WO2014200110A1 - Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device - Google Patents

Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device Download PDF

Info

Publication number
WO2014200110A1
WO2014200110A1 PCT/JP2014/065831 JP2014065831W WO2014200110A1 WO 2014200110 A1 WO2014200110 A1 WO 2014200110A1 JP 2014065831 W JP2014065831 W JP 2014065831W WO 2014200110 A1 WO2014200110 A1 WO 2014200110A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
parts
cured product
sio
Prior art date
Application number
PCT/JP2014/065831
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 山▲崎▼
吉武 誠
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Priority to JP2015522896A priority Critical patent/JP6302902B2/en
Publication of WO2014200110A1 publication Critical patent/WO2014200110A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to a reactive silicone composition, a reactive thermoplastic, a cured product, and an optical semiconductor device.
  • a curable silicone composition that cures by hydrosilylation reaction is used as a protective agent or coating agent for optical semiconductor elements in optical semiconductor devices such as photocouplers, light-emitting diodes, and solid-state imaging elements; Has been.
  • a composition used as a light reflecting material for example, either a vinyl group or an allyl group and a thermosetting addition reactivity having a structure in which a hydrogen atom is directly bonded to a silicon atom
  • the visible light average reflectance of 80% or more addition-curable silicone resin composition (see Patent Document 2).
  • These compositions have problems such as low mold filling, easy formation of voids and burrs, and poor mold releasability in transfer molding, injection molding, or compression molding. There is also a problem that the speed is slow and the workability of the molding operation is poor.
  • cured products obtained by curing these compositions have the advantage of less discoloration due to heat and light, but have problems such as high linear expansion coefficient and low mechanical strength at high temperatures, There is a problem that the reflectivity is insufficient and the mechanical strength is greatly reduced by heat and light.
  • the present invention relates to a reactive silicone composition capable of forming a reactive thermoplastic, a reactive thermoplastic that once fluidizes when heated, and then gives a cured product, a decrease in mechanical strength and discoloration due to heat and light.
  • An object of the present invention is to provide a cured product having high light reflectivity and excellent mold releasability, and an optical semiconductor device having high light emission efficiency, low heat deterioration and light deterioration of the light reflecting material, and excellent reliability. .
  • the reactive silicone composition of the present invention comprises: (A) Average unit formula: (R 1 3 SiO 1/2 ) a (R 1 2 SiO 2/2 ) b (R 1 SiO 3/2 ) c (SiO 4/2 ) d (R 2 O 1/2 ) e (Wherein R 1 is the same or different and is a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 30 to 80 mol% of all R 1 s ) Is a phenyl group, 10 to 20 mol% of all R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, c, d, and e are 0 ⁇ a ⁇ 0.30, 0 ⁇ b ⁇ 0.70, 0.3 ⁇ c ⁇ 0.9, 0 ⁇ d ⁇ 0.20, 0 ⁇ e
  • the reactive thermoplastic of the present invention is characterized in that the hydrosilylation reaction of the above reactive silicone composition is allowed to proceed until a conversion of 70 to 95% is achieved.
  • the cured product of the present invention is obtained by heating the above-mentioned reactive thermoplastic to 100 ° C. or higher, and is characterized by having a solid or a viscosity of 1,000,000 Pa ⁇ s or higher at 300 ° C. Or the above-mentioned reactive silicone composition is cured.
  • the optical semiconductor device of the present invention is characterized in that a light reflecting material is formed from the above cured product.
  • the reactive silicone composition of the present invention is characterized in that it can form a reactive thermoplastic.
  • the reactive thermoplastic of the present invention is characterized by being fluidized once heated and then giving a cured product.
  • the cured product of the present invention is characterized in that the mechanical strength is not lowered or discolored by heat or light, the light reflectance is high, and the mold releasability is excellent.
  • the optical semiconductor device of the present invention is characterized by high luminous efficiency, low thermal degradation and light degradation of the light reflecting material, and excellent reliability.
  • FIG. 1 is a cross-sectional view of an LED which is an example of an optical semiconductor device of the present invention.
  • (A) component is the main component of this composition, average unit formula: (R 1 3 SiO 1/2 ) a (R 1 2 SiO 2/2 ) b (R 1 SiO 3/2 ) c (SiO 4/2 ) d (R 2 O 1/2 ) e It is organopolysiloxane represented by these.
  • R 1 Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
  • R 1 examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 1 Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • the phenyl group content is R 1 In the range of 30 to 80 mol%, preferably all R 1 In the range of 60 to 75 mol%.
  • the phenyl group content is at least the lower limit of the above range, the resulting reactive thermoplastic has good room temperature hardness and high temperature flow characteristics, and the resulting cured product has mechanical strength.
  • the hardness at high temperature of the obtained cured product is good when it is not more than the upper limit of the above range.
  • the alkenyl group content is in the range of 10 to 20 mol%. This is because when the content of the alkenyl group is not less than the lower limit of the above range, the resulting cured product has good hardness at room temperature. This is because the mechanical strength is good.
  • R 2 Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 2 examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • a is a general formula: R 1 3 SiO 1/2 Is a number satisfying 0 ⁇ a ⁇ 0.30, preferably 0 ⁇ a ⁇ 0.25. This is because the hardness at room temperature of the obtained cured product is good when a is not more than the upper limit of the above range.
  • b is a general formula: R 1 2 SiO 2/2 Is a number satisfying 0 ⁇ b ⁇ 0.70, and when forming a reactive thermoplastic, satisfies 0.10 ⁇ b ⁇ 0.70. It is preferably a number, and more preferably a number satisfying 0.15 ⁇ b ⁇ 0.60. This is obtained when b is equal to or higher than the lower limit of the above range, and the resulting thermoplastic thermoplastic resin has good room temperature hardness and high temperature flow characteristics, while being equal to or lower than the upper limit of the above range. This is because the hardness of the cured product at room temperature is good.
  • C is a general formula: R 1 SiO 3/2 And a number satisfying 0.3 ⁇ c ⁇ 0.9, preferably a number satisfying 0.35 ⁇ c ⁇ 0.85, more preferably , 0.40 ⁇ c ⁇ 0.80.
  • D is a general formula: SiO 4/2 And is a number satisfying 0 ⁇ d ⁇ 0.20, preferably 0 ⁇ b ⁇ 0.10. This is because the mechanical strength of the obtained cured product is good when d is not more than the upper limit of the above range.
  • E is a general formula: R 2 O 1/2 Is a number satisfying 0 ⁇ e ⁇ 0.10.
  • the component (A) usually has a molecular weight distribution and is a mixture of a plurality of organopolysiloxanes.
  • the component (A) may be a mixture of separately prepared organopolysiloxanes, but each organopolysiloxane is 0 ⁇ a ⁇ 0.30, 0 ⁇ b ⁇ 0. 70, 0.3 ⁇ c ⁇ 0.9, 0 ⁇ d ⁇ 0.20, and 0 ⁇ e ⁇ 0.10.
  • Component (B) is an optional component for adjusting the viscosity of the composition and adjusting the hardness and mechanical strength of the resulting cured product.
  • R 3 3 SiO (R 3 2 SiO) m SiR 3 3 It is organopolysiloxane represented by these. Where R 3 Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
  • R 3 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group.
  • R 3 Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. In the formula, all R 3 Of these, the phenyl group content is in the range of 30 to 70 mol%, and preferably in the range of 40 to 60 mol%.
  • R 3 At least one of is an alkenyl group. This is because this component is taken into the curing reaction when it has an alkenyl group.
  • m is an integer in the range of 10 to 100, preferably an integer in the range of 10 to 50. When m is not less than the lower limit of the above range, the resulting cured product has good mechanical strength, and when it is not more than the upper limit of the above range, the resulting composition has good handling workability. Because.
  • the content of the component (B) is an amount in the range of 0 to 40 parts by mass, preferably in the range of 0 to 20 parts by mass with respect to 100 parts by mass of the component (A). Is the amount. This is because the hardness of the obtained cured product is good when the content of the component (B) is not more than the upper limit of the above range.
  • Component (C) is a crosslinking agent of the present composition, and has at least two silicon atom-bonded hydrogen atoms in one molecule, and 20 to 70 mol% of all silicon atom-bonded organic groups are phenyl groups. Polysiloxane.
  • the number of silicon-bonded hydrogen atoms in the component is at least two in one molecule, because this is sufficient for crosslinking and the resulting cured product has good hardness.
  • an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group
  • Aryl groups such as phenyl group, tolyl group and xylyl group; monovalent hydrocarbon groups having no aliphatic unsaturated bond such as aralkyl groups such as benzyl group and phenethyl group, and the like, preferably phenyl group, or An alkyl group having 1 to 6 carbon atoms.
  • the component (C) 20 to 70 mol% of the silicon atom-bonded all organic groups are phenyl groups. If the phenyl group content is not less than the lower limit of the above range, the resulting cured product has good mechanical strength at high temperatures, and if it is not more than the upper limit of the above range, This is because the mechanical strength is good.
  • Such component (C) has the general formula: (HR 4 2 SiO) 2 SiR 4 2 Organotrisiloxane represented by the general formula: R 5 3 SiO (R 5 2 SiO) n SiR 5 3 A linear organopolysiloxane represented by the formula: (R 5 SiO 3/2 ) p (R 5 2 SiO 2/2 ) q (R 5 3 SiO 1/2 ) r (SiO 4/2 ) s (R 6 O 1/2 ) t The branched-chain organopolysiloxane represented by these is illustrated. Where R 4 Are the same or different phenyl groups or alkyl groups having 1 to 6 carbon atoms.
  • R 4 examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. All R 4 Of these, the phenyl group content is in the range of 30 to 70 mol%. Also, in the formula, R 5 Are the same or different hydrogen atoms, phenyl groups, or alkyl groups having 1 to 6 carbon atoms, wherein at least two R 5 Is a hydrogen atom.
  • R 5 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. All R except for hydrogen atoms 5 Of these, the phenyl group content is in the range of 30 to 70 mol%. Also, in the formula, R 6 Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R 6 Examples of the alkyl group include a methyl group, an ethyl group, a butyl group, a pentyl group, and a hexyl group.
  • n is an integer in the range of 5 to 1,000.
  • p is a positive number
  • q is 0 or a positive number
  • r is 0 or a positive number
  • t is 0 or a positive number
  • q / p is a number in the range of 0 to 10
  • r / p is a number in the range of 0 to 5
  • s / (P + q + r + s) is a number in the range of 0 to 0.3
  • t / (p + q + r + s) is a number in the range of 0 to 0.4.
  • component (C) In such a component (C), all of them have the general formula: (HR 4 2 SiO) 2 SiR 4 2
  • at least 50% by mass of the component (C) is the above organotrisiloxane. Is preferred.
  • other organosiloxanes may be added at appropriate times to adjust the hardness of the resulting cured product.
  • the content of component (C) is such that the silicon-bonded hydrogen atoms in this component are 0.5 to 2 with respect to a total of 1 mol of alkenyl groups in components (A) and (B).
  • the amount is in the range of moles, preferably the amount in the range of 0.5 to 1.5 moles.
  • the component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C).
  • Examples of component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition.
  • platinum-based catalyst examples include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, and in particular, a platinum-alkenylsiloxane complex. It is preferable.
  • alkenylsiloxane examples include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like.
  • 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of this platinum-alkenylsiloxane complex is good. Further, since the stability of this platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1,1 can be added to this complex.
  • component (D) is sufficient to promote the hydrosilylation reaction between the alkenyl group in component (A) and component (B) and the silicon-bonded hydrogen atom in component (C).
  • Component (E) is a white pigment for coloring the present composition and its cured product white and increasing the light reflectance.
  • the component (E) examples include metal oxides such as titanium oxide, alumina, zinc oxide, zircon oxide, and magnesium oxide; other examples include barium sulfate and zinc sulfide, and titanium oxide or zinc oxide is particularly preferable.
  • the average particle size and shape of the component (E) are not limited, but the average particle size is preferably in the range of 0.05 to 10.0 ⁇ m, and particularly in the range of 0.1 to 5.0 ⁇ m. Is preferred.
  • the white pigment in order to improve the compatibility and dispersibility with the resin and the inorganic filler, those which have been surface-treated with a silane coupling agent, silica, alumina or the like can be used.
  • the content of the component (E) is 50 parts by mass or more, preferably 60 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D). This is because the light reflectance of the obtained cured product is good when the content of the component (E) is not less than the above lower limit.
  • Component (F) is spherical silica, non-spherical silica or glass fiber for improving the workability reduction due to the increase in viscosity of the composition, reducing the linear expansion coefficient of the cured product, and improving the dimensional stability. is there.
  • Examples of the spherical silica as the component (F) include dry silica, wet silica, fused silica, and deflagration silica, but fused silica is preferable because the filling property of the present composition is good.
  • Examples of the non-spherical silica of component (F) include quartz powder and glass beads, and quartz powder is preferable.
  • As a glass fiber of a component a chopped glass fiber and a milled glass fiber are illustrated, Preferably it is a milled glass fiber.
  • the particle diameter of the spherical silica as the component (F) is not limited, but the average particle diameter is preferably in the range of 0.1 to 50 ⁇ m, particularly preferably in the range of 0.5 to 20 ⁇ m.
  • the average particle size of the non-spherical silica of the component (F) is not limited, but is preferably in the range of 0.1 to 20 ⁇ m, and particularly preferably in the range of 0.5 to 10 ⁇ m.
  • the shape of the component (F) glass fiber is not limited, but the fiber diameter is preferably in the range of 1 to 50 ⁇ m, particularly preferably in the range of 5 to 20 ⁇ m, and the fiber length is 5 It is preferably in the range of ⁇ 500 ⁇ m, particularly preferably in the range of 10 to 300 ⁇ m.
  • the content of the component (F) is 100 parts by mass or more, preferably 120 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D). It is because the linear expansion coefficient of the obtained cured product is low and the dimensional stability is good when the content of the component (F) is not less than the above lower limit.
  • the total content of the component (E) and the component (F) is 400 parts by mass or less, preferably 350 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D). Or less. This is because the viscosity of the resulting composition is good when the total content of the component (E) and the component (F) is not more than the above upper limit.
  • Component (G) is a component for increasing the releasability of a cured product from a mold when an optical semiconductor device is produced by transfer molding, injection molding, or compression molding using the present composition.
  • component (G) examples include oleic acid, linoleic acid, linolenic acid, zinc oleate, aluminum oleate, and calcium oleate.
  • Oleic acid and its metal salt are preferred from the viewpoint of little deterioration over time due to oxidation.
  • the content of the component (G) is in the range of 0.01 to 8 parts by mass, particularly 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). It is preferable to be within the range.
  • This composition contains (H) an average unit formula as an adhesion promoter for enhancing adhesion to a substrate that is in contact with the curing process: (R 7 3 SiO 1/2 ) f (R 7 2 SiO 2/2 ) g (R 7 SiO 3/2 ) h (SiO 4/2 ) i (R 8 O 1/2 ) j It is preferable to contain the organopolysiloxane represented by these.
  • R 7 Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an organic group containing an epoxy group.
  • R 7 Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a heptyl group, a cyclopentyl group, and a cycloheptyl group.
  • R 7 Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • R 7 As the epoxy group-containing organic group, 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group Is exemplified.
  • the phenyl group content is in the range of 15 to 60 mol%, and preferably in the range of 20 to 50 mol%.
  • the phenyl group content is at least the lower limit of the above range, the resulting cured product has good adhesiveness and reflectivity, and when it is below the upper limit of the above range, the resulting cured product is bonded. This is because the properties and heat resistance are good.
  • the alkenyl group content is in the range of 3 to 30 mol%, preferably in the range of 5 to 20 mol%. This is because when the content of the alkenyl group is within the above range, the obtained cured product has good adhesiveness.
  • the content of the epoxy group-containing organic group is in the range of 5 to 30 mol%, preferably in the range of 10 to 20 mol%.
  • the content of the epoxy group-containing organic group is at least the lower limit of the above range, the resulting cured product has good adhesiveness.
  • the content is below the upper limit of the above range, good heat resistance is obtained. Because it is.
  • R 8 Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 8 Examples of the alkyl group include a methyl group, an ethyl group, a butyl group, a pentyl group, and a hexyl group.
  • f is a general formula: R 7 3 SiO 1/2 Is a number satisfying 0 ⁇ f ⁇ 0.5, preferably 0 ⁇ f ⁇ 0.4. This is because the adhesiveness of the obtained hardened
  • g represents a general formula: R 7 2 SiO 2/2 Is a number satisfying 0 ⁇ g ⁇ 0.9, preferably 0 ⁇ g ⁇ 0.8. This is because the adhesiveness of the obtained cured product is good when g is not more than the upper limit of the above range.
  • H is a general formula: R 7 SiO 3/2 Is a number satisfying 0 ⁇ h ⁇ 0.7, preferably 0 ⁇ h ⁇ 0.6. This is because the adhesiveness of the hardened
  • I is a general formula: SiO 4/2 Is a number satisfying 0 ⁇ i ⁇ 0.3, preferably 0 ⁇ i ⁇ 0.2.
  • J is a general formula: R 8 O 1/2 Is a number satisfying 0 ⁇ j ⁇ 0.02. This is because the pot life and storage stability of the composition are good when j is not more than the upper limit of the above range.
  • the sum of f, g, h, and i is 1.
  • the content of the component (H) is an amount that is in the range of 0.5 to 10.0 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). In particular, the amount is preferably in the range of 1.0 to 8.0 parts by mass.
  • the present composition has the purpose of extending the pot life at room temperature without impairing the curability of the composition, and the purpose of increasing the adhesiveness of the sealing material for optical semiconductor devices to the cured product of the composition (I)
  • Organopoly having two or more silicon atom-bonded hydrogen atoms in one molecule and having a phenyl group content of less than 20 mol% with respect to all silicon atom-bonded organic groups. It is preferable to contain siloxane.
  • the number of silicon atom-bonded hydrogen atoms in component (I) is 2 or more in one molecule, because this is sufficient for crosslinking and the resulting cured product has good hardness.
  • the silicon atom-bonded organic group in the component (I) alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc.
  • Aryl groups such as phenyl group, tolyl group and xylyl group; monovalent hydrocarbon groups having no aliphatic unsaturated bond such as aralkyl groups such as benzyl group and phenethyl group, and the like, preferably phenyl group, or An alkyl group having 1 to 6 carbon atoms.
  • the content of the phenyl group with respect to the silicon atom-bonded total organic group in the component (I) is less than 20 mol%, preferably 10 mol% or less.
  • it is preferable that 90 mol% or more of the silicon atom bond total organic group in (I) component is a methyl group.
  • the resulting cured product has good adhesion to various substrates, and the cured product This is because the adhesiveness of the sealing material for the optical semiconductor device is good.
  • (MeHSiO) k (In the formula, Me represents a methyl group, and k is an integer of 4 to 8)
  • Organopolysiloxane represented by the general formula: Me 3 SiO (MeHSiO) x SiMe 3 Me 3 SiO (MeHSiO) y (Me 2 SiO) z SiMe 3 (In the formula, Me represents a methyl group, x is an integer of 5 or more, y and z are each an integer of 5 or more, and y is the same as or more than z)
  • the organopolysiloxane represented by these is illustrated.
  • the content of component (I) is such that the silicon-bonded hydrogen atoms in this component are 0.001 to 0 with respect to 1 mol of the total of alkenyl groups in components (A) and (B).
  • the amount is in the range of 20 moles, preferably in the range of 0.002 to 0.10 moles. This is because when the content of component (I) is within the above range, the pot life at room temperature of the composition is extended, and the adhesiveness of the sealing material for optical semiconductor devices to the obtained cured product becomes good. Furthermore, this is because the flowability of the reactive thermoplastic obtained by hydrosilylation reaction of the composition at a high temperature is improved.
  • This composition is composed of at least the components (A) to (G), but as other optional components, 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 3, 5 Alkyne alcohols such as dimethyl-1-hexyn-3-ol and 2-phenyl-3-butyn-2-ol; 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexene-1
  • An enyne compound such as yne; 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7 -Reaction inhibitors such as tetrahexenylcyclotetrasiloxane and benzotriazole may be contained.
  • the content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm by mass with respect to the present composition.
  • the composition may contain an adhesion promoter other than the component (H).
  • adhesion promoters include trialkoxysiloxy groups (for example, trimethoxysiloxy group, triethoxysiloxy group) or trialkoxysilylalkyl groups (for example, trimethoxysilylethyl group, triethoxysilylethyl group), hydrosilyl
  • the composition is improved by improving the handling workability of the composition and adjusting the hardness of the resulting cured product.
  • An organopolysiloxane having 10 or less silicon atoms in which 30 to 60 mol% of all organic groups are alkenyl groups having 2 to 6 carbon atoms may be contained.
  • Examples of the alkenyl group in the organopolysiloxane include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group.
  • the silicon atom-bonded organic group other than the alkenyl group in the organopolysiloxane is not particularly limited, but examples thereof include a methyl group and a phenyl group, and a methyl group is preferable. Further, 30 to 60 mol% of all silicon atom-bonded organic groups are alkenyl groups having 2 to 6 carbon atoms. When the content of the alkenyl group is not less than the lower limit of the above range, the resulting cured product has good hardness. On the other hand, when the content of the alkenyl group is not more than the upper limit of the above range, the resulting cured product has a mechanical strength. It is because it is good.
  • organopolysiloxanes include 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, tetrakis (dimethylvinylsiloxy) silane, methyltris (dimethylvinylsiloxy) silane, And phenyltris (dimethylvinylsiloxy) silane.
  • the content of the organopolysiloxane is preferably an amount within the range of 0 to 50 parts by mass with respect to 100 parts by mass of the component (A).
  • the present composition is a liquid reactive silicone composition.
  • the amount be in the range of 5 to 40 parts by mass.
  • the content of the organopolysiloxane is at least the lower limit of the above range, the viscosity of the composition is good.
  • the content is below the upper limit of the above range, the resulting cured product has good mechanical strength.
  • the present composition includes, as optional components, spherical silica, non-spherical silica, inorganic fillers other than glass fibers, fine organic resin powders such as polymethacrylate resins and silicone resins, as long as the object of the present invention is not impaired.
  • a corrosion inhibitor such as benzotriazole or carboxybenzotriazole, a heat-resistant agent, a flame retardant, and a solvent is not particularly limited, but when obtaining a reactive thermoplastic, it is preferably 10,000 Pa ⁇ s or less, particularly preferably in the range of 10 to 5,000 Pa ⁇ s. Is within.
  • the viscosity is equal to or higher than the lower limit of the above range, it is easy to form a reactive thermoplastic having a desired shape.
  • the viscosity is equal to or lower than the upper limit of the above range, the resulting composition is handled. This is because the property is good.
  • the viscosity at 25 ° C. is preferably in the range of 5 to 200 Pa ⁇ s, more preferably in the range of 5 to 120 Pa ⁇ s. And particularly preferably within the range of 10 to 80 Pa ⁇ s. This is because, when the viscosity is at least the lower limit of the above range, the occurrence of burrs is suppressed during molding, and when the viscosity is below the upper limit of the above range, the workability of the resulting composition is good.
  • the reactive thermoplastic of the present invention will be described in detail.
  • the reactive thermoplastic of the present invention is obtained by reacting until the conversion rate of the hydrosilylation reaction of the reactive silicone cured product becomes 70% to 95%.
  • the conversion rate of hydrosilylation is the percentage of the total functional group that undergoes hydrosilylation reaction, in which the reaction actually takes place, and its confirmation method is not particularly limited. For example, differential scanning calorimetry Using a meter (DSC), the reaction calorific value of the reactive silicone composition and the obtained reactive thermoplastic can be measured, and the conversion rate can be easily calculated from the difference.
  • the reaction proceeds at room temperature or by heating, but heating is preferable in order to obtain a reactive thermoplastic efficiently.
  • the heating temperature is preferably in the range of 50 to 150 ° C, and more preferably in the range of 80 to 130 ° C.
  • the reactive thermoplastic of the present invention is preferably a solid at 25 ° C.
  • the reactive thermoplastic of the present invention preferably has a type D durometer hardness of 30 or more at 25 ° C. as defined in JIS K 7215-1986 “Plastic Durometer Hardness Test Method”.
  • a reactive thermoplastic of the present invention fluidizes once when heated to 100 ° C. or higher, and then undergoes a hydrosilylation reaction to give a cured product.
  • the cured product of the present invention will be described in detail.
  • the cured product of the present invention is obtained by heating the reactive thermoplastic and performing the remaining hydrosilylation reaction, or the liquid reactive silicone composition without passing through the reactive plastic. Is obtained by heating and hydrosilylation reaction, and at 300 ° C., the solid or viscosity is 1,000,000 Pa ⁇ s or more.
  • the hardness of the cured product is not particularly limited, but the type D durometer hardness specified in JIS K 7215-1986 “Plastic Durometer Hardness Test Method” is preferably 60 or more, and more preferably 65 or more. It is preferable that it is 70 or more especially. This is because when the hardness is equal to or higher than the above lower limit, the dimensional stability of the cured product is improved, and the cured product is hardly deformed.
  • cured material is although it does not specifically limit,
  • regulated to JISK7375: 2008 "Plastics-Determination of total light transmittance and total light reflectance” is 75% or more. In particular, it is preferably 80% or more.
  • the linear expansion coefficient of the cured product is not particularly limited, but the linear expansion coefficient measured by the method specified in JIS K 7197-1991 “Test method for linear expansion coefficient by thermomechanical analysis of plastics” is 25 to 200 ° C.
  • the average value in the temperature range is preferably 200 ppm / ° C. or less, and particularly preferably 150 ppm / ° C. or less.
  • the cured product of the present invention is preferably formed by curing the reactive thermoplastic or the reactive silicone composition in a metal mold heated to 100 ° C. or higher.
  • Examples of the curing method for forming the main cured product as the reflecting material of the optical semiconductor device include compression molding, transfer molding, and injection molding.
  • the optical semiconductor device of the present invention will be described in detail.
  • the optical semiconductor device of the present invention is characterized in that the light reflecting material is formed of the cured product.
  • a light emitting diode (LED) is exemplified.
  • the light reflecting material also functions as a frame material (packaging material) of the optical semiconductor device.
  • FIG. 1 shows a cross-sectional view of a surface-mounted LED that is an example of the semiconductor device.
  • an optical semiconductor element 1 is die-bonded on a lead frame 2 by a die bonding material, and the optical semiconductor element 1 and the lead frames 2 and 3 are wire-bonded by bonding wires 4 and 4 ′.
  • a light reflecting material 5 made of the above-described cured product is provided around the optical semiconductor element 1 except for the upper portion thereof, and the optical semiconductor element 1 inside the light reflecting material 5 is sealed with a sealing material 6.
  • the light reflecting material 5 integrated with the lead frames 2 and 3 is formed by transfer molding or compression molding of the reactive thermoplastic of the present invention.
  • Me, Ph, Vi, and Ep represent a methyl group, a phenyl group, a vinyl group, and a 3-glycidoxypropyl group, respectively.
  • the hardness of the reactive thermoplastic and the cured product was measured with a type D durometer specified in JIS K 7215-1986 “Plastic Durometer Hardness Test Method”. Further, the bending strength of the cured product was measured by the method specified in JIS K 6911-1995 “General Test Method for Thermosetting Plastics”.
  • the total light reflectance of the cured product was measured by a method specified in JIS K 7375: 2008 “Plastics—How to obtain total light transmittance and total light reflectance”.
  • the linear expansion coefficient of the cured product is measured by measuring the average linear expansion coefficient in the range of 25 to 200 ° C. according to the method specified in JIS K 7197-1991 “Test method for linear expansion coefficient by thermomechanical analysis of plastics”. did.
  • the mold releasability of this composition is 10 times integral molding with a lead frame using a transfer molding machine at a molding temperature of 120 ° C. and a molding time of 5 minutes. Evaluation was made by confirming the number of molding defects such as peeling from the lead frame.
  • a curable silicone composition, s was prepared. When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 62, and has a viscosity of 4,700 Pa ⁇ s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 79%. When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C.
  • the linear expansion coefficient of the cured product was 7% and 108 ppm / ° C. Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
  • the optical semiconductor device shown in FIG. 1 has a Type D durometer hardness of 86 at 25 ° C., a bending strength of 19 MPa, and a total light reflectance of 94.degree.
  • the linear expansion coefficient of the cured product was 5% and 113 ppm / ° C.
  • the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
  • a reactive silicone composition, s was prepared. When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 76, and has a viscosity of 4,600 Pa ⁇ s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 79%. When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C.
  • the optical semiconductor device shown in FIG. 1 has a type D durometer hardness of 85 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94.
  • the linear expansion coefficient of the cured product was 101 ppm / ° C.
  • the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
  • the linear expansion coefficient of the cured product was 5% and 69 ppm / ° C. Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
  • the cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 85 at 25 ° C., a bending strength of 17 MPa, and a total light reflectance.
  • a curable silicone composition that is s was prepared. When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., its type D durometer hardness is 63, and its viscosity at 100 ° C. is 4,900 Pa ⁇ s. I found out that The conversion rate of the hydrosilylation reaction was 76%. When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C.
  • the linear expansion coefficient of the cured product was 5% and 104 ppm / ° C.
  • thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product twice out of 10 times. It was done.
  • thermoplastic When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 71, and has a viscosity of 16,000 Pa ⁇ s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 87%.
  • thermoplastic When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization.
  • the cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 87 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94.
  • the linear expansion coefficient of the cured product was 117 ppm / ° C. Further, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that there was a molding defect in the molded product 6 times out of 10 times. It was done.
  • thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization.
  • the cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 86 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94.
  • the linear expansion coefficient of the cured product was 4 ppm and 98 ppm / ° C.
  • thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product 5 times out of 10 times. It was done.
  • the linear expansion coefficient of the cured product was 4 ppm and 73 ppm / ° C.
  • thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product 5 times out of 10 times. It was done.
  • the reactive silicone composition of the present invention can provide a reactive thermoplastic, which is suitable for molding a cured product in a heated mold, and the resulting cured product is In addition, it is suitable as a material for forming a white frame material of a light-emitting diode because it has little decrease in mechanical strength and discoloration due to light and light, has high light reflectance, and excellent mold releasability.

Abstract

Provided are: a reactive silicon composition which comprises at least (A) an organo polysiloxane having an alkenyl group, (B) an organo polysiloxane having an alkenyl group, (C) an organo polysiloxane having a silicon-bonded hydrogen atom, (D) a hydrosilylation reaction catalyst, (E) a white pigment, (F) spherical silica, nonspherical silica, or glass fiber, and (G) a carboxylic acid or metal salt thereof having ten or more carbon atoms and at least one carbon-carbon double bond per molecule; a reactive thermoplastic thereof, a cured product thereof and a photosemiconductor device having the cured product. The present invention provides: a reactive silicon composition which is capable of forming a reactive thermoplastic; a reactive thermoplastic which temporarily fluidizes when heated, then provides a cured product; a cured product which has small reduction in mechanical strength and less discoloration due to heat and light, a high optical reflectivity, and excellent mold releasability; and a photosemiconductor device which has a high luminous efficiency, less thermal degradation and photodegradation of a light reflection material, and excellent reliability.

Description

反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置Reactive silicone composition, reactive thermoplastic, cured product, and optical semiconductor device
 本発明は、反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置に関する。 The present invention relates to a reactive silicone composition, a reactive thermoplastic, a cured product, and an optical semiconductor device.
 ヒドロシリル化反応により硬化する硬化性シリコーン組成物は、フォトカプラー、発光ダイオード、固体撮像素子等の光半導体装置における光半導体素子の保護剤やコーティング剤;その他、レンズ成形材料、光反射材料等として使用されている。その中で、光反射材料として使用される組成物としては、例えば、ビニル基およびアリル基のいずれか一方と、水素原子が、直接ケイ素原子に結合してなる構造を有する熱硬化型付加反応性シリコーン樹脂、硬化触媒としての白金系触媒、および白色顔料からなり、離型剤を含有してもよい光半導体素子収納用実装パッケージ用樹脂組成物(特許文献1参照)、重量平均分子量(Mw)が30,000以上であるビニル基含有オルガノポリシロキサン、一分子中にケイ素結合水素原子を少なくとも2個有するオルガノハイドロジェンポリシロキサン、白色顔料、白色顔料以外の無機充填剤、白金金属系触媒、および反応制御剤からなり、内部離型剤として脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛等を含有してもよい、硬化後の可視光平均反射率が80%以上である付加硬化型シリコーン樹脂組成物(特許文献2参照)が挙げられる。
 これらの組成物は、トランスファー成形、射出成形、あるいは圧縮成形において、金型充填性が低かったり、ボイドやバリが発生しやすかったり、金型離型性が悪いという課題があり、さらには、硬化速度が遅く、成形操作の作業性が悪いという課題もある。さらに、これらの組成物を硬化して得られる硬化物は、熱や光による変色が少ないという利点があるものの、線膨張率が大きかったり、高温での機械的強度が低くいという課題や、光反射率が不十分で、熱や光による機械的強度の低下が大きいという課題がある。
A curable silicone composition that cures by hydrosilylation reaction is used as a protective agent or coating agent for optical semiconductor elements in optical semiconductor devices such as photocouplers, light-emitting diodes, and solid-state imaging elements; Has been. Among them, as a composition used as a light reflecting material, for example, either a vinyl group or an allyl group and a thermosetting addition reactivity having a structure in which a hydrogen atom is directly bonded to a silicon atom A resin composition for an optical semiconductor element housing packaging package containing a silicone resin, a platinum-based catalyst as a curing catalyst, and a white pigment, which may contain a release agent (see Patent Document 1), weight average molecular weight (Mw) Is a vinyl group-containing organopolysiloxane having a molecular weight of 30,000 or more, an organohydrogenpolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule, a white pigment, an inorganic filler other than a white pigment, a platinum metal catalyst, and It consists of a reaction control agent, and may contain fatty acid ester, glycerate ester, zinc stearate, etc. as an internal mold release agent. The visible light average reflectance of 80% or more addition-curable silicone resin composition (see Patent Document 2).
These compositions have problems such as low mold filling, easy formation of voids and burrs, and poor mold releasability in transfer molding, injection molding, or compression molding. There is also a problem that the speed is slow and the workability of the molding operation is poor. In addition, cured products obtained by curing these compositions have the advantage of less discoloration due to heat and light, but have problems such as high linear expansion coefficient and low mechanical strength at high temperatures, There is a problem that the reflectivity is insufficient and the mechanical strength is greatly reduced by heat and light.
特開2009−021394号公報JP 2009-021394 JP 特開2011−140550号公報JP 2011-140550 A
 本発明は、反応性熱可塑体を形成し得る反応性シリコーン組成物、加熱すると一旦流動化し、その後、硬化物を与える反応性熱可塑体、熱や光による機械的強度の低下や変色が少なく、光反射率が高く、金型離型性が優れる硬化物、および発光効率が高く、光反射材の熱劣化や光劣化が少なく、信頼性が優れる光半導体装置を提供することを目的とする。 The present invention relates to a reactive silicone composition capable of forming a reactive thermoplastic, a reactive thermoplastic that once fluidizes when heated, and then gives a cured product, a decrease in mechanical strength and discoloration due to heat and light. An object of the present invention is to provide a cured product having high light reflectivity and excellent mold releasability, and an optical semiconductor device having high light emission efficiency, low heat deterioration and light deterioration of the light reflecting material, and excellent reliability. .
 本発明の反応性シリコーン組成物は、
(A)平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2
(式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基であり、ただし、全Rの30~80モル%はフェニル基であり、全Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、c、d、およびeはそれぞれ、0≦a≦0.30、0≦b≦0.70、0.3≦c≦0.9、0≦d≦0.20、0≦e≦0.10、かつa+b+c+d=1を満たす数である。)
で表されるオルガノポリシロキサン              100質量部、
(B)一般式:
SiO(R SiO)SiR
(式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基であり、ただし、全Rの30~70モル%はフェニル基であり、全Rの少なくとも1個はアルケニル基であり、mは10~100の整数である。)
で表されるオルガノポリシロキサン             0~40質量部、
(C)一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基の20~70モル%がフェニル基であるオルガノポリシロキサン{(A)成分および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.5~2モルとなる量}、
(D)ヒドロシリル化反応用触媒{(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}、
(E)白色顔料{(A)成分~(D)成分の合計100質量部に対して50質量部以上}、
(F)非球状シリカ、球状シリカまたはガラスファイバー{(A)成分~(D)成分の合計100質量部に対して100質量部以上}、および
(G)一分子中に少なくとも1個の炭素−炭素二重結合を有する、炭素原子数が10以上のカルボン酸またはその金属塩
から少なくともなり、(E)成分および(F)成分の合計の含有量が、(A)成分~(D)成分の合計100質量部に対して400質量部以下であり、(G)成分の含有量が、(A)成分~(D)成分の合計100質量部に対して0.01~8質量部であることを特徴とする。
 また、本発明の反応性熱可塑体は、上記の反応性シリコーン組成物のヒドロシリル化反応を70~95%転化率となるまで進行させてなることを特徴とする。
 また、本発明の硬化物は、上記の反応性熱可塑体を100℃以上に加熱することにより得られ、300℃で固体もしくは粘度が1,000,000Pa・s以上であることを特徴とするか、または、上記の反応性シリコーン組成物を硬化してなることを特徴とする。
 さらに、本発明の光半導体装置は、上記の硬化物により光反射材を形成してなることを特徴とする。
The reactive silicone composition of the present invention comprises:
(A) Average unit formula:
(R 1 3 SiO 1/2 ) a (R 1 2 SiO 2/2 ) b (R 1 SiO 3/2 ) c (SiO 4/2 ) d (R 2 O 1/2 ) e
(Wherein R 1 is the same or different and is a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 30 to 80 mol% of all R 1 s ) Is a phenyl group, 10 to 20 mol% of all R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, c, d, and e are 0 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.70, 0.3 ≦ c ≦ 0.9, 0 ≦ d ≦ 0.20, 0 ≦ e ≦ 0.10, and a + b + c + d = 1 are satisfied. Number.)
100 parts by mass of an organopolysiloxane represented by
(B) General formula:
R 3 3 SiO (R 3 2 SiO) m SiR 3 3
(Wherein R 3 is the same or different and is a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 30 to 70 mol% of all R 3 s ) Is a phenyl group, at least one of all R 3 is an alkenyl group, and m is an integer of 10 to 100.)
0 to 40 parts by mass of an organopolysiloxane represented by
(C) Organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule and 20 to 70 mol% of all silicon-bonded organic groups being phenyl groups {component (A) and component (B) Amount of silicon atom-bonded hydrogen atoms in this component to be 0.5 to 2 moles relative to a total of 1 mole of alkenyl groups therein},
(D) Hydrosilylation catalyst {a sufficient amount to promote the hydrosilylation reaction between the alkenyl group in components (A) and (B) and the silicon atom-bonded hydrogen atom in component (C)},
(E) White pigment {50 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D)},
(F) Non-spherical silica, spherical silica or glass fiber {100 parts by mass or more with respect to 100 parts by mass in total of components (A) to (D)}, and (G) at least one carbon in one molecule It consists of at least a carboxylic acid having 10 or more carbon atoms or a metal salt thereof having a carbon double bond, and the total content of component (E) and component (F) is that of components (A) to (D) It is 400 parts by mass or less with respect to 100 parts by mass in total, and the content of the component (G) is 0.01 to 8 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). It is characterized by.
The reactive thermoplastic of the present invention is characterized in that the hydrosilylation reaction of the above reactive silicone composition is allowed to proceed until a conversion of 70 to 95% is achieved.
The cured product of the present invention is obtained by heating the above-mentioned reactive thermoplastic to 100 ° C. or higher, and is characterized by having a solid or a viscosity of 1,000,000 Pa · s or higher at 300 ° C. Or the above-mentioned reactive silicone composition is cured.
Furthermore, the optical semiconductor device of the present invention is characterized in that a light reflecting material is formed from the above cured product.
 本発明の反応性シリコーン組成物は、反応性熱可塑体を形成することができるという特徴がある。また、本発明の反応性熱可塑体は、加熱すると一旦流動化し、その後、硬化物を与えるという特徴がある。また、本発明の硬化物は、熱や光による機械的強度の低下や変色が少なく、光反射率が高く、金型離型性が優れるという特徴がある。さらに、本発明の光半導体装置は、発光効率が高く、光反射材の熱劣化や光劣化が少なく、信頼性が優れるという特徴がある。 The reactive silicone composition of the present invention is characterized in that it can form a reactive thermoplastic. In addition, the reactive thermoplastic of the present invention is characterized by being fluidized once heated and then giving a cured product. Further, the cured product of the present invention is characterized in that the mechanical strength is not lowered or discolored by heat or light, the light reflectance is high, and the mold releasability is excellent. Furthermore, the optical semiconductor device of the present invention is characterized by high luminous efficiency, low thermal degradation and light degradation of the light reflecting material, and excellent reliability.
 図1は、本発明の光半導体装置の一例であるLEDの断面図である。 FIG. 1 is a cross-sectional view of an LED which is an example of an optical semiconductor device of the present invention.
 はじめに、本発明の反応性シリコーン組成物を詳細に説明する。
 (A)成分は、本組成物の主成分であり、平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2
で表されるオルガノポリシロキサンである。
 式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が例示される。Rのアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示される。なお、フェニル基の含有量は全Rの30~80モル%の範囲内であり、好ましくは、全Rの60~75モル%の範囲内である。これは、フェニル基の含有量が上記範囲の下限以上であると、得られる反応性熱可塑体の室温での硬さと高温での流動特性が良好であり、また得られる硬化物の機械的強度が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の高温での硬さが良好であるからである。また、式中、全Rの内、アルケニル基の含有量は10~20モル%の範囲内である。これは、アルケニル基の含有量が上記範囲の下限以上であると、得られる硬化物の室温での硬さが良好であり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。
 また、式中、Rは水素原子または炭素原子数1~6のアルキル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基が例示される。
 さらに、式中、aは、一般式:R SiO1/2で表されるシロキサン単位の割合を示す数であり、0≦a≦0.30、好ましくは、0≦a≦0.25を満たす数である。これは、aが上記範囲の上限以下であると、得られる硬化物の室温での硬さが良好であるからである。また、式中、bは、一般式:R SiO2/2で表されるシロキサン単位の割合を示す数であり、0≦b≦0.70を満たす数であり、反応性熱可塑体を形成する場合には、0.10≦b≦0.70を満たす数であることが好ましく、さらには、0.15≦b≦0.60を満たす数であることが好ましい。これは、bが上記範囲の下限以上であると、得られる反応性熱可塑体の室温での硬さと高温での流動特性が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の室温での硬さが良好であるからである。また、cは、一般式:RSiO3/2で表されるシロキサン単位の割合を示す数であり、0.3≦c≦0.9を満たす数であり、好ましくは、0.35≦c≦0.85を満たす数であり、より好ましくは、0.40≦c≦0.80を満たす数である。これは、cが上記範囲の下限以上であると、得られる硬化物の室温での硬さが良好であり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。また、dは、一般式:SiO4/2で表されるシロキサン単位の割合を示す数であり、0≦d≦0.20、好ましくは、0≦b≦0.10を満たす数である。これは、dが上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。また、eは、一般式:R1/2で表される単位の割合を示す数であり、0≦e≦0.10を満たす数である。これは、eが上記範囲の上限以下であると、得られる硬化物の室温での硬さが良好であるからである。なお、式中、a、b、c、およびdの合計は1である。
 (A)成分は、通常、分子量分布を有するものであり、複数のオルガノポリシロキサンの混合物である。また、(A)成分は、別々に調製されたオルガノポリシロキサンを混合したものであってもよいが、各オルガノポリシロキサンは上記式において、0≦a≦0.30、0≦b≦0.70、0.3≦c≦0.9、0≦d≦0.20、0≦e≦0.10を満たす数でなければならない。
 (B)成分は、本組成物の粘度を調整し、得られる硬化物の硬さと機械的強度を調整するための任意成分であり、一般式:
SiO(R SiO)SiR
で表されるオルガノポリシロキサンである。
 式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が例示される。Rのアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示される。なお、式中、全Rの内、フェニル基の含有量は30~70モル%の範囲内であり、好ましくは、40~60モル%の範囲内である。これは、フェニル基の含有量が上記範囲の下限以上であると、得られる硬化物の機械的強度が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の硬さが良好であるからである。また、式中、Rの少なくとも1個はアルケニル基である。これは、アルケニル基を有すると、本成分が硬化反応に取り込まれるからである。
 また、式中、mは10~100の範囲内の整数であり、好ましくは、10~50の範囲内の整数である。これは、mが上記範囲の下限以上であると、得られる硬化物の機械的強度が良好であり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好であるからである。
 本組成物において、(B)成分の含有量は、(A)成分100質量部に対して0~40質量部の範囲内となる量であり、好ましくは、0~20質量部の範囲内となる量である。これは、(B)成分の含有量が上記範囲の上限以下であると、得られる硬化物の硬さが良好であるからである。
 (C)成分は、本組成物の架橋剤であり、一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基の20~70モル%がフェニル基であるオルガノポリシロキサンである。(C)成分中のケイ素原子結合水素原子は一分子中に少なくとも2個であるが、これは、硬化のための架橋が十分であり、得られる硬化物の硬さが良好であるからである。また、(C)成分中のケイ素原子結合有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等の脂肪族不飽和結合を有さない一価炭化水素基が例示され、好ましくは、フェニル基、または炭素原子数1~6のアルキル基である。(C)成分は、ケイ素原子結合全有機基の20~70モル%がフェニル基である。これは、フェニル基の含有量が上記範囲の下限以上であると、得られる硬化物の高温での機械的強度が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。
 このような(C)成分としては、一般式:
(HR SiO)SiR
で表されるオルガノトリシロキサン、一般式:
SiO(R SiO)SiR
で表される直鎖状のオルガノポリシロキサン、平均単位式:
(RSiO3/2(R SiO2/2(R SiO1/2(SiO4/2(R1/2
で表される分岐鎖状のオルガノポリシロキサンが例示される。
 式中、Rは、同じかまたは異なる、フェニル基、もしくは炭素原子数1~6のアルキル基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が例示される。なお、全Rの内、フェニル基の含有量は30~70モル%の範囲内である。
 また、式中、Rは、同じかまたは異なる、水素原子、フェニル基、もしくは炭素原子数1~6のアルキル基であり、式中、少なくとも2個のRは水素原子である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロペンチル基、シクロヘキシル基が例示される。なお、水素原子を除く全Rの内、フェニル基の含有量は30~70モル%の範囲内である。
 また、式中、Rは水素原子または炭素原子数1~6のアルキル基である。Rのアルキル基としては、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基が例示される。
 また、式中、nは5~1,000の範囲内の整数である。
 また、式中、pは正数であり、qは0又は正数であり、rは0又は正数であり、は0又は正数であり、tは0又は正数であり、かつ、q/pは0~10の範囲内の数であり、r/pは0~5の範囲内の数であり、s/(p+q+r+s)は0~0.3の範囲内の数であり、t/(p+q+r+s)は0~0.4の範囲内の数である。
 このような(C)成分において、そのすべてが、一般式:
(HR SiO)SiR
で表されるオルガノトリシロキサンであることが好ましいが、反応性熱可塑体を経ずに硬化物を形成する場合には、(C)成分の少なくとも50質量%は上記のオルガノトリシロキサンであることが好ましい。さらに、得られる硬化物の硬さを調整するために適時その他のオルガノシロキサンを加えてもよい。
 本組成物において、(C)成分の含有量は、(A)成分および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.5~2モルの範囲内となる量であり、好ましくは、0.5~1.5モルの範囲内となる量である。これは、(C)成分の含有量が上記範囲内であると、得られる硬化物の硬さが良好であるからである。
 (D)成分は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するためのヒドロシリル化反応用触媒である。(D)成分としては、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金−アルケニルシロキサン錯体、白金−オレフィン錯体、白金−カルボニル錯体が例示され、特に、白金−アルケニルシロキサン錯体であることが好ましい。このアルケニルシロキサンとしては、1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金−アルケニルシロキサン錯体の安定性が良好であることから、1,3−ジビニル−1,1,3,3−トテラメチルジシロキサンが好ましい。また、この白金−アルケニルシロキサン錯体の安定性を向上させることができることから、この錯体に1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン、1,3−ジアリル−1,1,3,3−テトラメチルジシロキサン、1,3−ジビニル−1,3−ジメチル−1,3−ジフェニルジシロキサン、1,3−ジビニル−1,1,3,3−テトラフェニルジシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン等のアルケニルシロキサンやジメチルシロキサンオリゴマー等のオルガノシロキサンオリゴマーを添加することが好ましく、特に、アルケニルシロキサンを添加することが好ましい。
 本組成物において、(D)成分の含有量は、(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するのに十分な量であれば特に限定されないが、好ましくは、本組成物に対して、本成分中の金属原子が質量単位で0.01~500ppmの範囲内となる量であることが好ましく、さらには、0.01~100ppmの範囲内となる量であることが好ましく、特には、0.01~50ppmの範囲内となる量であることが好ましい。これは、(D)成分の含有量が上記範囲の下限以上であると、得られる組成物の硬化が良好であり、一方、上記範囲の上限以下であると、得られる硬化物に着色を生じ難いからである。
 (E)成分は、本組成物およびその硬化物を白色に着色し、光反射率を高めるための白色顔料である。(E)成分としては、酸化チタン、アルミナ、酸化亜鉛、酸化ジルコン、酸化マグネシウム等の金属酸化物;その他、硫酸バリウム、硫化亜鉛が例示され、特に、酸化チタンまたは酸化亜鉛が好ましい。
 (E)成分の平均粒径や形状は限定されないが、平均粒径は0.05~10.0μmの範囲内であることが好ましく、特に、0.1~5.0μmの範囲内であることが好ましい。白色顔料は、樹脂や無機充填剤との相溶性、分散性を高めるため、シランカップリング剤、シリカ、アルミナ等で表面処理したものを使用することができる。
 本組成物において、(E)成分の含有量は、(A)成分~(D)成分の合計100質量部に対して50質量部以上であり、好ましくは、60質量部以上である。これは、(E)成分の含有量が上記下限以上であると、得られる硬化物の光反射率が良好であるからである。
 (F)成分は、本組成物の粘度の上昇による作業性の低下を改善し、硬化物の線膨張率を小さくし、寸法安定性を改善するための球状シリカ、非球状シリカもしくはガラスファイバーである。(F)成分の球状シリカとしては、乾式シリカ、湿式シリカ、溶融シリカ、爆燃シリカが例示されるが、本組成物への充填性が良好であることから、溶融シリカが好ましい。(F)成分の非球状シリカとしては、石英粉末、ガラスビーズが例示され、好ましくは、石英粉末である。(F)成分のガラスファイバーとしては、チョップドガラスファイバー、ミルドガラスファイバーが例示され、好ましくは、ミルドガラスファイバーである。
 (F)成分の球状シリカの粒径は限定されないが、平均粒径は0.1~50μmの範囲内であることが好ましく、特に、0.5~20μmの範囲内であることが好ましい。(F)成分の非球状シリカの平均粒径は限定されないが、0.1~20μmの範囲内であることが好ましく、特に、0.5~10μmの範囲内であることが好ましい。(F)成分のガラスファイバーの形状は限定されないが、ファイバー径が1~50μmの範囲内であることが好ましく、特に、5~20μmの範囲内であることが好ましく、また、そのファイバー長が5~500μmの範囲内であることが好ましく、特に、10~300μmの範囲内であることが好ましい。
 本組成物において、(F)成分の含有量は、(A)成分~(D)成分の合計100質量部に対して100質量部以上であり、好ましくは、120質量部以上である。(F)成分の含有量が上記下限以上であると、得られる硬化物の線膨張率が低く、寸法安定性が良好であるからである。
 本組成物において、(E)成分および(F)成分の合計の含有量は、(A)成分~(D)成分の合計100質量部に対して400質量部以下であり、好ましくは、350質量部以下である。(E)成分および(F)成分の合計の含有量が上記上限以下であると、得られる組成物の粘度が良好であるからである。
 (G)成分は、本組成物を用いてトランスファー成形、射出成形、または圧縮成形により光半導体装置を作製する際、金型からの硬化物の離型性を高めるための成分であり、一分子中に少なくとも1個の炭素−炭素二重結合を有する、炭素原子数が10以上のカルボン酸またはその金属塩である。このような(G)成分としては、オレイン酸、リノール酸、リノレン酸、オレイン酸亜鉛、オレイン酸アルミニウム、オレイン酸カルシウムが例示される。酸化による経年劣化が少ないという観点から、オレイン酸およびその金属塩が好ましい。
 (G)成分の含有量は、(A)成分~(D)成分の合計100質量部に対して、0.01~8質量部の範囲内であり、特に、0.05~5質量部の範囲内であることが好ましい。これは、(G)成分の含有量が上記範囲の上限以下であると、得られる硬化物が柔らかくなりすぎないからであり、一方、上記範囲の下限以上であると、得られる硬化物の離型性が良好であるからである。
 本組成物には、硬化途上で接触している基材への接着性を高めるための接着促進剤として、(H)平均単位式:
(R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2
で表されるオルガノポリシロキサンを含有することが好ましい。
 式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基もしくはエポキシ基含有有機基である。Rのアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘプチル基、シクロペンチル基、シクロヘプチル基が例示される。Rのアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示される。Rのエポキシ基含有有機基としては、3−グリシドキシプロピル基、4−グリシドキシブチル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基が例示される。なお、式中、全Rの内、フェニル基の含有量は15~60モル%の範囲内であり、好ましくは、20~50モル%の範囲内である。これは、フェニル基の含有量が上記範囲の下限以上であると、得られる硬化物の接着性と反射率が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の接着性と耐熱性が良好であるからである。式中、全Rの内、アルケニル基の含有量は3~30モル%の範囲内であり、好ましくは、5~20モル%の範囲内である。これは、アルケニル基の含有量が上記範囲内であると、得られる硬化物の接着性が良好であるからである。また、全Rの内、エポキシ基含有有機基の含有量は5~30モル%の範囲内であり、好ましくは、10~20モル%の範囲内である。これは、エポキシ基含有有機基の含有量が上記範囲の下限以上であると、得られる硬化物の接着性が良好であり、一方、上記範囲の上限以下であると、良好な耐熱性が得られるからである。
 また、式中、Rは水素原子または炭素原子数1~6のアルキル基である。Rのアルキル基としては、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基が例示される。
 また、式中、fは、一般式:R SiO1/2で表されるシロキサン単位の割合を示す数であり、0≦f≦0.5、好ましくは、0≦f≦0.4を満たす数である。これは、fが上記範囲の上限以下であると、得られる硬化物の接着性が良好であるからである。また、式中、gは、一般式:R SiO2/2で表されるシロキサン単位の割合を示す数であり、0≦g≦0.9、好ましくは、0≦g≦0.8を満たす数である。これは、gが上記範囲の上限以下であると、得られる硬化物の接着性が良好であるからである。また、hは、一般式:RSiO3/2で表されるシロキサン単位の割合を示す数であり、0≦h≦0.7、好ましくは、0≦h≦0.6を満たす数である。これは、hが上記範囲の上限以下であると、得られる硬化物の接着性が良好であるからである。また、iは、一般式:SiO4/2で表されるシロキサン単位の割合を示す数であり、0≦i≦0.3、好ましくは、0≦i≦0.2を満たす数である。これは、iが上記範囲の上限以下であると、得られる硬化物の接着性が良好であるからである。また、jは、一般式:R1/2で表される単位の割合を示す数であり、0≦j≦0.02を満たす数である。これは、jが上記範囲の上限以下であると、本組成物の可使時間ならびに保存安定性が良好であるからである。なお、式中、f、g、h、およびiの合計は1である。
 本組成物において、(H)成分の含有量は、(A)成分~(D)成分の合計100質量部に対して0.5~10.0質量部の範囲内となる量であることが好ましく、特に、1.0~8.0質量部の範囲内となる量であることが好ましい。これは、(H)成分の含有量が上記範囲の上限以下であると、得られる硬化物の耐熱性が良好であり、一方、上記範囲の下限以上であると、得られる硬化物の接着性が良好であるからである。
 本組成物には、本組成物の硬化性を損なわずに、常温での可使時間を延長する目的、および本組成物の硬化物に対する光半導体装置用の封止材の接着性を高める目的で、第2の架橋剤である(I)一分子中に2個以上のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基に対するフェニル基の含有量が20モル%未満であるオルガノポリシロキサンを含有することが好ましい。
 (I)成分中のケイ素原子結合水素原子は一分子中に2個以上であるが、これは、硬化のための架橋が十分であり、得られる硬化物の硬さが良好であるからである。また、(I)成分中のケイ素原子結合有機基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基等の脂肪族不飽和結合を有さない一価炭化水素基が例示され、好ましくは、フェニル基、または炭素原子数1~6のアルキル基である。(I)成分中のケイ素原子結合全有機基に対するフェニル基の含有量は20モル%未満であり、好ましくは、10モル%以下である。また、(I)成分中のケイ素原子結合全有機基の90モル%以上がメチル基であることが好ましい。これは、フェニル基の含有量が上記上限未満であり、メチル基の含有量が上記範囲の下限以上であると、得られる硬化物の各種基材への接着性が良好であり、また硬化物に対する光半導体装置用の封止材の接着性が良好であるからである。
 このような(I)成分としては、式:
(MeHSiO)
(式中、Meはメチル基を表わし、kは4~8の整数である)
で表されるオルガノポリシロキサン、一般式:
MeSiO(MeHSiO)SiMe
MeSiO(MeHSiO)(MeSiO)SiMe
(式中、Meはメチル基を表わし、xは5以上の整数、y、zはそれぞれ5以上の整数であるが、yはzと同じかそれ以上である)
で表されるオルガノポリシロキサンが例示される。
 本組成物において、(I)成分の含有量は、(A)成分および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.001~0.20モルの範囲内となる量であり、好ましくは、0.002~0.10モルの範囲内となる量である。これは、(I)成分の含有量が上記範囲内であると、組成物の常温での可使時間が延長され、得られる硬化物に対する光半導体装置用の封止材の接着性が良好となり、さらに本組成物をヒドロシリル化反応して得られる反応性熱可塑体の高温での流動性が良好となるからである。
 本組成物は、上記(A)成分~(G)成分から少なくともなるが、その他任意の成分として、1−エチニル−1−シクロヘキサノール、2−メチル−3−ブチン−2−オール、3,5−ジメチル−1−ヘキシン−3−オール、2−フェニル−3−ブチン−2−オール等のアルキンアルコール;3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン等のエンイン化合物;1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、1,3,5,7−テトラメチル−1,3,5,7−テトラヘキセニルシクロテトラシロキサン、ベンゾトリアゾール等の反応抑制剤を含有してもよい。この反応抑制剤の含有量は限定されないが、本組成物に対して、質量単位で1~5,000ppmの範囲内であることが好ましい。
 さらに、本組成物には、上記(H)成分以外の接着促進剤を含有してもよい。このような接着促進剤としては、トリアルコキシシロキシ基(例えば、トリメトキシシロキシ基、トリエトキシシロキシ基)もしくはトリアルコキシシリルアルキル基(例えば、トリメトキシシリルエチル基、トリエトキシシリルエチル基)と、ヒドロシリル基もしくはアルケニル基(例えば、ビニル基、アリル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とメタクリロキシアルキル基(例えば、3−メタクリロキシプロピル基)を有するオルガノシラン、またはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;トリアルコキシシロキシ基もしくはトリアルコキシシリルアルキル基とエポキシ基結合アルキル基(例えば、3−グリシドキシプロピル基、4−グリシドキシブチル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基)を有するオルガノシランまたはケイ素原子数4~20程度の直鎖状構造、分岐状構造又は環状構造のオルガノシロキサンオリゴマー;アミノアルキルトリアルコキシシランとエポキシ基結合アルキルトリアルコキシシランの反応物、エポキシ基含有エチルポリシリケートが挙げられ、具体的には、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ハイドロジェントリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリエトキシシランと3−アミノプロピルトリエトキシシランの反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3−グリシドキシプロピルトリメトキシシランの縮合反応物、シラノール基封鎖メチルビニルシロキサンオリゴマーと3−メタクリロキシプロピルトリエトキシシランの縮合反応物、トリス(3−トリメトキシシリルプロピル)イソシアヌレート、酸無水物が挙げられる。
 さらに、本組成物を反応性熱可塑体を経ずに硬化物を形成する場合には、本組成物の取扱作業性を向上させ、得られる硬化物の硬さを調整するため、ケイ素原子結合全有機基の30~60モル%が炭素原子数2~6のアルケニル基である、ケイ素原子数が10以下のオルガノポリシロキサンを含有してもよい。このオルガノポリシロキサン中のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示される。また、このオルガノポリシロキサン中のアルケニル基以外のケイ素原子結合有機基は特に限定されないが、メチル基、フェニル基が例示され、好ましくは、メチル基である。また、ケイ素原子結合全有機基の30~60モル%が炭素原子数2~6のアルケニル基である。これは、アルケニル基の含有量が上記範囲の下限以上であると、得られる硬化物の硬さが良好であり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。さらに、ケイ素原子数が10以下であるが、これは、ケイ素原子数が10以下であると、組成物の粘度が良好であるからである。
 このようなオルガノポリシロキサンとしては、1,3,5,7−テトラメチル−1,3,5,7−テトラビニルシクロテトラシロキサン、テトラキス(ジメチルビニルシロキシ)シラン、メチルトリス(ジメチルビニルシロキシ)シラン、およびフェニルトリス(ジメチルビニルシロキシ)シランが例示される。
 このオルガノポリシロキサンの含有量は、(A)成分100質量部に対して、0~50質量部の範囲内となる量であることが好ましく、特に、本組成物を液状の反応性シリコーン組成物として使用するときは、5~40質量部の範囲内となる量であることが好ましい。これは、このオルガノポリシロキサンの含有量が上記範囲の下限以上であると、組成物の粘度が良好であり、一方、上記範囲の上限以下であると、得られる硬化物の機械的強度が良好であるからである。
 さらに、本組成物には、本発明の目的を損なわない限り、その他任意の成分として、球状シリカ、非球状シリカ、ガラスファイバー以外の無機充填剤、ポリメタクリレート樹脂やシリコーン樹脂等の有機樹脂微粉末;ベンゾトリアゾール、カルボキシベンゾトリアゾールなどの腐食防止剤、耐熱剤、難燃性付与剤、溶剤等を含有してもよい。
 本組成物の25℃における粘度は特に限定されないが、反応性熱可塑体を得る場合には、好ましくは、10,000Pa・s以下であり、特に好ましくは、10~5,000Pa・sの範囲内である。これは、粘度が上記範囲の下限以上であると、所望の形状の反応性熱可塑体を形成することが容易であり、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好であるからである。
 また、本組成物を液状の反応性シリコーン組成物として使用する場合、その25℃における粘度は、好ましくは5~200Pa・sの範囲内であり、さらに好ましくは5~120Pa・sの範囲内であり、特に好ましくは10~80Pa・sの範囲内である。これは、粘度が上記範囲の下限以上であると、成形時にバリの発生が抑制され、一方、上記範囲の上限以下であると、得られる組成物の取扱作業性が良好であるからである。
 次に、本発明の反応性熱可塑体について詳細に説明する。
 本発明の反応性熱可塑体は、上記の反応性シリコーン硬化物のヒドロシリル化反応の転化率が70%~95%となるまで反応させてなるものである。ヒドロシリル化の転化率とは、ヒドロシリル化反応する全官能基量のうち、実際に反応が起きたものの割合をパーセントで表わしたものであり、その確認法は特に限定されないが、例えば、示差走査熱量計(DSC)を用いて、反応性シリコーン組成物と得られた反応性熱可塑体の反応発熱量を測定し、その差から転化率を簡便に算出することができる。反応は室温もしくは加熱により反応が進行するが、反応性熱可塑体を効率よく得るためには加熱することが好ましい。この加熱温度としては、50~150℃の範囲内であることが好ましく、80~130℃の範囲内であることがさらに好ましい。
 本発明の反応性熱可塑体は、25℃で固体もしくは粘度が1,000,000Pa・s以上であり、100℃で粘度が100,000Pa・s以下の液状であるものが好ましい。
 また、本発明の反応性熱可塑体は、JIS K 7215—1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータ硬さが25℃で30以上であることが好ましい。
 このような本発明の反応性熱可塑体は、100℃以上に加熱すると一旦流動化し、その後、ヒドロシリル化反応が進行し、硬化物を与える。
 次に、本発明の硬化物について詳細に説明する。
 本発明の硬化物は、上記の反応性熱可塑体を加熱して、残りのヒドロシリル化反応を行って得られるもの、または、反応性可塑体を経ずに、上記液状の反応性シリコーン組成物を加熱してヒドロシリル化反応を行って得られるものであり、300℃で固体もしくは粘度が1,000,000Pa・s以上である。硬化物の硬さは特に限定されないが、JIS K 7215—1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータ硬さが60以上であることが好ましく、さらには、65以上であることが好ましく、特には、70以上であることが好ましい。これは、硬度が上記下限以上であると、硬化物の寸法安定性が向上し、硬化物の変形が起こり難くなるためである。
 また、本硬化物の反射率は特に限定されないが、JIS K 7375:2008「プラスチック−全光線透過率及び全光線反射率の求め方」に規定の方法により測定した全光線反射率が75%以上であることが好ましく、特には、80%以上であることが好ましい。
 また、本硬化物の線膨張率は特に限定されないが、JIS K 7197—1991「プラスチックの熱機械分析による線膨張率の試験方法」に規定の方法により測定した線膨張率が25~200℃の温度範囲での平均値として、200ppm/℃以下であることが好ましく、特に、150ppm/℃以下であることが好ましい。
 また、本発明の硬化物は、上記反応性熱可塑体または上記反応性シリコーン組成物を100℃以上に加熱した金属金型中で硬化してなることが好ましい。光半導体装置の反射材として本硬化物を形成する場合の硬化方法としては、例えば、圧縮成形、トランスファー成形、射出成形が挙げられる。
 次に、本発明の光半導体装置について詳細に説明する。
 本発明の光半導体装置は、光反射材が上記硬化物により形成されていること特徴とする。このような光半導体装置としては、発光ダイオード(LED)が例示される。この光半導体装置において、光反射材は、光半導体装置の枠材(パッケージング材)としても機能している。
 本半導体装置の一例である表面実装型LEDの断面図を図1に示した。図1で示されるLEDは、光半導体素子1がリードフレーム2上にダイボンド材によりダイボンディングされ、この光半導体素子1とリードフレーム2、3とがボンディングワイヤ4、4’によりワイヤボンディングされている。この光半導体素子1の上部を除く周囲には、上記の硬化物からなる光反射材5を有し、この光反射材5の内側の光半導体素子1は封止材6により封止されている。
 図1で示される表面実装型LEDを製造する方法としては、(1)本発明の反応性熱可塑体をトランスファー成形または圧縮成形により、リードフレーム2、3と一体化した光反射材5を形成する工程、(2)リードフレーム2上にダイボンド材により光半導体素子1をダイボンディングする工程、(3)光半導体素子1とリードフレーム2、3をボンディングワイヤ4、4’によりワイヤボンディングする工程、(4)光半導体素子1を封止材6に封止する工程からなる方法が例示される。
First, the reactive silicone composition of the present invention will be described in detail.
(A) component is the main component of this composition, average unit formula:
(R1 3SiO1/2)a(R1 2SiO2/2)b(R1SiO3/2)c(SiO4/2)d(R2O1/2)e
It is organopolysiloxane represented by these.
Where R1Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. R1Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. R1Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. The phenyl group content is R1In the range of 30 to 80 mol%, preferably all R1In the range of 60 to 75 mol%. This is because when the phenyl group content is at least the lower limit of the above range, the resulting reactive thermoplastic has good room temperature hardness and high temperature flow characteristics, and the resulting cured product has mechanical strength. On the other hand, the hardness at high temperature of the obtained cured product is good when it is not more than the upper limit of the above range. In the formula, all R1Of these, the alkenyl group content is in the range of 10 to 20 mol%. This is because when the content of the alkenyl group is not less than the lower limit of the above range, the resulting cured product has good hardness at room temperature. This is because the mechanical strength is good.
Also, in the formula, R2Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R2Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
Furthermore, in the formula, a is a general formula: R1 3SiO1/2Is a number satisfying 0 ≦ a ≦ 0.30, preferably 0 ≦ a ≦ 0.25. This is because the hardness at room temperature of the obtained cured product is good when a is not more than the upper limit of the above range. In the formula, b is a general formula: R1 2SiO2/2Is a number satisfying 0 ≦ b ≦ 0.70, and when forming a reactive thermoplastic, satisfies 0.10 ≦ b ≦ 0.70. It is preferably a number, and more preferably a number satisfying 0.15 ≦ b ≦ 0.60. This is obtained when b is equal to or higher than the lower limit of the above range, and the resulting thermoplastic thermoplastic resin has good room temperature hardness and high temperature flow characteristics, while being equal to or lower than the upper limit of the above range. This is because the hardness of the cured product at room temperature is good. C is a general formula: R1SiO3/2And a number satisfying 0.3 ≦ c ≦ 0.9, preferably a number satisfying 0.35 ≦ c ≦ 0.85, more preferably , 0.40 ≦ c ≦ 0.80. When c is equal to or higher than the lower limit of the above range, the cured product obtained has good hardness at room temperature. Because. D is a general formula: SiO4/2And is a number satisfying 0 ≦ d ≦ 0.20, preferably 0 ≦ b ≦ 0.10. This is because the mechanical strength of the obtained cured product is good when d is not more than the upper limit of the above range. E is a general formula: R2O1/2Is a number satisfying 0 ≦ e ≦ 0.10. This is because the hardness of the obtained cured product at room temperature is good when e is not more than the upper limit of the above range. In the formula, the sum of a, b, c, and d is 1.
The component (A) usually has a molecular weight distribution and is a mixture of a plurality of organopolysiloxanes. In addition, the component (A) may be a mixture of separately prepared organopolysiloxanes, but each organopolysiloxane is 0 ≦ a ≦ 0.30, 0 ≦ b ≦ 0. 70, 0.3 ≦ c ≦ 0.9, 0 ≦ d ≦ 0.20, and 0 ≦ e ≦ 0.10.
Component (B) is an optional component for adjusting the viscosity of the composition and adjusting the hardness and mechanical strength of the resulting cured product.
R3 3SiO (R3 2SiO)mSiR3 3
It is organopolysiloxane represented by these.
Where R3Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. R3Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. R3Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. In the formula, all R3Of these, the phenyl group content is in the range of 30 to 70 mol%, and preferably in the range of 40 to 60 mol%. If the phenyl group content is not less than the lower limit of the above range, the resulting cured product has good mechanical strength, whereas if it is not more than the upper limit of the above range, the hardness of the obtained cured product is It is because it is good. In the formula, R3At least one of is an alkenyl group. This is because this component is taken into the curing reaction when it has an alkenyl group.
In the formula, m is an integer in the range of 10 to 100, preferably an integer in the range of 10 to 50. When m is not less than the lower limit of the above range, the resulting cured product has good mechanical strength, and when it is not more than the upper limit of the above range, the resulting composition has good handling workability. Because.
In the present composition, the content of the component (B) is an amount in the range of 0 to 40 parts by mass, preferably in the range of 0 to 20 parts by mass with respect to 100 parts by mass of the component (A). Is the amount. This is because the hardness of the obtained cured product is good when the content of the component (B) is not more than the upper limit of the above range.
Component (C) is a crosslinking agent of the present composition, and has at least two silicon atom-bonded hydrogen atoms in one molecule, and 20 to 70 mol% of all silicon atom-bonded organic groups are phenyl groups. Polysiloxane. (C) The number of silicon-bonded hydrogen atoms in the component is at least two in one molecule, because this is sufficient for crosslinking and the resulting cured product has good hardness. . In addition, as the silicon atom-bonded organic group in the component (C), an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group Aryl groups such as phenyl group, tolyl group and xylyl group; monovalent hydrocarbon groups having no aliphatic unsaturated bond such as aralkyl groups such as benzyl group and phenethyl group, and the like, preferably phenyl group, or An alkyl group having 1 to 6 carbon atoms. In the component (C), 20 to 70 mol% of the silicon atom-bonded all organic groups are phenyl groups. If the phenyl group content is not less than the lower limit of the above range, the resulting cured product has good mechanical strength at high temperatures, and if it is not more than the upper limit of the above range, This is because the mechanical strength is good.
Such component (C) has the general formula:
(HR4 2SiO)2SiR4 2
Organotrisiloxane represented by the general formula:
R5 3SiO (R5 2SiO)nSiR5 3
A linear organopolysiloxane represented by the formula:
(R5SiO3/2)p(R5 2SiO2/2)q(R5 3SiO1/2)r(SiO4/2)s(R6O1/2)t
The branched-chain organopolysiloxane represented by these is illustrated.
Where R4Are the same or different phenyl groups or alkyl groups having 1 to 6 carbon atoms. R4Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. All R4Of these, the phenyl group content is in the range of 30 to 70 mol%.
Also, in the formula, R5Are the same or different hydrogen atoms, phenyl groups, or alkyl groups having 1 to 6 carbon atoms, wherein at least two R5Is a hydrogen atom. R5Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, and a cyclohexyl group. All R except for hydrogen atoms5Of these, the phenyl group content is in the range of 30 to 70 mol%.
Also, in the formula, R6Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R6Examples of the alkyl group include a methyl group, an ethyl group, a butyl group, a pentyl group, and a hexyl group.
In the formula, n is an integer in the range of 5 to 1,000.
In the formula, p is a positive number, q is 0 or a positive number, r is 0 or a positive number,SIs 0 or a positive number, t is 0 or a positive number, q / p is a number in the range of 0 to 10, r / p is a number in the range of 0 to 5, and s / (P + q + r + s) is a number in the range of 0 to 0.3, and t / (p + q + r + s) is a number in the range of 0 to 0.4.
In such a component (C), all of them have the general formula:
(HR4 2SiO)2SiR4 2
In the case where a cured product is formed without passing through a reactive thermoplastic, at least 50% by mass of the component (C) is the above organotrisiloxane. Is preferred. Furthermore, other organosiloxanes may be added at appropriate times to adjust the hardness of the resulting cured product.
In this composition, the content of component (C) is such that the silicon-bonded hydrogen atoms in this component are 0.5 to 2 with respect to a total of 1 mol of alkenyl groups in components (A) and (B). The amount is in the range of moles, preferably the amount in the range of 0.5 to 1.5 moles. This is because the hardness of the hardened | cured material obtained that content of (C) component exists in the said range is favorable.
The component (D) is a hydrosilylation catalyst for promoting the hydrosilylation reaction between the alkenyl group in the components (A) and (B) and the silicon atom-bonded hydrogen atom in the component (C). Examples of component (D) include platinum-based catalysts, rhodium-based catalysts, and palladium-based catalysts, and platinum-based catalysts are preferred because they can significantly accelerate the curing of the composition. Examples of the platinum-based catalyst include platinum fine powder, chloroplatinic acid, an alcohol solution of chloroplatinic acid, a platinum-alkenylsiloxane complex, a platinum-olefin complex, and a platinum-carbonyl complex, and in particular, a platinum-alkenylsiloxane complex. It is preferable. Examples of the alkenylsiloxane include 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, Examples thereof include alkenyl siloxanes in which part of the methyl groups of these alkenyl siloxanes are substituted with ethyl groups, phenyl groups, and the like, and alkenyl siloxanes in which the vinyl groups of these alkenyl siloxanes are substituted with allyl groups, hexenyl groups, and the like. In particular, 1,3-divinyl-1,1,3,3-toteramethyldisiloxane is preferred because the stability of this platinum-alkenylsiloxane complex is good. Further, since the stability of this platinum-alkenylsiloxane complex can be improved, 1,3-divinyl-1,1,3,3-tetramethyldisiloxane, 1,3-diallyl-1,1 can be added to this complex. , 3,3-tetramethyldisiloxane, 1,3-divinyl-1,3-dimethyl-1,3-diphenyldisiloxane, 1,3-divinyl-1,1,3,3-tetraphenyldisiloxane, , 3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane is preferably added, and alkenylsiloxane such as dimethylsiloxane oligomer is preferably added. It is preferable.
In the present composition, the content of component (D) is sufficient to promote the hydrosilylation reaction between the alkenyl group in component (A) and component (B) and the silicon-bonded hydrogen atom in component (C). Although it is not particularly limited as long as it is an amount, it is preferably an amount such that the metal atom in the component is in the range of 0.01 to 500 ppm by mass unit with respect to the composition, The amount is preferably in the range of 0.01 to 100 ppm, and particularly preferably in the range of 0.01 to 50 ppm. When the content of the component (D) is not less than the lower limit of the above range, the resulting composition is cured well. On the other hand, when the content is not more than the upper limit of the above range, the resulting cured product is colored. It is difficult.
Component (E) is a white pigment for coloring the present composition and its cured product white and increasing the light reflectance. Examples of the component (E) include metal oxides such as titanium oxide, alumina, zinc oxide, zircon oxide, and magnesium oxide; other examples include barium sulfate and zinc sulfide, and titanium oxide or zinc oxide is particularly preferable.
The average particle size and shape of the component (E) are not limited, but the average particle size is preferably in the range of 0.05 to 10.0 μm, and particularly in the range of 0.1 to 5.0 μm. Is preferred. As the white pigment, in order to improve the compatibility and dispersibility with the resin and the inorganic filler, those which have been surface-treated with a silane coupling agent, silica, alumina or the like can be used.
In the present composition, the content of the component (E) is 50 parts by mass or more, preferably 60 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D). This is because the light reflectance of the obtained cured product is good when the content of the component (E) is not less than the above lower limit.
Component (F) is spherical silica, non-spherical silica or glass fiber for improving the workability reduction due to the increase in viscosity of the composition, reducing the linear expansion coefficient of the cured product, and improving the dimensional stability. is there. Examples of the spherical silica as the component (F) include dry silica, wet silica, fused silica, and deflagration silica, but fused silica is preferable because the filling property of the present composition is good. Examples of the non-spherical silica of component (F) include quartz powder and glass beads, and quartz powder is preferable. (F) As a glass fiber of a component, a chopped glass fiber and a milled glass fiber are illustrated, Preferably it is a milled glass fiber.
The particle diameter of the spherical silica as the component (F) is not limited, but the average particle diameter is preferably in the range of 0.1 to 50 μm, particularly preferably in the range of 0.5 to 20 μm. The average particle size of the non-spherical silica of the component (F) is not limited, but is preferably in the range of 0.1 to 20 μm, and particularly preferably in the range of 0.5 to 10 μm. The shape of the component (F) glass fiber is not limited, but the fiber diameter is preferably in the range of 1 to 50 μm, particularly preferably in the range of 5 to 20 μm, and the fiber length is 5 It is preferably in the range of ~ 500 μm, particularly preferably in the range of 10 to 300 μm.
In the present composition, the content of the component (F) is 100 parts by mass or more, preferably 120 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D). It is because the linear expansion coefficient of the obtained cured product is low and the dimensional stability is good when the content of the component (F) is not less than the above lower limit.
In the present composition, the total content of the component (E) and the component (F) is 400 parts by mass or less, preferably 350 parts by mass with respect to a total of 100 parts by mass of the components (A) to (D). Or less. This is because the viscosity of the resulting composition is good when the total content of the component (E) and the component (F) is not more than the above upper limit.
Component (G) is a component for increasing the releasability of a cured product from a mold when an optical semiconductor device is produced by transfer molding, injection molding, or compression molding using the present composition. A carboxylic acid having 10 or more carbon atoms or a metal salt thereof having at least one carbon-carbon double bond therein. Examples of such component (G) include oleic acid, linoleic acid, linolenic acid, zinc oleate, aluminum oleate, and calcium oleate. Oleic acid and its metal salt are preferred from the viewpoint of little deterioration over time due to oxidation.
The content of the component (G) is in the range of 0.01 to 8 parts by mass, particularly 0.05 to 5 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). It is preferable to be within the range. This is because if the content of the component (G) is below the upper limit of the above range, the resulting cured product will not be too soft, while if it is above the lower limit of the above range, the resulting cured product will be separated. This is because the moldability is good.
This composition contains (H) an average unit formula as an adhesion promoter for enhancing adhesion to a substrate that is in contact with the curing process:
(R7 3SiO1/2)f(R7 2SiO2/2)g(R7SiO3/2)h(SiO4/2)i(R8O1/2)j
It is preferable to contain the organopolysiloxane represented by these.
Where R7Are the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an organic group containing an epoxy group. R7Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a heptyl group, a cyclopentyl group, and a cycloheptyl group. R7Examples of the alkenyl group include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. R7As the epoxy group-containing organic group, 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3,4-epoxycyclohexyl) propyl group Is exemplified. In the formula, all R7Of these, the phenyl group content is in the range of 15 to 60 mol%, and preferably in the range of 20 to 50 mol%. When the phenyl group content is at least the lower limit of the above range, the resulting cured product has good adhesiveness and reflectivity, and when it is below the upper limit of the above range, the resulting cured product is bonded. This is because the properties and heat resistance are good. Where all R7Of these, the alkenyl group content is in the range of 3 to 30 mol%, preferably in the range of 5 to 20 mol%. This is because when the content of the alkenyl group is within the above range, the obtained cured product has good adhesiveness. All R7Among them, the content of the epoxy group-containing organic group is in the range of 5 to 30 mol%, preferably in the range of 10 to 20 mol%. When the content of the epoxy group-containing organic group is at least the lower limit of the above range, the resulting cured product has good adhesiveness. On the other hand, when the content is below the upper limit of the above range, good heat resistance is obtained. Because it is.
Also, in the formula, R8Is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R8Examples of the alkyl group include a methyl group, an ethyl group, a butyl group, a pentyl group, and a hexyl group.
In the formula, f is a general formula: R7 3SiO1/2Is a number satisfying 0 ≦ f ≦ 0.5, preferably 0 ≦ f ≦ 0.4. This is because the adhesiveness of the obtained hardened | cured material is favorable as f is below the upper limit of the said range. In the formula, g represents a general formula: R7 2SiO2/2Is a number satisfying 0 ≦ g ≦ 0.9, preferably 0 ≦ g ≦ 0.8. This is because the adhesiveness of the obtained cured product is good when g is not more than the upper limit of the above range. H is a general formula: R7SiO3/2Is a number satisfying 0 ≦ h ≦ 0.7, preferably 0 ≦ h ≦ 0.6. This is because the adhesiveness of the hardened | cured material obtained is favorable as h is below the upper limit of the said range. I is a general formula: SiO4/2Is a number satisfying 0 ≦ i ≦ 0.3, preferably 0 ≦ i ≦ 0.2. This is because the adhesiveness of the obtained cured product is good when i is not more than the upper limit of the above range. J is a general formula: R8O1/2Is a number satisfying 0 ≦ j ≦ 0.02. This is because the pot life and storage stability of the composition are good when j is not more than the upper limit of the above range. In the formula, the sum of f, g, h, and i is 1.
In the present composition, the content of the component (H) is an amount that is in the range of 0.5 to 10.0 parts by mass with respect to 100 parts by mass in total of the components (A) to (D). In particular, the amount is preferably in the range of 1.0 to 8.0 parts by mass. When the content of the component (H) is not more than the upper limit of the above range, the resulting cured product has good heat resistance, and on the other hand, if it is not less than the lower limit of the above range, the resulting cured product has adhesiveness. This is because is good.
The present composition has the purpose of extending the pot life at room temperature without impairing the curability of the composition, and the purpose of increasing the adhesiveness of the sealing material for optical semiconductor devices to the cured product of the composition (I) Organopoly having two or more silicon atom-bonded hydrogen atoms in one molecule and having a phenyl group content of less than 20 mol% with respect to all silicon atom-bonded organic groups. It is preferable to contain siloxane.
The number of silicon atom-bonded hydrogen atoms in component (I) is 2 or more in one molecule, because this is sufficient for crosslinking and the resulting cured product has good hardness. . In addition, as the silicon atom-bonded organic group in the component (I), alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, etc. Aryl groups such as phenyl group, tolyl group and xylyl group; monovalent hydrocarbon groups having no aliphatic unsaturated bond such as aralkyl groups such as benzyl group and phenethyl group, and the like, preferably phenyl group, or An alkyl group having 1 to 6 carbon atoms. The content of the phenyl group with respect to the silicon atom-bonded total organic group in the component (I) is less than 20 mol%, preferably 10 mol% or less. Moreover, it is preferable that 90 mol% or more of the silicon atom bond total organic group in (I) component is a methyl group. When the phenyl group content is less than the above upper limit and the methyl group content is not less than the lower limit of the above range, the resulting cured product has good adhesion to various substrates, and the cured product This is because the adhesiveness of the sealing material for the optical semiconductor device is good.
As such (I) component, the formula:
(MeHSiO)k
(In the formula, Me represents a methyl group, and k is an integer of 4 to 8)
Organopolysiloxane represented by the general formula:
Me3SiO (MeHSiO)xSiMe3
Me3SiO (MeHSiO)y(Me2SiO)zSiMe3
(In the formula, Me represents a methyl group, x is an integer of 5 or more, y and z are each an integer of 5 or more, and y is the same as or more than z)
The organopolysiloxane represented by these is illustrated.
In this composition, the content of component (I) is such that the silicon-bonded hydrogen atoms in this component are 0.001 to 0 with respect to 1 mol of the total of alkenyl groups in components (A) and (B). The amount is in the range of 20 moles, preferably in the range of 0.002 to 0.10 moles. This is because when the content of component (I) is within the above range, the pot life at room temperature of the composition is extended, and the adhesiveness of the sealing material for optical semiconductor devices to the obtained cured product becomes good. Furthermore, this is because the flowability of the reactive thermoplastic obtained by hydrosilylation reaction of the composition at a high temperature is improved.
This composition is composed of at least the components (A) to (G), but as other optional components, 1-ethynyl-1-cyclohexanol, 2-methyl-3-butyn-2-ol, 3, 5 Alkyne alcohols such as dimethyl-1-hexyn-3-ol and 2-phenyl-3-butyn-2-ol; 3-methyl-3-penten-1-yne, 3,5-dimethyl-3-hexene-1 An enyne compound such as yne; 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, 1,3,5,7-tetramethyl-1,3,5,7 -Reaction inhibitors such as tetrahexenylcyclotetrasiloxane and benzotriazole may be contained. The content of the reaction inhibitor is not limited, but is preferably in the range of 1 to 5,000 ppm by mass with respect to the present composition.
Furthermore, the composition may contain an adhesion promoter other than the component (H). Such adhesion promoters include trialkoxysiloxy groups (for example, trimethoxysiloxy group, triethoxysiloxy group) or trialkoxysilylalkyl groups (for example, trimethoxysilylethyl group, triethoxysilylethyl group), hydrosilyl An organosilane having an alkyl group or an alkenyl group (for example, a vinyl group, an allyl group), or a linear, branched or cyclic organosiloxane oligomer having about 4 to 20 silicon atoms; trialkoxysiloxy group or trialkoxy Organosilane having a silylalkyl group and a methacryloxyalkyl group (for example, 3-methacryloxypropyl group), or an organosiloxane oligomer having a linear structure, a branched structure or a cyclic structure having about 4 to 20 silicon atoms; Siloxy group or trialkoxysilylalkyl group and epoxy group-bonded alkyl group (for example, 3-glycidoxypropyl group, 4-glycidoxybutyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3- (3 , 4-epoxycyclohexyl) propyl group) or an organosiloxane oligomer having a linear structure, branched structure or cyclic structure having about 4 to 20 silicon atoms; aminoalkyltrialkoxysilane and epoxy group-bonded alkyltrialkoxy Examples include silane reactants and epoxy group-containing ethyl polysilicates, such as vinyltrimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, hydrogentriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-grid Doxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane Reaction product of 3-aminopropyltriethoxysilane, condensation reaction product of silanol-blocked methylvinylsiloxane oligomer and 3-glycidoxypropyltrimethoxysilane, silanol-blocked methylvinylsiloxane oligomer and 3-methacryloxypropyltriethoxysilane Examples include condensation reaction products, tris (3-trimethoxysilylpropyl) isocyanurate, and acid anhydrides.
Furthermore, when forming the cured product without passing through the reactive thermoplastic, the composition is improved by improving the handling workability of the composition and adjusting the hardness of the resulting cured product. An organopolysiloxane having 10 or less silicon atoms in which 30 to 60 mol% of all organic groups are alkenyl groups having 2 to 6 carbon atoms may be contained. Examples of the alkenyl group in the organopolysiloxane include a vinyl group, an allyl group, a butenyl group, a pentenyl group, and a hexenyl group. Further, the silicon atom-bonded organic group other than the alkenyl group in the organopolysiloxane is not particularly limited, but examples thereof include a methyl group and a phenyl group, and a methyl group is preferable. Further, 30 to 60 mol% of all silicon atom-bonded organic groups are alkenyl groups having 2 to 6 carbon atoms. When the content of the alkenyl group is not less than the lower limit of the above range, the resulting cured product has good hardness. On the other hand, when the content of the alkenyl group is not more than the upper limit of the above range, the resulting cured product has a mechanical strength. It is because it is good. Furthermore, although the number of silicon atoms is 10 or less, this is because the viscosity of the composition is good when the number of silicon atoms is 10 or less.
Such organopolysiloxanes include 1,3,5,7-tetramethyl-1,3,5,7-tetravinylcyclotetrasiloxane, tetrakis (dimethylvinylsiloxy) silane, methyltris (dimethylvinylsiloxy) silane, And phenyltris (dimethylvinylsiloxy) silane.
The content of the organopolysiloxane is preferably an amount within the range of 0 to 50 parts by mass with respect to 100 parts by mass of the component (A). In particular, the present composition is a liquid reactive silicone composition. When it is used, it is preferable that the amount be in the range of 5 to 40 parts by mass. When the content of the organopolysiloxane is at least the lower limit of the above range, the viscosity of the composition is good. On the other hand, when the content is below the upper limit of the above range, the resulting cured product has good mechanical strength. Because.
Furthermore, the present composition includes, as optional components, spherical silica, non-spherical silica, inorganic fillers other than glass fibers, fine organic resin powders such as polymethacrylate resins and silicone resins, as long as the object of the present invention is not impaired. A corrosion inhibitor such as benzotriazole or carboxybenzotriazole, a heat-resistant agent, a flame retardant, and a solvent.
The viscosity at 25 ° C. of the present composition is not particularly limited, but when obtaining a reactive thermoplastic, it is preferably 10,000 Pa · s or less, particularly preferably in the range of 10 to 5,000 Pa · s. Is within. When the viscosity is equal to or higher than the lower limit of the above range, it is easy to form a reactive thermoplastic having a desired shape. On the other hand, when the viscosity is equal to or lower than the upper limit of the above range, the resulting composition is handled. This is because the property is good.
Further, when the present composition is used as a liquid reactive silicone composition, the viscosity at 25 ° C. is preferably in the range of 5 to 200 Pa · s, more preferably in the range of 5 to 120 Pa · s. And particularly preferably within the range of 10 to 80 Pa · s. This is because, when the viscosity is at least the lower limit of the above range, the occurrence of burrs is suppressed during molding, and when the viscosity is below the upper limit of the above range, the workability of the resulting composition is good.
Next, the reactive thermoplastic of the present invention will be described in detail.
The reactive thermoplastic of the present invention is obtained by reacting until the conversion rate of the hydrosilylation reaction of the reactive silicone cured product becomes 70% to 95%. The conversion rate of hydrosilylation is the percentage of the total functional group that undergoes hydrosilylation reaction, in which the reaction actually takes place, and its confirmation method is not particularly limited. For example, differential scanning calorimetry Using a meter (DSC), the reaction calorific value of the reactive silicone composition and the obtained reactive thermoplastic can be measured, and the conversion rate can be easily calculated from the difference. The reaction proceeds at room temperature or by heating, but heating is preferable in order to obtain a reactive thermoplastic efficiently. The heating temperature is preferably in the range of 50 to 150 ° C, and more preferably in the range of 80 to 130 ° C.
The reactive thermoplastic of the present invention is preferably a solid at 25 ° C. or a liquid whose viscosity is 1,000,000 Pa · s or more at 100 ° C. and a viscosity of 100,000 Pa · s or less at 100 ° C.
Further, the reactive thermoplastic of the present invention preferably has a type D durometer hardness of 30 or more at 25 ° C. as defined in JIS K 7215-1986 “Plastic Durometer Hardness Test Method”.
Such a reactive thermoplastic of the present invention fluidizes once when heated to 100 ° C. or higher, and then undergoes a hydrosilylation reaction to give a cured product.
Next, the cured product of the present invention will be described in detail.
The cured product of the present invention is obtained by heating the reactive thermoplastic and performing the remaining hydrosilylation reaction, or the liquid reactive silicone composition without passing through the reactive plastic. Is obtained by heating and hydrosilylation reaction, and at 300 ° C., the solid or viscosity is 1,000,000 Pa · s or more. The hardness of the cured product is not particularly limited, but the type D durometer hardness specified in JIS K 7215-1986 “Plastic Durometer Hardness Test Method” is preferably 60 or more, and more preferably 65 or more. It is preferable that it is 70 or more especially. This is because when the hardness is equal to or higher than the above lower limit, the dimensional stability of the cured product is improved, and the cured product is hardly deformed.
Moreover, the reflectance of this hardened | cured material is although it does not specifically limit, The total light reflectance measured by the method prescribed | regulated to JISK7375: 2008 "Plastics-Determination of total light transmittance and total light reflectance" is 75% or more. In particular, it is preferably 80% or more.
The linear expansion coefficient of the cured product is not particularly limited, but the linear expansion coefficient measured by the method specified in JIS K 7197-1991 “Test method for linear expansion coefficient by thermomechanical analysis of plastics” is 25 to 200 ° C. The average value in the temperature range is preferably 200 ppm / ° C. or less, and particularly preferably 150 ppm / ° C. or less.
The cured product of the present invention is preferably formed by curing the reactive thermoplastic or the reactive silicone composition in a metal mold heated to 100 ° C. or higher. Examples of the curing method for forming the main cured product as the reflecting material of the optical semiconductor device include compression molding, transfer molding, and injection molding.
Next, the optical semiconductor device of the present invention will be described in detail.
The optical semiconductor device of the present invention is characterized in that the light reflecting material is formed of the cured product. As such an optical semiconductor device, a light emitting diode (LED) is exemplified. In this optical semiconductor device, the light reflecting material also functions as a frame material (packaging material) of the optical semiconductor device.
FIG. 1 shows a cross-sectional view of a surface-mounted LED that is an example of the semiconductor device. In the LED shown in FIG. 1, an optical semiconductor element 1 is die-bonded on a lead frame 2 by a die bonding material, and the optical semiconductor element 1 and the lead frames 2 and 3 are wire-bonded by bonding wires 4 and 4 ′. . A light reflecting material 5 made of the above-described cured product is provided around the optical semiconductor element 1 except for the upper portion thereof, and the optical semiconductor element 1 inside the light reflecting material 5 is sealed with a sealing material 6. .
As a method of manufacturing the surface mount type LED shown in FIG. 1, (1) the light reflecting material 5 integrated with the lead frames 2 and 3 is formed by transfer molding or compression molding of the reactive thermoplastic of the present invention. (2) a step of die-bonding the optical semiconductor element 1 on the lead frame 2 with a die bonding material; (3) a step of wire-bonding the optical semiconductor element 1 and the lead frames 2 and 3 with bonding wires 4 and 4 ′; (4) A method comprising a step of sealing the optical semiconductor element 1 with the sealing material 6 is exemplified.
 本発明の硬化性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置を実施例により詳細に説明する。なお、式中のMe、Ph、Vi、およびEpは、それぞれメチル基、フェニル基、ビニル基、および3−グリシドキシプロピル基を表す。
 また、反応性熱可塑体および硬化物の硬さは、JIS K 7215—1986「プラスチックのデュロメータ硬さ試験方法」に規定のタイプDデュロメータにより測定した。
 また、硬化物の曲げ強さは、JIS K 6911—1995「熱硬化性プラスチック一般試験方法」に規定の方法により測定した。
 また、硬化物の全光線反射率は、JIS K 7375:2008「プラスチック−全光線透過率及び全光線反射率の求め方」に規定の方法により測定した。
 また、硬化物の線膨張率は、25~200℃の範囲内での平均線膨張率を、JIS K 7197—1991「プラスチックの熱機械分析による線膨張率の試験方法」に規定の方法により測定した。
 また、本組成物の金型離型性はトランスファー成形機を用いて成形温度120℃、成形時間5分の条件でリードフレームとの一体成型を10回行い、成型後の光半導体装置にクラック及びリードフレームからの剥離等の成型不良が発生した回数の確認により評価した。
 また、ヒドロシリル化反応の転化率は、示差走査熱量計によって各状態での反応熱量を求め、その差から算出した。
[実施例1]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 100質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 13.3質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 33.3質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.15モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、オレイン酸(東京化成工業社製) 0.1質量部平均一次粒子径0.2μmの酸化チタン(堺化学工業業製のSX−3103) 122質量部、および平均粒子径5μmの破砕石英粉末(龍森製のクリスタライトVX−52) 220質量部を混合して、25℃での粘度が390Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度が測定不能な固体であり、タイプDデュロメータ硬さが65であり、100℃での粘度が590Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は88%であった。
 得られた熱可塑体を150℃で加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃で粘度測定不能な固体であり、25℃でのタイプDデュロメータ硬さが84であり、曲げ強さが17MPa、全光線反射率が94.2%、硬化物の線膨張率が110ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[実施例2]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 48.4質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 51.6質量部、平均単位式:
(MeViSiO1/20.2(MeEpSiO2/20.25(PhSiO3/20.55(HO1/20.005
で表されるエポキシ基含有ポリシロキサン 1.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 12.9質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 29.0質量部(上記のメチルビニルフェニルポリシロキサン、ジメチルビニルシロキシ末端ポリメチルフェニルシロキサン、エポキシ基含有ポリシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.94モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、オレイン酸(東京化成工業製) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 118質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−202) 213質量部を混合して、25℃での粘度が130Pa・sである硬化性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが62であり、100℃での粘度が4,700Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は79%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃で粘度測定不能な固体であり、25℃でのタイプDデュロメータ硬さが86であり、曲げ強さが25MPa、全光線反射率が94.4%、硬化物の線膨張率が100ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[実施例3]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 48.4質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 51.6質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 12.9質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 29.0質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.96モルとなる量)、1,3,5,7−テトラメチルテトラシクロシロキサン 0.5質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.0467モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、リノール酸(東京化成工業製) 0.1質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR−630) 118質量部、および平均カット長20μm、平均ファイバー径3μmのミルドガラスファイバー(旭ファイバーグラス製のMF03JB1−20) 213質量部を混合して、25℃での粘度が150Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが70であり、100℃での粘度が16,500Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は87%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが85であり、曲げ強さが20MPa、全光線反射率が94.7%、硬化物の線膨張率が108ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[実施例4]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 19.4質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.92モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、リノール酸(東京化成工業製) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 118質量部、および平均粒子径5μmの破砕石英粉末(山森土本鉱業所製のシルシックSAB−500) 213質量部を混合して、25℃での粘度が360Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが69であり、100℃での粘度が7,600Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は88%であった。
 得られた熱可塑体を150℃で加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが86であり、曲げ強さが19MPa、全光線反射率が94.5%、硬化物の線膨張率が113ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[実施例5]
 平均単位式:
 (MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
(MeViSiO1/20.2(MeEpSiO2/20.25(PhSiO3/20.55(HO1/20.005
で表されるエポキシ基含有ポリシロキサン 1.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 25.6質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサン、ジメチルビニルシロキシ末端ポリメチルフェニルシロキサン、エポキシ基含有ポリシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.89モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、リノレン酸(東京化成工業製) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 128質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−202) 256質量部を混合して、25℃での粘度が147Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが76であり、100℃での粘度が4,600Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は79%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが85であり、曲げ強さが20MPa、全光線反射率が94.3%、硬化物の線膨張率が101ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[実施例6]
 平均単位式:
 (MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 25.6質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.9モルとなる量)、1,3,5,7−テトラメチルテトラシクロシロキサン 0.5質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.0439モルとなる量)白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、オレイン酸亜鉛(関東化学製) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX3103) 141質量部、および平均カット長20μm、平均ファイバー径3μmのミルドガラスファイバー(旭ファイバーグラス製のMF03JB1−20) 282質量部を混合して、25℃での粘度が290Pa・sである硬化性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが73であり、100℃での粘度が7,100Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は85%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが85であり、曲げ強さが25MPa、全光線反射率が94.5%、硬化物の線膨張率が69ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。
[比較例1]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 100質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 13.3質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 33.3質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.15モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、平均一次粒子径0.2μmの酸化チタン(堺化学工業業製のSX−3103) 122質量部、および平均粒子径5μmの破砕石英粉末(龍森製のクリスタライトVX−52) 220質量部を混合して、25℃での粘度が410Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度が測定不能な固体であり、タイプDデュロメータ硬さが65であり、100℃での粘度が650Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は87%であった。
 得られた熱可塑体を150℃で加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃で粘度測定不能な固体であり、25℃でのタイプDデュロメータ硬さが85であり、曲げ強さが17MPa、全光線反射率が94.3%、硬化物の線膨張率が110ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中5回成型物に成型不良が確認された。
[比較例2]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 48.4質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 51.6質量部、平均単位式:
(MeViSiO1/20.2(MeEpSiO2/20.25(PhSiO3/20.55(HO1/20.005
で表されるエポキシ基含有ポリシロキサン 1.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 12.9質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 29.0質量部(上記のメチルビニルフェニルポリシロキサン、ジメチルビニルシロキシ末端ポリメチルフェニルシロキサン、エポキシ基含有ポリシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.94モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、ステアリン酸(東京化成工業製) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 118質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−202) 213質量部を混合して、25℃での粘度が160Pa・sである硬化性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが63であり、100℃での粘度が4,900Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は76%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃で粘度測定不能な固体であり、25℃でのタイプDデュロメータ硬さが87であり、曲げ強さが25MPa、全光線反射率が94.2%、硬化物の線膨張率が97ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中3回成型物に成型不良が確認された。
[比較例3]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 48.4質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 51.6質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 12.9質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 29.0質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.96モルとなる量)、1,3,5,7−テトラメチルテトラシクロシロキサン 0.5質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.0467モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、ステアリン酸カルシウム(東京化成工業製) 0.2質量部、平均一次粒子径0.24μmの酸化チタン(石原産業製のタイペークR−630) 118質量部、および平均カット長20μm、平均ファイバー径3μmのミルドガラスファイバー(旭ファイバーグラス製のMF03JB1−20) 213質量部を混合して、25℃での粘度が190Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが71であり、100℃での粘度が17,100Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は85%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが85であり、曲げ強さが21MPa、全光線反射率が94.5%、硬化物の線膨張率が104ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中2回成型物に成型不良が確認された。
[比較例4]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 19.4質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.92モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、シリコーンオイル(東レ・ダウコーニング製 SH−200(1000cs)) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 118質量部、および平均粒子径5μmの破砕石英粉末(山森土本鉱業所製のシルシックSAB−500) 213質量部を混合して、25℃での粘度が340Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが71であり、100℃での粘度が16,000Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は87%であった。
 得られた熱可塑体を150℃で加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが87であり、曲げ強さが20MPa、全光線反射率が94.3%、硬化物の線膨張率が117ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中6回成型物に成型不良が確認された。
[比較例5]
 平均単位式:
 (MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
(MeViSiO1/20.2(MeEpSiO2/20.25(PhSiO3/20.55(HO1/20.005
で表されるエポキシ基含有ポリシロキサン 1.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 25.6質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサン、ジメチルビニルシロキシ末端ポリメチルフェニルシロキサン、エポキシ基含有ポリシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.89モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、シリコーンオイル(東レ・ダウコーニング製 SH−200(10000cs)) 0.2質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX−3103) 128質量部、および平均粒子径15μmの球状シリカ(新日鉄マテリアルズ マイクロン社製のHS−202) 256質量部を混合して、25℃での粘度が164Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが77であり、100℃での粘度が5,100Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は84%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが86であり、曲げ強さが20MPa、全光線反射率が94.4%、硬化物の線膨張率が98ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中5回成型物に成型不良が確認された。
[比較例6]
 平均単位式:
 (MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 38.5質量部、平均単位式:
(MeViSiO1/20.20(PhSiO3/20.80(HO1/20.01
で表されるメチルビニルフェニルポリシロキサン 61.5質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 25.6質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 28.2質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.9モルとなる量)、1,3,5,7−テトラメチルテトラシクロシロキサン 0.5質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.0439モルとなる量)白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、オレイン酸(東京化成工業社製) 0.01質量部、平均一次粒子径0.2μmの酸化チタン(堺化学工業製のSX3103) 141質量部、および平均カット長20μm、平均ファイバー径3μmのミルドガラスファイバー(旭ファイバーグラス製のMF03JB1−20) 282質量部を混合して、25℃での粘度が300Pa・sである硬化性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度測定不能な固体であり、タイプDデュロメータ硬さが75であり、100℃での粘度が7,300Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は88%であった。
 得られた熱可塑体を150℃に加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃以下で流動性がなく、25℃でのタイプDデュロメータ硬さが86であり、曲げ強さが25MPa、全光線反射率が94.4%、硬化物の線膨張率が73ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、10回中5回成型物に成型不良が確認された。
[比較例7]
 平均単位式:
(MeViSiO2/20.25(PhSiO2/20.30(PhSiO3/20.45(HO1/20.02
で表されるメチルビニルフェニルポリシロキサン 100質量部、平均式:
ViMeSiO(MePhSiO)17.5SiViMe
で表されるジメチルビニルシロキシ末端ポリメチルフェニルシロキサン 13.3質量部、式:
(HMeSiO)SiPh
で表される1,1,5,5−テトラメチル−3,3−ジフェニルトリシロキサン 33.3質量部(上記のメチルビニルフェニルポリシロキサンおよびジメチルビニルシロキシ末端ポリメチルフェニルシロキサンのビニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が1.15モルとなる量)、白金の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン錯体の1,3−ジビニル−1,1,3,3−テトラメチルジシロキサン溶液(本組成物に対して白金金属が質量単位で5.0ppmとなる量)、1−エチニル−1−シクロヘキサノール(本組成物に対して質量単位で300ppmとなる量)、オレイン酸(東京化成工業社製) 12質量部、(平均一次粒子径0.2μmの酸化チタン(堺化学工業業製のSX−3103) 122質量部、および平均粒子径5μmの破砕石英粉末(龍森製のクリスタライトVX−52) 220質量部を混合して、25℃での粘度が130Pa・sである反応性シリコーン組成物を調製した。
 この組成物を120℃で10分間加熱したところ、25℃で粘度が測定不能な固体であり、タイプDデュロメータ硬さが51であり、100℃での粘度が240Pa・sである熱可塑体であることがわかった。ヒドロシリル化反応の転化率は86%であった。
 得られた熱可塑体を150℃で加熱すると、流動化した後、流動性が失われた。150℃で1時間加熱して得られた硬化物は300℃で粘度測定不能な固体であり、25℃でのタイプDデュロメータ硬さが72であり、曲げ強さが5MPa、全光線反射率が94.4%、硬化物の線膨張率が115ppm/℃であった。
 また、図1で示される光半導体装置を製造するため、上記熱可塑体をトランスファー成形機を用いてリードフレームと一体成型を10回行ったところ、得られた成型物に成型不良は確認されず、バリやボイドのない良好な成型物が得られた。しかしながら、得られた成型物は柔らかすぎることがわかった。
The curable silicone composition, reactive thermoplastic, cured product, and optical semiconductor device of the present invention will be described in detail with reference to examples. In the formulae, Me, Ph, Vi, and Ep represent a methyl group, a phenyl group, a vinyl group, and a 3-glycidoxypropyl group, respectively.
The hardness of the reactive thermoplastic and the cured product was measured with a type D durometer specified in JIS K 7215-1986 “Plastic Durometer Hardness Test Method”.
Further, the bending strength of the cured product was measured by the method specified in JIS K 6911-1995 “General Test Method for Thermosetting Plastics”.
Further, the total light reflectance of the cured product was measured by a method specified in JIS K 7375: 2008 “Plastics—How to obtain total light transmittance and total light reflectance”.
The linear expansion coefficient of the cured product is measured by measuring the average linear expansion coefficient in the range of 25 to 200 ° C. according to the method specified in JIS K 7197-1991 “Test method for linear expansion coefficient by thermomechanical analysis of plastics”. did.
Also, the mold releasability of this composition is 10 times integral molding with a lead frame using a transfer molding machine at a molding temperature of 120 ° C. and a molding time of 5 minutes. Evaluation was made by confirming the number of molding defects such as peeling from the lead frame.
Also, the conversion rate of the hydrosilylation reaction was calculated from the difference obtained by obtaining the reaction heat in each state with a differential scanning calorimeter.
[Example 1]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
100 parts by mass of methylvinylphenylpolysiloxane represented by the formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
13.3 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 33.3 parts by mass (total of 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane 1 The amount of silicon atom-bonded hydrogen atoms in this component is 1.15 moles per mole), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 1,3- Divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (to the composition) Oleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.1 parts by mass of titanium oxide having an average primary particle size of 0.2 μm (SX- manufactured by Sakai Chemical Industry Co., Ltd.) 103) Reactive silicone composition having a viscosity of 390 Pa · s at 25 ° C. by mixing 122 parts by mass and 220 parts by mass of crushed quartz powder having an average particle diameter of 5 μm (Crystallite VX-52 manufactured by Tatsumori) Was prepared.
When this composition was heated at 120 ° C. for 10 minutes, it was a solid whose viscosity was not measurable at 25 ° C., a type D durometer hardness of 65, and a viscosity of 590 Pa · s at 100 ° C. I found out. The conversion rate of the hydrosilylation reaction was 88%.
When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 84 at 25 ° C., a bending strength of 17 MPa, and a total light reflectance. 94.2%, and the linear expansion coefficient of the cured product was 110 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Example 2]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methyl vinyl phenyl polysiloxane 48.4 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methylvinylphenylpolysiloxane represented by the formula: 51.6 parts by mass, average unit formula:
(Me2ViSiO1/2)0.2(MeEpSiO2/2)0.25(PhSiO3/2)0.55(HO1/2)0.005
Epoxy group-containing polysiloxane represented by the formula: 1.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
12.9 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 29.0 parts by mass (the above methylvinylphenylpolysiloxane, dimethylvinylsiloxy-terminated polymethylphenylsiloxane, epoxy group-containing polysiloxane The amount of silicon atom-bonded hydrogen atoms in this component is 0.94 mol with respect to a total of 1 mol of vinyl groups), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane of platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of complex (amount in which platinum metal is 5.0 ppm by mass with respect to the present composition), 1-ethynyl-1-cyclohexanol (Amount to be 300 ppm in terms of mass unit with respect to the present composition), oleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.2 parts by mass, titanium oxide with an average primary particle size of 0.2 μm (SX-3103 manufactured by Sakai Chemical Industry) 118 parts by mass and 213 parts by mass of spherical silica having an average particle size of 15 μm (HS-202 manufactured by Nippon Steel Materials Micron Co., Ltd.) were mixed, and the viscosity at 25 ° C. was 130 Pa · A curable silicone composition, s, was prepared.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 62, and has a viscosity of 4,700 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 79%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 86 at 25 ° C., a bending strength of 25 MPa, and a total light reflectance. 94.4%, and the linear expansion coefficient of the cured product was 100 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Example 3]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methyl vinyl phenyl polysiloxane 48.4 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methylvinylphenylpolysiloxane represented by the formula: 51.6 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
12.9 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 29.0 parts by mass (1 total of vinyl groups of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane) The amount of silicon atom-bonded hydrogen atoms in this component is 0.96 mol with respect to mol), 0.5 parts by mass of 1,3,5,7-tetramethyltetracyclosiloxane (the above methylvinylphenylpolysiloxane) In addition, the amount of silicon atom-bonded hydrogen atoms in this component is 0.0467 mol with respect to a total of 1 mol of vinyl groups of dimethylvinylsiloxy-terminated polymethylphenylsiloxane), platinum 1,3-divinyl-1,1 1,3-Divinyl-1,1,3,3-tetramethyldisiloxa of 1,3,3-tetramethyldisiloxane complex Solution (amount that platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (amount that is 300 ppm by mass with respect to the composition), linoleic acid (Tokyo) Manufactured by Kasei Kogyo Co., Ltd.) 0.1 parts by mass, titanium oxide having an average primary particle size of 0.24 μm (Taipaque R-630 manufactured by Ishihara Sangyo) 118 parts by mass, and milled glass fiber having an average cut length of 20 μm and an average fiber diameter of 3 μm (Asahi) 213 parts by mass of MF03JB1-20) made of fiberglass was mixed to prepare a reactive silicone composition having a viscosity at 25 ° C. of 150 Pa · s.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 70, and has a viscosity of 16,500 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 87%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a type D durometer hardness of 85 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94. The linear expansion coefficient of the cured product was 7% and 108 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Example 4]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
19.4 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (total 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane) The amount of silicon-bonded hydrogen atoms in this component to 0.92 mol), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum, Divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (to the composition) In an amount of 300 ppm in mass unit), linoleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.2 parts by mass, titanium oxide having an average primary particle diameter of 0.2 μm (SX-3 manufactured by Sakai Chemical Industry) 03) Reactive silicone having a viscosity of 360 Pa · s at 25 ° C. by mixing 213 parts by mass of 118 parts by mass and crushed quartz powder having an average particle size of 5 μm (Silchic SAB-500 manufactured by Yamamori Tsuchimoto Mining) A composition was prepared.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 69, and has a viscosity of 7,600 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 88%.
When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 86 at 25 ° C., a bending strength of 19 MPa, and a total light reflectance of 94.degree. The linear expansion coefficient of the cured product was 5% and 113 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Example 5]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
(Me2ViSiO1/2)0.2(MeEpSiO2/2)0.25(PhSiO3/2)0.55(HO1/2)0.005
Epoxy group-containing polysiloxane represented by the formula: 1.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
25.6 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (the above methylvinylphenylpolysiloxane, dimethylvinylsiloxy-terminated polymethylphenylsiloxane, epoxy group-containing polysiloxane The amount of silicon atom-bonded hydrogen atoms in this component is 0.89 mol with respect to a total of 1 mol of vinyl groups), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane of platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of complex (amount in which platinum metal is 5.0 ppm by mass with respect to the present composition), 1-ethynyl-1-cyclohexanol (Amount of 300 ppm in terms of mass unit with respect to the present composition), linolenic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.2 parts by mass, titanium oxide with an average primary particle size of 0.2 μm (SX-3103 manufactured by Sakai Chemical Industry) 128 parts by mass and 256 parts by mass of spherical silica having an average particle diameter of 15 μm (HS-202 manufactured by Nippon Steel Materials Micron Co., Ltd.) were mixed, and the viscosity at 25 ° C. was 147 Pa · A reactive silicone composition, s, was prepared.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 76, and has a viscosity of 4,600 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 79%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a type D durometer hardness of 85 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94. The linear expansion coefficient of the cured product was 101 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Example 6]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
25.6 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (total 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane) The amount of silicon-bonded hydrogen atoms in this component is 0.9 moles per mole), 0.5 parts by weight of 1,3,5,7-tetramethyltetracyclosiloxane (the above methylvinylphenylpolysiloxane) The amount of silicon atom-bonded hydrogen atoms in this component is 0.0439 mol with respect to a total of 1 mol of vinyl groups of dimethylvinylsiloxy-terminated polymethylphenylsiloxane) 1,3-divinyl-1,1, platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of 3,3-tetramethyldisiloxane complex (Amount in which platinum metal is 5.0 ppm in mass units with respect to the present composition), 1-ethynyl-1-cyclohexanol (in an amount in which 300 ppm in mass units with respect to the present composition), zinc oleate (Kanto) Chemical) 0.2 parts by mass, titanium oxide with an average primary particle diameter of 0.2 μm (SX3103 manufactured by Sakai Chemical Industry), 141 parts by mass, and milled glass fiber with an average cut length of 20 μm and an average fiber diameter of 3 μm (manufactured by Asahi Fiber Glass) MF03JB1-20) 282 parts by mass were mixed to prepare a curable silicone composition having a viscosity at 25 ° C. of 290 Pa · s.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 73, and has a viscosity of 7,100 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 85%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a type D durometer hardness of 85 at 25 ° C., a bending strength of 25 MPa, and a total light reflectance of 94.degree. The linear expansion coefficient of the cured product was 5% and 69 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained.
[Comparative Example 1]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
100 parts by mass of methylvinylphenylpolysiloxane represented by the formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
13.3 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 33.3 parts by mass (total of 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane 1 The amount of silicon atom-bonded hydrogen atoms in this component is 1.15 moles per mole), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 1,3- Divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (to the composition) In an amount of 300 ppm in terms of mass unit), 122 parts by mass of titanium oxide having an average primary particle size of 0.2 μm (SX-3103 manufactured by Sakai Chemical Industry), and an average particle size of 5 μm m reactive quartz powder (Crystallite VX-52 manufactured by Tatsumori) was mixed with 220 parts by mass to prepare a reactive silicone composition having a viscosity at 25 ° C. of 410 Pa · s.
When this composition was heated at 120 ° C. for 10 minutes, it was a solid whose viscosity was not measurable at 25 ° C., a type D durometer hardness of 65, and a viscosity of 650 Pa · s at 100 ° C. I found out. The conversion rate of the hydrosilylation reaction was 87%.
When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 85 at 25 ° C., a bending strength of 17 MPa, and a total light reflectance. It was 94.3%, and the linear expansion coefficient of the cured product was 110 ppm / ° C.
In addition, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product 5 times out of 10 times. It was done.
[Comparative Example 2]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methyl vinyl phenyl polysiloxane 48.4 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methylvinylphenylpolysiloxane represented by the formula: 51.6 parts by mass, average unit formula:
(Me2ViSiO1/2)0.2(MeEpSiO2/2)0.25(PhSiO3/2)0.55(HO1/2)0.005
Epoxy group-containing polysiloxane represented by the formula: 1.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
12.9 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 29.0 parts by mass (the above methylvinylphenylpolysiloxane, dimethylvinylsiloxy-terminated polymethylphenylsiloxane, epoxy group-containing polysiloxane The amount of silicon atom-bonded hydrogen atoms in this component is 0.94 mol with respect to 1 mol of vinyl groups in total), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane of platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of complex (amount in which platinum metal is 5.0 ppm by mass with respect to the present composition), 1-ethynyl-1-cyclohexanol (Amount to be 300 ppm in terms of mass unit with respect to the present composition), stearic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.2 parts by mass, an average primary particle diameter of 0.2 μm (SX-3103 manufactured by Sakai Chemical Industry Co., Ltd.) 118 parts by mass and 213 parts by mass of spherical silica having an average particle size of 15 μm (HS-202 manufactured by Nippon Steel Materials Micron Co., Ltd.) are mixed, and the viscosity at 25 ° C. is 160 Pa. A curable silicone composition that is s was prepared.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., its type D durometer hardness is 63, and its viscosity at 100 ° C. is 4,900 Pa · s. I found out that The conversion rate of the hydrosilylation reaction was 76%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 87 at 25 ° C., has a bending strength of 25 MPa, and has a total light reflectance. The linear expansion coefficient of 94.2% and hardened | cured material was 97 ppm / degreeC.
Further, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, 3 times out of 10 moldings were confirmed to be defective. It was done.
[Comparative Example 3]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methyl vinyl phenyl polysiloxane 48.4 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methylvinylphenylpolysiloxane represented by the formula: 51.6 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
12.9 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 29.0 parts by mass (1 total of vinyl groups of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane) The amount of silicon atom-bonded hydrogen atoms in this component is 0.96 mol with respect to mol), 0.5 parts by mass of 1,3,5,7-tetramethyltetracyclosiloxane (the above methylvinylphenylpolysiloxane) In addition, the amount of silicon atom-bonded hydrogen atoms in this component is 0.0467 mol with respect to a total of 1 mol of vinyl groups of dimethylvinylsiloxy-terminated polymethylphenylsiloxane), platinum 1,3-divinyl-1,1 1,3-Divinyl-1,1,3,3-tetramethyldisiloxa of 1,3,3-tetramethyldisiloxane complex Solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (amount in 300 ppm by mass with respect to the composition), calcium stearate (Tokyo) Manufactured by Kasei Kogyo Co., Ltd.) 0.2 parts by mass, titanium oxide having an average primary particle size of 0.24 μm (Taipaque R-630 manufactured by Ishihara Sangyo) 118 parts by mass, and milled glass fiber having an average cut length of 20 μm and an average fiber diameter of 3 μm (Asahi) 213 parts by mass of MF03JB1-20) made of fiberglass was mixed to prepare a reactive silicone composition having a viscosity at 25 ° C. of 190 Pa · s.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 71, and has a viscosity of 17,100 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 85%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 85 at 25 ° C., a bending strength of 21 MPa, and a total light reflectance of 94. The linear expansion coefficient of the cured product was 5% and 104 ppm / ° C.
In addition, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product twice out of 10 times. It was done.
[Comparative Example 4]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
19.4 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (total 1 vinyl groups of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane 1 The amount of silicon-bonded hydrogen atoms in this component to 0.92 mol), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex of platinum, Divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (to the composition) In an amount of 300 ppm by mass), silicone oil (SH-200 (1000 cs) manufactured by Toray Dow Corning), 0.2 parts by mass, average primary particle size 0 Mixing 118 parts by mass of 2 μm titanium oxide (SX-3103 manufactured by Sakai Chemical Industry) and 213 parts by mass of crushed quartz powder having an average particle size of 5 μm (Silchic SAB-500 manufactured by Yamamori Tsuchimoto Mining) A reactive silicone composition having a viscosity at 340 Pa · s was prepared.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., has a type D durometer hardness of 71, and has a viscosity of 16,000 Pa · s at 100 ° C. I found out that The conversion rate of the hydrosilylation reaction was 87%.
When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 87 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94. The linear expansion coefficient of the cured product was 117 ppm / ° C.
Further, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that there was a molding defect in the molded product 6 times out of 10 times. It was done.
[Comparative Example 5]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
(Me2ViSiO1/2)0.2(MeEpSiO2/2)0.25(PhSiO3/2)0.55(HO1/2)0.005
Epoxy group-containing polysiloxane represented by the formula: 1.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
25.6 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (the above methylvinylphenylpolysiloxane, dimethylvinylsiloxy-terminated polymethylphenylsiloxane, epoxy group-containing polysiloxane The amount of silicon atom-bonded hydrogen atoms in this component is 0.89 mol with respect to a total of 1 mol of vinyl groups), 1,3-divinyl-1,1,3,3-tetramethyldisiloxane of platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of complex (amount in which platinum metal is 5.0 ppm by mass with respect to the present composition), 1-ethynyl-1-cyclohexanol (Amount to be 300 ppm by mass with respect to the present composition), silicone oil (SH-200 (10000 cs) manufactured by Toray Dow Corning) 0 2 parts by mass, titanium oxide having an average primary particle size of 0.2 μm (SX-3103 manufactured by Sakai Chemical Industry), 128 parts by mass, and spherical silica having an average particle size of 15 μm (HS-202 manufactured by Nippon Steel Materials Micron), 256 masses A reactive silicone composition having a viscosity of 164 Pa · s at 25 ° C. was prepared by mixing the parts.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., its type D durometer hardness is 77, and its viscosity at 100 ° C. is 5,100 Pa · s. I found out that The conversion rate of the hydrosilylation reaction was 84%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 86 at 25 ° C., a bending strength of 20 MPa, and a total light reflectance of 94. The linear expansion coefficient of the cured product was 4 ppm and 98 ppm / ° C.
In addition, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product 5 times out of 10 times. It was done.
[Comparative Example 6]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
Methylvinylphenylpolysiloxane represented by the formula: 38.5 parts by mass, average unit formula:
(Me2ViSiO1/2)0.20(PhSiO3/2)0.80(HO1/2)0.01
Methyl vinyl phenyl polysiloxane represented by the formula: 61.5 parts by mass, average formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
25.6 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane represented by 28.2 parts by mass (total 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane) The amount of silicon-bonded hydrogen atoms in this component is 0.9 moles per mole), 0.5 parts by weight of 1,3,5,7-tetramethyltetracyclosiloxane (the above methylvinylphenylpolysiloxane) The amount of silicon atom-bonded hydrogen atoms in this component is 0.0439 mol with respect to a total of 1 mol of vinyl groups of dimethylvinylsiloxy-terminated polymethylphenylsiloxane) 1,3-divinyl-1,1, platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution of 3,3-tetramethyldisiloxane complex (Amount that platinum metal is 5.0 ppm in mass units with respect to the present composition), 1-ethynyl-1-cyclohexanol (amount that is 300 ppm in mass units with respect to the present composition), oleic acid (Tokyo Kasei) Manufactured by Kogyo Co., Ltd.) 0.01 parts by mass, titanium oxide having an average primary particle diameter of 0.2 μm (SX3103 manufactured by Sakai Chemical Industry), 141 parts by mass, and milled glass fiber having an average cut length of 20 μm and an average fiber diameter of 3 μm (Asahi Fiber Glass) Manufactured MF03JB1-20) 282 parts by mass were mixed to prepare a curable silicone composition having a viscosity at 25 ° C. of 300 Pa · s.
When this composition is heated at 120 ° C. for 10 minutes, it is a solid whose viscosity cannot be measured at 25 ° C., a type D durometer hardness of 75, and a viscosity at 100 ° C. of 7,300 Pa · s. I found out that The conversion rate of the hydrosilylation reaction was 88%.
When the obtained thermoplastic was heated to 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour has no fluidity at 300 ° C. or less, has a Type D durometer hardness of 86 at 25 ° C., a bending strength of 25 MPa, and a total light reflectance of 94.degree. The linear expansion coefficient of the cured product was 4 ppm and 73 ppm / ° C.
In addition, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, it was confirmed that molding failure occurred in the molded product 5 times out of 10 times. It was done.
[Comparative Example 7]
Average unit formula:
(MeViSiO2/2)0.25(Ph2SiO2/2)0.30(PhSiO3/2)0.45(HO1/2)0.02
100 parts by mass of methylvinylphenylpolysiloxane represented by the formula:
ViMe2SiO (MePhSiO)17.5SiViMe2
13.3 parts by mass of a dimethylvinylsiloxy-terminated polymethylphenylsiloxane represented by the formula:
(HMe2SiO)2SiPh2
1,1,5,5-tetramethyl-3,3-diphenyltrisiloxane 33.3 parts by mass (total of 1 vinyl group of the above methylvinylphenylpolysiloxane and dimethylvinylsiloxy-terminated polymethylphenylsiloxane 1 The amount of silicon atom-bonded hydrogen atoms in this component is 1.15 moles per mole), platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex 1,3- Divinyl-1,1,3,3-tetramethyldisiloxane solution (amount in which platinum metal is 5.0 ppm by mass with respect to the composition), 1-ethynyl-1-cyclohexanol (to the composition) And oleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.), 12 parts by mass, titanium oxide having an average primary particle size of 0.2 μm (SX manufactured by Sakai Chemical Industry Co., Ltd.) 3103) Reactive silicone composition having a viscosity of 130 Pa · s at 25 ° C. by mixing 122 parts by mass and 220 parts by mass of crushed quartz powder having an average particle size of 5 μm (Crystallite VX-52 manufactured by Tatsumori). Was prepared.
When this composition was heated at 120 ° C. for 10 minutes, it was a solid whose viscosity could not be measured at 25 ° C., a type D durometer hardness of 51, and a viscosity at 100 ° C. of 240 Pa · s. I found out. The conversion rate of the hydrosilylation reaction was 86%.
When the obtained thermoplastic was heated at 150 ° C., the fluidity was lost after fluidization. The cured product obtained by heating at 150 ° C. for 1 hour is a solid whose viscosity cannot be measured at 300 ° C., has a type D durometer hardness of 72 at 25 ° C., a bending strength of 5 MPa, and a total light reflectance. 94.4%, and the linear expansion coefficient of the cured product was 115 ppm / ° C.
Moreover, in order to manufacture the optical semiconductor device shown in FIG. 1, when the thermoplastic body was integrally molded with the lead frame 10 times using a transfer molding machine, no molding failure was confirmed in the obtained molded product. Good moldings without burrs and voids were obtained. However, it was found that the resulting molding was too soft.
 本発明の反応性シリコーン組成物は、反応性熱可塑体を与えることができ、この反応性熱可塑体は、加熱した金型中での硬化物の成形に適し、得られる硬化物は、熱や光による機械的強度の低下や変色が少なく、光反射率が高く、金型離型性が優れるので、発光ダイオードの白色枠材の形成材料として好適である。 The reactive silicone composition of the present invention can provide a reactive thermoplastic, which is suitable for molding a cured product in a heated mold, and the resulting cured product is In addition, it is suitable as a material for forming a white frame material of a light-emitting diode because it has little decrease in mechanical strength and discoloration due to light and light, has high light reflectance, and excellent mold releasability.
 1 光半導体素子
 2 リードフレーム
 3 リードフレーム
 4、4’ ボンディングワイヤ
 5 光反射材
 6 封止材
DESCRIPTION OF SYMBOLS 1 Optical semiconductor element 2 Lead frame 3 Lead frame 4, 4 'Bonding wire 5 Light reflecting material 6 Sealing material

Claims (13)

  1. (A)平均単位式:
    (R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2
    (式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基であり、ただし、全Rの30~80モル%はフェニル基であり、全Rの10~20モル%はアルケニル基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、a、b、c、d、およびeはそれぞれ、0≦a≦0.30、0≦b≦0.70、0.3≦c≦0.9、0≦d≦0.20、0≦e≦0.10、かつa+b+c+d=1を満たす数である。)
    で表されるオルガノポリシロキサン              100質量部、
    (B)一般式:
    SiO(R SiO)SiR
    (式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、もしくは炭素原子数2~6のアルケニル基であり、ただし、全Rの30~70モル%はフェニル基であり、全Rの少なくとも1個はアルケニル基であり、mは10~100の整数である。)
    で表されるオルガノポリシロキサン             0~40質量部、
    (C)一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基の20~70モル%がフェニル基であるオルガノポリシロキサン{(A)成分および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.5~2モルとなる量}、
    (D)ヒドロシリル化反応用触媒{(A)成分および(B)成分中のアルケニル基と(C)成分中のケイ素原子結合水素原子とのヒドロシリル化反応を促進するに十分な量}、
    (E)白色顔料{(A)成分~(D)成分の合計100質量部に対して50質量部以上}、
    (F)非球状シリカ、球状シリカまたはガラスファイバー{(A)成分~(D)成分の合計100質量部に対して100質量部以上}、および
    (G)一分子中に少なくとも1個の炭素−炭素二重結合を有する、炭素原子数が10以上のカルボン酸またはその金属塩
    から少なくともなり、(E)成分および(F)成分の合計の含有量が、(A)成分~(D)成分の合計100質量部に対して400質量部以下であり、(G)成分の含有量が、(A)成分~(D)成分の合計100質量部に対して0.01~8質量部である反応性シリコーン組成物。
    (A) Average unit formula:
    (R 1 3 SiO 1/2 ) a (R 1 2 SiO 2/2 ) b (R 1 SiO 3/2 ) c (SiO 4/2 ) d (R 2 O 1/2 ) e
    (Wherein R 1 is the same or different and is a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 30 to 80 mol% of all R 1 s ) Is a phenyl group, 10 to 20 mol% of all R 1 is an alkenyl group, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and a, b, c, d, and e are 0 ≦ a ≦ 0.30, 0 ≦ b ≦ 0.70, 0.3 ≦ c ≦ 0.9, 0 ≦ d ≦ 0.20, 0 ≦ e ≦ 0.10, and a + b + c + d = 1 are satisfied. Number.)
    100 parts by mass of an organopolysiloxane represented by
    (B) General formula:
    R 3 3 SiO (R 3 2 SiO) m SiR 3 3
    (Wherein R 3 is the same or different and is a phenyl group, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms, provided that 30 to 70 mol% of all R 3 s ) Is a phenyl group, at least one of all R 3 is an alkenyl group, and m is an integer of 10 to 100.)
    0 to 40 parts by mass of an organopolysiloxane represented by
    (C) Organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule and 20 to 70 mol% of all silicon-bonded organic groups being phenyl groups {component (A) and component (B) Amount of silicon atom-bonded hydrogen atoms in this component to be 0.5 to 2 moles relative to a total of 1 mole of alkenyl groups therein},
    (D) Hydrosilylation catalyst {a sufficient amount to promote the hydrosilylation reaction between the alkenyl group in components (A) and (B) and the silicon atom-bonded hydrogen atom in component (C)},
    (E) White pigment {50 parts by mass or more with respect to 100 parts by mass in total of the components (A) to (D)},
    (F) Non-spherical silica, spherical silica or glass fiber {100 parts by mass or more with respect to 100 parts by mass in total of components (A) to (D)}, and (G) at least one carbon in one molecule It consists of at least a carboxylic acid having 10 or more carbon atoms or a metal salt thereof having a carbon double bond, and the total content of component (E) and component (F) is that of components (A) to (D) Reaction which is 400 parts by mass or less with respect to 100 parts by mass in total, and the content of component (G) is 0.01 to 8 parts by mass with respect to 100 parts by mass in total of components (A) to (D) Silicone composition.
  2.  さらに、(H)平均単位式:
    (R SiO1/2(R SiO2/2(RSiO3/2(SiO4/2(R1/2
    (式中、Rは、同じかまたは異なる、フェニル基、炭素原子数1~6のアルキル基、炭素原子数2~6のアルケニル基もしくはエポキシ基含有有機基であり、ただし、全Rの15~60モル%はフェニル基であり、全Rの3~30モル%はアルケニル基であり、5~30モル%はエポキシ基含有有機基であり、Rは水素原子または炭素原子数1~6のアルキル基であり、f、g、h、i、およびjはそれぞれ、0≦f≦0.5、0≦g≦0.9、0≦h≦0.7、0≦i≦0.3、0≦j≦0.02、かつf+g+h+i=1を満たす数である。)
    で表されるオルガノポリシロキサンを、(A)成分~(D)成分の合計100質量部に対して0.5~10.0質量部含有する、請求項1に記載の反応性シリコーン組成物。
    Further, (H) average unit formula:
    (R 7 3 SiO 1/2 ) f (R 7 2 SiO 2/2 ) g (R 7 SiO 3/2 ) h (SiO 4/2 ) i (R 8 O 1/2 ) j
    (Wherein R 7 is the same or different, a phenyl group, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an epoxy group-containing organic group, provided that all R 7 15 to 60 mol% is a phenyl group, 3 to 30 mol% of all R 7 is an alkenyl group, 5 to 30 mol% is an epoxy group-containing organic group, and R 8 is a hydrogen atom or 1 carbon atom. To 6 alkyl groups, and f, g, h, i, and j are 0 ≦ f ≦ 0.5, 0 ≦ g ≦ 0.9, 0 ≦ h ≦ 0.7, and 0 ≦ i ≦ 0, respectively. .3, 0 ≦ j ≦ 0.02, and f + g + h + i = 1.)
    The reactive silicone composition according to claim 1, comprising 0.5 to 10.0 parts by mass of the organopolysiloxane represented by the formula (A) to (D) with respect to 100 parts by mass in total.
  3.  さらに、(I)一分子中に少なくとも2個のケイ素原子結合水素原子を有し、ケイ素原子結合全有機基に対するフェニル基の含有量が20モル%未満であるオルガノポリシロキサンを(A)成分および(B)成分中のアルケニル基の合計1モルに対して、本成分中のケイ素原子結合水素原子が0.001~0.20モルとなる量含有する、請求項1または2に記載の反応性シリコーン組成物。 Furthermore, (I) an organopolysiloxane having at least two silicon-bonded hydrogen atoms in one molecule and having a phenyl group content of less than 20 mol% with respect to all silicon-bonded organic groups, The reactivity according to claim 1 or 2, wherein the silicon atom-bonded hydrogen atom in this component is contained in an amount of 0.001 to 0.20 mol with respect to 1 mol of the total of alkenyl groups in component (B). Silicone composition.
  4.  25℃における粘度が10,000Pa・s以下である、請求項1乃至3のいずれか1項に記載の反応性シリコーン組成物。 The reactive silicone composition according to any one of claims 1 to 3, wherein the viscosity at 25 ° C is 10,000 Pa · s or less.
  5.  請求項1乃至4のいずれか1項に記載の反応性シリコーン組成物のヒドロシリル化反応を70~95%転化率となるまで進行させてなる反応性熱可塑体。 A reactive thermoplastic obtained by allowing the hydrosilylation reaction of the reactive silicone composition according to any one of claims 1 to 4 to proceed to a conversion of 70 to 95%.
  6.  25℃で固体もしくは粘度が1,000,000Pa・s以上であり、100℃での粘度が100,000Pa・s以下の液状である、請求項5に記載の反応性熱可塑体。 The reactive thermoplastic according to claim 5, wherein the reactive thermoplastic is a solid at 25 ° C or a liquid having a viscosity of 1,000,000 Pa · s or higher and a viscosity at 100 ° C of 100,000 Pa · s or lower.
  7.  25℃におけるJIS K 7215に規定のタイプDデュロメーター硬さが30以上である、請求項5または6に記載の反応性熱可塑体。 The reactive thermoplastic according to claim 5 or 6, wherein the type D durometer hardness specified in JIS K 7215 at 25 ° C is 30 or more.
  8.  100℃以上に加熱して、300℃以下で流動性を示さない硬化物を形成する、請求項5乃至7のいずれか1項に記載の反応性熱可塑体。 The reactive thermoplastic according to any one of claims 5 to 7, which is heated to 100 ° C or higher to form a cured product that does not exhibit fluidity at 300 ° C or lower.
  9.  請求項5乃至8のいずれか1項に記載の反応性熱可塑体を100℃以上に加熱することにより得られ、300℃で固体もしくは粘度が1,000,000Pa・s以上である硬化物。 A cured product obtained by heating the reactive thermoplastic according to any one of claims 5 to 8 to 100 ° C or higher and having a solid or viscosity of 1,000,000 Pa · s or higher at 300 ° C.
  10.  請求項1乃至4のいずれか1項に記載の反応性シリコーン組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the reactive silicone composition of any one of Claims 1 thru | or 4.
  11.  全光線反射率が80%以上である、請求項9または10に記載の硬化物。 The cured product according to claim 9 or 10, wherein the total light reflectance is 80% or more.
  12.  25~200℃の範囲内での平均線膨張率が200ppm/℃以下である請求項9乃至11のいずれか1項に記載の硬化物。 The cured product according to any one of claims 9 to 11, wherein an average coefficient of linear expansion within a range of 25 to 200 ° C is 200 ppm / ° C or less.
  13.  請求項9乃至12のいずれか1項に記載の硬化物により光反射材を形成してなることを特徴とする光半導体装置。 An optical semiconductor device comprising a light reflecting material formed of the cured product according to any one of claims 9 to 12.
PCT/JP2014/065831 2013-06-14 2014-06-10 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device WO2014200110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522896A JP6302902B2 (en) 2013-06-14 2014-06-10 Reactive silicone composition, reactive thermoplastic, cured product, and optical semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013125221 2013-06-14
JP2013-125221 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014200110A1 true WO2014200110A1 (en) 2014-12-18

Family

ID=52022394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065831 WO2014200110A1 (en) 2013-06-14 2014-06-10 Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device

Country Status (3)

Country Link
JP (1) JP6302902B2 (en)
TW (1) TWI647282B (en)
WO (1) WO2014200110A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186061A (en) * 2015-03-27 2016-10-27 株式会社カネカ Polysiloxane composition, cured product obtained by curing the composition and semiconductor device using the cured product as sealing agent
JPWO2018235492A1 (en) * 2017-06-19 2020-04-16 ダウ・東レ株式会社 Curable silicone composition, light reflecting material comprising the same, and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460356A (en) * 1977-10-21 1979-05-15 Toray Silicone Co Ltd Silicone rubber composition
JP2001214063A (en) * 2000-01-31 2001-08-07 Dow Corning Toray Silicone Co Ltd Silicone gel composition and silicone gel
WO2011125753A1 (en) * 2010-04-02 2011-10-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
WO2013051600A1 (en) * 2011-10-04 2013-04-11 株式会社カネカ Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode
JP2013076050A (en) * 2011-09-16 2013-04-25 Dow Corning Toray Co Ltd Curable silicone composition, cured product thereof, and optical semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460356A (en) * 1977-10-21 1979-05-15 Toray Silicone Co Ltd Silicone rubber composition
JP2001214063A (en) * 2000-01-31 2001-08-07 Dow Corning Toray Silicone Co Ltd Silicone gel composition and silicone gel
WO2011125753A1 (en) * 2010-04-02 2011-10-13 株式会社カネカ Curable resin composition, curable resin composition tablet, molded body, semiconductor package, semiconductor component and light emitting diode
JP2013076050A (en) * 2011-09-16 2013-04-25 Dow Corning Toray Co Ltd Curable silicone composition, cured product thereof, and optical semiconductor device
WO2013051600A1 (en) * 2011-10-04 2013-04-11 株式会社カネカ Curable resin composition, tablet of curable resin composition, molded body, semiconductor package, semiconductor component and light emitting diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186061A (en) * 2015-03-27 2016-10-27 株式会社カネカ Polysiloxane composition, cured product obtained by curing the composition and semiconductor device using the cured product as sealing agent
JPWO2018235492A1 (en) * 2017-06-19 2020-04-16 ダウ・東レ株式会社 Curable silicone composition, light reflecting material comprising the same, and method for producing the same
JP7121735B2 (en) 2017-06-19 2022-08-18 ダウ・東レ株式会社 Curable silicone composition, light-reflecting material comprising the same, and method for producing the same

Also Published As

Publication number Publication date
TWI647282B (en) 2019-01-11
JP6302902B2 (en) 2018-03-28
JPWO2014200110A1 (en) 2017-02-23
TW201510094A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6046395B2 (en) Reactive silicone composition, reactive thermoplastic, cured product, and optical semiconductor device
JP5912600B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9048406B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
US9045641B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
JP5680889B2 (en) Curable organopolysiloxane composition and optical semiconductor device
JP5534977B2 (en) Curable organopolysiloxane composition and optical semiconductor device
JP6057503B2 (en) Curable silicone composition for encapsulating optical semiconductor element, method for producing resin-encapsulated optical semiconductor element, and resin-encapsulated optical semiconductor element
WO2014200112A1 (en) Reactive silicone composition, reactive thermoplastic, cured product and photosemiconductor device
JP2011140550A (en) Addition-curable silicone resin composition for molding optical device case and optical semiconductor device
TWI767988B (en) Curable organopolysiloxane composition and semiconductor device
JP6302902B2 (en) Reactive silicone composition, reactive thermoplastic, cured product, and optical semiconductor device
US20220372291A1 (en) Curable silicone composition, encapsulant and optical semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522896

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14810472

Country of ref document: EP

Kind code of ref document: A1