method for producing a molded part or semifinished product, in which 1) modified molding compound particles are used, which are obtained when the step d) is carried out without melting the molding material particles, and
  • molding composition means that the composition can be shaped by conventional molding processes over the melt.
  • the molding composition can be a pure polymer, but it can also be a polymer containing customary additives.
  • Conventional additives are, for example, dyes , Pigments, flame retardants, stabilizers, fillers, fibrous
  • thermoplastic molding composition which is provided in step a)
  • meltable polymers in principle all meltable polymers can be used.
  • the molding composition contains 50 to 100 wt .-% of one or more such polymers, based on the total molding composition.
  • suitable polymers are polyamides, polyalkyl (meth) acrylates, polycarbonate, thermoplastic polyesters, polyester carbonate, polyimides, polyetherimides, polymethacrylimides, polysulfone,
  • Styrene polymers polyolefins, especially those with cyclic building blocks, olefin-maleimide copolymers, polyvinylcyclohexane, polyaryleneetherketone and
  • Polyvinyl chloride however, the invention is not limited to these exemplified polymers.
  • the polyamide may be a partially crystalline polyamide such as PA6, PA66, PA610, PA612, PA10, PA810, PA106, PA1010, PA1 1, PA101 1, PA1012, PA1210; PA1212, PA814, PA1014, PA618, PA512, PA613, PA813, PA914, PA1015, PA1 1, PA12 or a partially aromatic polyamide, a so-called polyphthalamide (PPA).
  • PPA polyphthalamide
  • Suitable PPAs are, for example, PA66 / 6T, PA6 / 6T, PA6T / MPMDT (MPMD stands for 2-methylpentamethylenediamine) , PA9T, PA10T, PA1 1T, PA12T, PA14T as well
  • Copolycondensates of these last types with an aliphatic diamine and an aliphatic dicarboxylic acid or with a ⁇ -aminocarboxylic acid or a
  • Lactam Other suitable polyamides are poly (etheresteramide) or
  • Poly (ether amides); Such products are z. B. in DE-OSS 25 23 991, 27 12 987 and 30 06 961 described.
  • Semicrystalline polyamides have a melting enthalpy of more than 25 J / g, measured by the DSC method according to ISO 1 1357 at the 2nd heating and integration of the melt peak.
  • the polyamide may also be a semi-crystalline polyamide.
  • Semicrystalline polyamides have a melting enthalpy of 4 to 25 J / g, measured by the DSC method according to ISO 1 1357 at the 2nd heating and integration of the melt peak. Examples of suitable semi-crystalline polyamides are
  • PA PACM10 and PA PACM12 The polyamide from 1, 10-decanedioic acid or 1, 12-dodecanedioic acid and 4,4'-diaminodicyclohexylmethane (PA PACM10 and PA PACM12), starting from a 4,4'-diaminodicyclohexylmethane with a trans, trans isomer content of 35 to 65 %;
  • Semi-crystalline polyamides are usually transparent.
  • copolyamide from a mixture of terephthalic acid / isophthalic acid and
  • copolyamide from a mixture of bis (4-amino-cyclohexyl) methane and bis (4-amino-3-methyl-cyclohexyl) methane and aliphatic dicarboxylic acids having 8 to 14 carbon atoms, and
  • Caprolactam, laurolactam or diamine / dicarboxylic acid combinations) or by partial or complete replacement of starting components by other components are varied as much as possible.
  • polyalkyl (meth) acrylate polyalkyl (meth) acrylates having 1 to 6 carbon atoms in the carbon chain of the alkyl group are suitable, with the methyl group being preferred as the alkyl group.
  • a. Polymethyl methacrylate and polybutyl methacrylate called.
  • copolymers of the polyalkyl (meth) acrylates up to 50 wt .-%, preferably up to 30 wt .-% and particularly preferably up to 20 wt .-% of the alkyl (meth) acrylate by other monomers such.
  • (meth) acrylic acid, styrene, acrylonitrile, acrylamide or the like. be replaced.
  • the molding composition can be adjusted to impact strength, for example by adding a core / shell rubber customary for such molding compositions.
  • a core / shell rubber customary for such molding compositions.
  • SAN styrene / acrylonitrile Copolymer
  • Polycarbonates suitable according to the invention contain units which
  • Carbonic acid diesters of diphenols are.
  • diphenols may be, for example, the following: hydroquinone, resorcinol, dihydroxybiphenyls, bis (hydroxyphenyl) alkanes, bis (hydroxyphenyl) cycloalkanes, bis (hydroxyphenyl) sulfides, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) sulfoxides, a, a'-bis (hydroxyphenyl) diisopropylbenzenes and their ring-alkylated or ring-halogenated derivatives or else a, co-bis (hydroxyphenyl) -polysiloxanes ,
  • a particularly preferred diphenol is bisphenol A.
  • the polycarbonate molding composition can, for example, to less than 50 wt .-%, preferably less than 40 wt .-%, more preferably less than 30% by weight and particularly preferably less than 20 wt .-%, based on the total Polymer base, other polymers such as polyethylene terephthalate, polybutylene terephthalate, polyesters of cyclohexanedimethanol,
  • Ethylene glycol and terephthalic acid polyesters of cyclohexanedimethanol and cyclohexanedicarboxylic acid, polyalkyl (meth) acrylates, SAN, styrene- (meth) acrylate copolymers, polystyrene (amorphous or syndiotactic), polyetherimides, polyimides, polysulfones and / or polyarylates (eg based on of bisphenol A and
  • Thermoplastic polyesters are obtained by polycondensation of diols
  • Dicarboxylic acids or their polyester-forming derivatives such as dimethyl esters produced.
  • Suitable diols have the formula HO-R-OH, where R is a divalent, branched or unbranched aliphatic and / or cycloaliphatic radical having 2 to 40, preferably 2 to 12, carbon atoms.
  • Suitable dicarboxylic acids have the formula HOOC-R'-COOH, where R 'is a divalent aromatic radical having 6 to 20, preferably 6 to 12, carbon atoms.
  • diols examples include ethylene glycol, trimethylene glycol, tetramethylene glycol, 2-butenediol-1, 4, hexamethylene glycol, neopentyl glycol, cyclohexanedimethanol and C 36 -diol dimerdiol.
  • the diols can be used alone or as a diol mixture.
  • Terephthalic acid 1,4-cyclohexanedimethanol and ethylene glycol.
  • orthophthalic acid for example, orthophthalic acid, terephthalic acid, isophthalic acid, tert-butylisophthalic acid, 3,3'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 3,4'-benzophenonedicarboxylic acid, 2,2-bis (4-carboxyphenyl) -propane and trimethyl-3-phenylindane-4,5-dicarboxylic acid.
  • terephthalic acid and / or isophthalic acid are preferably used.
  • Dicarboxylic acid are the same as suitable for polyester carbonate.
  • Polyimides are prepared in known manner from tetracarboxylic acids or their
  • polyimides are polymethacrylimides, sometimes as
  • Polyacrylimide or polyglutarimides called. These are products starting from polyalkyl acrylates or polyalkyl methacrylates, in which two adjacent carboxylate groups have been converted to a cyclic acid imide.
  • the imide formation is preferably with ammonia or primary amines, such as. As methylamine performed.
  • the products and their preparation are known (Hans R. Kricheldorf, Handbook of Polymer Synthesis, Part A, published by Marcel Dekker Inc. New York-Basel-Hong Kong, p. 223 f., HG Elias, macromolecules, Wilsonhig and Wepf Verlag Basel-Heidelberg-New York; US 2,146,209 A; US 4,246,374).
  • Suitable polysulfones are usually by polycondensation of a
  • Polycarbonates are suitable, but in particular bisphenol A, 4,4'-dihydroxydiphenylsulfone, 4,4'-dihydroxydiphenyl and hydroquinone, although mixtures of different diphenols can be used.
  • Dihalogen compound is in most cases 4,4'-dichlorodiphenylsulfone; however, it is also possible to use any other dihalogen compound in which the halogen is activated by a para-positional sulfone group.
  • fluorine is also suitable in addition to chlorine.
  • polysulfone also includes the polymers commonly referred to as “polyethersulfone” or “polyphenylsulfone.” Suitable types are commercially available.
  • Monomers such as methyl methacrylate, maleic anhydride, acrylonitrile or
  • polycyclic olefins for example norbornene, dicyclopentadiene, substituted derivatives or Diels-Alder adducts thereof (EP-A-0 784 066, WO 01/14446, EP-A-0 313 838, US Pat. No. 3,676,390, WO 96/20235).
  • Olefin-maleimide copolymers are known, for example, from US Pat. No. 7,018,697.
  • Vinylcyclohexane-based polymers can be prepared either by polymerization or copolymerization of vinylcyclohexane or by catalytic hydrogenation of styrenic polymers (WO 94/21694, WO 00/49057, WO 01/30858, FS Bates et al., PCHE-Based Pentablock Copolymers: Evolution of a New Plastic, AIChE Journal Vol. 47, No. 4, pp. 762-765).
  • Polyarylene ether ketone contains units of the formulas
  • Ar and Ar ' represent a bivalent aromatic radical, preferably 1, 4-phenylene, 4,4'-biphenylene and 1, 4, 1, 5 - or 2,6-naphthylene.
  • X is an electron-withdrawing group, preferably carbonyl or sulfonyl, while Y represents another group such as O, S, CH 2 , isopropylidene or the like.
  • at least 50%, preferably at least 70% and particularly preferably at least 80% of the groups X represent a carbonyl group, while at least 50%, preferably at least 70% and particularly preferably at least 80% of the groups Y consist of oxygen.
  • Embodiment may, for example, the polyarylene ether ketone
  • the polyarylene ether ketone is partially crystalline, which manifests itself, for example, in the DSC analysis by finding a crystallite melting point T m , the
  • PVC Polyvinyl chloride
  • the molding material is in the form of compact particles. Under compact
  • particles are understood to mean non-porous three-dimensional structures of every possible shape, which are produced by solidification of a melt and optionally subsequent comminution.
  • they may be spherical, rod-shaped, barrel-shaped or irregularly shaped.
  • Common particles are granules, shot or powder.
  • Nanoparticles which can be used according to the invention are all nanoscale particles which are insoluble in a dispersant and can be dispersed therein.
  • Nanoscale means that their diameter is in the range up to 1000 nm
  • the nanoparticles generally have a mean diameter d 50 of less than 400 nm, preferably from 20 to 250 nm, particularly preferably from 30 to 170 nm, particularly preferably from The average diameter d 50 is measured by means of photon correlation spectroscopy in accordance with ISO 13321.
  • Photon correlation spectroscopy also referred to as dynamic light scattering, is an optical measuring method for determining the size distribution of particles in liquids.
  • the method exploits the scattering of laser light through the particles.
  • the measuring principle is based on the Brownian molecular motion of the particles.The smaller they are, the faster they move at the same temperature.
  • the light of a laser radiates through the sample to be examined, thereby scattering it particles are in different directions. At a certain angle is a
  • Photomultiplier which detects the scattered light. The detected signal is then evaluated.
  • Suitable measuring devices are commercially available; it can
  • HORIBA LB-500 can be used.
  • the type and origin of the nanoparticles is not limited; the particles may be inorganic or organic in nature.
  • organic nanoparticles for example, oligomeric silsesquioxanes can be used.
  • the metal may preferably be Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Ag, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb, and / or Bi.
  • a metal oxide containing the elements Si, Al, Ti, Fe, Ce, In, Sb, Sn, Zn, Y and / or Zr may be preferred. It may be particularly advantageous if the dispersion used in the invention metal mixed oxides such as
  • the dispersion according to the invention may also contain a metal oxide prepared by precipitation, as described, for example, in WO00 / 14017.
  • the nanoparticles can also be surface-modified.
  • nanoparticles to be used according to the invention are known per se and also in nanoscale form, ie as discrete particles with sizes below 1 ⁇ m and
  • Nanoscale particles in particular metal oxides, can be prepared, for example, by pyrolytic processes. Such processes are described, for example, in EP 1 142 830 A, EP 1 270 51 1 A or DE 103 1 1 645. Furthermore, nanoscale metal oxides can be produced by precipitation processes, as described for example in DE 100 22 037.
  • the choice of the dispersant depends on the polymer to be modified, although the particles of the polymer may be softened by the dispersant, but the polymer may not be completely soluble therein.
  • the dispersant may, for example, be an alcohol (eg 1,4-butanediol, butanol, ethanol, n-propanol), an ester (eg ethyl acetate), an alkane (eg heptane), a cycloalkane ( eg cyclohexane), an aromatic (eg toluene or xylene), an amide (eg dimethylformamide) or in individual cases also water. It is often advantageous to use mixtures of various such solvents as dispersants. The selection of suitable dispersants is the expert by orienting
  • Nanoparticles do not reagglomerate when diluted to the technically useful concentration (so-called solvent shock), but this does not occur, for example, when using typical alcohols or alkanediols, at least in the case of metal oxides or mixed oxides. Concentration and amount of
  • Nanoparticle dispersion should be chosen so that, on the one hand, a sufficient
  • nanoparticle concentration of 0.0001 to 10 wt .-% is achieved.
  • the low nanoparticle concentrations of 0.0001 to 1 wt .-% are preferably selected when the molding material is to be processed directly into moldings; the higher concentrations of 1 to 10 wt .-% are useful if the concentrate formed in another
  • the molding composition contains a
  • PA PACM10 or PA PACM12 based on a 4,4'-diaminodicyclohexylmethane with a trans, trans isomer content of 35 to 65% (EP 0 619 336 A2) and
  • the molding composition contains
  • Molding material particles for example granules, shot or powder, in a paddle dryer (typical volume 0.005 m 3 to 10 m 3 at a granulate, meal or powder 1 to 2000 kg), then impregnating the mechanically agitated molding compound particles at 60 to 150 ° C. and drying the molding material particles at 100 to 170 ° C.
  • a paddle dryer typically volume 0.005 m 3 to 10 m 3 at a granulate, meal or powder 1 to 2000 kg
  • Polymer and dispersion were homogenized at room temperature (23 ° C) with mechanical agitation in a rotary evaporator within 2 hours under a gentle nitrogen flow of 10 l / h. Then the temperature was raised to 130 ° C within 30 minutes and maintained at this temperature with further mechanical movement for another 10 hours while passing 10 l / h of nitrogen until the dispersant was removed.
  • the resulting polymer-nanoparticle compound was dust-free and non-chalking. SEM and light micrographs showed that the nanoparticles were fixed in a thin surface layer of the granules.
  • Nitrogen stream of 10 l / h homogenized was then raised to 80 ° C over 30 minutes and maintained at this temperature with further mechanical agitation for a further 24 hours while passing 20 l / h of nitrogen until the dispersant was removed.
  • Dispersion of ITO with d 50 76 nm, dispersed in n-butanol used. Polymer and dispersion were homogenized at room temperature with mechanical agitation in a rotary evaporator within 2 hours under a stream of nitrogen of 10 l / h. Then, the temperature was increased to 130 ° C within 30 minutes and maintained under further mechanical movement for another 7.5 hours at this temperature while passing 10 l / h of nitrogen until the
  • the nanoparticles were fixed in a thin surface layer of the granules, which leaves no markings when rubbed on paper.
  • Polymer and dispersion were homogenized at room temperature with mechanical agitation in a rotary evaporator within 3 hours under a stream of nitrogen of 10 l / h.
  • the temperature was increased to 45 ° C within 30 minutes, then applied 20 mbar vacuum and maintained at 45 ° C for 5 hours, then within 30 minutes, the temperature increased to 60 ° C and at this temperature and 20 mbar for another 8 hours then, within 30 minutes, raise the temperature to 80 ° C and hold at less than 3 mbar vacuum and temperature for a further 2 hours until the dispersant was completely removed.
  • nanoparticles were fixed in a thin surface layer of granules, which leaves no markings when rubbed with paper.
  • the batch was homogenized at room temperature, passing 500 l / h of nitrogen and 3 revolutions per minute in a tumble dryer. After homogenization for 2 hours, the tumble dryer temperature was increased to 100 ° C and the nitrogen flow increased to 1250 l / h; these conditions were kept for 10 hours. Thereafter, the tumble dryer with the compound was cooled to less than 50 ° C within 4 hours.
  • nanoparticles were in a thin surface layer of the
  • the polymer-nanoparticle compounds prepared in Examples 1 to 8 can with the classical processing methods, for. B. extrusion, injection molding or blow molding. So z. B. the compound obtained in Example 5 are processed on all conventional injection molding machines.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne un procédé de préparation d'une masse moulable contenant des nanoparticules, comportant les étapes consistant à : a) fournir une masse moulable thermoplastique sous forme de particules compactes ; b) appliquer une dispersion de nanoparticules dans un agent de dispersion sur la surface des particules de masse moulable ; c) attendre jusqu'à ce que la dispersion ait pénétré dans la zone marginale desdites particules de masse moulable ; d) éliminer l'agent de dispersion à une température d'au moins 50 °C. Ledit procédé permet d'introduire lesdites nanoparticules dans la zone marginale des particules de masse moulable de manière à ce qu'elles y adhèrent solidement. Les corps moulés ainsi fabriqués présentent une répartition homogène des nanoparticules.
PCT/EP2012/068934 2011-10-11 2012-09-26 Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules WO2013053598A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12766641.0A EP2766411A1 (fr) 2011-10-11 2012-09-26 Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011084269A DE102011084269A1 (de) 2011-10-11 2011-10-11 Verfahren zur Herstellung von Polymer-Nanopartikel-Compounds mittels einerNanopartikel-Dispersion
DE102011084269.1 2011-10-11

Publications (1)

Publication Number Publication Date
WO2013053598A1 true WO2013053598A1 (fr) 2013-04-18

Family

ID=46963709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/068934 WO2013053598A1 (fr) 2011-10-11 2012-09-26 Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules

Country Status (3)

Country Link
EP (1) EP2766411A1 (fr)
DE (1) DE102011084269A1 (fr)
WO (1) WO2013053598A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130835A1 (fr) * 2014-02-26 2015-09-03 The Trustees Of Princeton University Nanoparticules polymères
US11214672B2 (en) 2018-01-19 2022-01-04 The Trustees Of Princeton University Hybrid polymer-inorganic nanocolloids and methods of making them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456434B (zh) * 2019-09-18 2022-12-13 杭州科汀光学技术有限公司 一种能抑制表面灰尘的反射镜及其制备方法

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146209A (en) 1936-07-31 1939-02-07 Du Pont Preparation of resinous imides of substituted acrylic acids
US3676390A (en) 1967-06-27 1972-07-11 Charbonnages De France Compositions of polymers of bicycla (2.2.1) heptene-2 and derivatives
DE2523991A1 (de) 1974-05-31 1975-12-18 Ato Chimie Verfahren zur herstellung von polyaether-ester-amid-blockmischpolymerisaten als verformbare oder extrudierbare produkte
DE2712987A1 (de) 1977-03-24 1978-10-05 Huels Chemische Werke Ag Verfahren zur herstellung von polyetheresteramiden mit statistisch in der polymerkette verteilten einheiten der ausgangskomponenten
DE3006961A1 (de) 1979-02-26 1980-08-28 Inventa Ag Polyaetherpolyamide
US4246374A (en) 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
EP0313838A2 (fr) 1987-10-01 1989-05-03 The B.F. Goodrich Company Polymères de cyclooléfines préparés à partir de prépolymères
WO1994021694A1 (fr) 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Procede d'hydrogenation de polymeres et produits ainsi obtenus
EP0619336A2 (fr) 1993-04-03 1994-10-12 Hüls Aktiengesellschaft Masses à mouler à base de polyamide amorphe, transparent et incoloré ayant une bonne résistance à la fissure sous tension et une résistance au choc
EP0719803A2 (fr) 1994-12-28 1996-07-03 Mitsui Petrochemical Industries, Ltd. Procédé de préparation d'un copolymère statistique d'un cyclooléfine
WO1996020235A1 (fr) 1994-12-23 1996-07-04 Ciba Specialty Chemicals Holding Inc. Composition polymerisable et procede de polymerisation
EP0729983A2 (fr) 1995-03-01 1996-09-04 Mitsui Petrochemical Industries, Ltd. Procédé de production de copolymères statistiques de cyclooléfines
US5635573A (en) 1992-12-01 1997-06-03 Exxon Chemical Patents Inc. Method for preparing alpha-olefin/cycloolefin copolymers
EP0784066A1 (fr) 1994-09-30 1997-07-16 Nippon Zeon Co., Ltd. Polymere a ouverture de cycle hydrogene
WO2000014017A1 (fr) 1998-09-06 2000-03-16 Institut Für Neue Materialen Gem. Gmbh Procede de production de suspensions et de poudres a base d'oxyde d'indium et d'oxyde d'etain
WO2000020496A1 (fr) 1998-10-01 2000-04-13 Ticona Gmbh Melange de copolymere cyclo-olefine resistant a la fissuration due a la contrainte
WO2000049057A1 (fr) 1999-02-19 2000-08-24 Bayer Aktiengesellschaft Polymeres a base de vinylcyclohexane
WO2001014446A1 (fr) 1999-08-25 2001-03-01 Zeon Corporation Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
WO2001030858A1 (fr) 1999-10-28 2001-05-03 University Of Maryland, College Park Polymerisation stereospecifique active d'olefines effectuee a l'aide d'une nouvelle composition de catalyseur ziegler-natta
EP1142830A1 (fr) 2000-04-03 2001-10-10 Degussa AG Oxides pyrogeniques de l'ordre du nanometre, procédé de leur preparation et leur utilisation
DE10022037A1 (de) 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
EP1270511A1 (fr) 2001-06-20 2003-01-02 Degussa AG Oxydes d'etain et d'indium
EP1284485A1 (fr) 2001-08-16 2003-02-19 Degussa AG Particules d oxyde superparamagnétique, leur procédé de fabrication et application
DE10311645A1 (de) 2003-03-14 2004-09-23 Degussa Ag Nanoskaliges Indium-Zinn-Mischoxidpulver
EP1468962A1 (fr) 2003-04-14 2004-10-20 Degussa AG Matrice d'oxyde metallique comprenant des domaines d'autres oxydes
WO2005084956A1 (fr) 2004-03-04 2005-09-15 Degussa Ag Matieres plastiques hautement transparentes qui peuvent etre marquees et soudees au laser
WO2005084955A1 (fr) 2004-03-04 2005-09-15 Degussa Ag Materiaux plastiques pouvant etre soudes au laser, teintes a l'aide de colorants de maniere transparente, translucide ou opaque
US7018697B2 (en) 2003-05-29 2006-03-28 Tdk Corporation Optical recording medium
WO2006094881A1 (fr) 2005-03-09 2006-09-14 Degussa Gmbh Corps moules en matiere plastique ayant des structures images bidimensionelles ou tridimensionelles produites par gravure interieure au laser
EP1762352A1 (fr) * 2005-09-12 2007-03-14 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Méthode pour incorporer un additif fonctionnel dans un matériel poreux
JP2009281845A (ja) * 2008-05-22 2009-12-03 Maitekku:Kk 表面増強ラマン分光分析用基板
WO2012069340A1 (fr) * 2010-11-23 2012-05-31 Basf Se Polyamides ayant des nanoparticules sur la surface

Patent Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2146209A (en) 1936-07-31 1939-02-07 Du Pont Preparation of resinous imides of substituted acrylic acids
US3676390A (en) 1967-06-27 1972-07-11 Charbonnages De France Compositions of polymers of bicycla (2.2.1) heptene-2 and derivatives
DE2523991A1 (de) 1974-05-31 1975-12-18 Ato Chimie Verfahren zur herstellung von polyaether-ester-amid-blockmischpolymerisaten als verformbare oder extrudierbare produkte
DE2712987A1 (de) 1977-03-24 1978-10-05 Huels Chemische Werke Ag Verfahren zur herstellung von polyetheresteramiden mit statistisch in der polymerkette verteilten einheiten der ausgangskomponenten
DE3006961A1 (de) 1979-02-26 1980-08-28 Inventa Ag Polyaetherpolyamide
US4246374A (en) 1979-04-23 1981-01-20 Rohm And Haas Company Imidized acrylic polymers
EP0313838A2 (fr) 1987-10-01 1989-05-03 The B.F. Goodrich Company Polymères de cyclooléfines préparés à partir de prépolymères
US5635573A (en) 1992-12-01 1997-06-03 Exxon Chemical Patents Inc. Method for preparing alpha-olefin/cycloolefin copolymers
WO1994021694A1 (fr) 1993-03-15 1994-09-29 Exxon Chemical Patents Inc. Procede d'hydrogenation de polymeres et produits ainsi obtenus
EP0619336A2 (fr) 1993-04-03 1994-10-12 Hüls Aktiengesellschaft Masses à mouler à base de polyamide amorphe, transparent et incoloré ayant une bonne résistance à la fissure sous tension et une résistance au choc
EP0784066A1 (fr) 1994-09-30 1997-07-16 Nippon Zeon Co., Ltd. Polymere a ouverture de cycle hydrogene
WO1996020235A1 (fr) 1994-12-23 1996-07-04 Ciba Specialty Chemicals Holding Inc. Composition polymerisable et procede de polymerisation
EP0719803A2 (fr) 1994-12-28 1996-07-03 Mitsui Petrochemical Industries, Ltd. Procédé de préparation d'un copolymère statistique d'un cyclooléfine
EP0729983A2 (fr) 1995-03-01 1996-09-04 Mitsui Petrochemical Industries, Ltd. Procédé de production de copolymères statistiques de cyclooléfines
WO2000014017A1 (fr) 1998-09-06 2000-03-16 Institut Für Neue Materialen Gem. Gmbh Procede de production de suspensions et de poudres a base d'oxyde d'indium et d'oxyde d'etain
WO2000020496A1 (fr) 1998-10-01 2000-04-13 Ticona Gmbh Melange de copolymere cyclo-olefine resistant a la fissuration due a la contrainte
WO2000049057A1 (fr) 1999-02-19 2000-08-24 Bayer Aktiengesellschaft Polymeres a base de vinylcyclohexane
WO2001014446A1 (fr) 1999-08-25 2001-03-01 Zeon Corporation Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
WO2001030858A1 (fr) 1999-10-28 2001-05-03 University Of Maryland, College Park Polymerisation stereospecifique active d'olefines effectuee a l'aide d'une nouvelle composition de catalyseur ziegler-natta
EP1142830A1 (fr) 2000-04-03 2001-10-10 Degussa AG Oxides pyrogeniques de l'ordre du nanometre, procédé de leur preparation et leur utilisation
DE10022037A1 (de) 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
EP1270511A1 (fr) 2001-06-20 2003-01-02 Degussa AG Oxydes d'etain et d'indium
EP1284485A1 (fr) 2001-08-16 2003-02-19 Degussa AG Particules d oxyde superparamagnétique, leur procédé de fabrication et application
DE10311645A1 (de) 2003-03-14 2004-09-23 Degussa Ag Nanoskaliges Indium-Zinn-Mischoxidpulver
EP1468962A1 (fr) 2003-04-14 2004-10-20 Degussa AG Matrice d'oxyde metallique comprenant des domaines d'autres oxydes
US7018697B2 (en) 2003-05-29 2006-03-28 Tdk Corporation Optical recording medium
WO2005084956A1 (fr) 2004-03-04 2005-09-15 Degussa Ag Matieres plastiques hautement transparentes qui peuvent etre marquees et soudees au laser
WO2005084955A1 (fr) 2004-03-04 2005-09-15 Degussa Ag Materiaux plastiques pouvant etre soudes au laser, teintes a l'aide de colorants de maniere transparente, translucide ou opaque
US20070173581A1 (en) * 2004-03-04 2007-07-26 Degussa Ag High-transparency laser-markable and laser-weldable plastic materials
WO2006094881A1 (fr) 2005-03-09 2006-09-14 Degussa Gmbh Corps moules en matiere plastique ayant des structures images bidimensionelles ou tridimensionelles produites par gravure interieure au laser
EP1762352A1 (fr) * 2005-09-12 2007-03-14 Nederlandse Organisatie voor Toegepast-Natuuurwetenschappelijk Onderzoek TNO Méthode pour incorporer un additif fonctionnel dans un matériel poreux
WO2007032663A1 (fr) 2005-09-12 2007-03-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Procede d'incorporation d'un additif fonctionnel dans un materiau poreux
JP2009281845A (ja) * 2008-05-22 2009-12-03 Maitekku:Kk 表面増強ラマン分光分析用基板
WO2012069340A1 (fr) * 2010-11-23 2012-05-31 Basf Se Polyamides ayant des nanoparticules sur la surface

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200982, Derwent World Patents Index; AN 2009-S00082, XP002688004 *
F. S. BATES ET AL.: "PCHE-Based Pentablock Copolymers: Evolution of a New Plastic", AICHE JOURNAL, vol. 47, no. 4, pages 762 - 765
H. G. ELIAS: "Makromoleküle", HÜTHIG UND WEPF VERLAG
HANS R. KRICHELDORF: "Handbook of Polymer Synthesis, Part A", VERLAG MARCEL DEKKER INC., pages: 223 F

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015130835A1 (fr) * 2014-02-26 2015-09-03 The Trustees Of Princeton University Nanoparticules polymères
US11214672B2 (en) 2018-01-19 2022-01-04 The Trustees Of Princeton University Hybrid polymer-inorganic nanocolloids and methods of making them

Also Published As

Publication number Publication date
DE102011084269A1 (de) 2013-04-11
EP2766411A1 (fr) 2014-08-20

Similar Documents

Publication Publication Date Title
EP3510101B1 (fr) Poudre polymère thermoplastique pour le frittage sélectif par laser (fsl)
EP2543700B1 (fr) Poudre contenant des particules revêtues de polymère
EP1505111B1 (fr) Poudre de polyamide contenent un agent ignifugeant du type phosphonate, son procédé de préparation et objets moulés obtenus à partir de celle-ci
EP1722984B1 (fr) Materiaux plastiques pouvant etre soudes au laser, teintes a l'aide de colorants de maniere transparente, translucide ou opaque
EP2543457B1 (fr) Poudre contenant des particules centrales revêtues de polymère contenant des métaux, des oxydes de métal, des nitrures métalliques ou des nitrures semi-métalliques
DE102004016479B4 (de) Verwendung von Polyestern als Dispergiermittel und Polyester enthaltende Masterbatches
EP2102004A1 (fr) Composant transparent
WO2006111302A1 (fr) Matiere de moulage et elements de moulage en thermoplastique contenant des particules inorganiques nanometriques, procede pour realiser cette matiere de moulage et ces elements de moulage, et leurs utilisations
DE102007021199A1 (de) Zusammensetzungen aus organischem Polymer als Matrix und anorganischen Partikeln als Füllstoff, Verfahren zu deren Herstellung sowie deren Verwendung
EP1411087A1 (fr) Poudre de frittage au laser comprenant du dioxyde de titane, procédé de frittage au laser et pièce obtenue à partir de cette poudre
DE102011078722A1 (de) Pulver enthaltend mit Polymer beschichtete anorganische Partikel
EP2543696B1 (fr) Poudre contenant des noyaux de particules revêtus de polymère
DE102004051457A1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien
CN1274745C (zh) 用于聚丙烯的高度活性的β-成核添加剂
KR102206439B1 (ko) 중합체 코팅된 설폰화 폴리에스터 - 은 나노입자 복합 필라멘트 및 이의 제조 방법
WO2013053598A1 (fr) Procédé destiné à préparer des compounds de polymère / nanoparticules au moyen d'une dispersion de nanoparticules
EP3562651B1 (fr) Procédé de fabrication additive au moyen d'un matériau de construction comprenant un absorbant infra-rouge
JP2021532065A (ja) 5つの異なるタイプの銅化合物を含む抗菌および/または殺生物活性を有する微細構造のマルチコンポジット銅微粒子
EP3268413B1 (fr) Mélange maître comprenant des particules de colorant et un polyol poly (hydroxy acide gras) ester comme agent dispersant
DE60201619T2 (de) Polymere auf der Basis von PTFE
DE2146607C2 (de) Durchscheinendes bis opakes Polymerisat-Gemisch
DE10318934A1 (de) Formkörper enthaltend Kern-Mantel-Partikel
DE202004016363U1 (de) Durch Farbmittel transparent, transluzent oder gedeckt eingefärbte laserschweißbare Kunststoffmaterialien
EP4245506A1 (fr) Poudre destinée a une mise en oeuvre selon un procédé couche par couche au laser dans le spectre visible et de proche infrarouge
DE202022000644U1 (de) Pulver zur Verarbeitung in einem schichtweisen Verfahren mit Lasern im sichtbaren und Nahinfrarotbereich

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12766641

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012766641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012766641

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE