WO2013051600A1 - Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode - Google Patents

Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode Download PDF

Info

Publication number
WO2013051600A1
WO2013051600A1 PCT/JP2012/075633 JP2012075633W WO2013051600A1 WO 2013051600 A1 WO2013051600 A1 WO 2013051600A1 JP 2012075633 W JP2012075633 W JP 2012075633W WO 2013051600 A1 WO2013051600 A1 WO 2013051600A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
resin composition
curable resin
composition according
group
Prior art date
Application number
PCT/JP2012/075633
Other languages
French (fr)
Japanese (ja)
Inventor
井手 正仁
直人 ▲高▼木
和章 金井
修平 尾崎
洋 大越
聡明 射場
平林 和彦
岩原 孝尚
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201280049280.4A priority Critical patent/CN103842442B/en
Priority to JP2013537530A priority patent/JP6043292B2/en
Publication of WO2013051600A1 publication Critical patent/WO2013051600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/296Organo-silicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a curable resin composition, a curable resin composition tablet, a molded body, a semiconductor package, a semiconductor component, and a light emitting diode.
  • packages using curable resins of various shapes are applied to semiconductors.
  • Various metal materials are used for these packages in order to make electrical connection between the semiconductor and the outside of the package, to maintain the strength of the package, or to transfer heat generated from the semiconductor to the outside of the package.
  • Patent Documents 1 and 2 In that case, it is not possible to reduce the warp as described above, and the problem of warp becomes important.
  • an object of the present invention is to provide a curable resin composition having a low linear expansion coefficient and giving a tough cured product, and the warpage integrally formed with a metal using the composition is reduced. And a tough semiconductor package and a semiconductor manufactured using the same.
  • the present invention has the following configuration. (1). (A) a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule; (B) a compound containing at least two SiH groups in one molecule; (C) a hydrosilylation catalyst, (D) a silicone compound containing at least one carbon-carbon double bond having reactivity with SiH group in one molecule and having a molecular weight of 1000 or more, and (E) inorganic filler, Is contained as an essential component. Curable resin composition characterized by the above-mentioned. (2).
  • the curable resin composition according to (1) further comprising (Z) an organic compound containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • (3). The curable resin composition according to (1) or (2), wherein the component is a linear polysiloxane having a vinyl group at its terminal.
  • (4). The curable resin composition according to any one of (1) to (3), wherein the component has a weight average molecular weight of 2,000 or more and 1,000,000 or less.
  • (6). The curable resin composition according to any one of (1) to (5), further comprising (F) a white pigment. (7).
  • Tg of the cured product obtained by thermally curing the mixture of the components (A) to (C) and (Z) is in the range of 30 ° C. to 100 ° C.
  • the curable resin composition according to any one of the above. 24).
  • a cured product obtained by thermosetting the mixture of the components (A) to (C) and the (Z) component has a storage elastic modulus measured in a tensile mode at a frequency of 10 Hz at 150 ° C. within a range of 20 MPa to 100 MPa.
  • the curable resin composition according to (23). The curable resin composition according to (23).
  • a tablet comprising the curable resin composition according to any one of (6) to (26), wherein at least one of the component (A) and the component (B) has a viscosity at 23 ° C. of 50 Pa seconds or less.
  • the total content of component (E) and component (F) is 70 to 95% by weight,
  • grains of 12 micrometers or less to the sum total of (E) component and (F) component is 40 volume% or more,
  • the tablet characterized by the above-mentioned. (28).
  • a molded product obtained by curing the curable resin composition according to any one of (1) to (25), and having a light reflectance at a surface wavelength of 480 nm of 90% or more.
  • (34) A semiconductor component manufactured using the semiconductor package described in any one of (33).
  • (35) A light-emitting diode manufactured using the semiconductor package according to any one of (33) to (33).
  • curable resin composition of the present invention If used, a curable resin composition having a low linear expansion coefficient and giving a tough cured product can be obtained. A semiconductor package with reduced warpage and excellent toughness and a semiconductor manufactured using the same can be manufactured.
  • the curable resin composition of the present invention is (A) a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule; (B) a compound containing at least two SiH groups in one molecule; (C) a hydrosilylation catalyst, (D) a silicone compound containing at least one carbon-carbon double bond having reactivity with a SiH group in one molecule and having a molecular weight of 1000 or more, and (E) A curable resin composition containing an inorganic filler as an essential component.
  • the component (A) can be used without particular limitation as long as it is a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  • the carbon-carbon double bond in component (A) preferably has a CH 2 ⁇ CH—Si type structure directly bonded to a silicon atom. This is because when the curable resin composition of the present invention is cured by a hydrosilylation reaction, the structure is highly active with respect to the hydrosilylation reaction, and no side reaction is involved. Is easy.
  • the component corresponding to the component (A) described in Patent Document 3 described above becomes a carbon-carbon double bond of a general organic compound not containing silicon, so that the isomerization reaction to an internal olefin is performed during hydrosilylation. Inevitable as a side reaction. Once the internal olefin is generated, the activity for hydrosilylation reaction is extremely reduced, and there are concerns about problems such as deterioration of mechanical properties and expression of surface tackiness associated with a decrease in reaction rate.
  • the proportion of Si—C bonds (bonding distance: 1.91 mm; C—C bond distance: 1.50 mm) constituting the crosslinked structure of the cured product obtained by curing the curable resin composition of the present invention is as described above. Since it increases compared with the hardened
  • the component (A) is preferably one containing 0.001 mol or more of carbon-carbon double bond having reactivity with the SiH group from 1 g of the component (A) from the viewpoint of further improving the heat resistance. Those containing 0.003 mol or more per gram are more preferable, and those containing 0.005 mol or more are more preferable.
  • the number of carbon-carbon double bonds having reactivity with the SiH group of component (A) should be at least 2 on average per molecule, but it should exceed 2 if it is desired to further improve the mechanical strength. It is preferable that the number is 3 or more. Conversely, when it is desired to give flexibility or toughness to the cured product, brittleness may appear when the number is 3 or more, and thus the number close to 2 on average is desirable.
  • the number of carbon-carbon double bonds having reactivity with the SiH group of component (A) is 1 or less per molecule, a crosslinked structure is obtained even if it reacts with component (B), resulting in a graft structure. Not.
  • the molecular weight of the component (A) is less than 1000.
  • the molecular weight is preferably less than 900, more preferably less than 700, and even more preferably less than 500.
  • the component (A) in order to obtain uniform mixing with other components and good workability, it is preferably a liquid at 23 ° C., and its viscosity is less than 1000 poise at 23 ° C. Preferably, those having 500 poises or less are more preferred, those having less than 300 poises are further preferred, and those having less than 30 poises are particularly preferred.
  • the viscosity can be measured with an E-type viscometer.
  • a part or all of the phenyl group may be replaced with the following aryl group.
  • aryl groups include naphthyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2 -Propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, 4-butylphenyl group, 3-isobutyl Phenyl group, 4-isobutylphenyl group, 3-tbutylphenyl group, 4-tbutylphenyl group, 3-pentylphenyl group, 4-pentylphenylphenyl
  • (Mixing of component (A)) (A) component can be used individually or in mixture of 2 or more types.
  • the component (Z) is an organic compound containing at least two carbon-carbon double bonds having reactivity with the SiH group in one molecule, and is a compound different from the component (A).
  • the component (Z) may be used in combination with the component (A).
  • organic compound examples include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, Diallylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isoanurate, diallyl monomethyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes (with a purity of 50 to 100%) , Preferably having a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof,
  • Aliphatic chain polyene compounds such as butadiene, isoprene, octadiene and decadiene, aliphatic cyclic polyene compounds such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene, vinylcyclopentene, vinylcyclohexene And substituted aliphatic cyclic olefin compound systems.
  • triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monomethyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes (purity 50 to 100%, preferably 80 to 100%), preferably divinylbiphenyl is used
  • (A ) It is preferably in the range of 5 to 50 parts by weight, more preferably in the range of 10 to 45 parts by weight, and in the range of 15 to 40 parts by weight with respect to 100 parts by weight of the component. Further preferred.
  • the component (B) is a compound containing at least two SiH groups in one molecule.
  • the component (B) is not particularly limited as long as it is a compound containing at least two SiH groups in one molecule.
  • it is a compound described in WO 96/15194, and at least 2 in one molecule. Those having a single SiH group can be used.
  • R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10).
  • Cyclic organopolysiloxane having at least two SiH groups in one molecule Is preferred.
  • the substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H and O, more preferably a hydrocarbon group, and a methyl group. Further preferred.
  • the compound represented by the general formula (VI) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane from the viewpoint of availability.
  • the molecular weight of the component (B) is not particularly limited, and any one can be suitably used. However, the viewpoint that the fluidity is more easily expressed and the powder such as the component (E) and the component (F) is easily mixed uniformly. Are preferably those having a low molecular weight. In this case, the lower limit of the preferred molecular weight is 50, more preferably 100, still more preferably 150. The upper limit of the molecular weight is preferably 100,000, more preferably 5,000, still more preferably 2,000, and particularly preferably 1,500.
  • the component (B) in order to facilitate uniform mixing with other components, particularly powders such as the component (E) and the component (F), more specifically, heating above the melting point for uniform mixing.
  • the liquid is preferably liquid at 23 ° C., and its viscosity is preferably 50 Pa seconds or less at 23 ° C., more preferably 20 Pa seconds or less, and more preferably 5 Pa seconds or less. Further preferred. The viscosity can be measured with an E-type viscometer.
  • Component (B) can be used alone or in combination of two or more.
  • component (B) (B) From the viewpoint that the problem of outgas from the curable resin composition that can be reduced in volatility of the component is less likely to occur, and from the viewpoint of giving practical strength and toughness to the cured product obtained from the composition. It is more preferable than a compound composed of only a siloxane skeleton to have a component that is substantially non-functional and has a siloxane skeleton in addition to a skeleton derived from an organic compound.
  • the component (B) is composed of an organic compound ( ⁇ ) containing at least one carbon-carbon double bond having reactivity with the SiH group in one molecule and one molecule. It is preferable that the compound ( ⁇ ) having at least two SiH groups can be obtained by a hydrosilylation reaction.
  • the same component ( ⁇ 1) as the component (Z) that can be used in combination with the component (A) can be used.
  • the component ( ⁇ 1) is used, the resulting cured product has a high crosslink density and tends to be a cured product having high mechanical strength.
  • an organic compound ( ⁇ 2) containing one carbon-carbon double bond having reactivity with the SiH group in one molecule can also be used.
  • the ( ⁇ 2) component is used, the obtained cured product tends to have low elasticity.
  • the component ( ⁇ 2) is not particularly limited as long as it is an organic compound containing one carbon-carbon double bond having reactivity with the SiH group in one molecule.
  • the bonding position of the carbon-carbon double bond having reactivity with the SiH group of the ( ⁇ 2) component is not particularly limited and may be present anywhere in the molecule.
  • the ( ⁇ 2) component compound can be classified into a polymer compound and a monomer compound.
  • the polymer compound include polysiloxane, polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, polyacrylate ester, polyamide, phenol-formaldehyde ( Phenol resin type) and polyimide type compounds can be used.
  • monomer compounds include aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene: aliphatic hydrocarbons such as straight-chain and alicyclics: heterocyclic compounds, and silicon-based compounds. Examples thereof include compounds and mixtures thereof.
  • the carbon-carbon double bond having reactivity with the SiH group of the component ( ⁇ 2) is not particularly limited, but the following general formula (I)
  • a group represented by the formula (wherein R 1 represents a hydrogen atom or a methyl group) is preferred from the viewpoint of reactivity.
  • R 1 represents a hydrogen atom or a methyl group
  • An alicyclic group represented by the formula (wherein R 2 represents a hydrogen atom or a methyl group) is preferred from the viewpoint that the heat resistance of the cured product is high.
  • R 2 represents a hydrogen atom or a methyl group
  • the alicyclic group represented by is particularly preferable.
  • the carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton portion of the ( ⁇ 2) component, or may be covalently bonded through a divalent or higher substituent.
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms. Examples of these substituents include
  • divalent or higher valent substituents may be connected by a covalent bond to constitute one divalent or higher valent substituent.
  • groups of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group,
  • component ( ⁇ 2) examples include propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-undecene, Idemitsu Petrochemical Co., Ltd. linearene, 4,4-dimethyl-1-pentene, 2-methyl-1-hexene, 2,3,3-trimethyl-1-butene, 2,4,4-trimethyl-1-pentene, etc.
  • Chain aliphatic hydrocarbon compounds such as cyclohexene, methylcyclohexene, methylenecyclohexane, norbornylene, ethylidenecyclohexane, vinylcyclohexane, camphene, carene, ⁇ -pinene, ⁇ -pinene, etc.
  • Aromatic hydrocarbon compounds such as 4-phenyl-1-butene, allyl ethers such as alkyl allyl ether and allyl phenyl ether, glycerin monoallyl ether, ethylene glycol monoallyl ether, 4-vinyl-1,3- Aliphatic compounds such as dioxolan-2-one, aromatic compounds such as 1,2-dimethoxy-4-allylbenzene and o-allylphenol, monoallyl dibenzyl isocyanurate, monoallyl diglycidyl isocyanurate, etc.
  • Aromatic hydrocarbon compounds such as 4-phenyl-1-butene, allyl ethers such as alkyl allyl ether and allyl phenyl ether, glycerin monoallyl ether, ethylene glycol monoallyl ether, 4-vinyl-1,3- Aliphatic compounds such as dioxolan-2-one, aromatic compounds such as 1,2-dimethoxy-4-allylbenzene and o-ally
  • Substituted isocyanurates silicon compounds such as vinyltrimethylsilane, vinyltrimethoxysilane, and vinyltriphenylsilane.
  • polyether resins such as one-end allylated polyethylene oxide and one-end allylated polypropylene oxide
  • hydrocarbon resins such as one-end allylated polyisobutylene, one-end allylated polybutyl acrylate, one-end allylated polymethyl methacrylate
  • examples thereof also include polymers or oligomers having a vinyl group at one end, such as acrylic resins.
  • the structure of the ( ⁇ 2) component may be linear or branched, and the molecular weight is not particularly limited, and various types can be used.
  • the molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, and more preferably 1.5 or less in that the viscosity of the mixture is low and the moldability is likely to be good. More preferably it is.
  • the glass transition temperature of the component ( ⁇ 2) there is no particular limitation on this, and various materials are used.
  • the glass point transfer temperature is 100 ° C. or lower in that the obtained cured product tends to be tough. It is preferable that it is 50 degrees C or less, and it is further more preferable that it is 0 degrees C or less.
  • examples of such ( ⁇ 2) component preferred resins include polybutyl acrylate resins.
  • the glass transition temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, in that the heat resistance of the cured product obtained is increased. Most preferably, it is 170 ° C. or higher.
  • the glass transition temperature can be determined as a temperature at which tan ⁇ exhibits a maximum in the dynamic viscoelasticity measurement.
  • the component ( ⁇ 2) is preferably a hydrocarbon compound in that the heat resistance of the resulting cured product is increased.
  • the preferable lower limit of the carbon number is 7, and the preferable upper limit of the carbon number is 10.
  • the component ( ⁇ 2) may have other reactive groups.
  • the reactive group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • an epoxy group is preferable from the viewpoint that the adhesiveness can be further increased.
  • Specific examples include monoallyl diglycidyl isocyanurate, allyl glycidyl ether, allyloxyethyl methacrylate, allyloxyethyl acrylate, vinyltrimethoxysilane, and the like.
  • ( ⁇ 1) component and / or ( ⁇ 2) component a single component may be used, or a plurality of components may be used in combination.
  • the component ( ⁇ ) is a compound having at least two SiH groups in one molecule, and chain and / or cyclic polyorganosiloxanes are also examples. Specifically, for example
  • R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10).
  • Cyclic polyorganosiloxane having at least 3 SiH groups in one molecule Is preferred.
  • the substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H, and O, more preferably a hydrocarbon group, and a methyl group. Is more preferable.
  • the component ( ⁇ ) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane.
  • ( ⁇ ) component examples include compounds having a SiH group such as bisdimethylsilylbenzene.
  • Various ( ⁇ ) components as described above can be used alone or in admixture of two or more.
  • the mixing ratio of the ( ⁇ ) component and the ( ⁇ ) component when the ( ⁇ ) component and the ( ⁇ ) component are subjected to a hydrosilylation reaction is not particularly limited, but the hydrosilylation of the obtained (B) component and (A) component is not limited.
  • the component (B) since it is preferable that the component (B) has more SiH groups, the total number of carbon-carbon double bonds having reactivity with SiH groups in the component ( ⁇ ) to be mixed (
  • the ratio of X) to the total number of SiH groups (Y) in the ( ⁇ ) component to be mixed is preferably Y / X ⁇ 2, and more preferably Y / X ⁇ 3.
  • an appropriate catalyst may be used.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, the lower limit of the preferable addition amount is sufficient with respect to 1 mol of SiH groups of the ( ⁇ ) component in order to have sufficient curability and keep the cost of the curable resin composition relatively low. 10 -8 mol Te, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount relative to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • Various methods can be used for mixing the ( ⁇ ) component, the ( ⁇ ) component, and the catalyst in the reaction, and the ( ⁇ ) component mixed with the catalyst is mixed with the ( ⁇ ) component.
  • the method is preferred. If the catalyst is mixed with the mixture of the ( ⁇ ) component and the ( ⁇ ) component, it is difficult to control the reaction.
  • the method of mixing the ( ⁇ ) component with the mixture of the ( ⁇ ) component and the catalyst the ( ⁇ ) component is reactive in the presence of the catalyst and may be altered due to its reactivity with water. .
  • the reaction temperature can be variously set.
  • the lower limit of the preferable temperature range is 30 ° C., more preferably 50 ° C.
  • the upper limit of the preferable temperature range is 200 ° C., more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. Various reaction times and pressures during the reaction can be set as required.
  • a solvent may be used during the hydrosilylation reaction.
  • Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specifically, hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether, ketone solvents such as acetone and methyl ethyl ketone, and halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be preferably used.
  • the solvent can also be used as a mixed solvent of two or more types.
  • solvent toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable.
  • the amount of solvent to be used can also be set as appropriate.
  • various additives may be used for the purpose of controlling reactivity.
  • the solvent or / and the unreacted ( ⁇ ) component or / and the ( ⁇ ) component can be removed.
  • the component (B) obtained does not have volatile components, so that the problem of voids and cracks due to volatilization of the volatile components hardly occurs in the case of curing with the component (A).
  • the removal method include treatment with activated carbon, aluminum silicate, silica gel and the like in addition to vacuum devolatilization.
  • the upper limit of the preferable temperature in this case is 100 ° C, more preferably 60 ° C.
  • Examples of the component (B) that is a reaction product of the components ( ⁇ ) and ( ⁇ ) as described above include a reaction product of bisphenol A diallyl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, Reaction product of vinylcyclohexene and 1,3,5,7-tetramethylcyclotetrasiloxane, reaction product of divinylbenzene and 1,3,5,7-tetramethylcyclotetrasiloxane, dicyclopentadiene and 1,3,5, Reaction product of 7-tetramethylcyclotetrasiloxane, reaction product of triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane, diallyl monoglycidyl isocyanurate and 1,3,5,7-tetramethylcyclo Reactant of tetrasiloxane, allyl glycidyl ether and 1,3,5,7-tetramethylcyclotetrasilo A reaction product of
  • the mixing ratio of the component (A) and the component (B) is not particularly limited as long as the required strength is not lost, but the number of SiH groups in the component (B) (Y) is the carbon-carbon in the component (A).
  • the lower limit of the preferred range is Y / X ⁇ 0.3, more preferably Y / X ⁇ 0.5, and even more preferably Y / X ⁇ 0.7, which is preferable.
  • the upper limit of the range is 3 ⁇ Y / X, more preferably 2 ⁇ Y / X, and even more preferably 1.5 ⁇ Y / X.
  • the mixing ratio of the component (A) and the component (Z) and the component (B) is not particularly limited as long as the necessary strength is not lost.
  • the ratio of the number of SiH groups in the component (Y) to the sum (X) of the number of carbon-carbon double bonds in the components (A) and (Z) is preferably included in the above range.
  • ((C) component) Component (C) is a hydrosilylation catalyst.
  • the hydrosilylation catalyst is not particularly limited as long as it has a catalytic activity for the hydrosilylation reaction.
  • a platinum simple substance e.g Pt (CH 2 ⁇ CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 ⁇ CH 2 ) 2 Cl 2 ), platinum-vinyl Siloxane complexes (eg, Pt (ViMe 2 SiOSiMe 2 Vi) n , Pt [(MeViSiO) 4 ] m ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3
  • platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946 are also useful in the present invention.
  • catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
  • chloroplatinic acid platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity.
  • these catalysts may be used independently and may be used together 2 or more types.
  • the addition amount of the catalyst is not particularly limited, but in order to have sufficient curability and keep the cost of the curable resin composition relatively low, a preferable lower limit of the addition amount is 1 mole of SiH group of component (B). 10 -8 mol for, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
  • a cocatalyst can be used in combination with the above catalyst.
  • examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine.
  • the addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount relative to 1 mol of the hydrosilylation catalyst is 10 ⁇ 2 mol, more preferably 10 ⁇ 1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
  • a cured product obtained by thermally curing a mixture of components (A) to (C) and (Z) In addition, from the viewpoint of achieving both the bending resistance and continuous moldability of the curable resin composition in the present invention, a cured product obtained by thermally curing a mixture of the components (A) to (C) and (Z).
  • the glass transition point (Tg) is preferably in the range of 30 ° C. to 100 ° C., more preferably in the range of 35 ° C. to 80 ° C., and further preferably in the range of 40 ° C. to 70 ° C. .
  • cured material is less than 30 degreeC, it may be inferior to continuous moldability, and when Tg exceeds 100 degreeC, the bending resistance of a molded object may be impaired.
  • a cured product obtained by thermally curing a mixture of the components (A) to (C) and (Z) has a storage elastic modulus of 20 MPa to 100 MPa measured at 150 ° C., a frequency of 10 Hz, and a tensile mode. Preferably, it is within the range of 25 MPa to 80 MPa, more preferably within the range of 30 MPa to 70 MPa.
  • the storage elastic modulus of the cured product is less than 20 MPa, the continuous moldability may deteriorate, and when the storage elastic modulus exceeds 100 MPa, the flexibility of the cured product may be impaired.
  • thermosetting a mixture of the above components (A) to (C) and (Z) for example, a dynamic viscoelasticity measuring apparatus (IT Measurement Control Co., Ltd.) DVA200 manufactured by company, tensile mode, measurement frequency 10 Hz).
  • the glass transition point is the peak temperature of loss tangent.
  • the component (D) is a silicone compound having a molecular weight of 1000 or more and containing at least one carbon-carbon double bond having reactivity with the SiH group in one molecule.
  • a silicone compound composed of a siloxane skeleton consisting essentially of Si—O—Si bonds By using a silicone compound composed of a siloxane skeleton consisting essentially of Si—O—Si bonds, a cured product having excellent heat resistance and light resistance can be obtained compared to the case of using a general organic polymer. be able to.
  • a curable resin composition that gives a cured product excellent in toughness while having a smaller linear expansion coefficient. Can do.
  • the silicone compound of component (D) is a compound whose skeleton is substantially formed of Si—O—Si bonds, and includes various compounds such as linear, cyclic, branched, and partial networks. Can be used.
  • examples of the substituent bonded to the skeleton include alkyl groups such as methyl group, ethyl group, propyl group, and octyl group, aryl groups such as phenyl group, 2-phenylethyl group, and 2-phenylpropyl group, methoxy group, Examples thereof include alkoxy groups such as ethoxy group and isopropoxy group, and groups such as hydroxyl group.
  • alkyl groups such as methyl group, ethyl group, propyl group, and octyl group
  • aryl groups such as phenyl group, 2-phenylethyl group, and 2-phenylpropyl group, methoxy group
  • alkoxy groups such as ethoxy group and isopropoxy group
  • groups such as hydroxyl group.
  • a methyl group, a phenyl group, a hydroxyl group, and a methoxy group are preferable, and a methyl group and a pheny
  • Examples of the substituent having a carbon-carbon double bond having reactivity with the SiH group include a vinyl group, an allyl group, an acryloxy group, a methacryloxy group, an acryloxypropyl group, and a methacryloxypropyl group.
  • a vinyl group is preferable in terms of good reactivity.
  • R n (CH 2 ⁇ CH) m SiO (4-n ⁇ m) / 2 wherein R is a group selected from a hydroxyl group, a methyl group or a phenyl group, and n and m are numbers satisfying 0 ⁇ n ⁇ 4, 0 ⁇ m ⁇ 4, and 0 ⁇ n + m ⁇ 4).
  • component (D) examples include polydimethylsiloxane, polydiphenylsiloxane, polymethylphenylsiloxane, and two or three random or block copolymers having vinyl groups as terminal groups or side groups. be able to.
  • component (D) a plurality of components may be mixed and used.
  • linear polysiloxanes having vinyl groups at the ends are preferable, linear polysiloxanes having vinyl groups at both ends are more preferable, and both ends are more preferable in that the effects of the present invention are more easily obtained. More preferred are linear polydimethyl-polydiphenylsiloxane or linear polymethylphenylsiloxane having vinyl groups at the ends, linear polydimethyl-polydiphenylsiloxane or linear polymethylphenylsiloxane having vinyl groups at both ends. And it is especially preferable that it is siloxane whose quantity of the phenyl group with respect to all the substituents is 10 mol% or more.
  • the weight average molecular weight (Mw) is 1,000 or more, preferably 2,000 or more, more preferably 5,000 or more, and 10,000 or more. More preferably. There exists a problem that toughness falls that it is less than 1,000.
  • the molecular weight of the component (D) is preferably 1,000,000 or less, and more preferably 100,000 or less. If it exceeds 1,000,000, it becomes difficult to obtain compatibility with the component (A) and the component (B).
  • the amount of the component (D) is preferably 30% by weight or more, more preferably 50% by weight or more based on the total weight of the component (A) and the component (B). 80% by weight or more is more preferable. If it is less than 30% by weight, the linear expansion coefficient may be difficult to decrease.
  • the mixing ratio of the component (A), the component (B), and the component (D) is not particularly limited as long as the required strength is not lost, but the component (A) having the number of SiH groups (Y) in the component (B). And (D) the ratio of the number of carbon-carbon double bonds having reactivity with SiH groups in the component (X) is preferably Y / X ⁇ 0.3, more preferably Y / X ⁇ 0.5, more preferably Y / X ⁇ 0.7, and the upper limit of the preferable range is 3 ⁇ Y / X, more preferably 2 ⁇ Y / X, still more preferably 1.5 ⁇ Y / X. When it deviates from the preferred range, sufficient strength may not be obtained or thermal deterioration may easily occur.
  • the component (E) is an inorganic filler.
  • the component (E) has an effect of increasing the strength and hardness of the obtained cured product and reducing the linear expansion coefficient.
  • silica-based materials such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica.
  • Inorganic filler alumina, zircon, titanium oxide, zinc oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, alumina fiber, carbon fiber, mica, graphite, carbon black, graphite, diatomaceous earth, white clay, clay , Talc, aluminum hydroxide, calcium carbonate, magnesium carbonate, barium sulfate, barium titanate, potassium titanate, calcium silicate, inorganic balloons, conventional fillers such as epoxy, as well as silver powder Inorganic fillers that are generally used and / or proposed as fillers for That.
  • the inorganic filler is preferably low radiation from the viewpoint of hardly damaging the semiconductor element.
  • the inorganic filler may be appropriately surface treated.
  • the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a coupling agent, and the like.
  • the coupling agent in this case examples include a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as the compound has at least one functional group reactive with an organic group and at least one hydrolyzable silicon group in the molecule.
  • the group having reactivity with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handleability. From the viewpoints of curability and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable.
  • As the hydrolyzable silicon group an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes having can be exemplified.
  • an inorganic filler is mentioned.
  • a hydrolyzable silane monomer or oligomer such as alkoxysilane, acyloxysilane or halogenated silane, or an alkoxide, acyloxide or halide of a metal such as titanium or aluminum is added to the curable resin composition of the present invention.
  • a method of reacting in a curable resin composition or a partial reaction product of the curable resin composition to produce an inorganic filler in the curable resin composition can also be mentioned.
  • a silica-based inorganic filler is preferable from the viewpoint that it is difficult to inhibit the curing reaction, has a large effect of reducing the linear expansion coefficient, and tends to have high adhesion to the lead frame.
  • fused silica is preferable in terms of a good balance of physical properties such as moldability and electrical characteristics
  • crystalline silica is preferable in terms of easy package thermal conductivity and high heat dissipation.
  • Alumina is preferable in that heat dissipation tends to be higher.
  • Titanium oxide is preferred in that the light reflectance of the package resin is high and the light extraction efficiency of the resulting light emitting diode tends to be high.
  • glass fiber, potassium titanate, and calcium silicate are preferable in that the reinforcing effect is high and the strength of the package tends to be high.
  • the average particle size and particle size distribution of the inorganic filler various types are used without particular limitation, including those used or / and proposed as fillers for conventional sealing materials such as epoxy type,
  • the lower limit of the commonly used average particle size is 0.1 ⁇ m, preferably 0.5 ⁇ m from the viewpoint that the fluidity tends to be good, and the upper limit of the commonly used average particle size is 120 ⁇ m, the fluidity. Is preferably 60 ⁇ m, more preferably 15 ⁇ m, from the viewpoint that it tends to be favorable.
  • the specific surface area of the inorganic filler can also be set in various ways including those used and / or proposed as fillers for conventional sealing materials such as epoxy.
  • the shape of the inorganic filler various types such as a crushed shape, a piece shape, a spherical shape, and a rod shape are used.
  • Various aspect ratios are used.
  • the aspect ratio of 10 or more is preferable in that the strength of the obtained cured product tends to increase.
  • a powder form is preferable to a fiber form.
  • the spherical thing is preferable at the point that the fluidity
  • the component (E) is preferably spherical silica. These inorganic fillers may be used alone or in combination of two or more.
  • the amount of the component (E) is not particularly limited, but the total amount of the component (E) in the entire curable resin composition is preferably 70% by weight or more, more preferably 80% by weight or more, More preferably, it is 90% by weight or more. If it is less than 70% by weight, it becomes difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient.
  • the component (A) A method of mixing the component (C) and the inorganic filler with the component (B) is preferable.
  • the component (B) is present in the presence and / or absence of the component (C).
  • (A) component, (B) component, (C) in that (A) component, (B) component, and (C) component which are reaction components are well mixed and a stable molded product is easily obtained. It is preferable to mix a mixture of components and an inorganic filler.
  • the inorganic filler of component (E) various means conventionally used and / or proposed for epoxy resins and the like can be used.
  • a two-roll or three-roll a planetary stirring and defoaming device, a stirrer such as a homogenizer, a dissolver and a planetary mixer, a melt kneader such as a plast mill, and the like can be mentioned.
  • a triple roll and a melt kneader are preferred in that sufficient dispersibility of the inorganic filler is easily obtained even with high filling.
  • the mixing of the inorganic filler may be performed at normal temperature or may be performed by heating.
  • the curable resin composition of the present invention preferably contains a white pigment (component (F)).
  • the component (F) is a white pigment and has an effect of increasing the light reflectance of the obtained cured product.
  • component (F) Various components can be used as the component (F), for example, titanium oxide, zinc oxide, magnesium oxide, antimony oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate, zinc sulfide, barium sulfate. , Magnesium carbonate, hollow glass particles, and the like.
  • titanium oxide or zinc oxide is preferable from the viewpoint of ease of handling, availability, and cost.
  • component (F) titanium oxide which may be anatase type or rutile type, but it is not photocatalytic and the curable resin composition is likely to be stable.
  • a rutile type is preferred.
  • an average particle diameter (number average particle diameter) of (F) component the viewpoint that the light reflectivity of the hardened
  • the average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
  • the method for producing the component (F) titanium oxide those produced by any method such as sulfuric acid method and chlorine method can be used.
  • the component (F) may be subjected to surface treatment.
  • the surface of the component (F) is coated with at least one selected from an inorganic compound and an organic compound.
  • inorganic compounds include aluminum compounds, silicon compounds, zirconium compounds, tin compounds, titanium compounds, antimony compounds, and the like
  • organic compounds include polyhydric alcohols, alkanolamines or derivatives thereof, and organic siloxanes. Examples thereof include organosilicon compounds, higher fatty acids or metal salts thereof, and organometallic compounds.
  • a known method such as a wet method or a dry method is used, for example, when dry pulverizing titanium oxide, when slurrying, or when wet pulverizing. It can be carried out.
  • various methods such as a liquid phase method and a gas phase method.
  • cured material obtained is high and heat-resistant light resistance becomes favorable, it is preferable to process by the organosiloxane process.
  • the inclusion of an organosiloxane-treated titanium oxide is suitable for producing an excellent light-emitting diode that has high light extraction efficiency and does not decrease light extraction efficiency even when used for a long period of time.
  • various organic siloxane treating agents are used.
  • polysiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, or copolymers thereof, hexamethylcyclotrisiloxane, heptamethylcyclotetrasiloxane, 1,3,5,7-tetra Cyclosiloxanes such as methylcyclotetrasiloxane, chlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and other silanes having an epoxy functional
  • These surface treatment agents preferably do not contain a carbon-carbon double bond, and if they contain a carbon-carbon double bond, the heat resistance tends to decrease. Further, a surface treatment other than the organic siloxane can be used in combination, and treatment with Al, Zr, Zn, or the like can also be performed.
  • the surface treatment with an inorganic compound is not particularly limited, and various surface treatments such as an aluminum compound, a silicon compound, and a zirconium compound are used.
  • titanium oxide surface treatment with an aluminum compound is preferable.
  • Titanium oxide may be surface-treated with an inorganic compound or an organic compound for the purpose of improving durability, improving affinity with the medium, or preventing the collapse of the particle shape, but the component (F) is inorganic. It is considered that the surface treatment with the compound improves the affinity with the component contained in the curable resin composition, improves the dispersibility of the component (F) in the curable resin composition, and improves the strength of the cured product. .
  • Various methods can be applied as the surface treatment method, and various methods such as a wet method, a dry method, a liquid phase method, and a gas phase method can be exemplified.
  • the amount of the component (F) is not particularly limited, but the amount of the component (F) in the entire curable resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, More preferably, it is 20% by weight or more. If it is less than 10% by weight, the light reflectance of the resulting cured product may be lowered.
  • the component (F) is used when a white curable resin composition is prepared, but when applied to a black matrix of a display device, the black curable resin composition can be used. .
  • the black pigment that can be used in this case either an inorganic pigment or an organic pigment may be used, or a single pigment or a mixture of two or more pigments may be used.
  • the inorganic pigment include carbon black, graphite, iron black, titanium carbon, titanium black, manganese diacid value, and copper chromium manganese oxide. From the viewpoint of improving coloring power, carbon black or titanium black is preferable. Furthermore, titanium black is more preferable from the viewpoint of increasing the optical density and the electrical resistance value. Carbon black or titanium black whose surface is coated with a resin or the like can also be used. Aniline black, anthraquinone black pigment, perylene black pigment and the like can also be used.
  • the metal complex oxide black pigment contains copper-chromium-manganese complex oxide black pigment, copper oxide, manganese oxide, cobalt oxide and aluminum oxide.
  • the ratio of copper, manganese, cobalt and aluminum constituting the pigment is 5 to 30 mol% copper and 5 to 30 manganese when the total of these metals is 100 mol%.
  • Complex oxide black pigments with mol%, cobalt 15 to 40 mol%, and aluminum 25 to 50 mol% can also be used.
  • the total amount of the component (E) and the component (F) is not particularly limited, but the total amount of the component (E) and the component (F) in the entire curable resin composition is preferably 70% by weight or more. It is more preferably 85% by weight or more, and particularly preferably 90% by weight or more. Moreover, it is preferable that it is 97 weight% or less, and it is more preferable that it is 95 weight% or less. If it is less than 70% by weight, it becomes difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient. On the other hand, if it exceeds 97% by weight, the moldability may deteriorate.
  • the mixing order of the component (F) various methods can be used, but the preferred embodiment is the same as (E) described above. Moreover, you may add (F) component and (E) component simultaneously.
  • means for mixing the component (F) the same means as the means for mixing the component (E) can be used.
  • the curable resin composition of the present invention desirably contains a metal soap (component (G)).
  • component (G) A component is added in order to improve the moldability including the mold release property of a curable resin composition.
  • Examples of the component (G) include various conventionally used metal soaps.
  • the metal soap here is generally a combination of long-chain fatty acids and metal ions.
  • the nonpolar or low polarity part based on fatty acids and the polar part based on the metal binding part are combined in one molecule.
  • Examples of long-chain fatty acids include saturated fatty acids having 1 to 18 carbon atoms, unsaturated fatty acids having 3 to 18 carbon atoms, and aliphatic dicarboxylic acids. Among these, saturated fatty acids having 1 to 18 carbon atoms are preferable from the viewpoint of easy availability and high industrial feasibility, and further, from 6 to 18 carbon atoms from the viewpoint of high releasing effect. The saturated fatty acid is more preferable.
  • metal ions include zinc, cobalt, aluminum, strontium, and the like in addition to alkali metals and alkaline earth metals. More specific examples of metal soaps include lithium stearate, lithium 12-hydroxystearate, lithium laurate, lithium oleate, lithium 2-ethylhexanoate, sodium stearate, sodium 12-hydroxystearate, lauric acid Sodium, sodium oleate, sodium 2-ethylhexanoate, potassium stearate, potassium 12-hydroxystearate, potassium laurate, potassium oleate, potassium 2-ethylhexanoate, magnesium stearate, magnesium 12-hydroxystearate, Magnesium laurate, magnesium oleate, magnesium 2-ethylhexanoate, calcium stearate, calcium 12-hydroxystearate, calcium laurate , Calcium oleate, calcium 2-ethylhexanoate, barium stearate, barium 12-hydroxystearate, barium laurate, zinc stea
  • metal stearates are preferred from the viewpoint of easy availability, safety and industrial feasibility, and calcium stearate, magnesium stearate, stearin are particularly preferred from the viewpoint of economy. Most preferred is one or more selected from the group consisting of zinc acid and aluminum stearate.
  • the minimum of a preferable amount is 0.01 weight part (namely, 0.01 weight%) with respect to 100 weight part of the whole curable resin composition, More preferably, it is 0.00. 025 parts by weight, more preferably 0.05 parts by weight, and the upper limit of the preferred amount is 5 parts by weight (ie 5% by weight), more preferably 4 parts by weight, based on 100 parts by weight of the entire curable resin composition. .
  • the addition amount is too large, the physical properties of the cured product are deteriorated.
  • the addition amount is too small, mold releasability may not be obtained.
  • additives can be added to the curable resin composition of the present invention.
  • a curing retarder can be used for the purpose of improving the storage stability of the curable resin composition of the present invention or adjusting the reactivity of the hydrosilylation reaction during the production process.
  • the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin-based compound, and an organic peroxide, and these may be used in combination.
  • Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols such as 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne and 1-ethynyl-1-cyclohexanol. And maleic esters such as ene-yne compounds and dimethyl malate.
  • Examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite.
  • Examples of organic sulfur compounds include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
  • nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • tin compounds include stannous halide dihydrate and stannous carboxylate.
  • organic peroxide include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate.
  • benzothiazole thiazole, dimethylmalate, 3-hydroxy-3-methyl-1-butyne, 1-ethynyl-1- Cyclohexanol is preferred.
  • the addition amount of the curing retarder can be selected at various levels, the preferred amount of the lower limit is 10 -1 moles with respect to hydrosilylation catalyst 1mol used, more preferably 1 mol, the upper limit of the preferable amount is 10 3 mol, more preferably Is 50 moles.
  • these hardening retarders may be used independently and may be used together 2 or more types.
  • adhesion improver An adhesion improver can also be added to the curable resin composition of the present invention.
  • adhesives for example, various coupling agents, epoxy compounds, phenol resins, coumarone-indene resins, rosin ester resins, terpene-phenol resins, ⁇ -methylstyrene-vinyltoluene A copolymer, polyethylmethylstyrene, aromatic polyisocyanate, etc. can be mentioned.
  • Examples of coupling agents include silane coupling agents and titanate coupling agents. Examples and preferred examples of the coupling agent are the same as those described above.
  • the addition amount of the coupling agent can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is 0.1 parts by weight, more preferably 0.5 parts by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 25 parts by weight. When the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
  • epoxy compound examples include novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, and 2,2′-bis (4-glycidyloxycyclohexyl).
  • the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is preferably 1 part by weight, more preferably 3 parts by weight.
  • the upper limit of the addition amount is 50 parts by weight, more preferably 25 parts by weight.
  • These coupling agents, silane coupling agents, epoxy compounds, etc. may be used alone or in combination of two or more.
  • a silanol condensation catalyst can be further used to enhance the effect of the coupling agent or the epoxy compound, and the adhesion can be improved and / or stabilized.
  • a silanol condensation catalyst is not particularly limited, but is preferably a boron compound or / and an aluminum compound or / and a titanium compound.
  • Examples of the aluminum compound used as a silanol condensation catalyst include aluminum alkoxides such as aluminum triisopropoxide, sec-butoxyaluminum diisoflopoxide, aluminum trisec-butoxide, ethyl acetoacetate aluminum diisopropoxide, aluminum tris (ethyl). Acetoacetate), aluminum chelate M (manufactured by Kawaken Fine Chemicals, alkyl acetoacetate aluminum diisopropoxide), aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate) and other aluminum chelates Aluminum chelates are more preferable from the viewpoint of handleability.
  • aluminum alkoxides such as aluminum triisopropoxide, sec-butoxyaluminum diisoflopoxide, aluminum trisec-butoxide, ethyl acetoacetate aluminum diisopropoxide, aluminum tris (ethyl). Acetoacetate), aluminum chelate M (man
  • Titanium compounds that serve as silanol condensation catalysts include tetraalkoxy titaniums such as tetraisopropoxy titanium and tetrabutoxy titanium, titanium chelates such as titanium tetraacetylacetonate, and residues having residues such as oxyacetic acid and ethylene glycol. And titanate coupling agents.
  • Examples of the boron compound that serves as a silanol condensation catalyst include boric acid esters.
  • the borate ester those represented by the following general formulas (VII) and (VIII) can be preferably used.
  • boric acid esters include tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, tri-sec-butyl borate, Tri-tert-butyl borate, triisopropyl borate, trinormalpropyl borate, triallyl borate, triethyl borate, trimethyl borate, and methoxymethoxy boronate can be preferably used. These borate esters may be used alone or in combination of two or more.
  • Trimethyl borate, triethyl borate, and trinormal butyl borate are preferable, and trimethyl borate is more preferable among them because it is easily available and has high industrial practicality.
  • normal trioctadecyl borate, tri-tert-butyl borate, triphenyl borate, and tributyl normal borate are more preferable. preferable.
  • trinormal butyl borate, triisopropyl borate and trinormal propyl borate are preferable, and trinormal butyl borate is more preferable.
  • trimethyl borate and triethyl borate are preferred, and trimethyl borate is more preferred.
  • the amount used in the case of using a silanol condensation catalyst can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound epoxy compound is 0.1 parts by weight, more preferably 1 part by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight.
  • silanol condensation catalysts may be used alone or in combination of two or more.
  • a silanol source compound can be further used in order to further enhance the effect of improving adhesiveness, and the adhesiveness can be improved and / or stabilized.
  • a silanol source include silanol compounds such as triphenylsilanol and diphenyldihydroxysilane, and alkoxysilanes such as diphenyldimethoxysilane, tetramethoxysilane, and methyltrimethoxysilane.
  • the amount used in the case of using a silanol source compound can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound is 0.1 parts by weight, more preferably 1 part by weight.
  • the upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the cured product properties may be adversely affected. Moreover, these silanol source compounds may be used independently and may be used together 2 or more types.
  • carboxylic acids and / or acid anhydrides can be used to enhance the effect of the coupling agent or epoxy compound, and adhesion can be improved and / or stabilized.
  • Such carboxylic acids and acid anhydrides are not particularly limited,
  • carboxylic acids and / or acid anhydrides in terms of difficulty in impairing the physical properties of the cured product that has hydrosilylation reactivity and is less likely to exude from the cured product, Those having reactive carbon-carbon double bonds are preferred.
  • Preferred carboxylic acids and / or acid anhydrides include, for example,
  • Examples thereof include tetrahydrophthalic acid, methyltetrahydrophthalic acid, and single or complex acid anhydrides thereof.
  • the amount used in the case of using carboxylic acids or / and acid anhydrides can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent or / and epoxy compound epoxy compound is 0.1 parts by weight, More preferably, it is 1 part by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 10 parts by weight.
  • the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
  • carboxylic acids or / and acid anhydrides may be used alone or in combination of two or more.
  • the silane compound described above can be used in the curable resin composition of the present invention.
  • the silane compound contributes to improvement in adhesion to the lead and is effective in preventing moisture from entering from the interface between the package and the lead.
  • Illustrative examples include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, and the like, with dimethyldimethoxysilane being particularly preferred.
  • thermosetting resin a cured resin may be pulverized and mixed in a particle state.
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good.
  • the diameter variation coefficient is preferably 10% or less.
  • thermoplastic resin Various thermoplastic resins can be added to the curable resin composition of the present invention for the purpose of modifying the properties.
  • Various thermoplastic resins can be used.
  • a homopolymer of methyl methacrylate or a polymethyl methacrylate resin such as a random, block or graft polymer of methyl methacrylate and other monomers (for example, Hitachi Chemical) OPTRETZ etc.
  • acrylic resins represented by polybutyl acrylate resins such as butyl acrylate homopolymers or random, block or graft polymers of butyl acrylate and other monomers, bisphenol A,
  • a polycarbonate resin such as a polycarbonate resin containing 3,3,5-trimethylcyclohexylidene bisphenol or the like as a monomer structure (for example, APEC manufactured by Teijin Limited), norbornene derivative, vinyl monomer, etc.
  • a cycloolefin resin such as a copolymerized resin, a resin obtained by ring-opening metathesis polymerization of a norbornene derivative, or a hydrogenated product thereof (for example, APEL manufactured by Mitsui Chemicals, Inc., ZEONOR, ZEONEX manufactured by Nippon Zeon Co., Ltd., JSR shares) ARTON manufactured by the company), olefin-maleimide resins such as copolymers of ethylene and maleimide (eg TI-PAS manufactured by Tosoh Corporation), bisphenol A, bis (4- (2-hydroxyethoxy) phenyl) fluorene, etc.
  • a cycloolefin resin such as a copolymerized resin, a resin obtained by ring-opening metathesis polymerization of a norbornene derivative, or a hydrogenated product thereof (for example, APEL manufactured by Mitsui Chemicals, Inc., ZEONOR, ZEONEX manufactured by Nippo
  • Polyester resins such as polyesters (eg, O-PET manufactured by Kanebo Co., Ltd.) obtained by polycondensation of diols such as bisphenols and diethylene glycol with phthalic acids such as terephthalic acid and isophthalic acid, and aliphatic dicarboxylic acids.
  • the thermoplastic resin may have a carbon-carbon double bond or / and a SiH group having reactivity with the SiH group in the molecule.
  • the obtained cured product tends to be tougher, it has one or more carbon-carbon double bonds or / and SiH groups having reactivity with SiH groups in the molecule on average. Preferably it is.
  • the thermoplastic resin may have other crosslinkable groups.
  • the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained cured product tends to be high, it is preferable to have one or more crosslinkable groups in one molecule on average.
  • the molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight is preferably 10,000 or less, in terms of easy compatibility with the component (A) or the component (B), and is preferably 5000 or less. It is more preferable that On the contrary, the number average molecular weight is preferably 10,000 or more, and more preferably 100,000 or more in that the obtained cured product tends to be tough.
  • the molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, in that the viscosity of the mixture tends to be low and the moldability tends to be good. More preferably, it is as follows.
  • the blending amount of the thermoplastic resin is not particularly limited, but the lower limit of the preferable amount used is 5% by weight of the entire curable resin composition, more preferably 10% by weight, and the upper limit of the preferable amount used is the curable resin composition. 50% by weight of the product, more preferably 30% by weight.
  • the addition amount is small, the obtained cured product tends to be brittle, and when it is large, the heat resistance (elastic modulus at high temperature) tends to be low.
  • a single thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
  • the thermoplastic resin may be dissolved in the component (A) or / and the component (B) and mixed in a uniform state, pulverized and mixed in a particle state, or dissolved in a solvent and mixed. It may be in a dispersed state. In the point that the obtained hardened
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good.
  • the diameter variation coefficient is preferably 10% or less.
  • An aging inhibitor may be added to the curable resin composition of the present invention.
  • the anti-aging agent include citric acid, phosphoric acid, sulfur-based anti-aging agent and the like in addition to the anti-aging agents generally used such as hindered phenol type.
  • antioxidants include mercaptans, mercaptan salts, sulfide carboxylic acid esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, sulfonium Examples thereof include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothioacids, polythioacids, thioamides, and sulfoxides.
  • these anti-aging agents may be used independently and may be used together 2 or more types.
  • radical inhibitor A radical inhibitor may be added to the curable resin composition of the present invention.
  • the radical inhibitor include 2,6-di-tert-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane, phenyl- ⁇ -naphthylamine, ⁇ -naphthylamine, N, N′-secondary butyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine. Moreover, these radical inhibitors may be used alone or in combination of two or more.
  • UV absorber An ultraviolet absorber may be added to the curable resin composition of the present invention.
  • examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate and the like. Can be mentioned.
  • these ultraviolet absorbers may be used independently and may be used together 2 or more types.
  • the curable resin composition of the present invention can be used by dissolving in a solvent.
  • Solvents that can be used are not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like.
  • An ether solvent, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • a halogen solvent such as chloroform, methylene chloride, and 1,2-dichloroethane can be preferably used.
  • As the solvent toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable.
  • the amount of solvent to be used can be set as appropriate, the lower limit of the preferable usage amount relative to 1 g of the curable resin composition to be used is 0.1 mL, and the upper limit of the preferable usage amount is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as a low viscosity, and if the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also from a cost standpoint. It is disadvantageous and the industrial utility value decreases. These solvents may be used alone or as a mixed solvent of two or more.
  • additives include phosphors such as yttrium, aluminum, and garnet phosphors activated with cerium that absorb light from the light emitting element to emit longer wavelength fluorescence, and blue that absorbs a specific wavelength.
  • Coloring agents such as ing agents, diffusion materials such as titanium oxide, aluminum oxide, melamine resin, CTU guanamine resin, benzoguanamine resin for diffusing light, metal oxides such as aluminosilicate, aluminum nitride, boron nitride, etc. Examples thereof include thermally conductive fillers such as metal nitrides.
  • the additive for improving the characteristics of the light emitting diode may be contained uniformly, or the content may be added with a gradient.
  • release agent Various releasing agents may be added to the curable resin composition of the present invention in order to improve the releasing property at the time of molding.
  • the release agent include the component (G) already described and waxes.
  • waxes include natural wax, synthetic wax, oxidized or non-oxidized polyolefin, and polyethylene wax.
  • the curable resin composition of the present invention includes other colorants, flame retardants, flame retardant aids, surfactants, antifoaming agents, emulsifiers, leveling agents, anti-fogging agents, ion trapping agents such as antimony-bismuth, Thixotropic agent, tackifier, storage stability improver, ozone degradation inhibitor, light stabilizer, thickener, plasticizer, reactive diluent, antioxidant, heat stabilizer, conductivity enhancer, Antistatic agents, radiation blocking agents, nucleating agents, phosphorus peroxide decomposing agents, lubricants, pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers, and the like that do not impair the purpose and effect of the present invention Can be added.
  • the curable resin composition of the present invention may be used as it is by blending each component and additives, or may be used after being partially reacted (B-staged) by heating or the like. Viscosity can be adjusted by using B-stage, and transfer moldability can also be adjusted. In addition, there is an effect of further suppressing curing shrinkage.
  • the curable resin composition of the present invention has a temperature of 150 ° C. or less in terms of good moldability by transfer molding or the like. And those having fluidity are preferred.
  • the curability of the curable resin composition can be arbitrarily set, but the gelation time at 120 ° C. is preferably within 120 seconds, more preferably within 60 seconds in that the molding cycle can be shortened. preferable. Further, the gelation time at 150 ° C. is preferably within 60 seconds, and more preferably within 30 seconds. Further, the gelation time at 100 ° C. is preferably within 180 seconds, and more preferably within 120 seconds.
  • the gelation time in this case is examined as follows. An aluminum foil having a thickness of 50 ⁇ m is placed on a hot plate adjusted to a set temperature, and 100 mg of the curable resin composition is placed thereon, and the time until gelation is measured is defined as the gelation time.
  • the weight during the curing is from the viewpoint that the generation of voids in the curable resin composition and the process problems due to the outgas from the curable resin composition hardly occur.
  • the decrease is preferably 5% by weight or less, more preferably 3% by weight or less, and further preferably 1% or less.
  • the weight loss during curing is examined as follows. Using a thermogravimetric analyzer, 10 mg of the sealant is heated from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min, and can be determined as a ratio of the initial weight of the reduced weight.
  • the content of Si atoms in the volatile component in this case is 1% or less in that the problem of silicone contamination hardly occurs.
  • the curable resin composition of the present invention can be used for manufacturing a semiconductor package as described later.
  • the curable resin composition of the present invention is mixed in advance, and a part or all of SiH groups in the composition is cured by a hydrosilylation reaction with a carbon-carbon double bond having reactivity with SiH groups. be able to.
  • the required amount of each component may be mixed and reacted at one time, but after mixing and reacting partly, the remaining amount is mixed and further reacted, or after mixing as described above in the composition It is also possible to take a method in which only a part of the functional group is reacted (B-stage) and then subjected to a treatment such as molding and further cured. According to these methods, viscosity adjustment at the time of molding becomes easy.
  • the cured product obtained by curing the curable resin composition preferably has a Tg of 100 ° C. or higher, more preferably 150 ° C. or higher.
  • Tg is examined as follows. Dynamic measurement using a prismatic test piece of 3 mm ⁇ 5 mm ⁇ 30 mm in a tensile mode, a measurement frequency of 10 Hz, a strain of 0.1%, a static / power ratio of 1.5, and a temperature increase rate of 5 ° C./min.
  • the peak temperature of tan ⁇ in viscoelasticity measurement (using DVA-200 manufactured by IT Measurement Control Co., Ltd.) is defined as Tg.
  • the content of ions extracted from the cured product is preferably less than 10 ppm, more preferably less than 5 ppm, More preferably, it is less than 1 ppm.
  • the extracted ion content is examined as follows. 1 g of the cut cured product is sealed in a Teflon container (Teflon is a registered trademark) together with 50 ml of ultrapure water, and treated under conditions of 121 ° C., 2 atm and 20 hours.
  • the obtained extract was analyzed by ICP mass spectrometry (using HP-4500 manufactured by Yokogawa Analytical Systems Co., Ltd.), and the obtained Na and K content values were converted to the concentration in the cured product used. And ask.
  • the same extract was analyzed by ion chromatography (using DX-500 manufactured by Nippon Dionex Co., Ltd., column: AS12-SC), and the obtained Cl and Br content values were adjusted to the concentrations in the cured product used. Calculate by conversion. The contents of Na, K, Cl, and Br obtained as described above in the cured product are totaled to obtain the extracted ion content.
  • the linear expansion coefficient of the cured product is not particularly limited, but the average linear expansion coefficient from 23 ° C. to 150 ° C. is 30 ppm in that the adhesion to a metal such as a lead frame or ceramic is likely to be good. Or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less.
  • the curable resin composition of the present invention preferably has a light reflectance of 80% or more at a wavelength of 480 nm on the surface of a molded product obtained by curing.
  • the light reflectivity R at 460 nm and 480 nm after curing is 80% or more, and the retention ratio of the light reflectivity after the heat test at 180 ° C. for 24 hours (the light reflectivity after the heat test / the initial light reflectivity).
  • X100 is desirably 90% or more.
  • the light reflectivity of the cured product is examined as follows.
  • the light reflectance at wavelengths of 400 nm to 700 nm (20 nm intervals) is measured using a micro surface spectral color difference meter (VSS400 manufactured by Nippon Denshoku Industries Co., Ltd.).
  • VSS400 micro surface spectral color difference meter manufactured by Nippon Denshoku Industries Co., Ltd.
  • the average value of the measurement values at any four locations (measurement area 0.1 mm ⁇ ) on the upper surface of the package is adopted as the measurement value at each wavelength.
  • the light reflectivity is preferably 75% or more in the wavelength band of 420 to 700 nm, and more preferably 80% or more from the viewpoint that the light extraction efficiency of the light emitting diode tends to be high.
  • the retention ratio of the light reflectance after the heat resistance test (for example, a test in which heating is performed in an oven at 180 ° C. for 24 hours) with respect to the initial light reflectance is obtained by the following calculation formula.
  • “Initial light reflectance” means light reflectance before the heat resistance test.
  • Retention rate (%) (light reflectance after heat test) / (initial light reflectance) ⁇ 100
  • the retention rate is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more in terms of high reliability when used as an electronic material.
  • the light reflectance of wavelength 480nm of a surface is 80% or more, It is more preferable that it is 90% or more, 95 % Or more, more preferably 97% or more, and particularly preferably 99% or more.
  • the bending strength of a flat plate (molded product) is 50 N / mm 2 or less. Is preferably 45 N / mm 2 or less, and more preferably 40 N / mm 2 or less. When the bending strength exceeds 50 N / mm 2 , sufficient flexibility may not be obtained.
  • problems such as cohesive failure of the molded body do not occur even if the molding is continuously performed a plurality of times.
  • the bending strength of the flat plate is preferably in the range of 20 to 50 N / mm 2 , more preferably in the range of 23 to 45 N / mm 2. Preferably, it is in the range of 25 to 40 mm 2 .
  • the continuous formability may be deteriorated.
  • the bending strength is more than 50 N / mm 2 , the flexibility of the molded body is impaired, and the bending resistance may be reduced. is there.
  • the bending strength of these flat plates is measured as follows. A test piece was cut out from the produced flat plate so that the two sides facing each other with a length of about 50 mm to 80 mm and a width of about 7 mm to 8 mm were parallel, and made by Stable Micro Systems, Texture Analyzer TA. A pressure wedge consisting of right-angled triangles made of glass with round corners with a width of 10 mm at plus, applying a load at a speed of 2.0 mm / sec to the center of the test piece, and the load when the test piece breaks (bending fracture) From the load N), the bending strength ⁇ b (N / mm 2 ) is calculated by the following equation.
  • the bending fracture load w (N), the fulcrum distance l (mm), the member cross section length h (mm), the member cross section width b (mm) is a bending moment
  • I is a cross section secondary moment
  • the tablet of the present invention comprises a curable resin composition containing components (A) to (F).
  • the curable resin composition tablet is a liquid in which at least one of the component (A) and the component (B) has a viscosity of 50 Pa seconds or less at 23 ° C., and the total content of the component (E) and the component (F) (Hereinafter referred to as filling factor) is 70 to 95% by weight, and the ratio of particles of 12 ⁇ m or less to the total of component (E) and component (F) is 40% by volume or more.
  • filling factor the total content of the component (E) and the component (F)
  • both the component (E) and the component (F) are powders.
  • At least one of the component (A) and the component (B) is a liquid having a viscosity at 23 ° C. of 50 Pa seconds or less.
  • the viscosity is preferably 40 Pa seconds or less, and more preferably 30 Pa seconds or less.
  • This curable resin composition tablet is capable of flowing the entire curable resin composition due to a decrease in viscosity of the component (A) and the component (B) at a high temperature. It can be formed into a shape.
  • the molding method is not particularly limited, and a molding method such as transfer molding or compression molding, which is generally used for molding a curable resin composition, can be used.
  • a molding method such as transfer molding or compression molding, which is generally used for molding a curable resin composition
  • the curable resin composition as a raw material is in the form of a paste or clay, it cannot maintain a constant shape and is attached, integrated, or deformed. Supply to the molding machine becomes very difficult.
  • the tablet shape makes it easy to measure, transport, and supply to a molding machine, and can be automated, greatly improving productivity.
  • a tablet means a solid that retains a constant shape at room temperature, has substantially no change in shape over time, and does not stick together or become integrated when brought into contact with each other. .
  • the shape of the tablet of the present invention is not particularly limited, and includes a columnar shape, a prismatic shape, a disk shape, a spherical shape, and the like, and a general columnar shape for transfer molding is preferable.
  • the total content of the component (E) and the component (F) in the tablet of the present invention is 70 to 95% by weight.
  • the total content is preferably 72% by weight or more, and more preferably 75% by weight or more. Moreover, it is preferable that it is 94 weight% or less, and it is more preferable that it is 90 weight% or less.
  • the distribution of the (E) component and the (F) component in the filling rate is not particularly limited and can be set freely. If the filling rate is less than 70% by weight, the thermal expansion coefficient of the resulting cured product will increase, causing dimensional change of the molded product, and the curable resin composition will become a hard paste or clay and become a tablet There is a problem that can not be. When the filling rate exceeds 95% by weight, there is a problem that the viscosity at high temperature becomes too high and the moldability is lowered, and the resulting tablet becomes too brittle.
  • the curable resin composition of the present invention when at least one of the component (A) and the component (B) is liquid at room temperature, it tends to be in the form of a paste or clay when the filling rate is low. In this case, the tablet does not become a tablet, but the moldability at high temperature tends to be good. On the other hand, when the filling rate is high, since there are few components to be flowed, it tends to be flaky or powdery. These can be compressed into a tablet shape by being compressed, but they tend to have poor fluidity at high temperatures and easily deteriorate moldability. Until now, it has been difficult to achieve both tableting and moldability by simply increasing the filling rate.
  • tableting and moldability can be achieved by setting the ratio of particles of 12 ⁇ m or less to the total of the (E) component and (F) component which are powders to 40% by volume or more. I found out that they can be compatible. Moreover, it is preferable that the ratio of the particle
  • a liquid resin comprising the components (A) to (D), for example, a porous filler or an oil-absorbing filler are preferably used alone or in combination.
  • the shape of the porous filler or oil-absorbing filler is not particularly limited, and for example, a spherical shape, a crushed shape, a disk shape, a rod shape, a fiber shape, or the like can be used. Considering the fluidity in the mold at the time of transfer molding, a spherical shape and a crushed shape are preferable.
  • spherical silica crushed silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, and zeolite. These may be used alone or in combination. Silica, alumina, or a mixture thereof is preferable from the viewpoint of thermal conductivity, light reflection characteristics, and moldability.
  • the surface of the porous filler or filler having oil absorbency may be subjected to a physical or chemical hydrophilization treatment or a hydrophobization treatment.
  • the surface is subjected to a hydrophobic treatment, and the oil absorption amount (specified amount according to JIS K5101) is preferably 50 ml / 100 g or more.
  • the apparent density of the porous filler or filler having oil absorbency is not particularly limited, but is preferably 0.4 g / cm 3 or more, and preferably 0.4 to 2.0 g / cm 3. More preferred.
  • the apparent density is a density in consideration of the density occupied by the raw material of the porous filler or the oil-absorbing filler and the space occupied by the fine pores (that is, the pore volume).
  • this apparent density is less than 0.4 g / cm 3 , the mechanical strength of the filler particles is small, and the particles may be destroyed at the time of melt-kneading that generates shearing force such as a mixing roll mill. is there.
  • the apparent density exceeds 2.0 g / cm 3 , the curable resin composition tends to adhere to the surface of the mortar mold and bowl mold during tablet molding.
  • the average particle size of the porous filler or oil-absorbing filler is preferably 0.1 to 100 ⁇ m, and more preferably in the range of 1 to 10 ⁇ m in view of packing efficiency with a white pigment. .
  • the average particle size is larger than 100 ⁇ m or smaller than 0.1 ⁇ m, the fluidity of the curable resin composition tends to be poor at the time of melting during transfer molding.
  • the specific surface area of the porous filler or oil-absorbing filler is preferably 100 to 1000 m 2 / g, more preferably 300 to 700 m 2 / g.
  • the specific surface area is smaller than 100 m 2 / g, the oil absorption amount of the resin by the filler is decreased, and the resin tends to adhere to the bowl at the time of tablet molding, and when the specific surface area is larger than 1000 m 2 / g, The fluidity of the curable resin composition tends to be poor at the time of melting during transfer molding.
  • the content of the porous filler or the oil-absorbing filler is not particularly limited, but is 0.1 volume% to 20 volume based on the total amount of (E) inorganic filler and (F) white pigment. % Is preferable. Considering the moldability of the resin composition at the time of melting, it is more preferably 1% by volume to 5% by volume. When this content is less than 0.1% by volume, a part of the curable resin composition tends to adhere to the surfaces of the mortar mold and the saddle mold, and when it is greater than 20% by volume, transfer is performed. The fluidity of the resin composition tends to decrease during melting during molding.
  • the semiconductor package of the present invention is obtained by molding the curable resin composition of the present invention, and is obtained, for example, by transfer molding.
  • the semiconductor package may be obtained by integrally molding a curable resin composition with a metal.
  • a curable resin composition and a lead frame are integrally formed by transfer molding, or one in which a resin is substantially molded on one side of a metal can be mentioned.
  • the semiconductor package referred to in the present invention is a member provided for supporting and / or protecting a semiconductor element or / and an external extraction electrode.
  • the semiconductor element may not be directly covered but may be one that supports and fixes an external extraction electrode or the like, or that forms the periphery or bottom surface of a semiconductor element such as a light-emitting diode reflector.
  • an integrated circuit such as an IC or LSI
  • an element such as a transistor, a diode, or a light emitting diode, or a light receiving element such as a CCD can be used.
  • the shape is not specified, the effect of the present invention is particularly easily obtained when the semiconductor package has a shape in which a resin is substantially molded on one side of a metal (MAP type).
  • MAP type a metal
  • the semiconductor package of the present invention does not directly cover the semiconductor element as described above, it can be further sealed with a sealing agent, for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used.
  • a sealing agent for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used.
  • a sealing agent for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used.
  • a sealing agent for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin.
  • an aliphatic organic compound having at least two carbon-carbon double bonds having reactivity with a SiH group in one molecule A sealing agent comprising a compound having at least two SiH groups in one molecule and a
  • thermosetting resins such as thermoplastic resins, epoxy resins, and silicone resins
  • injection molding, transfer molding, RIM molding, casting molding, press molding, compression molding, and the like are used.
  • transfer molding is preferred in that the molding cycle is short and the moldability is good.
  • the molding conditions can be arbitrarily set, for example, the molding temperature is also arbitrary. However, in terms of fast curing and a short molding cycle, the moldability tends to be good, more preferably 100 ° C. or higher, more preferably 120 ° C. or higher. A temperature of 150 ° C. or higher is preferable.
  • post-curing After molding by the various methods as described above, post-curing (after-curing) is optional as required. Post-curing tends to increase the heat resistance.
  • Molding may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, as compared with the case where the temperature is constant, in that a uniform cured product without distortion can be easily obtained. Moreover, it is preferable to perform at a constant temperature in that the molding cycle can be shortened.
  • the pressure at the time of molding can be variously set as required, and the molding can be performed at normal pressure, high pressure, or reduced pressure. It is preferable to cure under reduced pressure in terms of suppressing the generation of voids, improving the filling property, and easily removing volatile components generated in some cases. In terms of preventing cracks in the molded body, it is preferable to cure under pressure.
  • the semiconductor component of the present invention is manufactured using the semiconductor package of the present invention.
  • the semiconductor component of the present invention can be used for various known applications. Specific examples include LSIs such as logic and memory, various sensors, light emitting and receiving devices, and the like.
  • the light emitting diode of the present invention is manufactured using the semiconductor package of the present invention.
  • the semiconductor is a light emitting diode, it can be used for various known applications. Specifically, for example, backlights such as liquid crystal display devices, illumination, sensor light sources, vehicle instrument light sources, signal lights, display lights, display devices, planar light source, display, decoration, various lights, etc. it can.
  • the warpage of the package is desirably ⁇ 1.0 mm or less.
  • the warpage in this case is measured based on the maximum warpage measuring method described in JIS C 6481. That is, the semiconductor package is suspended vertically at the center of one side, and a straight ruler is applied parallel to the side. The straight ruler is applied to the concave surface of the semiconductor package, and the maximum distance between the straight ruler and the base surface of the semiconductor package is measured to a unit of 1.0 mm with a metal straight scale.
  • the semiconductor package used for the measurement of warpage is manufactured by the method shown in the (Method for forming MAP product) of the example.
  • the total amount of unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, toluene and allyl glycidyl ether by-products is 5,000 ppm or less in total.
  • the solution was distilled off under reduced pressure until a colorless and transparent liquid was obtained.
  • this product was obtained by reacting part of the SiH group of 1,3,5,7-tetramethylcyclotetrasiloxane with allyl glycidyl ether and triallyl isocyanurate. It was found that
  • compositions 1 to 3 and Compositions A and B were prepared by blending each component according to the contents of Table 1.
  • compositions 1 to 3 A, B, and (D) listed in Table 1 was weighed into a cup-shaped container and mixed in advance (G) component, (F) component A mixed powder of (or carbon black) and (E) component was added little by little and kneaded with a plastic spatula.
  • the obtained curable resin composition was a slightly wet powder, but after it was stretched with a round bar-shaped jig and then folded and stretched again, it was gradually moistened and moistened flakes. To be uniform. However, those with a large amount of filler and those with a high proportion of fine powder were in the form of powder (somewhat wet) until the end. The following spherical silica was used.
  • MSR-3500, MSR-2212TN, MSR-SF650, MSR-SF630, and MSR-04 were manufactured by Tatsumori Co., Ltd., and Admafine SO-2C was manufactured by Admatechs Co., Ltd.
  • the white pigment zinc oxide (ZnO-1) manufactured by Sakai Chemical Co., Ltd. and titanium oxide (PC-3) manufactured by Ishihara Sangyo Co., Ltd. were used.
  • PC-3 is titanium oxide surface-treated with Al, Si, and organic matter.
  • As the carbon black dimethylpolysiloxane surface-treated acetylene black (product name: SI06-2 Denka Black granular) manufactured by Daito Kasei Kogyo Co., Ltd. was used.
  • the mold release agent calcium stearate was manufactured by Sakai Chemical Co., Ltd.
  • the produced curable resin composition was compressed into a tablet by a tablet production jig composed of a metal punch and mortar. Specifically, a predetermined amount of the composition was put into a 13 mm diameter mortar and compressed from the top with a spatula at a pressure of 100 kg / cm 2 for 5 seconds to obtain a tablet having a predetermined volume.
  • the curable resin composition of the present invention was compressed with a tablet manufacturing jig comprising a Teflon punch and mortar to produce a tablet having a diameter of 38 mm. Next, this tablet was placed in a pot of a transfer molding machine (model: ETA-20, plunger diameter: 40 mm) manufactured by Shindo Metal Industry Co., Ltd., and spiral flow data was measured.
  • the shape of the spiral flow mold was a semicircular shape having a width of 3 mm and a depth of 1.5 mm as a cross-sectional shape.
  • the molding conditions were a mold temperature: 170 ° C., a transfer pressure of 7 MPa, a curing time, and 120 seconds.
  • a molded MAP Mold Array Package: a type in which a semiconductor package has a shape in which a resin is substantially formed on one side of a metal) includes a total of 180 reflectors in 15 rows and 12 rows.
  • Each reflector has a top surface of 2.1 mm, a bottom surface of 1.8 mm (taper angle: 15 degrees), a height of 0.55 mm, a width of 0.20 mm from the right end along the transverse diameter, and a width of 0.20 mm.
  • the electrode slit which consists of a compound which hardened the conductive resin composition is provided vertically.
  • the interval between the reflectors is 1.1 mm in both the vertical and horizontal diameter directions.
  • the lead frame and the mold are not particularly limited as long as a reflector with a lead frame that satisfies the above requirements can be manufactured. This shape of the molded product is called a 3030 MAP type.
  • a conceptual diagram of the molded product is shown in FIG.
  • the transfer molding was performed using a G-Line manual press manufactured by Apic Yamada Co., Ltd. (clamping force 30 ton, injection pressure 8 MPa, injection speed 3 mm / s).
  • a white compound (5.0 g) was weighed, shaped into a cylindrical shape (tablet as described above), loaded into a cylinder, and molded.
  • the molding conditions were 170 ° C. and 150 seconds. After molding, it was post-cured (aftercured) at 180 ° C. for 1 hour in a hot air oven.
  • warp When the molded part is placed on a smooth surface with the molded part facing up, the warp is defined as a forward warp when the molded part is concave when viewed from the side, and the reverse warp is defined as a convex part.
  • degree of warpage a MAP product was placed on a smooth surface, and the value (mm) having the longest distance among the four sides away from the surface was quantified.
  • test piece is 50 mm to 80 mm in length, the width is about 7 mm to 8 mm, and the two sides facing each other are It cut out so that it might become parallel.
  • the test piece was installed between the metal fulcrums with rounded corners so that the shape formed between the fulcrums was rectangular.
  • three places of the test piece which enter between fulcrum were measured to 0.01 mm, and each average value was made into the measurement result. The area was calculated from the specimen width and thickness. Texture Microscope TA.
  • a pressure wedge consisting of right-angled triangles made of glass with round corners with a width of 10 mm at plus, applying a load at a speed of 2.0 mm / sec to the center of the test piece, and the load when the test piece breaks (bending fracture) Load N) and breaking displacement (deflection mm at break) were measured. The measurement results were averaged from the three measurements.
  • the bending fracture strength ⁇ b (N / mm 2 ) was calculated as follows.
  • the hardness was measured using a type D durometer based on JIS K 7125.
  • the test piece used was a stack of 6 or more flat plates produced by transfer molding having a thickness of 1 mm.
  • the cured product obtained from the curable resin composition of the present invention has a linear expansion of Cu used as a base material for LED package substrates and the like. It can be seen that a linear expansion coefficient equal to or lower than the coefficient can be realized.
  • the warpage is large in Comparative Example 1, the effect of using the component (D) in the present invention can be confirmed. That is, it can be seen that when the component (D) is added, a semiconductor package with a warp of 1.0 mm or less can be obtained.
  • Example 10 to 12 and Comparative Example 4 Based on the formulation examples based on Table 3, the curable resin compositions of Examples 10 to 12 and Comparative Example 4 shown in Table 4 were prepared, and the bending characteristics, bending strength, continuous moldability test, and (A The physical properties of cured products obtained by thermally curing a mixture of components (C) to (C) and (Z) were compared.
  • the continuous formability test will be described below.
  • the transfer molding is continuously performed 40 times in the same manner as the above-described (MAP product molding method), and the external appearance of the first-time molded MAP product and the 40th-time molded MAP product is visually observed.
  • When the 40th MAP product has the same appearance as that of the 1st time, ⁇ , when there are 9 or less cohesive failure areas of 50 ⁇ m or more, ⁇ , when there are 10-20 places ⁇ , if over 20 locations, determined as x.

Abstract

The purpose of the present invention is to provide a curable composition that has a low linear coefficient of expansion and that can provide a tough cured product. The curable resin composition which is characterized by containing, as essential ingredients, (A) a silicide that has a molecular weight less than 1000 that contains at least two carbon-carbon double bonds, which are reactive with an SiH group, in each molecule, (B) a compound that contains at least two SiH groups in each molecule, (C) a hydrosilylation catalyst, (D) a silicone compound that has a molecular weight of 1000 or more and contains at least one carbon-carbon double bond, which is reactive with an SiH group, in each molecule, and (E) an inorganic filler.

Description

硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオードCurable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
本発明は、硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオードに関する。 The present invention relates to a curable resin composition, a curable resin composition tablet, a molded body, a semiconductor package, a semiconductor component, and a light emitting diode.
従来、半導体には種々の形状の硬化性樹脂を用いたパッケージが適用されている。こうしたパッケージには半導体とパッケージ外部との電気的な接続のため、パッケージの強度保持のため、あるいは半導体から発生する熱をパッケージ外部へ伝えるなどのために、種々の金属材料が用いられ、硬化性樹脂と一体成形される場合が多い。 Conventionally, packages using curable resins of various shapes are applied to semiconductors. Various metal materials are used for these packages in order to make electrical connection between the semiconductor and the outside of the package, to maintain the strength of the package, or to transfer heat generated from the semiconductor to the outside of the package. Often molded integrally with resin.
しかし、樹脂は一般に線膨張係数が大きく、一般に小さな線膨張係数を有する金属材料と線膨張係数が整合しにくいことから、加熱成形時、後硬化時、あるいは半導体部品として使用中における種々の加熱-冷却を伴う工程において反り、剥離、割れ、半導体へのダメージなどといった問題を生ずる場合がある。特に線膨張の不整合に伴う反りに関しては、金属の両面に均等になるように硬化性樹脂を成形することにより反りの低減をはかる方法もある。 However, since resins generally have a large coefficient of linear expansion, and the coefficient of linear expansion is generally difficult to match that of a metal material having a small coefficient of linear expansion, various types of heating during heat molding, post-curing, or in use as semiconductor components— Problems such as warpage, peeling, cracking, and damage to the semiconductor may occur in the process involving cooling. In particular, there is a method for reducing warpage by forming a curable resin so as to be uniform on both surfaces of a metal with respect to warpage due to mismatch of linear expansion.
しかし、近年半導体から発生する熱量の増大により放熱性の高い設計が求められるようになっており、熱をパッケージの外へ有効に導くために、半導体素子を接着する金属がパッケージの底面を形成するようなパッケージ設計がなされるようになってきている(特許文献1、2)。その場合、上記のような反りの低減化をとることができず、反りの問題が重要となってくる。 However, in recent years, a design with high heat dissipation has been required due to an increase in the amount of heat generated from a semiconductor. In order to effectively conduct heat to the outside of the package, the metal bonding the semiconductor element forms the bottom surface of the package. Such package design has been made (Patent Documents 1 and 2). In that case, it is not possible to reduce the warp as described above, and the problem of warp becomes important.
これまで樹脂による反りの低減に関しては、樹脂の線膨張を低減させて一体成形する金属の線膨張に近づけること、樹脂を低弾性率化することなどにより対策がとられてきた。しかし、線膨張を低減させるために無機フィラーを大量に充填すると樹脂の成形時の流動性が低下して成型加工性を損なうため限界があり、また低弾性化すると樹脂の強度が低下して半導体素子を保護するというパッケージとしての主要機能を損なうことにもなる。以上のことから、半導体のパッケージにおいて反りを低減化でき、かつ強靭な硬化物を与える硬化性樹脂が求められている。 In the past, measures have been taken to reduce the warpage caused by the resin by reducing the linear expansion of the resin to approach the linear expansion of the metal that is integrally formed, or by reducing the elastic modulus of the resin. However, if a large amount of inorganic filler is filled in order to reduce the linear expansion, there is a limit because the fluidity at the time of molding of the resin is lowered and the moldability is impaired, and if the elasticity is lowered, the strength of the resin is lowered and the semiconductor is lowered. This also impairs the main function of the package for protecting the element. In view of the above, there is a demand for a curable resin that can reduce warpage in a semiconductor package and provides a tough cured product.
一方、半導体から発生する熱(半導体が発光ダイオードの場合はさらに光)が増大してきており、半導体のパッケージ用樹脂の耐熱性(耐光性)がよりいっそう求められるようになってきている。これらの要求に対して、耐熱性が高い、ヒドロシリル化反応によって硬化する樹脂が半導体のパッケージ用樹脂として適用されてきている(特許文献1、3)。 On the other hand, heat generated from a semiconductor (light further when the semiconductor is a light-emitting diode) has been increasing, and the heat resistance (light resistance) of a semiconductor package resin has been further demanded. Responding to these requirements, resins that have high heat resistance and are cured by a hydrosilylation reaction have been applied as semiconductor packaging resins (Patent Documents 1 and 3).
特開2010-62272号公報JP 2010-62272 A 特開2009-302241号公報JP 2009-302241 A 特開2005-146191号公報JP 2005-146191 A
従って、本発明の課題は、低い線膨張係数を有し、かつ強靭な硬化物を与える硬化性樹脂組成物を提供することであり、該組成物を用いて金属と一体成形された反りが低減され、かつ靭性に優れた半導体のパッケージおよびそれを用いて製造された半導体を提供することである。 Accordingly, an object of the present invention is to provide a curable resin composition having a low linear expansion coefficient and giving a tough cured product, and the warpage integrally formed with a metal using the composition is reduced. And a tough semiconductor package and a semiconductor manufactured using the same.
かかる課題を解決するために本発明者らは鋭意研究の結果、(A)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する分子量が1000未満のケイ素化合物、(B)1分子中に少なくとも2個のSiH基を含有する化合物、(C)ヒドロシリル化触媒、(D)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有し、分子量が1000以上のシリコーン化合物、及び、(E)無機充填材、を必須成分として硬化性樹脂組成物とすることにより上記課題を達成できることを見出し本発明に至った。 In order to solve such a problem, the present inventors have conducted extensive research. (A) Silicon having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule. Compound, (B) a compound containing at least two SiH groups in one molecule, (C) a hydrosilylation catalyst, and (D) at least a carbon-carbon double bond having reactivity with SiH groups in one molecule. It has been found that the above problems can be achieved by using a curable resin composition containing one silicone compound having a molecular weight of 1000 or more and (E) an inorganic filler as essential components.
すなわち、本発明は以下の構成を有するものである。
(1).(A)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する分子量1000未満のケイ素化合物、
(B)1分子中に少なくとも2個のSiH基を含有する化合物、
(C)ヒドロシリル化触媒、
(D)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有し、分子量が1000以上であるシリコーン化合物、及び、
(E)無機充填材、
を必須成分として含有することを特徴とする硬化性樹脂組成物。
(2).更に(Z)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物を含有する(1)に記載の硬化性樹脂組成物。
(3).(D)成分がビニル基を末端に有する直鎖状ポリシロキサンである(1)または(2)に記載の硬化性樹脂組成物。
(4).(D)成分の重量平均分子量が2,000以上かつ1,000,000以下である(1)~(3)のいずれか1項に記載の硬化性樹脂組成物。
(5).(E)成分が球状シリカである(1)~(4)のいずれか1項に記載の硬化性樹脂組成物。
(6).更に(F)白色顔料を含有する(1)~(5)のいずれか1項に記載の硬化性樹脂組成物。
(7).(F)成分の平均粒子径が1.0μm以下である(6)に記載の硬化性樹脂組成物。
(8).(F)成分が酸化チタンである(6)または(7)に記載の硬化性樹脂組成物。
(9).(F)成分が有機シロキサンにより表面処理された酸化チタンである(8)に記載の硬化性樹脂組成物。
(10).(F)成分が無機化合物で表面処理された酸化チタンである(8)に記載の硬化性樹脂組成物。
(11).(F)成分がアルミニウム化合物で表面処理された酸化チタンである(10)に記載の硬化性樹脂組成物。
(12).(F)成分が酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である(6)または(7)に記載の硬化性樹脂組成物。
(13).更に、(G)金属石鹸を含有する(1)~(12)のいずれか1項に記載の硬化性樹脂組成物。
(14).(G)成分がステアリン酸金属塩である(13)に記載の硬化性樹脂組成物。
(15).(G)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である(14)に記載の硬化性樹脂組成物。
(16).(A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上である(1)~(15)のいずれか1項に記載の硬化性樹脂組成物。
(17).硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上である(1)~(16)のいずれか1項に記載の硬化性樹脂組成物。
(18).硬化性樹脂組成物全体に占める(F)成分の含有量が10重量%以上である(6)~(17)のいずれか1項に記載の硬化性樹脂組成物。
(19).硬化性樹脂組成物全体に占める(G)成分の含有量が0.01~5重量%である(13)~(18)のいずれか1項に記載の硬化性樹脂組成物。
(20).硬化させてなる成形体の表面の波長480nmの光反射率が80%以上である(1)~(19)のいずれか1項に記載の硬化性樹脂組成物。
(21).180℃、24時間の耐熱試験後の光反射率の保持率(耐熱試験後の光反射率/初期の光反射率×100)が90%以上である(20)に記載の硬化性樹脂組成物。
(22).硬化させてなる成形体の曲げ強度が20N/mm~50N/mmの範囲内にあることを特徴とする(1)~(21)のうちいずれか1項に記載の硬化性樹脂組成物。
(23).(A)成分~(C)成分及び(Z)成分の混合物を熱硬化させて得られる硬化物のTgが、30℃~100℃の範囲内にあることを特徴とする(2)~(22)のうちいずれか1項に記載の硬化性樹脂組成物。
(24).前記(A)成分~(C)成分及び(Z)成分の混合物を熱硬化させて得られる硬化物が、150℃における周波数10Hz、引張りモードで測定した貯蔵弾性率が20MPa~100MPaの範囲内であることを特徴とする(23)に記載の硬化性樹脂組成物。
(25).発光ダイオード用のリードフレームの片面に成形してパッケージとした場合の、パッケージの反りが±1.0mm以下である(1)~(24)のいずれか1項に記載の硬化性樹脂組成物。
(26).半導体のパッケージに用いられる(1)~(25)のいずれか1項に記載の硬化性樹脂組成物。
(27).(6)~(26)のいずれか1項に記載の硬化性樹脂組成物からなるタブレットであって、(A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
(E)成分と(F)成分の合計の含有量が70~95重量%であり、
(E)成分と(F)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とするタブレット。
(28).(1)~(25)のいずれか1項に記載の硬化性樹脂組成物を硬化してなり、表面の波長480nmの光反射率が90%以上であることを特徴とする成形体。
(29).(26)に記載の硬化性樹脂組成物を用いて成形したことを特徴とする半導体のパッケージ。
(30).(26)に記載の硬化性樹脂組成物を用いて金属と一体成形したことを特徴とする半導体のパッケージ。
(31).硬化性樹脂組成物とリードフレームとをトランスファーモールドにより一体成形した(29)または(30)に記載の半導体のパッケージ。
(32).実質的に金属の片面に樹脂が成形されてなるパッケージである、(29)~(31)のいずれか1項に記載の半導体のパッケージ。
(33).(26)に記載の硬化性樹脂組成物を用いてトランスファー成形されてなる半導体のパッケージ。
(34).(29)~(33)のいずれか1項に記載の半導体のパッケージを用いて製造された半導体部品。
(35).(29)~(33)のいずれか1項に記載の半導体のパッケージを用いて製造された発光ダイオード。
That is, the present invention has the following configuration.
(1). (A) a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule;
(B) a compound containing at least two SiH groups in one molecule;
(C) a hydrosilylation catalyst,
(D) a silicone compound containing at least one carbon-carbon double bond having reactivity with SiH group in one molecule and having a molecular weight of 1000 or more, and
(E) inorganic filler,
Is contained as an essential component. Curable resin composition characterized by the above-mentioned.
(2). The curable resin composition according to (1), further comprising (Z) an organic compound containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule.
(3). (D) The curable resin composition according to (1) or (2), wherein the component is a linear polysiloxane having a vinyl group at its terminal.
(4). (D) The curable resin composition according to any one of (1) to (3), wherein the component has a weight average molecular weight of 2,000 or more and 1,000,000 or less.
(5). (E) The curable resin composition according to any one of (1) to (4), wherein the component is spherical silica.
(6). The curable resin composition according to any one of (1) to (5), further comprising (F) a white pigment.
(7). (F) Curable resin composition as described in (6) whose average particle diameter of a component is 1.0 micrometer or less.
(8). (F) The curable resin composition according to (6) or (7), wherein the component is titanium oxide.
(9). (F) Curable resin composition as described in (8) whose component is titanium oxide surface-treated with organosiloxane.
(10). (F) Curable resin composition as described in (8) whose component is the titanium oxide surface-treated with the inorganic compound.
(11). (F) Curable resin composition as described in (10) whose component is titanium oxide surface-treated with the aluminum compound.
(12). (F) The curable resin composition according to (6) or (7), wherein the component is at least one selected from zinc oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate and barium sulfate.
(13). The curable resin composition according to any one of (1) to (12), further comprising (G) a metal soap.
(14). (G) Curable resin composition as described in (13) whose component is a stearic acid metal salt.
(15). (G) The curable resin composition according to (14), wherein the component is one or more selected from the group consisting of calcium stearate, magnesium stearate, zinc stearate, and aluminum stearate.
(16). The curable resin composition according to any one of (1) to (15), wherein the weight of the component (D) is 30% by weight or more based on the total weight of the components (A) and (B).
(17). The curable resin composition according to any one of (1) to (16), wherein the total amount of component (E) in the entire curable resin composition is 70% by weight or more.
(18). (6) The curable resin composition according to any one of (6) to (17), wherein the content of the component (F) in the entire curable resin composition is 10% by weight or more.
(19). The curable resin composition according to any one of (13) to (18), wherein the content of the component (G) in the entire curable resin composition is 0.01 to 5% by weight.
(20). The curable resin composition according to any one of (1) to (19), wherein the light reflectance at a wavelength of 480 nm on the surface of the molded product is 80% or more.
(21). The curable resin composition according to (20), wherein a retention ratio of light reflectance after a heat resistance test at 180 ° C. for 24 hours (light reflectance after heat resistance test / initial light reflectance × 100) is 90% or more. .
(22). The curable resin composition according to any one of (1) to (21), wherein the cured product has a bending strength in the range of 20 N / mm 2 to 50 N / mm 2 . .
(23). (2) to (22), wherein the Tg of the cured product obtained by thermally curing the mixture of the components (A) to (C) and (Z) is in the range of 30 ° C. to 100 ° C. The curable resin composition according to any one of the above.
(24). A cured product obtained by thermosetting the mixture of the components (A) to (C) and the (Z) component has a storage elastic modulus measured in a tensile mode at a frequency of 10 Hz at 150 ° C. within a range of 20 MPa to 100 MPa. (23) The curable resin composition according to (23).
(25). The curable resin composition according to any one of (1) to (24), wherein the package warpage is ± 1.0 mm or less when the package is formed on one side of a lead frame for a light emitting diode.
(26). The curable resin composition according to any one of (1) to (25), which is used for a semiconductor package.
(27). A tablet comprising the curable resin composition according to any one of (6) to (26), wherein at least one of the component (A) and the component (B) has a viscosity at 23 ° C. of 50 Pa seconds or less. And
The total content of component (E) and component (F) is 70 to 95% by weight,
The ratio of the particle | grains of 12 micrometers or less to the sum total of (E) component and (F) component is 40 volume% or more, The tablet characterized by the above-mentioned.
(28). A molded product obtained by curing the curable resin composition according to any one of (1) to (25), and having a light reflectance at a surface wavelength of 480 nm of 90% or more.
(29). A semiconductor package formed using the curable resin composition according to (26).
(30). (26) The semiconductor package characterized by integrally forming with the metal using the curable resin composition as described in (26).
(31). The semiconductor package according to (29) or (30), wherein the curable resin composition and the lead frame are integrally formed by transfer molding.
(32). The semiconductor package according to any one of (29) to (31), which is a package formed by substantially molding a resin on one side of a metal.
(33). A semiconductor package formed by transfer molding using the curable resin composition according to (26).
(34). (29) A semiconductor component manufactured using the semiconductor package described in any one of (33).
(35). (29) A light-emitting diode manufactured using the semiconductor package according to any one of (33) to (33).
本発明の硬化性樹脂組成物を用いれば、低い線膨張係数を有し、かつ強靭な硬化物を与える硬化性樹脂組成物を得ることができるため、それを用いて金属と一体成形された、反りが低減され、靭性に優れた半導体のパッケージおよびそれを用いて製造された半導体を作製できる。 If the curable resin composition of the present invention is used, a curable resin composition having a low linear expansion coefficient and giving a tough cured product can be obtained. A semiconductor package with reduced warpage and excellent toughness and a semiconductor manufactured using the same can be manufactured.
成形品の概念図である。It is a conceptual diagram of a molded article. 強度の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of intensity | strength.
以下、本発明を詳細に説明する。
本発明の硬化性樹脂組成物は、
(A)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する分子量が1000未満のケイ素化合物、
(B)1分子中に少なくとも2個のSiH基を含有する化合物、
(C)ヒドロシリル化触媒、
(D)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有し、分子量が1000以上のシリコーン化合物、及び、
(E)無機充填材、を必須成分として含有することを特徴とする硬化性樹脂組成物である。
Hereinafter, the present invention will be described in detail.
The curable resin composition of the present invention is
(A) a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule;
(B) a compound containing at least two SiH groups in one molecule;
(C) a hydrosilylation catalyst,
(D) a silicone compound containing at least one carbon-carbon double bond having reactivity with a SiH group in one molecule and having a molecular weight of 1000 or more, and
(E) A curable resin composition containing an inorganic filler as an essential component.
以下、各成分について説明する。
((A)成分)
(A)成分はSiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する分子量が1000未満のケイ素化合物であれば、特に限定することなく用いることができる。
Hereinafter, each component will be described.
((A) component)
The component (A) can be used without particular limitation as long as it is a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule.
(A)成分中の炭素-炭素二重結合は、ケイ素原子に直接結合したCH=CH-Si型の構造が好ましい。これは本発明の硬化性樹脂組成物がヒドロシリル化反応により硬化する際に、該構造がヒドロシリル化反応に対して活性が高い上に、副反応が伴わないので、狙い通りの架橋構造を得ることが容易である。一方、例えば前述の特許文献3記載の(A)成分に相当する成分では、ケイ素を含まない一般の有機化合物の炭素-炭素二重結合となるため、内部オレフィンへの異性化反応がヒドロシリル化時の副反応として不可避的に伴う。いったん内部オレフィンが生成してしまうと、ヒドロシリル化反応への活性が極端に低下し、反応率低下に伴う、機械物性の低下や、表面タック性の発現等不具合が懸念される。 The carbon-carbon double bond in component (A) preferably has a CH 2 ═CH—Si type structure directly bonded to a silicon atom. This is because when the curable resin composition of the present invention is cured by a hydrosilylation reaction, the structure is highly active with respect to the hydrosilylation reaction, and no side reaction is involved. Is easy. On the other hand, for example, the component corresponding to the component (A) described in Patent Document 3 described above becomes a carbon-carbon double bond of a general organic compound not containing silicon, so that the isomerization reaction to an internal olefin is performed during hydrosilylation. Inevitable as a side reaction. Once the internal olefin is generated, the activity for hydrosilylation reaction is extremely reduced, and there are concerns about problems such as deterioration of mechanical properties and expression of surface tackiness associated with a decrease in reaction rate.
また本発明の硬化性樹脂組成物を硬化させた硬化物の架橋構造を構成するSi-C結合(結合距離1.91Å。C-C結合の距離は1.50Å。)の割合が、前述の特許文献3記載の硬化物と比較して多くなるので、架橋密度を低減することができる。そのため、後述する(D)成分を組合わせることにより、特許文献3の硬化物と比較して、低線膨張率でありながら低弾性で靭性に優れた硬化物を得ることができる。 Further, the proportion of Si—C bonds (bonding distance: 1.91 mm; C—C bond distance: 1.50 mm) constituting the crosslinked structure of the cured product obtained by curing the curable resin composition of the present invention is as described above. Since it increases compared with the hardened | cured material of patent document 3, a crosslinking density can be reduced. Therefore, by combining the component (D) described later, compared with the cured product of Patent Document 3, a cured product having low elasticity and low toughness can be obtained while having a low linear expansion coefficient.
(A)成分としては、耐熱性をより向上し得るという観点からは、SiH基との反応性を有する炭素-炭素二重結合を(A)成分1gあたり0.001mol以上含有するものが好ましく、1gあたり0.003mol以上含有するものがより好ましく、0.005mol以上含有するものがさらに好ましい。 The component (A) is preferably one containing 0.001 mol or more of carbon-carbon double bond having reactivity with the SiH group from 1 g of the component (A) from the viewpoint of further improving the heat resistance. Those containing 0.003 mol or more per gram are more preferable, and those containing 0.005 mol or more are more preferable.
(A)成分のSiH基との反応性を有する炭素-炭素二重結合の数は、平均して1分子当たり少なくとも2個あればよいが、力学強度をより向上したい場合には2を越えることが好ましく、3個以上であることがより好ましい。逆に硬化物に柔軟性や靭性を与えたい場合は、3個以上になると脆性が顕れてくる場合があるので、平均して2個に近い個数が望ましい。(A)成分のSiH基との反応性を有する炭素-炭素二重結合の数が1分子内当たり1個以下の場合は、(B)成分と反応してもグラフト構造となるのみで架橋構造とならない。 The number of carbon-carbon double bonds having reactivity with the SiH group of component (A) should be at least 2 on average per molecule, but it should exceed 2 if it is desired to further improve the mechanical strength. It is preferable that the number is 3 or more. Conversely, when it is desired to give flexibility or toughness to the cured product, brittleness may appear when the number is 3 or more, and thus the number close to 2 on average is desirable. When the number of carbon-carbon double bonds having reactivity with the SiH group of component (A) is 1 or less per molecule, a crosslinked structure is obtained even if it reacts with component (B), resulting in a graft structure. Not.
また貯蔵安定性が良好となりやすいという観点からは、1分子中にビニル基を6個以下含有していることが好ましく、1分子中にビニル基を4個以下含有していることがより好ましい。 Further, from the viewpoint that the storage stability tends to be good, it is preferable that 6 or less vinyl groups are contained in one molecule, and it is more preferable that 4 or less vinyl groups are contained in one molecule.
(A)成分の分子量は、1000未満である。力学的耐熱性が高いという観点および原料液の糸引き性が少なく成形性、取扱い性が良好であるという観点、(E)成分および(F)成分などの粉体との均一な混合が容易という点、および硬化性樹脂組成物タブレットとした際の成形性が良好であるという観点からは、分子量が900未満のものが好ましく、700未満のものがより好ましく、500未満のものがさらに好ましい。 The molecular weight of the component (A) is less than 1000. The viewpoint that mechanical heat resistance is high, the stringiness of the raw material liquid is small, the moldability and the handleability are good, and the uniform mixing with the powders such as the component (E) and the component (F) is easy. In view of the good point and the moldability of the curable resin composition tablet, the molecular weight is preferably less than 900, more preferably less than 700, and even more preferably less than 500.
(A)成分としては、他の成分との均一な混合、および良好な作業性を得るためには、23℃において液体であることが好ましく、その粘度としては23℃において1000ポイズ未満のものが好ましく、500ポイズ以下のものがより好ましく、300ポイズ未満のものがさらに好ましく、30ポイズ未満のものが特に好ましい。粘度はE型粘度計によって測定することができる。 As the component (A), in order to obtain uniform mixing with other components and good workability, it is preferably a liquid at 23 ° C., and its viscosity is less than 1000 poise at 23 ° C. Preferably, those having 500 poises or less are more preferred, those having less than 300 poises are further preferred, and those having less than 30 poises are particularly preferred. The viscosity can be measured with an E-type viscometer.
(A)成分を具体的に例示すれば、CH=CHSiMeO(SiMeO)SiMeCH=CH(n=0-10),CH=CHSiMeO(SiMeO)(SiPhO)SiMeCH=CH(m=0-5,n=1-4),CH=CHSiPhO(SiMeO)(SiPhO)SiPhCH=CH(m=0-3,n=1-2),CH=CHSiMeO(SiMeO)(SiPhMeO)SiMeCH=CH(m=0-5,n=1-6),MeSiO(SiMeO)(SiMe(CH=CH)O)SiMe(m=0-5,n=2-9),MeSi[O(SiMeO)SiMeCH=CH(m=0-2)などの直鎖状、分岐状シロキサン化合物;
1,3,5,7-テトラビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-ペンタメチルシクロテトラシロキサン、1,3-ジビニル-ヘキサメチルシクロテトラシロキサン、1,5-ジビニル-ヘキサメチルシクロテトラシロキサン、1,3,5,7-テトラビニル-1-フェニル-3,5,7-トリメチルシクロテトラシロキサン、1,3,5,7-テトラビニル-1,3-ジフェニル-5,7-ジメチルシクロテトラシロキサン、1,3,5,7-テトラビニル-1,5-ジフェニル-3,7-ジメチルシクロテトラシロキサン、1,3,5,7-テトラビニル-1,3,5-トリフェニル-7-メチルシクロテトラシロキサン、1-フェニル-3,5,7-トリビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3-ジフェニル-5,7-ジビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,5-ジフェニル-3,7-ジビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-1,3,5-トリメチルシクロトリシロキサン、1,3,5,7,9-ペンタビニル-1,3,5,7,9-ペンタメチルシクロペンタシロキサン、1,3,5,7,9,11-ヘキサビニル-1,3,5,7,9,11-ヘキサメチルシクロヘキサシロキサンなどの環状シロキサン化合物が例示される。
If Specific examples of the component (A), CH 2 = CHSiMe 2 O ( SiMe 2 O) n SiMe 2 CH = CH 2 (n = 0-10), CH 2 = CHSiMe 2 O (SiMe 2 O) m (SiPh 2 O) n SiMe 2 CH═CH 2 (m = 0-5, n = 1-4), CH 2 = CHSiPh 2 O (SiMe 2 O) m (SiPh 2 O) n SiPh 2 CH═CH 2 (M = 0-3, n = 1-2), CH 2 = CHSiMe 2 O (SiMe 2 O) m (SiPhMeO) n SiMe 2 CH═CH 2 (m = 0-5, n = 1-6), Me 3 SiO (SiMe 2 O) m (SiMe (CH═CH 2 ) O) n SiMe 3 (m = 0-5, n = 2-9), MeSi [O (SiMe 2 O) m SiMe 2 CH═CH 2] 3 (m = 0- ) Straight, branched siloxane compounds, such as
1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-pentamethylcyclotetrasiloxane, 1,3-divinyl-hexamethylcyclotetrasiloxane 1,5-divinyl-hexamethylcyclotetrasiloxane, 1,3,5,7-tetravinyl-1-phenyl-3,5,7-trimethylcyclotetrasiloxane, 1,3,5,7-tetravinyl- 1,3-diphenyl-5,7-dimethylcyclotetrasiloxane, 1,3,5,7-tetravinyl-1,5-diphenyl-3,7-dimethylcyclotetrasiloxane, 1,3,5,7-tetra Vinyl-1,3,5-triphenyl-7-methylcyclotetrasiloxane, 1-phenyl-3,5,7-trivinyl-1,3,5,7-te Lamethylcyclotetrasiloxane, 1,3-diphenyl-5,7-divinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-diphenyl-3,7-divinyl-1,3,5, 7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane, 1,3,5,7,9-pentavinyl-1,3,5,7,9-penta Examples thereof include cyclic siloxane compounds such as methylcyclopentasiloxane and 1,3,5,7,9,11-hexavinyl-1,3,5,7,9,11-hexamethylcyclohexasiloxane.
シロキサン以外の化合物としては、ClCHCHCHSiMe(CH=CH,(CH=CH)SiMe,(CH=CH)SiPhMe,(CH=CH)SiPh,(CH=CH)Si(OEt),PhSi(CH=CH,(CH=CH)Si,CH=CHMeSi-Cp-SiMeCH=CH,CH=CHMeSiO-Cp-OSiMeCH=CHなどをあげることができる。 The compounds other than siloxanes, ClCH 2 CH 2 CH 2 SiMe (CH = CH 2) 2, (CH 2 = CH) 2 SiMe 2, (CH 2 = CH) 2 SiPhMe, (CH 2 = CH) 2 SiPh 2 , (CH 2 ═CH) 2 Si (OEt) 2 , PhSi (CH═CH 2 ) 3 , (CH 2 ═CH) 4 Si, CH 2 ═CHMe 2 Si—C 6 H 4 p-SiMe 2 CH═CH 2 , CH 2 ═CHMe 2 SiO—C 6 H 4 p-OSiMe 2 CH═CH 2 and the like.
上記に示した具体例のうちフェニル(Ph)基を含む化合物においては、フェニル基の一部又は全部を次にあげるアリール基と置き換えてもよい。そのようなアリール基としては、例えば、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基、4-ブチルフェニル基、3-イソブチルフェニル基、4-イソブチルフェニル基、3-tブチルフェニル基、4-tブチルフェニル基、3-ペンチルフェニル基、4-ペンチルフェニル基、3-ヘキシルフェニル基、4-ヘキシルフェニル基、3-シクロヘキシルフェニル基、4-シクロヘキシルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,3-ジエチルフェニル基、2,4-ジエチルフェニル基、2,5-ジエチルフェニル基、2,6-ジエチルフェニル基、3,4-ジエチルフェニル基、3,5-ジエチルフェニル基、ビフェニル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,4,5-トリメチルフェニル基、3-エポキシフェニル基、4-エポキシフェニル基、3-グリシジルフェニル基、4-グリシジルフェニル基等が挙げられる。これらは、単独で用いても良く、2種以上併用して用いてもよい。 Among the specific examples shown above, in a compound containing a phenyl (Ph) group, a part or all of the phenyl group may be replaced with the following aryl group. Examples of such aryl groups include naphthyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2 -Propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 3-isopropylphenyl group, 4-isopropylphenyl group, 2-butylphenyl group, 3-butylphenyl group, 4-butylphenyl group, 3-isobutyl Phenyl group, 4-isobutylphenyl group, 3-tbutylphenyl group, 4-tbutylphenyl group, 3-pentylphenyl group, 4-pentylphenyl group, 3-hexylphenyl group, 4-hexylphenyl group, 3-cyclohexyl Phenyl group, 4-cyclohexylphenyl group, 2,3-dimethylphenyl group, 2,4 Dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,3-diethylphenyl group, 2,4-diethylphenyl Group, 2,5-diethylphenyl group, 2,6-diethylphenyl group, 3,4-diethylphenyl group, 3,5-diethylphenyl group, biphenyl group, 2,3,4-trimethylphenyl group, 2,3 , 5-trimethylphenyl group, 2,4,5-trimethylphenyl group, 3-epoxyphenyl group, 4-epoxyphenyl group, 3-glycidylphenyl group, 4-glycidylphenyl group and the like. These may be used alone or in combination of two or more.
上記の内で、入手性がよいこと、揮発性が低いこと、(B)成分や(D)成分との相溶性がよいこと、ヒドロシリル化硬化に伴う反応性が高いこと、本発明の硬化性樹脂組成物を硬化して得られる硬化物が低線膨張係数を持つこと、強靭であることなどの観点から、CH=CHSiMeO(SiMeO)SiMeCH=CH(n=1-3),CH=CHSiMeOSiPhOSiMeCH=CH,CH=CHSiMeO(SiPhO)SiMeCH=CH,CH=CHSiMeOSiPhMeOSiMeCH=CH,CH=CHSiMeO(SiPhMeO)SiMeCH=CH,CH=CHSiPhOSiPhCH=CH,1,3,5-トリビニル-ペンタメチルシクロテトラシロキサン、1,3-ジビニル-ヘキサメチルシクロテトラシロキサン、1,5-ジビニル-ヘキサメチルシクロテトラシロキサン、1,3-ジフェニル-5,7-ジビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、1,3,5-トリビニル-1,3,5-トリメチルシクロトリシロキサン、1,5-ジフェニル-3,7-ジビニル-1,3,5,7-テトラメチルシクロテトラシロキサン、CH=CHMeSi-Cp-SiMeCH=CH,CH=CHMeSiO-Cp-OSiMeCH=CHを好ましく用いることができる。 Among the above, it has good availability, low volatility, good compatibility with component (B) and component (D), high reactivity associated with hydrosilylation curing, curability of the present invention From the viewpoints that the cured product obtained by curing the resin composition has a low coefficient of linear expansion and is tough, CH 2 ═CHSiMe 2 O (SiMe 2 O) n SiMe 2 CH═CH 2 (n = 1-3), CH 2 = CHSiMe 2 OSiPh 2 OSiMe 2 CH = CH 2 , CH 2 = CHSiMe 2 O (SiPh 2 O) 2 SiMe 2 CH = CH 2 , CH 2 = CHSiMe 2 OSiPhMeOSiMe 2 CH = CH 2 , CH 2 = CHSiMe 2 O (SiPhMeO ) 2 SiMe 2 CH = CH 2, CH 2 = CHSiPh 2 OSiPh 2 CH = CH 2, 1, , 5-trivinyl-pentamethylcyclotetrasiloxane, 1,3-divinyl-hexamethylcyclotetrasiloxane, 1,5-divinyl-hexamethylcyclotetrasiloxane, 1,3-diphenyl-5,7-divinyl-1,3 , 5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane, 1,5-diphenyl-3,7-divinyl-1,3,5,7- Tetramethylcyclotetrasiloxane, CH 2 = CHMe 2 Si—C 6 H 4 p-SiMe 2 CH═CH 2 , CH 2 = CHMe 2 SiO—C 6 H 4 p-OSiMe 2 CH═CH 2 is preferably used it can.
((A)成分の混合)
(A)成分は、単独もしくは2種以上のものを混合して用いることが可能である。
(Mixing of component (A))
(A) component can be used individually or in mixture of 2 or more types.
((Z)成分)
(Z)成分は、SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物であり、(A)成分とは異なる化合物である。
(Z)成分を(A)成分と併用してもよい。
該有機化合物の具体的な例としては、ジアリルフタレート、トリアリルトリメリテート、ジエチレングリコールビスアリルカーボネート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、1,1,2,2-テトラアリロキシエタン、ジアリリデンペンタエリスリット、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、ジビニルベンゼン類(純度50~100%のもの、好ましくは純度80~100%のもの)、ジビニルビフェニル、1,3-ジイソプロペニルベンゼン、1,4-ジイソプロペニルベンゼン、およびそれらのオリゴマー、
((Z) component)
The component (Z) is an organic compound containing at least two carbon-carbon double bonds having reactivity with the SiH group in one molecule, and is a compound different from the component (A).
The component (Z) may be used in combination with the component (A).
Specific examples of the organic compound include diallyl phthalate, triallyl trimellitate, diethylene glycol bisallyl carbonate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, 1,1,2,2-tetraallyloxyethane, Diallylidene pentaerythritol, triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isoanurate, diallyl monomethyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes (with a purity of 50 to 100%) , Preferably having a purity of 80 to 100%), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, and oligomers thereof,
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
ブタジエン、イソプレン、オクタジエン、デカジエン等の脂肪族鎖状ポリエン化合物系、シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、トリシクロペンタジエン、ノルボルナジエン等の脂肪族環状ポリエン化合物系、ビニルシクロペンテン、ビニルシクロヘキセン等の置換脂肪族環状オレフィン化合物系等が挙げられる。 Aliphatic chain polyene compounds such as butadiene, isoprene, octadiene and decadiene, aliphatic cyclic polyene compounds such as cyclopentadiene, cyclohexadiene, cyclooctadiene, dicyclopentadiene, tricyclopentadiene and norbornadiene, vinylcyclopentene, vinylcyclohexene And substituted aliphatic cyclic olefin compound systems.
これら有機化合物のうち、耐熱性の観点からはトリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4-トリビニルシクロヘキサン、ジビニルベンゼン類(純度50~100%のもの、好ましくは純度80~100%のもの)、ジビニルビフェニルを使用することが好ましく、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレート、1,2,4-トリビニルシクロヘキサンを使用することがより好ましく、トリアリルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート、ジアリルモノメチルイソシアヌレートを用いることがさらに好ましい。 Of these organic compounds, triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monomethyl isocyanurate, 1,2,4-trivinylcyclohexane, divinylbenzenes (purity 50 to 100%, preferably 80 to 100%), preferably divinylbiphenyl is used, and triallyl cyanurate, triallyl isocyanurate, diallyl monoglycidyl isocyanurate, diallyl monomethyl isocyanurate, 1,2, It is more preferable to use 4-trivinylcyclohexane, and it is more preferable to use triallyl isocyanurate, diallyl monoglycidyl isocyanurate, or diallyl monomethyl isocyanurate.
また、上記(Z)成分の有機化合物を併用する場合の使用量については、例えば本発明における硬化性樹脂組成物を成形して得られる成形体の柔軟性と強度のバランスの観点から、(A)成分100重量部に対して、5~50重量部の範囲内であることが好ましく、10~45重量部の範囲内であることがより好ましく、15~40重量部の範囲内であることがさらに好ましい。 Moreover, about the usage-amount in the case of using together the organic compound of the said (Z) component, from a viewpoint of the balance of the softness | flexibility of a molded object obtained by shape | molding the curable resin composition in this invention, for example, (A ) It is preferably in the range of 5 to 50 parts by weight, more preferably in the range of 10 to 45 parts by weight, and in the range of 15 to 40 parts by weight with respect to 100 parts by weight of the component. Further preferred.
((B)成分)
(B)成分は、1分子中に少なくとも2個のSiH基を含有する化合物である。
(B)成分については1分子中に少なくとも2個のSiH基を含有する化合物であれば特に制限がなく、例えば国際公開第96/15194号パンフレットに記載される化合物で、1分子中に少なくとも2個のSiH基を有するもの等が使用できる。
((B) component)
The component (B) is a compound containing at least two SiH groups in one molecule.
The component (B) is not particularly limited as long as it is a compound containing at least two SiH groups in one molecule. For example, it is a compound described in WO 96/15194, and at least 2 in one molecule. Those having a single SiH group can be used.
これらのうち、入手性の面からは、1分子中に少なくとも2個のSiH基を有する鎖状及び/又は環状オルガノポリシロキサンが好ましく、(A)成分との相溶性が良いという観点からは、さらに、下記一般式(VI) Among these, from the viewpoint of availability, a chain and / or cyclic organopolysiloxane having at least two SiH groups in one molecule is preferable, and from the viewpoint of good compatibility with the component (A), Furthermore, the following general formula (VI)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素数1~6の有機基を表し、nは3~10の数を表す。)で表される、1分子中に少なくとも2個のSiH基を有する環状オルガノポリシロキサンが好ましい。
一般式(VI)で表される化合物中の置換基Rは、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
(Wherein R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10). Cyclic organopolysiloxane having at least two SiH groups in one molecule Is preferred.
The substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H and O, more preferably a hydrocarbon group, and a methyl group. Further preferred.
一般式(VI)で表される化合物としては、入手容易性の観点からは、1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。 The compound represented by the general formula (VI) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane from the viewpoint of availability.
(B)成分の分子量は特に制約はなく任意のものが好適に使用できるが、より流動性を発現しやすく、(E)成分および(F)成分などの粉体と均一に混合しやすいという観点からは低分子量のものが好ましく用いられる。この場合、好ましい分子量の下限は50であり、より好ましくは100、さらに好ましくは150である。好ましい分子量の上限は100,000、より好ましくは5,000、さらに好ましくは2,000、特に好ましくは1,500である。 The molecular weight of the component (B) is not particularly limited, and any one can be suitably used. However, the viewpoint that the fluidity is more easily expressed and the powder such as the component (E) and the component (F) is easily mixed uniformly. Are preferably those having a low molecular weight. In this case, the lower limit of the preferred molecular weight is 50, more preferably 100, still more preferably 150. The upper limit of the molecular weight is preferably 100,000, more preferably 5,000, still more preferably 2,000, and particularly preferably 1,500.
(B)成分としては、他の成分、特に(E)成分および(F)成分などの粉体との均一な混合を容易にするため、更に詳しくは均一な混合のために融点以上に加熱して液体化させる必要がないことから、23℃において液体であることが好ましく、その粘度としては23℃において50Pa秒以下のものが好ましく、20Pa秒以下のものがより好ましく、5Pa秒以下のものがさらに好ましい。粘度はE型粘度計によって測定することができる。
(B)成分は単独もしくは2種以上のものを混合して用いることが可能である。
As the component (B), in order to facilitate uniform mixing with other components, particularly powders such as the component (E) and the component (F), more specifically, heating above the melting point for uniform mixing. The liquid is preferably liquid at 23 ° C., and its viscosity is preferably 50 Pa seconds or less at 23 ° C., more preferably 20 Pa seconds or less, and more preferably 5 Pa seconds or less. Further preferred. The viscosity can be measured with an E-type viscometer.
Component (B) can be used alone or in combination of two or more.
((B)成分の好ましい構造)
(B)成分の揮発性が低くなり得られる硬化性樹脂組成物からのアウトガスの問題が生じ難いという観点及び該組成物から得られる硬化物に実用的な強度・靭性を与えるという観点から、揮発性が実質上なく、シロキサン骨格に加えて有機化合物由来の骨格が導入された成分を有することが、シロキサン骨格だけから構成される化合物よりも好ましい。該化合物の製造法は限定されないが(B)成分は、SiH基との反応性を有する炭素-炭素二重結合を1分子中に1個以上含有する有機化合物(α)と、1分子中に少なくとも2個のSiH基を有する化合物(β)を、ヒドロシリル化反応して得ることができる化合物であることが好ましい。
(Preferred structure of component (B))
(B) From the viewpoint that the problem of outgas from the curable resin composition that can be reduced in volatility of the component is less likely to occur, and from the viewpoint of giving practical strength and toughness to the cured product obtained from the composition. It is more preferable than a compound composed of only a siloxane skeleton to have a component that is substantially non-functional and has a siloxane skeleton in addition to a skeleton derived from an organic compound. Although the production method of the compound is not limited, the component (B) is composed of an organic compound (α) containing at least one carbon-carbon double bond having reactivity with the SiH group in one molecule and one molecule. It is preferable that the compound (β) having at least two SiH groups can be obtained by a hydrosilylation reaction.
((α)成分)
((α1)成分)
(α)成分として、(A)成分と併用できるとした、上記(Z)成分と同じもの(α1)を用いることができる。(α1)成分を用いると得られる硬化物の架橋密度が高くなり力学強度が高い硬化物となりやすい。
((Α) component)
((Α1) component)
As the component (α), the same component (α1) as the component (Z) that can be used in combination with the component (A) can be used. When the component (α1) is used, the resulting cured product has a high crosslink density and tends to be a cured product having high mechanical strength.
((α2)成分)
その他、SiH基との反応性を有する炭素-炭素二重結合を1分子中に1個含有する有機化合物(α2)も用いることができる。(α2)成分を用いると得られる硬化物が低弾性となりやすい。
(α2)成分としては、SiH基との反応性を有する炭素-炭素二重結合を1分子中に1個含有する有機化合物であれば特に限定されない。
((Α2) component)
In addition, an organic compound (α2) containing one carbon-carbon double bond having reactivity with the SiH group in one molecule can also be used. When the (α2) component is used, the obtained cured product tends to have low elasticity.
The component (α2) is not particularly limited as long as it is an organic compound containing one carbon-carbon double bond having reactivity with the SiH group in one molecule.
(α2)成分のSiH基との反応性を有する炭素-炭素二重結合の結合位置は特に限定されず、分子内のどこに存在してもよい。
(α2)成分の化合物は、重合体系の化合物と単量体系化合物に分類できる。
重合体系化合物としては例えば、ポリシロキサン系、ポリエーテル系、ポリエステル系、ポリアリレート系、ポリカーボネート系、飽和炭化水素系、不飽和炭化水素系、ポリアクリル酸エステル系、ポリアミド系、フェノール-ホルムアルデヒド系(フェノール樹脂系)、ポリイミド系の化合物を用いることができる。
また単量体系化合物としては例えば、フェノール系、ビスフェノール系、ベンゼン、ナフタレン等の芳香族炭化水素系:直鎖系、脂環系等の脂肪族炭化水素系:複素環系の化合物、シリコン系の化合物およびこれらの混合物等が挙げられる。
The bonding position of the carbon-carbon double bond having reactivity with the SiH group of the (α2) component is not particularly limited and may be present anywhere in the molecule.
The (α2) component compound can be classified into a polymer compound and a monomer compound.
Examples of the polymer compound include polysiloxane, polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, polyacrylate ester, polyamide, phenol-formaldehyde ( Phenol resin type) and polyimide type compounds can be used.
Examples of monomer compounds include aromatic hydrocarbons such as phenols, bisphenols, benzene, and naphthalene: aliphatic hydrocarbons such as straight-chain and alicyclics: heterocyclic compounds, and silicon-based compounds. Examples thereof include compounds and mixtures thereof.
(α2)成分のSiH基との反応性を有する炭素-炭素二重結合としては特に限定されないが、下記一般式(I) The carbon-carbon double bond having reactivity with the SiH group of the component (α2) is not particularly limited, but the following general formula (I)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中Rは水素原子あるいはメチル基を表す。)で示される基が反応性の点から好適である。また、原料の入手の容易さからは、 A group represented by the formula (wherein R 1 represents a hydrogen atom or a methyl group) is preferred from the viewpoint of reactivity. In addition, from the availability of raw materials,
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で示される基が特に好ましい。
(α2)成分のSiH基との反応性を有する炭素-炭素二重結合としては、下記一般式(II)
Is particularly preferred.
As the carbon-carbon double bond having reactivity with the SiH group of the component (α2), the following general formula (II)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中Rは水素原子あるいはメチル基を表す。)で示される脂環式の基が、硬化物の耐熱性が高いという点から好適である。また、原料の入手の容易さからは、 An alicyclic group represented by the formula (wherein R 2 represents a hydrogen atom or a methyl group) is preferred from the viewpoint that the heat resistance of the cured product is high. In addition, from the availability of raw materials,
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で示される脂環式の基が特に好ましい。 The alicyclic group represented by is particularly preferable.
SiH基との反応性を有する炭素-炭素二重結合は(α2)成分の骨格部分に直接結合していてもよく、2価以上の置換基を介して共有結合していても良い。2価以上の置換基としては炭素数0~10の置換基であれば特に限定されない。これらの置換基の例としては、 The carbon-carbon double bond having reactivity with the SiH group may be directly bonded to the skeleton portion of the (α2) component, or may be covalently bonded through a divalent or higher substituent. The divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms. Examples of these substituents include
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
が挙げられる。また、これらの2価以上の置換基の2つ以上が共有結合によりつながって1つの2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、ビニル基、アリル基、メタリル基、アクリル基、メタクリル基、2-ヒドロキシ-3-(アリルオキシ)プロピル基、2-アリルフェニル基、3-アリルフェニル基、4-アリルフェニル基、2-(アリルオキシ)フェニル基、3-(アリルオキシ)フェニル基、4-(アリルオキシ)フェニル基、2-(アリルオキシ)エチル基、2、2-ビス(アリルオキシメチル)ブチル基、3-アリルオキシ-2、2-ビス(アリルオキシメチル)プロピル基、
Is mentioned. Moreover, two or more of these divalent or higher valent substituents may be connected by a covalent bond to constitute one divalent or higher valent substituent.
Examples of the group covalently bonded to the skeleton as described above include vinyl group, allyl group, methallyl group, acrylic group, methacryl group, 2-hydroxy-3- (allyloxy) propyl group, 2-allylphenyl group, 3 -Allylphenyl group, 4-allylphenyl group, 2- (allyloxy) phenyl group, 3- (allyloxy) phenyl group, 4- (allyloxy) phenyl group, 2- (allyloxy) ethyl group, 2,2-bis (allyl) Oxymethyl) butyl group, 3-allyloxy-2,2-bis (allyloxymethyl) propyl group,
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
が挙げられる。 Is mentioned.
(α2)成分の具体的な例としては、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-ウンデセン、出光石油化学株式会社製リニアレン、4,4-ジメチル-1-ペンテン、2-メチル-1-ヘキセン、2,3,3-トリメチル-1-ブテン、2,4,4-トリメチル-1-ペンテン等のような鎖状脂肪族炭化水素系化合物類、シクロヘキセン、メチルシクロヘキセン、メチレンシクロヘキサン、ノルボルニレン、エチリデンシクロヘキサン、ビニルシクロヘキサン、カンフェン、カレン、αピネン、βピネン等のような環状脂肪族炭化水素系化合物類、スチレン、αメチルスチレン、インデン、フェニルアセチレン、4-エチニルトルエン、アリルベンゼン、4-フェニル-1-ブテン等のような芳香族炭化水素系化合物、アルキルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、グリセリンモノアリルエーテル、エチレングリコールモノアリルエーテル、4-ビニル-1,3-ジオキソラン-2-オン等の脂肪族系化合物類、1,2-ジメトキシ-4-アリルベンゼン、o-アリルフェノール等の芳香族系化合物類、モノアリルジベンジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等の置換イソシアヌレート類、ビニルトリメチルシラン、ビニルトリメトキシシラン、ビニルトリフェニルシラン等のシリコン化合物等が挙げられる。さらに、片末端アリル化ポリエチレンオキサイド、片末端アリル化ポリプロピレンオキサイド等のポリエーテル系樹脂、片末端アリル化ポリイソブチレン等の炭化水素系樹脂、片末端アリル化ポリブチルアクリレート、片末端アリル化ポリメチルメタクリレート等のアクリル系樹脂、等の片末端にビニル基を有するポリマーあるいはオリゴマー類等も挙げることができる。 Specific examples of the component (α2) include propene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-undecene, Idemitsu Petrochemical Co., Ltd. linearene, 4,4-dimethyl-1-pentene, 2-methyl-1-hexene, 2,3,3-trimethyl-1-butene, 2,4,4-trimethyl-1-pentene, etc. Chain aliphatic hydrocarbon compounds such as cyclohexene, methylcyclohexene, methylenecyclohexane, norbornylene, ethylidenecyclohexane, vinylcyclohexane, camphene, carene, α-pinene, β-pinene, etc. , Styrene, α-methylstyrene, indene, phenylacetylene, 4-ethynyltoluene, allylbenzene Aromatic hydrocarbon compounds such as 4-phenyl-1-butene, allyl ethers such as alkyl allyl ether and allyl phenyl ether, glycerin monoallyl ether, ethylene glycol monoallyl ether, 4-vinyl-1,3- Aliphatic compounds such as dioxolan-2-one, aromatic compounds such as 1,2-dimethoxy-4-allylbenzene and o-allylphenol, monoallyl dibenzyl isocyanurate, monoallyl diglycidyl isocyanurate, etc. Substituted isocyanurates, silicon compounds such as vinyltrimethylsilane, vinyltrimethoxysilane, and vinyltriphenylsilane. Furthermore, polyether resins such as one-end allylated polyethylene oxide and one-end allylated polypropylene oxide, hydrocarbon resins such as one-end allylated polyisobutylene, one-end allylated polybutyl acrylate, one-end allylated polymethyl methacrylate Examples thereof also include polymers or oligomers having a vinyl group at one end, such as acrylic resins.
(α2)成分の構造は線状でも枝分かれ状でもよく、分子量は特に制約はなく種々のものを用いることができる。分子量分布も特に制限ないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。 The structure of the (α2) component may be linear or branched, and the molecular weight is not particularly limited, and various types can be used. The molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, and more preferably 1.5 or less in that the viscosity of the mixture is low and the moldability is likely to be good. More preferably it is.
(α2)成分のガラス転位温度が存在する場合は、これについても特に限定はなく種々のものが用いられるが、得られる硬化物が強靭となりやすいという点においては、ガラス点移転温度は100℃以下であることが好ましく、50℃以下であることがより好ましく、0℃以下であることがさらに好ましい。このような(α2)成分で好ましい樹脂の例としてはポリブチルアクリレート樹脂等が挙げられる。逆に得られる硬化物の耐熱性が高くなるという点においては、ガラス転位温度は100℃以上であることが好ましく、120℃以上であることがより好ましく、150℃以上であることがさらに好ましく、170℃以上であることが最も好ましい。ガラス転位温度は動的粘弾性測定においてtanδが極大を示す温度として求めることができる。 In the case where the glass transition temperature of the component (α2) is present, there is no particular limitation on this, and various materials are used. However, the glass point transfer temperature is 100 ° C. or lower in that the obtained cured product tends to be tough. It is preferable that it is 50 degrees C or less, and it is further more preferable that it is 0 degrees C or less. Examples of such (α2) component preferred resins include polybutyl acrylate resins. Conversely, the glass transition temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, in that the heat resistance of the cured product obtained is increased. Most preferably, it is 170 ° C. or higher. The glass transition temperature can be determined as a temperature at which tan δ exhibits a maximum in the dynamic viscoelasticity measurement.
(α2)成分としては、得られる硬化物の耐熱性が高くなるという点においては、炭化水素化合物であることが好ましい。この場合好ましい炭素数の下限は7であり、好ましい炭素数の上限は10である。 The component (α2) is preferably a hydrocarbon compound in that the heat resistance of the resulting cured product is increased. In this case, the preferable lower limit of the carbon number is 7, and the preferable upper limit of the carbon number is 10.
(α2)成分としてはその他の反応性基を有していてもよい。この場合の反応性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。これらの官能基を有している場合には得られる硬化性樹脂組成物の接着性が高くなりやすく、得られる硬化物の強度が高くなりやすい。接着性がより高くなりうるという点からは、これらの官能基のうちエポキシ基が好ましい。また、得られる硬化物の耐熱性が高くなりやすいという点においては、反応性基を平均して1分子中に1個以上有していることが好ましい。具体的にはモノアリルジグリシジルイソシアヌレート、アリルグリシジルエーテル、アリロキシエチルメタクリレート、アリロキシエチルアクリレート、ビニルトリメトキシシラン等が挙げられる。 The component (α2) may have other reactive groups. Examples of the reactive group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. When it has these functional groups, the adhesiveness of the obtained curable resin composition tends to be high, and the strength of the obtained cured product tends to be high. Of these functional groups, an epoxy group is preferable from the viewpoint that the adhesiveness can be further increased. Moreover, it is preferable to have 1 or more reactive groups in one molecule on average from the point that the heat resistance of the obtained cured product tends to be high. Specific examples include monoallyl diglycidyl isocyanurate, allyl glycidyl ether, allyloxyethyl methacrylate, allyloxyethyl acrylate, vinyltrimethoxysilane, and the like.
上記のような(α1)成分あるいは/および(α2)成分としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。 As the above (α1) component and / or (α2) component, a single component may be used, or a plurality of components may be used in combination.
((β)成分)
(β)成分は、1分子中に少なくとも2個のSiH基を有する化合物であり、鎖状及び/又は環状のポリオルガノシロキサンもその例である。
具体的には、例えば
((Β) component)
The component (β) is a compound having at least two SiH groups in one molecule, and chain and / or cyclic polyorganosiloxanes are also examples.
Specifically, for example
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
が挙げられる。
ここで、(α)成分との相溶性が良くなりやすいという観点から、下記一般式(VI)
Is mentioned.
Here, from the viewpoint of easy compatibility with the component (α), the following general formula (VI)
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、Rは炭素数1~6の有機基を表し、nは3~10の数を表す。)で表される、1分子中に少なくとも3個のSiH基を有する環状ポリオルガノシロキサンが好ましい。
上記一般式(VI)で表される化合物中の置換基Rは、C、H、Oから構成されるものであることが好ましく、炭化水素基であることがより好ましく、メチル基であることがさらに好ましい。
入手容易性等から、(β)成分は1,3,5,7-テトラメチルシクロテトラシロキサンであることが好ましい。
(Wherein R 1 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10). Cyclic polyorganosiloxane having at least 3 SiH groups in one molecule Is preferred.
The substituent R 1 in the compound represented by the general formula (VI) is preferably composed of C, H, and O, more preferably a hydrocarbon group, and a methyl group. Is more preferable.
In view of availability, the component (β) is preferably 1,3,5,7-tetramethylcyclotetrasiloxane.
(β)成分のその他の例として、ビスジメチルシリルベンゼンなどのSiH基を有する化合物をあげることができる。
上記したような各種(β)成分は単独もしくは2種以上のものを混合して用いることが可能である。
Other examples of the (β) component include compounds having a SiH group such as bisdimethylsilylbenzene.
Various (β) components as described above can be used alone or in admixture of two or more.
((α)成分と(β)成分の反応)
次に、(B)成分として、(α)成分と(β)成分をヒドロシリル化反応して得ることができる化合物を用いる場合の、(α)成分と(β)成分とのヒドロシリル化反応に関して説明する。
尚、(α)成分と(β)成分をヒドロシリル化反応すると、(B)成分を含む複数の化合物の混合物が得られることがあるが、そこから(B)成分を分離することなく混合物のままで用いて本発明の硬化性樹脂組成物を作製することもできる。
(Reaction of (α) component and (β) component)
Next, the hydrosilylation reaction between the (α) component and the (β) component when using a compound that can be obtained by hydrosilylation reaction between the (α) component and the (β) component as the (B) component will be described. To do.
In addition, when the (α) component and the (β) component are subjected to a hydrosilylation reaction, a mixture of a plurality of compounds containing the (B) component may be obtained, but the mixture remains as it is without separating the (B) component therefrom. Can be used to produce the curable resin composition of the present invention.
(α)成分と(β)成分をヒドロシリル化反応させる場合の(α)成分と(β)成分の混合比率は、特に限定されないが、得られる(B)成分と(A)成分とのヒドロシリル化による硬化物の強度を考えた場合、(B)成分のSiH基が多い方が好ましいため、一般に混合する(α)成分中のSiH基との反応性を有する炭素-炭素二重結合の総数(X)と、混合する(β)成分中のSiH基の総数(Y)との比が、Y/X≧2であることが好ましく、Y/X≧3であることがより好ましい。また(B)成分の(A)成分との相溶性がよくなりやすいという点からは、10≧Y/Xであることが好ましく、5≧Y/Xであることがより好ましい。 The mixing ratio of the (α) component and the (β) component when the (α) component and the (β) component are subjected to a hydrosilylation reaction is not particularly limited, but the hydrosilylation of the obtained (B) component and (A) component is not limited. Considering the strength of the cured product due to the above, since it is preferable that the component (B) has more SiH groups, the total number of carbon-carbon double bonds having reactivity with SiH groups in the component (α) to be mixed ( The ratio of X) to the total number of SiH groups (Y) in the (β) component to be mixed is preferably Y / X ≧ 2, and more preferably Y / X ≧ 3. Moreover, it is preferable that it is 10> = Y / X from the point that compatibility with the (A) component of (B) component becomes easy, and it is more preferable that it is 5> = Y / X.
(α)成分と(β)成分をヒドロシリル化反応させる場合には適当な触媒を用いてもよい。触媒としては、例えば次のようなものを用いることができる。
白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH=CH(PPh、Pt(CH=CHCl)、白金-ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO))、白金-ホスフィン錯体(例えば、Pt(PPh、Pt(PBu)、白金-ホスファイト錯体(例えば、Pt[P(OPh)、Pt[P(OBu))(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号及び3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。更に、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)、RhCl、RhAl、RuCl、IrCl、FeCl、AlCl、PdCl・2HO、NiCl、TiCl、等が挙げられる。
これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
When the (α) component and the (β) component are subjected to a hydrosilylation reaction, an appropriate catalyst may be used. As the catalyst, for example, the following can be used.
Platinum simple substance, alumina, silica, carbon black and the like supported on solid platinum, chloroplatinic acid, chloroplatinic acid complex with alcohol, aldehyde, ketone, etc., platinum-olefin complex (for example, Pt (CH 2 = CH 2) 2 (PPh 3) 2, Pt (CH 2 = CH 2) 2 Cl 2), platinum - vinylsiloxane complex (e.g., Pt (ViMe 2 SiOSiMe 2 Vi ) n, Pt [(MeViSiO) 4] m ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phosphite complexes (eg, Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3 ] 4) (in the formula, Me represents a methyl group, Bu a butyl group, Vi is vinyl group, Ph represents a phenyl group, n, m is an integer.), Jikaruboni Dichloroplatinum, Karstedt catalyst, and platinum-hydrocarbon complexes described in Ashby US Pat. Nos. 3,159,601 and 3,159,622, and Lamoreaux, US Pat. Examples include platinum alcoholate catalysts described in the text. In addition, platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946 are also useful in the present invention.
Examples of catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
Of these, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity. Moreover, these catalysts may be used independently and may be used together 2 or more types.
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性樹脂組成物のコストを比較的低く抑えるため好ましい添加量の下限は、(β)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 Although the addition amount of the catalyst is not particularly limited, the lower limit of the preferable addition amount is sufficient with respect to 1 mol of SiH groups of the (β) component in order to have sufficient curability and keep the cost of the curable resin composition relatively low. 10 -8 mol Te, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は10モル、より好ましくは10モルである。 In addition, a cocatalyst can be used in combination with the above catalyst. Examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine. The addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount relative to 1 mol of the hydrosilylation catalyst is 10 −2 mol, more preferably 10 −1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
反応させる場合の(α)成分、(β)成分、触媒の混合の方法としては、各種方法をとることができるが、(α)成分に触媒を混合したものを、(β)成分に混合する方法が好ましい。(α)成分、(β)成分の混合物に触媒を混合する方法だと反応の制御が困難である。(β)成分と触媒を混合したものに(α)成分を混合する方法をとる場合は、触媒の存在下(β)成分が混入している水分と反応性を有するため、変質することがある。 Various methods can be used for mixing the (α) component, the (β) component, and the catalyst in the reaction, and the (α) component mixed with the catalyst is mixed with the (β) component. The method is preferred. If the catalyst is mixed with the mixture of the (α) component and the (β) component, it is difficult to control the reaction. When the method of mixing the (β) component with the mixture of the (β) component and the catalyst, the (β) component is reactive in the presence of the catalyst and may be altered due to its reactivity with water. .
反応温度としては種々設定できるが、この場合好ましい温度範囲の下限は30℃、より好ましくは50℃であり、好ましい温度範囲の上限は200℃、より好ましくは150℃である。反応温度が低いと十分に反応させるための反応時間が長くなり、反応温度が高いと実用的でない。反応は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、反応時の圧力も必要に応じ種々設定できる。
The reaction temperature can be variously set. In this case, the lower limit of the preferable temperature range is 30 ° C., more preferably 50 ° C., and the upper limit of the preferable temperature range is 200 ° C., more preferably 150 ° C. If the reaction temperature is low, the reaction time for sufficiently reacting becomes long, and if the reaction temperature is high, it is not practical. The reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as required.
Various reaction times and pressures during the reaction can be set as required.
ヒドロシリル化反応の際に溶媒を使用してもよい。使用できる溶剤はヒドロシリル化反応を阻害しない限り特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。溶媒は2種類以上の混合溶媒として用いることもできる。溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。使用する溶媒量も適宜設定できる。
その他、反応性を制御する目的等のために種々の添加剤を用いてもよい。
A solvent may be used during the hydrosilylation reaction. Solvents that can be used are not particularly limited as long as they do not inhibit the hydrosilylation reaction. Specifically, hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1, Ether solvents such as 3-dioxolane and diethyl ether, ketone solvents such as acetone and methyl ethyl ketone, and halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane can be preferably used. The solvent can also be used as a mixed solvent of two or more types. As the solvent, toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable. The amount of solvent to be used can also be set as appropriate.
In addition, various additives may be used for the purpose of controlling reactivity.
(α)成分と(β)成分を反応させた後に、溶媒あるいは/および未反応の(α)成分あるいは/および(β)成分を除去することもできる。これらの揮発分を除去することにより、得られる(B)成分が揮発分を有さないため(A)成分との硬化の場合に揮発分の揮発によるボイド、クラックの問題が生じにくい。除去する方法としては例えば、減圧脱揮の他、活性炭、ケイ酸アルミニウム、シリカゲル等による処理等が挙げられる。減圧脱揮する場合には低温で処理することが好ましい。この場合の好ましい温度の上限は100℃であり、より好ましくは60℃である。高温で処理すると増粘等の変質を伴いやすい。 After reacting the (α) component and the (β) component, the solvent or / and the unreacted (α) component or / and the (β) component can be removed. By removing these volatile components, the component (B) obtained does not have volatile components, so that the problem of voids and cracks due to volatilization of the volatile components hardly occurs in the case of curing with the component (A). Examples of the removal method include treatment with activated carbon, aluminum silicate, silica gel and the like in addition to vacuum devolatilization. When devolatilizing under reduced pressure, it is preferable to treat at a low temperature. The upper limit of the preferable temperature in this case is 100 ° C, more preferably 60 ° C. When treated at high temperatures, it tends to be accompanied by alterations such as thickening.
以上のような、(α)成分と(β)成分の反応物である(B)成分の例としては、ビスフェノールAジアリルエーテルと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルシクロヘキセンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジビニルベンゼンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジシクロペンタジエンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、トリアリルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ジアリルモノグリシジルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、アリルグリシジルエーテルと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、αメチルスチレンと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、モノアリルジグリシジルイソシアヌレートと1,3,5,7-テトラメチルシクロテトラシロキサンの反応物、ビニルノルボルネンとビスジメチルシリルベンゼンとの反応物等を挙げることができる。また、アリルグリシジルエーテル、トリアリルイソシアヌレート及び1,3,5,7-テトラメチルシクロテトラシロキサンの反応物等を挙げることもできる。 Examples of the component (B) that is a reaction product of the components (α) and (β) as described above include a reaction product of bisphenol A diallyl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, Reaction product of vinylcyclohexene and 1,3,5,7-tetramethylcyclotetrasiloxane, reaction product of divinylbenzene and 1,3,5,7-tetramethylcyclotetrasiloxane, dicyclopentadiene and 1,3,5, Reaction product of 7-tetramethylcyclotetrasiloxane, reaction product of triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane, diallyl monoglycidyl isocyanurate and 1,3,5,7-tetramethylcyclo Reactant of tetrasiloxane, allyl glycidyl ether and 1,3,5,7-tetramethylcyclotetrasilo A reaction product of xane, a reaction product of α-methylstyrene and 1,3,5,7-tetramethylcyclotetrasiloxane, a reaction product of monoallyldiglycidyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane, Examples include a reaction product of vinyl norbornene and bisdimethylsilylbenzene. In addition, there may be mentioned a reaction product of allyl glycidyl ether, triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane.
((A)成分と(B)成分の混合)
(A)成分と(B)成分の組合せについては(A)成分の例として挙げたものおよびそれらの各種混合物/(B)成分の例として挙げたものおよびそれらの各種混合物、の各種組み合わせを挙げることができる。
(Mixing of component (A) and component (B))
Regarding combinations of component (A) and component (B), various combinations of those listed as examples of component (A) and their various mixtures / examples of component (B) and their various mixtures are listed. be able to.
(A)成分と(B)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分中の炭素-炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。
硬化性樹脂組成物がさらに(Z)成分を含む場合、(A)成分及び(Z)成分と(B)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)及び(Z)成分中の炭素-炭素二重結合の数の合計(X)に対する比が、上記の範囲に含まれることが好ましい。
The mixing ratio of the component (A) and the component (B) is not particularly limited as long as the required strength is not lost, but the number of SiH groups in the component (B) (Y) is the carbon-carbon in the component (A). In the ratio to the number of double bonds (X), the lower limit of the preferred range is Y / X ≧ 0.3, more preferably Y / X ≧ 0.5, and even more preferably Y / X ≧ 0.7, which is preferable. The upper limit of the range is 3 ≧ Y / X, more preferably 2 ≧ Y / X, and even more preferably 1.5 ≧ Y / X. When it deviates from the preferred range, sufficient strength may not be obtained or thermal deterioration may easily occur.
When the curable resin composition further contains a component (Z), the mixing ratio of the component (A) and the component (Z) and the component (B) is not particularly limited as long as the necessary strength is not lost. The ratio of the number of SiH groups in the component (Y) to the sum (X) of the number of carbon-carbon double bonds in the components (A) and (Z) is preferably included in the above range.
((C)成分)
(C)成分はヒドロシリル化触媒である。
ヒドロシリル化触媒としては、ヒドロシリル化反応の触媒活性があれば特に限定されないが、例えば、白金の単体、アルミナ、シリカ、カーボンブラック等の担体に固体白金を担持させたもの、塩化白金酸、塩化白金酸とアルコール、アルデヒド、ケトン等との錯体、白金-オレフィン錯体(例えば、Pt(CH=CH(PPh、Pt(CH=CHCl)、白金-ビニルシロキサン錯体(例えば、Pt(ViMeSiOSiMeVi)、Pt[(MeViSiO))、白金-ホスフィン錯体(例えば、Pt(PPh、Pt(PBu)、白金-ホスファイト錯体(例えば、Pt[P(OPh)、Pt[P(OBu))(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは、整数を示す。)、ジカルボニルジクロロ白金、カールシュテト(Karstedt)触媒、また、アシュビー(Ashby)の米国特許第3159601号および3159662号明細書中に記載された白金-炭化水素複合体、ならびにラモロー(Lamoreaux)の米国特許第3220972号明細書中に記載された白金アルコラート触媒が挙げられる。さらに、モディック(Modic)の米国特許第3516946号明細書中に記載された塩化白金-オレフィン複合体も本発明において有用である。
また、白金化合物以外の触媒の例としては、RhCl(PPh)、RhCl、RhAl、RuCl、IrCl、FeCl、AlCl、PdCl・2HO、NiCl、TiCl、等が挙げられる。
これらの中では、触媒活性の点から塩化白金酸、白金-オレフィン錯体、白金-ビニルシロキサン錯体等が好ましい。また、これらの触媒は単独で使用してもよく、2種以上併用してもよい。
((C) component)
Component (C) is a hydrosilylation catalyst.
The hydrosilylation catalyst is not particularly limited as long as it has a catalytic activity for the hydrosilylation reaction. For example, a platinum simple substance, a support made of alumina, silica, carbon black or the like on which solid platinum is supported, chloroplatinic acid, platinum chloride Complexes of acids with alcohols, aldehydes, ketones, etc., platinum-olefin complexes (eg Pt (CH 2 ═CH 2 ) 2 (PPh 3 ) 2 , Pt (CH 2 ═CH 2 ) 2 Cl 2 ), platinum-vinyl Siloxane complexes (eg, Pt (ViMe 2 SiOSiMe 2 Vi) n , Pt [(MeViSiO) 4 ] m ), platinum-phosphine complexes (eg, Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ), platinum-phos Fight complexes (e.g., Pt [P (OPh) 3 ] 4, Pt [P (OBu) 3] 4) ( in the formula, Me represents a methyl group, u represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, and n and m represent an integer.), dicarbonyldichloroplatinum, a Karstedt catalyst, and Ashby U.S. Pat. No. 3,159,601. And platinum-hydrocarbon complexes described in US Pat. No. 3,159,662 and platinum alcoholate catalysts described in US Pat. No. 3,220,972 to Lamoreaux. In addition, platinum chloride-olefin complexes described in Modic US Pat. No. 3,516,946 are also useful in the present invention.
Examples of catalysts other than platinum compounds include RhCl (PPh) 3 , RhCl 3 , RhAl 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2 , TiCl 4. , Etc.
Of these, chloroplatinic acid, platinum-olefin complexes, platinum-vinylsiloxane complexes and the like are preferable from the viewpoint of catalytic activity. Moreover, these catalysts may be used independently and may be used together 2 or more types.
触媒の添加量は特に限定されないが、十分な硬化性を有し、かつ硬化性樹脂組成物のコストを比較的低く抑えるため、好ましい添加量の下限は、(B)成分のSiH基1モルに対して10-8モル、より好ましくは10-6モルであり、好ましい添加量の上限は(β)成分のSiH基1モルに対して10-1モル、より好ましくは10-2モルである。 The addition amount of the catalyst is not particularly limited, but in order to have sufficient curability and keep the cost of the curable resin composition relatively low, a preferable lower limit of the addition amount is 1 mole of SiH group of component (B). 10 -8 mol for, more preferably 10 -6 mole, preferable amount of the upper limit is 10 -1 moles per mole of the SiH group (beta) component, more preferably 10 -2 moles.
また、上記触媒には助触媒を併用することが可能であり、例としてトリフェニルホスフィン等のリン系化合物、ジメチルマレート等の1,2-ジエステル系化合物、2-ヒドロキシ-2-メチル-1-ブチン等のアセチレンアルコール系化合物、単体の硫黄等の硫黄系化合物、トリエチルアミン等のアミン系化合物等が挙げられる。助触媒の添加量は特に限定されないが、ヒドロシリル化触媒1モルに対しての好ましい添加量の下限は、10-2モル、より好ましくは10-1モルであり、好ましい添加量の上限は10モル、より好ましくは10モルである。 In addition, a cocatalyst can be used in combination with the above catalyst. Examples thereof include phosphorus compounds such as triphenylphosphine, 1,2-diester compounds such as dimethyl malate, 2-hydroxy-2-methyl-1 -Acetylene alcohol compounds such as butyne, sulfur compounds such as simple sulfur, and amine compounds such as triethylamine. The addition amount of the cocatalyst is not particularly limited, but the lower limit of the preferable addition amount relative to 1 mol of the hydrosilylation catalyst is 10 −2 mol, more preferably 10 −1 mol, and the upper limit of the preferable addition amount is 10 2. Mol, more preferably 10 mol.
((A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物の性状)
また、本発明における硬化性樹脂組成物の耐曲げ性と、連続成形性を両立させる観点からは、(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物のガラス転移点(Tg)が30℃~100℃の範囲内にあることが好ましく、35℃~80℃の範囲内にあることがより好ましく、40℃~70℃の範囲内にあることがさらに好ましい。該硬化物のTgが30℃未満である場合は連続成形性に劣る場合があり、Tgが100℃を超える場合は成形体の耐曲げ性が損なわれる場合がある。
(Properties of cured product obtained by thermally curing a mixture of components (A) to (C) and (Z))
In addition, from the viewpoint of achieving both the bending resistance and continuous moldability of the curable resin composition in the present invention, a cured product obtained by thermally curing a mixture of the components (A) to (C) and (Z). The glass transition point (Tg) is preferably in the range of 30 ° C. to 100 ° C., more preferably in the range of 35 ° C. to 80 ° C., and further preferably in the range of 40 ° C. to 70 ° C. . When Tg of this hardened | cured material is less than 30 degreeC, it may be inferior to continuous moldability, and when Tg exceeds 100 degreeC, the bending resistance of a molded object may be impaired.
また同様の観点から、(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物は、150℃における、周波数10Hz、引っ張りモードで測定した貯蔵弾性率が20MPa~100MPaの範囲内にあることが好ましく、25MPa~80MPaの範囲内にあることがより好ましく、30MPa~70MPaの範囲内にあることがさらに好ましい。該硬化物の貯蔵弾性率が20MPa未満である場合は、連続成形性が悪くなる場合があり、貯蔵弾性率が100MPaを超える場合は、硬化物の柔軟性が損なわれる場合がある。 From the same viewpoint, a cured product obtained by thermally curing a mixture of the components (A) to (C) and (Z) has a storage elastic modulus of 20 MPa to 100 MPa measured at 150 ° C., a frequency of 10 Hz, and a tensile mode. Preferably, it is within the range of 25 MPa to 80 MPa, more preferably within the range of 30 MPa to 70 MPa. When the storage elastic modulus of the cured product is less than 20 MPa, the continuous moldability may deteriorate, and when the storage elastic modulus exceeds 100 MPa, the flexibility of the cured product may be impaired.
上記(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物のTgや貯蔵弾性率を測定する方法としては、例えば動的粘弾性測定装置(アイティー計測制御株式会社製DVA200、引っ張りモード、測定周波数10Hz)が挙げられる。ここで、ガラス転移点は損失正接のピーク温度とする。 As a method for measuring Tg and storage elastic modulus of a cured product obtained by thermosetting a mixture of the above components (A) to (C) and (Z), for example, a dynamic viscoelasticity measuring apparatus (IT Measurement Control Co., Ltd.) DVA200 manufactured by company, tensile mode, measurement frequency 10 Hz). Here, the glass transition point is the peak temperature of loss tangent.
((D)成分)
(D)成分は、SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有する分子量が1000以上のシリコーン化合物である。実質的にSi-O-Si結合からなるシロキサン骨格で構成されるシリコーン化合物を用いることにより、一般の有機系高分子を用いる場合と比較して、耐熱性、耐光性に優れた硬化物を得ることができる。さらに、(D)成分を用いることにより(E)成分の無機充填材と混合した場合に、より小さな線膨張係数を有しながら、靭性に優れた硬化物を与える硬化性樹脂組成物とすることができる。またCuをはじめとするリードフレームなどの金属基材の実質片面に成形したときに反りがほとんどない成形品を提供することができる。
((D) component)
The component (D) is a silicone compound having a molecular weight of 1000 or more and containing at least one carbon-carbon double bond having reactivity with the SiH group in one molecule. By using a silicone compound composed of a siloxane skeleton consisting essentially of Si—O—Si bonds, a cured product having excellent heat resistance and light resistance can be obtained compared to the case of using a general organic polymer. be able to. Furthermore, when it is mixed with the inorganic filler of the component (E) by using the component (D), a curable resin composition that gives a cured product excellent in toughness while having a smaller linear expansion coefficient. Can do. Further, it is possible to provide a molded product that hardly warps when molded on a substantially single side of a metal base material such as a lead frame including Cu.
(D)成分のシリコーン化合物は、実質的にその骨格がSi-O-Si結合で形成されている化合物であり、直鎖状、環状、分枝状、部分ネットワークを有するもの等種々のものを用いることができる。 The silicone compound of component (D) is a compound whose skeleton is substantially formed of Si—O—Si bonds, and includes various compounds such as linear, cyclic, branched, and partial networks. Can be used.
この場合、骨格に結合した置換基としては、メチル基、エチル基、プロピル基、オクチル基等のアルキル基、フェニル基、2-フェニルエチル基、2-フェニルプロピル基等のアリール基、メトキシ基、エトキシ基、イソプロポキシ基等のアルコキシ基、水酸基等の基を挙げることができる。これらのうち、耐熱性が高くなりやすいという点においては、メチル基、フェニル基、水酸基、メトキシ基が好ましく、メチル基、フェニル基がより好ましい。 In this case, examples of the substituent bonded to the skeleton include alkyl groups such as methyl group, ethyl group, propyl group, and octyl group, aryl groups such as phenyl group, 2-phenylethyl group, and 2-phenylpropyl group, methoxy group, Examples thereof include alkoxy groups such as ethoxy group and isopropoxy group, and groups such as hydroxyl group. Among these, a methyl group, a phenyl group, a hydroxyl group, and a methoxy group are preferable, and a methyl group and a phenyl group are more preferable in that heat resistance tends to be high.
また、SiH基との反応性を有する炭素-炭素二重結合を有する置換基としては、ビニル基、アリル基、アクリロキシ基、メタクリロキシ基、アクリロキシプロピル基、メタクリロキシプロピル基等を挙げることができるが、これらのうち反応性がよいという点においては、ビニル基が好ましい。 Examples of the substituent having a carbon-carbon double bond having reactivity with the SiH group include a vinyl group, an allyl group, an acryloxy group, a methacryloxy group, an acryloxypropyl group, and a methacryloxypropyl group. However, among these, a vinyl group is preferable in terms of good reactivity.
(D)成分の例としては次の式で表すことができるものであってもよい。
(CH=CH)SiO(4-n-m)/2
(式中、Rは水酸基、メチル基あるいはフェニル基から選ばれる基であり、n、mは0≦n<4、0<m≦4、0<n+m≦4を満たす数)であらわされる分子量1000以上のシリコーン化合物である。
As an example of the component (D), it may be expressed by the following formula.
R n (CH 2 ═CH) m SiO (4-n−m) / 2
(Wherein R is a group selected from a hydroxyl group, a methyl group or a phenyl group, and n and m are numbers satisfying 0 ≦ n <4, 0 <m ≦ 4, and 0 <n + m ≦ 4). These are the above silicone compounds.
(D)成分の例としては、末端基あるいは側鎖基としてビニル基を有するポリジメチルシロキサン、ポリジフェニルシロキサン、ポリメチルフェニルシロキサンやこれら2種あるいは3種のランダムあるいはブロック共重合体、などを挙げることができる。(D)成分としては複数のものを混合して用いてもよい。 Examples of component (D) include polydimethylsiloxane, polydiphenylsiloxane, polymethylphenylsiloxane, and two or three random or block copolymers having vinyl groups as terminal groups or side groups. be able to. As the component (D), a plurality of components may be mixed and used.
これらの内、本発明の効果がより得られやすいという点においては、ビニル基を末端に有する直鎖状ポリシロキサンが好ましく、ビニル基を両末端に有する直鎖状ポリシロキサンがより好ましく、両末端にビニル基を有する直鎖状ポリジメチル-ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンがさらに好ましく、両末端にビニル基を有する直鎖状ポリジメチル-ポリジフェニルシロキサンあるいは直鎖状ポリメチルフェニルシロキサンであって、全置換基に対するフェニル基の量が10モル%以上であるシロキサンであることが特に好ましい。 Of these, linear polysiloxanes having vinyl groups at the ends are preferable, linear polysiloxanes having vinyl groups at both ends are more preferable, and both ends are more preferable in that the effects of the present invention are more easily obtained. More preferred are linear polydimethyl-polydiphenylsiloxane or linear polymethylphenylsiloxane having vinyl groups at the ends, linear polydimethyl-polydiphenylsiloxane or linear polymethylphenylsiloxane having vinyl groups at both ends. And it is especially preferable that it is siloxane whose quantity of the phenyl group with respect to all the substituents is 10 mol% or more.
(D)成分の分子量としては、重量平均分子量(Mw)が1,000以上であり、2,000以上であることが好ましく、5,000以上であることがより好ましく、10,000以上であることがさらに好ましい。1,000未満であると靱性が低下するという問題がある。また、(D)成分の分子量としては1,000,000以下であることが好ましく、100,000以下であることがより好ましい。1,000,000を超えると(A)成分、(B)成分との相溶性が得られにくくなる。 As the molecular weight of component (D), the weight average molecular weight (Mw) is 1,000 or more, preferably 2,000 or more, more preferably 5,000 or more, and 10,000 or more. More preferably. There exists a problem that toughness falls that it is less than 1,000. In addition, the molecular weight of the component (D) is preferably 1,000,000 or less, and more preferably 100,000 or less. If it exceeds 1,000,000, it becomes difficult to obtain compatibility with the component (A) and the component (B).
(D)成分の量としては、(A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上であることが好ましく、50重量%以上であることがより好ましく、80重量%以上であることがさらに好ましい。30重量%未満であると線膨張係数が低下しにくくなる場合がある。 The amount of the component (D) is preferably 30% by weight or more, more preferably 50% by weight or more based on the total weight of the component (A) and the component (B). 80% by weight or more is more preferable. If it is less than 30% by weight, the linear expansion coefficient may be difficult to decrease.
(A)成分、(B)成分、(D)成分の混合比率は、必要な強度を失わない限りは特に限定されないが、(B)成分中のSiH基の数(Y)の(A)成分および(D)成分中のSiH基との反応性を有する炭素-炭素二重結合の数(X)に対する比において、好ましい範囲の下限はY/X≧0.3、より好ましくはY/X≧0.5、さらに好ましくはY/X≧0.7であり、好ましい範囲の上限は3≧Y/X、より好ましくは2≧Y/X、さらに好ましくは1.5≧Y/Xである。好ましい範囲からはずれた場合には十分な強度が得られなかったり、熱劣化しやすくなる場合がある。 The mixing ratio of the component (A), the component (B), and the component (D) is not particularly limited as long as the required strength is not lost, but the component (A) having the number of SiH groups (Y) in the component (B). And (D) the ratio of the number of carbon-carbon double bonds having reactivity with SiH groups in the component (X) is preferably Y / X ≧ 0.3, more preferably Y / X ≧ 0.5, more preferably Y / X ≧ 0.7, and the upper limit of the preferable range is 3 ≧ Y / X, more preferably 2 ≧ Y / X, still more preferably 1.5 ≧ Y / X. When it deviates from the preferred range, sufficient strength may not be obtained or thermal deterioration may easily occur.
((E)成分)
(E)成分は無機充填材である。(E)成分は、得られる硬化物の強度や硬度を高くしたり、線膨張率を低減化したりする効果を有する。
((E) component)
The component (E) is an inorganic filler. The component (E) has an effect of increasing the strength and hardness of the obtained cured product and reducing the linear expansion coefficient.
(E)成分の無機充填材としては各種のものが用いられるが、例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機充填材、アルミナ、ジルコン、酸化チタン、酸化亜鉛、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、チタン酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等の無機充填材をはじめとして、エポキシ系等の従来の封止材の充填材として一般に使用あるいは/および提案されている無機充填材等を挙げることができる。無機充填材としては、半導体素子へダメージを与え難いという観点からは、低放射線性であることが好ましい。 As the inorganic filler of the component (E), various types are used. For example, silica-based materials such as quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, and ultrafine powder amorphous silica. Inorganic filler, alumina, zircon, titanium oxide, zinc oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, alumina fiber, carbon fiber, mica, graphite, carbon black, graphite, diatomaceous earth, white clay, clay , Talc, aluminum hydroxide, calcium carbonate, magnesium carbonate, barium sulfate, barium titanate, potassium titanate, calcium silicate, inorganic balloons, conventional fillers such as epoxy, as well as silver powder Inorganic fillers that are generally used and / or proposed as fillers for That. The inorganic filler is preferably low radiation from the viewpoint of hardly damaging the semiconductor element.
無機充填材は適宜表面処理してもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられる。 The inorganic filler may be appropriately surface treated. Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a coupling agent, and the like.
この場合のカップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基との反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基との反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。 Examples of the coupling agent in this case include a silane coupling agent. The silane coupling agent is not particularly limited as long as the compound has at least one functional group reactive with an organic group and at least one hydrolyzable silicon group in the molecule. The group having reactivity with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handleability. From the viewpoints of curability and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
好ましいシランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。 Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes having can be exemplified.
その他にも無機充填材を添加する方法が挙げられる。例えばアルコキシシラン、アシロキシシラン、ハロゲン化シラン等の加水分解性シランモノマーあるいはオリゴマーや、チタン、アルミニウム等の金属のアルコキシド、アシロキシド、ハロゲン化物等を、本発明の硬化性樹脂組成物に添加して、硬化性樹脂組成物中あるいは硬化性樹脂組成物の部分反応物中で反応させ、硬化性樹脂組成物中で無機充填材を生成させる方法も挙げることができる。 In addition, the method of adding an inorganic filler is mentioned. For example, a hydrolyzable silane monomer or oligomer such as alkoxysilane, acyloxysilane or halogenated silane, or an alkoxide, acyloxide or halide of a metal such as titanium or aluminum is added to the curable resin composition of the present invention. A method of reacting in a curable resin composition or a partial reaction product of the curable resin composition to produce an inorganic filler in the curable resin composition can also be mentioned.
以上のような無機充填材のうち硬化反応を阻害し難く、線膨張係数の低減化効果が大きく、リードフレームとの接着性が高くなりやすいという観点からは、シリカ系無機充填材が好ましい。さらに、成形性、電気特性等の物性バランスがよいという点において溶融シリカが好ましく、パッケージの熱伝導性が高くなり易く放熱性の高いパッケージ設計が可能になるという点においては結晶性シリカが好ましい。より放熱性が高くなり易いという点ではアルミナが好ましい。また、パッケージ樹脂の光の反射率が高く、得られる発光ダイオードの光取りだし効率が高くなりやすいという点においては、酸化チタンが好ましい。その他、補強効果が高くパッケージの強度が高くなり易いという点においてはガラス繊維、チタン酸カリウム、ケイ酸カルシウムが好ましい。 Of the inorganic fillers as described above, a silica-based inorganic filler is preferable from the viewpoint that it is difficult to inhibit the curing reaction, has a large effect of reducing the linear expansion coefficient, and tends to have high adhesion to the lead frame. Furthermore, fused silica is preferable in terms of a good balance of physical properties such as moldability and electrical characteristics, and crystalline silica is preferable in terms of easy package thermal conductivity and high heat dissipation. Alumina is preferable in that heat dissipation tends to be higher. Titanium oxide is preferred in that the light reflectance of the package resin is high and the light extraction efficiency of the resulting light emitting diode tends to be high. In addition, glass fiber, potassium titanate, and calcium silicate are preferable in that the reinforcing effect is high and the strength of the package tends to be high.
無機充填材の平均粒径や粒径分布としては、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、特に限定なく各種のものが用いられるが、通常用いられる平均粒径(数平均粒子径)の下限は0.1μm、流動性が良好になりやすいという点から好ましくは0.5μmであり、通常用いられる平均粒径の上限は120μm、流動性が良好になりやすいという点から好ましくは60μm、より好ましくは15μmである。 As the average particle size and particle size distribution of the inorganic filler, various types are used without particular limitation, including those used or / and proposed as fillers for conventional sealing materials such as epoxy type, The lower limit of the commonly used average particle size (number average particle size) is 0.1 μm, preferably 0.5 μm from the viewpoint that the fluidity tends to be good, and the upper limit of the commonly used average particle size is 120 μm, the fluidity. Is preferably 60 μm, more preferably 15 μm, from the viewpoint that it tends to be favorable.
無機充填材の比表面積についても、エポキシ系等の従来の封止材の充填材として使用あるいは/および提案されているものをはじめ、各種設定できる。 The specific surface area of the inorganic filler can also be set in various ways including those used and / or proposed as fillers for conventional sealing materials such as epoxy.
無機充填材の形状としては、破砕状、片状、球状、棒状等、各種のものが用いられる。アスペクト比も種々のものが用いられる。得られる硬化物の強度が高くなりやすいという点においてはアスペクト比が10以上のものが好ましい。また、樹脂の等方性収縮の点からは繊維状よりは粉末状が好ましい。あるいは、高充填時にも成形時の流れ性がよくなり易いという点においては球状のものが好ましい。 As the shape of the inorganic filler, various types such as a crushed shape, a piece shape, a spherical shape, and a rod shape are used. Various aspect ratios are used. The aspect ratio of 10 or more is preferable in that the strength of the obtained cured product tends to increase. From the viewpoint of isotropic shrinkage of the resin, a powder form is preferable to a fiber form. Or the spherical thing is preferable at the point that the fluidity | liquidity at the time of shaping | molding becomes easy also at the time of high filling.
(E)成分は球状シリカであることが好ましい。
これら無機充填材は単独で使用してもよく、2種以上併用してもよい。
The component (E) is preferably spherical silica.
These inorganic fillers may be used alone or in combination of two or more.
(E)成分の量は特に限定されないが、硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましい。70重量%未満であると、強度や硬度を高くしたり、線膨張率を低減化するという効果が得られにくくなる。 The amount of the component (E) is not particularly limited, but the total amount of the component (E) in the entire curable resin composition is preferably 70% by weight or more, more preferably 80% by weight or more, More preferably, it is 90% by weight or more. If it is less than 70% by weight, it becomes difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient.
(E)成分の無機充填材の混合の順序としては、各種方法をとることができるが、硬化性樹脂組成物の中間原料の貯蔵安定性が良好になりやすいという点においては、(A)成分に(C)成分および無機充填材を混合したものと、(B)成分を混合する方法が好ましい。(B)成分に(C)成分および/または無機充填材を混合したものに(A)成分を混合する方法をとる場合は、(C)成分存在下および/または非存在下において(B)成分が環境中の水分および/または無機充填材との反応性を有するため、貯蔵中等に変質することもある。また、反応成分である(A)成分、(B)成分、(C)成分がよく混合され安定した成形物が得られやすいという点においては、(A)成分、(B)成分、(C)成分を混合したものと無機充填材とを混合することが好ましい。 As the order of mixing the inorganic filler of the component (E), various methods can be used, but in the point that the storage stability of the intermediate raw material of the curable resin composition tends to be good, the component (A) A method of mixing the component (C) and the inorganic filler with the component (B) is preferable. When the method of mixing the component (A) with the component (B) mixed with the component (C) and / or the inorganic filler, the component (B) is present in the presence and / or absence of the component (C). Has a reactivity with moisture and / or inorganic fillers in the environment, and may be altered during storage. In addition, (A) component, (B) component, (C) in that (A) component, (B) component, and (C) component which are reaction components are well mixed and a stable molded product is easily obtained. It is preferable to mix a mixture of components and an inorganic filler.
(E)成分の無機充填材を混合する手段としては、従来エポキシ樹脂等に用いられおよび/または提案されている種々の手段を用いることができる。例えば、2本ロールまたは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、プラストミル等の溶融混練機等が挙げられる。これらのうち、高充填であっても無機充填材の十分な分散性が得られやすいという点においては、3本ロール、溶融混練機が好ましい。無機充填材の混合は、常温で行ってもよいし加熱して行ってもよい。また、常圧下に行ってもよいし減圧状態で行ってもよい。高充填であっても無機充填材の十分な分散性が得られやすいという点においては、加熱状態で混合することが好ましく、無機充填材表面の塗れ性を向上し十分な分散性が得られやすいという点においては減圧状態で混合することが好ましい。 As means for mixing the inorganic filler of component (E), various means conventionally used and / or proposed for epoxy resins and the like can be used. For example, a two-roll or three-roll, a planetary stirring and defoaming device, a stirrer such as a homogenizer, a dissolver and a planetary mixer, a melt kneader such as a plast mill, and the like can be mentioned. Of these, a triple roll and a melt kneader are preferred in that sufficient dispersibility of the inorganic filler is easily obtained even with high filling. The mixing of the inorganic filler may be performed at normal temperature or may be performed by heating. Moreover, you may carry out under a normal pressure and may carry out in a pressure-reduced state. In view of the fact that sufficient dispersibility of the inorganic filler can be easily obtained even at high filling, it is preferable to mix in a heated state, and it is easy to obtain sufficient dispersibility by improving the wettability of the inorganic filler surface. Therefore, it is preferable to mix in a reduced pressure state.
((F)成分)
本発明の硬化性樹脂組成物は、白色顔料((F)成分)を含有することが望ましい。
(F)成分は白色顔料であり、得られる硬化物の光反射率を高める効果を有する。
((F) component)
The curable resin composition of the present invention preferably contains a white pigment (component (F)).
The component (F) is a white pigment and has an effect of increasing the light reflectance of the obtained cured product.
(F)成分としては種々のものを用いることができ、例えば、酸化チタン、酸化亜鉛、酸化マグネシウム、酸化アンチモン、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム、硫化亜鉛、硫酸バリウム、炭酸マグネシウム、中空ガラス粒子、などが挙げられる。中でも、取り扱いの容易性や入手性、コストの観点から酸化チタンまたは酸化亜鉛が好ましい。 Various components can be used as the component (F), for example, titanium oxide, zinc oxide, magnesium oxide, antimony oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate, zinc sulfide, barium sulfate. , Magnesium carbonate, hollow glass particles, and the like. Among these, titanium oxide or zinc oxide is preferable from the viewpoint of ease of handling, availability, and cost.
(F)成分の酸化チタンとしては種々のものを用いることができ、アナターゼ型であってもルチル型であってもよいが、光触媒作用がなく硬化性樹脂組成物が安定になりやすいという点ではルチル型であることが好ましい。 Various components can be used as the component (F) titanium oxide, which may be anatase type or rutile type, but it is not photocatalytic and the curable resin composition is likely to be stable. A rutile type is preferred.
(F)成分の平均粒径(数平均粒子径)としても種々のものが用いられるが、得られる硬化物の光反射率が高くなりやすく、また硬化性樹脂組成物タブレットがより硬くなるという観点から、1.0μm以下のものが好ましく、0.30μm以下のものがより好ましく、0.25μm以下のものが最も好ましい。
一方、硬化性樹脂組成物の流動性が高いという点では、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。平均粒径は、レーザー回折散乱式粒度分布計を用いて測定することができる。
Although various things are used also as an average particle diameter (number average particle diameter) of (F) component, the viewpoint that the light reflectivity of the hardened | cured material obtained becomes high easily, and a curable resin composition tablet becomes harder. Therefore, those having a thickness of 1.0 μm or less are preferred, those having a thickness of 0.30 μm or less are more preferred, and those having a thickness of 0.25 μm or less are most preferred.
On the other hand, in terms of high fluidity of the curable resin composition, it is preferably 0.05 μm or more, and more preferably 0.1 μm or more. The average particle diameter can be measured using a laser diffraction / scattering particle size distribution analyzer.
(F)成分の酸化チタンの製造方法としても硫酸法、塩素法などいずれの方法により製造されたものも使用できる。 As the method for producing the component (F) titanium oxide, those produced by any method such as sulfuric acid method and chlorine method can be used.
(F)成分は表面処理が施されていても良い。 The component (F) may be subjected to surface treatment.
(F)成分の表面処理では、(F)成分の表面に無機化合物、有機化合物から選ばれる少なくとも1種を被覆する。無機化合物としては、例えば、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、スズ化合物、チタニウム化合物、アンチモン化合物等が挙げられ、また、有機化合物としては、多価アルコール、アルカノールアミン又はその誘導体、有機シロキサン等の有機ケイ素化合物、高級脂肪酸又はその金属塩、有機金属化合物等が挙げられる。 In the surface treatment of the component (F), the surface of the component (F) is coated with at least one selected from an inorganic compound and an organic compound. Examples of inorganic compounds include aluminum compounds, silicon compounds, zirconium compounds, tin compounds, titanium compounds, antimony compounds, and the like, and examples of organic compounds include polyhydric alcohols, alkanolamines or derivatives thereof, and organic siloxanes. Examples thereof include organosilicon compounds, higher fatty acids or metal salts thereof, and organometallic compounds.
(F)成分の表面に無機化合物や有機化合物を被覆する場合は、湿式法や乾式法の公知の方法を用いて、例えば酸化チタンの乾式粉砕の際、スラリー化した際あるいは湿式粉砕した際に行うことができる。他にも、液相法、気相法等、種々の方法が挙げられる。 When the surface of the component (F) is coated with an inorganic compound or an organic compound, a known method such as a wet method or a dry method is used, for example, when dry pulverizing titanium oxide, when slurrying, or when wet pulverizing. It can be carried out. In addition, there are various methods such as a liquid phase method and a gas phase method.
これらのなかでは、得られる硬化物の光反射率が高く、耐熱耐光性が良好になることから有機シロキサン処理で処理されていることが好ましい。また、有機シロキサン処理された酸化チタンを含有させることは、光取り出し効率が高く、長期間使用しても光取り出し効率が低下しない優良な発光ダイオードを作製するうえでも好適である。 In these, since the light reflectivity of the hardened | cured material obtained is high and heat-resistant light resistance becomes favorable, it is preferable to process by the organosiloxane process. In addition, the inclusion of an organosiloxane-treated titanium oxide is suitable for producing an excellent light-emitting diode that has high light extraction efficiency and does not decrease light extraction efficiency even when used for a long period of time.
その場合の有機シロキサン処理剤としては種々のものが適用される。例えば、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリメチルハイドロジェンシロキサン、あるいはそれらの共重合体などのポリシロキサン類、ヘキサメチルシクロトリシロキサン、ヘプタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、などのシクロシロキサン類、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシランなどのクロロシラン類、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するシラン類、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するシラン類、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリアセトキシシラン等のビニル基を有するシラン類、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン類、γ-アミノプロピルトリエトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン等のアミノ基を有するシラン類、イソシアネートプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン等のアルキル基を有するシラン類、γ-クロロプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン等のその他のシラン類等の各種シラン類で例示されるシランカップリング剤や、ヘキサメチルジシロキサン、ヘキサメチルジシラザンなどを挙げることができる。これらの表面処理剤としては炭素-炭素二重結合を含まないものであることが好ましく、炭素-炭素二重結合を含むと耐熱性が低下しやすくなる。また、有機シロキサン以外の表面処理を併用することも可能であり、Al、Zr、Zn等で処理することもできる。 In this case, various organic siloxane treating agents are used. For example, polysiloxanes such as polydimethylsiloxane, polymethylphenylsiloxane, polymethylhydrogensiloxane, or copolymers thereof, hexamethylcyclotrisiloxane, heptamethylcyclotetrasiloxane, 1,3,5,7-tetra Cyclosiloxanes such as methylcyclotetrasiloxane, chlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, methyltrichlorosilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane and other silanes having an epoxy functional group, 3-methacryloxypropyltri Toxisilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, Silanes having a methacrylic group or an acrylic group such as acryloxymethyltriethoxysilane, vinyl groups such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinyltriacetoxysilane Silanes, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane and other mercaptosilanes, γ-aminopropyltriethoxy Silane, γ- [bis (β-hydroxyethyl)] aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ- (β-aminoethyl) aminopropyldimethoxymethylsilane, Silanes having amino groups, such as N- (trimethoxysilylpropyl) ethylenediamine, N- (dimethoxymethylsilylisopropyl) ethylenediamine, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, isocyanate Silanes having an isocyanate group such as propyltrimethoxysilane and isocyanatepropyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimeth Silane coupling agents exemplified by various silanes such as silanes having an alkyl group such as xylsilane and octyltriethoxysilane, and other silanes such as γ-chloropropyltrimethoxysilane and γ-anilinopropyltrimethoxysilane And hexamethyldisiloxane and hexamethyldisilazane. These surface treatment agents preferably do not contain a carbon-carbon double bond, and if they contain a carbon-carbon double bond, the heat resistance tends to decrease. Further, a surface treatment other than the organic siloxane can be used in combination, and treatment with Al, Zr, Zn, or the like can also be performed.
また、無機化合物により表面処理されていてもよい。
無機化合物による表面処理について特に限定されず、アルミニウム化合物、ケイ素化合物、ジルコニウム化合物、等種々の表面処理が用いられる。酸化チタンの場合、アルミニウム化合物による表面処理が好ましい。酸化チタンは、耐久性向上、媒体との親和性向上のため、あるいは、粒子形状の崩れを防止するなどの目的で無機化合物、有機化合物で表面処理する場合があるが、(F)成分を無機化合物で表面処理することで、硬化性樹脂組成物に含まれる成分との親和性が向上し、(F)成分の硬化性樹脂組成物に対する分散性が良くなり硬化物の強度が向上すると考えられる。
表面処理の方法としても各種方法を適用することができ、湿式法、乾式法、液相法、気相法等、種々の方法が例示できる。
Moreover, it may be surface-treated with an inorganic compound.
The surface treatment with an inorganic compound is not particularly limited, and various surface treatments such as an aluminum compound, a silicon compound, and a zirconium compound are used. In the case of titanium oxide, surface treatment with an aluminum compound is preferable. Titanium oxide may be surface-treated with an inorganic compound or an organic compound for the purpose of improving durability, improving affinity with the medium, or preventing the collapse of the particle shape, but the component (F) is inorganic. It is considered that the surface treatment with the compound improves the affinity with the component contained in the curable resin composition, improves the dispersibility of the component (F) in the curable resin composition, and improves the strength of the cured product. .
Various methods can be applied as the surface treatment method, and various methods such as a wet method, a dry method, a liquid phase method, and a gas phase method can be exemplified.
(F)成分の量としては、特に限定されないが、硬化性樹脂組成物全体に占める(F)成分の量が10重量%以上であることが好ましく、15重量%以上であることがより好ましく、20重量%以上であることがさらに好ましい。10重量%未満であると、得られる硬化物の光反射率が低下することがある。 The amount of the component (F) is not particularly limited, but the amount of the component (F) in the entire curable resin composition is preferably 10% by weight or more, more preferably 15% by weight or more, More preferably, it is 20% by weight or more. If it is less than 10% by weight, the light reflectance of the resulting cured product may be lowered.
(F)成分を使用するのは白色の硬化性樹脂組成物を作製する場合であるが、表示デバイスのブラックマトリックスなどに適用する場合には、黒色の硬化性樹脂組成物を使用することができる。 The component (F) is used when a white curable resin composition is prepared, but when applied to a black matrix of a display device, the black curable resin composition can be used. .
この場合に用いることのできる、黒色顔料しては、無機顔料及び有機顔料のいずれでもよく、1種を単独で又は2種以上の顔料を混合したものを用いてもよい。無機顔料としては、例えば、カーボンブラック、黒鉛、鉄黒、チタンカーボン、チタンブラック、二酸価マンガン、銅クロムマンガン酸化物を挙げることができる。着色力を向上する観点から、カーボンブラック又はチタンブラックが好ましい。さらに、光学濃度及び電気抵抗値を大きくできる観点から、チタンブラックがより好ましい。また、表面を樹脂等で被覆したカーボンブラック又はチタンブラックを使用することもできる。アニリンブラック、アントラキノン系黒色顔料、ペリレン系黒色顔料などを用いることもできる。 As the black pigment that can be used in this case, either an inorganic pigment or an organic pigment may be used, or a single pigment or a mixture of two or more pigments may be used. Examples of the inorganic pigment include carbon black, graphite, iron black, titanium carbon, titanium black, manganese diacid value, and copper chromium manganese oxide. From the viewpoint of improving coloring power, carbon black or titanium black is preferable. Furthermore, titanium black is more preferable from the viewpoint of increasing the optical density and the electrical resistance value. Carbon black or titanium black whose surface is coated with a resin or the like can also be used. Aniline black, anthraquinone black pigment, perylene black pigment and the like can also be used.
また金属複合酸化物系の黒色顔料としては、銅-クロム-マンガン系複合酸化物黒色顔料、銅の酸化物、マンガンの酸化物、コバルトの酸化物およびアルミニウムの酸化物を含有することを特徴とする複合酸化物黒色顔料であり、顔料を構成する銅、マンガン、コバルトおよびアルミニウムの割合が、これらの金属の合計を100モル%とした場合、銅が5~30モル%、マンガンが5~30モル%、コバルトが15~40モル%、そしてアルミニウムが25~50モル%である複合酸化物黒色顔料も使用することができる。 The metal complex oxide black pigment contains copper-chromium-manganese complex oxide black pigment, copper oxide, manganese oxide, cobalt oxide and aluminum oxide. The ratio of copper, manganese, cobalt and aluminum constituting the pigment is 5 to 30 mol% copper and 5 to 30 manganese when the total of these metals is 100 mol%. Complex oxide black pigments with mol%, cobalt 15 to 40 mol%, and aluminum 25 to 50 mol% can also be used.
((E)成分および(F)成分)
(E)成分および(F)成分の合計量は特に限定されないが、硬化性樹脂組成物全体に占める(E)成分および(F)成分の合計の量が70重量%以上であることが好ましく、85重量%以上であることがより好ましく、90重量%以上であることが特に好ましい。また、97重量%以下であることが好ましく、95重量%以下であることがより好ましい。70重量%未満であると、強度や硬度を高くしたり、線膨張率を低減化するという効果が得られにくくなる。また、97重量%を超えると、成形性が低下する場合がある。
((E) component and (F) component)
The total amount of the component (E) and the component (F) is not particularly limited, but the total amount of the component (E) and the component (F) in the entire curable resin composition is preferably 70% by weight or more. It is more preferably 85% by weight or more, and particularly preferably 90% by weight or more. Moreover, it is preferable that it is 97 weight% or less, and it is more preferable that it is 95 weight% or less. If it is less than 70% by weight, it becomes difficult to obtain the effects of increasing the strength and hardness and reducing the linear expansion coefficient. On the other hand, if it exceeds 97% by weight, the moldability may deteriorate.
(F)成分の混合の順序としては、各種方法をとることができるが、好ましい態様は、既に説明した(E)と同様である。また、(F)成分と(E)成分とは同時に添加してもよい。
(F)成分を混合する手段としては、(E)成分を混合する手段と同様の手段を用いることかできる。
As the mixing order of the component (F), various methods can be used, but the preferred embodiment is the same as (E) described above. Moreover, you may add (F) component and (E) component simultaneously.
As means for mixing the component (F), the same means as the means for mixing the component (E) can be used.
((G)成分)
本発明の硬化性樹脂組成物は、金属石鹸((G)成分)を含有することが望ましい。(G)成分は、硬化性樹脂組成物の離型性をはじめとする成型性を改良するために添加される。
((G) component)
The curable resin composition of the present invention desirably contains a metal soap (component (G)). (G) A component is added in order to improve the moldability including the mold release property of a curable resin composition.
(G)成分としては、従来使用されている各種金属石鹸があげられる。ここでいう金属石鹸とは、一般に長鎖脂肪酸と金属イオンが結合したものであり、脂肪酸に基づく無極性あるいは低極性の部分と、金属との結合部分に基づく極性の部分を一分子中に併せて持っていれば使用できる。長鎖脂肪酸としては、例えば炭素数1~18の飽和脂肪酸、炭素数3~18の不飽和脂肪酸、脂肪族ジカルボン酸などが挙げられる。これらの中では、入手性が容易であり工業的実現性が高いという点からは炭素数1~18の飽和脂肪酸が好ましく、さらに、離型性の効果が高いという点からは炭素数6~18の飽和脂肪酸がより好ましい。金属イオンとしては、アルカリ金属、アルカリ土類金属の他に亜鉛、コバルト、アルミニウム、ストロンチウム等が挙げられる。金属石鹸をより具体的に例示すれば、ステアリン酸リチウム、12-ヒドロキシステアリン酸リチウム、ラウリン酸リチウム、オレイン酸リチウム、2-エチルヘキサン酸リチウム、ステアリン酸ナトリウム、12-ヒドロキシステアリン酸ナトリウム、ラウリン酸ナトリウム、オレイン酸ナトリウム、2-エチルヘキサン酸ナトリウム、ステアリン酸カリウム、12-ヒドロキシステアリン酸カリウム、ラウリン酸カリウム、オレイン酸カリウム、2-エチルヘキサン酸カリウム、ステアリン酸マグネシウム、12-ヒドロキシステアリン酸マグネシウム、ラウリン酸マグネシウム、オレイン酸マグネシウム、2-エチルヘキサン酸マグネシウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸カルシウム、ラウリン酸カルシウム、オレイン酸カルシウム、2-エチルヘキサン酸カルシウム、ステアリン酸バリウム、12-ヒドロキシステアリン酸バリウム、ラウリン酸バリウム、ステアリン酸亜鉛、12-ヒドロキシステアリン酸亜鉛、ラウリン酸亜鉛、オレイン酸亜鉛、2-エチルヘキサン酸亜鉛、ステアリン酸鉛、12-ヒドロキシステアリン酸鉛、ステアリン酸コバルト、ステアリン酸アルミニウム、オレイン酸マンガン、リシノール酸バリウム、などが例示される。これらの金属石鹸の中では、入手性が容易であり、安全性が高く工業的実現性が高いという点からステアリン酸金属塩類が好ましく、特に経済性の点から、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群から選択される1つ以上のものが最も好ましい。 Examples of the component (G) include various conventionally used metal soaps. The metal soap here is generally a combination of long-chain fatty acids and metal ions. The nonpolar or low polarity part based on fatty acids and the polar part based on the metal binding part are combined in one molecule. Can be used. Examples of long-chain fatty acids include saturated fatty acids having 1 to 18 carbon atoms, unsaturated fatty acids having 3 to 18 carbon atoms, and aliphatic dicarboxylic acids. Among these, saturated fatty acids having 1 to 18 carbon atoms are preferable from the viewpoint of easy availability and high industrial feasibility, and further, from 6 to 18 carbon atoms from the viewpoint of high releasing effect. The saturated fatty acid is more preferable. Examples of metal ions include zinc, cobalt, aluminum, strontium, and the like in addition to alkali metals and alkaline earth metals. More specific examples of metal soaps include lithium stearate, lithium 12-hydroxystearate, lithium laurate, lithium oleate, lithium 2-ethylhexanoate, sodium stearate, sodium 12-hydroxystearate, lauric acid Sodium, sodium oleate, sodium 2-ethylhexanoate, potassium stearate, potassium 12-hydroxystearate, potassium laurate, potassium oleate, potassium 2-ethylhexanoate, magnesium stearate, magnesium 12-hydroxystearate, Magnesium laurate, magnesium oleate, magnesium 2-ethylhexanoate, calcium stearate, calcium 12-hydroxystearate, calcium laurate , Calcium oleate, calcium 2-ethylhexanoate, barium stearate, barium 12-hydroxystearate, barium laurate, zinc stearate, zinc 12-hydroxystearate, zinc laurate, zinc oleate, 2-ethylhexane Examples include zinc oxide, lead stearate, lead 12-hydroxystearate, cobalt stearate, aluminum stearate, manganese oleate, barium ricinoleate, and the like. Among these metal soaps, metal stearates are preferred from the viewpoint of easy availability, safety and industrial feasibility, and calcium stearate, magnesium stearate, stearin are particularly preferred from the viewpoint of economy. Most preferred is one or more selected from the group consisting of zinc acid and aluminum stearate.
この金属石鹸の添加量としては特に制限はないが、好ましい量の下限は硬化性樹脂組成物全体100重量部に対して0.01重量部(すなわち0.01重量%)、より好ましくは0.025重量部、さらに好ましくは0.05重量部であり、好ましい量の上限は硬化性樹脂組成物全体100重量部に対して5重量部(すなわち5重量%)、より好ましくは4重量部である。添加量が多すぎる場合は硬化物の物性の低下をきたし、少なすぎると金型離型性が得られないことがある。 Although there is no restriction | limiting in particular as addition amount of this metal soap, The minimum of a preferable amount is 0.01 weight part (namely, 0.01 weight%) with respect to 100 weight part of the whole curable resin composition, More preferably, it is 0.00. 025 parts by weight, more preferably 0.05 parts by weight, and the upper limit of the preferred amount is 5 parts by weight (ie 5% by weight), more preferably 4 parts by weight, based on 100 parts by weight of the entire curable resin composition. . When the addition amount is too large, the physical properties of the cured product are deteriorated. When the addition amount is too small, mold releasability may not be obtained.
(添加剤)
本発明の硬化性樹脂組成物には種々の添加剤を添加することができる。
(Additive)
Various additives can be added to the curable resin composition of the present invention.
(硬化遅延剤)
本発明の硬化性樹脂組成物の保存安定性を改良する目的、あるいは製造過程でのヒドロシリル化反応の反応性を調整する目的で、硬化遅延剤を使用することができる。硬化遅延剤としては、脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられ、これらを併用してもかまわない。
(Curing retarder)
A curing retarder can be used for the purpose of improving the storage stability of the curable resin composition of the present invention or adjusting the reactivity of the hydrosilylation reaction during the production process. Examples of the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic sulfur compound, a nitrogen-containing compound, a tin-based compound, and an organic peroxide, and these may be used in combination.
脂肪族不飽和結合を含有する化合物としては、3-ヒドロキシ-3-メチル-1-ブチン、3-ヒドロキシ-3-フェニル-1-ブチン、1-エチニル-1-シクロヘキサノール等のプロパギルアルコール類、エン-イン化合物類、ジメチルマレート等のマレイン酸エステル類等が例示される。有機リン化合物としては、トリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示される。有機イオウ化合物としては、オルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示される。窒素含有化合物としては、アンモニア、1~3級アルキルアミン類、アリールアミン類、尿素、ヒドラジン等が例示される。スズ系化合物としては、ハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示される。有機過酸化物としては、ジ-tert-ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t-ブチル等が例示される。 Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols such as 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne and 1-ethynyl-1-cyclohexanol. And maleic esters such as ene-yne compounds and dimethyl malate. Examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite. Examples of organic sulfur compounds include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like. Examples of nitrogen-containing compounds include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like. Examples of tin compounds include stannous halide dihydrate and stannous carboxylate. Examples of the organic peroxide include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate.
これらの硬化遅延剤のうち、遅延活性が良好で原料入手性がよいという観点からは、ベンゾチアゾール、チアゾール、ジメチルマレート、3-ヒドロキシ-3-メチル-1-ブチン、1-エチニル-1-シクロヘキサノールが好ましい。 Among these curing retarders, from the viewpoint of good retarding activity and good availability of raw materials, benzothiazole, thiazole, dimethylmalate, 3-hydroxy-3-methyl-1-butyne, 1-ethynyl-1- Cyclohexanol is preferred.
硬化遅延剤の添加量は種々設定できるが、使用するヒドロシリル化触媒1molに対する好ましい添加量の下限は10-1モル、より好ましくは1モルであり、好ましい添加量の上限は10モル、より好ましくは50モルである。
また、これらの硬化遅延剤は単独で使用してもよく、2種以上併用してもよい。
The addition amount of the curing retarder can be selected at various levels, the preferred amount of the lower limit is 10 -1 moles with respect to hydrosilylation catalyst 1mol used, more preferably 1 mol, the upper limit of the preferable amount is 10 3 mol, more preferably Is 50 moles.
Moreover, these hardening retarders may be used independently and may be used together 2 or more types.
(接着性改良剤)
本発明の硬化性樹脂組成物には、接着性改良剤を添加することもできる。接着性改良剤としては一般に用いられている接着剤の他、例えば種々のカップリング剤、エポキシ化合物、フェノール樹脂、クマロン-インデン樹脂、ロジンエステル樹脂、テルペン-フェノール樹脂、α-メチルスチレン-ビニルトルエン共重合体、ポリエチルメチルスチレン、芳香族ポリイソシアネート等を挙げることができる。
(Adhesion improver)
An adhesion improver can also be added to the curable resin composition of the present invention. In addition to commonly used adhesives as adhesion improvers, for example, various coupling agents, epoxy compounds, phenol resins, coumarone-indene resins, rosin ester resins, terpene-phenol resins, α-methylstyrene-vinyltoluene A copolymer, polyethylmethylstyrene, aromatic polyisocyanate, etc. can be mentioned.
カップリング剤としては例えばシランカップリング剤、チタネート系カップリング剤等が挙げられる。
カップリング剤の例や好ましい例は、上記したものと同じである。
カップリング剤の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは0.5重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
Examples of coupling agents include silane coupling agents and titanate coupling agents.
Examples and preferred examples of the coupling agent are the same as those described above.
The addition amount of the coupling agent can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is 0.1 parts by weight, more preferably 0.5 parts by weight. The upper limit of the preferable addition amount is 50 parts by weight, more preferably 25 parts by weight. When the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
エポキシ化合物としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’-ビス(4-グリシジルオキシシクロヘキシル)プロパン、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカーボキシレート、ビニルシクロヘキセンジオキサイド、2-(3,4-エポキシシクロヘキシル)-5,5-スピロ-(3,4-エポキシシクロヘキサン)-1,3-ジオキサン、ビス(3,4-エポキシシクロヘキシル)アジペート、1,2-シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジアリルモノグリシジルイソシアヌレート等を挙げることができる。 Examples of the epoxy compound include novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, and 2,2′-bis (4-glycidyloxycyclohexyl). Propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, vinyl cyclohexylene dioxide, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) 1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2-cyclopropanedicarboxylic acid bisglycidyl ester, triglycidyl isocyanurate, monoallyl diglycidyl iso Cyanurate, mention may be made of diallyl monoglycidyl isocyanurate and the like.
エポキシ化合物の添加量としては種々設定できるが、[(A)成分+(B)成分]100重量部に対しての好ましい添加量の下限は1重量部、より好ましくは3重量部であり、好ましい添加量の上限は50重量部、より好ましくは25重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 Although the addition amount of the epoxy compound can be variously set, the lower limit of the preferable addition amount with respect to 100 parts by weight of [(A) component + (B) component] is preferably 1 part by weight, more preferably 3 parts by weight. The upper limit of the addition amount is 50 parts by weight, more preferably 25 parts by weight. When the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
また、これらのカップリング剤、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種以上併用してもよい。 These coupling agents, silane coupling agents, epoxy compounds, etc. may be used alone or in combination of two or more.
また、本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、さらにシラノール縮合触媒を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなシラノール縮合触媒としては特に限定されないが、ほう素系化合物あるいは/およびアルミニウム系化合物あるいは/およびチタン系化合物が好ましい。 In the present invention, a silanol condensation catalyst can be further used to enhance the effect of the coupling agent or the epoxy compound, and the adhesion can be improved and / or stabilized. Such a silanol condensation catalyst is not particularly limited, but is preferably a boron compound or / and an aluminum compound or / and a titanium compound.
シラノール縮合触媒となるアルミニウム系化合物としては、アルミニウムトリイソプロポキシド、sec-ブトキシアルミニウムジイソフロポキシド、アルミニウムトリsec-ブトキシド等のアルミニウムアルコキシド類、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリス(エチルアセトアセテート)、アルミキレートM(川研ファインケミカル製、アルキルアセトアセテートアルミニウムジイソプロポキシド)、アルミニウムトリス(アセチルアセトネート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等のアルミニウムキレート類等が例示でき、取扱い性の点からアルミニウムキレート類がより好ましい。 Examples of the aluminum compound used as a silanol condensation catalyst include aluminum alkoxides such as aluminum triisopropoxide, sec-butoxyaluminum diisoflopoxide, aluminum trisec-butoxide, ethyl acetoacetate aluminum diisopropoxide, aluminum tris (ethyl). Acetoacetate), aluminum chelate M (manufactured by Kawaken Fine Chemicals, alkyl acetoacetate aluminum diisopropoxide), aluminum tris (acetylacetonate), aluminum monoacetylacetonate bis (ethylacetoacetate) and other aluminum chelates Aluminum chelates are more preferable from the viewpoint of handleability.
シラノール縮合触媒となるチタン系化合物としては、テトライソプロポキシチタン、テトラブトキシチタン等のテトラアルコキシチタン類、チタンテトラアセチルアセトナート等のチタンキレート類、オキシ酢酸やエチレングリコール等の残基を有する一般的なチタネートカップリング剤が例示できる。 Titanium compounds that serve as silanol condensation catalysts include tetraalkoxy titaniums such as tetraisopropoxy titanium and tetrabutoxy titanium, titanium chelates such as titanium tetraacetylacetonate, and residues having residues such as oxyacetic acid and ethylene glycol. And titanate coupling agents.
シラノール縮合触媒となるほう素系化合物としては、ほう酸エステルが挙げられる。ほう酸エステルとしては下記一般式(VII)、(VIII)で示されるものを好適に用いることが出来る。 Examples of the boron compound that serves as a silanol condensation catalyst include boric acid esters. As the borate ester, those represented by the following general formulas (VII) and (VIII) can be preferably used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(式中Rは炭素数1~48の有機基を表す。)
ほう酸エステルの具体例として、ほう酸トリ-2-エチルヘキシル、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ-sec-ブチル、ほう酸トリ-tert-ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう酸トリエチル、ほう酸トリメチル、ほう素メトキシエトキサイドを好適に用いることができる。
これらほう酸エステルは1種類のみを用いてもよく、2種類以上を混合して用いても良い。混合は事前に行っても良く、また硬化物作成時に混合しても良い。
これらほう酸エステルのうち、容易に入手でき工業的実用性が高いという点からは、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリノルマルブチルが好ましく、なかでもほう酸トリメチルがより好ましい。
(Wherein R 1 represents an organic group having 1 to 48 carbon atoms)
Specific examples of boric acid esters include tri-2-ethylhexyl borate, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, tri-sec-butyl borate, Tri-tert-butyl borate, triisopropyl borate, trinormalpropyl borate, triallyl borate, triethyl borate, trimethyl borate, and methoxymethoxy boronate can be preferably used.
These borate esters may be used alone or in combination of two or more. Mixing may be performed in advance or may be performed at the time of producing a cured product.
Of these borate esters, trimethyl borate, triethyl borate, and trinormal butyl borate are preferable, and trimethyl borate is more preferable among them because it is easily available and has high industrial practicality.
硬化時の揮発性を抑制できるという点からは、ほう酸ノルマルトリオクタデシル、ほう酸トリノルマルオクチル、ほう酸トリフェニル、トリメチレンボレート、トリス(トリメチルシリル)ボレート、ほう酸トリノルマルブチル、ほう酸トリ-sec-ブチル、ほう酸トリ-tert-ブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピル、ほう酸トリアリル、ほう素メトキシエトキサイドが好ましく、なかでもほう酸ノルマルトリオクタデシル、ほう酸トリ-tert-ブチル、ほう酸トリフェニル、ほう酸トリノルマルブチルがより好ましい。
揮発性の抑制、および作業性がよいという点からは、ほう酸トリノルマルブチル、ほう酸トリイソプロピル、ほう酸トリノルマルプロピルが好ましく、なかでもほう酸トリノルマルブチルがより好ましい。
高温下での着色性が低いという点からは、ほう酸トリメチル、ほう酸トリエチルが好ましく、なかでもほう酸トリメチルがより好ましい。
From the viewpoint of suppressing the volatility during curing, normal trioctadecyl borate, trinormal octyl borate, triphenyl borate, trimethylene borate, tris (trimethylsilyl) borate, trinormal butyl borate, tri-sec-butyl borate, boric acid Tri-tert-butyl, triisopropyl borate, tripropylpropyl borate, triallyl borate, and boron methoxyethoxide are preferred. Among these, normal trioctadecyl borate, tri-tert-butyl borate, triphenyl borate, and tributyl normal borate are more preferable. preferable.
From the viewpoint of suppression of volatility and good workability, trinormal butyl borate, triisopropyl borate and trinormal propyl borate are preferable, and trinormal butyl borate is more preferable.
From the viewpoint of low colorability at high temperatures, trimethyl borate and triethyl borate are preferred, and trimethyl borate is more preferred.
シラノール縮合触媒を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 The amount used in the case of using a silanol condensation catalyst can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound epoxy compound is 0.1 parts by weight, more preferably 1 part by weight. The upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight. When the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
また、これらのシラノール縮合触媒は単独で使用してもよく、2種以上併用してもよい。 These silanol condensation catalysts may be used alone or in combination of two or more.
また、本発明においては接着性改良効果をさらに高めるために、さらにシラノール源化合物を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなシラノール源としては、例えばトリフェニルシラノール、ジフェニルジヒドロキシシラン等のシラノール化合物、ジフェニルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン等のアルコキシシラン類等を挙げることができる。
シラノール源化合物を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは30重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。
また、これらのシラノール源化合物は単独で使用してもよく、2種以上併用してもよい。
In the present invention, a silanol source compound can be further used in order to further enhance the effect of improving adhesiveness, and the adhesiveness can be improved and / or stabilized. Examples of such a silanol source include silanol compounds such as triphenylsilanol and diphenyldihydroxysilane, and alkoxysilanes such as diphenyldimethoxysilane, tetramethoxysilane, and methyltrimethoxysilane.
The amount used in the case of using a silanol source compound can be variously set, but the lower limit of the preferable addition amount with respect to 100 parts by weight of the coupling agent and / or epoxy compound is 0.1 parts by weight, more preferably 1 part by weight. The upper limit of the preferable addition amount is 50 parts by weight, more preferably 30 parts by weight. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the cured product properties may be adversely affected.
Moreover, these silanol source compounds may be used independently and may be used together 2 or more types.
本発明においてはカップリング剤やエポキシ化合物の効果を高めるために、カルボン酸類あるいは/および酸無水物類を用いることができ、接着性の向上および/あるいは安定化が可能である。このようなカルボン酸類、酸無水物類としては特に限定されないが、 In the present invention, carboxylic acids and / or acid anhydrides can be used to enhance the effect of the coupling agent or epoxy compound, and adhesion can be improved and / or stabilized. Such carboxylic acids and acid anhydrides are not particularly limited,
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
、2-エチルヘキサン酸、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸、メチルシクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、メチルハイミック酸、ノルボルネンジカルボン酸、水素化メチルナジック酸、マレイン酸、アセチレンジカルボン酸、乳酸、リンゴ酸、クエン酸、酒石酸、安息香酸、ヒドロキシ安息香酸、桂皮酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンカルボン酸、ナフタレンジカルボン酸、およびそれらの単独あるいは複合酸無水物が挙げられる。 2-ethylhexanoic acid, cyclohexanecarboxylic acid, cyclohexanedicarboxylic acid, methylcyclohexanedicarboxylic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, methylheimic acid, norbornene dicarboxylic acid, hydrogenated methylnadic acid, maleic acid, acetylenedicarboxylic acid , Lactic acid, malic acid, citric acid, tartaric acid, benzoic acid, hydroxybenzoic acid, cinnamic acid, phthalic acid, trimellitic acid, pyromellitic acid, naphthalenecarboxylic acid, naphthalenedicarboxylic acid, and single or complex acid anhydrides thereof Can be mentioned.
これらのカルボン酸類あるいは/および酸無水物類のうち、ヒドロシリル化反応性を有し硬化物からの染み出しの可能性が少なく得られる硬化物の物性を損ない難いという点においては、SiH基との反応性を有する炭素-炭素二重結合を含有するものが好ましい。好ましいカルボン酸類あるいは/および酸無水物類としては、例えば、 Among these carboxylic acids and / or acid anhydrides, in terms of difficulty in impairing the physical properties of the cured product that has hydrosilylation reactivity and is less likely to exude from the cured product, Those having reactive carbon-carbon double bonds are preferred. Preferred carboxylic acids and / or acid anhydrides include, for example,
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
テトラヒドロフタル酸、メチルテトラヒドロフタル酸およびそれらの単独あるいは複合酸無水物等が挙げられる。 Examples thereof include tetrahydrophthalic acid, methyltetrahydrophthalic acid, and single or complex acid anhydrides thereof.
カルボン酸類あるいは/および酸無水物類を用いる場合の使用量は種々設定できるが、カップリング剤あるいは/およびエポキシ化合物エポキシ化合物100重量部に対しての好ましい添加量の下限は0.1重量部、より好ましくは1重量部であり、好ましい添加量の上限は50重量部、より好ましくは10重量部である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物物性に悪影響を及ぼす場合がある。 The amount used in the case of using carboxylic acids or / and acid anhydrides can be variously set, but the lower limit of the preferred addition amount with respect to 100 parts by weight of the coupling agent or / and epoxy compound epoxy compound is 0.1 parts by weight, More preferably, it is 1 part by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 10 parts by weight. When the addition amount is small, the effect of improving the adhesiveness does not appear, and when the addition amount is large, the physical properties of the cured product may be adversely affected.
また、これらのカルボン酸類あるいは/および酸無水物類は単独で使用してもよく、2種以上併用してもよい。 Moreover, these carboxylic acids or / and acid anhydrides may be used alone or in combination of two or more.
本発明の硬化性樹脂組成物には、上記のシラン化合物を使用することができる。シラン化合物は、リードとの密着性向上に寄与し、パッケージとリードの界面からの水分の浸入の防止に効果的である。これを例示すると、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン等が挙げられ、中でも特にジメチルジメトキシシランが好ましい。 The silane compound described above can be used in the curable resin composition of the present invention. The silane compound contributes to improvement in adhesion to the lead and is effective in preventing moisture from entering from the interface between the package and the lead. Illustrative examples include dimethyldimethoxysilane, dimethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, and the like, with dimethyldimethoxysilane being particularly preferred.
(熱硬化性樹脂の硬化物)
熱硬化樹脂は樹脂を硬化させたものを、粉砕して粒子状態で混合してもよい。熱硬化性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性樹脂組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。
(Hardened thermosetting resin)
As the thermosetting resin, a cured resin may be pulverized and mixed in a particle state. When the thermosetting resin is used in a dispersed state, the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 μm. The particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good. The diameter variation coefficient is preferably 10% or less.
(熱可塑性樹脂)
本発明の硬化性樹脂組成物には特性を改質する等の目的で、種々の熱可塑性樹脂を添加することも可能である。熱可塑性樹脂としては種々のものを用いることができるが、例えば、メチルメタクリレートの単独重合体あるいはメチルメタクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリメチルメタクリレート系樹脂(例えば日立化成工業株式会社製オプトレッツ等)、ブチルアクリレートの単独重合体あるいはブチルアクリレートと他モノマーとのランダム、ブロック、あるいはグラフト重合体等のポリブチルアクリレート系樹脂等に代表されるアクリル系樹脂、ビスフェノールA、3,3,5-トリメチルシクロヘキシリデンビスフェノール等をモノマー構造として含有するポリカーボネート樹脂等のポリカーボネート系樹脂(例えば帝人株式会社製APEC等)、ノルボルネン誘導体、ビニルモノマー等を単独あるいは共重合した樹脂、ノルボルネン誘導体を開環メタセシス重合させた樹脂、あるいはその水素添加物等のシクロオレフィン系樹脂(例えば、三井化学株式会社製APEL、日本ゼオン株式会社製ZEONOR、ZEONEX、JSR株式会社製ARTON等)、エチレンとマレイミドの共重合体等のオレフィン-マレイミド系樹脂(例えば東ソー株式会社製TI-PAS等)、ビスフェノールA、ビス(4-(2-ヒドロキシエトキシ)フェニル)フルオレン等のビスフェノール類やジエチレングリコール等のジオール類とテレフタル酸、イソフタル酸、等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステル等のポリエステル系樹脂(例えば鐘紡社製O-PET等)、ポリエーテルスルホン樹脂、ポリアリレート樹脂、ポリビニルアセタール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリアミド樹脂、シリコーン樹脂、フッ素樹脂等の他、天然ゴム、EPDMといったゴム状樹脂が例示されるがこれに限定されるものではない。
(Thermoplastic resin)
Various thermoplastic resins can be added to the curable resin composition of the present invention for the purpose of modifying the properties. Various thermoplastic resins can be used. For example, a homopolymer of methyl methacrylate or a polymethyl methacrylate resin such as a random, block or graft polymer of methyl methacrylate and other monomers (for example, Hitachi Chemical) OPTRETZ etc. manufactured by Kogyo Co., Ltd.), acrylic resins represented by polybutyl acrylate resins such as butyl acrylate homopolymers or random, block or graft polymers of butyl acrylate and other monomers, bisphenol A, A polycarbonate resin such as a polycarbonate resin containing 3,3,5-trimethylcyclohexylidene bisphenol or the like as a monomer structure (for example, APEC manufactured by Teijin Limited), norbornene derivative, vinyl monomer, etc. Or a cycloolefin resin such as a copolymerized resin, a resin obtained by ring-opening metathesis polymerization of a norbornene derivative, or a hydrogenated product thereof (for example, APEL manufactured by Mitsui Chemicals, Inc., ZEONOR, ZEONEX manufactured by Nippon Zeon Co., Ltd., JSR shares) ARTON manufactured by the company), olefin-maleimide resins such as copolymers of ethylene and maleimide (eg TI-PAS manufactured by Tosoh Corporation), bisphenol A, bis (4- (2-hydroxyethoxy) phenyl) fluorene, etc. Polyester resins such as polyesters (eg, O-PET manufactured by Kanebo Co., Ltd.) obtained by polycondensation of diols such as bisphenols and diethylene glycol with phthalic acids such as terephthalic acid and isophthalic acid, and aliphatic dicarboxylic acids. Polyarylate resin Vinyl acetal resins, polyethylene resins, polypropylene resins, polystyrene resins, polyamide resins, silicone resins, other like fluorine resin, not natural rubber, but the rubber-like resin is exemplified such EPDM is not limited thereto.
熱可塑性樹脂としては、分子中にSiH基との反応性を有する炭素-炭素二重結合あるいは/およびSiH基を有していてもよい。得られる硬化物がより強靭となりやすいという点においては、分子中にSiH基との反応性を有する炭素-炭素二重結合あるいは/およびSiH基を平均して1分子中に1個以上有していることが好ましい。 The thermoplastic resin may have a carbon-carbon double bond or / and a SiH group having reactivity with the SiH group in the molecule. In the point that the obtained cured product tends to be tougher, it has one or more carbon-carbon double bonds or / and SiH groups having reactivity with SiH groups in the molecule on average. Preferably it is.
熱可塑性樹脂としてはその他の架橋性基を有していてもよい。この場合の架橋性基としては、エポキシ基、アミノ基、ラジカル重合性不飽和基、カルボキシル基、イソシアネート基、ヒドロキシル基、アルコキシシリル基等が挙げられる。得られる硬化物の耐熱性が高くなりやすいという点においては、架橋性基を平均して1分子中に1個以上有していることが好ましい。 The thermoplastic resin may have other crosslinkable groups. Examples of the crosslinkable group in this case include an epoxy group, an amino group, a radical polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained cured product tends to be high, it is preferable to have one or more crosslinkable groups in one molecule on average.
熱可塑性樹脂の分子量としては、特に限定はないが、(A)成分や(B)成分との相溶性が良好となりやすいという点においては、数平均分子量が10000以下であることが好ましく、5000以下であることがより好ましい。逆に、得られる硬化物が強靭となりやすいという点においては、数平均分子量が10000以上であることが好ましく、100000以上であることがより好ましい。分子量分布についても特に限定はないが、混合物の粘度が低くなり成形性が良好となりやすいという点においては、分子量分布が3以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。 The molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight is preferably 10,000 or less, in terms of easy compatibility with the component (A) or the component (B), and is preferably 5000 or less. It is more preferable that On the contrary, the number average molecular weight is preferably 10,000 or more, and more preferably 100,000 or more in that the obtained cured product tends to be tough. The molecular weight distribution is not particularly limited, but the molecular weight distribution is preferably 3 or less, more preferably 2 or less, in that the viscosity of the mixture tends to be low and the moldability tends to be good. More preferably, it is as follows.
熱可塑性樹脂の配合量としては特に限定はないが、好ましい使用量の下限は硬化性樹脂組成物全体の5重量%、より好ましくは10重量%であり、好ましい使用量の上限は硬化性樹脂組成物の50重量%、より好ましくは30重量%である。添加量が少ないと得られる硬化物が脆くなりやすいし、多いと耐熱性(高温での弾性率)が低くなりやすい。熱可塑性樹脂としては単一のものを用いてもよいし、複数のものを組み合わせて用いてもよい。 The blending amount of the thermoplastic resin is not particularly limited, but the lower limit of the preferable amount used is 5% by weight of the entire curable resin composition, more preferably 10% by weight, and the upper limit of the preferable amount used is the curable resin composition. 50% by weight of the product, more preferably 30% by weight. When the addition amount is small, the obtained cured product tends to be brittle, and when it is large, the heat resistance (elastic modulus at high temperature) tends to be low. A single thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
熱可塑性樹脂は(A)成分あるいは/および(B)成分に溶かして均一な状態として混合してもよいし、粉砕して粒子状態で混合してもよいし、溶媒に溶かして混合する等して分散状態としてもよい。得られる硬化物がより透明になりやすいという点においては、(A)成分あるいは/および(B)成分に溶かして均一な状態として混合することが好ましい。この場合も、熱可塑性樹脂を(A)成分あるいは/および(B)成分に直接溶解させてもよいし、溶媒等を用いて均一に混合してもよいし、その後溶媒を除いて均一な分散状態あるいは/および混合状態としてもよい。 The thermoplastic resin may be dissolved in the component (A) or / and the component (B) and mixed in a uniform state, pulverized and mixed in a particle state, or dissolved in a solvent and mixed. It may be in a dispersed state. In the point that the obtained hardened | cured material tends to become more transparent, it is preferable to melt | dissolve in (A) component or / and (B) component, and to mix as a uniform state. Also in this case, the thermoplastic resin may be directly dissolved in the component (A) or / and the component (B), or may be mixed uniformly using a solvent or the like, and then the solvent is removed and uniform dispersion is performed. It is good also as a state or / and a mixed state.
熱可塑性樹脂を分散させて用いる場合は、平均粒子径は種々設定できるが、好ましい平均粒子径の下限は10nmであり、好ましい平均粒子径の上限は10μmである。粒子系の分布はあってもよく、単一分散であっても複数のピーク粒径を持っていてもよいが、硬化性樹脂組成物の粘度が低く成形性が良好となりやすいという観点からは粒子径の変動係数が10%以下であることが好ましい。 When the thermoplastic resin is dispersed and used, the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 μm. The particle system may be distributed, and may be monodispersed or have a plurality of peak particle diameters. However, from the viewpoint that the viscosity of the curable resin composition is low and the moldability tends to be good. The diameter variation coefficient is preferably 10% or less.
(老化防止剤)
本発明の硬化性樹脂組成物には老化防止剤を添加してもよい。老化防止剤としては、ヒンダートフェノール系等一般に用いられている老化防止剤の他、クエン酸やリン酸、硫黄系老化防止剤等が挙げられる。
(Anti-aging agent)
An aging inhibitor may be added to the curable resin composition of the present invention. Examples of the anti-aging agent include citric acid, phosphoric acid, sulfur-based anti-aging agent and the like in addition to the anti-aging agents generally used such as hindered phenol type.
ヒンダートフェノール系老化防止剤としては、チバスペシャリティーケミカルズ社から入手できるイルガノックス1010をはじめとして、各種のものが用いられる。硫黄系老化防止剤としては、メルカプタン類、メルカプタンの塩類、スルフィドカルボン酸エステル類や、ヒンダードフェノール系スルフィド類を含むスルフィド類、ポリスルフィド類、ジチオカルボン酸塩類、チオウレア類、チオホスフェイト類、スルホニウム化合物、チオアルデヒド類、チオケトン類、メルカプタール類、メルカプトール類、モノチオ酸類、ポリチオ酸類、チオアミド類、スルホキシド類等が挙げられる。
また、これらの老化防止剤は単独で使用してもよく、2種以上併用してもよい。
As the hindered phenol-based anti-aging agent, various types such as Irganox 1010 available from Ciba Specialty Chemicals are used. Sulfur-based antioxidants include mercaptans, mercaptan salts, sulfide carboxylic acid esters, sulfides including hindered phenol sulfides, polysulfides, dithiocarboxylates, thioureas, thiophosphates, sulfonium Examples thereof include compounds, thioaldehydes, thioketones, mercaptals, mercaptols, monothioacids, polythioacids, thioamides, and sulfoxides.
Moreover, these anti-aging agents may be used independently and may be used together 2 or more types.
(ラジカル禁止剤)
本発明の硬化性樹脂組成物にはラジカル禁止剤を添加してもよい。ラジカル禁止剤としては、例えば、2,6-ジ-tert-ブチル-3-メチルフェノール(BHT)、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、テトラキス(メチレン-3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン等のフェノール系ラジカル禁止剤や、フェニル-β-ナフチルアミン、α-ナフチルアミン、N,N’-第二ブチル-p-フェニレンジアミン、フェノチアジン、N,N’-ジフェニル-p-フェニレンジアミン等のアミン系ラジカル禁止剤等が挙げられる。また、これらのラジカル禁止剤は単独で使用してもよく、2種以上併用してもよい。
(Radical inhibitor)
A radical inhibitor may be added to the curable resin composition of the present invention. Examples of the radical inhibitor include 2,6-di-tert-butyl-3-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), tetrakis (methylene- Phenol radical inhibitors such as 3 (3,5-di-tert-butyl-4-hydroxyphenyl) propionate) methane, phenyl-β-naphthylamine, α-naphthylamine, N, N′-secondary butyl-p- Examples include amine radical inhibitors such as phenylenediamine, phenothiazine, N, N′-diphenyl-p-phenylenediamine. Moreover, these radical inhibitors may be used alone or in combination of two or more.
(紫外線吸収剤)
本発明の硬化性樹脂組成物には紫外線吸収剤を添加してもよい。紫外線吸収剤としては、例えば2(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、ビス(2,2,6,6-テトラメチル-4-ピペリジン)セバケート等が挙げられる。
また、これらの紫外線吸収剤は単独で使用してもよく、2種以上併用してもよい。
(UV absorber)
An ultraviolet absorber may be added to the curable resin composition of the present invention. Examples of the ultraviolet absorber include 2 (2′-hydroxy-3 ′, 5′-di-tert-butylphenyl) benzotriazole, bis (2,2,6,6-tetramethyl-4-piperidine) sebacate and the like. Can be mentioned.
Moreover, these ultraviolet absorbers may be used independently and may be used together 2 or more types.
(溶剤)
本発明の硬化性樹脂組成物は溶剤に溶解して用いることも可能である。使用できる溶剤は特に限定されるものではなく、具体的に例示すれば、ベンゼン、トルエン、ヘキサン、ヘプタン等の炭化水素系溶媒、テトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、ジエチルエーテル等のエーテル系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、クロロホルム、塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒を好適に用いることができる。
溶媒としては、トルエン、テトラヒドロフラン、1,3-ジオキソラン、クロロホルムが好ましい。
(solvent)
The curable resin composition of the present invention can be used by dissolving in a solvent. Solvents that can be used are not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane, heptane, tetrahydrofuran, 1,4-dioxane, 1,3-dioxolane, diethyl ether, and the like. An ether solvent, a ketone solvent such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, and a halogen solvent such as chloroform, methylene chloride, and 1,2-dichloroethane can be preferably used.
As the solvent, toluene, tetrahydrofuran, 1,3-dioxolane and chloroform are preferable.
使用する溶媒量は適宜設定できるが、用いる硬化性樹脂組成物1gに対しての好ましい使用量の下限は0.1mLであり、好ましい使用量の上限は10mLである。使用量が少ないと、低粘度化等の溶媒を用いることの効果が得られにくく、また、使用量が多いと、材料に溶剤が残留して熱クラック等の問題となり易く、またコスト的にも不利になり工業的利用価値が低下する。
これらの、溶媒は単独で使用してもよく、2種類以上の混合溶媒として用いることもできる。
Although the amount of solvent to be used can be set as appropriate, the lower limit of the preferable usage amount relative to 1 g of the curable resin composition to be used is 0.1 mL, and the upper limit of the preferable usage amount is 10 mL. If the amount used is small, it is difficult to obtain the effect of using a solvent such as a low viscosity, and if the amount used is large, the solvent tends to remain in the material, causing problems such as thermal cracks, and also from a cost standpoint. It is disadvantageous and the industrial utility value decreases.
These solvents may be used alone or as a mixed solvent of two or more.
(発光ダイオードのための添加剤)
さらに、本発明の硬化性樹脂組成物には必要に応じて、種々の発光ダイオード特性改善のための添加剤を添加してもよい。添加剤としては例えば、発光素子からの光を吸収してより長波長の蛍光を出す、セリウムで付活されたイットリウム・アルミニウム・ガーネット系蛍光体等の蛍光体や、特定の波長を吸収するブルーイング剤等の着色剤、光を拡散させるための酸化チタン、酸化アルミニウム、メラミン樹脂、CTUグアナミン樹脂、ベンゾグアナミン樹脂等のような拡散材、アルミノシリケート等の金属酸化物、窒化アルミニウム、窒化ボロン等の金属窒化物等の熱伝導性充填材等を挙げることができる。発光ダイオード特性改善のための添加剤は均一に含有させても良いし、含有量に傾斜を付けて含有させてもよい。
(Additive for light emitting diode)
Furthermore, you may add the additive for various light emitting diode characteristic improvement to the curable resin composition of this invention as needed. Examples of additives include phosphors such as yttrium, aluminum, and garnet phosphors activated with cerium that absorb light from the light emitting element to emit longer wavelength fluorescence, and blue that absorbs a specific wavelength. Coloring agents such as ing agents, diffusion materials such as titanium oxide, aluminum oxide, melamine resin, CTU guanamine resin, benzoguanamine resin for diffusing light, metal oxides such as aluminosilicate, aluminum nitride, boron nitride, etc. Examples thereof include thermally conductive fillers such as metal nitrides. The additive for improving the characteristics of the light emitting diode may be contained uniformly, or the content may be added with a gradient.
(離型剤)
本発明の硬化性樹脂組成物には成形時の離型性を改良するために種々の離型剤を添加してもよい。
離型剤としては、既に説明した(G)成分や、ワックス類等が挙げられる。
ワックス類としては、天然ワックス、合成ワックス、酸化または非酸化のポリオレフィン、ポリエチレンワックス等が例示できる。
尚、離型剤を添加しなくても十分な離型性が得られる場合には離型剤は用いない方がよい。
(Release agent)
Various releasing agents may be added to the curable resin composition of the present invention in order to improve the releasing property at the time of molding.
Examples of the release agent include the component (G) already described and waxes.
Examples of waxes include natural wax, synthetic wax, oxidized or non-oxidized polyolefin, and polyethylene wax.
In addition, it is better not to use a release agent when sufficient release properties can be obtained without adding a release agent.
(その他添加剤)
本発明の硬化性樹脂組成物には、その他、着色剤、難燃剤、難燃助剤、界面活性剤、消泡剤、乳化剤、レベリング剤、はじき防止剤、アンチモン-ビスマス等のイオントラップ剤、チクソ性付与剤、粘着性付与剤、保存安定改良剤、オゾン劣化防止剤、光安定剤、増粘剤、可塑剤、反応性希釈剤、酸化防止剤、熱安定化剤、導電性付与剤、帯電防止剤、放射線遮断剤、核剤、リン系過酸化物分解剤、滑剤、顔料、金属不活性化剤、熱伝導性付与剤、物性調整剤等を本発明の目的および効果を損なわない範囲において添加することができる。
(Other additives)
The curable resin composition of the present invention includes other colorants, flame retardants, flame retardant aids, surfactants, antifoaming agents, emulsifiers, leveling agents, anti-fogging agents, ion trapping agents such as antimony-bismuth, Thixotropic agent, tackifier, storage stability improver, ozone degradation inhibitor, light stabilizer, thickener, plasticizer, reactive diluent, antioxidant, heat stabilizer, conductivity enhancer, Antistatic agents, radiation blocking agents, nucleating agents, phosphorus peroxide decomposing agents, lubricants, pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers, and the like that do not impair the purpose and effect of the present invention Can be added.
(Bステージ化)
本発明の硬化性樹脂組成物は、各成分および添加剤等の配合物をそのまま用いてもよいし、加熱等により部分的に反応(Bステージ化)させてから使用してもよい。Bステージ化することにより粘度調整が可能であり、トランスファー成形性を調整することもできる。
また、硬化収縮をより抑制する効果もある。
(B stage)
The curable resin composition of the present invention may be used as it is by blending each component and additives, or may be used after being partially reacted (B-staged) by heating or the like. Viscosity can be adjusted by using B-stage, and transfer moldability can also be adjusted.
In addition, there is an effect of further suppressing curing shrinkage.
(硬化性樹脂組成物性状)
本発明の硬化性樹脂組成物としては上記したように各種組み合わせのものが使用できるが、トランスファー成形などによる成形性が良好であるという点においては、硬化性樹脂組成物としては150℃以下の温度で流動性を有するものが好ましい。
(Curable resin composition properties)
As described above, various combinations can be used as the curable resin composition of the present invention. However, the curable resin composition has a temperature of 150 ° C. or less in terms of good moldability by transfer molding or the like. And those having fluidity are preferred.
硬化性樹脂組成物の硬化性については、任意に設定できるが、成形サイクルが短くできるという点においては120℃におけるゲル化時間が120秒以内であることが好ましく、60秒以内であることがより好ましい。また、150℃におけるゲル化時間が60秒以内であることが好ましく、30秒以内であることがより好ましい。また、100℃におけるゲル化時間が180秒以内であることが好ましく、120秒以内であることがより好ましい。
この場合のゲル化時間は、以下のようにして調べられる。設定温度に調整したホットプレート上に厚み50μmのアルミ箔を置き、その上に硬化性樹脂組成物100mgを置いてゲル化するまでの時間を測定してゲル化時間とする。
The curability of the curable resin composition can be arbitrarily set, but the gelation time at 120 ° C. is preferably within 120 seconds, more preferably within 60 seconds in that the molding cycle can be shortened. preferable. Further, the gelation time at 150 ° C. is preferably within 60 seconds, and more preferably within 30 seconds. Further, the gelation time at 100 ° C. is preferably within 180 seconds, and more preferably within 120 seconds.
The gelation time in this case is examined as follows. An aluminum foil having a thickness of 50 μm is placed on a hot plate adjusted to a set temperature, and 100 mg of the curable resin composition is placed thereon, and the time until gelation is measured is defined as the gelation time.
硬化性樹脂組成物が使用される製造工程において、硬化性樹脂組成物中へのボイドの発生および硬化性樹脂組成物からのアウトガスによる工程上の問題が生じ難いという観点においては、硬化中の重量減少が5重量%以下であることが好ましく、3重量%以下であることがより好ましく、1%以下であることがさらに好ましい。
硬化中の重量減少は以下のように調べられる。熱重量分析装置を用いて封止剤10mgを室温から150℃まで10℃/分の昇温速度で昇温して、減少した重量の初期重量の割合として求めることができる。
In the manufacturing process in which the curable resin composition is used, the weight during the curing is from the viewpoint that the generation of voids in the curable resin composition and the process problems due to the outgas from the curable resin composition hardly occur. The decrease is preferably 5% by weight or less, more preferably 3% by weight or less, and further preferably 1% or less.
The weight loss during curing is examined as follows. Using a thermogravimetric analyzer, 10 mg of the sealant is heated from room temperature to 150 ° C. at a rate of temperature increase of 10 ° C./min, and can be determined as a ratio of the initial weight of the reduced weight.
また、電子材料等として用いた場合にシリコーン汚染の問題を起こし難いという点においては、この場合の揮発成分中のSi原子の含有量が1%以下であることが好ましい。 In addition, when used as an electronic material or the like, it is preferable that the content of Si atoms in the volatile component in this case is 1% or less in that the problem of silicone contamination hardly occurs.
(硬化性樹脂組成物の用途)
本発明の硬化性樹脂組成物は、後述するように半導体のパッケージの製造に用いることができる。
(Use of curable resin composition)
The curable resin composition of the present invention can be used for manufacturing a semiconductor package as described later.
(硬化方法)
本発明の硬化性樹脂組成物は、あらかじめ混合し、組成物中のSiH基の一部または全部を、SiH基との反応性を有する炭素-炭素二重結合とヒドロシリル化反応させることによって硬化させることができる。
各成分の必要量を一度に混合して反応させてもよいが、一部を混合して反応させた後残量を混合してさらに反応させる方法や、上記のように混合した後組成物中の官能基の一部のみを反応(Bステージ化)させてから成形等の処理を行い、さらに硬化させる方法をとることもできる。これらの方法によれば成形時の粘度調整が容易となる。
(Curing method)
The curable resin composition of the present invention is mixed in advance, and a part or all of SiH groups in the composition is cured by a hydrosilylation reaction with a carbon-carbon double bond having reactivity with SiH groups. be able to.
The required amount of each component may be mixed and reacted at one time, but after mixing and reacting partly, the remaining amount is mixed and further reacted, or after mixing as described above in the composition It is also possible to take a method in which only a part of the functional group is reacted (B-stage) and then subjected to a treatment such as molding and further cured. According to these methods, viscosity adjustment at the time of molding becomes easy.
(硬化物性状)
耐熱性が良好であるという観点からは、硬化性樹脂組成物を硬化させて得られる硬化物のTgが100℃以上となるものが好ましく、150℃以上となるものがより好ましい。この場合、Tgは以下のようにして調べられる。3mm×5mm×30mmの角柱状試験片を用いて引張りモード、測定周波数10Hz、歪0.1%、静/動力比1.5、昇温側度5℃/分の条件にて測定した動的粘弾性測定(アイティー計測制御株式会社製DVA-200使用)のtanδのピーク温度をTgとする。
(Curing property)
From the viewpoint of good heat resistance, the cured product obtained by curing the curable resin composition preferably has a Tg of 100 ° C. or higher, more preferably 150 ° C. or higher. In this case, Tg is examined as follows. Dynamic measurement using a prismatic test piece of 3 mm × 5 mm × 30 mm in a tensile mode, a measurement frequency of 10 Hz, a strain of 0.1%, a static / power ratio of 1.5, and a temperature increase rate of 5 ° C./min. The peak temperature of tan δ in viscoelasticity measurement (using DVA-200 manufactured by IT Measurement Control Co., Ltd.) is defined as Tg.
また、リードフレーム等にイオンマイグレーション等の問題が生じ難く信頼性が高くなるという点においては、硬化物からの抽出イオン含有量が10ppm未満であることが好ましく、5ppm未満であることがより好ましく、1ppm未満であることがさらに好ましい。
この場合、抽出イオン含有量は以下のようにして調べられる。裁断した硬化物1gを超純水50mlとともにテフロン製容器(テフロンは登録商標)に入れて密閉し、121℃、2気圧、20時間の条件で処理する。得られた抽出液をICP質量分析法(横河アナリティカルシステムズ株式会社製HP-4500使用)によって分析し、得られたNaおよびKの含有量の値を、用いた硬化物中の濃度に換算して求める。一方同じ抽出液をイオンクロマト法(日本ダイオネクス株式会社製DX-500使用、カラム:AS12-SC)によって分析し、得られたClおよびBrの含有量の値を、用いた硬化物中の濃度に換算して求める。以上のように得られたNa、K、Cl、Brの硬化物中の含有量を合計して抽出イオン含有量とする。
In addition, in terms of high reliability and less likely to cause problems such as ion migration in the lead frame and the like, the content of ions extracted from the cured product is preferably less than 10 ppm, more preferably less than 5 ppm, More preferably, it is less than 1 ppm.
In this case, the extracted ion content is examined as follows. 1 g of the cut cured product is sealed in a Teflon container (Teflon is a registered trademark) together with 50 ml of ultrapure water, and treated under conditions of 121 ° C., 2 atm and 20 hours. The obtained extract was analyzed by ICP mass spectrometry (using HP-4500 manufactured by Yokogawa Analytical Systems Co., Ltd.), and the obtained Na and K content values were converted to the concentration in the cured product used. And ask. On the other hand, the same extract was analyzed by ion chromatography (using DX-500 manufactured by Nippon Dionex Co., Ltd., column: AS12-SC), and the obtained Cl and Br content values were adjusted to the concentrations in the cured product used. Calculate by conversion. The contents of Na, K, Cl, and Br obtained as described above in the cured product are totaled to obtain the extracted ion content.
硬化物の線膨張係数としては、特に制約はないが、リードフレーム等の金属やセラミック等との接着性が良好になりやすいという点においては、23℃から150℃までの平均線膨張係数が30ppm以下であることが好ましく、20ppm以下であることがより好ましく、10ppm以下であることがより好ましい。 The linear expansion coefficient of the cured product is not particularly limited, but the average linear expansion coefficient from 23 ° C. to 150 ° C. is 30 ppm in that the adhesion to a metal such as a lead frame or ceramic is likely to be good. Or less, more preferably 20 ppm or less, and even more preferably 10 ppm or less.
また、本発明の硬化性樹脂組成物は、硬化させてなる成形体の表面の波長480nmの光反射率が80%以上であることが好ましい。
また、硬化後の460nm及び480nmにおける光反射率Rが80%以上であり、180℃、24時間の耐熱試験後の光反射率の保持率(耐熱試験後の光反射率/初期の光反射率×100)が90%以上であることが望ましい。
Further, the curable resin composition of the present invention preferably has a light reflectance of 80% or more at a wavelength of 480 nm on the surface of a molded product obtained by curing.
Further, the light reflectivity R at 460 nm and 480 nm after curing is 80% or more, and the retention ratio of the light reflectivity after the heat test at 180 ° C. for 24 hours (the light reflectivity after the heat test / the initial light reflectivity). X100) is desirably 90% or more.
硬化物の光反射率は以下のように調べられる。微小面分光色差計(日本電色工業株式会社製VSS400)を用いて波長400nm~700nm(20nm間隔)における光反射率を測定する。ここで各波長における測定値は、パッケージ上面の任意の4箇所(測定面積0.1mmφ)の測定値の平均値を採用する。 The light reflectivity of the cured product is examined as follows. The light reflectance at wavelengths of 400 nm to 700 nm (20 nm intervals) is measured using a micro surface spectral color difference meter (VSS400 manufactured by Nippon Denshoku Industries Co., Ltd.). Here, the average value of the measurement values at any four locations (measurement area 0.1 mmφ) on the upper surface of the package is adopted as the measurement value at each wavelength.
光反射率は、発光ダイオードの光取りだし効率が高くなりやすいという点においては、420~700nmの波長帯域において75%以上が好ましく、80%以上であることがより好ましい。 The light reflectivity is preferably 75% or more in the wavelength band of 420 to 700 nm, and more preferably 80% or more from the viewpoint that the light extraction efficiency of the light emitting diode tends to be high.
また、耐熱試験(例えば、180℃のオーブンで24時間加熱する試験)後の光反射率の初期の光反射率に対する保持率は下記計算式によって求める。「初期の光反射率」とは、耐熱試験前の光反射率を意味する。
保持率(%)=(耐熱試験後の光反射率)/(初期の光反射率)×100
保持率は、電子材料として用いた場合に信頼性が高いといった点においては、80%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることがさらに好ましい。
Further, the retention ratio of the light reflectance after the heat resistance test (for example, a test in which heating is performed in an oven at 180 ° C. for 24 hours) with respect to the initial light reflectance is obtained by the following calculation formula. “Initial light reflectance” means light reflectance before the heat resistance test.
Retention rate (%) = (light reflectance after heat test) / (initial light reflectance) × 100
The retention rate is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more in terms of high reliability when used as an electronic material.
また、本発明の硬化性樹脂組成物を硬化して得た成形体としては、表面の波長480nmの光反射率が80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、97%以上であることがさらにより好ましく、99%以上であることが特に好ましい。 Moreover, as a molded object obtained by hardening | curing the curable resin composition of this invention, it is preferable that the light reflectance of wavelength 480nm of a surface is 80% or more, It is more preferable that it is 90% or more, 95 % Or more, more preferably 97% or more, and particularly preferably 99% or more.
また、例えば本発明における硬化性樹脂組成物をトランスファーモールド成形することによって得られる成形体が良好な耐曲げ性を示す観点からは、平板(成形体)の曲げ強度が50N/mm以下であることが好ましく、45N/mm以下であることがより好ましく、40N/mm以下であることがさらに好ましい。曲げ強度が50N/mmを超える場合は、充分な柔軟性が得られない場合がある。
また、同様に本発明における硬化性樹脂組成物をトランスファーモールド成形することによって成形体を得る場合に、連続して複数回の成形を行っても成形体の凝集破壊等の不具合を起こらないようにする(以下この特性を連続成形性と呼ぶ)観点からは、平板の曲げ強度が20~50N/mmの範囲内にあることが好ましく、23~45N/mmの範囲内にあることがより好ましく、25~40mmの範囲内にあることがさらに好ましい。曲げ強度が20N/mm未満となる場合は、連続成形性が悪くなる可能性があり、50N/mmを超える場合は、成形体の柔軟性が損なわれ、耐曲げ性が低下する場合がある。
For example, from the viewpoint that a molded product obtained by transfer molding the curable resin composition in the present invention exhibits good bending resistance, the bending strength of a flat plate (molded product) is 50 N / mm 2 or less. Is preferably 45 N / mm 2 or less, and more preferably 40 N / mm 2 or less. When the bending strength exceeds 50 N / mm 2 , sufficient flexibility may not be obtained.
Similarly, when a molded body is obtained by transfer molding the curable resin composition of the present invention, problems such as cohesive failure of the molded body do not occur even if the molding is continuously performed a plurality of times. From the viewpoint of doing this (hereinafter referred to as “continuous formability”), the bending strength of the flat plate is preferably in the range of 20 to 50 N / mm 2 , more preferably in the range of 23 to 45 N / mm 2. Preferably, it is in the range of 25 to 40 mm 2 . When the bending strength is less than 20 N / mm 2 , the continuous formability may be deteriorated. When the bending strength is more than 50 N / mm 2 , the flexibility of the molded body is impaired, and the bending resistance may be reduced. is there.
これら平板の曲げ強度は、以下のように測定する。作製された平板から、試験片を、長さ50mm以上80mm以下、幅が7mmから8mm程度で向かい合う2辺が平行となるように切り出し試験片とし、Stable Micro Systems社製、テクスチャーアナライザーTA.plusにて、幅10mmの角の丸いガラス製の直角三角形からなる加圧くさびで、試験片の中央に2.0mm/secの速度で荷重を加え、試験片が折れたときの荷重(曲げ破壊荷重N)より、下式により曲げ強度σ(N/mm)を算出する。
σ=M/I×h/2=(wl/4)/(bh/12)×h/2
ここで、曲げ破壊荷重w(N)、支点間距離l(mm)、部材断面縦h(mm)、部材断面横b(mm)、Mは曲げモーメント、Iは断面2次モーメントである。
The bending strength of these flat plates is measured as follows. A test piece was cut out from the produced flat plate so that the two sides facing each other with a length of about 50 mm to 80 mm and a width of about 7 mm to 8 mm were parallel, and made by Stable Micro Systems, Texture Analyzer TA. A pressure wedge consisting of right-angled triangles made of glass with round corners with a width of 10 mm at plus, applying a load at a speed of 2.0 mm / sec to the center of the test piece, and the load when the test piece breaks (bending fracture) From the load N), the bending strength σ b (N / mm 2 ) is calculated by the following equation.
σ b = M / I × h / 2 = (wl / 4) / (bh 3/12) × h / 2
Here, the bending fracture load w (N), the fulcrum distance l (mm), the member cross section length h (mm), the member cross section width b (mm), M is a bending moment, and I is a cross section secondary moment.
(硬化性樹脂組成物タブレット)
本発明のタブレットは、(A)~(F)成分を含有する硬化性樹脂組成物からなる。
また、硬化性樹脂組成物タブレットは、(A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、(E)成分および(F)成分の合計の含有量(以下、充填率と言うことがある)が70~95重量%であり、(E)成分および(F)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とする。ここで、(E)成分および(F)成分は共に粉体である。
(Curable resin composition tablet)
The tablet of the present invention comprises a curable resin composition containing components (A) to (F).
The curable resin composition tablet is a liquid in which at least one of the component (A) and the component (B) has a viscosity of 50 Pa seconds or less at 23 ° C., and the total content of the component (E) and the component (F) (Hereinafter referred to as filling factor) is 70 to 95% by weight, and the ratio of particles of 12 μm or less to the total of component (E) and component (F) is 40% by volume or more. To do. Here, both the component (E) and the component (F) are powders.
(A)成分および(B)成分の少なくとも一方は、23℃における粘度が50Pa秒以下の液体である。23℃における粘度が50Pa秒を超えると、組成物を調製する際の作業性が低下する問題がある。粘度は40Pa秒以下であることが好ましく、30Pa秒以下であることがより好ましい。
この硬化性樹脂組成物タブレットは、高温で(A)成分および(B)成分が粘度低下することによって硬化性樹脂組成物全体が流動可能となり、さらに加熱を続けると硬化反応が進行して所望の形状に成形することが可能である。
At least one of the component (A) and the component (B) is a liquid having a viscosity at 23 ° C. of 50 Pa seconds or less. When the viscosity at 23 ° C. exceeds 50 Pa seconds, there is a problem that workability at the time of preparing the composition is lowered. The viscosity is preferably 40 Pa seconds or less, and more preferably 30 Pa seconds or less.
This curable resin composition tablet is capable of flowing the entire curable resin composition due to a decrease in viscosity of the component (A) and the component (B) at a high temperature. It can be formed into a shape.
成形方法としては、特に限定されず、硬化性樹脂組成物の成形に一般的であるトランスファー成形や圧縮成形などの成形方法を用いることができる。これらの成形方法を用いる場合、原料である硬化性樹脂組成物がペースト状や粘土状であると、一定した形状を保持できず、互着や一体化、変形したりするため、計量や搬送、成形機への供給が非常に困難となる。一方、タブレット形状であると、計量や搬送、成形機への供給が容易となり、自動化も可能となって生産性が大幅に向上する。ここで言うタブレットとは、室温において一定した形状を保持し、経時的な形状の変化が実質的になく、また互いに接触させたときに互着や一体化することのない固体のことを意味する。 The molding method is not particularly limited, and a molding method such as transfer molding or compression molding, which is generally used for molding a curable resin composition, can be used. When using these molding methods, if the curable resin composition as a raw material is in the form of a paste or clay, it cannot maintain a constant shape and is attached, integrated, or deformed. Supply to the molding machine becomes very difficult. On the other hand, the tablet shape makes it easy to measure, transport, and supply to a molding machine, and can be automated, greatly improving productivity. As used herein, a tablet means a solid that retains a constant shape at room temperature, has substantially no change in shape over time, and does not stick together or become integrated when brought into contact with each other. .
本発明のタブレットの形状は、特に限定されず、円柱状、角柱状、円盤状、球状などの形状を含むが、トランスファー成形に一般的な円柱状が好ましい。 The shape of the tablet of the present invention is not particularly limited, and includes a columnar shape, a prismatic shape, a disk shape, a spherical shape, and the like, and a general columnar shape for transfer molding is preferable.
本発明のタブレットに占める(E)成分および(F)成分の含有量の合計は、70~95重量%である。含有量の合計は72重量%以上であることが好ましく、75重量%以上であることがより好ましい。また、94重量%以下であることが好ましく、90重量%以下であることがより好ましい。
充填率における(E)成分と(F)成分の配分については特に限定されず、自由に設定できる。
充填率が70重量%未満であると、得られる硬化物の熱膨張率が大きくなって成形体の寸法変化が問題となることや、硬化性樹脂組成物が硬いペースト状や粘土状となりタブレット化ができなくなる問題がある。充填率が95重量%を超えると、高温での粘度が高くなりすぎて成形性が低下することや、得られるタブレットが脆くなりすぎる問題がある。
The total content of the component (E) and the component (F) in the tablet of the present invention is 70 to 95% by weight. The total content is preferably 72% by weight or more, and more preferably 75% by weight or more. Moreover, it is preferable that it is 94 weight% or less, and it is more preferable that it is 90 weight% or less.
The distribution of the (E) component and the (F) component in the filling rate is not particularly limited and can be set freely.
If the filling rate is less than 70% by weight, the thermal expansion coefficient of the resulting cured product will increase, causing dimensional change of the molded product, and the curable resin composition will become a hard paste or clay and become a tablet There is a problem that can not be. When the filling rate exceeds 95% by weight, there is a problem that the viscosity at high temperature becomes too high and the moldability is lowered, and the resulting tablet becomes too brittle.
本発明の硬化性樹脂組成物において、(A)成分および(B)成分の少なくとも一方が常温で液体であると、充填率が低い場合には、ペースト状や粘土状となりやすい。この場合、タブレットにはならないが高温での成形性は良好となりやすい傾向がある。一方、充填率が高い場合には、流動させる成分が少ないため、フレーク状や粉状になりやすい。これらは圧縮することでタブレット状に押し固めることが可能であるが、高温での流動性に乏しく成形性が低下しやすい傾向がある。これまで、充填率を単純に増加させていくだけでは、タブレット化と成形性を両立させることが困難であった。 In the curable resin composition of the present invention, when at least one of the component (A) and the component (B) is liquid at room temperature, it tends to be in the form of a paste or clay when the filling rate is low. In this case, the tablet does not become a tablet, but the moldability at high temperature tends to be good. On the other hand, when the filling rate is high, since there are few components to be flowed, it tends to be flaky or powdery. These can be compressed into a tablet shape by being compressed, but they tend to have poor fluidity at high temperatures and easily deteriorate moldability. Until now, it has been difficult to achieve both tableting and moldability by simply increasing the filling rate.
しかしながら本発明の硬化性樹脂組成物では、粉体である(E)成分および(F)成分の合計に占める12μm以下の粒子の割合を40体積%以上とすることで、タブレット化と成形性を両立できることを見出した。また、(E)成分および(F)成分の合計に占める12μm以下の粒子の割合は、60重量%以上であることが好ましい。 However, in the curable resin composition of the present invention, tableting and moldability can be achieved by setting the ratio of particles of 12 μm or less to the total of the (E) component and (F) component which are powders to 40% by volume or more. I found out that they can be compatible. Moreover, it is preferable that the ratio of the particle | grains of 12 micrometers or less to the sum total of (E) component and (F) component is 60 weight% or more.
この理由としては推測ではあるが次のように考えられる。液体と粒子の混合系において、液体成分は粒子の表面を被覆していると考えられ、全ての粒子を被覆した余分の液体成分が変形に寄与していると思われる。そのため、充填率が同じであっても、小粒子の割合が多いほど総表面積が大きくなって被覆に費やされる液体成分が増加し、変形しにくくなっていると考えられる。液体の粘度は高温になると顕著に低下するため、高温では小粒子の割合に対する流動性の変化が小さいが、低温では粘度が高いために、小粒子が多いとペースト状や粘土状のように流動することができずにフレーク状や粉状になることが考えられる。 The reason for this is speculated as follows. In the mixed system of liquid and particles, it is considered that the liquid component covers the surface of the particle, and the extra liquid component covering all the particles seems to contribute to the deformation. For this reason, even if the filling rate is the same, the larger the proportion of small particles, the larger the total surface area and the more liquid components that are consumed for coating. Since the viscosity of the liquid decreases significantly at high temperatures, the change in fluidity with respect to the proportion of small particles is small at high temperatures, but the viscosity is high at low temperatures, so when there are many small particles, it flows like paste or clay. It can be considered that the flakes or powders cannot be obtained.
言い換えると、粒子中の小粒子の割合を増やすことで、硬化性樹脂組成物の高温での流動性を維持したまま、常温での状態を固くすることができることになる。このことは、常温で固体のエポキシ樹脂やシリコーン系樹脂を用いた文献(特開2008-112977号公報や、特開2009-155415号公報)、また、粒子の粒度分布まで言及せず平均粒径のみを記載している特許文献3からは想到できない。 In other words, by increasing the proportion of small particles in the particles, the state at room temperature can be hardened while maintaining the fluidity of the curable resin composition at high temperatures. This means that the average particle size is not mentioned without reference to the literature (Japanese Patent Laid-Open No. 2008-112977 and Japanese Patent Laid-Open No. 2009-155415) using an epoxy resin or silicone resin that is solid at room temperature. It cannot be conceived from Patent Document 3 which describes only the above.
粒径分布の制御に加えて、取扱性の良好なタブレットを得るために、(A)~(D)成分からなる液状樹脂を効率的に保持できる、例えば多孔質充填剤または吸油性を有するフィラーを単独で使用するか併用して使用することが好ましい。該多孔質充填剤または吸油性を有するフィラーの形状としては、特に限定されず、例えば、真球状、破砕状、円盤状、棒状、繊維状等のものを用いることができる。トランスファー成型時の金型内の流動性を考慮すると真球状、破砕状のものが好ましい。 In addition to controlling the particle size distribution, in order to obtain a tablet with good handleability, it is possible to efficiently hold a liquid resin comprising the components (A) to (D), for example, a porous filler or an oil-absorbing filler Are preferably used alone or in combination. The shape of the porous filler or oil-absorbing filler is not particularly limited, and for example, a spherical shape, a crushed shape, a disk shape, a rod shape, a fiber shape, or the like can be used. Considering the fluidity in the mold at the time of transfer molding, a spherical shape and a crushed shape are preferable.
具体的には、球状シリカ、破砕シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、ゼオライト、等を挙げることができ、これらは単独で使用しても、併用しても構わない。熱伝導性、光反射特性、成型性の点からは、シリカ、アルミナまたはこれらの混合物が好ましい。 Specific examples include spherical silica, crushed silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, and zeolite. These may be used alone or in combination. Silica, alumina, or a mixture thereof is preferable from the viewpoint of thermal conductivity, light reflection characteristics, and moldability.
また、上記多孔質充填剤または吸油性を有するフィラーは、その表面が物理的または化学的に親水化処理または疎水化処理されていてもよい。好ましくは表面が疎水化処理されたものであり、吸油量(JIS K5101に準ずる規定量)が50ml/100g以上のものが好ましい。 Further, the surface of the porous filler or filler having oil absorbency may be subjected to a physical or chemical hydrophilization treatment or a hydrophobization treatment. Preferably, the surface is subjected to a hydrophobic treatment, and the oil absorption amount (specified amount according to JIS K5101) is preferably 50 ml / 100 g or more.
また、上記多孔質充填剤または吸油性を有するフィラーの見掛け密度は、特に限定されないが、0.4g/cm以上であることが好ましく、0.4~2.0g/cmであることがより好ましい。なお、見掛け密度とは、多孔質充填剤または吸油性を有するフィラーの素原料が占める密度と微細孔の占める空間(即ち細孔容積)とを考慮した密度のことである。この見掛け密度が0.4g/cmに満たない場合は、充填剤粒子の機械的強度が小さく、ミキシングロールミル等のせん断力を生じるような溶融混錬時において、粒子が破壊されてしまうおそれがある。一方、見掛け密度が2.0g/cmを超える場合は、タブレット成型時に臼型と杵型の金型表面に硬化性樹脂組成物が付着し易くなる傾向にある。 Further, the apparent density of the porous filler or filler having oil absorbency is not particularly limited, but is preferably 0.4 g / cm 3 or more, and preferably 0.4 to 2.0 g / cm 3. More preferred. The apparent density is a density in consideration of the density occupied by the raw material of the porous filler or the oil-absorbing filler and the space occupied by the fine pores (that is, the pore volume). When this apparent density is less than 0.4 g / cm 3 , the mechanical strength of the filler particles is small, and the particles may be destroyed at the time of melt-kneading that generates shearing force such as a mixing roll mill. is there. On the other hand, when the apparent density exceeds 2.0 g / cm 3 , the curable resin composition tends to adhere to the surface of the mortar mold and bowl mold during tablet molding.
また、上記多孔質充填剤または吸油性を有するフィラーの平均粒径は、0.1~100μmであることが好ましく、白色顔料とのパッキング効率を考慮すると1~10μmの範囲であることがより好ましい。平均粒径が100μmよりも大きく、または0.1μmよりも小さくなると、トランスファー成型する際の溶融時に硬化性樹脂組成物の流動性が悪くなる傾向にある。 The average particle size of the porous filler or oil-absorbing filler is preferably 0.1 to 100 μm, and more preferably in the range of 1 to 10 μm in view of packing efficiency with a white pigment. . When the average particle size is larger than 100 μm or smaller than 0.1 μm, the fluidity of the curable resin composition tends to be poor at the time of melting during transfer molding.
また、上記多孔質充填剤または吸油性を有するフィラーの比表面積は、100~1000m/gであることが好ましく、300~700m/gであることがより好ましい。比表面積が100m/gよりも小さくなると充填剤による樹脂の吸油量が小さくなり、タブレット成型時に杵型に樹脂が付着し易くなる傾向にあり、比表面積が1000m/gよりも大きくなると、トランスファー成型する際の溶融時に硬化性樹脂組成物の流動性が悪くなる傾向にある。 The specific surface area of the porous filler or oil-absorbing filler is preferably 100 to 1000 m 2 / g, more preferably 300 to 700 m 2 / g. When the specific surface area is smaller than 100 m 2 / g, the oil absorption amount of the resin by the filler is decreased, and the resin tends to adhere to the bowl at the time of tablet molding, and when the specific surface area is larger than 1000 m 2 / g, The fluidity of the curable resin composition tends to be poor at the time of melting during transfer molding.
また、上記多孔質充填剤または吸油性を有するフィラーの含有量は、特に限定されないが、(E)無機充填材および(F)白色顔料の合計量を基準として、0.1体積%~20体積%の範囲であることが好ましい。溶融時の樹脂組成物の成型性を考慮すると、1体積%~5体積%であることがより好ましい。この含有量が0.1体積%よりも小さい場合は、硬化性樹脂組成物の一部が臼型と杵型の成型金型表面に付着し易くなり、20体積%よりも大きい場合は、トランスファー成型する際の溶融時に樹脂組成物の流動性が低下する傾向にある。 Further, the content of the porous filler or the oil-absorbing filler is not particularly limited, but is 0.1 volume% to 20 volume based on the total amount of (E) inorganic filler and (F) white pigment. % Is preferable. Considering the moldability of the resin composition at the time of melting, it is more preferably 1% by volume to 5% by volume. When this content is less than 0.1% by volume, a part of the curable resin composition tends to adhere to the surfaces of the mortar mold and the saddle mold, and when it is greater than 20% by volume, transfer is performed. The fluidity of the resin composition tends to decrease during melting during molding.
(半導体のパッケージ)
本発明の半導体のパッケージは、本発明の硬化性樹脂組成物を成形して得られるものであり、例えばトランスファー成形により得られるものである。
(Semiconductor package)
The semiconductor package of the present invention is obtained by molding the curable resin composition of the present invention, and is obtained, for example, by transfer molding.
半導体のパッケージは、硬化性樹脂組成物を金属と一体成形して得られるものであってもよい。例えば、硬化性樹脂組成物とリードフレームとをトランスファーモールドにより一体成形したものや、実質的に金属の片面に樹脂が成形されてなるものが挙げられる。 The semiconductor package may be obtained by integrally molding a curable resin composition with a metal. For example, one in which a curable resin composition and a lead frame are integrally formed by transfer molding, or one in which a resin is substantially molded on one side of a metal can be mentioned.
本発明で言う半導体のパッケージとは、半導体素子あるいは/および外部取出し電極等を支持固定あるいは/および保護するために設けられた部材である。半導体素子を直接被覆せず、外部取り出し電極等を支持固定するものや発光ダイオードのリフレクターのような半導体素子の周囲や底面を形成するものであってもよい。 The semiconductor package referred to in the present invention is a member provided for supporting and / or protecting a semiconductor element or / and an external extraction electrode. The semiconductor element may not be directly covered but may be one that supports and fixes an external extraction electrode or the like, or that forms the periphery or bottom surface of a semiconductor element such as a light-emitting diode reflector.
この場合の半導体素子としては各種のものが挙げられる。例えばIC、LSI等の集積回路、トランジスター、ダイオード、発光ダイオード等の素子の他、CCD等の受光素子等を挙げることができる。 In this case, various types of semiconductor elements can be mentioned. For example, an integrated circuit such as an IC or LSI, an element such as a transistor, a diode, or a light emitting diode, or a light receiving element such as a CCD can be used.
形状についても特定されないが、半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有する場合(MAPタイプ)において特に本発明の効果が得られやすい。 Although the shape is not specified, the effect of the present invention is particularly easily obtained when the semiconductor package has a shape in which a resin is substantially molded on one side of a metal (MAP type).
尚、上記のように本発明の半導体のパッケージが半導体素子を直接被覆しないような場合などにおいては、さらに封止剤を用いて封止することもでき、例えば従来用いられるエポキシ樹脂、シリコーン樹脂、アクリル樹脂、ユリア樹脂、イミド樹脂等の封止樹脂を用いることができる。また、特開2002-80733、特開2002-88244で提案されているような、SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個有する脂肪族系有機化合物、1分子中に少なくとも2個のSiH基を有する化合物、およびヒドロシリル化触媒を含有する硬化性樹脂組成物からなる封止剤を用いてもよく、この封止剤を用いる方が、パッケージ樹脂との接着性が高いという点、および透明性が高く本発明のパッケージの耐光性が高いという効果が顕著であるという点において、好ましい。一方、樹脂封止を用いず、ガラス等でカバーしてハーメチック封止により封止することも可能である。
また発光ダイオードや受光素子の場合などにおいてはさらにレンズを適用することも可能であり、封止剤をレンズ形状に成形してレンズ機能を持たせることも可能である。
In addition, in the case where the semiconductor package of the present invention does not directly cover the semiconductor element as described above, it can be further sealed with a sealing agent, for example, a conventionally used epoxy resin, silicone resin, A sealing resin such as an acrylic resin, a urea resin, or an imide resin can be used. In addition, as proposed in JP 2002-80733 and JP 2002-88244, an aliphatic organic compound having at least two carbon-carbon double bonds having reactivity with a SiH group in one molecule, A sealing agent comprising a compound having at least two SiH groups in one molecule and a curable resin composition containing a hydrosilylation catalyst may be used. This is preferable in that the adhesiveness is high and the effect of high transparency and high light resistance of the package of the present invention is remarkable. On the other hand, it is possible to cover with glass or the like and seal with hermetic sealing without using resin sealing.
Further, in the case of a light emitting diode or a light receiving element, a lens can be further applied, and a sealing agent can be molded into a lens shape to have a lens function.
(成形方法)
本発明で言う半導体パッケージの成形方法としては各種の方法が用いられる。例えば、射出成形、トランスファー成形、RIM成形、キャスティング成形、プレス成形、コンプレッション成形等、熱可塑性樹脂やエポキシ樹脂、シリコーン樹脂等の熱硬化性樹脂に一般に用いられる各種成形方法が用いられる。これらの内、成形サイクルが短く成形性が良好であるという点においてはトランスファー成形が好ましい。
(Molding method)
Various methods are used as a method for forming a semiconductor package in the present invention. For example, various molding methods generally used for thermosetting resins such as thermoplastic resins, epoxy resins, and silicone resins, such as injection molding, transfer molding, RIM molding, casting molding, press molding, compression molding, and the like are used. Of these, transfer molding is preferred in that the molding cycle is short and the moldability is good.
成形条件も任意に設定可能であり、例えば成形温度についても任意であるが、硬化が速く成形サイクルが短く成形性が良好になりやすいという点においては100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上の温度が好ましい。上記のような各種方法によって成形した後、必要に応じて後硬化(アフターキュア)することも任意である。後硬化した方が耐熱性が高くなり易い。 The molding conditions can be arbitrarily set, for example, the molding temperature is also arbitrary. However, in terms of fast curing and a short molding cycle, the moldability tends to be good, more preferably 100 ° C. or higher, more preferably 120 ° C. or higher. A temperature of 150 ° C. or higher is preferable. After molding by the various methods as described above, post-curing (after-curing) is optional as required. Post-curing tends to increase the heat resistance.
成形は一定の温度で行ってもよいが、必要に応じて多段階あるいは連続的に温度を変化させてもよい。一定の温度で行うより多段階的あるいは連続的に温度を上昇させながら反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。また、一定温度で行う方が成形サイクルを短くできるという点において好ましい。 Molding may be performed at a constant temperature, but the temperature may be changed in multiple steps or continuously as required. It is preferable to carry out the reaction while raising the temperature in a multistage manner or continuously, as compared with the case where the temperature is constant, in that a uniform cured product without distortion can be easily obtained. Moreover, it is preferable to perform at a constant temperature in that the molding cycle can be shortened.
硬化時間も種々設定できるが、高温短時間で反応させるより、比較的低温長時間で反応させた方が歪のない均一な硬化物が得られやすいという点において好ましい。逆に、高温短時間で反応させる方が成形サイクルを短くできるという点において好ましい。 Although various curing times can be set, it is preferable to react at a relatively low temperature for a long time rather than reacting at a high temperature for a short time because a uniform cured product without distortion can be easily obtained. Conversely, the reaction at a high temperature in a short time is preferable in that the molding cycle can be shortened.
成形時の圧力も必要に応じ種々設定でき、常圧、高圧、あるいは減圧状態で成形することもできる。ボイドの発生を抑制したり、充填性をよくしたり、場合によって発生する揮発分を除きやすいという点においては、減圧状態で硬化させることが好ましい。成形体へのクラックを防止できるという点においては、加圧状態で硬化させることが好ましい。 The pressure at the time of molding can be variously set as required, and the molding can be performed at normal pressure, high pressure, or reduced pressure. It is preferable to cure under reduced pressure in terms of suppressing the generation of voids, improving the filling property, and easily removing volatile components generated in some cases. In terms of preventing cracks in the molded body, it is preferable to cure under pressure.
(発光ダイオードの用途)
本発明の半導体部品は、本発明の半導体のパッケージを用いて製造される。本発明の半導体部品は従来公知の各種の用途に用いることができる。具体的には、ロジック、メモリーなどのLSI、各種センサー、受発光デバイスなどをあげることができる。また、本発明の発光ダイオードは、本発明の半導体のパッケージを用いて製造される。半導体が発光ダイオードの場合も従来公知の各種の用途に用いることができる。具体的には、例えば液晶表示装置等のバックライト、照明、センサー光源、車両用計器光源、信号灯、表示灯、表示装置、面状発光体の光源、ディスプレイ、装飾、各種ライト等を挙げることができる。
(Application of light emitting diode)
The semiconductor component of the present invention is manufactured using the semiconductor package of the present invention. The semiconductor component of the present invention can be used for various known applications. Specific examples include LSIs such as logic and memory, various sensors, light emitting and receiving devices, and the like. The light emitting diode of the present invention is manufactured using the semiconductor package of the present invention. When the semiconductor is a light emitting diode, it can be used for various known applications. Specifically, for example, backlights such as liquid crystal display devices, illumination, sensor light sources, vehicle instrument light sources, signal lights, display lights, display devices, planar light source, display, decoration, various lights, etc. it can.
(反り)
本発明の硬化性樹脂組成物を発光ダイオード用のリードフレームの片面に成形してパッケージとした場合、パッケージの反りが±1.0mm以下であることが望ましい。
この場合の反りはJIS C 6481に記載の最大反りの測定方法に基づき測定される。すなわち、半導体パッケージを一辺の中央で垂直に吊り下げ、その辺に平行に直定規を当てる。直定規は半導体パッケージの凹面に当て、直定規と半導体パッケージの基材面との最大の隔たりを金属製直尺で1.0mmの単位まで測定する。半導体パッケージの凹面に樹脂が成形されている場合は、直定規と半導体パッケージに成形された樹脂面との最大の隔たりを金属製直尺で1.0mmの単位まで測定し、その値から樹脂の厚み分を引いた値を、1.0mmの単位に四捨五入する。他の辺についても順次測定し、最も大きな隔たりを反りとする。なお、反りの測定に用いる半導体パッケージは、実施例の(MAP品の成形方法)で示した方法で作製する。
(warp)
When the curable resin composition of the present invention is molded on one side of a lead frame for a light emitting diode to form a package, the warpage of the package is desirably ± 1.0 mm or less.
The warpage in this case is measured based on the maximum warpage measuring method described in JIS C 6481. That is, the semiconductor package is suspended vertically at the center of one side, and a straight ruler is applied parallel to the side. The straight ruler is applied to the concave surface of the semiconductor package, and the maximum distance between the straight ruler and the base surface of the semiconductor package is measured to a unit of 1.0 mm with a metal straight scale. When the resin is molded on the concave surface of the semiconductor package, measure the maximum distance between the straight ruler and the resin surface molded on the semiconductor package to a unit of 1.0 mm with a metal linear scale. The value obtained by subtracting the thickness is rounded to the nearest 1.0 mm. The other sides are also measured sequentially, and the greatest gap is warped. In addition, the semiconductor package used for the measurement of warpage is manufactured by the method shown in the (Method for forming MAP product) of the example.
以下に、本発明の実施例および比較例を示すが、本発明は以下によって限定されるものではない。 Examples and Comparative Examples of the present invention are shown below, but the present invention is not limited to the following.
(合成例1)
500mL四つ口フラスコにトルエン200g、1,3,5,7-テトラメチルシクロテトラシロキサン50gを入れ、気相部を窒素置換した後、内温105℃で加熱、攪拌した。ジアリルモノグリシジルイソシアヌレート11.0g、トルエン11.0g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.0162gの混合液を30分かけて滴下した。滴下終了から6時間後に1H-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去し、無色透明の液体を得た。1H-NMRの測定により、このものは1,3,5,7-テトラメチルシクロテトラシロキサンのSiH基の一部がジリアリルモノグリシジルイソシアヌレートと反応した以下の構造を有するものであることがわかった。また標準物質をジブロモエタンとした時の当量換算でSiH基7.5mmol/gを有することを確認した。
(Synthesis Example 1)
A 500 mL four-necked flask was charged with 200 g of toluene and 50 g of 1,3,5,7-tetramethylcyclotetrasiloxane, and the gas phase was purged with nitrogen, and then heated and stirred at an internal temperature of 105 ° C. A mixed liquid of 11.0 g of diallyl monoglycidyl isocyanurate, 11.0 g of toluene and 0.0162 g of a platinum vinylsiloxane complex in xylene (containing 3 wt% as platinum) was added dropwise over 30 minutes. Six hours after the completion of the dropwise addition, it was confirmed by 1H-NMR that the allyl group reaction rate was 95% or more, and the reaction was terminated by cooling. Unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure to obtain a colorless and transparent liquid. As a result of 1H-NMR measurement, it was found that this had the following structure in which a part of the SiH group of 1,3,5,7-tetramethylcyclotetrasiloxane reacted with diallylmonoglycidyl isocyanurate. It was. It was also confirmed that the standard substance had 7.5 mmol / g of SiH groups in terms of equivalent when dibromoethane was used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(合成例2)
5Lの四つ口フラスコに、攪拌装置、滴下漏斗、冷却管をセットした。このフラスコにトルエン1800g、1,3,5,7-テトラメチルシクロテトラシロキサン1440gを入れ、120℃のオイルバス中で加熱、攪拌した。トリアリルイソシアヌレート200g、トルエン200g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)1.44mlの混合液を50分かけて滴下した。得られた溶液をそのまま6時間加温、攪拌した後、未反応の1,3,5,7-テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。H-NMRの測定によりこのものは1,3,5,7-テトラメチルシクロテトラシロキサンのSiH基の一部がトリアリルイソシアヌレートと反応した以下の構造を有するものであることがわかった。
(Synthesis Example 2)
A stirrer, a dropping funnel, and a condenser tube were set in a 5 L four-necked flask. To this flask, 1800 g of toluene and 1440 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed, heated and stirred in an oil bath at 120 ° C. A mixed solution of 200 g of triallyl isocyanurate, 200 g of toluene and 1.44 ml of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 50 minutes. The resulting solution was heated and stirred as it was for 6 hours, and unreacted 1,3,5,7-tetramethylcyclotetrasiloxane and toluene were distilled off under reduced pressure. As a result of 1 H-NMR measurement, it was found that this had the following structure in which a part of the SiH group of 1,3,5,7-tetramethylcyclotetrasiloxane reacted with triallyl isocyanurate.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(合成例3)
2Lオートクレーブにトルエン720g、1,3,5,7-テトラメチルシクロテトラシロキサン240gを入れ、気相部を窒素で置換した後、ジャケット温50℃で加熱、攪拌した。アリルグリシジルエーテル171g、トルエン171g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.049gの混合液を90分かけて滴下した。滴下終了後にジャケット温を60℃に上げて40分反応、H-NMRでアリル基の反応率が95%以上であることを確認した。トリアリルイソシアヌレート17g、トルエン17gの混合液を滴下した後、ジャケット温を105℃に上げて、トリアリルイソシアヌレート66g、トルエン66g及び白金ビニルシロキサン錯体のキシレン溶液(白金として3wt%含有)0.033gの混合液を30分かけて滴下した。滴下終了から4時間後にH-NMRでアリル基の反応率が95%以上であることを確認し、冷却により反応を終了した。1,3,5,7-テトラメチルシクロテトラシロキサンの未反応率は0.8%だった。未反応の1,3,5,7-テトラメチルシクロテトラシロキサンとトルエンとアリルグリシジルエーテルの副生物(アリルグリシジルエーテルのビニル基の内転移物(シス体およびトランス体))が合計5,000ppm以下となるまで減圧留去し、無色透明の液体を得た。H-NMRの測定によりこのものは1,3,5,7-テトラメチルシクロテトラシロキサンのSiH基の一部がアリルグリシジルエーテル及びトリアリルイソシアヌレートと反応したものであり平均的に以下の構造を有するものであることがわかった。
(Synthesis Example 3)
720 g of toluene and 240 g of 1,3,5,7-tetramethylcyclotetrasiloxane were placed in a 2 L autoclave, the gas phase was replaced with nitrogen, and then heated and stirred at a jacket temperature of 50 ° C. A mixed solution of 171 g of allyl glycidyl ether, 171 g of toluene, and 0.049 g of a xylene solution of platinum vinylsiloxane complex (containing 3 wt% as platinum) was added dropwise over 90 minutes. After completion of dropping, the jacket temperature was raised to 60 ° C. for 40 minutes, and 1 H-NMR confirmed that the allyl group reaction rate was 95% or more. After dropwise addition of 17 g of triallyl isocyanurate and 17 g of toluene, the jacket temperature was raised to 105 ° C., and 66 g of triallyl isocyanurate, 66 g of toluene and a xylene solution of a platinum vinylsiloxane complex (containing 3 wt% as platinum) 033 g of the mixed solution was added dropwise over 30 minutes. Four hours after the completion of the dropwise addition, it was confirmed by 1 H-NMR that the allyl group reaction rate was 95% or more, and the reaction was terminated by cooling. The unreacted rate of 1,3,5,7-tetramethylcyclotetrasiloxane was 0.8%. The total amount of unreacted 1,3,5,7-tetramethylcyclotetrasiloxane, toluene and allyl glycidyl ether by-products (inner transition products of allylic glycidyl ether vinyl group (cis isomer and trans isomer)) is 5,000 ppm or less in total. The solution was distilled off under reduced pressure until a colorless and transparent liquid was obtained. As a result of 1 H-NMR measurement, this product was obtained by reacting part of the SiH group of 1,3,5,7-tetramethylcyclotetrasiloxane with allyl glycidyl ether and triallyl isocyanurate. It was found that
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(a+b=3、c+d=3、e+f=3、a+c+e=3.5、b+d+f=5.5) (A + b = 3, c + d = 3, e + f = 3, a + c + e = 3.5, b + d + f = 5.5)
(配合例1~3、配合例A、B)
表1の内容に従って各成分を配合して組成物1~3及び組成物A、Bを調製した。
(Formulation Examples 1 to 3, Formulation Examples A and B)
Compositions 1 to 3 and Compositions A and B were prepared by blending each component according to the contents of Table 1.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(実施例1~9および比較例1~3)
表2に記載した各成分の配合量に従って、合計約100gになるように秤取り、下記の要領にて本発明の硬化性樹脂組成物を調製した。
(Examples 1 to 9 and Comparative Examples 1 to 3)
According to the compounding amount of each component described in Table 2, the curable resin composition of the present invention was prepared according to the following procedure.
別途調製した表1に記載の組成物1~3、A、B、および(D)成分の混合液をカップ状の容器に秤取り、あらかじめ混合しておいた(G)成分、(F)成分(またはカーボンブラック)および(E)成分の混合粉体を少量ずつ加えてプラスチック製スパチュラで混練した。得られた硬化性樹脂組成物はやや湿った粉状であったが、丸棒状の冶具にて押し延ばした後、折り重ねて再度押し延ばす作業を繰り返すと、徐々に湿潤化してきて湿ったフレーク状に均一化した。ただしフィラー量の多いもの、微粉の割合の多いものは、最後まで(やや湿った)粉体状であった。球状シリカは下記のものを使用した。 Separately prepared mixture of compositions 1 to 3, A, B, and (D) listed in Table 1 was weighed into a cup-shaped container and mixed in advance (G) component, (F) component A mixed powder of (or carbon black) and (E) component was added little by little and kneaded with a plastic spatula. The obtained curable resin composition was a slightly wet powder, but after it was stretched with a round bar-shaped jig and then folded and stretched again, it was gradually moistened and moistened flakes. To be uniform. However, those with a large amount of filler and those with a high proportion of fine powder were in the form of powder (somewhat wet) until the end. The following spherical silica was used.
MSR-3500、MSR-2212TN、MSR-SF650、MSR-SF630、MSR-04は株式会社龍森製、アドマファインSO-2Cは株式会社アドマテックス製を用いた。
白色顔料の酸化亜鉛(ZnO-1)は堺化学株式会社製、酸化チタン(PC-3)は石原産業株式会社製を用いた。なお、PC-3は、Al、Si及び有機物で表面処理された酸化チタンである。
カーボンブラックは大東化成工業株式会社製のジメチルポリシロキサン表面処理アセチレンブラック(製品名:SI06-2デンカブラック粒状)を用いた。
離型剤のステアリン酸カルシウムは堺化学株式会社製を用いた。
MSR-3500, MSR-2212TN, MSR-SF650, MSR-SF630, and MSR-04 were manufactured by Tatsumori Co., Ltd., and Admafine SO-2C was manufactured by Admatechs Co., Ltd.
The white pigment zinc oxide (ZnO-1) manufactured by Sakai Chemical Co., Ltd. and titanium oxide (PC-3) manufactured by Ishihara Sangyo Co., Ltd. were used. PC-3 is titanium oxide surface-treated with Al, Si, and organic matter.
As the carbon black, dimethylpolysiloxane surface-treated acetylene black (product name: SI06-2 Denka Black granular) manufactured by Daito Kasei Kogyo Co., Ltd. was used.
The mold release agent calcium stearate was manufactured by Sakai Chemical Co., Ltd.
(タブレット化)
作製した硬化性樹脂組成物を、金属製の杵と臼からなるタブレット製造冶具で圧縮してタブレットとした。具体的にはφ13mmの臼の中に配合物を所定量入れ、100kg/cm2の圧力で杵で上から5秒間圧縮することにより、所定体積のタブレットを得た。
(Tablet)
The produced curable resin composition was compressed into a tablet by a tablet production jig composed of a metal punch and mortar. Specifically, a predetermined amount of the composition was put into a 13 mm diameter mortar and compressed from the top with a spatula at a pressure of 100 kg / cm 2 for 5 seconds to obtain a tablet having a predetermined volume.
(タブレット特性の測定)
(1)タック性:指触により定性的に判定した。
(2)タブレット耐破壊荷重(破壊強度)(g):タブレット強度の測定には、タブレット製造治具にて0.39MPaの圧力で、Φ13mm、高さ0.75cmの形に圧縮したタブレットを使用した。測定装置として、Systems Ltd.製、Texture Analyser、Model TA XT plusを、プローブとして、Cylinder probe P/2(2mmΦ stainless steel)を使用した。平滑な面上に置かれたタブレットの中央に、プローブを試験速度1mm/sで押し込み、一定の力に達したところで5秒間保持した。測定は3回行った。タブレットに加える荷重を100g単位で増していき、3回測定のすべてにおいて、タブレットにひび割れ、崩れ等の外観異常がなく、かつ、プローブがタブレットに底付きしないときの最大の荷重を、タブレット耐破壊荷重(g)とした。
(3)沈込距離(mm):タブレット耐破壊荷重でプローブを押し込んだ際の、プローブのタブレットへの沈み込み距離の3回平均値を沈込距離(mm)とした。
(Measurement of tablet characteristics)
(1) Tackiness: Qualitatively determined by finger touch.
(2) Tablet breaking load (breaking strength) (g): For tablet strength measurement, tablets compressed in a tablet manufacturing jig with a pressure of 0.39 MPa and a diameter of Φ13 mm and a height of 0.75 cm are used. did. As a measuring device, Systems Ltd. Cylinder probe P / 2 (2 mmΦ stainless steel) was used as a probe with a texture analyzer and Model TA XT plus. The probe was pushed into the center of the tablet placed on a smooth surface at a test speed of 1 mm / s and held for 5 seconds when a certain force was reached. The measurement was performed 3 times. Increasing the load applied to the tablet in increments of 100 g, and in all three measurements, the tablet has no abnormal appearance such as cracks and collapse, and the maximum load when the probe does not bottom the tablet It was set as the load (g).
(3) Sinking distance (mm): The average value of the three times of the sinking distance of the probe into the tablet when the probe was pushed in with the tablet breaking load was taken as the sinking distance (mm).
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(スパイラルフローの測定)
本発明の硬化性樹脂組成物をテフロン製の杵と臼からなるタブレット製造冶具で圧縮して直径38mmのタブレットを作成した。次に、このタブレットを株式会社神藤金属工業所製トランスファー成形機(型式:ETA-20、プランジャー径:40mm)のポットに投入し、スパイラルフローのデータを測定した。スパイラルフロー金型の形状は、断面形状として、幅3mm×深さ1.5mmの半円形状とした。尚、成形条件は、金型温度:170℃、トランスファー圧力7MPa、硬化時間、120秒とした。
(Measurement of spiral flow)
The curable resin composition of the present invention was compressed with a tablet manufacturing jig comprising a Teflon punch and mortar to produce a tablet having a diameter of 38 mm. Next, this tablet was placed in a pot of a transfer molding machine (model: ETA-20, plunger diameter: 40 mm) manufactured by Shindo Metal Industry Co., Ltd., and spiral flow data was measured. The shape of the spiral flow mold was a semicircular shape having a width of 3 mm and a depth of 1.5 mm as a cross-sectional shape. The molding conditions were a mold temperature: 170 ° C., a transfer pressure of 7 MPa, a curing time, and 120 seconds.
(MAP品の成形方法)
Agメッキした縦50mm、横55mm、厚み0.25mmのCu製の発光ダイオード用リードフレームを準備する。硬化性樹脂組成物とリードフレームとをトランスファーモールドにより下記の条件で一体成形した。成形後のMAP(Mold Array Package:半導体のパッケージが実質的に金属の片面に樹脂が成形されている形状を有するタイプ)は縦15列、横12列で合計180個のリフレクターが含まれる。各リフレクターは上面φ2.1mm、底面φ1.8mm(テーパー角度:15度)、高さ0.55mmで、横方向直径に沿って右端から0.45mmのところに幅0.20mmの本発明の硬化性樹脂組成物を硬化させたコンパウンドからなる電極スリットが縦に設けられている。各リフレクター間の間隔は縦横直径方向ともに1.1mmである。リードフレームおよび金型は、上記の要件を満足するリードフレーム付きリフレクターが作製できれば、特に制約はない。この成形品形状を3030MAP型と呼ぶ。成形品の概念図を図1に示した。
(MAP product molding method)
An Ag-plated lead frame for a light emitting diode made of Cu having a length of 50 mm, a width of 55 mm, and a thickness of 0.25 mm is prepared. The curable resin composition and the lead frame were integrally formed by transfer molding under the following conditions. A molded MAP (Mold Array Package: a type in which a semiconductor package has a shape in which a resin is substantially formed on one side of a metal) includes a total of 180 reflectors in 15 rows and 12 rows. Each reflector has a top surface of 2.1 mm, a bottom surface of 1.8 mm (taper angle: 15 degrees), a height of 0.55 mm, a width of 0.20 mm from the right end along the transverse diameter, and a width of 0.20 mm. The electrode slit which consists of a compound which hardened the conductive resin composition is provided vertically. The interval between the reflectors is 1.1 mm in both the vertical and horizontal diameter directions. The lead frame and the mold are not particularly limited as long as a reflector with a lead frame that satisfies the above requirements can be manufactured. This shape of the molded product is called a 3030 MAP type. A conceptual diagram of the molded product is shown in FIG.
トランスファー成形は、アピックヤマダ株式会社製G-Lineマニュアルプレスを用いて実施した(型締力30ton、注入圧力8MPa、注入速度3mm/s)。白色コンパウンド5.0gを計量、円柱状に賦形(上記に記載したタブレット化)しシリンダー内へ装填し成形した。成形条件は、170℃、150秒とした。成形後、熱風オーブンにて180℃、1時間後硬化(アフターキュア)した。 The transfer molding was performed using a G-Line manual press manufactured by Apic Yamada Co., Ltd. (clamping force 30 ton, injection pressure 8 MPa, injection speed 3 mm / s). A white compound (5.0 g) was weighed, shaped into a cylindrical shape (tablet as described above), loaded into a cylinder, and molded. The molding conditions were 170 ° C. and 150 seconds. After molding, it was post-cured (aftercured) at 180 ° C. for 1 hour in a hot air oven.
(反り)
MAP品の反りは成形部を上にして平滑な面に置いたとき、成形部が真横から見た状態凹になっている場合を順反り、凸になっている場合を逆反りと定義した。反りの程度はMAP品を平滑な面に置き、面から離れている4辺のうちで最も距離がある値(mm)を数値化した。
(warp)
When the molded part is placed on a smooth surface with the molded part facing up, the warp is defined as a forward warp when the molded part is concave when viewed from the side, and the reverse warp is defined as a convex part. As for the degree of warpage, a MAP product was placed on a smooth surface, and the value (mm) having the longest distance among the four sides away from the surface was quantified.
(耐曲げ性試験の方法)
外径がφ165mm、幅55mmの金属製の丈夫な円筒を準備した。この外径に沿って得られたMAP品を両手でゆっくり押し付け、樹脂成形部分にクラックが入るかどうかを観察した。クラックを生じなかったものを○、生じたものを×と判定した。
(Method of bending resistance test)
A strong metal cylinder having an outer diameter of φ165 mm and a width of 55 mm was prepared. The MAP product obtained along this outer diameter was slowly pressed with both hands, and it was observed whether or not the resin molded part was cracked. Those that did not cause cracks were evaluated as ◯, and those that did not crack were determined as ×.
(曲げ特性の測定)
トランスファー成型機及び平板用金型を用いて、MAP成形と同様の上記方法により作製された1mm厚平板から、試験片を、長さ50mm以上80mm以下、幅が7mmから8mm程度で向かい合う2辺が平行となるように切り出した。図2に示すように、角が丸い直方体の金属製の支点間に、支点間に形成される形が長方形となるように試験片を設置した。試験片幅と厚さについて、支点間に入る試験片の3箇所を0.01mmまで測定し、それぞれの平均値を測定結果とした。試験片幅と厚さから面積を算出した。Stable Micro Systems社製、テクスチャーアナライザーTA.plusにて、幅10mmの角の丸いガラス製の直角三角形からなる加圧くさびで、試験片の中央に2.0mm/secの速度で荷重を加え、試験片が折れたときの荷重(曲げ破壊荷重N)及び破壊変位(破壊時たわみ量mm)を測定した。3回測定の値を平均して測定結果とした。曲げ破壊強度σ(N/mm)は下記のように計算した。
曲げ破壊荷重w(N)、支点間距離l(mm)、部材断面縦h(mm)、部材断面横b(mm)
σ=M/I×h/2=(wl/4)/(bh/12)×h/2
Mは曲げモーメント、Iは断面2次モーメント
(Measurement of bending properties)
Using a transfer molding machine and a flat plate mold, from a 1 mm thick flat plate produced by the same method as the MAP molding, a test piece is 50 mm to 80 mm in length, the width is about 7 mm to 8 mm, and the two sides facing each other are It cut out so that it might become parallel. As shown in FIG. 2, the test piece was installed between the metal fulcrums with rounded corners so that the shape formed between the fulcrums was rectangular. About the test piece width and thickness, three places of the test piece which enter between fulcrum were measured to 0.01 mm, and each average value was made into the measurement result. The area was calculated from the specimen width and thickness. Texture Microscope TA. Manufactured by Stable Micro Systems. A pressure wedge consisting of right-angled triangles made of glass with round corners with a width of 10 mm at plus, applying a load at a speed of 2.0 mm / sec to the center of the test piece, and the load when the test piece breaks (bending fracture) Load N) and breaking displacement (deflection mm at break) were measured. The measurement results were averaged from the three measurements. The bending fracture strength σ b (N / mm 2 ) was calculated as follows.
Bending fracture load w (N), fulcrum distance l (mm), member cross section length h (mm), member cross section width b (mm)
σ b = M / I × h / 2 = (wl / 4) / (bh 3/12) × h / 2
M is bending moment, I is secondary moment of section
(硬度の測定)
硬度はJIS K 7125に基づき、タイプDデュロメーターを用いて測定した。試験片は、1mm厚さのトランスファー成形で作製した平板を6枚以上重ねたものを使用した。
(Measurement of hardness)
The hardness was measured using a type D durometer based on JIS K 7125. The test piece used was a stack of 6 or more flat plates produced by transfer molding having a thickness of 1 mm.
(線膨張係数の測定方法)
トランスファー成型機及び平板用金型を用いて、MAP成形と同様の上記方法により作製した1mm厚平板から、測定サンプルを5mm×5mm角に切りだし、株式会社リガク製Thermoplus-TMA8510を用いて、圧縮モード、2gf荷重、昇温速度10℃/分にて、0℃~250℃にて測定した。α1は30℃~50℃、α2は140℃~160℃における線膨張係数の平均値を線膨張係数とした。
(Measuring method of linear expansion coefficient)
Using a transfer molding machine and a flat plate mold, a measurement sample is cut into 5 mm × 5 mm squares from a 1 mm thick flat plate produced by the same method as in MAP molding, and compressed using Thermoplus-TMA8510 manufactured by Rigaku Corporation. The measurement was performed at 0 ° C. to 250 ° C. with a mode, a 2 gf load, and a heating rate of 10 ° C./min. α1 was 30 ° C. to 50 ° C., and α2 was the average value of the linear expansion coefficient at 140 ° C. to 160 ° C.
(光反射率の測定)
上記成形により得られた各パッケージについて、微小面分光色差計(日本電色工業株式会社製VSS400)を用いて波長400nm~700nm(20nm間隔)における光反射率を測定した。ここで各波長における測定値は、パッケージ上面の任意の4箇所(測定面積0.2mmφ)の測定値の平均値を採用した。また、各種耐久試験後の光反射率も同様に求めた。
480nmにおける光反射率の結果を表2に示す。
(Measurement of light reflectance)
About each package obtained by the said shaping | molding, the light reflectivity in wavelength 400nm -700nm (20 nm space | interval) was measured using the micro surface spectral color difference meter (Nippon Denshoku Industries Co., Ltd. VSS400). Here, as the measurement values at each wavelength, the average value of the measurement values at arbitrary four locations (measurement area 0.2 mmφ) on the upper surface of the package was adopted. Moreover, the light reflectance after various endurance tests was calculated | required similarly.
Table 2 shows the results of light reflectance at 480 nm.
(耐久試験)
耐久試験として、下記の方法により耐熱試験、及び、耐光試験を行った。なお、耐久試験前の波長480nmの光反射率を初期反射率とした。
また、耐久試験後の光反射率の保持率を求めた。たとえば耐熱試験(180℃のオーブンで24時間加熱する試験)後の光反射率の初期の光反射率に対する保持率を下記計算式によって求めた。
保持率(%)=(耐熱試験後の光反射率)/(初期の光反射率)×100
(An endurance test)
As the durability test, a heat resistance test and a light resistance test were performed by the following methods. The light reflectance at a wavelength of 480 nm before the durability test was defined as the initial reflectance.
Further, the retention ratio of the light reflectance after the durability test was obtained. For example, the retention ratio of the light reflectivity after the heat resistance test (test for heating in an oven at 180 ° C. for 24 hours) with respect to the initial light reflectivity was obtained by the following formula.
Retention rate (%) = (light reflectance after heat test) / (initial light reflectance) × 100
(耐熱試験)
上記の通り作製したサンプルを、180℃に温度設定した対流式オーブン内(空気中)で24時間養生した。その後、波長480nmの光反射率を測定した。
(Heat resistance test)
The sample produced as described above was cured for 24 hours in a convection oven (in air) set at 180 ° C. Thereafter, the light reflectance at a wavelength of 480 nm was measured.
(耐光試験:メタリング)
スガ試験機株式会社製、メタリングウェザーメーター(形式M6T)を用いた。上記の通り作成したサンプルを、ブラックパネル温度120℃、放射照度0.53kW/mで、積算放射照度50MJ/mまで照射し、その後、波長480nmの光反射率を測定した。
(Light resistance test: Metalling)
A metering weather meter (model M6T) manufactured by Suga Test Instruments Co., Ltd. was used. The samples prepared as described above, black panel temperature 120 ° C., irradiance 0.53 kW / m 2, was irradiated to the integrated irradiance 50 MJ / m 2, followed by measuring the light reflectance of the wavelength of 480 nm.
表2の結果より、実施例全般にわたってMAP品の反りが小さいことから、本発明の硬化性樹脂組成物から得られる硬化物は、LEDパッケージ基板等の基材として用いられているCuの線膨張率と同レベルまたはそれ以下の線膨張率を実現できていることがわかる。一方、比較例1では反りが大きいことから、本発明において(D)成分を使用する効果が確認できる。すなわち、(D)成分を入れた場合、反りが1.0mm以下の半導体パッケージを得られることがわかる。実施例及び比較例を通して、代表的な白色顔料である酸化チタン、酸化亜鉛を用いることにより、光反射率は初期及び耐久試験後も良好であり、耐熱性・耐光性の面からは良好なベース樹脂系であることが分かる。一方、比較例1~3の耐曲げ試験は、実施例に比較して劣ることから、比較例では使用されていない(A)成分である特定のケイ素化合物を用いた効果が確認できる。実施例3~6では、破砕シリカあるいは小粒径シリカを併用することによりタブレット特性を改善できることが分かる。実施例9では、黒色顔料であるカーボンブラックを用いても、反りが実質ないMAP成形品を得ることができることが分かる。 From the results in Table 2, since the warpage of the MAP product is small throughout the examples, the cured product obtained from the curable resin composition of the present invention has a linear expansion of Cu used as a base material for LED package substrates and the like. It can be seen that a linear expansion coefficient equal to or lower than the coefficient can be realized. On the other hand, since the warpage is large in Comparative Example 1, the effect of using the component (D) in the present invention can be confirmed. That is, it can be seen that when the component (D) is added, a semiconductor package with a warp of 1.0 mm or less can be obtained. Through the examples and comparative examples, by using titanium oxide and zinc oxide, which are representative white pigments, the light reflectivity is good after the initial stage and after the durability test, and a good base from the viewpoint of heat resistance and light resistance. It turns out that it is a resin system. On the other hand, since the bending resistance tests of Comparative Examples 1 to 3 are inferior to those of Examples, the effect of using a specific silicon compound as component (A) that is not used in Comparative Examples can be confirmed. In Examples 3 to 6, it can be seen that the tablet characteristics can be improved by using crushed silica or small particle size silica in combination. In Example 9, it can be seen that even when carbon black, which is a black pigment, is used, a MAP molded product having substantially no warpage can be obtained.
(実施例10~12および比較例4)
表3に基づく配合例を基に表4に示す実施例10~12、及び比較例4の硬化性樹脂組成物を作製し、前述した曲げ特性、曲げ強度、連続成形性試験、及び、(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物の物性を比較した。
(Examples 10 to 12 and Comparative Example 4)
Based on the formulation examples based on Table 3, the curable resin compositions of Examples 10 to 12 and Comparative Example 4 shown in Table 4 were prepared, and the bending characteristics, bending strength, continuous moldability test, and (A The physical properties of cured products obtained by thermally curing a mixture of components (C) to (C) and (Z) were compared.
(連続成形性試験)
以下に連続成形性試験について説明する。上述した(MAP品の成形方法)と同様の方法でトランスファー成形を連続で40回成形を実施し、1回目成形のMAP品と40回目成形のMAP品の外観を目視にて比較観察を行い、40回目成形のMAP品が1回目のそれと比して同等の外観を有している場合は◎、50μm以上の凝集破壊領域が9箇所以下存在する場合は○、10~20箇所存在する場合は△、20箇所を超える場合は×と判定した。
(Continuous formability test)
The continuous formability test will be described below. The transfer molding is continuously performed 40 times in the same manner as the above-described (MAP product molding method), and the external appearance of the first-time molded MAP product and the 40th-time molded MAP product is visually observed. ◎ When the 40th MAP product has the same appearance as that of the 1st time, ◎, when there are 9 or less cohesive failure areas of 50μm or more, ○, when there are 10-20 places Δ, if over 20 locations, determined as x.
((A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物の作製方法と物性評価)
(A)~(C)及び(Z)成分の混合物をコの字型のシリコーンゴムスペーサー(厚み1mm)を2枚のガラス板で挟み込んで得られる注型用のセルに流し込み、180℃2時間で熱硬化させることにより硬化物を得た。硬化物をセルから取り外し、幅5mm、長さ30mmとなるように短冊状の試験片を切り出し、動的粘弾性測定装置(アイティー計測制御株式会社製DVA200、引っ張りモード、測定周波数10Hz)を用いてガラス転移点、及び150℃における貯蔵弾性率を測定した。なお、ガラス転移点は損失正接のピーク温度とした。
(Production method and evaluation of physical properties of a cured product obtained by thermally curing a mixture of components (A) to (C) and (Z))
The mixture of components (A) to (C) and (Z) is poured into a casting cell obtained by sandwiching a U-shaped silicone rubber spacer (thickness 1 mm) between two glass plates, and 180 ° C. for 2 hours. A cured product was obtained by heat curing with The cured product is removed from the cell, a strip-shaped test piece is cut out so as to have a width of 5 mm and a length of 30 mm, and a dynamic viscoelasticity measuring device (DVA200 manufactured by IT Measurement Control Co., Ltd., tensile mode, measurement frequency 10 Hz) is used. The glass transition point and the storage elastic modulus at 150 ° C. were measured. The glass transition point was the peak temperature of loss tangent.
実施例10~12と比較例4との比較より、成形体の曲げ強度や(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物のTg、さらには150℃における貯蔵弾性率が高すぎると、連続成形性には優れるもののMAP品の耐曲げ特性が低下することが分かる。
また実施例10、11と実施例12を比較すると、成形体の曲げ強度が同程度であっても、(A)~(C)及び(Z)成分の混合物を熱硬化させて得られる硬化物の150℃における貯蔵弾性率が高いもののほうが、より良好な連続成形性を与えることがわかる。
From a comparison between Examples 10 to 12 and Comparative Example 4, the bending strength of the molded body, the Tg of the cured product obtained by thermally curing the mixture of the components (A) to (C) and (Z), and further 150 ° C. It can be seen that when the storage elastic modulus at is too high, the bending resistance of the MAP product is deteriorated although it is excellent in continuous moldability.
Further, when Examples 10 and 11 are compared with Example 12, a cured product obtained by thermally curing a mixture of components (A) to (C) and (Z) even when the bending strength of the molded body is approximately the same. It can be seen that the higher storage elastic modulus at 150 ° C. gives better continuous formability.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025

Claims (35)

  1. (A)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する分子量1000未満のケイ素化合物、
    (B)1分子中に少なくとも2個のSiH基を含有する化合物、
    (C)ヒドロシリル化触媒、
    (D)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも1個含有し、分子量が1000以上であるシリコーン化合物、及び、
    (E)無機充填材、
    を必須成分として含有することを特徴とする硬化性樹脂組成物。
    (A) a silicon compound having a molecular weight of less than 1000 and containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule;
    (B) a compound containing at least two SiH groups in one molecule;
    (C) a hydrosilylation catalyst,
    (D) a silicone compound containing at least one carbon-carbon double bond having reactivity with SiH group in one molecule and having a molecular weight of 1000 or more, and
    (E) inorganic filler,
    Is contained as an essential component. Curable resin composition characterized by the above-mentioned.
  2. 更に(Z)SiH基との反応性を有する炭素-炭素二重結合を1分子中に少なくとも2個含有する有機化合物を含有する請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, further comprising (Z) an organic compound containing at least two carbon-carbon double bonds having reactivity with SiH groups in one molecule.
  3. (D)成分がビニル基を末端に有する直鎖状ポリシロキサンである請求項1または2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1 or 2, wherein the component (D) is a linear polysiloxane having a vinyl group at its terminal.
  4. (D)成分の重量平均分子量が2,000以上かつ1,000,000以下である請求項1~3のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, wherein the component (D) has a weight average molecular weight of 2,000 or more and 1,000,000 or less.
  5. (E)成分が球状シリカである請求項1~4のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 4, wherein the component (E) is spherical silica.
  6. 更に(F)白色顔料を含有する請求項1~5のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 5, further comprising (F) a white pigment.
  7. (F)成分の平均粒子径が1.0μm以下である請求項6に記載の硬化性樹脂組成物。 The average particle diameter of (F) component is 1.0 micrometer or less, The curable resin composition of Claim 6.
  8. (F)成分が酸化チタンである請求項6または7に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6 or 7, wherein the component (F) is titanium oxide.
  9. (F)成分が有機シロキサンにより表面処理された酸化チタンである請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein the component (F) is titanium oxide surface-treated with an organosiloxane.
  10. (F)成分が無機化合物で表面処理された酸化チタンである請求項8に記載の硬化性樹脂組成物。 The curable resin composition according to claim 8, wherein the component (F) is titanium oxide surface-treated with an inorganic compound.
  11. (F)成分がアルミニウム化合物で表面処理された酸化チタンである請求項10に記載の硬化性樹脂組成物。 The curable resin composition according to claim 10, wherein the component (F) is titanium oxide surface-treated with an aluminum compound.
  12. (F)成分が酸化亜鉛、酸化ジルコニア、酸化ストロンチウム、酸化ニオブ、窒化ホウ素、チタン酸バリウム及び硫酸バリウムから選ばれる少なくとも一種である請求項6または7に記載の硬化性樹脂組成物。 The curable resin composition according to claim 6 or 7, wherein the component (F) is at least one selected from zinc oxide, zirconia oxide, strontium oxide, niobium oxide, boron nitride, barium titanate and barium sulfate.
  13. 更に、(G)金属石鹸を含有する請求項1~12のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 12, further comprising (G) a metal soap.
  14. (G)成分がステアリン酸金属塩である請求項13に記載の硬化性樹脂組成物。 The curable resin composition according to claim 13, wherein the component (G) is a metal stearate.
  15. (G)成分がステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸アルミニウムからなる群より選択される1つ以上である請求項14に記載の硬化性樹脂組成物。 The curable resin composition according to claim 14, wherein the component (G) is one or more selected from the group consisting of calcium stearate, magnesium stearate, zinc stearate, and aluminum stearate.
  16. (A)成分および(B)成分の合計の重量に対する(D)成分の重量が30重量%以上である請求項1~15のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 15, wherein the weight of the component (D) is 30% by weight or more with respect to the total weight of the component (A) and the component (B).
  17. 硬化性樹脂組成物全体に占める(E)成分の合計の量が70重量%以上である請求項1~16のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 16, wherein the total amount of the component (E) in the entire curable resin composition is 70% by weight or more.
  18. 硬化性樹脂組成物全体に占める(F)成分の含有量が10重量%以上である請求項6~17のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 6 to 17, wherein the content of the component (F) in the entire curable resin composition is 10% by weight or more.
  19. 硬化性樹脂組成物全体に占める(G)成分の含有量が0.01~5重量%である請求項13~18のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 13 to 18, wherein the content of the component (G) in the entire curable resin composition is 0.01 to 5% by weight.
  20. 硬化させてなる成形体の表面の波長480nmの光反射率が80%以上である請求項1~19のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 19, wherein the light reflectance at a wavelength of 480 nm on the surface of the molded product obtained by curing is 80% or more.
  21. 180℃、24時間の耐熱試験後の光反射率の保持率(耐熱試験後の光反射率/初期の光反射率×100)が90%以上である請求項20に記載の硬化性樹脂組成物。 21. The curable resin composition according to claim 20, wherein a retention ratio of light reflectance after a heat resistance test at 180 ° C. for 24 hours (light reflectance after heat resistance test / initial light reflectance × 100) is 90% or more. .
  22. 硬化させてなる成形体の曲げ強度が20N/mm~50N/mmの範囲内にあることを特徴とする請求項1~21のうちいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 21, wherein a bending strength of the cured product is in a range of 20 N / mm 2 to 50 N / mm 2 .
  23. (A)成分~(C)成分及び(Z)成分の混合物を熱硬化させて得られる硬化物のTgが、30℃~100℃の範囲内にあることを特徴とする請求項2~22のうちいずれか1項に記載の硬化性樹脂組成物。 23. The Tg of a cured product obtained by thermally curing a mixture of the components (A) to (C) and (Z) is in the range of 30 ° C. to 100 ° C. The curable resin composition of any one of them.
  24. 前記(A)成分~(C)成分及び(Z)成分の混合物を熱硬化させて得られる硬化物が、150℃における周波数10Hz、引張りモードで測定した貯蔵弾性率が20MPa~100MPaの範囲内であることを特徴とする請求項23に記載の硬化性樹脂組成物。 A cured product obtained by thermally curing the mixture of the components (A) to (C) and the (Z) component has a storage elastic modulus measured in a tensile mode at a frequency of 10 Hz at 150 ° C. within a range of 20 MPa to 100 MPa. The curable resin composition according to claim 23, wherein the curable resin composition is a curable resin composition.
  25. 発光ダイオード用のリードフレームの片面に成形してパッケージとした場合の、パッケージの反りが±1.0mm以下である請求項1~24のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 24, wherein when the package is molded on one side of a lead frame for a light emitting diode, the warpage of the package is ± 1.0 mm or less.
  26. 半導体のパッケージに用いられる請求項1~25のいずれか1項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 25, which is used for a semiconductor package.
  27. 請求項6~26のいずれか1項に記載の硬化性樹脂組成物からなるタブレットであって、
    (A)成分および(B)成分の少なくとも一方が23℃における粘度が50Pa秒以下の液体であり、
    (E)成分と(F)成分の合計の含有量が70~95重量%であり、
    (E)成分と(F)成分の合計に占める12μm以下の粒子の割合が40体積%以上であることを特徴とするタブレット。
    A tablet comprising the curable resin composition according to any one of claims 6 to 26,
    At least one of the component (A) and the component (B) is a liquid having a viscosity at 23 ° C. of 50 Pa seconds or less,
    The total content of component (E) and component (F) is 70 to 95% by weight,
    The ratio of the particle | grains of 12 micrometers or less to the sum total of (E) component and (F) component is 40 volume% or more, The tablet characterized by the above-mentioned.
  28. 請求項1~25のいずれか1項に記載の硬化性樹脂組成物を硬化してなり、表面の波長480nmの光反射率が90%以上であることを特徴とする成形体。 A molded article obtained by curing the curable resin composition according to any one of claims 1 to 25 and having a surface light reflectance of 90% or more at a wavelength of 480 nm.
  29. 請求項26に記載の硬化性樹脂組成物を用いて成形したことを特徴とする半導体のパッケージ。 27. A semiconductor package formed by using the curable resin composition according to claim 26.
  30. 請求項26に記載の硬化性樹脂組成物を用いて金属と一体成形したことを特徴とする半導体のパッケージ。 27. A semiconductor package, wherein the curable resin composition according to claim 26 is integrally formed with a metal.
  31. 硬化性樹脂組成物とリードフレームとをトランスファーモールドにより一体成形した請求項29または30に記載の半導体のパッケージ。 The semiconductor package according to claim 29 or 30, wherein the curable resin composition and the lead frame are integrally formed by transfer molding.
  32. 実質的に金属の片面に樹脂が成形されてなるパッケージである、請求項29~31のいずれか1項に記載の半導体のパッケージ。 The semiconductor package according to any one of claims 29 to 31, which is a package formed by substantially molding a resin on one side of a metal.
  33. 請求項26に記載の硬化性樹脂組成物を用いてトランスファー成形されてなる半導体のパッケージ。 27. A semiconductor package formed by transfer molding using the curable resin composition according to claim 26.
  34. 請求項29~33のいずれか1項に記載の半導体のパッケージを用いて製造された半導体部品。 A semiconductor component manufactured using the semiconductor package according to any one of claims 29 to 33.
  35. 請求項29~33のいずれか1項に記載の半導体のパッケージを用いて製造された発光ダイオード。
     
    A light-emitting diode manufactured using the semiconductor package according to any one of claims 29 to 33.
PCT/JP2012/075633 2011-10-04 2012-10-03 Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode WO2013051600A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280049280.4A CN103842442B (en) 2011-10-04 2012-10-03 Hardening resin composition and its tablet, formed body, the encapsulation of semiconductor, semiconductor device and light emitting diode
JP2013537530A JP6043292B2 (en) 2011-10-04 2012-10-03 Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-220035 2011-10-04
JP2011220035 2011-10-04
JP2012141409 2012-06-22
JP2012-141409 2012-06-22

Publications (1)

Publication Number Publication Date
WO2013051600A1 true WO2013051600A1 (en) 2013-04-11

Family

ID=48043754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075633 WO2013051600A1 (en) 2011-10-04 2012-10-03 Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode

Country Status (4)

Country Link
JP (1) JP6043292B2 (en)
CN (1) CN103842442B (en)
TW (1) TWI625363B (en)
WO (1) WO2013051600A1 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270101A (en) * 2008-04-11 2009-11-19 Momentive Performance Materials Inc Curable silicone composition for semiconductor and semiconductor device therewith
JP2014210843A (en) * 2013-04-17 2014-11-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
WO2014200112A1 (en) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device
WO2014200110A1 (en) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device
JP2015000490A (en) * 2013-06-13 2015-01-05 株式会社カネカ Method for producing semiconductor package improving productivity
JP2015010132A (en) * 2013-06-27 2015-01-19 株式会社カネカ Curable resin composition and cured product obtained by curing the same
JP2015086290A (en) * 2013-10-30 2015-05-07 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, and package of semiconductor
JP2015203105A (en) * 2014-04-16 2015-11-16 信越化学工業株式会社 Thermosetting resin composition and method for manufacturing semiconductor device
WO2018030288A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018030287A1 (en) 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
WO2018030286A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
JP2019528349A (en) * 2016-08-26 2019-10-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component and method for manufacturing the optoelectronic component
JP2020092230A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device and light emitting device module
JP2020092231A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device
EP3842475A1 (en) 2019-12-25 2021-06-30 DuPont Toray Specialty Materials Kabushiki Kaisha Curable white silicone formulation, a reflective material for optical semiconductor module, and optical semiconductor device
KR20210108990A (en) 2018-12-27 2021-09-03 다우 도레이 캄파니 리미티드 Curable silicone composition, cured product thereof, and manufacturing method thereof
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
EP3929242A4 (en) * 2019-12-18 2022-04-06 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and method for producing same
WO2022215510A1 (en) * 2021-04-09 2022-10-13 ダウ・東レ株式会社 Curable organopolysiloxane composition, thermally conductive member, and heat dissipation structure
US11555119B2 (en) 2017-06-19 2023-01-17 Dow Toray Co., Ltd. Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
WO2023032735A1 (en) 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
WO2023032734A1 (en) 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured object therefrom, and method for producing said cured object
WO2023148005A1 (en) * 2022-02-01 2023-08-10 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive member using the composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109585685B (en) * 2018-12-07 2021-06-01 纳晶科技股份有限公司 Light extraction structure, manufacturing method thereof and light emitting device
TWI757112B (en) * 2021-03-08 2022-03-01 日商富士高分子工業股份有限公司 Thermally conductive composition and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350263A (en) * 1976-10-15 1978-05-08 Wacker Chemie Gmbh Method of controlling addition velocity of sii bound hydrogen to organopolysiloxane having aliphatic multiibinding which if accelerated by platinum catalyst
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition
JP2009527622A (en) * 2006-02-24 2009-07-30 ダウ・コーニング・コーポレイション Light emitting device encapsulated with silicone and curable silicone composition for preparing said silicone
JP2010508377A (en) * 2006-08-28 2010-03-18 ダウ・コーニング・コーポレイション Optical component, silicone composition, and method for molding optical component
WO2011007789A1 (en) * 2009-07-15 2011-01-20 株式会社カネカ Curable composition for optical material
JP2011140550A (en) * 2010-01-06 2011-07-21 Shin-Etsu Chemical Co Ltd Addition-curable silicone resin composition for molding optical device case and optical semiconductor device
WO2011125753A1 (en) * 2010-04-02 2011-10-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350263A (en) * 1986-08-20 1988-03-03 Canon Inc Image forming device
JP4501786B2 (en) * 2005-06-08 2010-07-14 パナソニック電工株式会社 Fire alarm system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350263A (en) * 1976-10-15 1978-05-08 Wacker Chemie Gmbh Method of controlling addition velocity of sii bound hydrogen to organopolysiloxane having aliphatic multiibinding which if accelerated by platinum catalyst
JP2005343984A (en) * 2004-06-02 2005-12-15 Kaneka Corp Curable composition and semiconductor device encapsulated with the curable composition
JP2009527622A (en) * 2006-02-24 2009-07-30 ダウ・コーニング・コーポレイション Light emitting device encapsulated with silicone and curable silicone composition for preparing said silicone
JP2010508377A (en) * 2006-08-28 2010-03-18 ダウ・コーニング・コーポレイション Optical component, silicone composition, and method for molding optical component
WO2011007789A1 (en) * 2009-07-15 2011-01-20 株式会社カネカ Curable composition for optical material
JP2011140550A (en) * 2010-01-06 2011-07-21 Shin-Etsu Chemical Co Ltd Addition-curable silicone resin composition for molding optical device case and optical semiconductor device
WO2011125753A1 (en) * 2010-04-02 2011-10-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270101A (en) * 2008-04-11 2009-11-19 Momentive Performance Materials Inc Curable silicone composition for semiconductor and semiconductor device therewith
JP2014210843A (en) * 2013-04-17 2014-11-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
JP2015000490A (en) * 2013-06-13 2015-01-05 株式会社カネカ Method for producing semiconductor package improving productivity
WO2014200112A1 (en) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device
WO2014200110A1 (en) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device
JPWO2014200110A1 (en) * 2013-06-14 2017-02-23 東レ・ダウコーニング株式会社 Reactive silicone composition, reactive thermoplastic, cured product, and optical semiconductor device
JP2015010132A (en) * 2013-06-27 2015-01-19 株式会社カネカ Curable resin composition and cured product obtained by curing the same
JP2015086290A (en) * 2013-10-30 2015-05-07 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, and package of semiconductor
JP2015203105A (en) * 2014-04-16 2015-11-16 信越化学工業株式会社 Thermosetting resin composition and method for manufacturing semiconductor device
KR20190039162A (en) 2016-08-08 2019-04-10 다우 코닝 도레이 캄파니 리미티드 Curable granular silicone composition, member for semiconductor comprising same, and molding method thereof
JPWO2018030286A1 (en) * 2016-08-08 2019-06-13 東レ・ダウコーニング株式会社 Curable particulate silicone composition, light reflecting material comprising the same, and method for producing the same
WO2018030286A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
KR102358091B1 (en) * 2016-08-08 2022-02-07 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 Curable granular silicone composition, semiconductor member comprising same, and molding method thereof
KR20190039962A (en) 2016-08-08 2019-04-16 다우 코닝 도레이 캄파니 리미티드 Curable particulate silicone composition, light reflector comprising the same, and process for producing the same
CN109790384A (en) * 2016-08-08 2019-05-21 道康宁东丽株式会社 Curability granulated silicone composition, the semiconductor component being made of it and its forming method
JPWO2018030288A1 (en) * 2016-08-08 2019-06-13 東レ・ダウコーニング株式会社 Curable particulate silicone composition, member for semiconductor comprising the same, and method for molding the same
CN109689791B (en) * 2016-08-08 2022-09-16 道康宁东丽株式会社 Curable particulate silicon composition, semiconductor member comprising same, and method for molding same
JPWO2018030287A1 (en) * 2016-08-08 2019-06-13 東レ・ダウコーニング株式会社 Curable particulate silicone composition, member for semiconductor comprising the same, and method for molding the same
WO2018030287A1 (en) 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
EP3498778A4 (en) * 2016-08-08 2020-03-11 Dow Toray Co., Ltd. Curable particulate silicone composition, optically reflective material comprising curable particulate silicone composition, and production method for optically reflective material comprising curable particulate silicone composition
WO2018030288A1 (en) * 2016-08-08 2018-02-15 東レ・ダウコーニング株式会社 Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and molding method for semiconductor member comprising curable particulate silicone composition
US11136437B2 (en) 2016-08-08 2021-10-05 Dow Toray Co., Ltd. Curable particulate silicone composition, semiconductor member comprising curable particulate silicone composition, and method for molding semiconductor member
KR102370817B1 (en) * 2016-08-08 2022-03-08 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 Curable granular silicone composition, light reflection material comprising same, and method for manufacturing same
JP2019528349A (en) * 2016-08-26 2019-10-10 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic component and method for manufacturing the optoelectronic component
US11739238B2 (en) 2016-09-23 2023-08-29 Nichia Corporation Electrically conductive adhesive and electrically conductive material
US11162004B2 (en) 2016-09-23 2021-11-02 Nichia Corporation Electrically conductive adhesive and electrically conductive material
US11555119B2 (en) 2017-06-19 2023-01-17 Dow Toray Co., Ltd. Curable granular silicone composition, semiconductor member comprising same, and forming method thereof
JP2020092230A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device and light emitting device module
JP7190890B2 (en) 2018-12-07 2022-12-16 スタンレー電気株式会社 light emitting device
JP2020092231A (en) * 2018-12-07 2020-06-11 スタンレー電気株式会社 Light emitting device
JP7190889B2 (en) 2018-12-07 2022-12-16 スタンレー電気株式会社 Light-emitting device and light-emitting device module
KR20210108990A (en) 2018-12-27 2021-09-03 다우 도레이 캄파니 리미티드 Curable silicone composition, cured product thereof, and manufacturing method thereof
US20220064447A1 (en) * 2018-12-27 2022-03-03 Dow Toray Co., Ltd. Curable silicone composition, cured product thereof, and method for producing same
US20220145015A1 (en) * 2019-12-18 2022-05-12 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and method for producing the same
EP3929242A4 (en) * 2019-12-18 2022-04-06 Fuji Polymer Industries Co., Ltd. Thermally conductive composition and method for producing same
KR20210082358A (en) 2019-12-25 2021-07-05 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 Curable white silicone formulation, a reflective material for optical semiconductor module and optical semiconductor device
EP3842475A1 (en) 2019-12-25 2021-06-30 DuPont Toray Specialty Materials Kabushiki Kaisha Curable white silicone formulation, a reflective material for optical semiconductor module, and optical semiconductor device
US11634580B2 (en) 2019-12-25 2023-04-25 Dupont Toray Specialty Materials Kabushiki Kaisha Curable white silicone formulation, a reflective material for optical semiconductor module, and optical semiconductor device
WO2022215510A1 (en) * 2021-04-09 2022-10-13 ダウ・東レ株式会社 Curable organopolysiloxane composition, thermally conductive member, and heat dissipation structure
WO2023032735A1 (en) 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured product thereof, and method for producing same
WO2023032734A1 (en) 2021-08-31 2023-03-09 ダウ・東レ株式会社 Curable silicone composition, cured object therefrom, and method for producing said cured object
WO2023148005A1 (en) * 2022-02-01 2023-08-10 Wacker Chemie Ag Thermally conductive silicone composition and method for producing thermally conductive member using the composition

Also Published As

Publication number Publication date
JP6043292B2 (en) 2016-12-14
CN103842442A (en) 2014-06-04
CN103842442B (en) 2018-08-24
JPWO2013051600A1 (en) 2015-03-30
TW201323526A (en) 2013-06-16
TWI625363B (en) 2018-06-01

Similar Documents

Publication Publication Date Title
JP6043292B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5844252B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP4778085B2 (en) Curable resin composition for semiconductor package and semiconductor
JP5685284B2 (en) Light emitting diode package and light emitting diode
JP6087127B2 (en) Thermosetting resin composition with improved fluidity and semiconductor package using the same
JP6227884B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5837385B2 (en) Thermosetting resin composition and package for light emitting diode using the same
JP5749543B2 (en) Thermosetting resin composition tablet and semiconductor package using the same
JP6227975B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package
JP5946684B2 (en) Thermosetting resin composition, tablet, package for light emitting diode, and production method thereof
JP2013225573A (en) Resin molding for surface mounted light emitting device and light emitting device using the same
JP6464210B2 (en) Thermosetting resin composition with improved fluidity and semiconductor package using the same
JP5848572B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5869827B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP5875780B2 (en) White curable resin composition and semiconductor package using the same
JP5813446B2 (en) Curable resin composition, curable resin composition tablet, molded product, semiconductor package, semiconductor component, and light emitting diode
JP2013080821A (en) Resin molding and side surface light emitting type semiconductor light emitting device
JP6154094B2 (en) Semiconductor package
JP5563628B2 (en) Curable resin composition for semiconductor package and semiconductor
JP2014133822A (en) Curable resin composition, tablet for curable resin composition and package of semiconductor using the same
JP2017197595A (en) Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component, light-emitting diode, and method for manufacturing semiconductor package
JP5563695B2 (en) Curable resin composition for semiconductor package and semiconductor
JP2012102244A (en) Thermosetting resin composition and package of semiconductor using the same
JP2017200988A (en) Thermosetting resin composition for semiconductor package of ultraviolet led light-emitting device, tablet, semiconductor package and ultraviolet led light emitting device using the semiconductor package
JP2017191839A (en) Thermosetting resin composition for semiconductor package of infrared led light-emitting device, tablet, semiconductor package, and infrared led light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837744

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537530

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837744

Country of ref document: EP

Kind code of ref document: A1