WO2013053179A1 - 一种新的生物可降解支架的加工方法 - Google Patents

一种新的生物可降解支架的加工方法 Download PDF

Info

Publication number
WO2013053179A1
WO2013053179A1 PCT/CN2011/084081 CN2011084081W WO2013053179A1 WO 2013053179 A1 WO2013053179 A1 WO 2013053179A1 CN 2011084081 W CN2011084081 W CN 2011084081W WO 2013053179 A1 WO2013053179 A1 WO 2013053179A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
stent
biodegradable
processing
biodegradable stent
Prior art date
Application number
PCT/CN2011/084081
Other languages
English (en)
French (fr)
Inventor
孟娟
陈树国
石秀凤
陈宝爱
罗七一
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Publication of WO2013053179A1 publication Critical patent/WO2013053179A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/48Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • A61F2240/002Designing or making customized prostheses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7542Catheters

Definitions

  • the present invention relates to a method of processing a biodegradable stent for medical use. Background technique
  • the biodegradable stent is made of biodegradable material, which can support the blood vessel in a short period of time after implantation in the lesion site, and achieve the purpose of revascularization. After the treatment is completed, the biodegradable stent will eventually degrade into a non-toxic product that can be absorbed and metabolized by the human body in the human environment, and the random body is normally metabolized and excreted, so that the stent will eventually disappear.
  • Common biodegradable scaffolds are made of polymer materials (such as polylactic acid, polyglycolic acid, polycaprolactone, etc.) and degradable metal materials (such as magnesium alloys, iron-based alloys, etc.).
  • Biodegradable polymer materials such as polylactic acid and its copolymers
  • biodegradable polymer materials have been approved by the US Food and Drug Administration as FDA-approved bioengineerable materials for humans.
  • the research of biodegradable scaffolds with biodegradable polymer materials as raw materials is a hot research topic.
  • Common biodegradable polymer materials such as polylactic acid, polyglycolic acid, polycaprolactone, etc.
  • Young's modulus is only about 0.1 ⁇ 4GPa, and the strength is only 40 ⁇ 80Mpa, so its mechanical properties. It is much smaller than the mechanical properties of the raw materials used in common permanent metal stents.
  • the radial support force of the stent is small, and it is difficult to support the blood vessel.
  • the elastic range of these materials is larger than that of the conventional metal stent material, so that the prepared stent has a high rebound rate after expansion, which is also a big problem.
  • these materials have small plastic deformation zones and poor toughness, which makes the stent prone to breakage and other adverse events during the expansion process.
  • the Chinese patent document CN 101925370A (the title of the invention is "bracket and its manufacturing method") proposes a method for manufacturing a stent, wherein: the biodegradable material is first composed of fibers, and then the fibers are mutually The nonwoven fabric is bonded or entangled, and the nonwoven fabric is formed into a cylindrical stent. Due to the regular or irregular orientation of the fibers, the stent prepared by this method has the required rigidity (radial support) and flexibility (compatibility). However, the stent prepared by this method has no significant improvement in solving the elastic retraction of the stent and the expansion fracture.
  • the fibers in this patent document can only be oriented in the circumferential direction and the axial direction, and are not possible to be oriented in the radial direction, so that the radial supporting force of the stent is still not significantly improved.
  • a method of processing a biodegradable stent comprising the steps of:
  • Step 1) preparing a blank of a biodegradable stent from a biodegradable material; and Step 2): blow molding the blank so that the material in each rod of the blank is along its wave
  • the direction of force at the rod is highly oriented to prepare the biodegradable stent.
  • orientation here refers to a technical term in the field of materials science, which means that the molecular chains in a certain material are preferentially arranged in a certain direction.
  • the above-mentioned "allowing the material in each of the rods to be highly oriented along the direction of the force at the pole” means that the molecules in the material in each of the rods of the blank are made Chains are preferentially aligned along the direction of force.
  • the step 2) comprises the following steps:
  • the blank in the inside of the tubular mold is not broken by excessive expansion due to the presence of the tubular mold located outside.
  • the radial modulus, strength and toughness of the biodegradable stent obtained by the above steps of the present invention can be greatly improved.
  • the method of forming the stent blank and then processing the blank to form the final stent is employed, there is no particular strict requirement for the outer diameter and the wall thickness of the blank, as long as the The size of the blank is guaranteed to fit outside The tubular mold and thus can ensure sufficient deformation space.
  • the blank of the biodegradable stent is prepared from a degradable polymer material.
  • the degradable polymer material may be: polylactic acid; polyglycolic acid; a copolymer of polylactic acid and polyglycolic acid; polycaprolactone; polydioxanone; polyanhydride; or tyrosine Acid polycarbonate and the like.
  • the degradation cycle of the stent in the human body can be from one month to three years, and the user can make any selection according to their respective needs.
  • the above step 1) can be implemented by any of the following methods:
  • the biodegradable material is injection molded into the blank directly in an injection mold.
  • the geometry of the stent blank mentioned in the above processing step 1) is strictly controlled to ensure that the geometry of the final stent can meet the requirements of the outer diameter, wall thickness and the like.
  • the ratio of the outer diameter of the blank in the above step 1) to the outer diameter of the biodegradable stent finally formed is between 1:1.5 and 1:5, and the above steps
  • the ratio of the wall thickness of the blank in 1) to the wall thickness of the biodegradable stent ultimately formed is between 1:1 and 5:1.
  • the blank is crimped to have a smaller size after performing the step 1) and before performing the step 2).
  • the expansion ratio of the stent during processing can be made larger, and the degree of material orientation can be further improved, thereby contributing to obtaining a final stent with better mechanical properties.
  • the system heating temperature is higher than the glass transition temperature of the material of the blank and lower than the melting temperature or viscous temperature of the material of the blank.
  • the expansion expansion of the blank can be achieved by any of the following methods:
  • the blank is sleeved on the outer surface of the elastic pipe, and the elastic pipe is filled with a liquid or a gas to expand the elastic pipe, thereby expanding and expanding the blank.
  • the elastic tube is a latex tube, a polyamide or a polyether block amide tube.
  • the expansion external force is maintained for a predetermined time while maintaining the heating temperature of the system.
  • the predetermined time may be 30 seconds to 5 minutes. In this way, the billet is subjected to the orientation treatment for a longer period of time, and the degree of orientation of the material in the stent can be improved, which contributes to obtaining a final stent having better final mechanical properties.
  • the system cooling temperature is 20 ° C or more lower than the glass transition temperature of the material of the blank.
  • the material in each of the rods is highly oriented along the direction of the force at the pole under heat and force, and the height orientation is retained in rapid cooling. . Therefore, each of the rods of the stent formed by such processing has a high radial modulus and strength, and the radial support force of the stent as a whole is greatly improved, and the expansion and retraction are also relatively small.
  • the stent processed by the above method can then be pressed onto the balloon for delivery and then sterilized by packaging to treat arterial stenosis.
  • the radial support force of the stent prepared by the technical method of the invention can reach above 10OKPa, and the rebound rate after the stent is expanded can be controlled within 5%, and the stent is not prone to breakage during the expansion process.
  • the blood vessel can be effectively supported at the lesion position, and the stent does not retract and shift after being opened.
  • the method of the present invention is only innovative for conventional stent processing equipment and methods, without changing the raw material of the stent, and thus has no effect on the biosafety of the stent.
  • FIG. 1 is a schematic perspective view showing a stent blank processing system in accordance with one embodiment of the present invention.
  • Figure 2 shows a schematic cross-sectional view of the stent blank processing system of Figure 1.
  • Fig. 3 is a view showing the structure of a stent blank of the present invention. detailed description
  • the present invention generally provides a method of processing a biodegradable stent for medical use by which the strength and toughness of the stent can be effectively enhanced.
  • the raw materials for common biodegradable stents are polymeric materials and degradable metal materials.
  • 1 is a schematic perspective view showing a stent blank processing system according to an embodiment of the present invention, wherein 1 denotes an outer tubular mold, 2 denotes a blank type, 3 denotes a balloon or an elastic tube for performing an expansion external force, and 4 denotes A filling device for charging a gas or liquid into the balloon or the elastic tube 3.
  • FIG. 2 is a schematic cross-sectional view of the stent blank processing system of FIG. 1, wherein 1 represents an outer tubular mold, 2 represents a blank, and 3 represents a balloon or an elastic tube for performing an expansion external force.
  • Fig. 3 is a view showing the structure of the stent blank 2 of the present invention.
  • the core idea of the method for processing the biodegradable stent of the present invention is as follows: After the biodegradable polymer material is prepared into a stent blank 2 by extrusion and cutting, the stent blank 2 is blow molded to make the stent blank The material in each of the rods in Type 2 is highly oriented along the direction of force.
  • the material may be oriented in the radial direction, the circumferential direction or the axial direction; and in the processed stent, each The strength and toughness of the rod in the direction of the force are greatly increased, and the radial support force, rebound and expansion of the entire stent can be improved.
  • the method for processing a biodegradable stent of the present invention is characterized in that: after the biodegradable polymer material is prepared into a stent blank 2, the stent blank 2 is blow molded so that each of the stent blanks 2 The materials in the rods are highly oriented along their direction of force.
  • the specific operational steps of the method of the present invention are as follows:
  • a blank 2 of a biodegradable stent having a smaller outer diameter was prepared.
  • This blank 2 is an intermediate product for forming the final biodegradable stent.
  • Fig. 3 is a view showing the structure of the stent blank 2 of the present invention.
  • the blank 2 is placed in a tubular mold 1 which is thermally conductive and is not easily deformed, and the inner diameter of the tubular mold 1 is equal to the target diameter of the stent formed by the blank 2. Obviously, in this step, it should be ensured that the outer diameter of the blank 2 is smaller than the inner diameter of the tubular mold 1, so that the blank 2 can be smoothly inserted into the inside of the tubular mold 1 and a sufficient deformation processing space is reserved for the blank 2.
  • the stent blank processing system of the present invention comprises a blank mold 2, a tubular mold 1 located outside the blank mold 2, a balloon or elastic tube 3 for performing an expansion external force, and a balloon for use in the balloon.
  • the elastic tube 3 is filled with a gas or liquid filling device 4.
  • the tubular mold 1 can be formed, for example, by using a stainless steel sleeve. Due to the presence of the outer tubular mold 1, the stent blank 2 does not break due to excessive expansion. The outer diameter of the expanded stent blank 2 is equal to the inner diameter of the tubular mold 1.
  • the blank 2 and the tubular mold 1 are rapidly cooled to a system cooling temperature while maintaining the expansion external force.
  • the green form 2 of the biodegradable stent of the present invention is prepared from a degradable polymer material.
  • the degradable polymer material may be: polylactic acid; polyglycolic acid; a copolymer of polylactic acid and polyglycolic acid; polycaprolactone; polydioxanone; polyanhydride; or tyrosine polycarbonate Ester and so on.
  • the resulting stent can be degraded in the human body for a period of one month to three years, and the user can make any choice according to their needs.
  • the preparation of the blank 2 mentioned in the above step 1 may be carried out by any one of the following methods. But it is not limited to the following methods:
  • the biodegradable material is first processed into a tube by extrusion or injection molding, and then the tube is cut into a hollow stent blank 2 by a laser;
  • the biodegradable material is prepared into a filament, and then the silk is woven into a mesh stent blank type 2; the biodegradable material solution is prepared into a film by a precipitation method, and then the film is wound into a filament, and then the filament is woven into a stent.
  • the biodegradable material is injection molded into the stent blank 2 directly in an injection mold.
  • the geometry of the stent blank mentioned in step 1 above needs to be strictly controlled to ensure that the geometry of the resulting stent meets the requirements of outer diameter, wall thickness and the like.
  • the ratio of the outer diameter of the stent blank 2 of the above step 1 to the outer diameter of the finally formed stent is selected to be between 1:1.5 and 1:5, and the wall thickness and final formation of the stent blank 2 of the above step 1 are selected.
  • the ratio of the wall thickness of the bracket is selected to be between 1:1 and 5:1.
  • the system heating temperature mentioned in the above step 3 is generally selected to be higher than the glass transition temperature of the material of the blank 2 and lower than the melting or viscous temperature of the material of the blank 2.
  • the method of expanding and expanding the stent blank 2 mentioned in the above step 3 can be achieved by any of the following methods, but is not limited to the following methods:
  • the stent blank 2 is placed outside a balloon (as indicated by reference numeral 3 in Figures 1-2), and the balloon is filled with a high pressure gas or liquid by using a filling device 4 (e.g., an inflator). And the stent blank 2 is expanded; or
  • the bracket blank 2 is placed on the outside of an elastic pipe (as indicated by reference numeral 3 in FIGS. 1 to 2), and the elastic pipe is filled with a high-pressure liquid or gas by means of a charging device 4 (for example, an inflator). , the elastic tube is expanded, thereby expanding the stent blank 2 .
  • a charging device 4 for example, an inflator
  • the elastic pipe is, for example, a latex tube, a polyamide or a polyether block amide tube.
  • the expansion external force may be maintained for a predetermined period of time while the stent blank processing system is maintained at the heating temperature of the system. And preferably, the predetermined time may be 30 seconds to 5 minutes.
  • the system cooling temperature mentioned in the above step 4 may be lower than the glass transition temperature of the material of the blank by 2 (TC or more.
  • TC glass transition temperature
  • the stent processed by the above steps of the present invention can be pressed and transported.
  • the balloon used can be used to treat arterial stenosis after being package sterilized. Two examples of the present invention are described below to explain the solution of the present invention more specifically.
  • the material of the stent body selected in the first example is a biodegradable polymer material polylactic acid.
  • the polylactic acid was extruded into a tube having an outer diameter of 2.0 mm and a wall thickness of 0.3 mm.
  • the tube was cut by a laser cutting method into a holder blank type 2 as shown in Fig. 3.
  • the holder blank type 2 had an outer diameter of 2.0 mm and a wall thickness of 0.3 mm.
  • the stent blank 2 is pressed on an elastic pipe, such as a polyamide pipe or a polyether block amide pipe (the outer diameter of the elastic pipe is 1.0 mm), and a stent blank 2 having a crimping state of only 1.6 mm is formed. .
  • the clamped blank 2 and the elastic pipe are placed in a stainless steel sleeve with an inner diameter of 3 mm.
  • the entire stent blank processing system is shown in Fig. 1. Show. One end of the elastic pipe is closed, and the other end of the elastic pipe is connected to the charging device 4 through a high-pressure gas path, and then the entire stent blank processing system (including the stent blank 2, the elastic pipe and the stainless steel casing) is heated to 113 ⁇ .
  • the elastic pipe is filled with high-pressure air with a pressure of 480 Psi and the elastic pipe is stretched. Thereby, the elastic tube is expanded to expand the stent blank 2 at the same time.
  • the stent blank 2 is expanded into a stent blank having an outer diameter of 3 mm and a wall thickness of 0.15 mm under the action of high temperature and external force. Then, keep the temperature and pressure for 5 minutes. Thereafter, the stent blank processing system is rapidly cooled, and then the pressure is released, and the stent blank subjected to the above treatment is removed from the elastic pipe to obtain a final stent that satisfies the requirements.
  • the prepared stent was subjected to XRD analysis, and it was found that the materials at the respective rods of the stent were oriented with an orientation degree of 70% to 90%, and the orientation direction was along the direction of the force of the rod.
  • the stent was crimped onto a suitable balloon and the stent was 1.5 mm in diameter after crimping. Then, the stent was expanded to 3.5 mm by balloon expansion in physiological saline at 37 ° C, and the stent was not broken during the expansion. After the balloon was withdrawn, the rebound rate of the measuring stent was 3%. The supporting force of the expanded stent was measured to obtain a supporting force of 125 to 140 KPa.
  • the stent prepared by this method is crimped onto a suitable balloon, packaged and sterilized and delivered to a stenotic site of the blood vessel. Fill the balloon to expand the stent to open the narrow blood vessels. During the expansion process, the stent did not break.
  • Example two After the balloon was withdrawn, angiography revealed that the blood vessels were still stretched by the stent, and intravascular ultrasound showed no significant retraction and displacement of the stent. No adverse events such as stent fracture or stent collapse occurred during the entire procedure. The stent was not seen after 2 years of clinical follow-up, indicating that the stent material was completely degraded. No restenosis and other inflammation occurred in the blood vessels throughout the implantation process.
  • the material of the stent body selected in the second embodiment is a copolymer of a biodegradable polymer material polylactic acid-glycolic acid.
  • a polylactic acid-glycolic acid copolymer was injection-molded into a mesh-like stent blank 2 having an outer diameter of L0 mm and a wall thickness of 0.2 mm by an injection molding method.
  • put the bracket blank 2 and The latex tube is placed in a stainless steel sleeve having an inner diameter of 2.5 mm, wherein one end of the latex tube is closed, and the other end of the latex tube is connected to the filling device 4 through a high pressure gas path.
  • the entire stent blank processing system (including the stent blank 2, the latex tube, and the stainless steel sleeve) was heated to 40 ° C while the latex tube was filled with high pressure air at a pressure of 400 psi. Thereby, the stent blank 2 is expanded while the latex tube is expanded.
  • the stent blank 2 is expanded by a high temperature and an internal pressure to form a stent blank having an outer diameter of 2.5 mm and a wall thickness of 0.16 mm.
  • the stent blank processing system is rapidly cooled to 12V, and then the pressure is released, and the stent blank processed as described above is taken out of the system to obtain a final stent that satisfies the requirements.
  • the XRD orientation analysis of the prepared stent was carried out, and it was found that the materials at the respective rods of the stent were oriented with an orientation degree of 60% to 90%, and the orientation direction was along the direction of the force of the rod.
  • the prepared stent was crimped onto a suitable balloon, and the stent after crimping was 1.2 mm in diameter. Then, the stent was expanded to 3.0 mm by balloon expansion in physiological saline at 37 ° C, and the stent was not broken by the stent during the expansion. After the balloon was withdrawn, the rebound rate of the measuring stent was 5%.
  • the supporting force of the expanded stent was measured to obtain a supporting force of about 120 KPa.
  • the stent prepared by the above method is delivered to a stenotic site of the blood vessel through a balloon delivery system, and then the stent is expanded by balloon expansion to support the narrow blood vessel. No fracture of the stent was observed during the surgery. After the balloon was withdrawn, the angiography observed that the blood vessels were still being distracted by the stent. No adverse events of stent collapse occurred during the entire procedure. After 18 months, the stent was not seen by clinical follow-up by intravascular ultrasound, indicating that the stent body material was completely degraded. There were no restenosis and inflammatory reactions in the lesions implanted in the stent.
  • the radial support force of the stent prepared by the technical method of the invention can reach above 10OKPa, and the rebound rate after the stent is expanded can be controlled within 5%, and the stent is not prone to breakage during the expansion process. In this way, after the stent is implanted into the human body, the blood vessel can be effectively supported at the lesion position, and the stent does not retract and shift after being opened.
  • This method of the present invention merely innovates the conventional stent processing method without changing the raw material of the stent, so that there is no influence on the biosafety of the stent.
  • the above description is only some specific embodiments of the present application. It should be noted that those skilled in the art can make various combinations or make some improvements and modifications to the above embodiments without departing from the principles and inventive concepts of the present invention. And variations are also considered to fall within the scope of the invention and the inventive concept.

Abstract

本发明提供了一种新的生物可降解支架的加工方法,其包括如下步骤:步骤1):由生物可降解材料制备生物可降解支架的坯型;和步骤2):对所述坯型进行吹塑,以使得所述坯型的每个波杆中的材料都沿其波杆处的受力方向进行高度取向,以制备所述生物可降解支架。本发明的加工方法可以有效提高生物可降解支架的强度和韧性。

Description

一种新的生物可降解支架的加工方法 技术领域
本发明涉及一种用于医疗用途的生物可降解支架的加工方法。 背景技术
用于冠状动脉介入治疗的医疗器械经历了从球囊扩张导管到永久 性金属裸支架、 再到药物洗脱永久性金属支架的两次重大突破。 药物 洗脱永久性金属支架的植入有效避免了急性血管闭塞的并发症, 且还 能显著降低经皮冠状动脉介入 (PCI) 术后再狭窄的发生率。 然而, 药 物洗脱永久性金属支架在完成任务后将永久存留在人体内, 因而会存 在削弱冠状动脉的 MRI或 CT影像、 干扰外科血运重建、 阻碍侧枝循 环的形成、 抑制血管正性重塑等缺陷。 基于这样的问题, 生物可降解 支架作为可能的一种替代解决方案引起了人们的越来越多的注意和研 究。 生物可降解支架由生物可降解材料制成, 其在植入病变位置后可 以在短期内起到支撑血管的作用, 达到血运重建的目的。 在治疗完成 以后, 生物可降解支架在人体环境内最终会降解成为可被人体吸收、 代谢的无毒产物, 随机体正常代谢而排出体外, 从而最终该支架会消 失。 常见的生物可降解支架的原材料有聚合物材料 (如聚乳酸、 聚乙 醇酸、 聚己内酯等) 和可降解金属材料 (如镁合金、 铁基合金等) 。 可降解金属材料由于降解时间太快, 很难保证支架的有效支撑时间。 而生物可降解聚合物材料 (如聚乳酸及其共聚物等) 已被美国食品与 药物管理局 FDA批准为可应用于人体的生物工程材料。 以生物可降解 聚合物材料为原材料的生物可降解支架的研究是目前的研究热点。 常见的生物可降解聚合物材料 (如聚乳酸、 聚乙醇酸、 聚己内酯 等) 的力学性能比较弱, 其杨氏模量只有 0.1~4GPa 左右, 强度只有 40~80Mpa, 因而其力学性能远远小于常用的永久性金属支架的原材料 的力学性能。 由于材料的力学强度低, 所以在由这些材料制成支架以 后, 支架的径向支撑力较小, 很难起到支撑血管的作用。 并且, 这些 材料的弹性范围大于传统的金属支架材料, 使得制备成的支架在扩张 以后的回弹率较高, 这也是一个很大的问题。 另外, 这些材料的塑性 变形区小, 韧性差, 使得支架在扩张过程中容易出现断裂等不良事件。 为了解决支架的支撑力的问题,中国专利文献 CN 101925370A (发 明名称是 "支架及其制造方法" ) 提出了一种支架制造方法, 其中: 先将生物可降解材料构成为纤维, 然后将纤维相互粘合或者交络形成 无纺布, 再将无纺布做成圆筒状的支架。 由于纤维具有规则或者不规 则的取向, 这种方法制备的支架具有所需的刚性 (径向支撑力) 和柔 性 (柔顺性) 。 然而, 此方法制备的支架在解决支架弹性回缩大和扩 张断裂方面没有明显的改善。 而且, 该专利文献中的纤维只能做到沿 着圆周方向和轴向方向取向, 而不可能沿着径向方向取向, 这样使得 该支架的径向支撑力仍然不能得到明显的提升。 发明内容
鉴于现有技术的上述技术问题, 本发明的目的在于开发一种生物 可降解支架的加工方法, 以便有效提高该支架的强度和韧性。 根据本发明, 提供了一种生物可降解支架的加工方法, 包括如下 步骤:
步骤 1 ) : 由生物可降解材料制备生物可降解支架的坯型; 和 步骤 2) : 对所述坯型进行吹塑, 以使得所述坯型的每个波杆中的 材料都沿其波杆处的受力方向进行高度取向, 以制备所述生物可降解 支架。 请注意, 这里的 "取向 " 是指材料学领域中的一个技术术语, 它 是指使一定材料中的分子链优先沿某一个方向排列。 因而, 上述的 "使 得所述坯型的每个波杆中的材料都沿其波杆处的受力方向进行高度取 向" 是指使得所述坯型的每个波杆中的材料内的分子链优先大致沿着 受力方向排列。 在实际加工处理中, 通常可以通过使得所述坯型沿其 受力方向扩张膨胀来使得材料中的分子链大致沿受力方向排列。 在本 发明中, 所述支架的坯型的每个波杆的受力方向可能不一样, 因此所 述支架的材料在径向方向、 圆周方向或者轴向方向上都有可能取向。 在经过本发明的上述方法加工成的支架中, 每个波杆在受力方向上的 强度和韧性都会大大增加, 整个支架的径向支撑力、 回弹和扩张时的 断裂情况都能够得到显著改善。 优选地, 在本发明中, 所述步骤 2 ) 包括如下步骤:
步骤 a) : 将所述坯型放入导热性好且不易变形的管状模具中; 步骤 b ) : 将所述坯型和所述管状模具加热到一系统加热温度, 并 对所述坯型的内部施加扩张外力, 以使得所述坯型在所述系统加热温 度下且在所述扩张外力作用下扩张膨胀, 并且所述坯型扩张后的坯型 外径等于所述管状模具的内径;
步骤 c) : 在保持所述扩张外力的情况下, 使所述坯型和所述管状 模具迅速冷却到一系统冷却温度; 以及
步骤 d) : 撤除所述扩张外力, 将经过冷却处理之后的坯型从所述 管状模具中取出, 从而得到所述生物可降解支架。 在本发明中, 由于位于外部的管状模具的存在, 所以处于管状模 具内部的所述坯型不会因为过度扩张而破裂。 并且, 经过本发明的上 述步骤所得到的所述生物可降解支架的径向模量、 强度和韧性都可以 得到大幅度提高。 而且, 在本发明中, 由于采用了先形成支架坯型、 而后再加工该坯型来形成最终支架的方法, 所以对于所述坯型的外径 和壁厚也没有特定严格要求, 只要所述坯型的尺寸能够确保装入外部 的管状模具且由此可以保证具有足够变形空间即可。 优选地, 所述生物可降解支架的坯型由可降解高分子材料制备而 成。 并且, 优选地, 所述可降解高分子材料可以是: 聚乳酸; 聚乙醇 酸; 聚乳酸和聚乙醇酸的共聚物; 聚己内酯; 聚二氧六环酮; 聚酸酐; 或者酪氨酸聚碳酸酯等等。 根据选用的材料的不同, 所述支架在人体 内的降解周期可以为一个月到三年, 用户可以根据各自需求而进行任 意选择。 优选地, 上述步骤 1 ) 能够通过以下任一方法来实现:
①将生物可降解材料先通过挤出或注塑的方法加工成管材, 然后 再用激光把所述管材切割成镂空的所述坯型;
②将生物可降解材料制备成丝, 然后将所述丝编织成网状的所述 坯型;
③将生物可降解材料的溶液通过析出法制备成薄膜, 然后将所述 薄膜卷绕成细丝, 再由该细丝编织成所述坯型; 或
④将生物可降解材料直接在注塑模具中注塑成所述坯型。 优选地,对上述的加工步骤 1 )中提到的支架坯型的几何尺寸进行 严格控制, 以便于保证最后支架的几何尺寸能够满足外径、 壁厚等要 求。 优选地, 在本发明中, 上述步骤 1 ) 中的所述坯型的外径和最终形 成的所述生物可降解支架的外径的比例在 1 : 1.5到 1 : 5之间, 且上述 步骤 1 )中的所述坯型的壁厚和最终形成的所述生物可降解支架的壁厚 的比例在 1 : 1到 5: 1之间。 优选地, 在执行所述步骤 1 ) 之后和执行所述步骤 2) 之前, 对所 述坯型进行压握以使其具有更小的尺寸。 通过这样做, 能够使得支架 在加工过程中的扩张比更大, 材料取向度可以进一步提高, 从而有助 于得到力学性能更好的最终支架。 优选地, 在所述步骤 b ) 中, 所述系统加热温度高于所述坯型的材 料的玻璃化转变温度, 且低于所述坯型的材料的熔融温度或粘流温度。 优选地, 在所述步骤 b ) 中, 使所述坯型扩张膨胀能够通过以下任 一方法来实现:
①将所述坯型套在球囊的外面, 通过在所述球囊内充入气体或者 液体而使所述球囊扩张, 从而使所述坯型扩张膨胀; 或
②将所述坯型套在弹性管材的外面, 在所述弹性管材内充入液体 或者气体而使所述弹性管材扩张, 从而使所述坯型扩张膨胀。 优选地, 所述弹性管材为乳胶管、 聚酰胺或者聚醚嵌段酰胺管材。 优选地, 在所述步骤 b ) 中, 在保持所述系统加热温度的同时, 使 所述扩张外力保持一段预定时间。 并且优选地, 上述预定时间可以是 30秒至 5分钟。 这样, 使得坯型进行取向处理的时间较长, 支架中的 材料的取向度可以得到提高, 这有助于得到最终力学性能更好的最终 支架。 优选地, 在所述步骤 c ) 中, 所述系统冷却温度比所述坯型的材料 的玻璃化转变温度低 20°C或更多。 在经过本发明上述方法处理而得到支架中, 各个波杆中的材料在 受热、 受力的情况下发生了沿其波杆处的受力方向的高度取向, 而且 高度取向在迅速冷却中被保留。 所以, 经过这种加工处理而形成的支 架的各个波杆都具有很高的径向模量和强度, 支架整体的径向支撑力 得到大幅提高, 扩张回縮也比较小。 通过上述方法加工成的支架随后可以被压握到输送用的球囊上, 再经过包装灭菌后就可以用于治疗动脉狭窄。 由本发明的技术方法制备成的支架的径向支撑力可以达到 lOOKPa 以上, 支架扩张后的回弹率可以控制在 5%以内, 支架在扩张过程中不 容易发生断裂。 这样, 支架植入人体后在病变位置可以有效地支撑血 管, 支架撑开后不发生回缩和移位。 并且, 本发明的这种方法只是针 对传统的支架加工设备和方法进行了创新, 没有改变支架的原材料, 因而对支架的生物安全性没有任何影响。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描 述中所需要使用的附图作简单地介绍。 显而易见的是, 下面描述中的 附图仅仅是本申请中记载的一些特定实施例, 其不是对本发明的保护 范围的限制。 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 当然还可以根据本发明的这些实施例及其附图获得一些其它 的实施例和附图。 图 1 示出了根据本发明一个实施例的支架坯型加工系统的立体结 构示意图。
图 2示出了图 1的支架坯型加工系统的横截面示意图。
图 3示出了本发明的支架坯型的结构示意图。 具体实施方式
为了使本领域技术人员更好地理解本申请中的技术方案, 下面将 结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述。 显然, 所描述的实施例仅仅是本申请一部分实施例, 而 不是全部的实施例。 基于本申请所述的具体实施例, 本领域普通技术 人员在没有做出创造性劳动的前提下所获得的所有其它实施例, 都应 当落在本发明构思范围之内。 本发明总体上提供了一种用于医疗用途的生物可降解支架的加工 方法, 通过该加工方法, 可以有效提高该支架的强度和韧性。 如前所述, 常见的生物可降解支架的原材料有聚合物材料和可降 解金属材料。 可降解金属材料的降解时间太快, 很难保证支架的有效 支撑时间。 而生物可降解聚合物材料的降解时间则比金属材料长。 所 以, 本发明的支架主要考虑使用生物可降解的聚合物材料构成。 以下参考图 1〜图 3来详细描述本发明的优选实施例。 图 1 示出了根据本发明一个实施例的支架坯型加工系统的立体结 构示意图, 其中 1表示外部管状模具, 2表示坯型, 3表示用于实施膨 胀外力的球囊或者弹性管材, 4表示用于向球囊或者弹性管材 3内充入 气体或液体的充注设备。 图 2是图 1 的支架坯型加工系统的横截面示 意图, 其中 1表示外部管状模具, 2表示坯型, 3表示用于实施膨胀外 力的球囊或者弹性管材。 图 3示出了本发明的支架坯型 2的结构示意 图。 本发明的生物可降解支架的加工方法的核心构思在于: 在将生物 可降解聚合物材料通过挤出和切割等方法制备成支架坯型 2 后, 对支 架坯型 2进行吹塑, 使支架坯型 2 中的每个波杆中的材料都沿着受力 方向进行高度取向。 在本发明中, 由于支架坯型 2 的每个波杆的受力 方向不一样, 因此材料在径向方向、 圆周方向或者轴向方向都可能取 向; 并且在经过加工后的支架中, 每个波杆在受力方向上的强度和韧 性都会大大增加, 整个支架的径向支撑力、 回弹和扩张时的断裂情况 都能得到改善。 具体的说, 本发明的生物可降解支架的加工方法的特征在于: 在 将生物可降解聚合物材料制备成支架坯型 2后, 对支架坯型 2进行吹 塑, 使支架坯型 2 的每个波杆中的材料都沿着其受力方向进行高度取 向。 本发明的方法的具体的操作步骤如下所述:
①首先制备出外径较小的生物可降解支架的坯型 2。该坯型 2是用 于形成最终的生物可降解支架的中间产品。 图 3 示出了本发明的支架 坯型 2的结构示意图。
②将坯型 2放入导热性好而且不易变形的管状模具 1 中, 管状模 具 1的内径等于由坯型 2形成的支架的目标直径。 显然, 在此步骤中, 应该保证坯型 2的外径小于管状模具 1 的内径, 以使坯型 2能够顺利 插入管状模具 1内部且给坯型 2预留足够的变形加工空间。
③将所述坯型 2和所述管状模具 1加热到一系统加热温度, 并对 所述坯型 2的内部施加扩张外力, 以使得所述坯型 2在所述系统加热 温度下且在所述扩张外力作用下扩张膨胀, 并且所述坯型 2 扩张后的 坯型外径等于所述管状模具 1 的内径。 如图 1~2所示, 本发明的支架 坯型加工系统包括坯型 2、 位于坯型 2的外部的管状模具 1、 用于实施 膨胀外力的球囊或者弹性管材 3和用于向球囊或者弹性管材 3 内充入 气体或液体的充注设备 4。 管状模具 1例如可以釆用不锈钢套管形成。 由于外部的管状模具 1 的存在, 支架坯型 2不会因过度扩张而断裂。 扩张后的支架坯型 2的外径等于管状模具 1的内径。
④在保持所述扩张外力的情况下,使所述坯型 2和所述管状模具 1 迅速冷却到一系统冷却温度。
⑤撤除所述扩张外力, 将经过冷却处理之后的坯型 2从所述管状 模具 1中取出, 从而得到所述生物可降解支架。 本发明的生物可降解支架的坯型 2由可降解高分子材料制备而成。 并且, 所述可降解高分子材料可以是: 聚乳酸; 聚乙醇酸; 聚乳酸和 聚乙醇酸的共聚物; 聚己内酯; 聚二氧六环酮; 聚酸酐; 或者酪氨酸 聚碳酸酯等等。 根据所选用的材料的不同, 最终形成的支架在人体内 的降解周期可以为一个月到三年, 用户可以根据各自需求进行任意选 择。 上述步骤①中提到的坯型 2的制备可以选用下述方法中的任一种, 但是不局限于下述方法:
将生物可降解材料先通过挤出或者注塑的方法加工成管材, 然后 再用激光把管材切割成镂空的支架坯型 2;
将生物可降解材料制备成丝, 然后将丝编织成网状支架坯型 2; 将生物可降解材料溶液通过析出法制备成薄膜, 然后将薄膜卷绕 成细丝, 再由细丝编织成支架坯型 2; 或
将生物可降解材料直接在注塑模具中注塑成支架坯型 2。 上述步骤①提到的支架坯型的几何尺寸需要进行严格控制, 以保 证最后形成的支架的几何尺寸能够满足外径、 壁厚等要求。 一般地, 上述步骤①的支架坯型 2 的外径和最终形成的支架的外径的比例选择 为 1 : 1.5到 1 : 5之间, 上述步骤①的支架坯型 2的壁厚和最终形成的 支架的壁厚的比例选择为 1 : 1到 5: 1之间。 在进行上述步骤①之后和在进行上述步骤②之前, 也可以先把支 架坯型 2 压握成更小的尺寸, 然后再进行下面的加工步骤②。 这样, 可以使得支架坯型 2 在加工过程中的扩张比更大, 材料取向度可以进 一步提高, 这有助于得到力学性能更好的最终支架。 上述步骤③中提到的系统加热温度一般选择为高于坯型 2 的材料 的玻璃化转变温度, 且低于坯型 2的材料的熔融或者粘流温度。 上述步骤③中提到的使支架坯型 2扩张膨胀的方法可以通过下述 的任一方法实现, 但是不局限于以下的这些方法:
把支架坯型 2套在一个球囊 (如图 1~2中的附图标记 3所示意的 那样) 的外面, 通过利用充注设备 4 (例如充气机) 给球囊充入高压气 体或者液体而使支架坯型 2扩张; 或
把支架坯型 2套在一个弹性管材 (如图 1〜2中的附图标记 3所示 意的那样) 的外面, 利用充注设备 4 (例如充气机) 在弹性管材内充入 高压液体或者气体, 使得弹性管材扩张, 从而将支架坯型 2 撑开。 所 述弹性管材例如为乳胶管、 聚酰胺或者聚醚嵌段酰胺管材等。 在上述步骤③之中, 也可以在使得支架坯型加工系统保持所述系 统加热温度的同时, 使所述扩张外力保持一段预定时间。 并且优选地, 上述预定时间可以是 30秒至 5分钟。 这样, 支架坯型 2的取向时间更 长, 可使得最终支架中的材料的取向度可以进一步提高, 有助于得到 力学性能更好的最终支架。 上述步骤④中提到的所述系统冷却温度可以比所述坯型的材料的 玻璃化转变温度低 2(TC或更多。 在经过本发明上述方法处理后得到的支架中, 各个波杆中的材料 在受热、 受力的情况下发生了沿其波杆处的受力方向的高度取向, 而 且高度取向在迅速冷却中被保留。 所以, 在经过这种加工处理得到的 支架中, 各个波杆都具有很高的径向模量和强度, 支架整体的径向支 撑力得到大幅提高, 且扩张回縮也比较小。 另外, 经过本发明上述步骤处理后的支架随后可以被压握到输送 用的球囊上, 再经过包装灭菌后就可以用于治疗动脉狭窄。 以下描述本发明的两个实例, 以更具体地解释本发明的方案。 实例一
本实例一中选取的支架本体的材料是生物可降解的高分子材料聚 乳酸。 将聚乳酸挤出成外径 2.0mm、 壁厚 0.3mm的管材。 通过激光切 割的方法把管材切割成如图 3所示的支架坯型 2,支架坯型 2的外径为 2.0mm, 壁厚为 0.3mm。 将此支架坯型 2压握在弹性管材、 如聚酰胺管 材或者聚醚嵌段酰胺管材上 (弹性管材的外径为 1.0mm ) , 形成外径 只有 1.6mm的压握态的支架坯型 2。 将压握后的支架坯型 2和弹性管 材放入内径为 3mm的不锈钢套管中, 整个支架坯型加工系统如图 1所 示。 弹性管材的一端封闭, 弹性管材的另一端通过高压气路与充注设 备 4相连通, 然后将整个支架坯型加工系统 (包括支架坯型 2、 弹性管 材和不锈钢套管) 都加热到 113 Ό, 同时在弹性管材中充入压强为 480Psi 的高压空气并将弹性管材拉伸。 由此, 使得弹性管材在扩张的 同时使支架坯型 2扩张开来。 支架坯型 2在高温和外力的共同作用下 而膨胀成为外径 3mm、 壁厚 0.15mm的支架坯型。 然后, 保持高温和 压力 5 分钟。 之后, 使得支架坯型加工系统迅速冷却, 然后泄压, 再 把经过上述处理的支架坯型从弹性管材上取下来, 即得到满足要求的 最终支架。 将制备完成的支架进行 XRD分析,发现支架的各个波杆处的材料 均发生取向, 取向度在 70%~90%之间, 取向方向沿着波杆的受力方向。 将支架压握在合适的球囊上, 压握后支架直径为 1.5mm。 然后, 在 37 °C的生理盐水中把支架用球囊扩张的方式扩张到 3.5mm, 在扩张过程 中, 支架未发生断裂。 球囊回撤后, 测量支架的回弹率为 3%。 测量扩 张后的支架的支撑力, 得到支撑力为 125〜140KPa。 将此方法制备的支架压握到合适的球囊上, 再包装灭菌然后输送 到血管的狭窄部位。 充盈球囊以扩张支架, 从而撑开狭窄的血管。 在 扩张过程中, 支架未发生断裂。 球囊回抽后, 血管造影观察到血管仍 然被支架撑开, 血管内超声观察到支架没有明显的回缩和移位。 整个 手术过程中未发生支架断裂或者支架塌陷的不良事件。 2年后的临床随 访已看不到支架, 说明支架主体材料完全降解。 整个植入过程中血管 没有出现再狭窄和其他炎症。 实例二
本实例二中选取的支架本体的材料是生物可降解的高分子材料聚 乳酸-羟基乙酸的共聚物。 首先, 通过注塑的方法, 将聚乳酸-羟基乙酸 共聚物注塑成成为外径 L0mm、 壁厚 0.2mm的网状支架坯型 2。 把支 架坯型 2套在一个弹性管材 (如乳胶管) 上。 然后, 把支架坯型 2和 乳胶管放入内径为 2.5mm的不锈钢套管中, 其中, 使得乳胶管的一端 封闭, 乳胶管的另一端通过高压气路与充注设备 4 相连通。 然后, 将 整个支架坯型加工系统 (包括支架坯型 2、 乳胶管和不锈钢套管)都加 热到 40°C, 同时在乳胶管中充入压强为 400Psi的高压空气。 由此, 在 乳胶管发生扩张的同时, 使支架坯型 2扩张开来。 支架坯型 2在高温 和内部压力作用下膨胀成为外径 2.5mm、壁厚 0.16mm的支架坯型。之 后, 使得支架坯型加工系统迅速冷却到 12V, 然后泄压, 再把经过上 述处理的支架坯型从系统中取出, 即得到满足要求的最终支架。 将制备完成的支架进行 XRD取向分析,发现支架的各个波杆处的 材料均发生取向, 取向度在 60%~90%之间, 取向方向沿着波杆的受力 方向。 将制备完成的支架压握在合适的球囊上, 压握后的支架直径为 1.2mm。 然后, 在 37 °C的生理盐水中把支架用球囊扩张的方式扩张到 3.0mm, 在扩张过程中, 支架没有波杆发生断裂。 球囊回撤后, 测量支 架的回弹率为 5%。测量扩张后的支架的支撑力,得到支撑力为 120KPa 左右。 将用上述方法制备的支架通过球囊输送系统输送到血管的狭窄部 位, 然后用球囊扩张的方式撑开支架, 从而支撑狭窄的血管。 手术过 程中未观察到支架的断裂。 球囊回抽后, 血管造影观察到血管仍然被 支架撑开。 整个手术过程中未发生支架塌陷的不良事件。 18 个月后通 过血管内超声进行临床随访时已看不到支架, 说明支架主体材料完全 降解。 植入支架的病变部位没有出现再狭窄和炎症反应。 由本发明的技术方法制备成的支架的径向支撑力可以达到 lOOKPa 以上, 支架扩张后的回弹率可以控制在 5%以内, 支架在扩张 过程中不容易发生断裂。 这样, 支架植入人体后在病变位置可以有效 地支撑血管, 支架撑开后不发生回缩和移位。 本发明的这种方法只是 将传统的支架加工制备方法进行创新, 而没有改变支架的原材料, 所 以对支架的生物安全性没有任何影响。 以上所述仅是本申请的一些具体实施例。 应当指出, 对于本技术 领域的普通技术人员来说, 在不脱离本申请发明原理和发明构思的前 提下, 还可以对上述实施例进行各种组合或做出若干改进和变型, 这 些组合、 改进和变型也应视为落在本申请的保护范围和发明构思之内。

Claims

1. 一种生物可降解支架的加工方法, 包括如下步骤:
步骤 1 ) : 由生物可降解材料制备生物可降解支架的坯型; 和 步骤 2 ) : 对所述坯型进行吹塑, 以使得所述坯型的每个波杆中 的材料都沿其波杆处的受力方向进行高度取向, 以制备所述生物可降 解支架。
2. 根据权利要求 1所述的生物可降解支架的加工方法, 其特征在 于:
所述步骤 2 ) 包括如下步骤:
步骤 a) : 将所述坯型放入导热性好且不易变形的管状模具中; 步骤 b ) : 将所述坯型和所述管状模具加热到一系统加热温度, 并 对所述坯型的内部施加扩张外力, 以使得所述坯型在所述系统加热温 度下且在所述扩张外力作用下扩张膨胀, 并且所述坯型扩张后的坯型 外径等于所述管状模具的内径;
步骤 c) : 在保持所述扩张外力的情况下, 使所述坯型和所述管状 模具迅速冷却到一系统冷却温度; 以及
步骤 d) : 撤除所述扩张外力, 将经过冷却处理之后的坯型从所述 管状模具中取出, 从而得到所述生物可降解支架。
3. 根据权利要求 1所述的生物可降解支架的加工方法, 其特征在 于:
所述生物可降解支架的坯型由可降解高分子材料制备而成。
4. 根据权利要求 3所述的生物可降解支架的加工方法, 其特征在 于:
所述可降解高分子材料是: 聚乳酸; 聚乙醇酸; 聚乳酸和聚乙醇 酸的共聚物; 聚己内酯; 聚二氧六环酮; 聚酸酐; 或者酪氨酸聚碳酸 酯。
5. 根据权利要求 1~4中的任一项所述的生物可降解支架的加工方 法, 其特征在于:
上述步骤 1 ) 能够通过以下任一方法来实现:
①将生物可降解材料先通过挤出或注塑的方法加工成管材, 然后 再用激光把所述管材切割成镂空的所述坯型;
②将生物可降解材料制备成丝, 然后将所述丝编织成网状的所述 坯型;
③将生物可降解材料的溶液通过析出法制备成薄膜, 然后将所述 薄膜卷绕成细丝, 再由该细丝编织成所述坯型; 或
④将生物可降解材料直接在注塑模具中注塑成所述坯型。
6. 根据权利要求 1~4中的任一项所述的生物可降解支架的加工方 法, 其特征在于:
上述步骤 1 )中的所述坯型的外径和最终形成的所述生物可降解支 架的外径的比例在 1 :1.5到 1 : 5之间, 且上述步骤 1 ) 中的所述坯型的壁 厚和最终形成的所述生物可降解支架的壁厚的比例在 1 : 1到 5: 1之间。
7. 根据权利要求 1~4中的任一项所述的生物可降解支架的加工方 法, 其特征在于:
所述加工方法还包括如下步骤:
在执行所述步骤 1 ) 之后和执行所述步骤 2 ) 之前, 对所述坯型进 行压握以使其具有更小的尺寸。
8. 根据权利要求 2所述的生物可降解支架的加工方法, 其特征在 于:
在所述步骤 b ) 中, 所述系统加热温度高于所述坯型的材料的玻璃 化转变温度, 且低于所述坯型的材料的熔融温度或粘流温度。
9. 根据权利要求 2或 8所述的生物可降解支架的加工方法, 其特征 在于:
在所述步骤 b ) 中, 使所述坯型扩张膨胀能够通过以下任一方法来 实现:
①将所述坯型套在球囊的外面, 通过在所述球囊内充入气体或者 液体而使所述球囊扩张, 从而使所述坯型扩张膨胀; 或
②将所述坯型套在弹性管材的外面, 在所述弹性管材内充入气体 或者液体而使所述弹性管材扩张, 从而使所述坯型扩张膨胀。
10. 根据权利要求 9所述的生物可降解支架的加工方法, 其特征在 于:
所述弹性管材为乳胶管、 聚酰胺或者聚醚嵌段酰胺管材。
1 1. 根据权利要求 2或 8所述的生物可降解支架的加工方法, 其特 征在于:
在所述步骤 b ) 中, 在保持所述系统加热温度的同时, 使所述扩张 外力保持一段预定时间。
12. 根据权利要求 2或 8所述的生物可降解支架的加工方法, 其特 征在于:
在所述步骤 c)中,所述系统冷却温度比所述坯型的材料的玻璃化 转变温度低 20 °C或更多。
PCT/CN2011/084081 2011-10-14 2011-12-15 一种新的生物可降解支架的加工方法 WO2013053179A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110312261.3 2011-10-14
CN2011103122613A CN102371670A (zh) 2011-10-14 2011-10-14 一种新的生物可降解支架的加工方法

Publications (1)

Publication Number Publication Date
WO2013053179A1 true WO2013053179A1 (zh) 2013-04-18

Family

ID=45791172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084081 WO2013053179A1 (zh) 2011-10-14 2011-12-15 一种新的生物可降解支架的加工方法

Country Status (2)

Country Link
CN (2) CN102371670A (zh)
WO (1) WO2013053179A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103480045B (zh) * 2013-09-10 2015-09-16 黄晚兰 全降解高分子材料心血管支架
CN104644295B (zh) 2014-12-19 2019-07-16 上海百心安生物技术有限公司 一种可吸收管腔支架及其制备方法
CN108814780A (zh) * 2015-02-16 2018-11-16 上海微创医疗器械(集团)有限公司 可降解支架及其制备方法
CN104586548A (zh) * 2015-02-16 2015-05-06 上海微创医疗器械(集团)有限公司 可降解支架及其制备方法
CN104983484B (zh) * 2015-05-26 2018-07-24 无锡市第二人民医院 一种经导管植入高弹性外支架可降解的生物瓣膜系统及制备和应用
CN106361465B (zh) * 2015-07-17 2018-11-13 上海微创医疗器械(集团)有限公司 一种可降解管及可降解支架的制造方法
CN111482776B (zh) * 2019-05-31 2022-06-03 成都辟思航空科技有限公司 一种整体式格构柱加工装置
CN110860001A (zh) * 2019-12-03 2020-03-06 中国科学院长春应用化学研究所 一种血管支架及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube
US20100256742A1 (en) * 2006-06-30 2010-10-07 Klaus Kleine Tapered Polymeric Stent And Method Of Fabricating Same
US20100289191A1 (en) * 2006-06-15 2010-11-18 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7381048B2 (en) * 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US8313687B2 (en) * 2007-09-20 2012-11-20 Kimberly-Clark Worldwide, Inc. Method of making an improved balloon cuff tracheostomy tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289191A1 (en) * 2006-06-15 2010-11-18 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US20100256742A1 (en) * 2006-06-30 2010-10-07 Klaus Kleine Tapered Polymeric Stent And Method Of Fabricating Same
US7666342B2 (en) * 2007-06-29 2010-02-23 Abbott Cardiovascular Systems Inc. Method of manufacturing a stent from a polymer tube

Also Published As

Publication number Publication date
CN105500673A (zh) 2016-04-20
CN102371670A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2013053179A1 (zh) 一种新的生物可降解支架的加工方法
CN107693854B (zh) 用于制备支架的管材及其制备方法、支架及其制备方法
WO2014094652A1 (zh) 一种生物可降解聚合物支架的制备方法
CN106901879B (zh) 用于制造压溃可恢复聚合物支架的方法
JP4889698B2 (ja) 脈管用ステント糸
CN105477690B (zh) 一种多层可降解管材、支架及其制备方法
TW201311226A (zh) 生物可吸收血管支架之製造方法
US20110260352A1 (en) Stabilizing Semi-Crystalline Polymers To Improve Storage Performance Of Medical Devices
JP2007515249A (ja) 低プロファイル吸収性ステント
JP2009507528A (ja) 繊維で強化された複合ステント
US9205575B2 (en) Medical device fabrication process including strain induced crystallization with enhanced crystallization
JP2012526622A (ja) 非晶質のポリマーまたは結晶度が非常に低いポリマーのコンストラクトからの埋込式医療機器(デバイス)の製造方法
JP5575660B2 (ja) ブローモールド成形チューブからステントを製作する方法
JP2014518793A (ja) 射出成形および吹込成形によりポリマー体内補綴物を製造するための方法およびシステム
CN102764168A (zh) 弹性形状记忆可回收支架及其制作方法和使用方法
JPH11137694A (ja) 生体内分解吸収性の形状記憶ステント
CN102429749A (zh) 一种新的生物可降解支架的加工方法
CN104644295B (zh) 一种可吸收管腔支架及其制备方法
ES2905376T3 (es) Producción de tubos de polímero reabsorbible hechos de hilos
CN108814781A (zh) 可降解支架及其制备方法
CN108814780A (zh) 可降解支架及其制备方法
US10603833B2 (en) Method to manufacture thin strut stent from bioabsorbable polymer
US20170203010A1 (en) Multi stage radial deformation for manufacturing thin strut stent from bioabsorbable polymer
CN208552143U (zh) 一种血管内支架和制品
JP5282069B2 (ja) ポリマーベースのステントアセンブリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874028

Country of ref document: EP

Kind code of ref document: A1