WO2013053307A1 - 用于对预应力管道进行灌浆的测控装置及其使用方法 - Google Patents

用于对预应力管道进行灌浆的测控装置及其使用方法 Download PDF

Info

Publication number
WO2013053307A1
WO2013053307A1 PCT/CN2012/082587 CN2012082587W WO2013053307A1 WO 2013053307 A1 WO2013053307 A1 WO 2013053307A1 CN 2012082587 W CN2012082587 W CN 2012082587W WO 2013053307 A1 WO2013053307 A1 WO 2013053307A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
grouting
pipe
return
prestressed
Prior art date
Application number
PCT/CN2012/082587
Other languages
English (en)
French (fr)
Inventor
梁晓东
刘柳奇
徐有为
肖映城
熊用
Original Assignee
湖南联智桥隧技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南联智桥隧技术有限公司 filed Critical 湖南联智桥隧技术有限公司
Publication of WO2013053307A1 publication Critical patent/WO2013053307A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D15/00Handling building or like materials for hydraulic engineering or foundations
    • E02D15/02Handling of bulk concrete specially for foundation or hydraulic engineering purposes
    • E02D15/04Placing concrete in mould-pipes, pile tubes, bore-holes or narrow shafts

Definitions

  • Post-tensioned prestressed pipe grouting is the key to determining the durability and safety of the structure.
  • the traditional grouting construction is mainly controlled by manual manual control.
  • the performance parameters of the slurry and the technical parameters in the grouting process are controlled extensively > not standardized, and the pipe grouting is not dense, which causes the steel strand to rust in advance, thus affecting the service life of the structure. , resulting in waste of resources and adverse social impact.
  • the pressure is uncontrollable.
  • the pressure application of conventional conventional paddles is relatively arbitrary, and it is not possible to adjust the adaptability according to the type of pipe, length and shape. Pressure is a key factor affecting the consistency of grouting. The fact that most pipeline grouting is not dense is often associated with failure of pressure control.
  • the water to glue ratio cannot be accurately controlled.
  • the water-to-binder ratio is the main performance parameter of the slurry, while the conventional normal grouting does not strictly control the water-to-binder ratio of the slurry.
  • the flow performance is often increased by increasing the water consumption, which eventually leads to excessive bleeding rate, forming voids in the pipe and secreting free water, which accelerates the corrosion of the steel strand.
  • the grout data record has low reliability.
  • Conventional grouting uses manual recording of data, while grouting is a concealed project. With the completion of grouting construction, manual recording of data cannot accurately trace quality.
  • the present invention proposes a measuring and controlling device for grouting a prestressed pipeline, which can automatically control the grouting pressure, monitor the grouting parameters in real time, and avoid residual cavities in the grouting.
  • the invention also mentions the use of such a monitoring and control device for grouting a prestressed pipe.
  • a measurement and control device for grouting a prestressed pipe comprising: a slurry supply unit comprising a pulper and a grout pump connected to the pulper, through the feed pipe and
  • the slurry feeding and measuring unit connected to the slurry unit includes a slurry measuring instrument for collecting data of the cement slurry from the grouting pump, and the cement slurry flows into the prestressed pipeline after passing through the slurry measuring and controlling unit, and is connected to the prestressed pipeline.
  • the downstream slurry returning control unit includes a slurry measuring instrument for collecting data of the cement slurry from the prestressed pipe, the slurry measuring instrument is connected to the pulping machine of the slurry feeding unit through the slurry returning pipe, and the controller.
  • the apparatus according to the present invention is capable of automatically adjusting the grouting pressure so that it remains around the design value to achieve a predetermined grout quality.
  • the slurry supply pipe and the slurry return pipe connect the apparatus according to the present invention into a circulation passage.
  • the circulating flow of the cement slurry in the circulation passage can exhaust the air in the prestressed pipeline, avoiding the occurrence of residual voids in the prestressed pipeline and enhancing the structural strength.
  • the apparatus according to the present invention is also capable of recording the parameters of the grouting process during construction, providing a basis for subsequent quality traceability.
  • a regulating valve is provided on the slurry return tube to regulate the pressure within the device. This allows different operating pressures to be selected depending on the construction conditions.
  • a return conduit is provided between the feed control unit and the pulper.
  • This return tube and the feed tube form another circulation passage upstream of the prestressed tube.
  • the circulation channel makes the feed measurement and control unit and the slurry return control unit inoperative during the switching of the prestressed pipeline, thereby avoiding sending unnecessary data to the controller.
  • the pulper includes at least two connected containers, wherein The device is crying for the pulping.
  • the downstream end of the return pipe and the feed pipe are connected to the slurry tank, and the slurry pipe is connected to the slurry tank.
  • Impurities present in the slurry from the prestressed pipe are filtered out to ensure that the cement slurry in the first circulation channel contains no impurities, improves the quality of the grout, and the cement slurry remains qualified for a long period of time.
  • the feed measurement and control unit includes a directional control valve, a feed flow meter, and a feed pressure sensor arranged in a direction from upstream to downstream, and the upstream end of the return line is connected to the changeover valve.
  • the slurry control meter includes a slurry flow meter, a back pressure gauge, and a shutoff valve that are sequentially connected in a direction from upstream to downstream.
  • a water-to-binder ratio tester is provided on the pulper that collects the water-to-binder ratio data of the cement slurry in the cooked paddle container and transmits it to the controller.
  • the combination of water-to-binder ratio tester, slurry measurement and control instrument and slurry measurement and control instrument can not only monitor the quality, pressure and flow of cement slurry in the grouting process in real time, but also transmit the measured data to the controller and control it.
  • the device in turn controls the field devices to achieve the desired grouting purpose.
  • the controller is able to record this data, providing the basis for subsequent quality traceability.
  • the adjustment in the slurry measuring instrument is widely used to adjust the pressure of the cement slurry in the entire device.
  • the combination of the slurry measuring and measuring instrument and the slurry measuring and controlling enthalpy can measure the pressure difference and flow difference when the cement slurry passes through the prestressed pipeline, so that the staff can make the subsequent grouting work based on this. Predicted.
  • a method of using the above-described measurement and control device for grouting a prestressed pipe comprising the steps of:
  • First step inputting preset technical parameters to the controller
  • the second step starting the paddle machine, disposing the cement slurry
  • the third step After the cement slurry is qualified, the reversing valve is adjusted to only open the feed pipe, the prestressed pipe and the return pipe to form a first circulation passage, and the grouting pump is turned on to grout into the prestressed pipe until the grouting is completed.
  • the fourth step is further included: after completing a prestressed pipe grouting, The reversing valve is switched to open only the feed pipe and the return pipe to form a second circulation passage, and the measuring and controlling device for grouting the prestressed pipe is connected with another prestressed pipe to prepare for the next filling.
  • the measurement and control unit and the water-to-binder ratio tester test the grouting parameters in real time, and transmit the real-time parameters to the controller, and the controller records the real-time parameters and according to the real-time parameters and presets.
  • the difference between the technical parameters is adjusted to adjust the operation status of the site. This achieves the purpose of recording grouting information and automatically controlling grouting quality.
  • the terms "upstream” and “downstream” are defined as the flow of cement slurry compared to the prior art, and the present invention has the advantages of using a cement slurry feed control unit, a slurry measurement and control unit, and a controller.
  • the measuring and controlling device for the in-line grouting of the prestressed pipe can automatically adjust the grouting pressure so as to keep it around the design value to achieve the predetermined grouting quality.
  • the apparatus according to the present invention is also capable of recording the parameters of the grouting process during construction, providing a basis for subsequent quality traceability.
  • the reversing valve conducts the feed pipe.
  • the pre-stress pipe and the return pipe form a first circulation passage.
  • the circulating flow of the cement slurry in the first circulation passage can exhaust the air in the prestressed pipeline, avoiding the residual voids in the prestressed pipeline and enhancing the strength of the structure.
  • the commutating wide-conducting feed and return tubes form a second circulation passage. Through the second circulation channel, it is possible to switch the prestressed pipeline without having to switch the grouting pump frequently in the grouting construction f, which protects the equipment and facilitates the construction.
  • the slurry measuring and measuring instrument and the slurry measuring and measuring instrument it is also possible to measure the pressure difference and flow difference when the cement slurry passes through the prestressed pipe, so that the staff can use this as a basis for the subsequent
  • Figure 1 is a schematic view of a measurement and control device for grouting a prestressed pipe according to the present invention. The ratio is drawn.
  • Fig. 1 schematically shows a measuring and controlling device 10 for grouting a prestressed pipe according to the present invention.
  • the measuring and controlling device 10 for grouting the prestressed pipe comprises a feeding unit, a feeding and measuring unit, a slurry measuring and controlling unit and a controller.
  • the slurry supply unit comprises a pulping ⁇ and a grouting pump 24 connected to the pulper 21.
  • the pulper 21 is preferably embodied as a container comprising at least two liquid communication.
  • the first stage container is a pulping container
  • the last stage container is a cooked pulp container.
  • a screen is placed between the containers of each stage.
  • the pulper 21 comprises two containers 22, 23.
  • the container 22 is used as a pulping container
  • the container 23 is used as a cooked pulp container.
  • a screen (not shown) is also disposed between the slurry container 22 and the cooked slurry container 23 to filter impurities in the slurry container 22.
  • Grouting pump 24 is selected as a three-cylinder piston grouting pump.
  • the slurry measurement and control unit includes a slurry meter 32 for collecting data of the cement slurry from the slurry pump, and the slurry measurement and control unit includes a slurry measuring instrument 33 for collecting data of the cement slurry from the prestressed pipe.
  • the controller is used to record, process, and control the field devices, which in one embodiment is selected as the computer 26.
  • the slurry measuring instrument 32 is connected to the slurry tank 18 through the feed pipe 18 and connected to the slurry tank 23, and the cement slurry flows through the slurry measuring instrument 32 to enter the prestressed pipe i5 to the prestressed pipe 15 Grouting inside.
  • the slurry measuring instrument 33 is connected to the pulping iL 2i of the slurry supply unit through the slurry return pipe 20, and the cement slurry flows out of the prestressed pipe 15 and then flows back to the pulper 21 through the slurry measuring instrument 33.
  • a circulation passage including the inlet pipe 8, the prestressing pipe 15, and the return pipe 20 is formed, which is referred to as a first circulation passage.
  • Also included in the first circulation passage are a pulper 21, a grouting pump 24, a paddle measuring instrument 32, and a slurry measuring instrument 33.
  • the cement slurry can circulate in the first circulation passage to exhaust the air in the prestressed pipeline 15 to avoid leaving voids in the prestressed pipeline 15.
  • the slurry return pipe 20 is connected to the pulping vessel 22 of the pulper 21 so that the circulating fluid slurry is filtered by the screen between the pulping vessel 22 and the cooked pulp vessel 23, and is avoided. It avoids the problem that the accumulation of impurities in the cement slurry causes the cement slurry to be quickly unqualified, and can also improve Grout quality.
  • a water-to-binder ratio tester is further disposed on the paddle machine 21.
  • the slurry measuring and measuring instrument 32 includes a reversing valve 43, a slurry flow meter 42, and a feed pressure gauge 41 which are arranged in this order from the upstream to the downstream. That is, one interface of the reversing valve 43 is connected to the slurry feed pipe 18, and the other interface is connected to the slurry feed flow meter 42, the downstream interface of the slurry flow meter 42 is connected to the feed pressure gauge 41, and the downstream interface of the feed pressure gauge 41 is It is connected to the injection side 13 of the prestressed pipe 15.
  • the diverter valve 43 is selected to be a three-port type, and its first interface is connected to the feed pipe 18, and the second port is connected to the upstream port of the return pipe 19 (described in detail below), and the third port is connected to the Slurry flow meter 42.
  • the diverter valve 43, the feed flow meter 42, the feed pressure gauge 41, and the corresponding control member can be mounted together to form a block for ease of assembly.
  • the slurry measuring and measuring instrument 33 includes a slurry return flow meter 44, a back pressure gauge 45, and a shutoff valve 46 which are sequentially connected from upstream to downstream. That is, the upstream interface of the slurry flow meter 44 is connected to the discharge side 14 of the prestressed pipe 15, the downstream port is connected to the slurry pressure gauge 45, and the downstream port of the slurry pressure gauge 45 is connected to the slurry return pipe 20.
  • a regulating valve 47 is provided on the slurry return pipe 20 for adjusting the grouting pressure depending on operating conditions. It will be appreciated that the slurry flow meter 44, the back pressure gauge 45 shutoff valve 46 and the regulating valve 47, and corresponding controls, may also be mounted together to form a slab for ease of assembly.
  • a return pipe 19 is provided between the feed measurement and control unit and the pulper 21.
  • the upstream port of the return conduit 19 is coupled to one of the ports of the diverter valve 43, and the downstream port of the return conduit 19 is coupled to the slurry container 23 of the pulper 21.
  • another circulation passage including the feed pipe 18 and the return pipe i9 is formed upstream of the prestressed pipe 15, which is referred to herein as a second circulation passage.
  • the second circulation passage further includes a grouting construction, and the reversing valve 43 first conducts the first circulation to grout the prestressed pipeline 15.
  • the reversing valve 43 is switched to conduct the second cycle, so that the grout flows only in the second circulation passage.
  • the measuring and controlling device 10 is connected to the next prestressed pipe to prepare for the next grouting. This avoids frequent switching of the grout pump 24 during the grouting process, which contributes to the protection of the equipment and the operation of the cylinder.
  • the reversing valve 43 is installed at The upstream side of the slurry flow meter 42 and the slurry pressure gauge 4 is also on the upstream side of the slurry measuring and measuring instrument 33, so when the switching valve 43 is turned on for the second cycle, the slurry flow meter 42 and the slurry pressure gauge 41 Both the reflowing and measuring instrument 33 are in an inoperative state, and the useless data is sent to the controller 26.
  • the reversing valve 43 is switched to conduct the second circulation passage. During this time, the measuring and controlling device 10 for grouting the prestressed pipe is connected to the other prestressed pipe for the next grouting.
  • controller 26 compares these measured values with the entered preset values and then feedbacks control of the equipment at the construction site to ensure the quality of the grout. In addition, controller 26 records these measurements to provide a basis for subsequent quality traceability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

一种用于对预应力管道(15)进行灌浆的测控装置(10)及其使用方法,该测控装置(10)包括供浆单元、进浆测控单元、返浆测控单元和控制器,其中供浆单元包括制浆机(21)和与制浆机(21)连通的灌浆泵(24),进浆测控单元通过进浆管(18)与供浆单元连通,并包括用于采集来自灌浆泵(24)的水泥浆数据的进浆测量仪(32),水泥浆流经进浆测控单元后进入预应力管道(15),返浆测控单元连接在预应力管道(15)的下游,包括用于采集来自预应力管道(15)的水泥浆数据的返浆测量仪(33),返浆测量仪(33)通过返浆管(20)与供浆单元的制浆机(21)相连。该测控装置(10)可实现自动化控制,实时监测灌浆参数,循环排除管道内空气避免灌浆遗留空洞,并可减少工人工作强度,提高施工质量。

Description

后张法预应力管道灌浆施工是决定结构的耐久性和安全性的关 键工序。 传统普通灌浆施工主要由人工手动控制完成, 对浆液的性能 参数和灌浆过程中的技术参数控制较为粗放> 不规范, 并导致管道灌 浆不密实, 致使钢绞线提前锈蚀, 从而影响结构的使用寿命, 造成资 源浪费和不良的社会影响。
目前, 国内后张法预应力管道灌浆施工主要存在以下不足:
1. 压力不可控。传统普通灌桨的压力施加较为随意, 不能根据管 道类型、 长度 形状等的不同进行适应性调整。 而压力是影响灌浆密 实的关键因素, 多数管道灌浆不密实的情况的发生往往与压力控制失 败有关。
2. 不能彻底排尽孔道内的空气。传统普通灌浆方式对管道内的空 气不能有效的排除,尤其对于负弯矩段预应力管道。在反弯点最高处, 往往因不能排尽空气而出现灌浆遗留空洞。
3. 水胶比不能准确控制。 水.胶比是浆液主要性能参数, 而传统普 通灌浆不对浆液的水胶比做严格控制。 在施工现场往往通过增加用水 量来提高流动性能, 最终导致泌水率过大, 在管道内形成空隙并泌出 自由水, 加速了钢绞线锈蚀。
4. 灌浆数据记录可信度低。传统普通灌浆采用人工记录数据, 而 灌浆是隐蔽工程, 随着灌浆施工的完成, 人工记录数据不能准确地进 行质量追溯。
因此, 急需一种能够自动控制灌浆压力、 实时监测灌浆参数、 彻 底排除管道内空气避免灌浆遗留空洞的灌浆装置。 发明内容
针对上述的问题, 本发明提出了一种用于对预应力管道进行灌浆 的测控装置, 其能够自动控制灌浆压力、 实时监测灌浆参数、 避免灌 浆遗留空洞。 本发明还提及了这种用于对预应力管道进行灌浆的测控 装置的使用方法。
根据本发明的第一方面, 提出了一种用于对预应力管道进行灌浆 的测控装置, 包括: 供浆单元, 其包括制浆机和与制浆机连通的灌浆 泵, 通过进浆管与供浆单元连通的进浆测控单元, 其包括用于采集来 自灌浆泵的水泥浆的数据的进浆测量仪, 水泥浆流经进浆测控单元后 进入预应力管道, 连.接在预应力管道的下游的返浆测控单元, 其包括 用于采集来自预应力管道的水泥浆的数据的返浆测量仪, 返浆测量仪 通过返浆管与供浆单元的制浆机相连, 以及控制器。
通过使用水泥浆进浆测控单元、 返浆测控单元和控制器, 根据本 发明的装置能够自动调节灌浆压力, 使之始终保持在设计值周围而实 现预定的灌浆品质。 供浆管和返浆管将根据本发明的装置连接成一个 循环通道。 在灌浆施工中, 水泥浆在该循环通道内循环流动能够把预 应力管道内的空气排尽, 避免了在预应力管道内出现灌浆遗留空洞, 增强了结构强度。 另外, 在施工过程中, 根据本发明的装置还能够记 录灌浆过程参数, 为之后的质量追溯提供了基础。
在一个实施例中, 在返浆管上设置有调节阀, 用以调节装置内的 压力。 由此可根据不同的施工状况来选择不同的操作压力。
在一个实施例中, 在进浆测控单元与制浆机之间设置有回流管。 这种回流管和进浆管在预应力管道的上游形成另一个循环通道。 通过此循环通道, 可使得在灌浆施工过程中, 不必频繁开关灌浆泵即 可实现切换预应力管道, 保护了设备并方便了施工。 另外, 该循环通 道使得在切换预应力管道期间, 进浆测控单元和返浆测控单元均处于 不工作状态, 避免了向控制器发送无用数据。
在一个实施例中, 制浆机包括至少两个连通的容器, 其中, 第一 ^器为配浆容哭 。
Figure imgf000005_0001
回流管的下游端和进浆管连接于熟浆容器, 而 返浆管连接于配浆容器。
Figure imgf000005_0002
存在于来自预应力管道的返浆内的杂质过滤出来, 从而保证第一循环 通道中的水泥浆不含杂质, 提高了灌浆品质, 同时水泥浆也会在较长 的时间内保持为合格
在一个实施例中, 进浆测控单元包括沿从上游到下游的方向依次 布置的换向阀、 进浆流量计和进浆压力传感器, 回流管的上游端与换 向阀相连。 在另一个实施例中, 返浆测控仪包括沿从上游到下游的方 向依次连接的返浆流量计、 返浆压力计和截止阀。 在一个额外的实施 例中, 在制浆机上设有水胶比测试仪, 其采集熟桨容器内的水泥浆的 水胶比数据并传输至控制器。
水胶比测试仪、进浆测控仪和返浆测控仪的配合使用不但能够实 时监控灌浆过程中的水泥浆的品质、 压力和流量, 还能够将所测得的 数据传送给控制器并由控制器反过来控制现场设备以实现预计的灌 浆目的。 此外, 控制器还能够记录这些数据, 为之后的质量追溯提供 了基础。 返浆测控仪中的调节阔用于调节整个装置中的水泥浆压力。 更重要地是., 返浆测控仪和进浆测控钗的配合使用能够测得水泥浆通 过预应力管道时的压力差和流量差, 以便于搡作人员以此为基 对随 后的灌浆工作作出预判。
根据本发明的第二方面,提供了使用上文所述的用于对预应力管 道进行灌浆的测控装置的方法, 包括以下步骤:
第一步骤: 向控制器输入预设定的技术参数;
第二步骤: 启动制桨机, 配置水泥浆;
第三步骤: 当水泥浆合格后, 将换向阀调节为仅导通进浆管、 预 应力管道和返浆管 形成第一循环通道, 开启灌浆泵向预应力管道内 灌浆, 直到灌浆完成。
在一个实施例中,还包括第四步骤:完成一个预应力管道灌浆后, 将换向阀切换为仅导通进浆管和回流管而形成第二循环通道, 同时将 用于对预应力管道进行灌浆的测控装置与另一预应力管道相连接, 准 备下一次灌装。
在一个实施例中, 在灌浆过程中, 在灌浆过程中, 测控单元和水 胶比测试仪实时测试灌浆参数, 并且将实时参数传输给控制器, 控制 器记录实时参数并根据实时参数与预设定技术参数之间的差异调整 现场设^^的运行状况。 由此实现记录灌浆信息和自动控制灌浆品质的 目的。
在本申请中, 用语 "上游" 、 "下游" 规定为以水泥浆的流动方 与现有技术相比, 本发明的优点在于, 通过使用水泥浆进浆测控 单元、 返浆测控单元和控制器, 用于对预应力管道进-行灌浆的测控装 置能够自动调节灌浆压力, 使之始终保持在设计值周围而实现预定的 灌浆品质。 另外, 在施工过程中, 根据本发明的装置还能够记录灌浆 过程参数, 为之后的质量追溯提供了基础。 换向阀导通进浆管 预应 力管道和返浆管可形成第一循环通道。 水泥浆在第一循环通道内循环 流动能够把预应力管道内的空气排尽, 避免预应力管道内出现灌浆遗 留空洞, 增强了结构的强度。 换向阔导通进浆管和回流管可形成第二 循环通道。 通过第二循环通道, 使得在灌浆施工过 f 中, 不必频繁开 关灌浆泵即可实现切换预应力管道,保护了设备并方便了施工。此外, 通过返浆测控仪和进浆测控仪的配合使用, 还能够测得水泥浆通过预 应力管道时的压力差和流量差, 以便于搡作人员以此为基础对随后的
图说明
在下文中将基于实施例并参考附图来对本发明进行更详细的描 述。 其中:
图 1是根据本发明的用于对预应力管道进行灌浆的测控装置的示 意图; 的比例绘制。
下面将结合附图对本发明做进一步说明。
图 1示意性地显示了根据本发明的用于对预应力管道进行灌浆的 测控装置 10。 该用于对预应力管道进行灌浆的测控装置 10包括供浆 单元、 进浆测控单元、 返浆测控单元和控制器。 其中, 供浆单元包括 制浆 φΐ^Ι和与制浆机 21连通的灌浆泵 24。
制浆机 21优选地实施为包括至少两个液体连通的容器。 其中, 第一级容器为配浆容器, 最末级容器为熟浆容器。 在各级容器之间设 置有筛网。 如图 i所示, 制浆机 21 包括两个容器 22、 23。 其中容器 22用作配浆容器, 容器 23用作熟浆容器。 在配浆容器 22和熟浆容器 23之间还设置有筛网 (未示出) 以过滤配浆容器 22内的杂质。 灌浆 泵 24选^ ^为三缸活塞式灌浆泵。 进浆测控单元包括用于采集来自灌 浆泵的水泥浆的数据的进浆测量仪 32,返浆测控单元包括用于采集来 自预应力管道的水泥浆的数据的返浆测量仪 33。 控制器用于记录、 处 理数据并控制现场设备, 在一个实施例中, 这种控制器选择为计算机 26。
如图 i所示, 进浆测量仪 32通过进浆管 18连接于进浆管 18连 接于熟浆容器 23,水泥浆流经进浆测量仪 32后进入预应力管道 i5以 向预应力管道 15内灌浆。 返浆测量仪 33通过返浆管 20与供浆单元 的制浆 iL 2i相连,水泥浆从预应力管道 15流出后流经返浆测量仪 33 返回到制浆机 21。 由此, 形成了包括进桨管 8、 预应力管道 15、 返 浆管 20 的一个循环通道, 这里称之为第一循环通道。 在第一循环通 道中还包括制浆机 21、 灌浆泵 24、 进桨测量仪 32和返浆测量仪 33。
在灌浆过.程中, 水泥浆能在第一循环通道内循环流动以排尽预应 力管道 15内的空气, 避免在预应力管道 15内遗留空洞。 还应注意地 是, 返浆管 20连接于制浆机 21 的配浆容器 22使得循环流动的水泥 浆会受到配浆容器 22和熟浆容器 23之间的筛网的过滤作用, 而避.免 了水泥浆内杂质积聚导致水泥浆很快不合格的问题, 此外还能够提高 灌浆品质。 在一个实施例中, 在制桨机 21 上还设置有水胶比测试仪
31 以测试熟浆容器 23内的水泥浆是否达到-要求。
如图 1所示, 进浆测控仪 32包括沿从上游到下游方向依次布置 的换向阀 43、 进浆流量计 42、 进浆压力计 41。 即, 换向阀 43的一个 接口连接于进浆管 18, 另一接口连接于进浆流量计 42, 进浆流量计 42下游接口连接于进浆压力计 41 , 进浆压力计 41下游接口则连接于 预应力管道 15的注入侧 13。 优选地, 换向阀 43选择为三接口式, 并 且其第一接口连接于进浆管 18, 第二接口连接于回流管 19 (将在下 文详细描述)的上游端口, 第三接口连接于进浆流量计 42。 在一个犹 选的实施例中, 可将换向阀 43、 进浆流量计 42、 进浆压力计 41以及 相应的控制件安装在一起形成撬块以便于装配。
如图 1所示, 返浆测控仪 33 包括从上游到下游依次连 的返浆 流量计 44、 返浆压力计 45和截止阀 46。 即, 返浆流量计 44的上游 接口连接于预应力管道 15的排出側 14, 下游接口连接于返浆压力计 45, 返浆压力计 45的下游接口连接于返浆管 20。 在一个实施例中, 在返浆管 20上设置有调节阀 47用于根据工况调节灌浆压力。 可理解 地是, 返浆流量计 44、 返浆压力计 45 截止阀 46和调节阀 47以及 相应地控制件也可安装在一起形成撬块以便于的装配。
优选地, 在进浆测控单元与制浆机 21之间设置有回流管 19。 在 一个实施例中, 如上文所述, 回流管 19的上游端口连接于换向阀 43 的一个接口, 回流管 19的下游端口连接于制浆机 21的熟浆容器 23。 由此, 在预应力管道 15的上游形成包括进浆管 18和回流管 i9的另 一个循环通道, 这里称之为第二循环通道。 第二循环通道中还包括制 在灌浆施工中, 换向阀 43首先导通第一循环, 对预应力管道 15 进行灌浆。 在一个预应力管道灌浆结束需要换到下一个预应力管道 时, 将换向阀 43 切换为导通第二循环, 使得水泥浆仅在第二循环通 道内循环流动。 与此同时, 将测控装置 10连接于下一个预应力管道, 准备下一次灌浆。 这样避免了在灌浆过程中频繁开关灌浆泵 24, 有助 于设备保护并且筒化了操,作。 还应注意地是, 由于换向阀 43 安装在 进浆流量计 42和进浆压力计 4 的上游侧, 也在返浆测控仪 33的上 游側, 因此在换向阀 43导通第二循环时, 进浆流量计 42、 进浆压力 计 41和返浆测控仪 33均处于不工作状态, 避.免了向控制器 26发送 无用数据。
下面来说明用于对预应力管道进行灌浆的测控装置 1()的使用方 法。 首先, 向控制器 26输入预设定的技术参数。 然后, 启动制浆机
21 , 配置水泥浆。 当水泥浆合格后, 将换向阀 43 调节为导通第一循 环通道, 开启灌浆泵 24向预应力管道 15内灌浆。 当进浆压力与设定 压力相等时, 灌浆完成。
在完成一个预应力管道的灌浆后, 将换向阀 43切换为导通第二 循环通道。 在此期间, 将用于对预应力管道进行灌浆的测控装置 10 与另—预应力管道相连接, 以进行下一次灌浆。
在灌浆过.程中, 通过水胶比测试仪 31、 进桨测控仪 32和返桨测 控仪 33 实时测试水泥浆的物理性质、 流量和压力, 并且将这些参数 传输给控制器 26。控制器 26将这些测量值与输入的预设定值相比较, 然后反馈控制施工现场的设备, 确保灌浆品质。 此外, 控制器 26还 将这些测量值记录下来, 以为之后的质量追溯提供基础。
虽然已经参考优选实施例对本发明进行了描述, 但在不脱离本发 明的范围的情况下, 可以对其进行各种改进并且可以用等效物替换其 中的部件。 本发明并不局限于文中公开的特定实施例, 而是包括落入 权利要求的范围内的所有技术方案。

Claims

权利要求书
1. 一种用于对预应力管道进行灌浆的测控装置, 包括: 供浆单元, 其包括制浆机和与所述制浆机连通的灌浆泵, 通过进浆管与供浆单元连通的进浆测控单元, 其包括用于采集来 自灌浆泵的水泥浆的数据的进浆测量仪, 水泥浆流经所述进浆测控单 元后进入所述.预应力管道 ,
连接在所述 应力管道的下游的返浆测控单, 其包括用于采集来 自预应力管道的水泥浆的数据的返浆测量仪, 所述返浆测量钗通过返 浆管与供浆单元的制浆机相连, 以及控制器。
2. 根据权利要求 1 所述的装置, 其特征在于, 在所述进浆测控 单元与制浆机之间设置有回流管。
3. 根据权利要求 2所述的装置, 其特征在于, 所述进浆测控单 元包括沿从上游到下游的方向依次布置的换向阀 进浆流量计和进浆 压力传感器, 所述回流管的上游端与所述换向阀相连。
4. 根椐权利要求 3所述的装置, 其特征在于, 所述制浆机包括 至少两个连通的容器, 其中, 第一级容器为配浆容器, 最末级容器为 熟浆容器, 在各级容器之间设置有筛网。
5. 根据权利要求 4所述的装置, 其特征在于, 所述回流管的下 游端和所述进浆管连接于所述熟浆容器, 而所述-返浆管连接于所述配 浆容器。
6. 根据权利要求 4或 5所述的装置, 其特征在于, 在所述制浆 机上设有水胶比测试仪, 其采集所述熟浆容器内的水泥浆的水胶比数 据并传输至所述控制器。
7。 根据权利要求 i到 6中任一项所述的装置, 其特征在于, 所 述返浆测控仪包括沿从上游到下游的方向依次连接的返桨流量计、 返 浆压力计和截止阀。
8. 根据上述权利要求中任一项所述的装置, 其特征在于, 在所 述返浆管上设置有调节阀, 用以调节装置内的压力。
9, —种使用根据上述权利要求中任一项所述的装置的方法, 包 括以下步骤:
第一步骤: 向控制器输入预设定的技术参数;
第二步骤: 启动制浆机, 配置水泥浆;
第三步骤: 当水泥浆合格后,将所述换向阀调节为仅导通进浆管、 预应力管道和返浆管而形成第一循环通道, 开启灌浆泵向预应力管道 内灌浆, 直到灌浆完成。
10. 根椐权利要求 9所述的方法,其特征在于,还包括第四步骤: 完成一个预应力管道灌浆后, 将所述换向阀切换为仅导通进浆管和回 流管而形成第二循环通道, 同时将所述用于对预应力管道进行灌浆的 测控装置与另一预应力管道相连接, 准备下一次灌浆
1 L 根据权利要求 9或 10所述的方法, 其特征在于, 在灌浆过 程中, 所述测控单元和水 Jli比测试仪实时测试灌浆参数, 并且将所述 实时参数传输给所述控制器, 所述控制器记录所述实时参数并根据所 述实时参数与预设定技术参数之间的差异调整现场设 ~的运行状况。
PCT/CN2012/082587 2011-10-10 2012-10-08 用于对预应力管道进行灌浆的测控装置及其使用方法 WO2013053307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110304767.X 2011-10-10
CN201110304767XA CN102359280A (zh) 2011-10-10 2011-10-10 大循环预应力管道智能压浆测控系统

Publications (1)

Publication Number Publication Date
WO2013053307A1 true WO2013053307A1 (zh) 2013-04-18

Family

ID=45584655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082587 WO2013053307A1 (zh) 2011-10-10 2012-10-08 用于对预应力管道进行灌浆的测控装置及其使用方法

Country Status (2)

Country Link
CN (1) CN102359280A (zh)
WO (1) WO2013053307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322957A (zh) * 2021-06-11 2021-08-31 华能澜沧江水电股份有限公司 气动超高压智能灌浆系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102359280A (zh) * 2011-10-10 2012-02-22 湖南联智桥隧技术有限公司 大循环预应力管道智能压浆测控系统
CN102704403B (zh) * 2012-06-13 2014-09-17 湖南联智桥隧技术有限公司 一种利用预应力压浆台车进行预应力压浆的方法
CN103176452B (zh) * 2013-02-05 2015-04-22 中国矿业大学 注浆自动控制方法及装置
CN104060833A (zh) * 2014-07-10 2014-09-24 湖南联智桥隧技术有限公司 一种预应力灌浆设备
CN104268177A (zh) * 2014-09-15 2015-01-07 中国铁道科学研究院铁道建筑研究所 压浆数据处理系统
CN104818850B (zh) * 2014-12-26 2017-03-29 柳州黔桥工程材料有限公司 智能多循环制浆压浆系统
CN104652825B (zh) * 2014-12-26 2017-02-01 柳州黔桥工程材料有限公司 多循环智能制浆压浆系统的控制方法
CN105040702A (zh) * 2015-06-15 2015-11-11 江西大地岩土工程有限公司 一种全自动智能灌浆系统
CN106894637A (zh) * 2017-04-18 2017-06-27 中国铁道科学研究院铁道建筑研究所 一种可以计量孔道内浆体重量的方法及装置
CN110004932A (zh) * 2019-05-15 2019-07-12 中国电建集团中南勘测设计研究院有限公司 一种无返浆高压喷射灌浆系统与灌浆方法
CN112659360A (zh) * 2020-11-25 2021-04-16 中铁七局集团武汉工程有限公司 一种预制箱梁的智能压浆施工设备及其施工工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111746A (ja) * 1995-10-16 1997-04-28 Japan Found Eng Co Ltd 注入制御装置
KR20030003190A (ko) * 2002-12-06 2003-01-09 김학로 매립장 조기 안정화 방법 및 이에 따르는 연직차수벽 공법
CN1441125A (zh) * 2003-04-03 2003-09-10 武汉长江仪器自动化研究所 双只流量计循环灌浆多阀控制管路连接结构及其流量检测方法
CN2611436Y (zh) * 2003-03-20 2004-04-14 武汉长江仪器自动化研究所 双只流量计循环灌浆多阀控制管路连接结构
JP2004251043A (ja) * 2003-02-21 2004-09-09 Nittoc Constr Co Ltd 二液混合グラウチングにおける流量圧力の自動制御システム
JP2005090009A (ja) * 2003-09-12 2005-04-07 Daito Koki Kk 地盤注入材の注入工法および注入装置
CN2863903Y (zh) * 2006-01-20 2007-01-31 北京中大华瑞科技有限公司 带有密度采样支路的三参数大循环灌浆测量系统
CN102051978A (zh) * 2009-10-28 2011-05-11 上海建科建设发展有限公司 一体化可控预应力孔道灌浆装置
CN102359280A (zh) * 2011-10-10 2012-02-22 湖南联智桥隧技术有限公司 大循环预应力管道智能压浆测控系统
CN202248932U (zh) * 2011-10-10 2012-05-30 湖南联智桥隧技术有限公司 大循环预应力管道智能压浆测控系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133397A (ja) * 2003-10-29 2005-05-26 Anderson Technology Kk Pc構造物のケーブルシース内へのグラウト注入装置及びグラウト注入工法
CN201666000U (zh) * 2010-03-23 2010-12-08 陕西建工集团第二建筑工程有限公司 框架梁预应力后张拉用真空辅助灌浆系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09111746A (ja) * 1995-10-16 1997-04-28 Japan Found Eng Co Ltd 注入制御装置
KR20030003190A (ko) * 2002-12-06 2003-01-09 김학로 매립장 조기 안정화 방법 및 이에 따르는 연직차수벽 공법
JP2004251043A (ja) * 2003-02-21 2004-09-09 Nittoc Constr Co Ltd 二液混合グラウチングにおける流量圧力の自動制御システム
CN2611436Y (zh) * 2003-03-20 2004-04-14 武汉长江仪器自动化研究所 双只流量计循环灌浆多阀控制管路连接结构
CN1441125A (zh) * 2003-04-03 2003-09-10 武汉长江仪器自动化研究所 双只流量计循环灌浆多阀控制管路连接结构及其流量检测方法
JP2005090009A (ja) * 2003-09-12 2005-04-07 Daito Koki Kk 地盤注入材の注入工法および注入装置
CN2863903Y (zh) * 2006-01-20 2007-01-31 北京中大华瑞科技有限公司 带有密度采样支路的三参数大循环灌浆测量系统
CN102051978A (zh) * 2009-10-28 2011-05-11 上海建科建设发展有限公司 一体化可控预应力孔道灌浆装置
CN102359280A (zh) * 2011-10-10 2012-02-22 湖南联智桥隧技术有限公司 大循环预应力管道智能压浆测控系统
CN202248932U (zh) * 2011-10-10 2012-05-30 湖南联智桥隧技术有限公司 大循环预应力管道智能压浆测控系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322957A (zh) * 2021-06-11 2021-08-31 华能澜沧江水电股份有限公司 气动超高压智能灌浆系统

Also Published As

Publication number Publication date
CN102359280A (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2013053307A1 (zh) 用于对预应力管道进行灌浆的测控装置及其使用方法
CN102493351B (zh) 一种循环式预应力管道压浆施工方法及循环压浆系统
CN103485542A (zh) 大体积混凝土水化热温度测控系统及方法
CN102059743A (zh) 一种全自动固井水泥浆质量控制方法及混配系统
WO2012068968A1 (zh) 智能型同步预应力张拉系统
CN104818850A (zh) 智能多循环制浆压浆系统
CN110671130A (zh) 一种双液混合注浆制备系统操作方法
CN110955276A (zh) 大体积混凝土冷却水智能自动循环控制系统
CN104532752A (zh) 双电机高速循环搅拌智能制浆压浆系统
KR20120088949A (ko) 원자력발전소 주증기차단밸브 동작용 솔레노이드밸브의 테스트 블록장치 및 방법
CN204850471U (zh) 智能多循环制浆压浆系统
CN104532844A (zh) 防漏浆循环智能制浆压浆系统
CN211200541U (zh) 配水管网漏损试验设备的水循环系统
CN104652825A (zh) 多循环智能制浆压浆系统的控制方法
CN103323161A (zh) 一种锚下预应力的检测装置
CN204455828U (zh) 双电机高速循环搅拌智能制浆压浆系统
CN212866312U (zh) 一种大体积混凝土温控系统
CN209891090U (zh) 一种预应力孔道大循环注浆装置
CN201965037U (zh) 吸收塔石膏浆液密度计取样装置
CN205329759U (zh) 应用于湿式选矿体系的卧式水泵虹吸供水系统
CN204456120U (zh) 防漏浆循环智能制浆压浆系统
CN209429126U (zh) 适用于薄壁混凝土的冷却水管装置
CN2188614Y (zh) 孔内循环灌浆自动记录系统
CN208564524U (zh) 一种温控型蒸汽调节装置
CN102435461B (zh) 一种采用减压取样接头取样的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839938

Country of ref document: EP

Kind code of ref document: A1