WO2013053210A1 - 果胶酶的固定化载体与制备和固定化果胶酶的方法 - Google Patents

果胶酶的固定化载体与制备和固定化果胶酶的方法 Download PDF

Info

Publication number
WO2013053210A1
WO2013053210A1 PCT/CN2012/070180 CN2012070180W WO2013053210A1 WO 2013053210 A1 WO2013053210 A1 WO 2013053210A1 CN 2012070180 W CN2012070180 W CN 2012070180W WO 2013053210 A1 WO2013053210 A1 WO 2013053210A1
Authority
WO
WIPO (PCT)
Prior art keywords
pectinase
carrier
immobilized
starch
magnetic
Prior art date
Application number
PCT/CN2012/070180
Other languages
English (en)
French (fr)
Inventor
王宝维
卢燕燕
葛文华
张名爱
岳斌
Original Assignee
青岛农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛农业大学 filed Critical 青岛农业大学
Publication of WO2013053210A1 publication Critical patent/WO2013053210A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01015Polygalacturonase (3.2.1.15)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group

Definitions

  • the invention relates to an immobilized carrier for pectinase, a preparation method thereof and a method for immobilizing pectinase, and belongs to the field of enzyme engineering.
  • Magnetic polymer microspheres are a kind of functional polymer materials with excellent properties. They are made of synthetic polymers or biopolymers and adsorbed and embedded by Fe 2 O 3 , Fe 3 0 4 or other magnetic particles to form magnetic properties. Functional polymer material.
  • the magnetic polymer microspheres are microcapsules of a core-shell structure.
  • the magnetic core of the magnetic microspheres is mainly a metal oxide such as Fe 3 0 4
  • the shell layer is mainly composed of two types of materials: one is a synthetic polymer, mainly Polyethylene, polystyrene, polypropylene decylamine, polyvinyl alcohol, nitrocellulose and polyethylene drunk butyral, etc., not biodegradable; the other is biopolymer, mainly starch, gelatin, albumin, polylactic acid , calcium alginate, etc., biodegradable.
  • the binding of the shell layer of the magnetic polymer microspheres to the magnetic core is mainly through the action of van der Waals forces, hydrogen bonds, and coordination bonds.
  • the polymer is firmly bound to the surface of the metal oxide crystal by these forces to form a solid A spherical structure, a paramagnetic polymer microsphere as an immobilized enzyme carrier.
  • Pectina Se has become the world's four major enzyme preparations due to its mild reaction conditions, strong specificity, high catalytic efficiency and easy reaction control. It is widely used in food, brewing, environmental protection, pharmaceutical and textile industries. one.
  • the free pectinase is easily deactivated with the change of environment during use, and is not easily separated and reused from the reaction system.
  • Enzyme immobilization technology is an effective means to achieve repeated use of enzymes and improve their stability.
  • the immobilized carrier and preparation method of pectinase in the field of enzyme engineering has always been an important research topic.
  • the immobilized carrier mainly has a chemical hydrolysis method (ie, coprecipitation method), and a certain proportion of FeCl 3 and FeCl 2 is added to the synthetic polymer solution, and an alkaline solution is added to generate Fe 3 0 4 magnetic particles.
  • the magnetic polymer microsphere particles obtained by the method have a wide particle size distribution and are uneven; 2.
  • the physical method includes three methods of high energy ball milling, suspension polymerization and reverse phase suspension regeneration, and the magnetic polymer is obtained.
  • the magnetic particles in the material interact with each other and are easily agglomerated, making it difficult to achieve superparamagnetic properties.
  • the research on pectinase includes CN102010858A (the carrier and immobilization method of pectinase immobilization), mainly based on sodium alginate magnetic microspheres, which have Fe 3 0 4 magnetic powder, sodium alginate and pentane.
  • Dialdehyde three-part composition due to the special addition of Fe 3 0 4 magnetic powder, is a physical method synthesis, so it is easy to agglomerate, large particle size, it is difficult to achieve superparamagnetic properties, external morphology into flakes, not conducive to pectinase
  • the functional group characteristics are not obvious, which is not conducive to the selective selection of the crosslinking agent. Therefore, it is necessary to further optimize the enzyme immobilization process to find a more practical and effective pectinase immobilization carrier.
  • the goose-derived Penicillium oxalicum pectinase is a pectinase produced by fermentation of Penicillium oxalicum extracted from the goose gut, it is an animal-derived pectinase, and a commercially available pectinase produced by fermentation of Aspergillus niger.
  • the prior art has not yet had a more suitable carrier, and provides a basis for the scientific utilization of the pectinase of Penicillium oxalicum. Summary of the invention
  • the object of the present invention is to provide an immobilized carrier for pectinase and a preparation method thereof, which can make up for the deficiencies of the prior art.
  • Another object of the present invention is to apply the vector to the immobilization of pectinase, in particular to the immobilization of pectinase of Penicillium oxalicum, and to provide a new method for scientific and efficient utilization of pectinase from animal sources. To compensate for the deficiencies of traditional technology.
  • the invention is an improvement of the coprecipitation method, that is, the nanometer magnetic starch microsphere carrier is prepared by the mixed coprecipitation method, the precipitant alkali solution is added into the mixed solution in which Fe 2+ and Fe 3+ are dissolved, and mixed with the starch milk.
  • the reaction produces a uniform precipitate of the components, and the precipitate is thermally decomposed to obtain nano-sized magnetic starch microspheres.
  • the second is to easily prepare nano-powders with small particle size and uniform distribution to increase the specific surface area, which is beneficial to the carrier functional group and pectinase.
  • the tight binding of the inactive groups facilitates tight binding to the pectinase.
  • the use of ultrasonic waves not only compensates for the insufficiency of the particle size in the coprecipitation method, but also can effectively control the particle size by changing the ultrasonic treatment time, frequency, and power conditions, thereby obtaining the desired target particle diameter of the nanometer.
  • Grade magnetic starch microspheres in order to further improve the targeting of microparticles as a carrier, and achieve targeted selection of carriers of different particle sizes for immobilization of different enzymes. Treatment of pectinase that is difficult to immobilize, such as goose-derived Penicillium oxalicum pectinase.
  • the carrier of the invention can also immobilize the pectinase of Penicillium oxalicum.
  • the goose-derived Penicillium oxalicum pectinase is a high-quality waterfowl research institute of Qingdao Agricultural University, and screened from a goose cecum to a fungus F67 (2006).
  • the Institute of Microbiology, Chinese Academy of Sciences identified as Penicillium oxalicum, and the pectinase prepared by the strain as a fermentation strain has different physical and chemical conditions such as optimum temperature and optimum pH due to different enzyme species.
  • the pectinase immobilization carrier is a carrier having the ability to achieve uniform enzymatic hydrolysis, heterogeneous recovery and recyclability of pectinase, wherein the carrier is 50% ⁇ 70% of iron content, and the particle size is acceptable. Ultrasonic controlled, and linearly positively correlated with time, the particle size range is ⁇ ! ⁇ 80nm nanoscale magnetic starch microspheres.
  • the preparation method of the above pectinase immobilization carrier ie, nanometer magnetic starch microsphere carrier
  • the immobilized carrier of the present invention is applied to the immobilization of pectinase, in particular to the immobilization of pectinase derived from animal sources, and the immobilization of the genus Penicillium oxalicum pectinase.
  • the starch in the step (1) is cereal starch, potato starch or other starch type. Its starch milk pH is the natural pH.
  • the soluble salt in the step (2) is Fe 2 (S0 4 ) 3 , FeS0 4 or FeP0 4 , Fe 3 (P0 4 ) 2 .
  • the alkali solution in the step (2) is NaOH, KOH and other alkali solutions, and may also be an alkaline salt solution.
  • the ultrasonic treatment conditions in the step (3) are 10W ⁇ 950W, 20KHz ⁇ 25KHz, 20 ⁇ 50min, and the longer the ultrasonic treatment time, the larger the power, and the smaller the particle size of the nano-sized magnetic starch microsphere carrier.
  • the acid solution in the step (3) is acetic acid, dilute sulfuric acid or dilute hydrochloric acid.
  • the vacuum freeze-drying conditions in the step (4) are -20 ° C to - 45 ° C, 20 Pa to: L00Pa.
  • the present invention has the following advantages:
  • the carrier of the present invention adopts a biodegradable, environmentally friendly, natural regenerated resource starch containing a large amount of hydroxyl groups as a shell layer, has good biocompatibility, can well maintain the activity and stability of the enzyme, and improves the activity. The efficiency of enzyme use.
  • the vector of the present invention is directly used? 6 (1 3 and ? 6 (1 2 reacts under alkaline action to form Fe 3 0 4 magnetic molecules, which combine with starch during the reaction process, and does not need to be carried out under anaerobic conditions, so that the magnetic molecules are more tightly bound to the starch, It is more conducive to industrial production and lower costs.
  • the carrier of the present invention uses vacuum freeze-drying to reduce the loss of activity of the hydroxyl group and the carboxyl group in the carrier during blast heating and drying, and the effective functional group recovery rate in the prepared carrier is higher.
  • the carrier of the present invention can reuse pectinase, can reduce raw material and energy consumption, reduce industrial waste residue discharge, prevent environmental pollution, and can be widely used in fields such as juice and vegetable juice processing, and is widely used.
  • An enzyme-immobilized carrier that has significant developmental value.
  • the pectinase immobilization method of the present invention comprises the following steps and process conditions:
  • Magnetic starch microsphere carrier activation Weigh 1 part of magnetic corn starch microsphere carrier, add 20 times volume of 2.5% ⁇ 7.5% glutaraldehyde, so that the magnetic microspheres are fully immersed in glutaraldehyde solution, The shaker was shaken at 30 ° C, 200 r / min for 6 h ⁇ 8 h, the product was thoroughly washed with deionized water, and the magnetic starch microspheres were separated from the liquid by a magnet having a residual magnetization of 12.3 T, and the supernatant was decanted. The activated magnetic starch microspheres were obtained by vacuum freeze-drying at -20 ° C to -45 ° C and 20 Pa to 100 Pa.
  • the volume of the volume in the preparation of the pectinase solution in the step (1) is determined by the enzyme activity of the solid pectinase, and is diluted to a pectinase solution having an enzyme activity of 1000 u/ml.
  • the buffer solution in the step (2) may be a pH 3 ⁇ 5 acetic acid-sodium acetate buffer solution or a sodium phosphate monohydrogen phosphate buffer solution.
  • the present invention has the following advantages:
  • the carrier of the present invention is a nano-sized magnetic starch microsphere, and the particle size and distribution are uniform, so that the immobilized pectinase reacts uniformly.
  • the present invention utilizes vacuum freeze-drying to make the enzyme activity preservation rate higher.
  • the present invention utilizes the optimal conditions for the immobilization of magnetic starch microspheres determined by the response surface screening test, and the obtained results can be better used for actual production prediction.
  • the goose-derived Penicillium oxalicum pectinase used in the present invention is an animal-derived pectinase, which is of great significance for the scientific and efficient utilization of animal-derived pectinase, and has high economic and social benefits.
  • Figure 1 is a particle size diagram of a nano-sized magnetic starch microsphere carrier sonicated for 50 minutes. (The microspheres after sonication for 50 minutes have a large particle size of 30 ⁇ 60nm and a narrow distribution range)
  • Fig. 2 is a particle size diagram of the immobilized goose-derived Penicillium oxalicum pectinase of the present invention. (The size of the immobilized enzyme is 70 ⁇ 170nm, and the distribution range is wide)
  • Fig. 3 is a view showing the morphology of the nano-sized magnetic starch microsphere carrier sonicated under the scanning electron microscope of the present invention. (The particle size is uniform, spherical, less agglomerated, good crystallization, and good dispersion.)
  • Fig. 4 is a view showing the morphology of microspheres of pectinase-derived pectinase immobilized by goose-derived genomics under the scanning electron microscope of the present invention. (The size of the immobilized enzyme becomes larger, and it cross-links with glutaraldehyde and pectinase.)
  • Figure 5 is a FT-IR spectrum of the nanoscale magnetic starch microsphere carrier of the present invention.
  • Magnetic starch microspheres contain 1628 cm- 1 hydroxyl, 3421 cm 4 carboxyl, 580 cm 4 Fe 3 O 4 characteristic absorption peak)
  • Figure 6 is an FT-IR spectrum of the immobilized goose-derived Penicillium oxalicum pectinase of the present invention. (In addition to the carrier absorption peak, it also contains 1690 ⁇ 1500cm-1475 ⁇ 1000cm- 1 double-strength vibration zone XH in-plane bending vibration zone)
  • the starch milk was dispersed and dispersed to a concentration of 30% with deionized water and soluble starch.
  • FeCl 3 and FeCl 2 were weighed in a ratio of 1:1.5, dissolved in deionized water to a volume of 10 times of starch milk, poured into starch milk, and heated in a 65 ° C water bath. After reaching the temperature, 0.5M NaOH solution was added dropwise to adjust the pH to 10, and ultrasonic wave treatment was carried out for 30 min at 25 KHz and 900 W power. The treated liquid was placed in a 65 ° C water bath and stirred for 1.5 h.
  • the magnetic starch microspheres were separated from the liquid by a magnet having a residual magnetization of 12.3 T, and the supernatant was decanted. Drying under vacuum at -45 ° C, 20 Pa gave a magnetic starch microsphere carrier.
  • the carrier is detected by a laser diffraction particle size analyzer and has a particle diameter of 10.29 nm to 80.45 nm. It has paramagnetic properties and is detected by a Fourier transform infrared spectrometer. As shown in FIG.
  • the carrier has a relatively obvious 580 cm - 6 3 0 4 , 1628cm 4 hydroxyl, 3421cm 4 carboxyl characteristic absorption peak, therefore a good carrier for pectinase immobilization, as shown in Figure 3 scanning electron micrograph, the carrier has uniform particle size, less agglomeration, good crystallization, is pectinase immobilized Good carrier.
  • the starch milk was dissolved in 40% strength by stirring with deionized water and corn starch.
  • Fe 2 (S0 4 ) 3 and FeS0 4 were weighed in a ratio of 1:2, dissolved in deionized water to a volume of 15 times of starch milk, poured into starch milk, and heated in a 65 ° C water bath. After reaching the temperature, a 0.5 M KOH solution was added dropwise to adjust the pH to 11, 20 KHz, and 450 W for 20 min. The treated liquid was placed in a 65 ° C water bath and stirred for 2 h.
  • the magnetic starch microspheres were separated from the liquid, and the supernatant was decanted and dried under vacuum at -45 ° C and 20 Pa to obtain a magnetic starch microsphere carrier.
  • the particle diameter of the carrier is 14.35 nm to 80.31 nm, which has a paramagnetic property and is detected by a Fourier transform infrared spectrometer. As shown in FIG. 5, the microsphere has a relatively obvious 580 cm - 6 3 4 4 .
  • the characteristic absorption peak of 1628cm- 1 hydroxy group and 3421cm- 1 carboxyl group, as shown in Fig. 3, is a good carrier for immobilization of pectinase, which has uniform particle size, less agglomeration and good crystallization.
  • the results of laser diffraction particle size analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffractometry show that the immobilized pectinase has larger particle size and functional group changes than the magnetic starch microsphere carrier, indicating that pectinase It has been crosslinked to a magnetic starch carrier.
  • the enzyme activity recovery rate was determined by sodium hypoiodate method, the enzyme activity recovery rate was 85.6%, the applicable pH was 3-5, the enzyme activity of the free enzyme was significantly decreased after 40 °C, and the immobilized enzyme was at 50 °C.
  • the relative enzyme activity was 60.1%, and the relative enzyme activity was 60.1%.
  • the results of laser diffraction particle size analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffractometry show that the immobilized pectinase has larger particle size and functional group changes than the magnetic starch microsphere carrier, indicating that pectinase It has been crosslinked to a magnetic starch carrier.
  • the enzyme activity recovery rate was determined by sodium hypoiodate method. The enzyme activity recovery rate was 86%, the applicable pH was 3-5, the enzyme activity of the free enzyme decreased significantly after 40 °C, and the immobilized enzyme decreased significantly at 50 °C. 4% ⁇
  • the pectinase was immobilized 5 times the relative enzyme activity was still 70. 2%, repeated use of 8 times relative enzyme activity was 60.4%.
  • the results of laser diffraction particle size analyzer, scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffractometry show that the immobilized pectinase has larger particle size and functional group changes than the magnetic starch microsphere carrier, indicating that pectinase It has been crosslinked to a magnetic starch carrier.
  • the enzyme activity recovery rate was determined by sodium hypoiodate method. The enzyme activity recovery rate was 84.7%, the applicable pH was 3 ⁇ 5, the enzyme activity of the free enzyme was significantly decreased after 40 °C, and the immobilized enzyme was at 45 °C.
  • pectinase was immobilized 5 times the relative enzyme activity was still 69.4%, repeated use 8 times relative enzyme activity was 58.9%. It is shown that the present invention can also be applied to pectinase from other sources.
  • the carrier of the invention is a nano-scale magnetic starch microsphere, and the particle size and distribution are uniform, so that the immobilized pectinase reacts uniformly; the vacuum preservation and drying is used to make the enzyme activity preservation rate higher.
  • the optimal conditions for the immobilization of the magnetic starch microspheres are determined, and the results obtained can be better used for actual production prediction.
  • the goose-derived Penicillium oxalicum pectinase which is utilized by the invention is an animal-derived pectinase, and has important significance for scientific and efficient utilization of animal-derived pectinase, and has high economic and social benefits.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

一种果胶酶的固定化载体与制备方法和固定化果胶酶的方法。是对果胶酶实现均匀酶解、异相回收、重复利用能力的载体,是含铁量50%〜70%的、粒径受控超声波、且与时间呈线性正相关,粒径为10〜80nm的纳米级磁性淀粉微球。应用于果胶酶,特别是应用于鹅源草酸青霉果胶酶固定化。首先制备淀粉乳,FeCl3、FeCl2与淀粉乳均匀混合,调pH值,超声处理后搅拌,酸中和,95%乙醇洗涤,磁铁分离,真空干燥。果胶酶固定化步骤:果胶酶溶液制备;载体活化;果胶酶的固定化和分离干燥固定化果胶酶。本发明的载体大大提高了酶使用效率,降低原材料和能源消耗,防止环境污染,有利工业化生产,而广泛用于果汁、蔬菜汁加工等领域。

Description

果胶酶的固定化载体与制备和固定化果胶酶的方法
技术领域
本发明涉及一种果胶酶的固定化载体与制备方法和固定化果胶酶的方法, 属酶工程领域。
背景技术
磁性高分子微球是一类性能优良的功能高分子材料, 是以合成高分子或生 物高分子为载体, 通过吸附和包埋 Fe203、 Fe304或其它磁性粒子, 形成具有磁性 的功能高分子材料。 磁性高分子微球是核壳式结构的微小胶囊, 制备磁性微球 的磁核主要是 Fe304等金属氧化物, 壳层主要由两类物质组成: 一类是合成高分 子, 主要有聚乙烯、 聚苯乙烯、 聚丙烯酞胺、 聚乙烯醇、 硝化纤维及聚乙烯醉 縮丁醛等, 不可生物降解; 另一类是生物高分子, 主要有淀粉、 明胶、 白蛋白、 聚乳酸、 藻酸钙等, 可生物降解。 磁性高分子微球的壳层与磁核的结合主要是 通过范德华力、 氢键、 配位键的作用, 高分子借助于这些作用力, 牢牢地束缚 于金属氧化物晶体表面, 形成坚实的球状结构, 作为固定化酶载体的顺磁性高 分子微球。
果胶酶 (PectinaSe,PE ) 由于反应条件温和, 专一性强, 催化效率高, 反 应容易控制, 被广泛用于食品、 酿酒、 环保、 医药及纺织工业领域, 已成为世 界四大酶制剂之一。 游离果胶酶在使用过程中易随环境的变化变性失活, 且不 易从反应体系中分离重复使用。 酶固定化技术是实现酶重复连续使用和改善其 稳定性的有效手段。
酶工程领域中果胶酶的固定化载体和制备方法向来是重要研究课题。 其中 固定化载体主要有一、化学方法的水解法(即共沉淀法), 将一定比例的 FeCl3 和 FeCl2和到合成高分子溶液中, 加上碱性溶液, 使生成 Fe304磁性粒子, 该方 法制得的磁性高分子微球粒子的粒径分布较宽, 不均匀; 二、 物理方法中包括 高能球磨方法、 悬浮聚合法与反相悬浮再生法的三种, 其获得磁性高分子材料 中的磁性粒子互相作用, 极易团聚, 难以实现超顺磁性能。
关于果胶酶的研究有 CN102010858A (—种果胶酶固定化的载体及固定化方 法), 主要是以海藻酸钠磁性微球为载体, 该载体有 Fe304磁粉、 海藻酸钠、 戊 二醛三部分组成, 由于专门加入 Fe304磁粉, 属物理方法合成, 因此极易团聚, 粒径较大, 难以实现超顺磁性能, 外部形貌成片状, 不利于果胶酶的结合, 官 能团特征不明显, 不利于定向选择交联剂。所以寻求更加实用和有效的果胶酶 固定化载体, 进一步优化酶固定化工艺是非常必要的。
又, 由于鹅源草酸青霉果胶酶是从鹅肠道提取的一种草酸青霉发酵产生的 果胶酶, 是属于动物源果胶酶, 与由黑曲霉发酵产生的市售果胶酶来源不同, 已有技术至今未有更适合的载体, 为鹅源草酸青霉果胶酶的科学利用提供依据。 发明内容
本发明目的是提供一种果胶酶的固定化载体及其制备方法, 以弥补现有技 术的不足。
本发明的另一目的是将该载体应用于果胶酶的固定化, 特别是将其应用 于鹅源草酸青霉果胶酶的固定化,为动物源果胶酶的科学高效利用提供新方 法, 以用来弥补传统技术的不足。
本发明是对共沉淀法的改进,即利用混合共沉淀法制备纳米级磁性淀粉 微球载体, 在溶解有 Fe2+、 Fe3+的混合溶液中加入沉淀剂碱溶液, 并与淀粉乳混 合反应, 生成组分均匀的沉淀, 沉淀热分解得到纳米级磁性淀粉微球。 以达到 其一通过溶液中的各种化学反应直接得到组分均一的纳米粉体, 其二是容易制 备粒度小而且分布均匀的纳米粉体, 以增大比表面积, 利于载体官能团与果胶 酶非活性基团的紧密结合, 利于和果胶酶的紧密结合。
本发明中又利用超声波作用, 不但弥补共沉淀法中粒径不均匀的不足, 而 且可以通过改变超声波处理时间、 频率、 功率条件来有效控制粒径的大小, 从 而得到需要的目标粒径的纳米级磁性淀粉微球, 以进一步提高微粒作为载体 的靶向性, 实现有目的的选择不同粒径的载体进行不同种酶的固定。处理难 以固定化的果胶酶,如鹅源草酸青霉果胶酶等.
本发明的载体还能对鹅源草酸青霉果胶酶进行固定化, 鹅源草酸青霉果胶 酶是青岛农业大学优质水禽研究所从鹅盲肠筛选到 1株真菌 F67(2006年),经中 国科学院微生物研究所鉴定为草酸青霉, 以该菌为发酵菌种制备的果胶酶, 由 于制酶菌种不同, 最适温度、 最适 pH等理化条件不同。研究鹅源草酸青霉果胶 酶的固定化, 研究其固定化后的重复使用率及最适作用条件, 对于经济高效、 科学合理的利用鹅源草酸青霉果胶酶有重大意义。
本发明的目的通过以下技术方案实现:
一种果胶酶固定化载体, 是具有对果胶酶实现均匀酶解、 异相回收、 重复 利用能力的载体,其特征在于该载体是含铁量 50%〜70%的、粒径可受超声波控 制的、 且与时间呈线性正相关, 粒径范围为 ΙΟηπ!〜 80nm 的纳米级磁性淀粉微 球。
上述果胶酶固定化载体 (即纳米级磁性淀粉微球载体) 的制备方法如下:
( 1 ) 首先用去离子水和淀粉搅拌分散成浓度为 30%〜50%的淀粉乳;
(2 ) 按 1 : 1〜1: 2的比例称取 FeCl3、 FeCl2, 用去离子水溶解定容至淀粉 乳的 10〜15倍, 倒入淀粉乳, 置 65°C水浴中升温, 滴加 0.5M碱溶液调至 pH 值为 9〜13;
( 3 )将上述调好 pH的混合液体用超声处理 20min~50min; 将混匀后的液体 置于 65°C水浴中搅拌, 静置冷却至室温, 用酸溶液中和至中性;
(4) 将上述中和后的固液混合物用 95%乙醇洗涤 3次, 然后利用剩余磁化 强度为 12.3T的磁铁使磁性淀粉微球与液体分离,倾去上清液,在 -20°C〜- 45°C、 20Pa〜100Pa下真空冷冻干燥即得到纳米级磁性淀粉微球载体。
本发明的固定化载体应用于果胶酶的固定化, 特别是应用于动物源果胶酶 的固定化——鹅源草酸青霉果胶酶固定化。
所述步骤 (1 ) 中的淀粉为谷类淀粉、 薯类淀粉或者其他类淀粉。 其淀粉乳 pH值为自然 pH。
所述步骤 (2) 中的可溶性盐为 Fe2(S04)3、 FeS04或者 FeP04、 Fe3(P04)2。 所述步骤(2) 中的碱溶液为 NaOH、 KOH及其他碱溶液, 也可为碱性盐溶 液。
所述步骤(3 )中的超声处理条件为 10W~950W、 20KHz〜25KHz、 20~50min, 超声处理时间越长, 功率越大, 纳米级磁性淀粉微球载体的粒径越小。
所述步骤 (3 ) 中的酸溶液为醋酸、 稀硫酸或者稀盐酸。
所述步骤 (4) 中的真空冷冻干燥条件为 -20°C〜- 45°C、 20Pa〜: L00Pa。
与现有技术相比, 本发明有如下的优点:
( 1 ) 本发明的载体, 采用可生物降解、 对环境友好、 含有大量羟基的天然 再生资源淀粉作为壳层, 具有良好的生物兼容性, 可以很好地保持酶的活性和 稳定性, 提高了酶的使用效率。
(2) 本发明的载体, 直接利用?6( 13与?6( 12在碱性作用下反应生成 Fe304 磁分子, 与淀粉在反应过程中结合, 且无需在厌氧环境下进行, 使磁分子与淀 粉结合更紧密, 更有利于工业化生产, 降低成本。
(3 ) 本发明的载体, 利用真空冷冻干燥, 减少鼓风加热干燥中载体中羟基、 羧基官能团的活性损失, 制备的载体中有效官能团回收率更高。
(4) 本发明的载体可以使果胶酶重复使用, 能够降低原材料和能源消耗, 减少工业废渣废液排放, 防止环境污染, 可广泛用于果汁、 蔬菜汁加工等领域, 是一项具有广谱重大开发价值的酶固定化载体。
本发明的果胶酶固定化方法, 包括如下步骤和工艺条件:
( 1 ) 果胶酶溶液制备: 称取 1~3份果胶酶, 去离子水溶解, 定容至 100倍 体积。
(2 ) 磁性淀粉微球载体活化: 称取 1份磁性玉米淀粉微球载体, 加入 20倍 体积的 2.5%~7.5%的戊二醛, 使磁性微球充分浸没在戊二醛溶液中, 于摇床中 30°C、 200r/min震荡交联 6h~8h, 产物用去离子水充分洗涤, 利用剩余磁化强 度为 12. 3T的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 在 -20°C〜- 45°C、 20Pa〜100Pa下真空冷冻干燥, 即得到活化的磁性淀粉微球。
(3 ) 果胶酶的固定化: 称取已活化的磁性淀粉微球 1份、 1%的鹅源草酸青 霉果胶酶溶液 1~5份, 用 pH为 3~5的缓冲液定容至 25倍体积, 于 30°C、 转速 200r/min下在摇床中固定化 2h~6h。 (4)固定化果胶酶分离干燥:将步骤(3 )所得产物用剩余磁化强度为 12. 3T 的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 用缓冲液反复洗涤直至上清 液中检测不到蛋白质为止, 在 _20°C〜- 45°C、 20Pa〜100Pa下真空冷冻干燥, 即 得磁性固定化果胶酶。
所述步骤 (1 ) 中果胶酶溶液制备中定容的体积由固体果胶酶的酶活决定, 稀释至果胶酶溶液酶活为 1000u/ml。
所属步骤 (2) 中的缓冲溶液可以为 pH3~5醋酸 -醋酸钠缓冲溶液、 磷酸-磷 酸二氢钠缓冲溶液等。
与现有技术相比, 本发明具有如下优点:
( 1 ) 本发明的载体为纳米级磁性淀粉微球, 粒径大小和分布均匀, 使固定 化果胶酶均匀发生反应。
(2 ) 本发明利用真空冷冻干燥, 使酶活保存率更高。
(3 ) 本发明利用响应面筛选试验确定的磁性淀粉微球固定化最佳条件, 得 出的结果可更好的用于实际生产预测。
(4) 本发明利用的鹅源草酸青霉果胶酶是动物源果胶酶, 对动物源果胶酶 的科学高效利用具有重要意义, 具有较高的经济效益和社会效益。
附图说明
图 1 本发明超声处理 50min的纳米级磁性淀粉微球载体的粒径图。 (经 超声处理 50min的微球粒径 30~60nm比例较大, 分布范围窄)
图 2 本发明固定化鹅源草酸青霉果胶酶的粒径图。 (固定化酶的粒径 70~170nm比例较大, 分布范围较广)
图 3 本发明的扫描电镜下超声处理的纳米级磁性淀粉微球载体形态图。 (粒径均匀, 球形, 团聚少, 结晶良好, 分散程度好。 )
图 4本发明的扫描电镜下固定化鹅源草酸青霉果胶酶微球形态图。 (固定 化酶粒径变大, 与戊二醛与果胶酶发生交联。 )
图 5本发明纳米级磁性淀粉微球载体 FT-IR 图谱。 (磁性淀粉微球含有 1628cm- 1羟基、 3421cm4羧基、 580cm4Fe3O4特征吸收峰)
图 6本发明的固定化鹅源草酸青霉果胶酶的 FT-IR图谱。 (除含有载体吸收 峰外, 还含有 1690~1500cm- 1475~1000cm- 1双键伸縮振动区 X-H面内弯曲振 动区)
具体实施方式
实施例 1
用去离子水和可溶性淀粉搅拌分散成浓度为 30%的淀粉乳。 按 1 : 1.5的比 例称取 FeCl3、 FeCl2, 用去离子水溶解定容至淀粉乳的 10倍, 倒入淀粉乳, 置 65°C水浴中升温。 达到温度后滴加 0.5M NaOH溶液调 pH值为 10, 在 25 KHz、 900W功率下超声波浪处理 30min。 将处理后的液体置于 65°C水浴中搅拌 1.5h, 反应结束后静置冷却至室温, 用冰醋酸中和至中性, 用 95%乙醇洗涤 3次, 利 用剩余磁化强度为 12.3T的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 在 -45 °C、 20Pa下真空干燥, 得到磁性淀粉微球载体。 该载体经激光衍射粒度仪检 测, 粒径为 10.29nm〜80.45nm,具有顺磁性, 又经傅里叶红外光谱仪检测, 如图 5所示, 该载体有较明显的 580cm- 6304、 1628cm4羟基、 3421cm4羧基特征吸 收峰, 因此是果胶酶固定化的良好载体, 如图 3所示扫描电镜照片, 该载体粒 径均匀、 团聚少、 结晶良好, 是果胶酶固定化的良好载体。
实施例 2
用去离子水和玉米淀粉搅拌分散成浓度为 40%的淀粉乳。 按 1 : 2的比例称 取 Fe2(S04)3、 FeS04, 用去离子水溶解定容至淀粉乳的 15倍, 倒入淀粉乳, 置 65°C水浴中升温。达到温度后滴加 0.5M KOH溶液调 pH值为 11, 20KHz、 450W 功率下超声处理 20min。 将处理后的液体置于 65°C水浴中搅拌 2h, 反应结束后 静置冷却至室温, 用冰醋酸中和至中性, 用 95%乙醇洗涤 3次, 利用剩余磁化 强度为 12.3T的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 在 -45 °C、 20Pa 下真空干燥, 得到磁性淀粉微球载体。 经激光衍射粒度仪检测, 该载体粒径为 14.35nm〜80.31nm, 具有顺磁性,经傅里叶红外光谱仪检测, 如图 5所示, 该微 球有较明显的 580cm- 6304、 1628cm- 1羟基、 3421cm- 1羧基特征吸收峰, 如图 3 所示扫描电镜照片, 该载体粒径均匀、 团聚少、 结晶良好, 是果胶酶的固定化 的良好载体。
实施例 3
称取 5%戊二醛交联的活化磁性载体 1份、 1%的鹅源草酸青霉果胶酶溶液 3 份, 用 pH为 4的缓冲液定容至 25倍体积, 于 30°C、 转速 200r/min下在摇床中 振荡反应 3h, 用剩余磁化强度为 12. 3T的磁铁使磁性淀粉微球与液体分离, 倾 去上清液, 用缓冲液反复洗涤直至上清液中检测不到蛋白质为止, 在 _20°C〜 -45°C、 20〜100Pa下真空冷冻干燥, 即得磁性固定化果胶酶。 利用激光衍射粒 度仪、 扫描电镜、 傅里叶红外光谱仪、 X衍射仪测得结果可知, 固定化果胶酶与 磁性淀粉微球载体相比粒径变大, 官能团有所变化, 说明果胶酶已交联到磁性 淀粉载体上。 用次碘酸钠法测定酶活回收率, 酶活回收率为 85. 6%, 适用 pH为 3-5 , 游离酶在 40°C以后酶活显著下降, 而固定化酶在 50°C时显著下降, 果胶 酶固定化重复使用 5次相对酶活仍为 69. 6%, 重复使用 8次相对酶活为 60. 1%。 实施例 4
称取 7. 5%戊二醛交联的活化磁性载体 2份、 1%的鹅源草酸青霉果胶酶溶液 4份, 用 pH为 4的缓冲液定容至 25倍体积, 于 30°C、 转速 200r/min下在摇床 中振荡反应 2h, 用剩余磁化强度为 12. 3T的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 用缓冲液反复洗涤直至上清液中检测不到蛋白质为止, 在 _20°C〜 -45°C、 20〜100Pa下真空冷冻干燥, 即得磁性固定化果胶酶。 利用激光衍射粒 度仪、 扫描电镜、 傅里叶红外光谱仪、 X衍射仪测得结果可知, 固定化果胶酶与 磁性淀粉微球载体相比粒径变大, 官能团有所变化, 说明果胶酶已交联到磁性 淀粉载体上。 用次碘酸钠法测定酶活回收率, 酶活回收率为 85. 2%, 适用 pH为 3-5 , 游离酶在 40°C以后酶活显著下降, 而固定化酶在 50°C时显著下降, 果胶 酶固定化重复使用 5次相对酶活仍为 70. 6%, 重复使用 8次相对酶活为 59. 7%。 实施例 5
称取 2. 5%戊二醛交联的活化磁性载体 5份、 1%的鹅源草酸青霉果胶酶溶液 5份, 用 pH为 4的缓冲液定容至 25倍体积, 于 30°C、 转速 200r/min下在摇床 中振荡反应 6h, 用剩余磁化强度为 12. 3T的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 用缓冲液反复洗涤直至上清液中检测不到蛋白质为止, 在 _20°C〜 -45°C、 20Pa〜100Pa下真空冷冻干燥, 即得磁性固定化果胶酶。 利用激光衍射 粒度仪、 扫描电镜、 傅里叶红外光谱仪、 X衍射仪测得结果可知, 固定化果胶酶 与磁性淀粉微球载体相比粒径变大, 官能团有所变化, 说明果胶酶已交联到磁 性淀粉载体上。 用次碘酸钠法测定酶活回收率, 酶活回收率为 86%, 适用 pH为 3-5 , 游离酶在 40°C以后酶活显著下降, 而固定化酶在 50°C时显著下降, 果胶 酶固定化重复使用 5次相对酶活仍为 70. 2%, 重复使用 8次相对酶活为 60. 4%。 实施例 6 固定化市售黑曲霉果胶酶
称取 5%戊二醛交联的活化磁性载体 1份、 1%的市售黑曲霉果胶酶溶液 3份, 用 pH为 4的缓冲液定容至 25倍体积, 于 30°C、转速 200r/min下在摇床中振荡 反应 3h, 用剩余磁化强度为 12. 3T的磁铁使磁性淀粉微球与液体分离, 倾去上 清液, 用缓冲液反复洗涤直至上清液中检测不到蛋白质为止, 在 -20°C〜- 45°C、 20〜100Pa下真空冷冻干燥, 即得磁性固定化果胶酶。 利用激光衍射粒度仪、 扫 描电镜、 傅里叶红外光谱仪、 X衍射仪测得结果可知, 固定化果胶酶与磁性淀粉 微球载体相比粒径变大, 官能团有所变化, 说明果胶酶已交联到磁性淀粉载体 上。 用次碘酸钠法测定酶活回收率, 酶活回收率为 84. 7%, 适用 pH为 3~5, 游 离酶在 40 °C以后酶活显著下降, 而固定化酶在 45°C时显著下降, 果胶酶固定化 重复使用 5次相对酶活仍为 69. 4%, 重复使用 8次相对酶活为 58. 9%。 表明, 本 发明也可以应用于其它来源的果胶酶。
工业实用性
本发明的载体为纳米级磁性淀粉微球, 粒径大小和分布均匀, 使固定化果胶 酶均匀发生反应; 利用真空冷冻干燥, 使酶活保存率更高。 确定的磁性淀粉微 球固定化最佳条件, 得出的结果可更好的用于实际生产预测。 本发明利用的鹅 源草酸青霉果胶酶是动物源果胶酶, 对动物源果胶酶的科学高效利用具有重要 意义, 具有较高的经济效益和社会效益。

Claims

WO 2013/053210 权 利 要 求 书 PCT/CN2012/070180
1、 一种果胶酶固定化载体, 是具有对果胶酶实现均匀酶解、 异相回收、 重 复利用能力的载体,其特征在于该载体是含铁量 50%〜70%的、粒径可受超声波 控制的、 且与时间呈线性正相关, 粒径范围为 ΙΟηπ!〜 80nm 的纳米级磁性淀粉 微球。
2、 权利要求 1的固定化载体的制备方法, 其特征在于制备步骤如下:
( 1 ) 首先用去离子水和淀粉搅拌分散成浓度为 30%〜50%的淀粉乳;
(2) 按 1 : 1〜1: 2的比例称取可溶性盐 FeCl3、 FeCl2, 用去离子水溶解定 容至淀粉乳的 10〜15倍, 倒入淀粉乳, 置 65°C水浴中升温, 滴加 0.5M碱溶液 调至 pH值为 9〜13;
(3 ) 将上述调好 pH的混合液体用超声波处理 20min~50min再置于 65°C水 浴中搅拌, 静置冷却至室温, 用酸溶液中和至中性;
(4) 将上述中和后的固液混合物用 95%乙醇洗涤 3次, 然后利用剩余磁化 强度为 12.3T的磁铁使磁性淀粉微球与液体分离,倾去上清液,在 -20°C〜- 45°C、 20Pa〜100Pa下真空冷冻干燥即得固定化载体。
3、 如权利要求 2所述的固定化载体的制备方法, 其特征在于上述步骤(3 ) 中的超声处理条件为, 10W~950W、 20KHz~25KHz、 20min~50min。
4、 如权利要求 2所述的固定化载体的制备方法, 其特征在于上述步骤 (4) 中的真空冷冻干燥条件为 -20°C〜- 45°C、 20Pa〜: L00Pa。
5、 如权利要求 2所述的固定化载体的制备方法, 其特征在于上述步骤 (2) 中的为 Fe2(S04)3、 FeS04或者 FeP04、 Fe3(P04)2
6、 如权利要求 2所述的固定化载体的制备方法, 其特征在于上述步骤(2) 中的碱溶液为 NaOH、 KOH及其他碱溶液, 或者为碱性盐溶液。
7、 如权利要求 2所述的固定化载体的制备方法, 其特征在于上述步骤(3 ) 中的酸溶液为醋酸、 稀硫酸或者稀盐酸。
8、 权利要求 1的固定化载体的用途, 其特征在于该固定化载体应用于果 胶酶的固定化, 特别是应用于鹅源草酸青霉果胶酶固定化。
9、 利用权利要求 1的固定化载体进行果胶酶固定化方法, 其特征在于步骤 如下:
( 1 ) 果胶酶溶液制备: 称取 1~3份果胶酶, 去离子水溶解, 定容至 100倍 体积;
(2) 磁性淀粉微球载体活化: 称取 1份纳米级果胶酶磁性淀粉微球载体, 加入 20倍体积的 2.5%~7.5%的戊二醛, 使磁性微球充分浸没在戊二醛溶液中, 于摇床中 30°C、 200r/min震荡交联 6h~8h, 产物用去离子水充分洗涤, 利用剩 余磁化强度为 12.3T的磁铁使磁性淀粉微球与液体分离,倾去上清液,在 -20°C〜 -45°C、 20Pa〜100Pa下真空冷冻干燥, 即得到活化的固定化载体; WO 2013/053210 权 利 要 求 书 PCT/CN2012/070180
(3 ) 果胶酶的固定化: 称取已活化的纳米级磁性淀粉微球载体载体 1份、 1%的鹅源草酸青霉果胶酶溶液 1~5份,用 pH为 3~5的缓冲液定容至 25倍体积, 于 30°C、 转速 200r/min下在摇床中固定化 2h~6h;
(4)固定化果胶酶分离干燥: 将步骤(3 )所得产物用剩余磁化强度为 12.3T 的磁铁使磁性淀粉微球与液体分离, 倾去上清液, 用缓冲液反复洗涤直至上清 液中检测不到蛋白质为止, 在 -20°C〜- 45°C、 20Pa〜100Pa下真空冷冻干燥, 即 得磁性固定化果胶酶。
10、 如权利要求 9所述的果胶酶固定化方法, 其特征在于上述步骤 (2) 中 的缓冲溶液为 pH3~5醋酸-醋酸钠缓冲溶液或者磷酸-磷酸二氢钠缓冲溶液。
PCT/CN2012/070180 2011-10-10 2012-01-10 果胶酶的固定化载体与制备和固定化果胶酶的方法 WO2013053210A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110303735.8 2011-10-10
CN 201110303735 CN102337258B (zh) 2011-10-10 2011-10-10 果胶酶的固定化载体与制备和固定化果胶酶的方法

Publications (1)

Publication Number Publication Date
WO2013053210A1 true WO2013053210A1 (zh) 2013-04-18

Family

ID=45513210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070180 WO2013053210A1 (zh) 2011-10-10 2012-01-10 果胶酶的固定化载体与制备和固定化果胶酶的方法

Country Status (2)

Country Link
CN (1) CN102337258B (zh)
WO (1) WO2013053210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388896A (zh) * 2021-07-13 2021-09-14 基准(北京)生物技术研究院有限公司 基于固定化酶化学-氧化脱胶的疏水亲油纳米纤维素的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104655833A (zh) * 2015-03-05 2015-05-27 中国科学院武汉病毒研究所 一种酶纳米复合物及其可控自组装方法和在免疫分析中的应用
CN105661203A (zh) * 2016-01-29 2016-06-15 青岛农业大学 一种提高胡萝卜渣出汁率的方法
CN107365761A (zh) * 2017-07-20 2017-11-21 苏州凯邦生物技术有限公司 一种以玉米秸秆为原料的中空碳微球载体的制备及其固定化碱性蛋白酶的方法
CN107488654A (zh) * 2017-07-31 2017-12-19 苏州凯邦生物技术有限公司 一种基于蚕丝蛋白载体的固化果胶酶及其制备方法和在天然彩棉整理的应用
CN112680485A (zh) * 2021-01-20 2021-04-20 江南大学 固定化重组大肠杆菌将L-缬氨酸转化为α-酮缬氨酸的方法
CN113881661A (zh) * 2021-09-29 2022-01-04 淮阴工学院 基于羧甲基淀粉修饰的磁性纳米粒子固定化酶的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073193A2 (en) * 2007-12-03 2009-06-11 The Johns Hopkins University Methods of synthesis and use of chemospheres
CN101565695A (zh) * 2008-04-26 2009-10-28 王宝维 动物源草酸青霉发酵产饲料级果胶酶工艺
CN101689638A (zh) * 2007-05-04 2010-03-31 埃克民公司 固定化酶及其用途
CN102010858A (zh) * 2010-01-14 2011-04-13 北京联合大学 一种果胶酶固定化的载体及固定化方法
CN102337257A (zh) * 2011-10-10 2012-02-01 青岛农业大学 一种果胶酶的固定化载体及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831420B (zh) * 2010-05-13 2011-12-21 北京化工大学 一种以碳纤维作为新型载体的酶固定化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689638A (zh) * 2007-05-04 2010-03-31 埃克民公司 固定化酶及其用途
WO2009073193A2 (en) * 2007-12-03 2009-06-11 The Johns Hopkins University Methods of synthesis and use of chemospheres
CN101565695A (zh) * 2008-04-26 2009-10-28 王宝维 动物源草酸青霉发酵产饲料级果胶酶工艺
CN102010858A (zh) * 2010-01-14 2011-04-13 北京联合大学 一种果胶酶固定化的载体及固定化方法
CN102337257A (zh) * 2011-10-10 2012-02-01 青岛农业大学 一种果胶酶的固定化载体及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FOSSHEIM, S.L. ET AL.: "Investigation of lanthanide-based starch particles as a model system for liver contrast agents", JOURNAL OF MAGNETIC RESONANCE IMAGING, vol. 9, no. 2, 28 February 1999 (1999-02-28), pages 295 - 303 *
QIU, GUANGLIANG ET AL.: "PREPARATION AND DEVELOPMENT OF TARGETED AND MAGNETIC STARCH COMPOSITE MICROSPHERES", SCIENCE & TECHNOLOGY IN CHEMICAL INDUSTRY, vol. 9, no. 4, 30 August 2001 (2001-08-30), pages 15 - 18 *
WANG, LIJUAN ET AL.: "Preparation and Characterization of Magnetic Dialdehyde Starch Microspheres", MATERIALS REVIEW, vol. 21, no. 9, 15 September 2007 (2007-09-15), pages 153 - 156 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113388896A (zh) * 2021-07-13 2021-09-14 基准(北京)生物技术研究院有限公司 基于固定化酶化学-氧化脱胶的疏水亲油纳米纤维素的制备方法
CN113388896B (zh) * 2021-07-13 2022-08-02 基准(北京)生物技术研究院有限公司 基于固定化酶化学-氧化脱胶的疏水亲油纳米纤维素的制备方法

Also Published As

Publication number Publication date
CN102337258A (zh) 2012-02-01
CN102337258B (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2013053210A1 (zh) 果胶酶的固定化载体与制备和固定化果胶酶的方法
Chen et al. Co-immobilization of cellulase and lysozyme on amino-functionalized magnetic nanoparticles: An activity-tunable biocatalyst for extraction of lipids from microalgae
Ladole et al. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles
Sanchez-Ramirez et al. Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis
Verma et al. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis
Wang et al. Preparation of chitosan-based nanoparticles for enzyme immobilization
Hou et al. Preparation of core–shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization
Abbaszadeh et al. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications
Díaz-Hernández et al. Characterization of magnetic nanoparticles coated with chitosan: A potential approach for enzyme immobilization
Tran et al. Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production
Feng et al. Enhancement of the catalytic activity and stability of immobilized aminoacylase using modified magnetic Fe3O4 nanoparticles
Dal Magro et al. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification
Kaur et al. Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw
Mo et al. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde
CN107446915B (zh) 磁性氧化石墨烯复合材料固定化辣根过氧化物酶及其制备方法和应用
Manasa et al. Immobilization of cellulase enzyme on zinc ferrite nanoparticles in increasing enzymatic hydrolysis on ultrasound-assisted alkaline pretreated Crotalaria juncea biomass
Li et al. Design of flexible dendrimer-grafted flower-like magnetic microcarriers for penicillin G acylase immobilization
Selvam et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles
CN103898086B (zh) 固定化水解酶及其制备方法和应用
CN104099317A (zh) 一种壳聚糖磁性纳米粒子固定普鲁兰酶的方法
Zhang et al. Magnetic cellulose nanocrystals: Synthesis by electrostatic self-assembly approach and efficient use for immobilization of papain
Zhang et al. Biodiesel production using lipase immobilized on epoxychloropropane-modified Fe3O4 sub-microspheres
Salehi et al. Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification
Liu et al. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase
Wu et al. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839876

Country of ref document: EP

Kind code of ref document: A1