WO2013053217A1 - 内循环流化床生物反应器 - Google Patents

内循环流化床生物反应器 Download PDF

Info

Publication number
WO2013053217A1
WO2013053217A1 PCT/CN2012/072942 CN2012072942W WO2013053217A1 WO 2013053217 A1 WO2013053217 A1 WO 2013053217A1 CN 2012072942 W CN2012072942 W CN 2012072942W WO 2013053217 A1 WO2013053217 A1 WO 2013053217A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
pipe
reactor
fluidized bed
bed bioreactor
Prior art date
Application number
PCT/CN2012/072942
Other languages
English (en)
French (fr)
Inventor
林长青
Original Assignee
Lin Changqing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Changqing filed Critical Lin Changqing
Priority to EP12840597.4A priority Critical patent/EP2767516A4/en
Publication of WO2013053217A1 publication Critical patent/WO2013053217A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2866Particular arrangements for anaerobic reactors
    • C02F3/2873Particular arrangements for anaerobic reactors with internal draft tube circulation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • C02F3/1294"Venturi" aeration means
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/22Activated sludge processes using circulation pipes
    • C02F3/223Activated sludge processes using circulation pipes using "air-lift"
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2833Anaerobic digestion processes using fluidized bed reactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2846Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to an organic sewage purification device, in particular to an internal circulation fluidized bed bioreactor. Background technique
  • Organic wastewater is an inevitable product of human society's life and needs to be effectively treated to reduce pollution to the environment.
  • anaerobic and aerobic there are two major types of biological treatment methods for various types of organic wastewater: anaerobic and aerobic.
  • aerobic treatment is applied to low-intensity organic wastewater treatment
  • anaerobic treatment is applied to high-strength organic wastewater treatment.
  • up-flow anaerobic sludge blanket (UASB) reactor is by far the most successful anaerobic biological treatment process, but it also has many shortcomings, such as operation under low temperature conditions. Or in the initial stage of start-up, or when processing a lower concentration of organic wastewater, because a large amount of biogas cannot be generated to cause sufficient disturbance, the mixing effect in the reactor is poor, so that short-flow causes low treatment efficiency; if the reactor is raised The hydraulic load will improve the mixing condition, and sludge loss will occur.
  • the anaerobic fluidized bed reactor has sufficient upflow rate to make the sludge bed fully fluidized, ensuring sufficient contact between the anaerobic granular sludge and the substrate in the sewage, achieving good mass transfer effect and forming biomass. Big. Therefore, the reaction efficiency is high, the relative hydraulic retention time of the reactor is short, and the required reactor volume is relatively reduced. However, the circulating water flow required to form a fluidized bed is relatively large. In contrast, the three-phase separation of the fluidized bed is difficult, requiring a high design and operation level. Therefore, the current fluidized bed reactor is not obtained in production. Large-scale application.
  • the biofilm method has the advantages of relatively large biomass and no sludge bulking operation stability, and has become a trend of recent aerobic treatment development. .
  • the more common systems currently available are the BAF-Biology Aerated Filter and the Moving Bed Biofilm Reactor (MBBR).
  • MBBR Moving Bed Biofilm Reactor
  • the aerobic fluidized bed reactor requires a large power consumption due to the fluidization of the carrier.
  • uniform distribution of the influent water is also a technical problem. Although it has the advantages of high efficiency and high load, it is currently in practical application. Not much on the top.
  • the object of the present invention is to provide a method for overcoming the above problems, and combining the UASB principle with the fluidized bed principle to form an enhanced fluidized bed biological reaction device, which can be applied to anaerobic and aerobic treatment to form an internal circulation anaerobic fluidization.
  • the bed bioreactor and the internal circulation aerobic fluidized bed bioreactor realize the functions of high organic load, high treatment efficiency, impact load resistance, energy saving and stable effluent quality.
  • the internal circulating fluidized bed bioreactor of the present invention comprises: a reactor, a water tank, at least one three-phase separator, a gas collecting pipe, a reflux pipe, a reflux pump, and at least one circulating jet, wherein: the water tank is loaded in the reaction At the upper end of the device, the water tank is divided into an inner water tank and an outer water tank, and the circulating jet is installed in a reaction zone in the reactor.
  • the circulating liquid jet comprises: an inner tube and an outer tube which is arranged outside the inner tube, and the upper end of the outer tube is connected to the inner water tank, There are several inlet slits in the periphery, and the inner tube is connected to the outlet of the return pump through a return pipe.
  • the inlet of the return pump is connected to the outer tank through a return pipe, and a three-phase separation is arranged above each circulating jet.
  • the three-phase separator introduces the separated gas into the collecting pipe, and introduces the separated liquid into the outer water tank to leave the separated solid in the reactor;
  • the internal circulating fluidized bed bioreactor of the present invention wherein: the inner tube and the return pipe are connected with an intake pipe, one end of the intake pipe communicates with the air, and the other end extends into the inner pipe, and the other end of the intake pipe a venturi device is mounted on the inner tube;
  • the internal circulating fluidized bed bioreactor of the present invention wherein: the outer tube is connected to the inner water tank through the water inlet connecting pipe; the inner tube outlet diameter is 1/2 ⁇ 3/4 of the inner tube diameter; the outer tube outlet Trumpet shape;
  • the internal circulating fluidized bed bioreactor of the present invention wherein: the inner water tank is provided with a water inlet, the outer water tank is provided with a water outlet and a water outlet hole, and the inlet water is discharged into the inner water tank by the inlet water pipe and flows into the water inlet pipe.
  • the liquid separated by the three-phase separator is introduced into the outer water tank through the water outlet hole, and is discharged from the water outlet through the water outlet;
  • the internal circulating fluidized bed bioreactor of the present invention wherein: the three-phase separator is composed of a cone cover and at least one pair of two parallel inclined plates, and the angle and cone formed by the two inclined plates with the horizontal direction
  • the angle formed by the hood and the horizontal direction is substantially the same, being 45 to 65 degrees, and the upper end of the cone cover forms a closed air chamber, and the gas is discharged to the gas collecting pipe through the exhaust pipe;
  • the internal circulating fluidized bed bioreactor of the present invention wherein: the three-phase separator is composed of a cone cover and a plurality of inclined plates, and the inclined lower end of the cone cover forms an angle of 45 5 degrees with the horizontal direction, inclined The plate is mounted in the conical cover and parallel with the inclined lower end of the conical cover, the upper end of the conical cover forms a closed air chamber, and the gas is discharged through the exhaust pipe to the collecting pipe;
  • the sloping plate has a plurality of turbulence plates on the inner side thereof, and the turbulence plate has an inclination angle of 2 in the horizontal direction ( ⁇ 30 degrees, and the width of the turbulence plate does not exceed the cone 2/3 of the distance between the hood and the inclined plate, the spacing of each turbulent plate is 1/4 to 1/3 of the length of the inclined plate;
  • a gas seal block is installed in a reactor between two three-phase separators or/and a wall between a three-phase separator and a reactor; two outer tubes A flow guiding block is disposed in the reactor between the outlets or/and between an outer tube outlet and the wall of the reactor.
  • the internal circulating fluidized bed bioreactor of the present invention comprises a lower reaction zone, a three-phase separation device and an upper clarification zone.
  • a hydraulic internal circulation jet device is arranged in the reaction zone, and the water body, the biological carrier (or granular sludge) in the upper layer of the reaction zone are simultaneously sucked down with the inflowing sewage by the jet principle to form a hydraulic circulation inside the reaction zone. Due to the action of the hydraulic internal circulation device, the method and apparatus of the present invention can save 4 ( ⁇ 60%) of the amount of reflux water required to form the sludge bed in a fluidized state relative to a general fluidized bed reactor.
  • the load of the three-phase separator is also relatively reduced, can effectively avoid the washing out of biological sludge, and ensure that the reactor has a stable high biomass.
  • Internal circulation anaerobic fluidized bed bioreactor applied to anaerobic treatment Because the influent sewage and the treated water in the upper layer of the reaction zone and the biological carrier (or granular sludge) achieve sufficient contact stirring effect in the hydraulic inner circulation jet device, the processing efficiency of the system is obviously improved.
  • the general UASB anaerobic treatment system In the absence of planted granular sludge, it takes 3 ⁇ 6 months to form sludge granulation into a stable operation state.
  • the present invention has sufficient stirring contact and excellent solid-liquid separation efficiency, It is started under the condition of planting granular sludge, and sludge granulation can be formed in a wide period of 3 months to enter a stable operation state.
  • the present invention is applied to an aerobic treatment of an inner-circulating aerobic fluidized bed bioreactor which uses a returning hydraulic force to draw in air, and then the interior of the hydrodynamic inner circulation jet device reaches a sufficient contact agitation between the air, the treated water and the biological carrier, Improve the dissolved oxygen efficiency and achieve energy-saving and efficient treatment.
  • the three-phase separation device of the present invention has a spoiler, which can generate turbulent flow between the inclined plates, so that the fine biological mass in the treated water is fully contacted and stirred to form larger particles from the gas seal and the swash plate.
  • the gap settles into the reaction zone, effectively avoiding the loss of biomass.
  • the internal circulation aerobic fluidized bed bioreactor constructed by the method of the invention has a three-phase separator structure, and the aerated gas is discharged through the exhaust line, thereby avoiding the secondary air caused by the general aerobic reactor.
  • the problem of pollution is a three-phase separator structure, and the aerated gas is discharged through the exhaust line, thereby avoiding the secondary air caused by the general aerobic reactor.
  • the internal circulating fluidized bed bioreactor of the present invention can be connected in series to form a multiphase bioreactor, and since the inlet of the reactor is sucked by the internal circulation jet, there is no water level difference in each stage of the reactor.
  • FIG. 1 is a schematic view of an internal circulation fluidized bed bioreactor according to a first embodiment of the present invention, which is a schematic diagram of an internal circulation anaerobic fluidized bed bioreactor;
  • Figure 2 is a schematic view of an internal circulating fluidized bed bioreactor according to a second embodiment of the present invention, which is a schematic diagram of an internal circulation aerobic fluidized bed bioreactor;
  • Figure 3 is a right-hand schematic view of the internal circulation jet in the internal circulating fluidized bed reactor of the present invention.
  • Figure 4 is a schematic view showing another form of the three-phase separator in the internal circulating fluidized bed reactor of the present invention.
  • Figure 5 is a plan view of the inner-flow fluidized bed reactor of the present invention
  • Figure 6 is a schematic illustration of two phases in series in an internal fluidized bed reactor of the present invention.
  • FIG. 1 a schematic diagram of an internal circulation anaerobic fluidized bed bioreactor according to the present invention, comprising: a reactor 1, a water tank 4, at least one three-phase separator 3, a gas collecting pipe 17, and a reflux
  • the tube 10, the reflux pump 11 and the at least one circulating jet 13 are installed at the upper end of the reactor 1, the water tank 4 is divided into an inner water tank 5 and an outer water tank 6, the inner water tank 6 is provided with a water inlet 8, and the outer water tank 5 is opened.
  • the circulating jet 13 is housed in a reaction zone 26 in the reactor 1.
  • the circulating jet 13 comprises: an inner tube 15 and an outer tube 22 fitted outside the inner tube 15, the upper end of the outer tube 22 passing through the water inlet tube 16 and the inner tank 6 is connected, and has a plurality of inflow slits 14 at its periphery.
  • the inner tube 15 is connected to the outlet of the return pump 11 through the return pipe 10, and the inlet of the return pump 11 is connected to the outer water tank 5 through the return pipe 10, in each cycle.
  • a three-phase separator 3 is disposed above the jet 13 , and the three-phase separator 3 introduces the separated gas into the gas collecting pipe 17 through the exhaust pipe 21 , and introduces the separated liquid into the outer water tank 5 through the water outlet hole 7 .
  • the nozzle 9 discharges the water tank 4, leaving the separated solids in the reactor 1.
  • the outlet diameter of the inner tube 15 is 1/2 ⁇ 3/4 of the diameter of the inner tube 15, and the outlet of the outer tube 22 is flared.
  • the three-phase separator 3 is composed of a tapered cover 23 and at least one pair of inclined plates 24, the angle formed by the two inclined plates 24 with the horizontal direction and the angle formed by the tapered cover 23 with the horizontal direction. Substantially the same, at 45 5 degrees, the upper end of the cone cover 23 forms a closed air chamber, and the gas is discharged through the exhaust pipe 21 to the gas collecting pipe 17.
  • a plurality of turbulence plates 20 are mounted on the inner side of the inclined plate 24.
  • the turbulence plate 20 has an inclination angle of 2 in the horizontal direction ( ⁇ 30 degrees, and the width of the turbulence plate 20 does not exceed 2/ of the distance between the tapered cover 23 and the inclined plate 24. 3.
  • the spacing of each turbulence plate 20 is 1/4 to 1/3 of the length of the inclined plate 24.
  • the inclined plate 24 and the turbulent plate 20 form a turbulent flow to increase the collision between the biological carrier or the granular sludge, and desorb the biological carrier. Or gas on the granular sludge.
  • the reactor 1 is equipped with at least one circulating jet 13 and at least one three-phase separator 3.
  • a gas block 2 is installed in the reactor 1 between the two three-phase separators 3 or/and a wall of the three-phase separator 3 and the reactor 1; between the outlets of the two outer tubes 22 or/and one outer
  • a flow guide block 12 is disposed in the reactor 1 between the outlet of the tube 22 and the wall of the reactor 1.
  • the function of the flow guiding block 12 is to better fluidize the biocarriers in the reactor and reduce the ratio of dead zones.
  • the inclined plate 24 of the three-phase separator overlaps with the outer edge of the gas seal 2 to prevent the inside of the reaction zone 26
  • the gas enters the clarification zone and achieves the purpose of gas-liquid separation.
  • the internal circulation anaerobic fluidized bed bioreactor uses a three-phase separator to divide the reactor into an upper clarification zone 27 and a lower reaction zone 26, and an inner circulation jet 13 is disposed in the reaction zone 26.
  • the sewage flows into the inlet pipe 16, which is equivalent to the inlet pipe, distributes the sewage to the bottom of the reactor 1 and flows upward through the three-phase separator 3, and the three-phase separator 3 is separated.
  • the liquid is introduced into the outer water tank 6 through the water outlet hole 7, and the water tank 4 is discharged from the water outlet 9.
  • the inner circulation jet 13 discharges the negative pressure generated from the outlet of the inner tube 15 by the returning hydraulic force between the inner tube 15 and the outer tube 22.
  • the water body is sucked out, causing the liquid in the upper layer of the reaction zone 26 to be sucked between the inner and outer tubes of the inner circulation jet from the inlet slit 14 while the sewage in the sewage inlet pipe 16 is sucked into the inflow.
  • the influent water of the slit 14 is mixed, and then discharged between the inner and outer tubes of the inner circulation jet 13 from the outlet of the outer tube 22, thus forming a high-intensity hydraulic inner circulation and a very low percentage of the dead zone in the reaction zone 26.
  • the sludge bed in the reaction zone forms a fluidized state under the dual action of the reflux hydraulic force and the internal circulation hydraulic force, and the anaerobic granular sludge is sufficiently stirred and contacted with the substrate to obtain an efficient treatment efficiency.
  • FIG. 2 is a schematic illustration of an internal circulation aerobic fluidized bed bioreactor of the present invention. It is basically the same as Embodiment 1, and the same parts are not described again. The difference is that: the inner pipe 15 is connected to the return pipe 10 and is provided with an intake pipe 19, one end of which is connected to the air, and the other end is extended. Into the inner tube 15, a venturi device 18 is mounted on the inner tube 15 at the other end of the intake pipe 19.
  • the inner circulation aerobic fluidized bed bioreactor uses a three-phase separator to divide the reactor into an upper clarification zone 27 and a lower zone reaction zone 26, and an inner circulation jet 13 is provided in the reaction zone 26.
  • the effluent of the reactor is returned to the inner circulation jet 13 of the reactor through the return pipe 10 by the reflux pump 11, and the inlet pipe 19 is connected to the return pipe 10 to be provided with an intake pipe 19, one end of which is connected to the air, and the other end is extended.
  • a venturi device 18 is mounted on the inner tube 15 at the other end of the intake pipe 19, and the air is sucked into the intake pipe 19 by the return hydraulic force, and the air is mixed with the return water to enter the inner circulation jet 13.
  • the sewage After entering the reactor 1 from the inlet pipe 8, the sewage flows into the water inlet pipe 16.
  • the inner circulation jet 13 draws the negative pressure generated from the outlet of the inner tube 15 by the returning hydraulic force to suck the water between the inner tube 15 and the outer tube 22, causing the liquid in the upper layer of the reaction zone 26 and the biological carrier 25 to be sucked from the inlet slit 14.
  • the sewage from the sewage inlet pipe 16 is mixed with the inlet water sucked into the flow slit 14 and then passed down between the inner and outer tubes of the inner circulation jet 13 by the outer tube.
  • the internal circulating fluidized bed bioreactor can form an internal circulation anaerobic fluidized bed bioreactor under anaerobic operating conditions; or can be an aerobic reactor, which is installed in the middle of the return pipe 10 when applied to aerobic treatment.
  • the venturi device 18 and the intake pipe 19 absorb air at the same time as the hydraulic circulation of the effluent to achieve the function of aeration, and the biological carrier (quartz sand, activated carbon, zeolite, etc.) is filled in the reactor to form an inner circulation aerobic fluidized bed organism.
  • the reactor is applied to aerobic treatment, and the aerated gas is discharged through the exhaust pipe 17, which can be processed according to actual needs, thereby avoiding the problem that the generally open aerobic treatment system is directly evacuated to generate odor pollution.
  • the inner circulating fluidized bed bioreactor can be connected in series to form a multiphase bioreactor, and since the influent method of the reactor is sucked by the inner circulating jet 13, the water level between the reactors is not high. There is a
  • the inner-flow fluidized bed reactor of the present invention can be connected in two phases.
  • the internal fluidized bed reactor of the present invention can be connected in series or in parallel, and serially formed into a classification process, and the biochemical degradation process of the organic matter is distributed. It is carried out in different reaction chambers, which is beneficial to the growth of different kinds of microbial flora in independent reaction chambers, forming good microbial phase separation characteristics.
  • each reaction unit is domesticated to adapt to the advantages of its environment.
  • the microbial flora enables different microbial flora within the system to exert maximum activity in the environment in which it is adapted.
  • the formation of a multi-phase bioreactor enhances process efficiency and operational stability. Parallel can increase the throughput of the internal circulating fluidized bed bioreactor. It is also possible to use a series and parallel combination of processing methods.
  • the internal circulating fluidized bed bioreactor of the invention has the following characteristics: ⁇ three-phase separation device has good interception performance of granular sludge biological carrier; (2) good hydraulic fluid state, fluidized bed full mixed flow state makes biological pollution The mud can be fully mixed with the influent substrate to improve the mass transfer efficiency and maintain sufficient activity of the microorganisms. (3) The internal circulation jet structure inside the reaction zone greatly reduces the amount of reflux water and obtains excellent fine particle sludge interception. Capacity; (4) The reaction chamber forms a fluidized bed, and the biological carrier is filled in the high-load reaction chamber. The microorganism forms a tight biofilm structure on the surface of the granular sludge or porous carrier to ensure the maximum biomass per unit volume and maintenance in the reaction chamber.
  • the internal circulation fluidized bed bioreactor of the invention realizes the functions of high organic load, high treatment efficiency, impact load resistance, energy saving and stable effluent water quality, and can be used for biological anaerobic and aerobic treatment, and has wide application range. Therefore, it has great market prospects and strong industrial applicability.

Abstract

一种内循环流化床生物反应器,它包括:反应器(1)、水槽(4)、至少一个三相分离器(3)、集气管(17)、回流管(10)、回流泵(11)和至少一个循环射流器(13),所述水槽(4)装在反应器(1)的上端,水槽(4)分成内水槽(6)和外水槽(5),循环射流器(13)装在反应器(1)内的反应区(26)中,循环射流器(13)包括:内管(15)和套装在内管(15)外侧的外管(22),外管(22)上端与内水槽(6)相连,并在其周边开有若干个进流缝(14),内管(15)通过回流管(10)与回流泵(11)出水口相连,回流泵(11)进水口通过回流管(10)与外水槽(5)相连,在每个循环射流器(13)的上方装有一个三相分离器(3),三相分离器(3)将分离出来的气体导入集气管(17),将分离出来的液体导入外水槽(5),将分离出来的固体留在反应器(1)内。

Description

内循环流化床生物反应器 技术领域
本发明涉及一种有机污水净化装置, 特别是涉及一种内循环流化床生物反应器。 背景技术
有机废水是人类社会生活的一种必然产物, 需要经过有效的处理才能减少对环境造 成污染。 目前对于各类有机废水的生物处理方法有厌氧及好氧两大类。 一般好氧处理应 用于低强度的有机废水处理, 而厌氧处理应用于高强度的有机废水处理。
在厌氧生物处理方法中, 到目前为止, 上流式厌氧污泥床 (UASB) 反应器是最为成 功的厌氧生物处理工艺, 但它也存在许多不足之处, 例如在低温条件下运行, 或在启动 初期, 抑或处理较低浓度的有机废水时, 由于不能产生大量沼气以造成足够的扰动, 因 此反应器中的混合效果较差, 从而出现短流造成处理效率低; 如果提高反应器的水力负 荷来改善混合状况, 则会出现污泥流失的状况。
厌氧流化床反应器具备足够的上流速率, 而使得污泥床呈全部流化状态, 保证厌氧 颗粒污泥与污水中的基质充分的接触, 达到良好的传质效果, 形成的生物量大。 因此, 反应效率高, 相对的反应器的水力停留时间短, 所需的反应器体积也相对减少。 但要形 成流化床所需的循环水流量较大, 相对的, 流化床的三相分离比较困难, 要求较高的设 计和运行水平, 因此, 目前流化床反应器在生产上未得到大规模的应用。
在好氧生物处理领域里, 大体上分成活性污泥法与生物膜法, 其中生物膜法具备生 物量相对较大, 不发生污泥膨化运行稳定的优点, 成为近来好氧处理发展的一个趋势。 目前比较普遍的系统有生物滤床法 (BAF— Biological Aerated Filter ) 与移动床生物 膜反应器 (MBBR— Moving Bed Biofilm Reactor)。 好氧流化床反应器由于达到载体流化 需要较大的动力消耗, 另外, 进水达到均匀分布也是一个技术上的问题, 虽然其具备高 效率、 高负荷的优点, 但在当前的实际应用上也不多。
发明内容
本发明的目的是克服上述问题提供一种方法, 结合 UASB原理与流化床原理, 形成一 个强化的流化床生物反应装置, 可以应用于厌氧和好氧处理, 形成内循环厌氧流化床生 物反应器与内循环好氧流化床生物反应器, 实现高有机负荷、 高处理效率、 耐冲击负荷、 节能和稳定良好出水水质的功能。
为了实现本发明的发明目的, 本发明采用以下技术方案: 本发明的内循环流化床生物反应器, 它包括: 反应器、 水槽、 至少一个三相分离器、 集气管、 回流管、 回流泵和至少一个循环射流器, 其中: 所述水槽装在反应器的上端, 水槽分成内水槽和外水槽, 循环射流器装在反应器内的反应区中, 循环射流器包括: 内 管和套装在内管外侧的外管, 外管上端与内水槽相连, 并在其周边开有若干个进流缝, 内管通过回流管与回流泵出水口相连, 回流泵进水口通过回流管与外水槽相连, 在每个 循环射流器的上方装有一个三相分离器, 三相分离器将分离出来的气体导入集气管, 将 分离出来的液体导入外水槽, 将分离出来的固体留在反应器内;
本发明的内循环流化床生物反应器, 其中: 内管与回流管相连部分装有进气管, 进 气管的一端与空气相通, 另一端伸入到内管中, 在进气管的另一端的内管上装有文丘里 装置;
本发明的内循环流化床生物反应器, 其中: 所述的外管通过进水连结管与内水槽相 连; 内管出口口径为内管管径的 1/2^3/4; 外管出口成喇叭口状;
本发明的内循环流化床生物反应器, 其中: 所述的内水槽开有进水口, 外水槽开有 出水口和出水孔, 进水由进水管排进内水槽后流入进水连结管, 经三相分离器分离出来 的液体通过出水孔导入外水槽中, 由出水口排出水槽;
本发明的内循环流化床生物反应器, 其中: 所述的三相分离器由锥形罩和至少一对 两两相互平行的倾斜板构成, 两个倾斜板与水平方向形成的角度和锥形罩与水平方向形 成的角度基本相同, 为 45〜65度, 锥形罩的上端形成一个封闭气室, 气体经由排气管至 集气管排出;
本发明的内循环流化床生物反应器, 其中: 所述的三相分离器由锥形罩和若干个倾 斜板构成, 锥形罩倾斜的下端与水平方向形成的角度为 45 5度, 倾斜板装在锥形罩内 并与锥形罩倾斜的下端平行, 锥形罩的上端形成一个封闭气室, 气体经由排气管至集气 管排出;
本发明的内循环流化床生物反应器, 其中: 所述倾斜板的内侧上装有若干个紊流板, 紊流板与水平方向的倾角为 2(Γ30度, 紊流板的宽度不超过锥形罩与倾斜板之间距离的 2/3, 各个紊流板的间距为倾斜板长度的 1/4至 1/3;
本发明的内循环流化床生物反应器, 其中: 在两个三相分离器之间或 /和一个三相分 离器与反应器的壁之间的反应器内装有气封块; 两个外管的出口之间或 /和一个外管出口 与反应器的壁之间的反应器内装有导流块。
本发明内循环流化床生物反应器, 包括下层反应区、 三相分离装置与上层澄清区。 在反应区设置水力内循环射流装置, 利用射流原理同时将反应区上层的水体、 生物载体 (或颗粒污泥) 与进流污水一并吸往下, 形成反应区内部的水力循环。 由于水力内循环 装置的作用, 相对于一般的流化床反应器, 本发明方法及装置形成污泥床处于流体化的 状态所需的回流水量可节省 4(Γ60%。 另外, 由于回流水量的大量降低, 三相分离器的负 荷相对亦减轻很多, 可以有效避免生物污泥的洗出, 保证反应器具备稳定的高生物量。 应用于厌氧处理的内循环厌氧流化床生物反应器, 由于进流污水与反应区上层的处理水 及生物载体 (或颗粒污泥) 在水力内循环射流装置内达到充分的接触搅拌效果, 明显的 增进系统的处理效率。 一般的 UASB厌氧处理系统在没有植种颗粒污泥的情况下启动, 需 3^6个月的时间才能形成污泥颗粒化进入稳定运行状态。而本发明由于具备充分的搅拌接 触与优异的固液分离效率, 在没有植种颗粒污泥的条件下启动, 在 广 3个月的时间内就 可以形成污泥颗粒化而进入稳定运行状态。
尤其是本发明应用于好氧处理的内循环好氧流化床生物反应器利用回流水力将空气 吸入, 再水力内循环射流装置内部达到空气、 处理水和生物载体间的充分的接触搅拌, 大大的提升溶氧效率, 达到节能、 高效的处理效果。
本发明的三相分离装置由于具备扰流板, 它可以在倾斜板间的流动产生紊流, 致使 处理水中的细小的生物团充分的接触搅拌而形成较大的颗粒从气封与斜板间的缝隙沉降 至反应区, 有效避免生物量的流失。
本发明方法所架构的内循环好氧流化床生物反应器, 由于具备三相分离器的架构, 曝气排出的气体经由排气管线排出, 可避免一般好氧反应器所造成的二次空气污染的问 题。
本发明内循环流化床生物反应器可以串连连结形成多相的生物反应器, 其间由于反 应器的进水方是以内循环射流器吸入, 所以各段反应器不会有水位差。
附图说明
图 1 是本发明第一实施例的内循环流化床生物反应器的示意图, 它是内循环厌氧流 化床生物反应器的示意图;
图 2是本发明第二实施例的内循环流化床生物反应器的示意图, 它是内循环好氧流 化床生物反应器的示意图;
图 3 是本发明内循环流化床反应器中内循环射流器的右向示意图;
图 4 是本发明内循环流化床反应器中三相分离器的另一形式的示意图;
图 5 是本发明内循流化床反应器的俯视图; 图 6 是本发明内循流化床反应器中两相串连的示意图。
图中的标号如下: 1.反应器; 2.气封块; 3.三相分离器; 4.进水槽; 5.内水槽; 6. 外水槽; 7.出水孔; 8.进水口; 9.出水口; 10.回流管; 11.回流泵; 12.导流块; 13.内 循环射流器; 14.进流缝; 15.内管; 16.进水连接管; 17.集气管; 18.文丘里装置; 19. 进气管; 20.紊流板; 21.排气管; 22.外管; 23.锥形罩; 24.倾斜板; 25.生物载体; 26. 反应区; 27澄清区
为进一步阐述本发明, 下面结合实施例作更详尽的说明。
如图 1、 图 3和图 5所示, 本发明内循环厌氧流化床生物反应器的示意图, 它包括: 反应器 1、 水槽 4、 至少一个三相分离器 3、 集气管 17、 回流管 10、 回流泵 11和至少一 个循环射流器 13, 水槽 4装在反应器 1的上端, 水槽 4分成内水槽 5和外水槽 6, 内水 槽 6开有进水口 8, 外水槽 5开有出水口 9和出水孔 7。 循环射流器 13装在反应器 1内 的反应区 26中, 循环射流器 13包括: 内管 15和套装在内管 15外侧的外管 22, 外管 22 上端通过进水连结管 16与内水槽 6相连, 并在其周边开有若干个进流缝 14, 内管 15通 过回流管 10与回流泵 11出水口相连, 回流泵 11进水口通过回流管 10与外水槽 5相连, 在每个循环射流器 13的上方装有一个三相分离器 3, 三相分离器 3将分离出来的气体通 过排气管 21导入集气管 17, 将分离出来的液体通过出水孔 7导入外水槽 5, 由出水口 9 排出水槽 4, 将分离出来的固体留在反应器 1内。
如图 1所示, 内管 15 出口口径为内管 15管径的 1/2^3/4; 外管 22 出口成喇叭口 状。 如图 1和图 4所示, 三相分离器 3由锥形罩 23和至少一对倾斜板 24构成, 两个倾 斜板 24与水平方向形成的角度和锥形罩 23与水平方向形成的角度基本相同, 为 45 5 度, 锥形罩 23的上端形成一个封闭气室, 气体经由排气管 21至集气管 17排出。 倾斜板 24内侧上装有若干个紊流板 20, 紊流板 20与水平方向的倾角为 2(Γ30度, 紊流板 20的 宽度不超过锥形罩 23与倾斜板 24之间距离的 2/3, 各个紊流板 20的间距为倾斜板 24 长度的 1/4至 1/3。倾斜板 24和紊流板 20形成紊流以增加生物载体或颗粒污泥间的碰撞, 脱附生物载体或颗粒污泥上的气体。
根据反应器的大小, 反应器 1中装有至少一个循环射流器 13和至少一个三相分离器 3。 在两个三相分离器 3之间或 /和一个三相分离器 3与反应器 1的壁之间的反应器 1内 装有气封块 2; 两个外管 22的出口之间或 /和一个外管 22出口与反应器 1的壁之间的反 应器 1内装有导流块 12。 导流块 12的作用在于: 更好地反应器内的生物载体产生流化, 减少死区的比率。 三相分离器的倾斜板 24与气封 2两者外缘重叠, 阻止反应区 26内部 的气体进入澄清区, 达到气液分离的目的。
内循环厌氧流化床生物反应器应用三相分离器将反应器分成上层澄清区 27 与下层反 应区 26, 反应区 26内设置内循环射流器 13。 污水从进水管 8进入反应器后, 流入进水连 结管 16, 它相当于进水分配管, 将污水分布至反应器 1底部往上流经三相分离器 3, 三相 分离器 3分离出来的液体往上通过出水孔 7导入外水槽 6中, 由出水口 9排出水槽 4; 内 循环射流器 13利用回流水力从内管 15出口排出产生的负压将内管 15与外管 22之间的水 体吸出,造成反应区 26上层的液体与载体 25或颗粒污泥从进流缝 14被吸入内循环射流器 的内外管之间, 在这同时污水进水连结管 16的污水与被吸入进流缝 14的进水混合, 而后 经内循环射流器 13的内外管间往下由外管 22出口排出, 如此, 形成反应区 26内高强度的 水力内循环与死区百分率极低的生物反应区。 在反应区内的污泥床在回流水力与内循环水 力的双重作用下形成流化状态, 厌氧颗粒污泥与基质得到充分的搅拌接触, 得到高效的处 理效率。
第二实施例
图 2是本发明内循环好氧流化床生物反应器的示意图。 它与实施例 1基本相同, 相 同的部分, 不再累述, 所不同的是: 在内管 15与回流管 10相连部分装有进气管 19, 进 气管 19的一端与空气相通, 另一端伸入到内管 15中, 在进气管 19的另一端的内管 15 上装有文丘里装置 18。
内循环好氧流化床生物反应器应用三相分离器将反应器分成上层澄清区 27与下层反 应区 26, 反应区内 26设置内循环射流器 13。反应器的出水利用回流泵 11经由回流管 10 回流至反应器的内循环射流器 13, 内管 15与回流管 10相连部分装有进气管 19, 进气管 19的一端与空气相通, 另一端伸入到内管 15中,在进气管 19的另一端的内管 15上装有 文丘里装置 18, 利用回流水力将空气吸入进气管 19, 空气与回流水混合后进入内循环射 流器 13。 污水从进流管 8进入反应器 1后, 流入进水连结管 16。 内循环射流器 13利用 回流水力从内管 15出口排出产生的负压将内管 15与外管 22之间的水体吸出, 造成反应 区 26上层的液体与生物载体 25从进流缝 14被吸入内循环射流器 13的内外管之间, 在 这同时污水进水连结管 16的污水与被吸入进流缝 14的进水混合, 而后经内循环射流器 13的内外管间往下由外管 22出口排出, 如此, 形成反应 26区内高强度的水力内循环与 死区百分率极低的生物反应区。 混合空气溶氧的回流水由内循环射流器内管 15排出时, 将内管 15和外管 22间含生物载体的混合液吸出并进行充分的搅拌与气液混合, 让生物 载体、 基质与溶氧间达到良好的传质效率。 反应区 26内的污泥床在回流水力与内循环水 力的双重作用下形成流化状态, 生物载体 25与基质得到充分的搅拌接触, 得到高效的处 理效率。
内循环流化床生物反应器可以在厌氧操作条件下形成内循环厌氧流化床生物反应 器; 也可以是好氧反应器, 当应用于好氧处理时, 在回流管 10 中间加装文丘里装置 18 与进气管 19, 在出水回流的水力循环同时吸入空气达到曝气的功能, 并在反应器内装填 生物载体 (石英砂、 活性炭、 沸石等) 形成内循环好氧流化床生物反应器; 它应用于好 氧处理时, 曝气后的气体经由排气管 17排出, 其可根据实际需要进行处理, 可以避免一 般开放的好氧处理系统直接排空而产生臭味污染的问题; 内循环流化床生物反应器可以 串连连结, 形成多相的生物反应器, 其间由于反应器的进水方法是以内循环射流器 13吸 入, 所以各段反应器之间的水位高度不会有水位差。
如图 6 所示, 本发明内循流化床反应器可以两相串连, 本发明的内循流化床反应器 可以进行串联或并联, 串联形成分级处理, 有机物的生化降解过程就被分布在不同的反 应室中进行, 有利于不同种类的微生物菌群在独立的反应室中生长, 形成良好的微生物 相分离特性, 在不同的环境条件下, 各反应单元驯养适应于所处环境的优势微生物菌群, 使系统内的不同微生物菌群能在其适应的环境中发挥最大的活性。形成多相生物反应器, 增进处理效率与运行的安定性。 并联可以增大内循环流化床生物反应器的处理量。 也可 以采用串联和并联复合的处理方式。
本发明内循环流化床生物反应器具备如下特性: ω三相分离装置具备良好的颗粒污 泥生物载体截流性能; (2)良好的水力流态, 流化床充分的混合流态使生物污泥能够和进 水基质充分的混合接触, 提高传质效能, 保持微生物具备充分的活性; (3)反应区内部的 内循环射流架构, 大大的降低回流水量, 并得到优良的细小颗粒污泥截流能力; (4)反应 室形成流化床, 在高负荷的反应室填充生物载体, 微生物在颗粒污泥或多孔载体表面上 生成紧密的生物膜结构, 保证反应室内最大的单位体积生物量和维持高的生物活性; (5) 利用回流水力形成负压吸气, 大大地增进好氧处理的溶氧效率; (6)具有模块化架构的厌 氧处理器, 方便做弹性化的组合及扩充; (7)反应装置可以串联形成多相的生物反应器结 构。
以上只是对本发明的解释, 不是对发明的限定, 本发明所限定的范围参见权利要求, 在不违背本发明的精神的情况下, 本发明可以作任何形式的修改。 工业实用性 本发明内循环硫化床生物反应器, 该反应器实现高有机负荷、 高处理效率、耐冲击 负荷、 节能和稳定良好出水水质的功能, 可用于生物的厌氧和好氧处理, 应用范围广泛, 因此具有很大的市场前景和很强的工业实用性。

Claims

权 利 要 求
1.一种内循环流化床生物反应器, 它包括: 反应器 (1)、 水槽 (4)、 至少一个三相分 离器 (3)、 集气管 (17)、 回流管 (10)、 回流泵 (11) 和至少一个循环射流器 (13), 其特 征在于: 所述水槽(4)装在反应器(1)的上端, 水槽(4)分成内水槽(6)和外水槽(5), 循环射流器(13)装在反应器(1)内的反应区(26)中, 循环射流器(13)包括: 内管(15) 和套装在内管 (15) 外侧的外管 (22), 外管 (22) 上端与内水槽 (6) 相连, 并在其周边 开有若干个进流缝 (14), 内管 (15) 通过回流管 (10) 与回流泵 (11) 出水口相连, 回流 泵 (11) 进水口通过回流管 (10) 与外水槽 (5) 相连, 在每个循环射流器 (13) 的上方装 有一个三相分离器 (3), 三相分离器 (3) 将分离出来的气体导入集气管 (17), 将分离出 来的液体导入外水槽 (5), 将分离出来的固体留在反应器 (1) 内。
2.根据权利要求 1所述的内循环流化床生物反应器, 其特征在于: 内管 (15) 与回流 管 (10)相连部分装有进气管 (19), 进气管 (19) 的一端与空气相通, 另一端伸入到内管
(15) 中, 在进气管 (19) 的另一端的内管 (15) 上装有文丘里装置 (18)。
3.根据权利要求 1或 2所述的内循环流化床生物反应器,其特征在于:所述的外管(22) 通过进水连结管(16)与内水槽(6)相连;内管 (15) 出口口径为内管(15)管径的 1/2〜3/4; 外管 (22) 出口成喇叭口状。
4.根据权利要求 3所述的内循环流化床生物反应器, 其特征在于: 所述的内水槽 (6) 开有进水口 (8), 外水槽 (5) 开有出水口 (9) 和出水孔 (7), 进水由进水管 (8) 排进内 水槽 (6) 后流入进水连结管 (16), 经三相分离器 (13) 分离出来的液体通过出水孔 (7) 导入外水槽 (5) 中, 由出水口 (9) 排出水槽 (4)。
5.根据权利要求 4所述的内循环流化床生物反应器, 其特征在于: 所述的三相分离器 (3) 由锥形罩 (23) 和至少一对两两相互平行的倾斜板 (24) 构成, 两个倾斜板 (24) 与 水平方向形成的角度和锥形罩 (23) 与水平方向形成的角度基本相同, 为 45 5度, 锥形 罩 (23) 的上端形成一个封闭气室, 气体经由排气管 (21) 至集气管 (17) 排出。
6.根据权利要求 4所述的内循环流化床生物反应器, 其特征在于: 所述的三相分离器 (3) 由锥形罩 (23) 和若干个倾斜板 (24) 构成, 锥形罩 (23) 倾斜的下端与水平方向形 成的角度为 45 5度, 倾斜板 (24) 装在锥形罩 (23) 内并与锥形罩 (23) 倾斜的下端平 行, 锥形罩 (23) 的上端形成一个封闭气室, 气体经由排气管 (21) 至集气管 (17) 排出。
7.根据权利要求 5或 6所述的内循环流化床生物反应器,其特征在于:所述倾斜板(24) 的内侧上装有若干个紊流板(20),紊流板(20)与水平方向的倾角为 2(Γ30度,紊流板(20) 的宽度不超过锥形罩 (23) 与倾斜板(24)之间距离的 2/3, 各个紊流板(20) 的间距为倾 斜板 (24) 长度的 1/4至 1/3。
8.根据权利要求 7所述的内循环流化床生物反应器, 其特征在于: 在两个三相分离器 (3)之间或 /和一个三相分离器 (3) 与反应器 (1) 的壁之间的反应器 (1) 内装有气封块 (2); 两个外管 (22) 的出口之间或 /和一个外管 (22) 出口与反应器 (1) 的壁之间的反 应器 (1) 内装有导流块 (12)。
PCT/CN2012/072942 2011-10-12 2012-03-23 内循环流化床生物反应器 WO2013053217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12840597.4A EP2767516A4 (en) 2011-10-12 2012-03-23 FLUIDIZED BED BIOREACTOR WITH INTERNAL CIRCULATION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201120387408.0 2011-10-12
CN2011203874080U CN202297249U (zh) 2011-10-12 2011-10-12 内循环流化床生物反应器

Publications (1)

Publication Number Publication Date
WO2013053217A1 true WO2013053217A1 (zh) 2013-04-18

Family

ID=46366187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072942 WO2013053217A1 (zh) 2011-10-12 2012-03-23 内循环流化床生物反应器

Country Status (3)

Country Link
EP (1) EP2767516A4 (zh)
CN (1) CN202297249U (zh)
WO (1) WO2013053217A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107758839A (zh) * 2017-12-18 2018-03-06 海南天鸿市政设计股份有限公司 多功能射流器
CN108002533A (zh) * 2017-12-06 2018-05-08 浙江大学 软管型循环式一体化脱氮反应器及方法
CN108217938A (zh) * 2018-03-17 2018-06-29 凌建军 一种内置环状三相分离器的化粪池
CN108609733A (zh) * 2018-06-12 2018-10-02 浙江大学 Ic厌氧反应器减缓污泥钙化装置及方法
CN109019856A (zh) * 2018-09-04 2018-12-18 青岛理工大学 一种离心内循环强化释气厌氧反应器
CN109607776A (zh) * 2019-01-23 2019-04-12 成都市和谐环保工程技术有限公司 一种涌动高效厌氧反应器及厌氧反应工艺
CN109694821A (zh) * 2017-10-20 2019-04-30 同方环境股份有限公司 一种餐厨垃圾的厌氧消化装置
CN113387439A (zh) * 2021-05-17 2021-09-14 广西博世科环保科技股份有限公司 一种高氨氮废水的深度脱氮系统装置及脱氮工艺
CN113387432A (zh) * 2021-07-28 2021-09-14 中国水产科学研究院渔业机械仪器研究所 一种射流式流化床
CN113501581A (zh) * 2021-07-28 2021-10-15 江苏南大华兴环保科技股份公司 一种梯级稳流式厌氧反应系统
CN113666524A (zh) * 2021-09-03 2021-11-19 天津市政工程设计研究总院有限公司 一种用于活性焦吸附工艺的两相吸附池
CN112239258B (zh) * 2020-10-13 2024-04-26 西安建筑科技大学 一种周边传动式大流量循环造粒流化床高速固液分离设备

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874921B (zh) * 2012-10-25 2014-01-15 蔡志武 升流式厌氧污泥床反应器和操作方法
CN104909453A (zh) * 2015-05-14 2015-09-16 常熟市华能环保工程有限公司 高效内循环厌氧生物反应器
JP6553433B2 (ja) * 2015-07-10 2019-07-31 水ing株式会社 分散装置及びこれを具備する上向流式反応装置とその運転方法
RU2605708C1 (ru) * 2015-07-15 2016-12-27 Общество с ограниченной ответственностью Научно-технический центр "Фонсвит" Биореактор для очистки водных сред
CN106219745B (zh) * 2016-09-20 2019-10-15 河海大学 一种节能型快速启动好氧颗粒污泥反应器
CN107686166A (zh) * 2017-10-18 2018-02-13 连云港豪瑞生物技术有限公司 基于包埋菌技术的一体化ao装置
CN109942065B (zh) * 2017-12-21 2024-04-12 上海电气集团股份有限公司 一种还原流化床及其用途和使用方法
CN108148739B (zh) * 2018-02-08 2023-05-16 沈阳农业大学 循环脱气式流化床生物反应器
CN109231436B (zh) * 2018-11-06 2024-03-29 北京城市排水集团有限责任公司 一种用于好氧颗粒污泥系统的污水均布处理装置及其使用方法
CN109437400A (zh) * 2018-12-18 2019-03-08 山西潞安集团余吾煤业有限责任公司 一种煤矿生活污水回用处理装置及方法
MA52663B1 (fr) * 2019-01-30 2022-09-30 Waterleau Group Nv Tour de purification anaérobie d'eaux usées
BE1027000B9 (nl) * 2019-01-30 2020-09-21 Waterleau Group Nv Anaërobe afvalwaterzuiveringsreactor
WO2020157119A1 (en) * 2019-01-30 2020-08-06 Waterleau Group Nv Anaerobic waste water purification tower
CN110272120B (zh) * 2019-06-03 2021-10-15 光大环保技术研究院(南京)有限公司 一种高效厌氧反应器
CN110980936B (zh) * 2019-12-14 2022-04-29 浙江永续环境工程有限公司 一种hjdlzys生物脱氮除磷装置及其应用
CN111606514A (zh) * 2020-05-30 2020-09-01 侯梦斌 一种制备设施农业水肥一体化的设备与工艺
CN112919634A (zh) * 2021-03-05 2021-06-08 山东泰能环保工程有限公司 一种自循环生物膜脱氮污水处理设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269694A (ja) * 2000-03-27 2001-10-02 Mitsubishi Kakoki Kaisha Ltd 上向流嫌気性処理装置
CN2732729Y (zh) * 2004-09-01 2005-10-12 帕克环保技术(上海)有限公司 内循环厌氧反应器
CN1699218A (zh) * 2005-06-09 2005-11-23 西安交通大学 高负荷体外自循环厌氧颗粒污泥悬浮床反应器
CN1803668A (zh) * 2006-01-12 2006-07-19 林长青 多相内循环厌氧反应器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB912433A (en) * 1960-09-27 1962-12-05 Hartleys Stoke On Trent Ltd Improvements in gas circulation relating to sludge digestion tanks for the treatmentof sewage and industrial effluents
ZA793185B (en) * 1978-08-30 1981-02-25 Dorr Oliver Inc Apparatus and process for dissolution of gases in liquid
NL8402337A (nl) * 1984-07-24 1986-02-17 Pacques Bv Anaerobe zuiveringsinrichting, alsmede werkwijze voor het anaeroob fermenteren van afvalwater.
DE3429355A1 (de) * 1984-08-09 1986-02-20 Heinz Prof. Dr.-Ing. 7261 Gechingen Blenke Verfahren und vorrichtungen zur durchfuehrung verfahrenstechnischer vorgaenge in gas-liquid-systemen (g-l-systemen)
JPS61291099A (ja) * 1985-06-17 1986-12-20 Sanki Eng Co Ltd 下向流型生物膜浄化装置
US5650070A (en) * 1996-03-14 1997-07-22 Deep Shaft Technology Inc. Aerobic long vertical shaft bioreactors
NL1003155C2 (nl) * 1996-05-17 1997-11-18 Henisa Hidroeletromecanica Emp Waterzuiveringsinrichting.
DE19631796A1 (de) * 1996-08-07 1998-02-26 Otto Oeko Tech Verfahren und Vorrichtung zur Reinigung von Abwassern
DE19931085A1 (de) * 1999-07-06 2001-02-22 Usf Deutschland Gmbh Verfahren und Vorrichtung zum Reinigen von Abwasser
US6468429B1 (en) * 2000-05-11 2002-10-22 Noram Engineering And Constructors Ltd. Apparatus and method for controlling liquor circulation flow in long vertical shaft bioreactors
US7713426B2 (en) * 2008-01-11 2010-05-11 Blue Water Technologies, Inc. Water treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269694A (ja) * 2000-03-27 2001-10-02 Mitsubishi Kakoki Kaisha Ltd 上向流嫌気性処理装置
CN2732729Y (zh) * 2004-09-01 2005-10-12 帕克环保技术(上海)有限公司 内循环厌氧反应器
CN1699218A (zh) * 2005-06-09 2005-11-23 西安交通大学 高负荷体外自循环厌氧颗粒污泥悬浮床反应器
CN1803668A (zh) * 2006-01-12 2006-07-19 林长青 多相内循环厌氧反应器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694821A (zh) * 2017-10-20 2019-04-30 同方环境股份有限公司 一种餐厨垃圾的厌氧消化装置
CN108002533A (zh) * 2017-12-06 2018-05-08 浙江大学 软管型循环式一体化脱氮反应器及方法
CN107758839A (zh) * 2017-12-18 2018-03-06 海南天鸿市政设计股份有限公司 多功能射流器
CN108217938A (zh) * 2018-03-17 2018-06-29 凌建军 一种内置环状三相分离器的化粪池
CN108609733A (zh) * 2018-06-12 2018-10-02 浙江大学 Ic厌氧反应器减缓污泥钙化装置及方法
CN108609733B (zh) * 2018-06-12 2023-09-22 浙江大学 Ic厌氧反应器减缓污泥钙化装置及方法
CN109019856A (zh) * 2018-09-04 2018-12-18 青岛理工大学 一种离心内循环强化释气厌氧反应器
CN109607776A (zh) * 2019-01-23 2019-04-12 成都市和谐环保工程技术有限公司 一种涌动高效厌氧反应器及厌氧反应工艺
CN112239258B (zh) * 2020-10-13 2024-04-26 西安建筑科技大学 一种周边传动式大流量循环造粒流化床高速固液分离设备
CN112239256B (zh) * 2020-10-13 2024-04-26 西安建筑科技大学 一种大流量循环造粒流化床高速固液分离设备
CN113387439A (zh) * 2021-05-17 2021-09-14 广西博世科环保科技股份有限公司 一种高氨氮废水的深度脱氮系统装置及脱氮工艺
CN113387432A (zh) * 2021-07-28 2021-09-14 中国水产科学研究院渔业机械仪器研究所 一种射流式流化床
CN113501581A (zh) * 2021-07-28 2021-10-15 江苏南大华兴环保科技股份公司 一种梯级稳流式厌氧反应系统
CN113666524A (zh) * 2021-09-03 2021-11-19 天津市政工程设计研究总院有限公司 一种用于活性焦吸附工艺的两相吸附池
CN113666524B (zh) * 2021-09-03 2022-12-09 天津市政工程设计研究总院有限公司 一种用于活性焦吸附工艺的两相吸附池

Also Published As

Publication number Publication date
CN202297249U (zh) 2012-07-04
EP2767516A1 (en) 2014-08-20
EP2767516A4 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2013053217A1 (zh) 内循环流化床生物反应器
CN201458905U (zh) 一种好氧流化床—生物滤池耦合反应器
CN102745809B (zh) 一种厌氧流化床反应器
CN104045156A (zh) 一体式高效自养脱氮反应器
CN107311309B (zh) 升流式内循环微氧生物反应器及其强化传质的曝气方法和使用方法
CN107098468A (zh) 高浓度有机污水处理用的射流厌氧生物反应器
CN103011404B (zh) 内混合厌氧反应罐
CN201068420Y (zh) 一种气液混合提升生物流化床反应器
CN100522842C (zh) 一种厌氧反应器
CN204999694U (zh) 一种高浓度有机废水的厌氧处理装置
CN202400904U (zh) 一种脱氮除磷净水装置
CN206720843U (zh) 一种厌氧反应器及其内循环射流系统
CN203451286U (zh) 二相双循环厌氧膨胀床生物反应器
CN201258281Y (zh) 螺旋式生物反应器
CN105110560A (zh) 一种零排放印染废水处理系统
CN214990564U (zh) 一种污水净化处理装置
CN104150589A (zh) 一体化无梯度活性污泥污水处理装置
CN203999133U (zh) 一种一体式高效自养脱氮反应器
CN105347475A (zh) 一种对称内置式厌氧膜生物反应器
CN206886795U (zh) 高浓度有机污水处理用的射流厌氧生物反应器
CN112142196A (zh) 一种厌氧自循环系统处理高浓度难降解废水的方法
CN203007037U (zh) 内混合厌氧反应罐
CN211814018U (zh) 一种一体化循环床生物膜反应器
CN115259370A (zh) 一种生物反硝化反应器及其应用
CN213680293U (zh) 一种一体化生物流化床污水处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12840597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012840597

Country of ref document: EP