WO2013052981A1 - Vorrichtung zum aufbereiten von kunststoffmaterial - Google Patents

Vorrichtung zum aufbereiten von kunststoffmaterial Download PDF

Info

Publication number
WO2013052981A1
WO2013052981A1 PCT/AT2012/050153 AT2012050153W WO2013052981A1 WO 2013052981 A1 WO2013052981 A1 WO 2013052981A1 AT 2012050153 W AT2012050153 W AT 2012050153W WO 2013052981 A1 WO2013052981 A1 WO 2013052981A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
screw
opening
conveyor
mixing
Prior art date
Application number
PCT/AT2012/050153
Other languages
English (en)
French (fr)
Inventor
Klaus Feichtinger
Manfred Hackl
Original Assignee
Erema Engineering Recycling Maschinen Und Anlagen Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP12781257.6A priority Critical patent/EP2766160B1/de
Priority to AU2012323810A priority patent/AU2012323810B2/en
Application filed by Erema Engineering Recycling Maschinen Und Anlagen Gesellschaft M.B.H. filed Critical Erema Engineering Recycling Maschinen Und Anlagen Gesellschaft M.B.H.
Priority to US14/351,869 priority patent/US11931946B2/en
Priority to PL12781257T priority patent/PL2766160T3/pl
Priority to MX2014004447A priority patent/MX345434B/es
Priority to CA2851949A priority patent/CA2851949C/en
Priority to ES12781257.6T priority patent/ES2561722T3/es
Priority to RU2014119375/05A priority patent/RU2583260C2/ru
Priority to DK12781257.6T priority patent/DK2766160T3/en
Priority to SI201230490T priority patent/SI2766160T1/sl
Priority to KR1020147013026A priority patent/KR101744262B1/ko
Priority to CN201280050416.3A priority patent/CN103930248B/zh
Priority to BR112014008813-6A priority patent/BR112014008813B1/pt
Priority to JP2014534873A priority patent/JP6219829B2/ja
Priority to UAA201403663A priority patent/UA110147C2/ru
Publication of WO2013052981A1 publication Critical patent/WO2013052981A1/de
Priority to ZA2014/02101A priority patent/ZA201402101B/en
Priority to HK15101320.2A priority patent/HK1200762A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/75455Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle
    • B01F35/754551Discharge mechanisms characterised by the means for discharging the components from the mixer using a rotary discharge means, e.g. a screw beneath the receptacle using helical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/08Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within vertical containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/08Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within vertical containers
    • B02C18/086Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within vertical containers specially adapted for disintegrating plastics, e.g. cinematographic films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/22Feed or discharge means
    • B02C18/2216Discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B17/0412Disintegrating plastics, e.g. by milling to large particles, e.g. beads, granules, flakes, slices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/66Recycling the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/044Knives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/048Cutter-compactors, e.g. of the EREMA type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/501Extruder feed section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/26Scrap or recycled material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a device according to the preamble of claim 1.
  • Numerous similar devices of various designs are known from the state of the art, comprising a receptacle or cutting compactor for comminuting, heating, softening and preparing a plastic material Is to be recycled as well as a conveyor connected to it Extruder for melting the thus prepared material, the aim is to obtain a high quality end product, usually in the form of granules.
  • EP 123 771 or EP 303 929 devices are described with a receptacle and an extruder connected thereto, wherein the plastic material supplied to the receptacle crushed by rotating the crushing and mixing tools and brought into thrombus circulation and heated simultaneously by the introduced energy , This forms a mixture with sufficiently good thermal homogeneity.
  • This mixture is discharged after appropriate residence time from the receptacle in the screw extruder, promoted and thereby piast matter or melted.
  • the screw extruder is arranged approximately at the height of the crushing tools. In this way, the softened plastic particles are actively pressed or stuffed by the mixing tools into the extruder.
  • the conveying effect of the screw is reduced, and it can also lead to a partial reflux of this melt in the area of the cutting compressor or receiving container, which means that still unmelted fines adhere to the melt, thereby cooling the melt again and partially solidifies and forms in this way a schwulstianos structure or conglomerate of partially solidified melt and solid plastic particles.
  • the feeder clogged and stick the mixing and crushing tools.
  • the throughput or discharge of the conveyor or extruder is reduced since there is no longer sufficient filling of the screw.
  • the mixing and comminution tools can get stuck. As a rule, in such cases, the annex must be turned off and completely cleaned.
  • the present invention has set itself the task of overcoming the disadvantages mentioned and to improve a device of the type described above so that even sensitive or strip-like materials easily recovered from the screw and high material quality, space-saving, time-efficient and energy-saving and high Throughput can be processed or treated. Above all, filling the screw should be as free of blockage as possible.
  • the conveying direction of the mixing tools and the conveying direction of the conveyor is no longer, as known from the prior art, in the same direction, but at least slightly in opposite directions, whereby the initially mentioned Stopf soap is reduced.
  • the feed pressure on the catchment area decreases and the risk of overfilling is reduced.
  • Excess material is not stuffed or filled in this way with excessive pressure in the catchment area of the conveyor, but on the contrary excess material is even tending to be removed from there, so that while there is always sufficient material in the catchment area, but almost no pressure or only a small amount Pressure is applied.
  • the screw can be filled sufficiently and always enough material to move, without resulting in a Kochyogilung the screw and subsequently to local pressure peaks, where the material could melt.
  • the formed impulses or accumulations can be easily solved or not even formed because on the running in the direction of rotation of the mixing tools or downstream edge of the opening of the direction vector of the mixing tools and the directional vector of the conveyor in almost opposite or at least slightly opposite directions show, making an elongated strip can not bend and impose around this edge, but is carried along by the Mischtrombe in the receptacle again.
  • the Anmeiderin has found by experiments and recognized that there is a relationship between the capacity or the material offset by the mixing tool in the form of a Trombe in rotation and the volume that lies in front of the inlet opening to the screw.
  • This volume, which lies in front of the inlet opening also depends on the diameter of the screw, since this determines the type and catfish as well as the time amount of the material feed.
  • a relationship was found between the active cutting compressor volume, which is dependent on the diameter of the cutting compressor and the amount of material in the container at the level or in the region of the intake opening, which is available for discharging, which depends on the height of the intake opening and the feed characteristics significantly affects.
  • the intake behavior is substantially improved, probably as a result of the particular direction of rotation of the tools with respect to the conveying direction of the screw, and thereby the improved introduction of the material from the container located in the loading Vofumen present in the height of the intake and represents a specific part of the total amount of material in the container.
  • L k 2 d and k 2 is a constant
  • T is defined by the formula T - k 3 d, where k 3 is a constant with 0.05 ⁇ k ⁇ ⁇ 0.25, preferably 0.1 ⁇ r 3 ⁇ 0.25, in particular 0.1 ⁇ k ⁇ ⁇ 0.2.
  • the effective length is provided with a factor and SE ⁇ F - L ⁇ (idT - 7 '2 ),
  • the area immediately radially in front of the opening is defined as the area in front of the opening at which the material is just before passing through the opening, but has not yet passed through the opening.
  • the advantages mentioned above are achieved and effectively avoided any agglomeration caused by stuffing effects in the region of the intake opening.
  • the axis of rotation must not be aligned normal to the bottom surface or to the longitudinal axis of the conveyor or the screw.
  • the direction vector of the direction of rotation and the direction vector of the conveying direction lie in one, preferably horizontal, plane, or in a plane oriented normal to the axis of rotation.
  • a further advantageous embodiment results from the fact that the direction vector of the direction of rotation of the mixing and / or crushing tool with the direction vector of the conveying direction of the conveyor a hint! greater than or equal to 90 ° and less than or equal to 180 °, the angle being measured at the intersection of the two directional vectors at the edge of the aperture upstream of the direction of rotation, in particular at the most upstream point on that edge Opening.
  • that angle range is described in which the conveyor must be arranged on the receptacle in order to achieve the advantageous effects.
  • an at least slight opposing orientation of the forces acting on the material or in extreme cases to a pressure-neutral transverse orientation, at any point of the opening is the Skalarprodukf the direction vectors of the mixing tools and the worm positively, not even in a portion of the opening thus occurs to a large stuffing effect.
  • a further advantageous embodiment of the invention provides that the direction vector of the direction of rotation or movement with the direction vector of the conveying direction includes an angle between 170 ° and 180 °, measured at the intersection of the two directional vectors in the middle of the opening.
  • Such an arrangement applies, for example, when the conveyor is arranged tangentially on the cutting compressor.
  • the distance or the offset of the longitudinal axis to the radial is greater than or equal to half the inner diameter of the housing of the conveyor or the piebald. Furthermore, it may be advantageous in this sense, the distance or the offset of the longitudinal axis to the radial greater equal to 5 or 7%, even more advantageously equal to 20%, to measure the radius of the receptacle. For conveyors with an extended catchment area or a grooved or extended pocket, it may be advantageous if this distance or this offset is greater than or equal to the radius of the receptacle. In particular, this applies to cases in which the conveyor is tangentially connected to the receptacle or tangent to the cross section of the container.
  • the outermost passages of the screw advantageously do not protrude into the container.
  • the longitudinal axis of the conveyor or the screw or the longitudinal axis of the intake nearest worm or the inner wall of the housing or the envelope of the pebbles tangent to the inside of the side wall of the container wherein preferably the worm on its front page a drive is connected and at its opposite Sti nende to a arranged at the front end of the housing outlet opening, in particular an extruder head promotes.
  • conveyors is advantageously provided that the imaginary extension of the longitudinal axis of the conveyor against the conveying direction, the interior of the receptacle at least partially passes through as a secant.
  • the opening directly and directly and without a longer spacing or transfer distance e.g. a screw conveyor, is connected to the intake opening. This makes an effective and gentle transfer of material possible.
  • the front regions or front edges of the mixing and / or comminution tools which act on the plastic material and are oriented in the direction of rotation or movement, are different, curved, adjusted or arranged in comparison to in the direction of rotation or movement rear or trailing areas.
  • An advantageous arrangement provides that tools and / or knives are arranged on the mixing and / or comminution tool, which act in the direction of rotation or movement on the Kunststoffmateriai heating, crushing and / or cutting.
  • the tools and / or knives can either be fastened directly to the welie or are preferably arranged on a, in particular parallel to the bottom surface, arranged rotatable tool carrier or a carrier disk or formed therein or, optionally in one piece, integrally formed.
  • the receptacle is substantially cylindrical with a flat bottom surface and a cylinder jacket-shaped side wall oriented vertically thereto. It is also structurally simple if the axis of rotation coincides with the central center axis of the receptacle. In a further advantageous embodiment it is provided that the axis of rotation or the central center axis of the container are aligned vertically and / or normal to the bottom surface. These special geometries optimize the intake behavior in a structurally stable and simply constructed device.
  • the mixing and / or crushing tool or, if several superimposed mixing and / or crushing tools are provided, the lowest, ground next mixing and / or crushing tool, and the opening in a small Distance from the bottom surface, in particular in the region of the lowest fourth of the height of the receptacle are arranged.
  • the distance is defined and measured from the lowest edge of the opening or the intake opening to the container bottom in Randbereicn the container. Since the corner edge is formed usually rounded, the distance from the lowest edge of the opening along the imaginary extensions of the side wall down to the imaginary extension of the container base is measured to the outside.
  • Well suitable distances are 10 to 400 mm.
  • the container does not necessarily have a nikzyiindharide form, although this form is advantageous for practical and manufacturing reasons.
  • container shapes such as frusto-conical container or cylindrical container with elliptical or oval plan, must be converted to a circular cylindrical container same volume, assuming that the height of this fictitious container is equal to its diameter, container heights hereby adjusting itself Melting momentum (taking into account the safety distance) significantly exceed, are disregarded, since this excessive container height is not used and therefore has no influence on the material processing.
  • conveyor means systems with non-compressing or decompressing screws, that is to say pure conveying screws, as well as devices with compressing screws, ie extruder screws having an agglomerating or plasticizing effect.
  • extruder or extruder screw mean both extruders or screws, with which the material is completely or partially melted, as well as extruders, with which the softened material only agglomerates, but is not melted.
  • extruder or extruder screw mean both extruders or screws, with which the material is completely or partially melted, as well as extruders, with which the softened material only agglomerates, but is not melted.
  • Agg! Omerierschnecken the Materia! only briefly compressed and sheared, but not piastified.
  • the Agglomerierschnecke therefore provides at its output material which is not completely marmel, but consists of only on its surface melted particles, which are datagebackt as a sintering. In both cases, however, pressure is applied to the material via the screw and this compacted.
  • conveyors with a single screw for example single-screw or single-screw extruders
  • a single screw for example single-screw or single-screw extruders
  • conveyors with more than one screw for example doubling or multiplying conveyors or extruders, in particular with a plurality of identical screws having at least the same diameter d.
  • Fig. 1 shows a vertical section through a device according to the invention with approximately tangentially connected extruder.
  • FIG. 2 shows a horizontal section through the embodiment of FIG. 1.
  • Fig. 3 shows a further embodiment with minimum offset.
  • Fig. 4 shows a further embodiment with greater displacement.
  • Fig. 1 and Fig. 2 advantageous Schneidverêtr extruder combination for conditioning or recycling of Kunststoffmateriai has a circular cylindrical container or cutter compressor or breaker 1 with a flat, horizontal bottom surface 2 and a normal aligned, vertical, cylindrical mantle-shaped Side wall 9 on.
  • the height of the side wall 9 ⁇ measured from the bottom surface 2 to the top edge of the side wall 9 - is a parallel to the bottom surface 2 aligned, planar support disk or a tool carrier 13, which is rotatable about a central axis of rotation 10, which is also the central center axis of the container 1, in the direction of rotation 12 marked with an arrow 12.
  • the carrier disk 13 is driven by a motor 21 which is located below the container 1.
  • knives or tools, e.g. Cutting knife, 14 are arranged, which together with the carrier plate 13, the mixing and / or crushing tool 3.
  • the knives 14 are not arranged symmetrically on the support plate 13, but are particularly formed on their pointing in the direction of rotation or movement 12 front edges 22, employed or arranged to be able to act on the plastic material mechanically specific.
  • the radially outermost edges of the mixing and crushing tools 3 extend to relatively close, about 5% of the radius 1 1 of the container 1, to the inner surface of the side wall 9 zoom.
  • the container 1 has at the top an insertion opening, through which the material to be processed, for example portions of plastic films, eg by means of a conveyor in the direction of the Pfeiis is thrown.
  • the container 1 is closed and at least evacuated to a technical vacuum, the material being introduced via a lock system.
  • This good is detected by the circulating mixing and / or crushing tools 3 and in the form of a Mischtrombe 30 swirled up, the good rises along the vertical side wall 9 and falls back almost in the range of the effective container height H by gravity back in and down in the area of the container center.
  • the effective height H of the container 1 is approximately equal to its inner diameter D.
  • the container 1 thus forms a Mischtrombe 30, in which the material is swirled both from top to bottom and in the direction of rotation 12.
  • a Mischtrombe 30 in which the material is swirled both from top to bottom and in the direction of rotation 12.
  • Such a device can thus be operated only with the predetermined direction of rotation or movement 12 due to the particular arrangement of the mixing and crushing tools 3 and the knife 14 and the direction of rotation 12 can not be made without further or without additional changes, be reversed.
  • the introduced plastic material is comminuted by the circulating mixing and crushing tools 3, mixed and thereby heated by the introduced mechanical friction energy and softened, but not melted.
  • the homogenized, softened, doughy but not molten material is discharged from the container 1 through an opening 8, brought into the intake area of an extruder 5 and there by a screw 6 recorded and subsequently melted.
  • said opening 8 is formed in the side wall 9 of the container 1, through which the pretreated plastic material from the interior of the container 1 can be discharged, the material is at a tangent to the container. 1 arranged single-screw extruder 5 pass, wherein the housing 16 of the extruder 5 has a feed opening 80 lying in its jacket wall for the material to be detected by the screw 6.
  • the screw 6 can be driven by the lower front end in the drawing by a drive shown only schematically, so that the upper end of the screw 6 in the drawing can be kept free from the drive.
  • the intake opening 80 communicates with the opening 8 in material conveying or transfer connection and is in the present case directly, directly and without a longer intermediate piece or spacing connected to the opening 8. Only a very short transfer area is provided.
  • a compressing screw 6 is rotatably supported about its longitudinal axis 15.
  • the longitudinal axis 15 of the screw 6 and the extruder 5 coincide.
  • the extruder 5 conveys the material in the direction of the arrow 17.
  • the extruder 5 is a known conventional extruder in which the softened Kunststoffmateriai is compressed and thereby melted, and the melt then emerges on the opposite side of the extruder head.
  • the mixing and / or comminution tools 3 or the knives 14 are located at almost the same height or plane as the central longitudinal axis 15 of the extruder 5. The outermost ends of the blades 14 are sufficiently spaced from the webs of the screw 6.
  • the extruder 5 is tangentially connected to the container 1 or extends tangentially to its cross section.
  • the longitudinal axis 15 of the extruder 5 or the screw 6 is on the outlet side to the longitudinal axis 15 parallel, from the axis of rotation 10 of the mixing and / or crushing tool 3 in the conveying direction 17 of the extruder 5 outwardly directed radials 1 1 of the container 1 by a distance 18 offset, in the present case, the rearward extension of the longitudinal axis 15 of the extruder 5 does not penetrate the interior of the container 1, but runs just past it.
  • the distance 18 is slightly larger than the radius of the container 1, the extruder 5 is thus slightly offset to the outside or the catchment area is slightly deeper.
  • opposite is meant here any alignment of the vectors to each other which is not acute-angled, as will be explained in detail below.
  • the scalar product of a direction vector 19 of the direction of rotation 12, the tangential to the circle of the outermost point of the mixing and / or crushing tool 3 and tangential to the opening 8 passing plastic material! is aligned and in the rotational or movement direction 12 of the mixing and / or crushing tools 3, and a direction vector 17 of the conveying direction of the extruder 5, which is parallel to the central longitudinal axis 15 in the conveying direction, in each individual point of the opening 8 and in the area radially immediately in front of the opening 8, everywhere zero or negative, but nowhere positive.
  • the Skaiar from the Rambatungsvektor 19 of the direction of rotation 12 and the direction vector 17 of the conveying direction in each point of the opening 8 is negative.
  • the angle ⁇ between the directional vector 17 of the conveying direction and the directional vector of the direction of rotation 19, measured in the most upstream of the direction of rotation 12 point 20 of the opening 8 and at the most upstream edge of the opening 8, is almost maximum, about 170 ° ,
  • angles ⁇ are no longer referred to as angles ⁇ , since they are not measured in point 20.
  • Directional vector of the conveying direction 17 is about 178 ° to 180 °.
  • the device according to FIG. 2 represents the first limiting case or extreme value.
  • a very gentle stuffing action or a particularly advantageous feeding is possible and such a device is particularly sensitive
  • Fig. 3 an alternative embodiment is shown, in which the extruder 5 is not connected tangentially, but with its end face 7 to the container 1.
  • the screw 6 and the housing 16 of the extruder 5 are adapted in the region of the opening 8 to the contour of the inner wall of the container 1 and set back flush. No part of the extruder 5 protrudes through the opening 8 into the interior of the container 1.
  • the distance 18 here corresponds to about 5 to 10% of the radius 1 1 of the container 1 and about half the inner diameter d of the housing 16. This constitutesfrom thus represents the second Whitneyfail or extreme value with kieinstmögtichem offset or distance 18, wherein the rotation or the direction of movement 12 of the mixing and / or crushing tools 3 of the conveying direction 17 of the extruder 5 is at least slightly opposite and over the entire surface of the opening 8,
  • the skaiar product is exactly zero in FIG. 3 at the farthest, most upstream, point 20, the farthest upstream located, edge 20 'of the opening 8 is located.
  • the ski product positive or the angle less than 90 °.
  • local overfeeding can not take place even in a partial region of the opening 8 or, in any region of the opening 8, there can be no harmful inflated tamping action.
  • FIG. 4 shows a further alternative embodiment in which the extruder 5 is displaced slightly more downstream than in FIG. 3, but not yet tangentially as in FIGS. 1 and 2.
  • the rearward extension of the longitudinal axis 15 of the extruder 5 penetrates the interior of the container 1 in a secant manner.
  • the distance 18 is correspondingly larger than in Fig. 3, but slightly smaller than the radius 1.
  • the angle ⁇ measured at point 20 is about 150 °, whereby compared to the device of Fig. 3, the stuffing effect is reduced, which is more advantageous for certain sensitive polymers.
  • the viewed from the container 1 from right inner edge or the inner wall of the housing 16 connects tangentially to the container 1, whereby in contrast to Fig. 3 no blunt transitional edge is formed, From Figs. 1 to 4, the diameter D of the container respectively.
  • the feed volume BV of the container 1 to the screw volume SE in the region of the intake opening 80 in the ratio VS with VS BV SE, where 20 ⁇ VS ⁇ 700, preferably 50 ⁇ VS ⁇ 450, wherein the
  • the stated constants allow the device to be adapted to different materials or feed compositions with different materials in order to avoid clogging and to increase the printing set.
  • the container 1 is preferably designed as a cutting compressor to which an extruder is connected as a conveyor.
  • the diameter D is determined by the cross-sectional area of the container is converted to a circular area and the diameter of this circle is used as a container diameter.
  • D is thus the inner diameter of a nikzyiindrischen container 1 in mm or the inner diameter in mm of the same volume of volume converted fictive nikzyiindrischen container the same height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zum Vorbehandeln und anschließenden Fördern oder Plastifizieren von Kunststoffen mit einem Behälter (1) mit einem um eine Drehachse (10) drehbaren Misch- und/oder Zerkleinerungswerkzeug (3), wobei in einer Seitenwand (9) eine Öffnung (8) ausgebildet ist, durch die das Kunststoffmaterial ausbringbar ist, wobei ein Förderer (5) vorgesehen ist, mit einer in einem Gehäuse (16) rotierenden Schnecke (6). Die Erfindung ist dadurch gekennzeichnet, dass die gedachte Verlängerung der Längsachse (15) des Förderers (5) entgegen der Förderrichtung (17) an der Drehachse (10) vorbeiführt, wobei die Längsachse (15) ablaufseitig zu der zur Längsachse (15) parallelen Radialen (11) um einen Abstand (18) versetzt ist, und dass das aktive Behältervolumen (SV) zum Beschickungsvolumen (BV) des Behälters bzw. Schneidverdichters (1) in einem Verhältnis (V) mit V = SV / BV steht, wobei 4 ≤ V ≤ 30, wobei das aktive Behältervolumen (SV) mit der Forme! (I) festgelegt ist und D dem Innendurchmesser des Behälters (1) entspricht und wobei das Beschickungsvolumen (BV) nach der Formel (II) festgelegt ist, wobei H der Höhe der Einzugsöffnung (80) entspricht.

Description

Vorrichtung zum Aufbereiten von Kunstsioffmateria!
Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1. Aus dem Stand der Technik sind zahlreiche ähnliche Vorrichtungen unterschiedlicher Bauart bekannt, umfassend einen Aufnahmebehälter bzw. Schneidverdichter zum Zerkleinern, Erwärmen, Erweichen und Aufbereiten eines zu recycelnden Kunstsioffmateria Is sowie einen daran angeschlossenen Förderer bzw. Extruder zum Aufschmelzen des derart vorbereiteten Materials, Ziel ist es dabei, ein qualitativ möglichst hochwertiges Endprodukt, zumeist in Form eines Granulates, zu erhalten.
So sind beispielsweise in der EP 123 771 oder der EP 303 929 Vorrichtungen mit einem Aufnahmebehälter und einem daran angeschlossenen Extruder beschrieben, wobei das dem Aufnahmebehälter zugeführte Kunststoffmaterial durch Rotieren der Zerkleinerungs- und Mischwerkzeuge zerkleinert und in Thrombenumlauf gebracht und durch die eingebrachte Energie gleichzeitig erwärmt wird. Dadurch bildet sich eine Mischung mit ausreichend guter thermischer Homogenität aus. Diese Mischung wird nach entsprechender Verweilzeit aus dem Aufnahmebehälter in den Schneckenextruder ausgetragen, gefördert und dabei piastifiziert bzw. aufgeschmolzen. Der Schneckenextruder ist dabei etwa auf der Höhe der Zerkleinerungswerkzeuge angeordnet. Auf diese Weise werden die erweichten Kunststoffteilchen durch die Mischwerkzeuge aktiv in den Extruder gedrückt bzw. gestopft.
Die meisten dieser seit langem bekannten Konstruktionen befriedigen nicht im Hinblick auf die am Ausgang der Schnecke erhaltene Qualität des bearbeiteten Kunststoffmateria!es und/oder im Hinblick auf den Ausstoß der Schnecke. Untersuchungen haben gezeigt, dass die Anforderungen an die dem Behälter nachfolgende Schnecke, zumeist eine Plastifizierschnecke, im Laufe des Betriebes ungleich sind und dass dies darauf zurückzuführen ist, dass einzelne Partien des zu verarbeitenden Gutes im Behälter länger verweilen als andere Partien. Die mittlere Verweilzeit des Materiales im Behälter errechnet sich aus dem Füllgewicht im Behälter geteilt durch den Austrag der Schnecke pro Zeiteinheit. Diese mittlere Verweilzeit ist aber - wie erwähnt - für große Teile des zu verarbeitenden Materiales in der Regel nicht gegeben, sondern es stellen sich unregelmäßige wesentliche Abweichungen von diesem Mittelwert nach oben und nach unten ein. Diese Abweichungen können zurückzuführen sein auf unterschiedliche Beschaffenheit der in den Behälter nach und nach eingebrachten Gutpartien, z.B. unterschiedliche Beschaffenheit oder unterschiedliche Stärke des Kunststoffmateriaies, z.B. Folienreste usw., aber auch durch unkontrollierbare Zufälligkeiten.
Für thermisch und mechanisch homogenes Material stellt sich üblicherweise eine Qualitätsverbesserung des am Ausgang der Schnecke erhaltenen Gutes ein, wenn die Gangtiefe der Meteringszone der Schnecke sehr groß und die Schneckendrehzah! sehr gering gehalten wird. Wird jedoch Wert gelegt auf eine Ausstoßerhöhung der Schnecke oder eine Leistungsverbesserung etwa einer Zerreißer-Extruderkombination, dann muss die Schneckendrehzahl angehoben werden, was bedeutet, dass auch die Scherung angehoben wird. Dadurch wird aber das verarbeitete Material von der Schnecke mechanisch und thermisch höher beansprucht, d.h., dass die Gefahr besteht, dass die Molekülketten des Kunststoffmateriaies geschädigt werden. Als weiterer Nachteil kann ein höherer Verschleiß der Schnecke und ihres Gehäuses auftreten, insbesondere bei der Verarbeitung von Recyciingmaterial durch die in diesem Material enthaltenen Verunreinigungen, z.B. abrasive Teilchen, Metallteiie usw., welche stark abnützend auf die aneinandergleitenden Metaliteile der Schnecke bzw. ihrer Lagerung einwirken.
Sowohl bei langsam laufender und tief geschnittener Schnecke (große Gangtiefe) als auch bei rasch laufender Schnecke wirkt sich aber die bereits erwähnte, unterschiedliche Qualität einzelner der Schnecke zugeführter Materialpartien, z.B. unterschiedliche Flockengröße und/oder unterschiedliche Temperatur des Kunststoffmateriaies, nachteilig in Hinblick auf Inhomogenitäten des am Schneckenausgang erhaltenen Kunststoffmateriaies aus. Um diese Inhomogenitäten auszugleichen, wird in der Praxis das Temperaturprofii des Extruders angehoben, was bedeutet, dass dem Kunststoff zusätzliche Energie zugeführt werden muss, was die erwähnten thermischen Schädigungen des Kunststoffmateriaies und einen erhöhten Energiebedarf zur Foige hat. Außerdem wird dadurch das am Extruderausgang erhaltene Kunststoffmaterial in seiner Viskosität reduziert, also dünnflüssiger, was Schwierigkeiten bei der Weiterverarbeitung dieses Materiales mit sich bringt.
Daraus ist ersichtlich, dass die für den Erhalt einer guten Materialqualität am Schneckenausgang günstigen Verfahrensparameter einander widersprechen.
Es wurde zunächst versucht, dieses Problem dadurch zu lösen, indem der Durchmesser des Schneidverdichters im Verhältnis zum Durchmesser der Schnecke vergrößert wurde. Durch diese Vergrößerung des Behälters im Vergleich zu herkömmlichen Größen wurde erreicht, dass die mechanische und thermische Homogenität des im Behälter vorbehandeiten Kunststoffmateriaies vergleichmäßigt wurde. Der Grund dafür lag darin, dass das Masseverhältnis der laufend zugegebenen unbearbeiteten "kalten" Materialportionen zu der im Behälter vorhandenen, bereits teilweise bearbeiteten Materialmenge im Vergleich zu den üblicherweise vorliegenden Bedingungen geringer war und dass die mittlere Verweilzeit des Kunststoffmateriales im Behälter wesentlich erhöht wurde. Diese Verringerung des Masseverhältnisses wirkte sich günstig auf die thermische und mechanische Homogenität des aus dem Behälter in das Schneckengehäuse eintretenden Materiales aus und somit direkt auf die Qualität des Plastifikates bzw. Agglomerates am Ende der Extruder- bzw. der Agglomerierschnecke, da der Schnecke bereits Gut zumindest annähernd gleicher mechanischer und thermischer Homogenität zugeleitet wurde und daher eine solche Homogenität nicht erst durch die Schnecke erzielt werden musste. Die theoretische Verweilzeit des bearbeiteten Kunststoffmateriales im Behälter war annähernd konstant. Außerdem war die Bedienbarkeit einer solchen Anlage mit vergrößertem Behälter bezüglich der Genauigkeit der Aufgabeportionen unempfindlicher als die bekannten Anlagen.
Derartige Anlagen waren also grundsätzlich gut einsetzbar und vorteilhaft. Dennoch sind Anlagen mit Behältern bzw. Schneidverdichtem mit großen Durchmessern, z.B. von 1500 mm oder mehr, und längeren Verweilzeiten, trotz ihrer guten Funktionalität und der hohen Qualität des Rezyklats nicht optimal platzsparend und effizient.
Ferner bereiteten diese Anlagen Probleme beim Einziehen des Materials und die mengenmäßige Beschickung der Schnecke war mitunter schwierig, Diesen bekannten Vorrichtungen ist weiters gemeinsam, dass die Förder- bzw.
Drehrichtung der Misch- und Zerkieinerungswerkzeuge und damit die Richtung, in der die Materialteilchen im Aufnahmebehälter umlaufen, und die Förderrichtung des Förderers, insbesondere eines Extruders, im Wesentlichen gleich bzw. gleichsinnig sind. Diese bewusst so gewählte Anordnung war durch den Wunsch geleitet, das Material möglichst in die Schnecke zu stopfen bzw. diese zwangszufüttern. Dieser Gedanke, die Teilchen in Schneckenförderrichtung in die Förder- bzw. Extruderschnecke zu stopfen, war auch durchaus naheliegend und entsprach den gängigen Vorstellungen des Fachmannes, da die Teilchen dadurch nicht ihre Bewegungsrichtung umkehren müssen und somit keine zusätzliche Kraft für die Richtungsumkehr aufzuwenden ist. Es wurde dabei und bei davon ausgehenden Weiterentwicklungen immer danach getrachtet, eine möglichst hohe Schneckenauffüllung und eine Verstärkung dieses Stopfeffektes zu schaffen. Beispielsweise wurde auch versucht, den Einzugsbereich des Extruders konusartig zu erweitern oder die Zerkleinerungswerkzeuge sichelförmig zu krümmen, damit diese das erweichte Material spachtelartig in die Schnecke füttern können. Durch die zuiaufseltige Versetzung des Extruders von einer radialen in eine tangentiale Position zum Behälter, wurde der Stopfeffekt noch weiter verstärkt und das Kunststoffmaterial vom umlaufenden Werkzeug noch stärker in den Extruder hineingefördert bzw. -gedrückt. Derartige Vorrichtungen sind grundsätzlich funktionsfähig und arbeiten zufriedenstellend, wenngleich auch mit wiederkehrenden Problemen:
So wurde, beispielsweise bei Materialien mit einem geringen Energieinhalt, wie z.B. PET-Fasern oder -folien, oder bei Materialien mit einem frühen Klebrigkeits- oder Erweichungspunkt, wie z.B. Polymilchsäure (PLA), immer wieder der Effekt beobachtet, dass das bewusste gleichsinnige Stopfen des Kunststoffmaterials in den Einzugsbereich des Extruders oder Förderers unter Druck zu einem frühzeitigen Aufschmelzen des Materials unmittelbar nach oder auch im Einzugsbereich des Extruders bzw. der Schnecke führt. Dadurch verringert sich einerseits die Förderwirkung der Schnecke, zudem kann es auch zu einem teilweisen Rückfluss dieser Schmelze in den Bereich des Schneidverdichters bzw. Aufnahmebehälters kommen, was dazu führt, dass sich noch ungeschmolzene Fiakes an die Schmelze anhaften, dadurch die Schmelze wieder abkühlt und teilweise erstarrt und sich auf diese Weise ein geschwulstartiges Gebilde bzw. Konglomerat aus teilweise erstarrter Schmelze und festen Kunststoffteilchen bildet. Dadurch verstopft der Einzug und verkleben die Misch- und Zerkleinerungswerkzeuge. In weiterer Folge verringert steh der Durchsatz bzw. Ausstoß des Förderers bzw. Extruders, da keine ausreichende Befüllung der Schnecke mehr vorliegt. Zudem können sich dabei die Misch- und Zerkleinerungswerkzeuge festfahren. In der Regel muss in solchen Fällen die Aniage abgestellt werden und vollständig gesäubert werden.
Außerdem treten Probleme bei solchen Polymermaterialien auf, die im
Schneidverdichter bereits bis nahe an ihren Schmeizbereich erwärmt wurden. Wird hierbei der Einzugsbereich überfüllt, schmiizt das Material auf und der Einzug lässt nach.
Auch bei, meist verstreckten, streifigen, faserigen Materialien mit einer gewissen Längenausdehnung und einer geringen Dicke bzw. Steifigkeit, also beispielsweise bei in Streifen geschnittenen Kunststofffolien, ergeben sich Probleme. Dies in erster Linie dadurch, dass sich das längliche Material am ablaufseitigen Ende der Einzugsöffnung der Schnecke festhängt, wobei ein Ende des Streifens in den Aufnahmebehälter ragt und das andere Ende in den Einzugsberetch. Da sowohl die Mischwerkzeuge als auch die Schnecke gleichsinnig laufen bzw. die gleiche Förderrichtungs- und Druckkomponente auf das Material ausüben, werden beide Enden des Streifens in die gleiche Richtung zug- und druckbeaufschlagt und kann sich der Streifen nicht mehr lösen. Dies führt wiederum zu einem Anhäufen des Materials in diesem Bereich, zu einer Verengung des Querschnitts der Einzugsöffnung und zu einem schlechteren Einzugsverhalten und in wetterer Folge zu Durchsatzeinbußen. Außerdem kann es durch den erhöhten Beschickungsdruck in diesem Bereich zu einem Aufschmelzen kommen, wodurch wiederum die eingangs erwähnten Probleme auftreten. Die vorliegende Erfindung setzt sich damit zur Aufgabe, die erwähnten Nachteile zu überwinden und eine Vorrichtung der eingangs geschilderten Art so zu verbessern, dass auch empfindliche oder streifenförmige Materialien problemlos von der Schnecke eingezogen und bei hoher Materialqualität, möglichst platzsparend, zeiteffizient und energiesparend und mit hohem Durchsatz verarbeitet bzw. behandelt werden können. Vor allem soll das Füllen der Schnecke möglichst verstopfungsfrei vor sich gehen.
Diese Aufgabe wird bei einer Vorrichtung der eingangs erwähnten Art durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
Dabei ist zunächst vorgesehen, dass die gedachte Verlängerung der zentralen Längsachse des Förderers, insbesondere Extruders, wenn dieser nur eine einzige Schnecke aufweist, oder die Längsachse der der Einzugsöffnung nächstliegenden Schnecke, wenn dieser mehr als eine Schnecke aufweist, entgegen der Förderrichtung des Förderers an der Drehachse ohne diese zu schneiden vorbeiführt, wobei die Längsachse des Förderers, wenn dieser eine einzige Schnecke aufweist, oder die Längsachse der der Einzugsöffnung nächstliegenden Schnecke ablaufseitig zu der zur Längsachse paraHelen, von der Drehachse des Misch- und/oder Zerkleinerungswerkzeugs in Förderrichtung des Förderers nach außen gerichteten Radialen des Behälters um einen Abstand versetzt ist.
Damit ist die Förderrichtung der Mischwerkzeuge und die Förderrichtung des Förderers nicht mehr, wie aus dem Stand der Technik bekannt, gleichsinnig, sondern zumindest geringfügig gegensinnig, wodurch der eingangs erwähnte Stopfeffekt verringert wird. Durch die bewusste Umkehrung der Drehrichtung der Misch- und Zerkleinerungswerkzeuge im Vergleich zu bislang bekannten Vorrichtungen, nimmt der Beschickungsdruck auf den Einzugsbereich ab und es verringert sich das Risiko einer Überfüllung. Überschüssiges Material wird auf diese Weise nicht mit übermäßigem Druck in den Einzugsbereich des Förderers gestopft bzw. gespachtelt, sondern im Gegenteil wird überschüssiges Material sogar tendenziell wieder von dort entfernt, sodass zwar immer ausreichend Material im Einzugsbereich vorliegt, jedoch nahezu drucklos bzw. nur mit geringem Druck beaufschlagt wird. Auf diese Weise kann die Schnecke ausreichend befüllt werden und immer ausreichend Material einziehen, ohne dass es zu einer Überfüilung der Schnecke und in weiterer Folge zu lokalen Druckspitzen kommt, bei denen das Material aufschmelzen könnte.
Auf diese Weise wird ein Aufschmelzen des Materials im Bereich des Einzugs verhindert, wodurch sich die betriebliche Effizienz erhöht, die Wartungsinterva!le verlängern und die Stehzeiten durch anfällige Reparaturen und Säuberungsmaßnahmen verkürzt werden.
Durch die Verringerung des Beschickungsdruckes reagieren Schieber, mit denen der Befüllungsgrad der Schnecke in bekannter Weise reguliert werden kann, deutlich sensibler und der Füllgrad der Schnecke lasst sich noch genauer einstellen. Insbesondere bei schwereren Materialien, wie etwa Mahlgütern aus High-Density Polyethylen (HOPE) oder PET, lässt sich so leichter der optimale Betriebspunkt der Anlage finden.
Außerdem hat es sich als überraschend vorteilhaft erwiesen, dass Materialien, die schon bis nahe an die Schmelze erweicht wurden, besser bei dem erfindungsgemäßen gegenläufigen Betrieb eingezogen werden. Insbesondere dann, wenn das Material schon in teigigem bzw. erweichtem Zustand vorliegt, schneidet die Schnecke das Material aus dem teigigen Ring, der der Behälterwand naheliegt. Bei einer Drehrichtung in Förderrichtung der Schnecke würde dieser Ring eher weitergeschoben werden und es könnte kein Abschaben durch die Schnecke erfolgen, wodurch der Einzug nachlassen würde. Dies wird durch die erfindungsgemäße Umkehr der Drehrichtung vermieden.
Außerdem können bei der Bearbeitung der oben beschriebenen streifigen bzw. faserigen Materialien die gebildeten Verhängungen bzw. Anhäufungen leichter gelöst werden bzw. werden gar nicht erst ausgebildet, da auf der in Drehrichtung der Mischwerkzeuge ablaufseiiigen bzw. stromabwärts gelegenen Kante der Öffnung der Richtungsvektor der Mischwerkzeuge und der Richtungsvektor des Förderers in fast entgegengesetzte oder zumindest geringfügig gegensinnige Richtungen zeigen, wodurch sich ein länglicher Streifen nicht um diese Kante biegen und verhängen kann, sondern von der Mischtrombe im Aufnahmebehälter wieder mitgerissen wird.
insgesamt verbessert sich durch die erfindungsgemäße Ausgestaltung das Einzugsverhalten und vergrößert sich der Durchsatz deutlich. Das Gesamtsystem aus Schneidverdichter und Förderers wird dadurch stabiler und leistungsfähiger,
Darüber hinaus hat die Anmeiderin durch Versuche herausgefunden und erkannt, dass ein Zusammenhang zwischen dem Fassungsvermögen bzw. dem vom Mischwerkzeug in Form einer Trombe in Rotation versetzten Material und dem Volumen besteht, das vor der Eintrittsöffnung zur Schnecke liegt. Dieses vor der Eintrittsöffnung liegende Volumen hängt auch vom Durchmesser der Schnecke ab, da dieser die Art und Welse so wie die zeitliche Menge des Materialeinzuges mitbestimmt. Es wurde ein Zusammenhang zwischen dem aktiven Schneidverdichtervolumen, das vom Durchmesser des Schneidverdichters abhängig ist und der im Behälter auf der Höhe bzw. im Bereich der Einzugsöffnung befindlichen Materialmenge, die zum Austragen zur Verfügung steht, gefunden, der von der Höhe der Einzugsöffnung abhängt und das Einzugsverhalten wesentlich beeinf!usst. Sofern das angegebene Verhältnis eingehalten wird, wird das Einzugsverhalten wesentlich verbessert, wohl als Folge der in Bezug auf die Förderrichtung der Schnecke spezielle Drehrichtung der Werkzeuge, und der dadurch verbesserten Einbringung des Materials aus dem im Behälter befindlichen Beschickungsvofumen das in der Höhe der Einzugsöffnung vorliegt und einen bestimmten Teil der gesamten im Behälter befindlichen Materialmenge darstellt.
Zweckmäßig ist es, wenn die Höhe H der Einzugsöffnung der Formel H - kxd genügt, wobei d der im Bereich der Einzugsöffnung gemessene mittlere Durchmesser der Schnecke und ki eine Konstante mit 0,3 < /c, < 1,5 , vorzugsweise 0,5 < < 1,15 , ist. Damit kann ein Zusammenhang mit dem Durchmesser der Schnecke hergestellt werden. Von Vorteil ist es, wenn das Beschickungsvolumen des Behälters bzw. Schneidverdichters zum Schneckenvolumen im Bereich der Einzugsöffnung im Verhältnis VS mit VS = BV/SE steht, wobei 20 < VS < 700 , vorzugsweise 50 < VS < 450 , ist, wobei das Schneckenvolumen mit der Formel SE --- L— \ldT - Tl ) festgelegt ist und L
4
die sich in Förderrichtung erstreckend, wirksame Länge der Einzugsöffnung und T die Gangtiefe der Schnecke ist.
Um einen Bezug zum Durchmesser der Schnecke herzusteilen, kann vorgesehen sein, dass L mit der Formel L = k2d festgelegt ist und k2 eine Konstante mit
0,5 < k2 < 3,5 , vorzugsweise l < k2 < 2,8 , ist und/oder dass T mit der Formel T - k3d festgelegt ist, wobei k3 eine Konstante mit 0,05 < k} < 0,25 , vorzugsweise 0,1 < r3 < 0,25 , insbesondere 0,1 < k} < 0,2 , ist. Damit konnten weitere vorteilhafte Zusammenhänge gefunden werden, die das Einzugsverhalten optimieren lassen.
Um spezielle Materialien zu berücksichtigen kann vorgesehen sein, dass die wirksame Länge mit einem Faktor versehen ist und SE ~ F - L ~ (idT - 7'2 ) gilt,
4
wobei F - 0,9 . Dieser Faktor F berücksichtigt allenfalls vorhandene große
Steigungswinkel der Schneckenstege und spezielle Materialien.
Gemäß einer vorteilhaften Weiterentwicklung der Erfindung ist vorgesehen, dass der Förderer so am Aufnahmebehälter angeordnet ist, dass das Ska!arprodukt aus dem tangential zum Flugkreis des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs bzw. zum an der Öffnung vorbeistreichenden Kunststoiimatenal und normal zu einer Radialen des Aufnahmebehälters ausgerichteten, in Dreh- bzw. Bewegungsrichtung des Misch- und/oder Zerkleinerungswerkzeugs weisenden Richtungsvektor {Richtungsvektor der Drehrichtung) und dem Richtungsvektor der Förderrichtung des Förderers in jedem einzelnen Punkt bzw. im gesamten Bereich der Öffnung bzw. in jedem einzelnen Punkt bzw. im gesamten Bereich unmittelbar radial vor der Öffnung, null oder negativ ist. Der Bereich unmittelbar radial vor der Öffnung ist aäs derjenige Bereich vor der Öffnung definiert, bei dem das Material knapp vor dem Durchtritt durch die Öffnung steht, aber noch nicht die Öffnung passiert hat. Auf diese Weise werden die eingangs erwähnten Vorteile erzielt und werden effektiv jegliche durch Stopfeffekte bewirkte Agglomeratbildungen im Bereich der Einzugsöffnung vermieden. Insbesondere kommt es dabei auch nicht auf die räumliche Anordnung der Mischwerkzeuge und der Schnecke zueinander an, beispielsweise muss die Drehachse nicht normal zur Bodenfläche oder zur Längsachse des Förderers bzw. der Schnecke ausgerichtet sein. Der Richtungsvektor der Drehrichtung und der Richtungsvektor der Förderrichtung liegen in einer, vorzugsweise horizontalen, Ebene, bzw. in einer normal zur Drehachse ausgerichteten Ebene.
Eine weitere vorteilhafte Ausgestaltung ergibt sich dadurch, dass der Richtungsvektor der Drehrichtung des Misch- und/oder Zerkleinerungswerkzeugs mit dem Richtungsvektor der Förderrichtung des Förderers einen Winke! von größer oder gleich 90° und kleiner oder gleich 180° einschließt, wobei der Winkel im Schnittpunkt der beiden Richtungsvektoren am stromaufwärts zur Dreh- bzw. Bewegungsrichtung gelegenen Rand der Öffnung gemessen wird, insbesondere im am weitesten stromaufwärts gelegenen Punkt auf diesem Rand bzw. der Öffnung. Dadurch wird derjenige Winkelbereich beschrieben, in dem der Förderer am Aufnahmebehälter angeordnet werden muss, um die vorteilhaften Effekte zu erzielen. Dabei kommt es im gesamten Bereich der Öffnung bzw. in jedem einzelnen Punkt der Öffnung zu einer zumindest geringfügigen gegensinnigen Ausrichtung der auf das Material einwirkenden Kräfte bzw. im Extremfaii zu einer druckneutralen Querausrichtung, in keinem Punkt der Öffnung ist das Skalarprodukf der Richtungsvektoren der Mischwerkzeuge und der Schnecke positiv, nicht einmal in einem Teilbereich der Öffnung tritt somit eine zu große Stopfwirkung auf.
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Richtungsvektor der Dreh- bzw. Bewegungsrichtung mit dem Richtungsvektor der Förderrichtung einen Winkel zwischen 170° und 180° einschließt, gemessen im Schnittpunkt der beiden Richtungsvektoren in der Mitte der Öffnung. Eine solche Anordnung trifft beispielsweise zu, wenn der Förderer tangential am Schneidverdichter angeordnet ist.
Um sicherzustellen, dass keine zu große Stopfwirkung auftritt, kann vorteilhafterweise vorgesehen sein, dass der Abstand bzw. die Versetzung der Längsachse zur Radialen größer als oder gleich groß wie der halbe Innendurchmesser des Gehäuses des Förderers bzw. der Schecke ist. Weiters kann es in diesem Sinne vorteilhaft sein, den Abstand bzw. die Versetzung der Längsachse zur Radialen größer gleich 5 oder 7 %, noch vorteilhafter größer gleich 20 %, des Radius des Aufnahmebehälters zu bemessen. Bei Förderern mit einem verlängerten Einzugsbereich bzw. einer Nutenbuchse oder erweiterten Tasche kann es vorteilhaft sein, wenn dieser Abstand bzw. diese Versetzung größer als oder gleich groß wie der Radius des Aufnahmebehälters ist. Insbesondere trifft dies für Fälle zu, bei denen der Förderer tangential an den Aufnahmebehälter angeschlossen ist bzw. tangential zum Querschnitt des Behälters verläuft.
Die äußersten Gänge der Schnecke ragen vorteilhafterweise nicht in den Behälter hinein.
Dabei ist insbesondere vorteilhaft, wenn die Längsachse des Förderers bzw. der Schnecke bzw. die Längsachse der der Einzugsöffnung nächstliegenden Schnecke oder die Innenwandung des Gehäuses oder die Umhüllende der Schecke tangential zur Innenseite der Seitenwand des Behälters verläuft, wobei vorzugsweise die Schnecke an ihrer Stirnseite mit einem Antrieb verbunden ist und an ihrem gegenüberliegenden Sti nende zu einer am Stirnende des Gehäuses angeordneten Austrittsöffnung, insbesondere einem Extruderkopf, fördert.
Bei radial versetzt, jedoch nicht tangential angeordneten, Förderern ist vorteilhafterweise vorgesehen, dass die gedachte Verlängerung der Längsachse des Förderers entgegen der Förderrichtung den Innenraum des Aufnahmebehälters zumindest abschnittsweise als Sekante durchsetzt.
Es ist vorteilhaft, wenn vorgesehen ist, dass die Öffnung unmittelbar und direkt und ohne längere Beabstandung oder Übergabestrecke, z.B. einer Förderschnecke, mit der Einzugsöffnung verbunden ist. Damit ist eine effektive und schonende Materialübergabe möglich.
Die Umkehr der Drehrichtung der im Behälter umlaufenden Misch- und Zerkieinerungswerkzeuge kann keinesfalls nur willkürlich oder aus Versehen erfolgen, und man kann - weder bei den bekannten Vorrichtungen noch bei der erfindungsgemäßen Vorrichtung - die Mischwerkzeuge nicht ohne Weiteres in Gegenrichtung rotieren lassen, insbesondere deshalb nicht, da die Misch- und Zerkieinerungswerkzeuge in gewisser Weise asymmetrisch bzw. richtungsorientiert so angeordnet sind, dass sie nur auf eine einzige Seite bzw. in eine Richtung wirken. Würde man eine solche Apparatur bewusst in die falsche Richtung drehen, so würde sich weder eine gute Mischtrombe ausbilden, noch würde das Material ausreichend zerkleinert oder erwärmt werden. Jeder Schneidverdichter hat somit seine fix vorgegebene Drehrichtung der Misch- und Zerkleinerungswerkzeuge. in diesem Zusammenhang ist es besonders vorteilhaft, wenn vorgesehen ist, dass die auf das Kunststoffmaterial einwirkenden in Dreh- bzw. Bewegungsrichtung weisenden vorderen Bereiche bzw. Vorderkanten der Misch- und/oder Zerkleinerungswerkzeuge unterschiedisch ausgebildet, gekrümmt, angestellt bzw. angeordnet sind im Vergleich zu den in Dreh- bzw. Bewegungsrichtung hinteren bzw. nachlaufenden Bereichen.
Eine vorteilhafte Anordnung sieht dabei vor, dass auf dem Misch- und/oder Zerkleinerungswerkzeug Werkzeuge und/oder Messer angeordnet sind, die in Dreh- bzw. Bewegungsrichtung auf das Kunststoffmateriai erwärmend, zerkleinernd und/oder schneidend einwirken. Die Werkzeuge und/oder Messer können entweder direkt an der Welie befestigt sein oder sind vorzugsweise auf einem, insbesondere parallel zur Bodenfläche, angeordneten drehbaren Werkzeugträger bzw. einer Trägerscheibe angeordnet bzw. darin ausgebildet oder daran, gegebenenfalls einstückig, angeformt.
Grundsätzlich sind die erwähnten Effekte nicht nur bei komprimierenden Extrudern bzw. Agglomeratoren relevant, sondern auch bei nicht oder weniger komprimierenden Förderschnecken. Auch hier werden lokale Überfütterungen vermieden.
Bei einer weiteren besonders vorteilhaften Ausgestaltung ist vorgesehen, dass der Aufnahmebehälter im wesentlichen zylindrisch mit einer ebenen Bodenfläche und einer dazu vertikal ausgerichteten zylindermantelförmigen Seitenwand ist. Konstruktiv einfach ist es weiters, wenn die Drehachse mit der zentralen Mittelachse des Aufnahmebehälters zusammenfällt. Bei einer weiteren vorteilhaften Ausgestaltung ist vorgesehen, dass die Drehachse oder die zentrale Mittelachse des Behälters vertikal und/oder normal zur Bodenfläche ausgerichtet sind. Durch diese besonderen Geometrien wird das Einzugsverhalten bei einer konstruktiv stabilen und einfach aufgebauten Vorrichtung optimiert.
In diesem Zusammenhang ist es auch vorteilhaft, vorzusehen, dass das Misch- und/oder Zerkleinerungswerkzeug, oder, falls mehrere übereinander angeordnete Misch- und/oder Zerkleinerungswerkzeuge vorgesehen sind, das unterste, bodennächste Misch- und/oder Zerkleinerungswerkzeug, sowie die Öffnung in geringem Abstand zur Bodenfläche, insbesondere im Bereich des untersten Vierteis der Höhe des Aufnahmebehälters angeordnet sind. Der Abstand wird dabei definiert und gemessen von der untersten Kante der Öffnung bzw. der Einzugsöffnung bis zum Behälterboden im Randbereicn des Behälters. Da die Eckkante meist gerundet ausgebildet ist, wird der Abstand von der untersten Kante der Öffnung entlang der gedachten Verlängerungen der Seitenwand nach unten bis zur gedachten Verlängerung des Behäiterbodens nach außen gemessen. Gut geeignete Abstände sind 10 bis 400 mm.
Weiters ist es für die Bearbeitung vorteilhaft, wenn die radial äußersten Kanten der Misch- und/oder Zerkieinerungswerkzeuge bis dicht an die Seitenwand heranreichen. Der Behälter muss nicht unbedingt eine kreiszyiindrische Form aufweisen, wenngleich diese Form aus praktischen und fertigungstechnischen Gründen vorteilhaft ist. Von der Kreiszylinderform abweichende Behälterformen, etwa kegelstumpfförmige Behälter oder zylindrische Behälter mit elliptischem oder ovalem Grundriss, müssen auf einen kreiszylindrischen Behälter gleichen Fassungsvolumens umgerechnet werden, unter der Annahme, dass die Höhe dieses fiktiven Behälters gleich dessen Durchmesser ist, Behälterhöhen, die hierbei die sich einstellende Mischtrombe (unter Berücksichtigung des Sicherheitsabstandes) wesentlich übersteigen, bleiben unberücksichtigt, da diese übermäßige Behälterhöhe nicht genutzt wird und daher auf die Materialverarbeitung keinen Einfluss mehr hat.
Unter dem Begriff Förderer werden vorliegend sowohl Anlagen mit nicht komprimierenden oder dekomprimierenden Schnecken, also reine Förderschnecken, als auch Aniagen mit komprimierenden Schnecken, also Extruderschnecken mit agglomerierender oder plastifizierender Wirkung, verstanden.
Unter den Begriffen Extruder bzw. Extruderschnecke werden in vorliegendem Text sowohl Extruder bzw. Schnecken verstanden, mit denen das Material vollständig oder teilweise aufgeschmolzen wird, als auch Extruder, mit denen das erweichte Material nur agglomeriert, jedoch nicht aufgeschmolzen wird. Bei Agg!omerierschnecken wird das Materia! nur kurzzeitig stark komprimiert und geschert, nicht aber piastifiziert. Die Agglomerierschnecke liefert daher an ihrem Ausgang Material, weiches nicht vollkommen geschmoizen ist, sondern von nur an ihrer Oberfläche angeschmolzenen Teilchen besteht, die gleichsam einer Sinterung zusammengebackt sind. In beiden Fällen wird jedoch über die Schnecke Druck auf das Material ausgeübt und dieses verdichtet.
Bei den in den nachfolgenden Figuren beschriebenen Beispielen sind durchwegs Förderer mit einer einzigen Schnecke, beispielsweise Einwetien- bzw. Einschneckenextruder, dargestellt. Alternativ ist jedoch auch die Vorsehung von Förderern mit mehr als einer Schnecke, beispielsweise Doppei- oder Mehrweilenförderer oder -extruder, insbesondere mit mehreren identischen Schnecken, die zumindest gleiche Durchmesser d aufweisen, möglich.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der Beschreibung der folgenden nicht einschränkend zu verstehenden Ausführungsbeispiele des Erfindungsgegenstandes, welche in den Zeichnungen schematisch und nicht maßstabsgetreu dargestellt sind: Fig. 1 zeigt einen Vertikalschnitt durch eine erfindungsgemäße Vorrichtung mit etwa tangential angeschlossenem Extruder.
Fig. 2 zeigt einen Horizontalschnitt durch die Ausführungsform von Fig. 1.
Fig. 3 zeigt eine weitere Ausführungsform mit minimaler Versetzung.
Fig. 4 zeigt eine weitere Ausführungsform mit größerer Versetzung.
Weder die Behälter, noch die Schnecken oder die Misch Werkzeuge sind in den Zeichnungen maßstäblich, weder als solche, noch im Verhältnis zueinander. So sind z.B. in Wirklichkeit die Behälter meist größer oder die Schnecken länger, als hier dargestellt.
Die in Fig. 1 und Fig. 2 dargestellte vorteilhafte Schneidverdichter-Extruder- Kombination zum Aufbereiten bzw. Recyclieren von Kunststoffmateriai weist einen kreiszylindrischen Behälter bzw. Schneidverdichter bzw. Zerreißer 1 mit einer ebenen, horizontalen Bodenfläche 2 und einer normal dazu ausgerichteten, vertikalen, zylindermanteiförmigen Seitenwand 9 auf.
In geringem Abstand zur Bodenfiäche 2, maximal in etwa 10 bis 20 %, gegebenenfalls weniger, der Höhe der Seitenwand 9 ~ gemessen von der Bodenfläche 2 zum obersten Rand der Seitenwand 9 - ist eine parallel zur Bodenfläche 2 ausgerichtete, ebene Trägerscheibe bzw. ein Werkzeugträger 13 angeordnet, die/der um eine zentrale Drehachse 10, die gleichzeitig die zentrale Mittelachse des Behälters 1 ist, in die mit einem Pfeil 12 markierte Dreh- bzw. Bewegungsrichtung 12 drehbar ist. Die Trägerscheibe 13 ist über einen Motor 21 angetrieben, der sich unterhalb des Behälters 1 befindet. Auf der Oberseite der Trägerscheibe 13 sind Messer bzw. Werkzeuge, z.B. Schneidmesser, 14 angeordnet, die gemeinsam mit der Trägerscheibe 13 das Misch- und/oder Zerkleinerungswerkzeug 3 bilden.
Wie schematisch angedeutet, sind die Messer 14 auf der Trägerscheibe 13 nicht symmetrisch angeordnet, sondern sind auf ihren in die Dreh- bzw. Bewegungsrichtung 12 weisenden vorderen Kanten 22 besonders ausgebildet, angestellt bzw. angeordnet, um auf das Kunststoffmaterial mechanisch spezifisch einwirken zu können. Die radial äußersten Kanten der Misch- und Zerkleinerungswerkzeuge 3 reichen bis relativ nahe, etwa 5 % des Radius 1 1 des Behälters 1 , an die Innenfläche der Seitenwand 9 heran.
Der Behälter 1 besitzt oben eine Einfüliöffnung, durch die das zu verarbeitende Gut, z.B. Portionen aus Kunststofffolien, z.B. mittels einer Fördereinrichtung in Richtung des Pfeiis eingeworfen wird. Alternativ kann vorgesehen sein, dass der Behälter 1 geschlossen und zumindest auf ein technisches Vakuum evakuierbar ist, wobe das Material über ein Schleusensystemen eingebracht wird. Dieses Gut wird von den umlaufenden Misch- und/oder Zerkleinerungswerkzeugen 3 erfasst und in Form einer Mischtrombe 30 hochgewirbelt, wobei das Gut entlang der vertikalen Seitenwand 9 hochsteigt und annähernd im Bereich der wirksamen Behälterhöhe H durch Schwerkrafteinwirkung wieder nach innen und unten in den Bereich der Behältermitte zurückfällt. Die wirksame Höhe H des Behälters 1 ist annähernd gleich seinem Innendurchmesser D. im Behälter 1 bildet sich also eine Mischtrombe 30 aus, bei der das Material sowohl von oben nach unten als auch in Drehrichtung 12 herumgewirbelt wird. Eine solche Vorrichtung kann somit aufgrund der besonderen Anordnung der Misch- und Zerkleinerungswerkzeuge 3 bzw. der Messer 14 nur mit der vorgegebenen Dreh- bzw. Bewegungsrichtung 12 betrieben werden und die Drehrichtung 12 kann nicht ohne Weiteres oder ohne zusätzliche Änderungen vorzunehmen, umgedreht werden.
Das eingebrachte Kunststoffmaterial wird von den umlaufenden Misch- und Zerkleinerungswerkzeugen 3 zerkleinert, gemischt und dabei über die eingebrachte mechanische Reibungsenergie erwärmt und erweicht, jedoch nicht aufgeschmolzen. Nach einer gewissen Verweiizeit im Behälter 1 wird das homogenisierte, erweichte, teigige aber nicht geschmolzene Material, wie im Folgenden im Detail erörtert wird, durch eine Öffnung 8 aus dem Behälter 1 ausgebracht, in den Einzugsbereich eines Extruders 5 gebracht und dort von einer Schnecke 6 erfasst und in weiterer Folge aufgeschmolzen.
Auf der Höhe des im vorliegenden Fall einzigen Zerkleinerungs- und Mischwerkzeugs 3 ist in der Seitenwand 9 des Behälters 1 die besagte Öffnung 8 ausgebildet, durch die das vorbehandelte Kunststoffmaterial aus dem inneren des Behälters 1 ausbringbar ist, Das Material wird an einen tangential am Behälter 1 angeordneten Einschnecken-Extruder 5 übergeben, wobei das Gehäuse 16 des Extruders 5 eine in seiner Mantelwand liegende Einzugsöffnung 80 für das von der Schnecke 6 zu erfassende Material aufweist. Eine solche Ausführungsform hat den Vorteil, dass die Schnecke 6 vom in der Zeichnung unteren Stirnende her durch einen nur schematisch dargestellten Antrieb angetrieben werden kann, sodass das in der Zeichnung obere Stirnende der Schnecke 6 vom Antrieb freigehalten werden kann. Dies ermöglicht es, die Austrittsöffnung für das von der Schnecke 6 geförderte, plastifizierte oder agglomerierte Kunststoffmaterial an diesem oberen Stirnende anzuordnen, z.B. in Form eines nicht dargestellten Extruderkopfes. Das Kunststoffmateria) kann daher ohne Umlenkung von der Schnecke 6 durch die Austrittsöffnung gefördert werden, was bei den Ausführungsformen nach den Figuren 3 und 4 nicht ohne weiteres möglich ist.
Die Einzugsöffnung 80 steht mit der Öffnung 8 in Materialförder- bzw. Übergabeverbindung und ist im vorliegenden Fall direkt, unmittelbar und ohne längeres Zwischenstück oder Beabstandung mit der Öffnung 8 verbunden. Lediglich ein sehr kurzer Übergabebereich ist vorgesehen. Im Gehäuse 16 ist eine komprimierende Schnecke 6 um ihre Längsachse 15 drehbar gelagert. Die Längsachse 15 der Schnecke 6 und des Extruders 5 fallen zusammen. Der Extruder 5 fördert das Material in Richtung des Pfeils 17. Der Extruder 5 ist ein an sich bekannter, herkömmlicher Extruder, bei dem das erweichte Kunststoffmateriai komprimiert und dadurch aufgeschmolzen wird, und die Schmelze dann auf der gegenüberliegenden Seite am Extruderkopf austritt.
Die Misch- und/oder Zerkleinerungswerkzeuge 3 bzw. die Messer 14 liegen auf nahezu derselben Höhe bzw. Ebene wie die zentrale Längsachse 15 des Extruders 5. Die äußersten Enden der Messer 14 sind ausreichend von den Stegen der Schnecke 6 beabstandet.
Bei der Ausführungsform gemäß Fig. 1 und 2 ist der Extruder 5, wie erwähnt, tangential an den Behälter 1 angeschlossen bzw. verläuft tangential zu dessen Querschnitt. Die gedachte Verlängerung der zentralen Längsachse 15 des Extruders 5 bzw. der Schnecke 6 entgegen der Förderrichtung 17 des Extruders 5 nach hinten, führt in der Zeichnung neben der Drehachse 10 vorbei, ohne diese zu schneiden. Die Längsachse 15 des Extruders 5 bzw. der Schnecke 6 ist ablaufseitig zu der zur Längsachse 15 parallelen, von der Drehachse 10 des Misch- und/oder Zerkleinerungswerkzeugs 3 in Förderrichtung 17 des Extruders 5 nach außen gerichteten Radialen 1 1 des Behälters 1 um einen Abstand 18 versetzt, im vorliegenden Fall durchsetzt die nach hinten gedachte Verlängerung der Längsachse 15 des Extruders 5 den Innenraum des Behälters 1 nicht, sondern iäuft knapp daneben vorbei.
Der Abstand 18 ist etwas größer als der Radius des Behälters 1 , Der Extruder 5 ist damit geringfügig nach außen versetzt bzw. der Einzugsbereich ist etwas tiefer.
Unter den Begriffen „entgegengerichtet", "gegenläufig" oder „gegensinnig" wird hier jegliche Ausrichtung der Vektoren zueinander verstanden, die nicht spitzwinkelig ist, wie im folgenden im Detail erläutert wird.
Anders ausgedrückt, ist das Skalarprodukt aus einem Richtungsvektor 19 der Drehrichtung 12, der tangential zum Flugkreis des äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs 3 bzw. tangential zum an der Öffnung 8 vorbeistreichenden Kunststoffmateria! ausgerichtet ist und der in Dreh- bzw. Bewegungsrichtung 12 der Misch- und/oder Zerkleinerungswerkzeuge 3 weist, und einem Richtungsvektor 17 der Förderrichtung des Extruders 5, der in Förderichtung parallel zur zentralen Längsachse 15 verläuft, in jedem einzelnen Punkt der Öffnung 8 bzw. im Bereich radial unmittelbar vor der Öffnung 8, überall null oder negativ, nirgendwo jedoch positiv. Bei der Einzugsöffnung in Fig. 1 und 2 ist das Skaiarprodukt aus dem Rächtungsvektor 19 der Drehrichtung 12 und dem Richtungsvektor 17 der Förderrichtung in jedem Punkt der Öffnung 8 negativ.
Der Winkel α zwischen dem Richtungsvektor 17 der Förderrichtung und dem Richtungsvektor der Drehrichtung 19, gemessen im am weitesten stromaufwärts zur Drehrichtung 12 gelegenen Punkt 20 der Öffnung 8 bzw. am am weitesten stromaufwärts gelegenen Rand der Öffnung 8, beträgt, nahezu maximal, etwa 170°.
Schreitet man entlang der Öffnung 8 in Fig. 2 nach unten, also in Drehrichtung 12, weiter, so wird der stumpfe Winkel zwischen den beiden Richtungsvektoren immer größer. In der Mitte der Öffnung 8 ist der Winkel zwischen den Richtungsvektoren etwa 180° und das Skaiarprodukt maximal negativ, weiter unterhalb davon wird der Winkel sogar > 180° und das Skaiarprodukt nimmt wieder etwas ab, bleibt aber immer negativ. Diese Winkel sind allerdings nicht mehr als Winkel α bezeichnet, da sie nicht in Punkt 20 gemessen sind.
Ein in Fig. 2 nicht eingezeichneter, in der Mitte bzw. im Zentrum der Öffnung 8 gemessener Winkel ß zwischen dem Richtungsvektor der Drehrichtung 19 und dem
Richtungsvektor der Förderrichtung 17 beträgt etwa 178° bis 180°.
Die Vorrichtung gemäß Fig. 2 stellt den ersten Grenzfall bzw. Extremwert dar. Bei einer solchen Anordnung ist eine sehr schonende Stopfwirkung bzw. eine besonders vorteilhafte Fütterung möglich und ist eine solche Vorrichtung insbesondere für sensible
Materialien, die nahe dem Schmelzbereich bearbeitet werden oder für langstreifiges Gut vorteilhaft.
In Fig. 3 ist eine alternative Ausführungsform gezeigt, bei der der Extruder 5 nicht tangential, sondern mit seiner Stirnseite 7 an den Behälter 1 angeschlossen ist. Die Schnecke 6 und das Gehäuse 16 des Extruders 5 sind im Bereich der Öffnung 8 an die Kontur der Innenwand des Behälters 1 angepasst und bündig zurückversetzt. Kein Teil des Extruders 5 ragt durch die Öffnung 8 hindurch in den Innenraum des Behälters 1 hinein.
Der Abstand 18 entspricht hier etwa 5 bis 10 % des Radius 1 1 des Behälters 1 und etwa dem halben Innendurchmesser d des Gehäuses 16. Diese Ausführungsfrom stellt somit den zweiten Grenzfail bzw. Extremwert mit kieinstmögtichem Versatz bzw. Abstand 18 dar, bei dem die Dreh- bzw. Bewegungsrichtung 12 der Misch- und/oder Zerkieinerungswerkzeuge 3 der Förderrichtung 17 des Extruders 5 zumindest geringfügig entgegengerichtet ist und zwar über die gesamte Fläche der Öffnung 8,
Das Skaiarprodukt ist in Fig. 3 in demjenigen grenzwertigen, am weitesten stromaufwärts gelegenen, Punkt 20 genau null, der am, am weitesten stromaufwärts gelegenen, Rand 20' der Öffnung 8 liegt. Der Winkel α zwischen dem Richtungsvektor 17 der Förderrichtung und dem Richtungsvektor der Drehrichtung 19 ist, gemessen in Punkt 20 von Fig. 3, genau 90°. Schreitet man entlang der Öffnung 8 nach unten, also in Drehrichtung 12, weiter, so wird der Winkel zwischen den Richtungsvektoren immer größer und zu einem stumpfen Winkel > 90° und das Skalarprodukt wird gleichzeitig negativ. An keinem Punkt oder in keinem Bereich der Öffnung 8 ist das Skaiaprodukt jedoch positiv oder der Winkel kleiner als 90°. Dadurch kann nicht einmal in einem Teilbereich der Öffnung 8 eine lokale Überfütterung erfolgen bzw. kann es in keinem Bereich der Öffnung 8 zu einer schädlichen überhöhten Stopfwirkung kommen.
Darin besteht auch ein entscheidender Unterschied zu einer rein radialen
Anordnung, da in Punkt 20 bzw. an der Kante 20' bei einer voll radialen Anordnung des Extruders 5 ein Winkel α < 90° vorliegen würde und diejenigen Bereiche der Öffnung 8, die in der Zeichnung oberhalb der Radialen 1 1 bzw. stromaufwärts bzw. zuiaufseitig davon gelegen sind, hätten ein positives Skalarprodukt. Damit könnte sich in diesen Bereichen lokai aufgeschmolzenes Kunststoffgut ansammeln.
In Fig. 4 ist eine weitere alternative Ausführungsform dargestellt, bei der der Extruder 5 ablaufseitig etwas weiter versetzt ist als bei Fig. 3, jedoch noch nicht tangential wie in Fig. 1 und 2. Im vorliegenden Fail, wie auch bei Fig. 3, durchsetzt die nach hinten gedachte Verlängerung der Längsachse 15 des Extruders 5 den innenraum des Behälters 1 sekantenartig. Dies hat zur Folge, dass - gemessen in Umfangsrichtung des Behälters 1 - die Öffnung 8 breiter ist als bei der Ausführungsform nach Fig. 3. Auch der Abstand 18 ist entsprechend größer als bei Fig. 3, jedoch etwas kleiner als der Radius 1 1. Der Winkel α gemessen in Punkt 20 beträgt etwa 150°, wodurch gegenüber der Vorrichtung von Fig. 3 die Stopfwirkung verringert wird, was für gewisse sensible Polymere vorteilhafter ist. Der vom Behälter 1 aus gesehene rechte innere Rand bzw. die Innenwandung des Gehäuses 16 schließt tangential an den Behälter 1 an, wodurch im Unterschied zu Fig. 3 keine stumpfe Übergangskante ausgebildet ist, Aus den Fig. 1 bis 4 sind der Durchmesser D des Behälters bzw.
Schneidverdichters 1 , der Durchmesser d der Schnecke 6 und die wirksame Länge L der Einzugsöffnung 80 erkennbar. Es wird darauf hingewiesen, dass diese Parameter D, d und L nur illustrativ und nicht maßstabsgetreu und nicht den tatsächlichen Verhältnissen entsprechend dargesteift sind,
Es wurde anhand von Versuchsreihen gefunden, dass das aktive Behältervoiumen
SV, das heißt das aktive Volumen des Behälters 1 , zum Beschickungsvolumen BV des Behälters 1 , insbesondere dem vor der Einzugsöffnung (80) liegendem Volumen in einem Verhältnis V von V = SV l BV stehen soll, wobei 4 < V < 30 , vorzugsweise 5 < V < 25 , ist, wobei das aktive Behältervolumen SV mit der Formel SV = D'— festegelegt ist und D dem Innendurchmesser des Behälters 1 entspricht und das Beschickungsvolumen BV
TZ
nach der Formel BV = D2 // festgelegt, wobei H der Höhe der Einzugsöffnung 80
4
entspricht. Der Parameter H wird derart gewählt, dass H der Formel // = k:d entspricht wobei d der Durchmesser der Schnecke 6 und k, eine Konstante mit 0,3 < k{ < 1,5 , vorzugsweise 0,5 < £, < 1,15 , ist.
Des weiteren ist vorgesehen, dass das Beschickungsvolumen BV des Behälters 1 zum Schneckenvolumen SE im Bereich der Einzugsöffnung 80 im Verhältnis VS mit VS = BV SE steht, wobei 20 < VS < 700 , vorzugsweise 50 < VS < 450 , ist, wobei das
Schneckenvolumen SE mit der Formel SE = - T2 ) festgelegt ist. L ist die sich in
Figure imgf000019_0001
Förderrichtung 17 erstreckende, wirksame Länge der Einzugsöffnung 80 und kann mit der Formel L = k2d festgelegt werden, wobei k2 eine Konstante mit 0,5 < k2 < 3,5 , vorzugsweise 1 < k2 < 2,8 , ist, und T die Gangtiefe der Schnecke 6 ist und mit der Formel T - k^d festgelegt ist, wobei k3 eine Konstante mit 0,05 < &3 < 0,25 , vorzugsweise
0,1 < < 0,2 , ist.
Schließlich ist es zweckmäßig, wenn die wirksame Länge L mit einem Faktor F versehen ist und SE = F E—ildT ~ T2 ) gilt, wobei F mit 0,85 < F < 0,95, vorzugsweise
4
0,9, gewählt wird.
Die angegebenen Konstanten ermöglichen eine Anpassung der Vorrichtung an unterschiedliche Materialien bzw. Beschickungszusammensetzungen mit unterschiedlichen Materialien, um Verstopfungen zu vermeiden und den Drucksatz zu erhöhen.
Der Behälter 1 ist vorzugsweise als Schneidverdichter ausgebildet, an den als Förderer ein Extruder angeschlossen ist.
Bei einem Behälter 1 , der keinen kreisförmigen Querschnitt besitzt, wird der Durchmesser D bestimmt, indem die Querschnittfläche des Behälters auf eine Kreisfläche umgerechnet wird und der Durchmesser dieses Kreises als Behälterdurchmesser herangezogen wird. D ist somit der Innendurchmesser eines kreiszyiindrischen Behälters 1 in mm oder der Innendurchmesser in mm eines auf gleiches Fassungsvolumen umgerechneten fiktiven kreiszyiindrischen Behälters gleicher Höhe.

Claims

P a t e n t a n s p r ü c h e :
1. Vorrichtung zum Vorbehandein und anschließenden Fördern, Plastifizieren oder Agglomerieren von Kunststoffen, insbesondere von thermoplastischem Abfa!lkunststoff zu Recyciingzwecken, mit einem Behälter (1 ) für das zu verarbeitende Material, wobei im Behälter (1 ) zumindest ein um eine Drehachse (10) drehbares umlaufendes fvlisch- und/oder Zerkieinerungswerkzeug (3) zur Mischung, Erwärmung und gegebenenfalls Zerkleinerung des Kunststoffmaterials angeordnet ist,
wobei in einer Seitenwand (9) des Behälters (1 ) im Bereich der Höhe des oder des untersten, bodennächsten Misch- und/oder Zerkleinerungswerkzeugs (3) eine Öffnung (8) ausgebildet ist, durch die das vorbehandelte Kunststoffmaterial aus dem Inneren des Behälters (1 ) ausbringbar ist,
wobei zumindest ein Förderer (5), insbesondere ein Extruder (5), zur Aufnahme des vorbehandelten Materials vorgesehen ist, mit zumindest einer in einem Gehäuse (16) rotierenden, insbesondere piastifizierenden oder agglomerierenden, Schnecke (6), wobei das Gehäuse (16) eine an seiner Stirnseite (7) oder in seiner Mantelwand liegende Einzugsöffnung (80) für das von der Schnecke (6) zu erfassende Material aufweist, und die Einzugsöffnung (80) mit der Öffnung (8) in Verbindung steht,
dadurch gekennzeichnet, dass
die gedachte Verlängerung der zentralen Längsachse (15) des Förderers (5) oder der der Einzugsöffnung (80) nächstliegenden Schnecke (6) entgegen der Förderrichtung (17) des Förderers (5) an der Drehachse (10) ohne diese zu schneiden vorbeiführt, wobei die Langsachse (15) des Förderers (5) oder der der Einzugsöffnung (80) nächstliegenden Schnecke (6) ablaufseitig bzw. in Dreh- bzw. Bewegungsrichtung (12) des Misch- und/oder Zerkleinerungswerkzeugs (3) zu der zur Längsachse (15) paral!e!en, von der Drehachse (10) des Misch- und/oder Zerkleinerungswerkzeugs (3) in Förderrichtung (17) des Förderers (5) nach außen gerichteten Radialen (11 ) des Behälters (1 ) um einen Abstand ( 8) versetzt ist,
und dass das aktive Behältervolumen (SV) zum Beschickungsvolumen (BV) des Behälters bzw. Schneidverdichters (1 ) in einem Verhältnis (V) mit V = SVIBV steht, wobei 4 < V < 30 , vorzugsweise 5 < V < 25 , wobei das aktive Behältervolumen (SV) mit
TT
der Formel SV = D — festgelegt ist und D dem Innendurchmesser des Behälters (1 )
^ TV entspricht und wobei das Beschickungsvolumen (BV) nach der Formel BV = D2—■ II festgelegt ist, wobei H der Höhe der Einzugsöffnung (80) entspricht.
2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, dass die Höhe H der Einzugsöffnung (80) der Formel H - k,d genügt, wobei d der Durchmesser der
Schnecke (6) und k-ι ehe Konstante mit 0,3 < k, < 1,5 , vorzugsweise 0,5 < k, < 1,15 , ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Beschickungsvolumen (BV) des Behälters (1 ) zum Schneckenvolumen (SE) im Bereich der Einzugsöffnung (80) im Verhältnis (VS) mit VS = BVI SE steht, wobei 20 < VS < 700 , vorzugsweise 50 < VS < 450 , ist, wobei das Schneckenvolumen (SE) mit der Formel
SE = L—ildT - T ) festgelegt ist und L die sich in Förderrichtung (17) erstreckend,
4
wirksame Länge der Einzugsöffnung (80) und T die Gangtiefe der Schnecke (6) ist
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass L mit der Formel L = k2d festgelegt ist und k2 eine Konstante mit 0,5 < k2 < 3,5 , vorzugsweise \ < k2 < 2,8 , ist.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass T mit der Forme! T ~ k,d festgelegt ist, wobei k3 eine Konstante mit 0,05 < k < 0.25 , vorzugsweise 0,1 < k3 < 0,25 , insbesondere 0,1 < k, < 0,2 , ist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch ekennzeichnet, dass die wirksame Länge (L) mit einem Faktor (F) versehen ist und
Figure imgf000021_0001
wobei F 0,85 < F < 0,95, vorzugsweise 0,9, beträgt.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass für einen mit dem Behälter (1 ) in Verbindung stehenden Förderer (5) das Skaiarprodukt gebildet aus dem tangential zum Flugkreis des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs (3) bzw. tangential zu dem an der Öffnung (8) vorbeibewegten Kunststoffmateria! und normal zu einer Radialen (1 1 ) des Behälters (1 ) ausgerichteten, in Dreh- bzw. Bewegungsrichtung (12) des Misch- und/oder Zerkleinerungswerkzeugs (3) weisenden Richtungsvektor der Drehrichtung (19) und dem Richtungsvektor (17) der Förderrichtung des Förderers (5) in jedem einzelnen Punkt bzw. im gesamten Bereich der Öffnung (8) bzw. unmittelbar radial vor der Öffnung (8) null oder negativ ist.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Richtungsvektor der Drehrichtung (19) des radial äußersten Punktes des Misch- und/oder Zerkleinerungswerkzeugs (3) und der Richtungsvektor (17) der Förderrichtung des Förderers (5) einen Winkel (a) von größer oder gleich 90° und kleiner oder gleich 180° einschließen, gemessen im Schnittpunkt der beiden Richtungsvektoren (17,19) am bezüglich der Dreh- bzw. Bewegungsrichtung (12) des Misch- und/oder Zerkleinerungswerkzeugs (3) stromaufwärts gelegenen, zulaufseitigen Rand der Öffnung (8), insbesondere im am weitesten stromaufwärts gelegenen Punkt (20) auf diesem Rand bzw. der Öffnung (8).
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Richtungsvektor (19) der Dreh- bzw. Bewegungsrichtung (12) und der Richtungsvektor
(17) der Förderrichtung des Förderers (5) einen Winkel (ß) zwischen 170° und 180° einschließen, gemessen im Schnittpunkt der beiden Richtungsvektoren (17, 19) in der Mitte der Öffnung (8).
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Abstand (18) größer als oder gleich groß wie der halbe Innendurchmesser des Gehäuses (16) des Förderers (5) bzw. der Schnecke (6) ist, und/oder größer gleich 7 %, vorzugsweise größer gleich 20 %, des Radius des Behälters (1 ) ist oder dass der Abstand
( 18) größer als oder gleich groß wie der Radius des Behälters (1 ) ist.
1 1. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die gedachte Verlängerung der Längsachse (15) des Förderers (5) entgegen der Förderrichtung nach Art einer Sekante zum Querschnitt des Behälters (1 ) angeordnet ist und den Innenraum des Behälters (1 ) zumindest abschnittsweise durchsetzt,
12. Vorrichtung nach einem der Ansprüche 1 bis 1 1 , dadurch gekennzeichnet, dass der Förderer (5) tangential an den Behälter (1 ) angeschlossen ist bzw. tangential zum Querschnitt des Behälters (1 ) verläuft bzw. dass die Längsachse (15) des Förderers (5) bzw. der Schnecke (6) bzw. die Längsachse der der Einzugsöffnung (80) nächstliegenden Schnecke (6) oder die Innenwandung des Gehäuses (16) oder die Umhüllende der Schecke (6) tangential zur Innenseite der Seitenwand (9) des Behälters (1 ) verläuft, wobei vorzugsweise die Schnecke (6) an ihrer Stirnseite (7) mit einem Antrieb verbunden ist und an ihrem gegenüberliegenden Stirnende zu einer am Stirnende des Gehäuses (16) angeordneten Austrittsöffnung, insbesondere einem Extruderkopf, fördert.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Öffnung (8) unmittelbar und direkt und ohne wesentliche Beabstandung, insbesondere ohne Übergabestrecke oder Förderschnecke, mit der Einzugsöffnung (80) verbunden ist.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das Misch- und/oder Zerkieinerungswerkzeug (3) Werkzeuge und/oder Messer (14) umfasst, die in Dreh- bzw. Beweg u ngs rieh tu ng (12) auf das Kunststoffmateriai zerkleinernd, schneidend und erwärmend einwirken, wobei die Werkzeuge und/oder Messer (14) vorzugsweise auf oder an einem, insbesondere parallel zur Bodenfläche (2), angeordneten, drehbaren Werkzeugträger (13), insbesondere einer Trägerscheibe (13), ausgebildet oder angeordnet sind.
15. Vorrichtung nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die auf das Kunststoffmaterial einwirkenden in Dreh- bzw. Bewegungsrichtung (12) weisenden vorderen Bereiche bzw. Vorderkanten (22) der Misch- und/oder Zerkleinerungswerkzeuge (3) oder der Messer (14) unterschiedlich ausgebildet, angestellt, gekrümmt und/oder angeordnet sind im Vergleich zu den in Dreh- bzw. Bewegungsrichtung (12) hinteren bzw. nachlaufenden Bereichen.
16. Vorrichtung nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass der Behälter (1 ) im wesentlichen kreiszylindrisch mit einer ebenen Bodenfläche (2) und einer dazu vertikal ausgerichteten zylindermanteiförmigen Seitenwand (9) ausgebildet ist und/oder die Drehachse (10) der Misch- und/oder Zerkieinerungswerkzeuge (3) mit der zentralen Mittelachse des Behälters (1 ) zusammenfällt und/oder die Drehachse (10) oder die zentrale Mittelachse vertikal und/oder normal zur Bodenfläche (2) ausgerichtet sind.
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der unterste Werkzeugträger (13) bzw. das unterste der Misch- und/oder Zerkleinerungswerkzeuge (3) und/oder die Öffnung (8) bodennah in geringem Abstand zur Bodenfläche (2), insbesondere im Bereich des untersten Viertels der Höhe des Behälters (1 ), vorzugsweise in einem Abstand zur Bodenfläche (2) von 10 mm bis 400 mm angeordnet sind.
18. Vorrichtung nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Förderer (5) ein Einzelschneckenextruder (6) mit einer einzigen komprimierenden
Schnecke (6) ist oder ein Doppel- oder Mehrfachschneckenextruder ist, wobei die Durchmesser d der einzelnen Schnecken (6) untereinander gleich groß sind.
PCT/AT2012/050153 2011-10-14 2012-10-12 Vorrichtung zum aufbereiten von kunststoffmaterial WO2013052981A1 (de)

Priority Applications (17)

Application Number Priority Date Filing Date Title
BR112014008813-6A BR112014008813B1 (pt) 2011-10-14 2012-10-12 Dispositivo para o pré-tratamento e subsequente transporte, plastificação ou aglomeração de plásticos
RU2014119375/05A RU2583260C2 (ru) 2011-10-14 2012-10-12 Устройство для переработки полимерного материала
US14/351,869 US11931946B2 (en) 2011-10-14 2012-10-12 Apparatus for processing plastic material
PL12781257T PL2766160T3 (pl) 2011-10-14 2012-10-12 Urządzenie do obróbki materiału z tworzywa sztucznego
MX2014004447A MX345434B (es) 2011-10-14 2012-10-12 Dispositivo para procesar material plástico.
CA2851949A CA2851949C (en) 2011-10-14 2012-10-12 Apparatus for the pretreatment and subsequent conveying, plastification, or agglomeration of plastics for recycling purposes
ES12781257.6T ES2561722T3 (es) 2011-10-14 2012-10-12 Dispositivo para pretratar materiales sintéticos
EP12781257.6A EP2766160B1 (de) 2011-10-14 2012-10-12 Vorrichtung zum aufbereiten von kunststoffmaterial
DK12781257.6T DK2766160T3 (en) 2011-10-14 2012-10-12 An apparatus for processing plastics material
KR1020147013026A KR101744262B1 (ko) 2011-10-14 2012-10-12 플라스틱 재료의 처리를 위한 장치
SI201230490T SI2766160T1 (sl) 2011-10-14 2012-10-12 Naprava za pripravo materiala iz umetne snovi
CN201280050416.3A CN103930248B (zh) 2011-10-14 2012-10-12 用于制备合成材料的装置
AU2012323810A AU2012323810B2 (en) 2011-10-14 2012-10-12 Apparatus for processing plastic material
JP2014534873A JP6219829B2 (ja) 2011-10-14 2012-10-12 プラスチック材料処理装置
UAA201403663A UA110147C2 (uk) 2011-10-14 2012-12-10 Пристрій для обробляння пластичних матеріалів
ZA2014/02101A ZA201402101B (en) 2011-10-14 2014-03-20 Apparatus for processing plastic material
HK15101320.2A HK1200762A1 (zh) 2011-10-14 2015-02-06 用於製備合成材料的裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA1510/2011A AT512222B1 (de) 2011-10-14 2011-10-14 Vorrichtung zum aufbereiten von kunststoffmaterial
ATA1510/2011 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013052981A1 true WO2013052981A1 (de) 2013-04-18

Family

ID=47142836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2012/050153 WO2013052981A1 (de) 2011-10-14 2012-10-12 Vorrichtung zum aufbereiten von kunststoffmaterial

Country Status (23)

Country Link
US (1) US11931946B2 (de)
EP (1) EP2766160B1 (de)
JP (1) JP6219829B2 (de)
KR (1) KR101744262B1 (de)
CN (1) CN103930248B (de)
AT (1) AT512222B1 (de)
AU (1) AU2012323810B2 (de)
BR (1) BR112014008813B1 (de)
CA (1) CA2851949C (de)
DE (1) DE202012012568U1 (de)
DK (1) DK2766160T3 (de)
ES (1) ES2561722T3 (de)
HK (1) HK1200762A1 (de)
HU (1) HUE026896T2 (de)
MX (1) MX345434B (de)
PL (1) PL2766160T3 (de)
PT (1) PT2766160E (de)
RU (1) RU2583260C2 (de)
SI (1) SI2766160T1 (de)
TW (1) TWI524977B (de)
UA (1) UA110147C2 (de)
WO (1) WO2013052981A1 (de)
ZA (1) ZA201402101B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515363A1 (de) * 2014-01-28 2015-08-15 Erema Zerkleinerungswerkzeug

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504709B1 (de) * 2006-11-23 2008-09-15 Erema Verfahren und vorrichtung zur einbringung von zusatzstoffen
AT511362B1 (de) 2010-04-14 2014-01-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512207B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512212B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512145B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512146B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512209B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512205B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512223B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512208B1 (de) * 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512148B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512149B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123771A1 (de) 1983-04-27 1984-11-07 EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H. Vorrichtung zum Aufbereiten von thermoplastischem Kunststoffgut
EP0303929A2 (de) 1987-08-18 1989-02-22 Indupack Ag Vorrichtung zum Aufbereiten thermoplastischer Kunststoffgüter
EP1233855A1 (de) * 1999-12-02 2002-08-28 BACHER, Helmut Vorrichtung zum vorbehandeln und anschliessenden plastifizieren oder agglomerieren von kunststoffen
EP1273412A1 (de) * 2001-07-02 2003-01-08 Magma Trade di Mauro Magni &amp; C.snc Verfahren und Vorrichtung zum Herstellen von gefüllten thermoplastischen Polymeren
EP1628813A1 (de) * 2003-06-05 2006-03-01 BACHER, Helmut Vorrichtung zur aufbereitung von kunststoffmaterial zu recyclingzwecken

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2927007A (en) 1957-04-17 1960-03-01 Braunschweigische Maschb Ansta Apparatus for the treatment of animal and vegetable materials
DE2224209C3 (de) 1972-05-18 1982-12-30 Buckau-Walther AG, 4048 Grevenbroich Vorrichtung zum Auswerfen der trockenen, ausgelaugten Schnitzel aus einem Diffusionsturm
SU536062A1 (ru) 1974-01-04 1976-11-25 Научно-Исследовательский Конструкторско-Технологический Институт Шинной Промышленности Устройство дл измельчени эластичных полимерных материалов
AT354076B (de) * 1978-03-02 1979-12-27 Krauss Maffei Austria Vorrichtung zum aufbereiten von thermo- plastischem kunststoffgut, wie folien, hohl- koerper, splitter od.dgl.
DE2839446C2 (de) 1978-09-11 1980-09-25 Thyssen Industrie Ag, 4300 Essen Vorrichtung zum Verdichten und Agglomerieren von Kunststoffabfällen
AT368737B (de) 1980-07-31 1982-11-10 Oesterr Schiffswerften Vorrichtung zum aufbereiten von thermoplastischem kunststoffgut
DE3231237A1 (de) 1982-08-23 1984-02-23 Dr. Herfeld GmbH & Co KG, 5982 Neuenrade Verfahren zum verdichten von thermoplastischem kunststoffmaterial
GB2145351A (en) 1983-08-24 1985-03-27 Howden James & Co Ltd Pulverizer
AT385234B (de) 1984-08-01 1988-03-10 Paracon Extrusionstech Gmbh Vorrichtung zum aufbereiten von thermoplastischem kunststoffgut
AT387747B (de) 1986-10-10 1989-03-10 Erema Vorrichtung zum aufbereiten von kunststoffgut
DE8716077U1 (de) 1987-12-04 1988-02-11 Plastmachines Gelderland, 8039 Puchheim Vorrichtung zum Aufbereiten von thermoplastischem Kunststoffgut
JPH07112708B2 (ja) 1991-05-02 1995-12-06 ワイケイケイ株式会社 射出成形機における着色成形材料の自動変換供給装置
AT398772B (de) 1992-04-30 1995-01-25 Erema Verfahren und vorrichtung zum recycling von begastem kunststoffmaterial
JP2654721B2 (ja) 1993-06-08 1997-09-17 ヘルムト バッケル 熱可塑性合成プラスチック材料をガス抜きする装置
AT400315B (de) 1994-03-01 1995-12-27 Bacher Helmut Vorrichtung zum entgasen von thermoplastischem kunststoff
JPH07148736A (ja) 1993-11-30 1995-06-13 Tomomichi Uchida 射出成型機よりの廃プラ材の折断装置
AU676108B2 (en) * 1993-12-21 1997-02-27 Helmut Bacher Device for processing thermoplastic materials
US5783225A (en) 1993-12-21 1998-07-21 Bacher; Helmut Apparatus for processing thermoplastic synthetic plastics material
AT405726B (de) 1995-04-11 1999-11-25 Bacher Helmut Vorrichtung zum aufbereiten thermoplastischen kunststoffgutes
EP0859693B1 (de) 1995-11-11 2000-04-26 Schäfer Elektrotechnik - Sondermaschinen Verfahren und vorrichtung zum verarbeiten von bauteilen aus mischkunststoffen und damit vermischten anderen baustoffen sowie deren anwendung
JPH1142641A (ja) * 1997-07-29 1999-02-16 Sugihara Hosei Kogyo Kk 廃プラスチックの再生法および再生品
IT1295628B1 (it) * 1997-10-17 1999-05-24 Gamma Meccanica Srl Apparecchiatura per l'alimentazione di un estrusore a coclea con materiale plastico sminuzzato.
AT407235B (de) 1999-04-23 2001-01-25 Bacher Helmut Vorrichtung zum kontinuierlichen recyclen von kunststoffmaterial, vorzugsweise polyester
AT407970B (de) * 1999-06-02 2001-07-25 Bacher Helmut Vorrichtung und verfahren zum aufbereiten von, insbesondere thermoplastischem, kunststoffmaterial
JP2001026019A (ja) 1999-07-14 2001-01-30 Sintokogio Ltd 廃プラスチックの塗料除去装置における温度制御方法および廃プラスチックの塗料除去装置。
JP4073580B2 (ja) 1999-07-19 2008-04-09 新東工業株式会社 塗膜付き樹脂部品の再生処理装置
AT411161B (de) 1999-09-22 2003-10-27 Bacher Helmut Verfahren und vorrichtung zum recyclen von pet-gut
AT412623B (de) 2000-04-26 2005-05-25 Bacher Helmut Vorrichtung und verfahren zum aufbereiten von thermoplastischem kunststoffgut
US20020125600A1 (en) 2000-10-31 2002-09-12 David Horne Plastic recycling system and process
AT410298B (de) 2001-06-11 2003-03-25 Bacher Helmut Vorrichtung zur befüllung einer in einem gehäuse gelagerten schnecke und verfahren zum betrieb einer solchen vorrichtung
DE10140215A1 (de) 2001-08-16 2003-02-27 Novum 2000 Gmbh Vorrichtung zur Aufbereitung von Kunststoffen
AT411235B (de) 2002-06-05 2003-11-25 Bacher Helmut Vorrichtung zur aufbereitung von thermoplastischem kunststoffmaterial
AT411038B (de) 2002-06-10 2003-09-25 Bacher Helmut Vorrichtung zur behandlung von kunststoffgut
AT503334B1 (de) 2003-04-01 2010-06-15 Erema Verfahren und vorrichtung zur plastifizierung von kunststoffmaterial
AT413512B (de) * 2003-06-05 2006-03-15 Helmut Bacher Vorrichtung zur aufbereitung von kunststoffmaterial zu recyclingzwecken
AT413199B (de) 2004-03-17 2005-12-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT413673B (de) 2004-07-16 2006-04-15 Erema Vorrichtung und verfahren zur aufbereitung von thermoplastischem, zu recycelndem kunststoffmaterial
US20070102550A1 (en) 2005-11-07 2007-05-10 Lin Ping H Plastic grain cutting and transporting mechanism
AT503014B1 (de) 2006-04-27 2007-07-15 Schulz Helmuth Vorrichtung zum extrudieren von thermoplastischem kunststoffgut
AT504326B8 (de) 2006-10-30 2008-09-15 Next Generation Recyclingmasch Vorrichtung zum aufbereiten von thermoplastischem kunststoffmaterial
AT504709B1 (de) 2006-11-23 2008-09-15 Erema Verfahren und vorrichtung zur einbringung von zusatzstoffen
AT504854B1 (de) 2007-02-15 2012-08-15 Erema Verfahren und vorrichtung zur aufbereitung eines materials
AT505595B1 (de) 2007-08-14 2009-04-15 Erema Verfahren und vorrichtung zur behandlung von kunststoffmaterial
AT506489B1 (de) 2008-02-14 2010-12-15 Erema Verfahren und vorrichtung zum spritzgiessen von kunststoffmaterial
AT508951B1 (de) 2009-04-17 2012-03-15 Erema Verfahren und anordnung zur recyclierung von kunststoff
AT11398U1 (de) 2009-08-20 2010-10-15 Engel Austria Gmbh 3-zonen-plastifizierschnecke mit mischteil
EP2316562A1 (de) 2009-10-29 2011-05-04 Bühler AG Vorrichtung und Verfahren zur Behandlung eines Schüttguts
AT511362B1 (de) 2010-04-14 2014-01-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT509323B1 (de) 2010-04-16 2011-08-15 Erema Verfahren und vorrichtung zur aufbereitung und reinigung eines polymermaterials
RU98971U1 (ru) * 2010-06-01 2010-11-10 Государственное образовательное учреждение высшего профессионального образования "Дальневосточный государственный технический университет (ДВПИ имени В.В. Куйбышева)" Устройство для переработки термопластов
AT512205B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512148B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512147B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512208B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512223B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512149B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512145B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512212B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512207B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512146B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial
AT512209B1 (de) 2011-10-14 2015-02-15 Erema Vorrichtung zum aufbereiten von kunststoffmaterial

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0123771A1 (de) 1983-04-27 1984-11-07 EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H. Vorrichtung zum Aufbereiten von thermoplastischem Kunststoffgut
EP0303929A2 (de) 1987-08-18 1989-02-22 Indupack Ag Vorrichtung zum Aufbereiten thermoplastischer Kunststoffgüter
EP1233855A1 (de) * 1999-12-02 2002-08-28 BACHER, Helmut Vorrichtung zum vorbehandeln und anschliessenden plastifizieren oder agglomerieren von kunststoffen
EP1273412A1 (de) * 2001-07-02 2003-01-08 Magma Trade di Mauro Magni &amp; C.snc Verfahren und Vorrichtung zum Herstellen von gefüllten thermoplastischen Polymeren
EP1628813A1 (de) * 2003-06-05 2006-03-01 BACHER, Helmut Vorrichtung zur aufbereitung von kunststoffmaterial zu recyclingzwecken

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515363A1 (de) * 2014-01-28 2015-08-15 Erema Zerkleinerungswerkzeug
AT515363B1 (de) * 2014-01-28 2018-12-15 Erema Eng Recycling Maschinen & Anlagen Gmbh Zerkleinerungswerkzeug

Also Published As

Publication number Publication date
RU2583260C2 (ru) 2016-05-10
SI2766160T1 (sl) 2016-04-29
PT2766160E (pt) 2016-03-31
CA2851949A1 (en) 2013-04-18
JP6219829B2 (ja) 2017-10-25
BR112014008813B1 (pt) 2020-01-07
KR20140079482A (ko) 2014-06-26
AT512222B1 (de) 2015-02-15
AU2012323810B2 (en) 2015-07-30
RU2014119375A (ru) 2015-11-20
MX2014004447A (es) 2014-09-22
EP2766160A1 (de) 2014-08-20
CN103930248B (zh) 2017-06-27
PL2766160T3 (pl) 2016-06-30
BR112014008813A2 (pt) 2017-04-25
JP2014534094A (ja) 2014-12-18
US20140295016A1 (en) 2014-10-02
US11931946B2 (en) 2024-03-19
ES2561722T3 (es) 2016-02-29
AT512222A1 (de) 2013-06-15
KR101744262B1 (ko) 2017-06-07
AU2012323810A1 (en) 2014-05-15
HK1200762A1 (zh) 2015-08-14
UA110147C2 (uk) 2015-11-25
EP2766160B1 (de) 2015-12-16
TWI524977B (zh) 2016-03-11
CA2851949C (en) 2017-08-15
MX345434B (es) 2017-01-31
DK2766160T3 (en) 2016-03-14
HUE026896T2 (en) 2016-07-28
ZA201402101B (en) 2015-03-25
DE202012012568U1 (de) 2013-06-10
TW201332732A (zh) 2013-08-16
CN103930248A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
EP2766165B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766160B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766166B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766159B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766167B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2768645B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766162B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766164B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766157B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766161B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial
EP2766158B1 (de) Vorrichtung zum aufbereiten von kunststoffmaterial

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12781257

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2851949

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014534873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/004447

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14351869

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014119375

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20147013026

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012781257

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012323810

Country of ref document: AU

Date of ref document: 20121012

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014008813

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014008813

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140411