WO2013051433A1 - 光起電力素子の欠陥修復方法および欠陥修復装置 - Google Patents

光起電力素子の欠陥修復方法および欠陥修復装置 Download PDF

Info

Publication number
WO2013051433A1
WO2013051433A1 PCT/JP2012/074608 JP2012074608W WO2013051433A1 WO 2013051433 A1 WO2013051433 A1 WO 2013051433A1 JP 2012074608 W JP2012074608 W JP 2012074608W WO 2013051433 A1 WO2013051433 A1 WO 2013051433A1
Authority
WO
WIPO (PCT)
Prior art keywords
defect
semiconductor layer
electrode layer
substrate
light
Prior art date
Application number
PCT/JP2012/074608
Other languages
English (en)
French (fr)
Inventor
剛史 永田
仁史 乾
康哲 中西
林 豊
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013051433A1 publication Critical patent/WO2013051433A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a defect repair method and a defect repair apparatus for a photovoltaic device for repairing a defect portion generated in a semiconductor layer for photoelectric conversion in a photovoltaic device such as a thin film solar cell.
  • photovoltaic elements that is, solar cells
  • solar cell types a wide variety of solar cells such as crystalline solar cells, amorphous solar cells, and compound semiconductor solar cells have been developed.
  • amorphous silicon solar cells that can make effective use of silicon materials have excellent properties such as large area, easy thinning, and high light absorption coefficient, although the conversion efficiency is not as good as that of crystalline solar cells. is doing.
  • a thin film solar cell has a structure in which a semiconductor layer is sandwiched between two electrode layers.
  • a transparent conductive film is formed on the surface on the light incident side of both surfaces in the thickness direction of the semiconductor layer, and a back electrode film made of metal or the like is formed on the other surface.
  • Al or Ag is used for the back electrode, and SnO 2 (tin oxide), ITO (indium / tin oxide), ZnO (zinc oxide) or the like is used for the transparent electrode film.
  • the semiconductor layer a tandem solar cell having a structure in which a microcrystalline silicon film having a pin structure or an amorphous silicon film is stacked has become the mainstream.
  • Patent Documents 1 to 4 disclose conventional techniques for removing such a defective portion that causes an electrical short circuit.
  • Patent Document 1 a reverse bias voltage is applied to the semiconductor layer within a withstand voltage range via two electrodes sandwiching the semiconductor layer, and a short circuit occurs locally in the semiconductor layer.
  • a method of removing a short-circuit defect by causing a current to flow to cause the Joule heat to thermally oxidize or scatter the material of the short-circuit defect.
  • Patent Document 2 proposes a method of closing a pinhole portion of a semiconductor layer that may cause a short-circuit defect with a photoresist before forming a back electrode. Specifically, after a semiconductor layer was formed on the transparent electrode formed on the transparent substrate, a photoresist was applied on the semiconductor layer, and light was applied from the transparent substrate side to flow into the pinhole portion. After curing only the photoresist, development, rinsing, and photoresist baking are performed, and only the pinhole portion is closed with the cured photoresist.
  • Patent Document 3 a photovoltaic device is immersed in an electrolyte solution, and an electric field is applied to oxidize a defective portion based on a polycrystalline grain boundary or lattice mismatch of a semiconductor layer to etch the defective portion. Then, overetching is performed larger than the diameter of the pinhole, a space is formed in the transparent electrode, and the occurrence of leakage can be prevented by removing the defect.
  • Patent Document 4 after the semiconductor is formed, the semiconductor layer is irradiated with light to charge the surface of the semiconductor layer, and fine particles charged to a charge opposite to that of the charged semiconductor layer are applied to the surface of the semiconductor layer. Charged fine particles are attached to the surface of a normal part other than the above, and an insulating film is formed on the surface of the defective part of the semiconductor layer where the charged fine particles are not attached using the attached charged fine particles as a mask.
  • JP-A-11-204816 JP 59-35485 A Japanese Patent No. 2966332 JP-A-6-275856
  • Patent Document 1 Although the method disclosed in Patent Document 1 has the advantage of being inexpensive and easy to implement, depending on conditions such as reverse bias voltage application time, application method, voltage value, etc. There is a problem that the insulation state is not necessarily obtained in the vicinity.
  • the insulation area of the short-circuit defect portion is large, the amount of Joule heat generated per unit area becomes small, and the material of the short-circuit defect portion may not be scattered.
  • the reverse bias voltage by applying a voltage higher than the withstand voltage of the semiconductor layer, the photovoltaic element itself may be destroyed, or Joule heat may cause short circuit defects.
  • the concentration may be excessively concentrated on the semiconductor layer, and the scattering may be biased only to the semiconductor, and the direct short circuit portion may be further expanded between the first electrode and the second electrode.
  • the short-circuit defect portions are densely distributed in the photovoltaic element, current flows in a distributed manner in each short-circuit defect portion, so that a sufficient current flows to scatter the material of the short-circuit defect portion. In some cases, the short circuit cannot be resolved.
  • the method disclosed in Patent Document 2 includes a wet process such as a resist development process and a resist removal process before the back electrode layer is formed. Therefore, the organic substance contained in the resist material is a cause. There is a problem that it is difficult to form a good conduction state between the semiconductor layer and the back electrode layer. In addition, there is a problem that internal stress may be generated in the semiconductor layer and film peeling may occur in the wet process or the dry process.
  • Patent Document 3 makes it difficult to enter the pinhole when the pinhole diameter is small, and further requires complicated processing steps, and the apparatus for that purpose is large. As a result, there is a problem that the photovoltaic element to be manufactured may be expensive.
  • Patent Document 4 requires a complicated processing step, and it is necessary to apply charged fine particles to the entire surface of the substrate, resulting in a problem that the photovoltaic device to be manufactured is expensive. . Furthermore, when removing charged fine particles adhering to the surface of normal parts other than defective parts, new pinholes may be generated due to internal stress of the semiconductor layer film and poor adhesion to the transparent electrode. There is also a problem that becomes high.
  • the present invention has been made to solve the above problems, and in the manufacturing process of a thin film solar cell, a location that can be short-circuited due to defects due to pinholes, regardless of the size, number and distribution of pinholes.
  • An object of the present invention is to provide a defect repair method and a defect repair apparatus capable of improving the manufacturing yield and increasing the production efficiency by insulating in advance and preventing an electrical short circuit.
  • the present invention provides a defect in the semiconductor layer of a photovoltaic element formed by sequentially laminating at least a first electrode layer having a light transmitting property, a semiconductor layer, and a second electrode layer on a substrate having a light transmitting property.
  • a defect repair method for repairing A defect detection step of detecting defects in the semiconductor layer before laminating the second electrode layer;
  • a defect repairing method comprising: a material application step of discharging an insulating material using an ink jet head to the presence position of the defect detected in the defect detection step.
  • a defect in the semiconductor layer is detected by applying light from a side opposite to the side on which the first electrode layer is laminated of the substrate and using light transmitted through the substrate. It is characterized by doing.
  • the semiconductor layer has a plurality of different semiconductor layers
  • a defect in the semiconductor layer is detected by comparing a detection value of light transmitted through the substrate with a predetermined threshold value.
  • the present invention is characterized in that in the material application step, the ink jet head is scanned to discharge an insulating material.
  • the invention is characterized in that the insulating material discharged from the inkjet head is an ultraviolet curable resin.
  • the present invention is characterized by including a step of performing a laser scribing process on the semiconductor layer after the material application step and before the second electrode layer is laminated.
  • the present invention further includes a transporting step of transporting the substrate to be processed before the second electrode layer is laminated by a predetermined feed amount,
  • the laser scribing process is performed after the transfer step and the defect detection step and the material application step for the region corresponding to the feed amount transferred in the transfer step on the substrate are repeated.
  • the present invention also provides a defect in the semiconductor layer of a photovoltaic element formed by sequentially laminating at least a first electrode layer having a light-transmitting property, a semiconductor layer, and a second electrode layer on a substrate having a light-transmitting property.
  • a defect repairing apparatus comprising: a control unit that controls the ejection unit so that an insulating material is ejected to a position where the defect detected by the detection unit exists.
  • the detecting means comprises: A light emitting means provided on a side opposite to the side on which the first electrode layer of the substrate is laminated, and irradiating the substrate with light; And a light receiving means provided on a side of the substrate on which the first electrode layer is laminated and receiving light from the light emitting means.
  • the present invention is further characterized by further comprising a discriminating means for discriminating the type of defect based on the luminance received by the light receiving means.
  • a necessary amount of insulating material is discharged in a non-contact manner from the film surface of the semiconductor layer to a position where a defect such as a pinhole in the semiconductor layer exists.
  • a defect can be repaired regardless of the size and number of defects. Thereby, the electrical short circuit in a defective part can be prevented and the fall of the conversion efficiency of the photovoltaic device manufactured can be suppressed.
  • the insulating material required for repairing a defect can be reduced compared with the past, and the material cost concerning manufacture can be suppressed.
  • the light irradiated from the side opposite to the side on which the first electrode layer of the substrate is laminated passes through the pinhole serving as the short-circuit defect portion, and the first electrode layer of the substrate is laminated. Is detected on the other side. Thereby, the position of the defect can be easily detected.
  • the photovoltaic element has a tandem structure having semiconductor layers having different absorption wavelengths
  • by providing a predetermined threshold for the detected value of light transmitted through the pinhole portion It can be easily determined whether the semiconductor layer is peeled off or whether all the semiconductor layers are peeled off.
  • defects can be repaired in substantially the same processing time regardless of the number of defects occurring in the semiconductor layer.
  • the insulating material can be cured with almost no heat applied to the photovoltaic element itself, it is possible to prevent the photovoltaic element from being damaged in the defect repair process.
  • the scribe line when the semiconductor layer is laser scribed is detected in the defect detection step in the same manner as the pinhole.
  • the defect detection process and the material application process are performed while the substrate is conveyed by a predetermined amount, so that the defect repair process can be performed using an inline type apparatus.
  • defects such as pinholes in the semiconductor layer can be easily detected, and the insulating material can be discharged in a non-contact manner from the film surface of the semiconductor layer to the position where the defect exists.
  • the position of the defect in the semiconductor layer can be easily identified from the light transmitted through the semiconductor layer.
  • the photovoltaic element has a tandem structure having semiconductor layers having different absorption wavelengths
  • by providing a predetermined threshold for the detected value of light transmitted through the pinhole portion It can be easily determined whether the semiconductor layer is peeled off or whether all the semiconductor layers are peeled off.
  • FIG. 1 is a front view schematically showing a defect repair device 50 according to an embodiment of the present invention. It is a side view which shows schematically the defect repair apparatus 50 which concerns on one Embodiment of this invention. It is a top view which shows schematically the defect repair apparatus 50 which concerns on one Embodiment of this invention.
  • FIG. 2 is a block diagram of a defect repair device 50.
  • FIG. It is a flowchart which shows an example of the defect repair process by the defect repair apparatus 50 which concerns on this embodiment. It is a flowchart which shows the other example of the defect repair process by the defect repair apparatus 50 which concerns on this embodiment.
  • FIG. 1 is a cross-sectional view at a normal location of a photovoltaic element 10 to be processed by a defect repair apparatus 50 according to an embodiment of the present invention.
  • the normal location in the photovoltaic element 10 is a location where no defects such as pinholes have occurred.
  • a photovoltaic element 10 shown in FIG. 1 is, for example, an amorphous silicon solar cell, and specifically, a first electrode having translucency on one surface in a thickness direction of an insulating substrate 11 having translucency.
  • the layer 12, the first semiconductor layer 13, the second semiconductor layer 14, and the second electrode layer 15 are sequentially stacked, and finally sealed with an insulating resin 16.
  • the first electrode layer 12 is made of a light-transmitting conductive oxide layer, and preferably made of a conductive oxide layer made of a material containing ZnO or SnO 2 .
  • the material containing SnO 2 may be SnO 2 itself or a mixture of SnO 2 and another oxide (for example, ITO which is a mixture of SnO 2 and In 2 O 3 ).
  • Such a conductive oxide layer is formed by sputtering, vapor deposition, CVD, or the like.
  • the surface of the first electrode layer 12 may have a fine texture structure in order to confine light incident from outside into the first and second semiconductor layers 13 and 14. Thereby, the photoelectric conversion efficiency of the photovoltaic element 10 can be improved.
  • the first scribe line 17 is formed by laser scribing the first electrode layer 12 using a YAG laser or the like.
  • the electrode layer 12 is divided in the surface direction of the insulating substrate 11.
  • the semiconductor layer in the photovoltaic element 10 is formed by sequentially laminating a first semiconductor layer 13 and a second semiconductor layer 14. That is, the photovoltaic element 10 has a tandem structure.
  • the first and second semiconductor layers 13 and 14 are configured to have different light absorption wavelength regions.
  • the first semiconductor layer 13 absorbs a light component in a shorter wavelength region than the second semiconductor layer 14. It is configured to be easy to do.
  • the first semiconductor layer 13 is formed by sequentially laminating p-type, i-type, and n-type amorphous silicon-based semiconductor layers, for example, sequentially from the first electrode layer 12 side, and the second semiconductor layer 14 is formed by, for example, the first electrode layer.
  • P-type, i-type, and n-type microcrystalline silicon-based semiconductor layers are sequentially stacked from the 12th side.
  • the p-type semiconductor layer is doped with p-type impurity atoms such as boron and aluminum
  • the n-type semiconductor layer is doped with n-type impurity atoms such as phosphorus.
  • the i-type semiconductor layer may be a completely non-doped semiconductor layer, or may be a weak p-type or weak n-type semiconductor layer having a small amount of impurities and sufficiently equipped with a photoelectric conversion function.
  • the first and second semiconductor layers 13 and 14 can be formed by a plasma CVD method or the like.
  • the photovoltaic element 10 shown in FIG. 1 is formed by laminating two semiconductor layers 13 and 14, but the photovoltaic element is realized by one or more semiconductor layers. Even so, the defect can be processed by the defect repairing apparatus 50 according to the present embodiment.
  • the second and second semiconductor layers 13 and 14 are subjected to laser scribing using a YAG laser or the like, so that the second A scribe line 18 is formed, whereby the first and second semiconductor layers 13 and 14 are divided in the plane direction of the insulating substrate 11.
  • the second electrode layer 15 is stacked on the second semiconductor layer 14 and has a stacked structure in which, for example, a transparent conductive film and a metal film are stacked.
  • the transparent conductive film is made of, for example, ZnO, ITO, SnO 2 or the like.
  • the metal film is made of a metal such as silver and aluminum.
  • the first and second semiconductor layers 13 and 14 are intermittently or continuously formed by a CVD apparatus or the like. However, since these are formed very thinly, defects such as pinholes are formed. Is likely to occur. When such a defect occurs, an electrical short circuit is caused between the first electrode layer 12 and the second electrode layer 15 sandwiching the first and second semiconductor layers 13 and 14, and the photovoltaic device 10 As a whole cell, the power generation efficiency will be lowered.
  • FIG. 2 is a cross-sectional view showing the manufacturing process of the photovoltaic element 10 and schematically shows how the pinhole 20 is generated.
  • the first and second layers are subjected to a laser scribing process for forming the first scribe line 17 by a CVD apparatus or the like.
  • the semiconductor layers 13 and 14 are sequentially stacked (FIG. 2B). At this time, when the foreign matter 21 is mixed, the first and second semiconductor layers 13 and 14 are not formed on the insulating substrate 11 or the first and second semiconductor layers 13 and 14 are on the foreign matter 21. After the film is formed, a portion where the first and second semiconductor layers 13 and 14 are peeled off with the separation of the foreign material 21 becomes apparent as the pinhole 20.
  • the foreign material 21 that causes the pinhole 20 is dust originally attached to the insulating substrate 11, minute protrusions or scratches formed on the surface of the insulating substrate 11, or a manufacturing apparatus for manufacturing the photovoltaic element 10. Fine particles having a size of about several ⁇ m floating in the internal space.
  • fine particles of several ⁇ m that float when the first semiconductor layer 13 is formed are separated after the second semiconductor layer 14 is formed, and thus penetrate the first and second semiconductor layers 13 and 14.
  • the pinhole 20 is generated, and an electric short circuit is caused.
  • the foreign material 21 is detached after the first semiconductor layer 13 is formed and the second semiconductor layer 14 is formed at a pinhole penetrating the first semiconductor layer 13, Since the second semiconductor layer 14 is interposed between the electrode layer 12 and the second electrode layer 15, an electrical short circuit does not occur, and there is no problem.
  • the second electrode layer 15 is stacked by a sputtering apparatus or the like through a laser scribing process for forming the second scribe line 18 (FIG. 2C), and the third scribe line is formed.
  • the insulating resin 16 is sealed through a laser scribing process for forming the line 19 (FIG. 2D).
  • the first electrode layer 12 and the second electrode layer 15 are short-circuited at the location where the pinhole 20 penetrating the first and second semiconductor layers 13 and 14 is formed. .
  • FIG. 3 is a cross-sectional view showing a manufacturing process of the photovoltaic device 10 including the defect repairing method according to this embodiment.
  • FIGS. 3 (a) and 3 (b) are FIGS. As described above in b), the pinhole 20 is generated by the foreign material 21.
  • the pinhole 20 penetrating the first and second semiconductor layers 13 and 14 is formed.
  • a defect detection step for detection is performed using an illumination light source 30 provided in a defect repair device 50, which will be described later, used for defect repair processing and a light detection unit (not shown) (FIG. 3C).
  • the illumination light source 30 is provided on the opposite side of the insulating substrate 11 to the side on which the first electrode layer 12 is laminated, and the light detection unit is provided on the opposite side of the illumination light source 30 via the insulation substrate 11. .
  • the insulating substrate 11 and the first electrode layer 12 have translucency as described above.
  • the light emitted from the illumination light source 30 passes through the insulating substrate 11 and the first electrode layer 12, then passes through the pinhole 20, and defect detection light. 31 is emitted from the upper surface of the second semiconductor layer 14. By detecting the defect detection light 31 using the light detection unit, the location where the pinhole 20 is present can be specified.
  • the second semiconductor layer is formed at the specified location by scanning the inkjet head 40 provided in the defect repairing device 50 described later in the surface direction of the insulating substrate 11. 14 is performed in a non-contact manner by discharging the insulating material 41 and applying the insulating material 41 to the pinhole 20 (FIG. 3D).
  • thermosetting resin that needs to be heated to be cured
  • the semiconductor element in the photovoltaic element 10 will not function.
  • an ultraviolet curable resin that is cured by irradiating ultraviolet rays is used.
  • the second electrode layer 15 is laminated by a sputtering apparatus or the like through a laser scribing process for forming the second scribe line 18 (FIG. 3 ( e)), the insulating resin 16 is sealed through a laser scribing process for forming the third scribe line 19 (FIG. 3F).
  • the pinhole 20 is closed by the insulating material 41 before the second electrode layer 15 is laminated, the occurrence of the short-circuited portion 22 as shown in FIG. 2 can be prevented.
  • FIG. 4 is a front view schematically showing a defect repair apparatus 50 according to an embodiment of the present invention
  • FIG. 5 is a side view schematically showing the defect repair apparatus 50 according to an embodiment of the present invention
  • FIG. 6 is a top view schematically showing the defect repairing apparatus 50 according to one embodiment of the present invention.
  • the defect repair device 50 is a device used for executing the above-described defect repair processing.
  • the defect repair apparatus 50 includes a detection camera 51 corresponding to the above-described light detection unit, an illumination light source 30, an inkjet head 40, an inkjet unit 52 that stably supplies the insulating material 41 to the inkjet head 40, and the inkjet head 40.
  • a control unit 56 that controls the entire defect repairing apparatus 50 and a UV irradiation unit 64 that emits ultraviolet rays for curing the insulating material 41.
  • the conveyance direction D and the width direction W are two directions orthogonal to each other on the conveyance surface of the insulating substrate 11 in the defect repairing apparatus 50.
  • a direction orthogonal to both the transport direction D and the width direction W is referred to as a height direction.
  • the insulating substrate 11 in which the first and second semiconductor layers 13 and 14 are stacked is formed as a rectangular plate, and the second semiconductor layer 14 faces upward. It is placed on the transport mechanism 54 in such a posture.
  • the detection camera 51 is installed at a position above the insulating substrate 11 placed on the transport mechanism 54, and is realized by, for example, a line sensor or an area camera.
  • the number of detection cameras 51 to be installed in the defect repair device 50 and the mounting position in the height direction are determined based on the size of the insulating substrate 11 and the minimum defect size to be detected. In the present embodiment, one detection camera 51 is installed to reduce the cost of the defect repair device 50.
  • the illumination light source 30 is installed at a position below the insulating substrate 11 placed on the transport mechanism 54, and it is preferable to select a light source that meets the specifications of the detection camera 51.
  • the detection camera 51 is selected by a line sensor. When implemented, line illumination is selected, and when the detection camera 51 is implemented by an area sensor, illumination that emits light is selected.
  • the illumination light source 30 one that emits light that is almost absorbed by the first semiconductor layer 13 and the second semiconductor layer 14 is used.
  • the first semiconductor layer 13 is an amorphous silicon-based semiconductor layer.
  • the second semiconductor layer 14 is a microcrystalline silicon-based semiconductor layer, the light emitted from the illumination light source 30 is almost absorbed by the semiconductor layers 13 and 14 on the short wavelength side of the visible light region, and is slightly In addition, only the light on the long wavelength side passes through the object to be processed.
  • the first semiconductor layer 13 and the second semiconductor layer 14 do not exist at locations where the pinholes 20 that penetrate the first and second semiconductor layers 13 and 14 exist, almost no light is emitted from the illumination light source 30. It passes through the workpiece without being absorbed.
  • the illumination light source 30 only a part of the light emitted from the illumination light source 30 is present at the pinhole location where one of the first semiconductor layer 13 and the second semiconductor layer 14 exists. Is absorbed by the semiconductor layer present. Therefore, in such a location where the pinhole is present, the luminance of the light transmitted through the object to be processed is reduced as compared with the location where the pinhole 20 penetrating the first and second semiconductor layers 13 and 14 is present.
  • the transport mechanism 54 includes a plurality of transport rollers and transports the object to be processed along the transport direction D.
  • the transport mechanism 54 may be controlled by the control unit 56 so as to transport the object to be processed at a constant speed along the transport direction D, while repeating the step feed of the object to be processed by a certain distance along the transport direction D. It may be controlled by the control unit 56 so as to convey.
  • a detection image without a break can be easily taken by the detection camera 51 in the defect detection step. Further, in the latter case, it is suitable for an in-line method in which the loading / unloading direction of the insulating substrate 11 is different. Can be implemented one by one.
  • the inkjet head 40 discharges the insulating material 41 downward at a position downstream of the illumination light source 30 and the detection camera 51 in the transport direction and above the insulating substrate 11 placed on the transport mechanism 54. It is installed in a possible posture and is supported so as to be movable along the width direction W.
  • the inkjet head 40 employs a piezo method using a piezo element that deforms when a voltage is applied. This is because the range of materials that can be used is wider than the bubble jet (registered trademark) method in which ink is heated and ink is ejected by bubbles.
  • the inkjet head 40 is arranged such that the center of the detection camera 51 on the conveyance surface of the insulating substrate 11 and the inkjet so as not to increase the apparatus accuracy such as pitching and yawing of the conveyance mechanism 54. It is preferable to install the head 40 so that the distance from the nozzle center is as short as possible.
  • the defect repairing apparatus 50 is configured to include only one inkjet head 40, but may be configured to include a plurality of inkjet heads 40. If a plurality of ink jet heads 40 are provided, the range in which the insulating material 41 can be discharged by a single scanning operation in the width direction W is increased accordingly, so that the processing tact of the apparatus can be increased. However, if the number of inkjet heads 40 increases, the apparatus cost increases accordingly, and the number of inkjet heads 40 is determined depending on the balance between the processing tact and the apparatus cost.
  • UV ink ultraviolet curable ink
  • the main component of the UV ink consists of a photopolymerizable resin, a photopolymerization initiator, and an auxiliary agent, and is characterized by not containing an organic solvent.
  • the UV irradiation unit 64 is disposed downstream of the inkjet head 40 in the transport direction and at a position above the insulating substrate 11 placed on the transport mechanism 54 so as to emit ultraviolet rays downward. ing.
  • the UV irradiation unit 64 is configured to irradiate ultraviolet rays over the entire upper surface of the object to be processed. However, if the irradiation intensity of the emitted ultraviolet light is strong, the applied UV ink can be cured in a short time. Therefore, the line-shaped UV irradiation apparatus is used to irradiate the ultraviolet light while conveying the object to be processed. You may comprise as follows. Examples of the light source used for the UV irradiation unit 64 include a metal halide lamp, a high-pressure mercury lamp, a UV LED, and a black light.
  • the ink jet unit 52 is configured to stably supply the insulating material 41 from a tank (not shown) to the ink jet head 40, and further, UV ink is cured even if the ink flow path in the ink jet unit 52 is irradiated with ultraviolet rays. It is covered with UV cut material so that it is difficult to do. Similarly, in the maintenance unit 53, a UV cut material is used for the piping passage through which the UV ink passes.
  • the nozzle surface of the inkjet head 40 is irradiated with ultraviolet rays to some extent when the defect repairing apparatus 50 is operated. Therefore, it is preferable to periodically maintain the inkjet head 40 using the maintenance unit 53.
  • the ink in the nozzle is sucked and discharged, or the ink is periodically ejected from the nozzle irrespective of the defect repair processing.
  • capping can be performed so that external light can be completely blocked.
  • the defect repairing device 50 further includes a non-discharge inspection unit (not shown) that can check the discharge state and a nozzle surface inspection unit (not shown) that detects liquid dripping on the nozzle surface. .
  • FIG. 7 is a block diagram of the defect repair apparatus 50.
  • the detection image obtained from the detection camera 51 is stored in the ROM 58 and the image recording unit 57 of the control unit 56 and is processed by the CPU 60. Specifically, in the detection image obtained by the detection camera 51, transmitted light having the same brightness as that of the pinhole 20 is detected also at the peripheral portion of the object to be processed. Therefore, the CPU 60 trims the detection image. Delete the periphery. Further, by binarizing the trimmed detection image, the position coordinates of the defective portion in the object to be processed are acquired.
  • the defect portion to be coated with the insulating material 41 among the defect portions acquired by the CPU 60 based on the threshold value determined in advance with respect to the luminance of the light detected by the detection camera 51 is insulated.
  • a defective portion that does not require application of the material 41 is determined.
  • the defect drawing data generation unit 62 can apply the insulating material 41 to the defect portion due to the pinhole 20 penetrating the first and second semiconductor layers 13 and 14 based on the determination result by the defect determination unit 61. Whether drawing data is created and whether or not the repair process is performed is determined based on whether or not the pinhole 20 penetrating the first and second semiconductor layers 13 and 14 exists.
  • the control unit 56 is based on the output value of the encoder 63 that outputs information related to the position of the inkjet head 40 in the width direction W with respect to the workpiece conveyed below the inkjet head 40.
  • the insulating material 41 is discharged from the nozzle of the designated inkjet head 40.
  • the workpiece to which the insulating material 41 is applied in this way is transported to the UV irradiation unit 64 by the transport mechanism 54 and irradiated with ultraviolet rays for a predetermined time.
  • the pinhole 20 is covered with the insulating material 41 and insulated so that the first electrode layer 12 and the second electrode layer 15 are electrically insulated. It is necessary to ensure the film thickness of the material 41.
  • the insulating characteristics vary depending on the insulating material 41 itself, the required film thickness also changes.
  • the film thickness changes depending on the wettability of the insulating material 41 with respect to the film surface in the semiconductor layer, the required discharge amount is also different.
  • the required film thickness also depends on the accuracy of the defect repair device 50 itself (related to the landing accuracy of the insulating material 41, the detection accuracy of the defect, the axial accuracy, etc.).
  • the discharge area for the pinhole 20 is determined based on the accuracy of the defect repair device 50 itself, and the required film thickness for the pinhole 20 is determined based on the insulating characteristics and wettability of the insulating material 41.
  • the discharge volume (discharge amount) of the UV ink is determined.
  • FIG. 8 is a flowchart showing an example of defect repair processing by the defect repair device 50 according to the present embodiment.
  • the conveyance of the object to be processed is started in order to detect the pinhole 20 (step s3).
  • the transport mechanism 54 is controlled so as to transport the object to be processed in the transport direction D at a predetermined transport speed, and in the defect detection process, the illumination light source 30 is activated and the entire surface of the object is processed.
  • a detection image of the entire surface of the object to be processed is acquired by scanning with the detection camera 51 over a period of time (step s4).
  • the defect drawing data generation unit 62 generates defect drawing data based on the detected image (step s5), and determines whether or not the defect portion should be repaired (step s6). If there is a defect to be repaired, the process proceeds to step s7, and if not, the process proceeds to step s9.
  • the inkjet head 40 is head-maintained by the maintenance unit 53 (step s11), and it is confirmed whether UV ink is normally ejected from the nozzle (undischarge inspection) ( In step s12), it is confirmed (nozzle surface inspection) whether ink is dripping on the nozzle surface (step s13).
  • the ink in the nozzles of the inkjet head 40 is sucked and discharged, the nozzle surface is cleaned with a wipe blade, or the discharge operation is performed.
  • the material application step is executed, that is, the inkjet head 40 discharges the insulating material 41 to the defective portion while performing the scanning operation in the width direction W above the object to be processed. Is closed by the insulating material 41 (step s7). Such processing is performed over the entire surface of the object to be processed while repeating the scanning operation of the inkjet head 40.
  • the inkjet head 40 returns to the standby position (on the maintenance unit 53), while the workpiece to which the insulating material 41 is applied is conveyed to the UV irradiation unit 64. Then, the UV irradiation unit 64 irradiates the object to be processed with ultraviolet rays for a predetermined time (step s8). Thereby, the insulating material 41 applied to the pinhole 20 is cured.
  • the ultraviolet irradiation time here can be obtained from the integrated light amount (mJ / cm 2 ) necessary for curing the insulating material 41 by the ultraviolet intensity of the light source provided in the UV irradiation unit 64.
  • the object to be processed is carried out (step s9), and a series of defect repair processing is completed.
  • the first and second semiconductor layers 13 and 14 are subjected to laser scribing process before the second electrode layer 15 is formed on the second semiconductor layer 14, thereby forming the second scribe line 18. Is done.
  • FIG. 9 is a flowchart showing another example of defect repair processing by the defect repairing apparatus 50 according to the present embodiment.
  • the defect repairing process shown in FIG. 9 is substantially the same as the defect repairing process shown in FIG. 8, and in the inspection flow, whether the entire surface of the object to be processed is inspected at a time or the object to be processed is inspected for each predetermined region. It is different.
  • the predetermined region corresponds to a region where the insulating material 41 can be ejected by one scan of the inkjet head 40 (scan in one direction in the width direction W), and between the nozzles at both ends of the inkjet head 40. Determined based on distance. Therefore, if a plurality of inkjet heads 40 are provided, the area increases by the number of inkjet heads 40.
  • the alignment process is performed so that the object to be processed is arranged on the transport mechanism 54 in a predetermined posture (step s21). s22).
  • control unit 56 drives the transport mechanism 54 so that the first area of the object to be processed is arranged below the detection camera 51 (step s23). Thereafter, in the defect detection step, the illumination light source 30 is operated, and the detection image of the first region is acquired by the detection camera 51 (step s24).
  • the defect drawing data generation unit 62 generates defect drawing data based on the detected image of the first area (step s25), and determines whether or not the defect location in the first area should be repaired (step s26). . If there is a defective portion to be repaired, the process proceeds to step s27, and if not, the process returns to step s23. When returning to step s23, the control unit 56 drives the transport mechanism 54 so that the second region adjacent to the first region is disposed below the detection camera 51.
  • the inkjet head 40 is head-maintained by the maintenance unit 53 (step s41), and UV ink is normally ejected from the nozzles, as in the defect repair process shown in FIG. Is confirmed (undischarge inspection) (step s42), and further, it is confirmed (nozzle surface inspection) whether ink is dripping on the nozzle surface (step s43).
  • the material application process is executed, that is, the inkjet head 40 discharges the insulating material 41 to the defective portion while performing the scanning operation from one side of the width direction W to the other side of the workpiece. As a result, the pinhole 20 is closed by the insulating material 41 (step s27).
  • step s28 the control unit 56 detects the second region adjacent to the first region as a detection camera.
  • the transport mechanism 54 is driven so as to be disposed below the 51.
  • a defect detection process is executed in steps s29 to s31. If there is a defect location to be repaired in step s31, the process proceeds to step s32. Return to s28.
  • step s32 a material application process is performed, that is, the inkjet head 40 discharges the insulating material 41 to the defective portion while performing a scanning operation from the other side in the width direction W to the upper side of the object to be processed.
  • the hole 20 is blocked by the insulating material 41.
  • the inkjet head 40 returns to the standby position (on the maintenance unit 53), while the workpiece to which the insulating material 41 is applied is conveyed to the UV irradiation unit 64. Then, the UV irradiation unit 64 irradiates the object to be processed with ultraviolet rays for a predetermined time (step s34). Thereby, the insulating material 41 applied to the pinhole 20 is cured. When the curing of the insulating material 41 is completed, the object to be processed is carried out (step s35), and a series of defect repair processing is completed.
  • the photovoltaic element 10 applied in the present invention there are solar cells such as single crystal, polycrystal, amorphous silicon, CIGS, and CdTe.
  • a pin generated in a thin film solar cell having a relatively large area In order to repair a defect such as the hole 20, it can be suitably performed.
  • the defect repair method As described above, according to the defect repair method according to the present embodiment, before the second electrode layer 15 is stacked, the positions of defects such as the pinholes 20 penetrating the first and second semiconductor layers 13 and 14 exist. In addition, by discharging a necessary amount of the insulating material 41 in a non-contact manner with respect to the film surface of the second semiconductor layer 14, the defect can be repaired regardless of the size of the defect and the number of defects. Thereby, the electrical short circuit in a defective part can be prevented and the fall of the conversion efficiency of the photovoltaic device 10 manufactured can be suppressed. Moreover, the insulating material 41 required for repairing a defect can be reduced compared with the past, and the material cost concerning manufacture can be suppressed.
  • the light irradiated from the side opposite to the side on which the first electrode layer 12 is laminated in the object to be processed passes through the pinhole 20 and is detected on the side where the first electrode layer 12 is laminated. Is detected. In this way, the position of the defect can be easily detected.
  • the photovoltaic element 10 has a tandem structure having the first and second semiconductor layers 13 and 14 having different absorption wavelengths, a predetermined threshold is provided for the luminance of transmitted light that passes through the pinhole portion. Thus, it is possible to easily determine which semiconductor layer is peeled off or whether all semiconductor layers are peeled off.
  • the defects can be repaired in substantially the same processing time regardless of the number of defects generated in the semiconductor layer.
  • the insulating material 41 can be cured with almost no heat applied to the photovoltaic device itself, and the photovoltaic device 10 is damaged in the defect repair process. This can be prevented.
  • the process of laser scribing the first and second semiconductor layers 13 and 14 is executed after the defect repair process, the problem that the second scribe line 18 is detected in the same manner as the pinhole 20 is prevented.
  • the defect repair process can be executed using an inline type apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 薄膜太陽電池の製造工程において、ピンホールのサイズ、個数および分布によらずに、ピンホールによる欠陥が原因となって短絡されうる箇所を予め絶縁して、電気的短絡を防止することにより、製造歩留まりを向上させ、生産効率の上げることができる欠陥修復方法を提供する。 欠陥修復方法は、透光性を有する絶縁基板(11)上に、透光性を有する第1電極層(12)、2つの半導体層(13),(14)および第2電極層(15)を順次積層して形成される光起電力素子(10)において、第2電極層(15)を積層する前に、2つの半導体層(13),(14)を貫通するピンホール(20)を検出する欠陥検出工程と、欠陥検出工程で検出されたピンホール(20)の存在位置に対して、インクジェットヘッド(40)を用いて絶縁材料(41)を吐出する材料塗布工程とを含む。

Description

光起電力素子の欠陥修復方法および欠陥修復装置
 本発明は、薄膜太陽電池などの光起電力素子における光電変換のための半導体層に発生した欠陥部分を修復する光起電力素子の欠陥修復方法および欠陥修復装置に関する。
 近年環境問題に対する関心の高まりから、光起電力素子、すなわち太陽電池が様々なところで利用されている。太陽電池の種類としては、結晶系太陽電池、アモルファス太陽電池、化合物半導体太陽電池などの多岐にわたる太陽電池が開発されている。なかでもシリコン材料を有用に活かせるアモルファスシリコン太陽電池は、変換効率こそ結晶系太陽電池に及ばないものの、大面積化、薄膜化が容易で、さらには光吸収係数が大きいという優れた特性を有している。
 一般に、薄膜太陽電池は、2つの電極層で半導体層を挟んだ構造をしている。半導体層における厚み方向の両表面のうち、光が入射する側の表面には透明導電膜が形成され、他方の表面には金属などからなる裏面電極膜が形成される。この裏面電極には、たとえばAlやAgが用いられ、また、透明電極膜には、たとえばSnO2(酸化錫)、ITO(インジウム・錫酸化物)、ZnO(酸化亜鉛)などが用いられる。また半導体層としては、pin構造を有する微結晶シリコン膜やアモルファス系シリコン膜を積層した構造などがとられたタンデム型太陽電池が主流となっている。
 このような光起電力素子の製造工程では、半導体層の成膜時にゴミや埃などが付着し、製造段階で付着したゴミや埃などが後に剥離したり、または半導体層における膜の内部応力や透明電極との密着性の悪さによって、半導体層にピンホールなどの欠陥が生じたりする。このような欠陥箇所に金属からなる裏面電極膜が形成されると、欠陥箇所で電気的に短絡してしまい、製造された光起電力素子の光電変換効率が低下してしまうことが知られている。
 このような電気的短絡の原因となる欠陥部を除去するための従来の技術が、たとえば特許文献1~4に開示されている。
 特許文献1では、半導体層を挟む2つの電極を介して、該半導体層に対して耐電圧の範囲内で逆バイアス電圧を印加し、半導体層に局所的に発生している短絡欠陥部に短絡電流を流すことにより、そのジュール熱によって短絡欠陥部の材料を熱酸化または飛散させて、短絡欠陥部を除去する方法が提案されている。
 また、特許文献2では、裏面電極を成膜する前に、短絡欠陥の原因となりうる半導体層のピンホール部をフォトレジストによって閉塞する方法が提案されている。具体的には、透明基板に形成された透明電極上に半導体層を成膜後、その半導体層上にフォトレジストを塗布し、透明基板側から光を照射することによって、ピンホール部に流入したフォトレジストのみを硬化させた後、現像、リンスおよびフォトレジスト焼成を経て、ピンホール部のみを、硬化したフォトレジストによって閉塞している。
 また、特許文献3では、光起電力素子を電解質溶液中に浸漬し、電界を印加して、半導体層の多結晶の結晶粒界や格子不整合に基づく欠陥部分を酸化して欠陥部分をエッチングすると、ピンホールの径よりも大きくオーバーエッチングされ、透明電極に空間部が形成され、欠陥部を除去することにより、リークの発生を防止できる。
 また、特許文献4では、半導体形成後に半導体層に光を照射して半導体層表面を帯電させて、帯電した半導体層と逆の電荷に荷電した微粒子を半導体層表面に塗布し半導体層の欠陥部分以外の正常な部分の表面に荷電微粒子を付着させて、付着した荷電微粒子をマスクにして荷電微粒子が付着していない半導体層の欠陥部分表面上に絶縁膜を形成する。
特開平11-204816号公報 特開昭59-35485号公報 特許第2966332号公報 特開平6-275856号公報
 上記特許文献1に開示される方法は、安価でかつ簡単に実施することができるという利点はあるものの、逆バイアス電圧の印加時間や印加方法、電圧値などの条件によっては、短絡欠陥部やその近傍において必ずしも絶縁状態にならないという問題がある。
 たとえば、短絡欠陥部の絶縁面積が大きい場合には、単位面積当たりのジュール熱の発生量が小さくなってしまい、短絡欠陥部の材料が飛散しないことがある。また、逆バイアス電圧を印加していく過程においても、半導体層の耐電圧以上の電圧を印加してしまうことにより、光起電力素子そのものを破壊してしまったり、あるいはジュール熱が短絡欠陥部の半導体層に集中しすぎて、その半導体のみに飛散が偏って、第1電極と第2電極との間で直接的な短絡部を一層広げてしまったりすることがある。さらには、短絡欠陥部が光起電力素子内で密集して分布している場合、各短絡欠陥部に電流が分散して流れるため、短絡欠陥部の材料を飛散させるために十分な電流を流すことができず、短絡状態が解消されないこともある。
 また上記特許文献2に開示される方法は、裏面電極層を形成する前に、レジスト現像工程やレジスト除去工程などのウェット工程を含むので、レジスト材料に含まれる有機物の残留物質が原因となって、半導体層と裏面電極層との間に良好な導通状態を形成しにくいという問題がある。また、ウェット工程や乾燥工程において、半導体層に内部応力が発生して膜剥れが発生するおそれがあるという問題もある。
 また上記特許文献3に開示される方法は、ピンホールの径が小さくなると、ピンホールへのエッチングなどの侵入が困難となり、さらには複雑な処理工程を必要とし、そのための装置は大掛かりなものになったりして、製造される光起電力素子はコスト高になってしまうことがあるという問題がある。
 また上記特許文献4に開示される方法は、複雑な処理工程を必要とし、荷電微粒子を基板全面に塗布する必要があり、製造される光起電力素子はコスト高になってしまうという問題がある。さらに、欠陥部分以外の正常な部分の表面に付着している荷電微粒子を除去する際に、半導体層膜の内部応力や透明電極との密着性の悪さによって、新たにピンホールが発生する可能性が高くなるという問題もある。
 本発明は上記問題を解決するためになされたもので、薄膜太陽電池の製造工程において、ピンホールのサイズ、個数および分布によらずに、ピンホールによる欠陥が原因となって短絡されうる箇所を予め絶縁して、電気的短絡を防止することにより、製造歩留まりを向上させ、生産効率の上げることができる欠陥修復方法および欠陥修復装置を提供することを目的とする。
 本発明は、透光性を有する基板上に、少なくとも、透光性を有する第1電極層、半導体層および第2電極層を順次積層して形成される光起電力素子の前記半導体層における欠陥を修復する欠陥修復方法であって、
 前記第2電極層を積層する前に、前記半導体層における欠陥を検出する欠陥検出工程と、
 前記欠陥検出工程で検出された前記欠陥の存在位置に対して、インクジェットヘッドを用いて絶縁材料を吐出する材料塗布工程とを含むことを特徴とする欠陥修復方法である。
 また本発明は、前記欠陥検出工程では、前記基板の前記第1電極層が積層される側とは反対側から光を当てて、前記基板を透過する光を用いて前記半導体層における欠陥を検出することを特徴とする。
 また本発明は、前記半導体層は、複数の異なる半導体層を有し、
 前記欠陥検出工程では、前記基板を透過する光の検出値と予め定める閾値とを比較して、前記半導体層における欠陥を検出することを特徴とする。
 また本発明は、前記材料塗布工程では、前記インクジェットヘッドを走査させて絶縁材料を吐出することを特徴とする。
 また本発明は、前記インクジェットヘッドから吐出される前記絶縁材料は、紫外線硬化樹脂であることを特徴とする。
 また本発明は、前記材料塗布工程後、前記第2電極層を積層する前に、前記半導体層をレーザスクライブ処理する工程を含むことを特徴とする。
 また本発明は、前記第2電極層が積層される前の処理対象の基板を、予め定める送り量だけ搬送する搬送工程をさらに含み、
 前記搬送工程と、前記基板において前記搬送工程で搬送された送り量に相当する領域に対する前記欠陥検出工程および前記材料塗布工程とを繰り返し行った後、前記レーザスクライブ処理を行うことを特徴とする。
 また本発明は、透光性を有する基板上に、少なくとも透光性を有する第1電極層、半導体層および第2電極層を順次積層して形成される光起電力素子の前記半導体層における欠陥を修復する欠陥修復装置であって、
 前記第2電極層が積層される前の基板を搬送する搬送手段と、
 前記半導体層における欠陥を検出する検出手段と、
 前記半導体層における欠陥に対し、非接触で絶縁材料を吐出する吐出手段と、
 前記検出手段によって検出された欠陥の存在位置に絶縁材料が吐出されるように前記吐出手段を制御する制御手段とを備えることを特徴とする欠陥修復装置である。
 また本発明は、前記検出手段は、
  前記基板の前記第1電極層が積層される側とは反対側に設けられ、該基板に光を照射する発光手段と、
  前記基板の前記第1電極層が積層される側に設けられ、前記発光手段からの光を受光する受光手段とを備えることを特徴とする。
 また本発明は、前記受光手段が受光する輝度に基づいて、欠陥の種類を判別する判別手段をさらに備えることを特徴とする。
 本発明によれば、第2電極層を積層する前に、半導体層におけるピンホールなどの欠陥の存在位置に、半導体層の膜面から非接触で絶縁材料を必要な量だけ吐出することにより、欠陥のサイズや欠陥数に関わらず、欠陥を修復することができる。これにより、欠陥部における電気的短絡を防止し、製造される光起電力素子の変換効率の低下を抑制することができる。また、欠陥を修復するために要する絶縁材料を、従来に比べて低減することができ、製造にかかる材料コストを抑制することができる。
 また本発明によれば、基板の第1電極層が積層される側とは反対側から照射される光が、短絡欠陥箇所となるピンホールを通過して、基板の第1電極層が積層される側で検出される。これにより、容易に欠陥の存在位置を検出することができる。
 また本発明によれば、光起電力素子が吸収波長の異なる半導体層を有するタンデム型構造である場合、ピンホール箇所を透過する光の検出値に対して所定の閾値を設けることにより、いずれの半導体層が剥離しているのか、あるいは全ての半導体層が剥離しているのかを容易に判別することができる。
 また本発明によれば、半導体層に生じている欠陥の個数に関わらず、ほぼ同様の処理時間で欠陥を修復することができる。
 また本発明によれば、光起電力素子自体にほとんど熱を与えることなく絶縁材料を硬化することができるので、欠陥修復処理において光起電力素子が損傷してしまうことを防止することができる。
 また本発明によれば、欠陥検出工程の前に半導体層にレーザスクライブ処理すると、欠陥検出工程において、半導体層をレーザスクライブしたときのスクライブラインが、ピンホールと同様に検出されてしまうため、材料塗布工程において、スクライブライン上に絶縁材料を吐出しないようにインクジェットヘッドを制御する必要が生じるという問題、さらには、欠陥検出工程において、スクライブライン近傍のピンホールが検出しにくいという問題を解消することができる。
 また本発明によれば、基板を所定量ずつ搬送しながら、欠陥検出工程と材料塗布工程とが行われるので、インライン型の装置を用いて欠陥修復処理を実行することができる。
 また本発明によれば、半導体層におけるピンホールなどの欠陥を容易に検出し、欠陥の存在位置に半導体層の膜面から非接触で絶縁材料を吐出することができる。
 また本発明によれば、半導体層における欠陥の存在位置を、半導体層を透過する光から容易に特定することができる。
 また本発明によれば、光起電力素子が吸収波長の異なる半導体層を有するタンデム型構造である場合、ピンホール箇所を透過する光の検出値に対して所定の閾値を設けることにより、いずれの半導体層が剥離しているのか、あるいは全ての半導体層が剥離しているのかを容易に判別することができる。
本発明の一実施形態に係る欠陥修復装置50による処理対象の光起電力素子10の正常箇所における断面図である。 光起電力素子10の製造プロセスを示す断面図であり、ピンホール20が発生する様子を模式的に示している。 本実施形態に係る欠陥修復方法を含んだ光起電力素子10の製造プロセスを示す断面図である。 本発明の一実施形態に係る欠陥修復装置50を概略化して示す正面図である。 本発明の一実施形態に係る欠陥修復装置50を概略化して示す側面図である。 本発明の一実施形態に係る欠陥修復装置50を概略化して示す上面図である。 欠陥修復装置50のブロック図である。 本実施形態に係る欠陥修復装置50による欠陥修復処理の一例を示すフローチャートである。 本実施形態に係る欠陥修復装置50による欠陥修復処理の他の例を示すフローチャートである。
 図1は、本発明の一実施形態に係る欠陥修復装置50による処理対象の光起電力素子10の正常箇所における断面図である。ここで、光起電力素子10における正常箇所とは、ピンホールなどの欠陥が生じていない箇所のことである。
 図1に示される光起電力素子10は、たとえばアモルファスシリコン太陽電池であり、具体的には、透光性を有する絶縁基板11の厚み方向一方の表面上に、透光性を有する第1電極層12、第1半導体層13、第2半導体層14および第2電極層15を順次積層し、最後に絶縁樹脂16で封止することによって構成されている。
 絶縁基板11としては、以降の膜形成プロセスにおける耐熱性および透光性を有するガラス基板、ポリイミドなどの樹脂基板などが使用可能である。また、第1電極層12は、透光性を有する導電性酸化物層からなり、好ましくは、ZnOまたはSnO2を含む材料からなる導電性酸化物層からなる。SnO2を含む材料は、SnO2自体であってもよく、SnO2と別の酸化物の混合物(たとえば、SnO2とIn23の混合物であるITO)であってもよい。このような導電性酸化物層は、スパッタ法、蒸着法およびCVD法などにより形成される。
 また、第1電極層12の表面には、外部から入射した光を第1および第2半導体層13,14内へ閉じ込めるために微細なテクスチャ構造が施されていてもよい。これにより、光起電力素子10の光電変換効率を向上させることができる。
 この第1電極層12の形成後に、図1に示すように、YAGレーザなどを用いて第1電極層12をレーザスクライブ処理することにより、第1スクライブライン17が形成され、これにより、第1電極層12が絶縁基板11の面方向に分割される。
 図1に示すように、光起電力素子10における半導体層は、第1半導体層13および第2半導体層14が順次積層されて成る。すなわち、光起電力素子10は、タンデム型構造を有している。
 第1および第2半導体層13,14は、それぞれ光の吸収波長領域が異なるように構成され、たとえば、第1半導体層13は、第2半導体層14に比べて短波長領域の光成分を吸収しやすいように構成される。
 第1半導体層13は、たとえば第1電極層12側から順に、p型、i型およびn型のアモルファスシリコン系半導体層が順次積層されて成り、第2半導体層14は、たとえば第1電極層12側から順に、p型、i型およびn型の微結晶シリコン系半導体層が順次積層されて成る。
 p型半導体層には、ボロン、アルミニウムなどのp型不純物原子がドープされており、n型半導体層には、リンなどのn型不純物原子がドープされている。i型半導体層は、完全にノンドープである半導体層であってもよく、微量の不純物を含む弱p型または弱n型で光電変換機能を十分に備えている半導体層であってもよい。これら、第1および第2半導体層13,14は、プラズマCVD法などにより形成することができる。
 図1に示す光起電力素子10は、2層の半導体層13,14を積層することによって構成されているが、半導体層が1層あるいは3層以上で実現されているような光起電力素子であっても、本実施形態に係る欠陥修復装置50による処理対象とすることができる。
 第1電極層12上に、第1および第2半導体層13,14が形成されると、YAGレーザなどを用いて第1および第2半導体層13,14をレーザスクライブ処理することにより、第2スクライブライン18が形成され、これにより、第1および第2半導体層13,14が絶縁基板11の面方向に分割される。
 第2電極層15は、第2半導体層14上に積層され、たとえば透明導電膜と金属膜とが積層した積層構造を有する。透明導電膜は、たとえばZnO、ITOおよびSnO2などからなる。金属膜は、たとえば銀およびアルミニウムなどの金属からなる。この第2電極層15の形成後に、図1に示すように、YAGレーザなどを用いて第3スクライブライン19が形成される。
 光起電力素子10では、第1および第2半導体層13,14がCVD装置などにより断続的もしくは連続的に成膜されるが、これらは非常に薄く成膜されるため、ピンホールなどの欠陥が発生し易い。このような欠陥が発生してしまうと、第1および第2半導体層13,14を挟む第1電極層12と第2電極層15との間で電気的に短絡を起こし、光起電力素子10のセル全体として発電効率を下げることになってしまう。
 図2は、光起電力素子10の製造プロセスを示す断面図であり、ピンホール20が発生する様子を模式的に示している。
 絶縁基板11上に、第1電極層12が成膜された後(図2(a))、第1スクライブライン17を形成するためのレーザスクライブ処理を経て、CVD装置などによって第1および第2半導体層13,14が順次積層される(図2(b))。このとき、異物21が混入してしまうことにより、絶縁基板11上に第1および第2半導体層13,14が成膜されない箇所、あるいは、第1および第2半導体層13,14が異物21上に成膜された後、異物21の離脱とともに第1および第2半導体層13,14が剥離してしまった箇所が、ピンホール20として顕在化する。
 ピンホール20の原因となる異物21は、絶縁基板11に元々付着していた埃、絶縁基板11の表面に形成された微小な突起や傷、あるいは光起電力素子10を製造するための製造装置の内部空間に浮遊している数μm程度の微粒子などが挙げられる。
 特に、第1半導体層13を成膜しているときに浮遊する数μmの微粒子が、第2半導体層14の成膜後に離脱することで、第1および第2半導体層13,14を貫通するピンホール20が生じてしまい、電気的短絡を引き起こす箇所となってしまう。これに対し、第1半導体層13の成膜後に異物21が離脱し、第1半導体層13を貫通するピンホールとなった箇所に第2半導体層14が成膜された場合には、第1電極層12と第2電極層15との間に第2半導体層14が介在するため、電気的な短絡を生ずることがなく、それほど問題とならない。
 第2半導体層14が積層された後、第2スクライブライン18を形成するためのレーザスクライブ処理を経て、第2電極層15がスパッタ装置などで積層され(図2(c))、第3スクライブライン19を形成するためのレーザスクライブ処理を経て、絶縁樹脂16が封止される(図2(d))。図2(c)に示すように、第1および第2半導体層13,14を貫通するピンホール20が形成された箇所では、第1電極層12と第2電極層15とが短絡してしまう。
 このような短絡箇所22を取り除くことができなければ、リーク電流を抑制することができず、光起電力素子10として、シャント抵抗(Rsh)曲線因子(FF)が悪くなってしまうと同時に、光によって発生した電流が短絡部に流れ込み、開放電圧(Voc)が低下してしまうため、光電変換効率が低下してしまう。光起電力素子10の製造が大面積化すればするほど、ピンホール20の発生頻度が高くなり、製造歩留まりを落とす原因となっている。
 以下、上記のような短絡箇所22が形成されないように半導体層を修復する、本発明の実施形態に係る欠陥修復方法について説明する。
 図3は、本実施形態に係る欠陥修復方法を含んだ光起電力素子10の製造プロセスを示す断面図であり、図3の(a),(b)は、図2の(a),(b)で上述したように、異物21によりピンホール20が発生したことを示している。
 本実施形態に係る欠陥修復方法では、第1電極層12上に第1および第2半導体層13,14が積層された後、第1および第2半導体層13,14を貫通するピンホール20を検出するための欠陥検出工程が、欠陥修復処理に用いられる後述の欠陥修復装置50に備えられている照明光源30と図示しない光検出部とを用いて実施される(図3(c))。
 具体的には、絶縁基板11における第1電極層12が積層される側とは反対側に照明光源30を設け、絶縁基板11を介して照明光源30とは反対側に光検出部が設けられる。かかる構成により、照明光源30により絶縁基板11に対して光が照射されると、絶縁基板11および第1電極層12が前述するように透光性を有しているため、第1および第2半導体層13,14を貫通するピンホール20の存在箇所では、照明光源30から出射された光が、絶縁基板11および第1電極層12を透過後、ピンホール20を通過して、欠陥検出光31として、第2半導体層14の上面から出射される。この欠陥検出光31を、光検出部を用いて検出することにより、ピンホール20の存在箇所を特定することができる。
 ピンホール20の存在箇所が特定されると、後述の欠陥修復装置50に備えられているインクジェットヘッド40を絶縁基板11の面方向に走査させることにより、特定された存在箇所に、第2半導体層14に対して非接触で絶縁材料41を吐出し、絶縁材料41をピンホール20に塗布する材料塗布工程が実施される(図3(d))。
 この材料塗布工程で用いられる絶縁材料41としては、硬化させるために高熱を加える必要がある熱硬化性樹脂を使用すると、光起電力素子10における半導体素子が機能しなくなってしまうので、本実施形態では、紫外線を照射することにより硬化する紫外線硬化樹脂が使用される。
 材料塗布工程の後、紫外線照射によって絶縁材料41が硬化されると、第2スクライブライン18を形成するためのレーザスクライブ処理を経て、第2電極層15がスパッタ装置などで積層され(図3(e))、第3スクライブライン19を形成するためのレーザスクライブ処理を経て、絶縁樹脂16が封止される(図3(f))。このように、第2電極層15を積層する前に、ピンホール20を絶縁材料41によって閉塞しているので、図2に示すような短絡箇所22の発生を防止することができる。
 図4は、本発明の一実施形態に係る欠陥修復装置50を概略化して示す正面図であり、図5は、本発明の一実施形態に係る欠陥修復装置50を概略化して示す側面図であり、図6は、本発明の一実施形態に係る欠陥修復装置50を概略化して示す上面図である。
 欠陥修復装置50は、前述する欠陥修復処理を実行するために用いられる装置である。欠陥修復装置50は、前述の光検出部に相当する検出カメラ51と、照明光源30と、インクジェットヘッド40と、インクジェットヘッド40へ絶縁材料41を安定的に供給するインクジェットユニット52と、インクジェットヘッド40の吐出性能を維持するためのメンテナンスユニット53と、処理対象の絶縁基板11を搬送方向Dに沿って搬送する搬送機構54と、インクジェットユニット52を幅方向Wに沿って移動させるためのモータ軸55と、欠陥修復装置50全体を制御する制御部56と、絶縁材料41を硬化するための紫外線を出射するUV照射部64とを含んで構成される。
 ここで、搬送方向Dと幅方向Wとは、欠陥修復装置50における絶縁基板11の搬送面において、互いに直交する2つの方向である。また、欠陥修復装置50において、搬送方向Dと幅方向Wのいずれにも直交する方向を高さ方向と称する。
 被処理体である、第1および第2半導体層13,14が積層された状態の絶縁基板11は、本実施形態では、矩形板状に形成されており、第2半導体層14が上方に臨むような姿勢で、搬送機構54上に載置される。
 検出カメラ51は、搬送機構54上に載置された絶縁基板11よりも上方の位置に設置され、たとえばラインセンサやエリアカメラなどによって実現される。検出カメラ51は、絶縁基板11の大きさおよび検出すべき最小の欠陥サイズの大きさにより、欠陥修復装置50に設置すべき個数および高さ方向における取付位置が決定される。本実施形態では、欠陥修復装置50のコストを抑制するために、1つの検出カメラ51が設置されている。
 照明光源30は、搬送機構54上に載置された絶縁基板11よりも下方の位置に設置され、検出カメラ51の仕様に合わせた光源を選択するのが好ましく、たとえば検出カメラ51がラインセンサによって実現される場合にはライン照明が選択され、検出カメラ51がエリアセンサによって実現される場合には面発光する照明が選択される。
 また、照明光源30としては、第1半導体層13および第2半導体層14によって殆ど吸収されるような光を出射するものが用いられ、前述するように第1半導体層13がアモルファスシリコン系半導体層であり、第2半導体層14が微結晶シリコン系半導体層である場合、照明光源30から出射される光は、これらの半導体層13,14によって可視光領域の短波長側でほとんど吸収され、わずかに長波長側の光だけが被処理体を透過する。
 一方、第1および第2半導体層13,14を貫通するピンホール20の存在箇所では、第1半導体層13と第2半導体層14とが存在しないので、照明光源30から出射された光が殆ど吸収されることなく被処理体を透過する。
 また、前述するように、第1半導体層13および第2半導体層14のうちのいずれか一方が存在するピンホールの存在箇所では、照明光源30から出射された光のうちの一部の光だけが、その存在する半導体層によって吸収される。したがって、このようなピンホールの存在箇所では、第1および第2半導体層13,14を貫通するピンホール20の存在箇所に比べて、被処理体を透過する光の輝度が低減する。
 そこで、このような現象を利用して、検出カメラ51によって検出される光の輝度に対して、ピンホール内における半導体層の有無を判別可能な閾値を、試験等により予め定めておくことにより、第1および第2半導体層13,14を貫通するピンホール20であるか、少なくとも1つの半導体層が存在するピンホールであるかを、検出カメラ51による検出結果に基づいて決定することができる。
 搬送機構54は、複数の搬送ローラを備え、被処理体を搬送方向Dに沿って搬送する。搬送機構54は、被処理体を搬送方向Dに沿って等速で搬送するように制御部56によって制御されてもよく、被処理体を搬送方向Dに沿って一定距離ずつステップ送りを繰り返しながら搬送するように制御部56によって制御されてもよい。
 前者の場合には、欠陥検出工程において、検出カメラ51によって区切りのない検出画像を容易に取ることができる。また、後者の場合には、絶縁基板11の搬入出方向が異なるインライン方式に適しており、一定距離ずつステップ送りすることによって、欠陥検出工程と材料塗布工程とを、被処理体における一定の領域ずつ実施することができる。
 インクジェットヘッド40は、照明光源30および検出カメラ51よりも搬送方向下流側であって、搬送機構54上に載置された絶縁基板11よりも上方の位置に、絶縁材料41を下方に向かって吐出可能な姿勢で設置され、また、幅方向Wに沿って移動可能に支持されている。
 インクジェットヘッド40は、本実施形態では、電圧を印加すると変形するピエゾ素子を用いたピエゾ方式を採用している。これは、インクを加熱してバブルによりインクを吐出させるバブルジェット(登録商標)方式に比べ、使用できる材料の選択の幅が広いためである。
 インクジェットヘッド40は、本実施形態では、装置コストを抑えるため、搬送機構54のピッチング、ヨーイングなどの装置精度を高精度化しないように、絶縁基板11の搬送面における検出カメラ51の中心と、インクジェットヘッド40のノズル中心との距離とが可及的に短くなるように設置するのが好ましい。
 本実施形態に係る欠陥修復装置50は、インクジェットヘッド40を1つだけ備えて構成されているが、複数個のインクジェットヘッド40を備えて構成されてもよい。インクジェットヘッド40を複数個備えれば、その分だけ幅方向Wへの1回の走査動作で絶縁材料41を吐出できる範囲が広がるので、装置の処理タクトを上げることができる。ただし、複数個にインクジェットヘッド40が増えれば、それに伴い装置コストが高くなってしまうので、処理タクトと装置コストの兼ね合いによってインクジェットヘッド40の個数は決定される。
 塗布する絶縁材料41としては、前述するように、紫外線が照射されると硬化する紫外線硬化インク(UVインク)が使用される。UVインクの主成分は、光重合性樹脂、光重合開始剤、および助剤からなり、有機溶剤を含んでいないことが特徴である。
 UV照射部64は、インクジェットヘッド40よりも搬送方向下流側であって、搬送機構54上に載置された絶縁基板11よりも上方の位置に、下方に向かって紫外線を出射するように設置されている。
 UV照射部64は、本実施形態では、被処理体の上面全体に亘って紫外線を照射するように構成されている。しかしながら、出射される紫外線の照射強度が強ければ、塗布されたUVインクを短時間で硬化することができるので、ライン状のUV照射装置を用いて、被処理体を搬送しながら紫外線を照射するように構成してもよい。UV照射部64に用いられる光源としては、たとえば、メタルハライドランプ、高圧水銀ランプ、UVLEDおよびブラックライトなどが挙げられる。
 インクジェットユニット52は、絶縁材料41を図示しないタンクからインクジェットヘッド40に安定的に供給するように構成され、さらに、インクジェットユニット52におけるインク流路には、紫外線が照射されたとしてもUVインクが硬化しにくいように、UVカット素材などで覆われている。また、メンテナンスユニット53においても同様に、UVインクが通過する配管流路には、UVカット素材が使用されている。
 しかしながら、インクジェットヘッド40のノズル面は、欠陥修復装置50を稼動させると、多少なりとも紫外線が照射されてしまう。そこで、定期的にメンテナンスユニット53を用いて、インクジェットヘッド40をメンテナンスするのが好ましい。
 メンテナンスの方法としては、たとえばノズル内のインクを吸引して排出したり、欠陥修復処理とは関係なく、定期的にノズルからインクを吐出したりすることによって行われる。また、メンテナンスユニット53において、インクジェットヘッド40を使用しないときには、完全に外光を遮断できるようにキャッピングすることができる。
 上記説明する構成のほか、欠陥修復装置50には、さらには、吐出の状態を確認できる図示しない不吐出検査部、およびノズル面の液ダレを検知する図示しないノズル面検査部が備えられている。
 図7は、欠陥修復装置50のブロック図である。検出カメラ51より得られた検出画像は、制御部56のROM58および画像記録部57に保存され、CPU60により演算処理される。具体的には、検出カメラ51によって得られた検出画像では、被処理体の周縁部においてもピンホール20と同様の輝度を有する透過光が検出されるので、CPU60は、検出画像をトリミングしてその周縁部を削除する。さらに、トリミングした検出画像を、二値化することにより、被処理体における欠陥箇所の位置座標を取得する。
 欠陥判別部61では、検出カメラ51によって検出される光の輝度に対して予め定められた閾値に基づいて、CPU60によって取得された欠陥箇所のうち、絶縁材料41を塗布すべき欠陥箇所と、絶縁材料41の塗布が不要な欠陥箇所とを判別する。欠陥描画データ生成部62は、欠陥判別部61による判別結果に基づいて、第1および第2半導体層13,14を貫通するピンホール20による欠陥箇所に絶縁材料41を塗布することができるように描画データを作成するとともに、第1および第2半導体層13,14を貫通するピンホール20が存在するか否かによって、修復処理を行うかどうかを判定する。
 修復処理を行う場合には、制御部56は、インクジェットヘッド40の下方へ搬送された被処理体に対し、インクジェットヘッド40の幅方向Wにおける位置に関する情報を出力するエンコーダ63の出力値に基づいて、インクジェットヘッド40が欠陥箇所の上方に到達したときに、指定されたインクジェットヘッド40のノズルから絶縁材料41を吐出させる。このようにして絶縁材料41が塗布された被処理体は、搬送機構54によってUV照射部64へ搬送され、予め定める時間だけ紫外線が照射される。
 ピンホール20による欠陥を修復するためには、該ピンホール20が絶縁材料41により覆われて、かつ、電気的に第1電極層12と第2電極層15とが絶縁されるように、絶縁材料41の膜厚を確保する必要がある。また、絶縁材料41自体によっても絶縁特性が異なるので、これによっても必要な膜厚は変わることになる。さらに、半導体層における膜面に対する絶縁材料41の濡れ性によっても膜厚が変化するので、必要な吐出量も異なる。さらに、必要な膜厚は、欠陥修復装置50自体の精度(絶縁材料41の着弾精度に関わるもの、欠陥の検出精度、および軸精度など)にも依存する。
 そこで、欠陥修復装置50自体の精度に基づいて、ピンホール20に対する吐出エリアを決定し、絶縁材料41の絶縁特性と濡れ性とに基づいて、ピンホール20に対する必要な膜厚量を決定することによって、UVインクの吐出体積(吐出量)が決定される。
 図8は、本実施形態に係る欠陥修復装置50による欠陥修復処理の一例を示すフローチャートである。欠陥修復処理が開始され、欠陥修復装置50に被処理体が搬入されると(ステップs1)、被処理体が所定の姿勢で搬送機構54上に配置されるようにアライメント処理が行われる(ステップs2)。
 アライメント処理の後、検査フローに進むと、ピンホール20を検出するために、被処理体の搬送を開始させる(ステップs3)。本実施形態では、搬送機構54は、被処理体を所定の搬送速度で搬送方向Dに搬送するように制御され、欠陥検出工程では、照明光源30を作動させた状態で、被処理体の全面に亘って検出カメラ51でスキャンすることにより、被処理体全面の検出画像が取得される(ステップs4)。
 その後、欠陥描画データ生成部62が、検出画像を元に欠陥描画データを生成し(ステップs5)、欠陥箇所を修復すべきかどうかを判定する(ステップs6)。修復すべき欠陥箇所が存在する場合には、ステップs7に進み、存在しない場合には、ステップs9に進む。
 一方、検査フローに並行して行われるメンテナンスフローでは、インクジェットヘッド40がメンテナンスユニット53によってヘッドメンテナンスされ(ステップs11)、ノズルからUVインクが正常に吐出されているかが確認(不吐検査)され(ステップs12)、さらにノズル面にインクが液ダレしていないかが確認(ノズル面検査)される(ステップs13)。
 ここでのヘッドメンテナンス方法としては、インクジェットヘッド40のノズル内のインクを吸引して排出したり、ノズル面をワイプブレードなどで清掃したり、吐出動作を行ったりする。
 不吐検査で正常に吐出できないノズルが存在すれば、再度ヘッドメンテナンスを行うなどして回復動作を行う。また、ノズル検査で液ダレなどが発見されれば、被処理体を汚染する原因となり得るので、再度ノズル面を清掃することにより、ノズル面を良好な状態に回復させる。
 検査フローおよびメンテナンスフローが終了すると、材料塗布工程が実行され、すなわちインクジェットヘッド40が被処理体の上方を幅方向Wにスキャン動作させながら欠陥箇所に絶縁材料41を吐出することにより、ピンホール20が絶縁材料41によって閉塞される(ステップs7)。かかる処理は、インクジェットヘッド40のスキャン動作を繰り返しながら、被処理体の全面に亘って行われる。
 材料塗布工程が終了すると、インクジェットヘッド40は待機位置(メンテナンスユニット53上)に戻り、一方、絶縁材料41が塗布された被処理体は、UV照射部64まで搬送される。そして、UV照射部64によって、被処理体に対し、予め定める時間だけ紫外線の照射が行われる(ステップs8)。これにより、ピンホール20に塗布された絶縁材料41が硬化する。
 なお、ここでの紫外線照射時間は、UV照射部64に備えられる光源の紫外線強度により、絶縁材料41を硬化するのに必要な積算光量(mJ/cm2)から求めることができる。絶縁材料41の硬化が終了すれば、被処理体は搬出され(ステップs9)、一連の欠陥修復処理が終了する。
 欠陥修復処理が終了すると、第2半導体層14上に第2電極層15を形成する前に、第1および第2半導体層13,14をレーザスクライブ処理することにより、第2スクライブライン18が形成される。
 図9は、本実施形態に係る欠陥修復装置50による欠陥修復処理の他の例を示すフローチャートである。図9に示す欠陥修復処理は、図8に示す欠陥修復処理とほぼ同様であり、検査フローにおいて、被処理体全面を一度に検査するか、被処理体を予め定める領域ごとに検査するかにおいて相違している。
 ここでの予め定める領域とは、インクジェットヘッド40の1回の走査(幅方向Wの一方への走査)によって絶縁材料41を吐出することのできる領域に相当し、インクジェットヘッド40における両端のノズル間距離に基づいて決定される。したがって、複数個のインクジェットヘッド40が備えられているならば、その領域は、インクジェットヘッド40の個数分だけ増大する。
 欠陥修復処理が開始され、欠陥修復装置50に被処理体が搬入されると(ステップs21)、被処理体が所定の姿勢で搬送機構54上に配置されるようにアライメント処理が行われる(ステップs22)。
 アライメント処理の後、検査フローに進むと、制御部56は、被処理体における第1の領域が検出カメラ51の下方に配置されるように、搬送機構54を駆動させる(ステップs23)。その後、欠陥検出工程では、照明光源30を作動させて、検出カメラ51により前記第1の領域の検出画像が取得される(ステップs24)。
 その後、欠陥描画データ生成部62が、第1の領域の検出画像を元に欠陥描画データを生成し(ステップs25)、第1の領域における欠陥箇所を修復すべきかどうかを判定する(ステップs26)。修復すべき欠陥箇所が存在する場合には、ステップs27に進み、存在しない場合には、ステップs23に戻る。ステップs23に戻った場合には、制御部56は、第1の領域に隣接する第2の領域が検出カメラ51の下方に配置されるように、搬送機構54を駆動させる。
 一方、検査フローに並行して行われるメンテナンスフローでは、図8に示す欠陥修復処理と同様に、インクジェットヘッド40がメンテナンスユニット53によってヘッドメンテナンスされ(ステップs41)、ノズルからUVインクが正常に吐出されているかが確認(不吐検査)され(ステップs42)、さらにノズル面にインクが液ダレしていないかが確認(ノズル面検査)される(ステップs43)。
 検査フローおよびメンテナンスフローが終了すると、材料塗布工程が実行され、すなわちインクジェットヘッド40が被処理体の上方を、幅方向Wの一方から他方に向かってスキャン動作させながら欠陥箇所に絶縁材料41を吐出することにより、ピンホール20が絶縁材料41によって閉塞される(ステップs27)。
 このようにして、被処理体における第1の領域に対する欠陥検出工程と材料塗布工程とが終了すると、ステップs28に進み、制御部56は、第1の領域に隣接する第2の領域が検出カメラ51の下方に配置されるように、搬送機構54を駆動させる。
 そして、ステップs24~s26と同様に、ステップs29~s31において欠陥検出工程が実行され、ステップs31において、修復すべき欠陥箇所が存在する場合には、ステップs32に進み、存在しない場合には、ステップs28に戻る。
 ステップs32では、材料塗布工程が実行され、すなわちインクジェットヘッド40が被処理体の上方を、幅方向Wの他方から一方に向かってスキャン動作させながら欠陥箇所に絶縁材料41を吐出することにより、ピンホール20が絶縁材料41によって閉塞される。
 このようにして、予め定める領域ごとに欠陥検出工程と材料塗布工程とが繰り返し実行されることにより、被処理体の全面に亘って絶縁材料41の塗布が終了したと判断されると(ステップs33)、インクジェットヘッド40は待機位置(メンテナンスユニット53上)に戻り、一方、絶縁材料41が塗布された被処理体は、UV照射部64まで搬送される。そして、UV照射部64によって、被処理体に対し、予め定める時間だけ紫外線の照射が行われる(ステップs34)。これにより、ピンホール20に塗布された絶縁材料41が硬化する。絶縁材料41の硬化が終了すれば、被処理体は搬出され(ステップs35)、一連の欠陥修復処理が終了する。
 本発明において適用される光起電力素子10としては、単結晶、多結晶、非晶質シリコン、CIGS、CdTeなどの太陽電池があり、特に、比較的面積が大きい薄膜系太陽電池に生じたピンホール20などの欠陥を修復するために、好適に実施することができる。
 以上のように、本実施形態に係る欠陥修復方法によれば、第2電極層15を積層する前に、第1および第2半導体層13,14を貫通するピンホール20などの欠陥の存在位置に、第2半導体層14の膜面に対して非接触で絶縁材料41を必要な量だけ吐出することにより、欠陥のサイズや欠陥数に関わらず、欠陥を修復することができる。これにより、欠陥部における電気的短絡を防止し、製造される光起電力素子10の変換効率の低下を抑制することができる。また、欠陥を修復するために要する絶縁材料41を、従来に比べて低減することができ、製造にかかる材料コストを抑制することができる。
 また、被処理体における第1電極層12が積層される側とは反対側から照射される光が、前記ピンホール20を通過して、第1電極層12が積層される側で検出カメラ51により検出される。このように、容易に欠陥の存在位置を検出することができる。
 また、光起電力素子10が吸収波長の異なる第1および第2半導体層13,14を有するタンデム型構造である場合、ピンホール箇所を透過する透過光の輝度に対して所定の閾値を設けることにより、いずれの半導体層が剥離しているのか、あるいは全ての半導体層が剥離しているのかを容易に判別することができる。
 また、インクジェットヘッド40を用いて絶縁材料41が塗布されるので、半導体層に生じている欠陥の個数に関わらず、ほぼ同様の処理時間で欠陥を修復することができる。
 また、絶縁材料41としてUVインクを用いているので、光起電力素子自体にほとんど熱を与えることなく絶縁材料41を硬化することができ、欠陥修復処理において光起電力素子10が損傷してしまうことを防止することができる。
 また、第1および第2半導体層13,14をレーザスクライブする処理が、欠陥修復処理の後に実行されるので、第2スクライブライン18が、ピンホール20と同様に検出されてしまうという不具合を防止することができるとともに、材料塗布工程において、第2スクライブライン18に絶縁材料41を吐出しないようにインクジェットヘッド40を制御する必要性を排除することができる。また、欠陥検出工程において、第2スクライブライン18近傍のピンホール20が検出しにくいという問題の発生も防ぐことができる。
 また、被処理体を所定量ずつ搬送しながら、欠陥検出工程と材料塗布工程とが行われるので、インライン型の装置を用いて欠陥修復処理を実行することができる。
 10 光起電力素子
 11 絶縁基板
 12 第1電極層
 13 第1半導体層
 14 第2半導体層
 15 第2電極層
 16 絶縁樹脂
 17 第1スクライブライン
 18 第2スクライブライン
 19 第3スクライブライン
 20 ピンホール
 21 異物
 22 短絡箇所
 30 照明光源
 31 欠陥検出光
 40 インクジェットヘッド
 41 絶縁材料
 50 欠陥修復装置
 51 検出カメラ
 52 インクジェットユニット
 64 UV照射部

Claims (10)

  1.  透光性を有する基板上に、少なくとも、透光性を有する第1電極層、半導体層および第2電極層を順次積層して形成される光起電力素子の前記半導体層における欠陥を修復する欠陥修復方法であって、
     前記第2電極層を積層する前に、前記半導体層における欠陥を検出する欠陥検出工程と、
     前記欠陥検出工程で検出された前記欠陥の存在位置に対して、インクジェットヘッドを用いて絶縁材料を吐出する材料塗布工程とを含むことを特徴とする欠陥修復方法。
  2.  前記欠陥検出工程では、前記基板の前記第1電極層が積層される側とは反対側から光を当てて、前記基板を透過する光を用いて前記半導体層における欠陥を検出することを特徴とする請求項1に記載の欠陥修復方法。
  3.  前記半導体層は、複数の異なる半導体層を有し、
     前記欠陥検出工程では、前記基板を透過する光の検出値と予め定める閾値とを比較して、前記半導体層における欠陥を検出することを特徴とする請求項2に記載の欠陥修復方法。
  4.  前記材料塗布工程では、前記インクジェットヘッドを走査させて絶縁材料を吐出することを特徴とする請求項1~3のいずれか1つに記載の欠陥修復方法。
  5.  前記インクジェットヘッドから吐出される前記絶縁材料は、紫外線硬化樹脂であることを特徴とする請求項1~4のいずれか1つに記載の欠陥修復方法。
  6.  前記材料塗布工程後、前記第2電極層を積層する前に、前記半導体層をレーザスクライブ処理する工程を含むことを特徴とする請求項1~5のいずれか1つに記載の欠陥修復方法。
  7.  前記第2電極層が積層される前の処理対象の基板を、予め定める送り量だけ搬送する搬送工程をさらに含み、
     前記搬送工程と、前記基板において前記搬送工程で搬送された送り量に相当する領域に対する前記欠陥検出工程および前記材料塗布工程とを繰り返し行った後、前記レーザスクライブ処理を行うことを特徴とする請求項6に記載の欠陥修復方法。
  8.  透光性を有する基板上に、少なくとも透光性を有する第1電極層、半導体層および第2電極層を順次積層して形成される光起電力素子の前記半導体層における欠陥を修復する欠陥修復装置であって、
     前記第2電極層が積層される前の基板を搬送する搬送手段と、
     前記半導体層における欠陥を検出する検出手段と、
     前記半導体層における欠陥に対し、非接触で絶縁材料を吐出する吐出手段と、
     前記検出手段によって検出された欠陥の存在位置に絶縁材料が吐出されるように前記吐出手段を制御する制御手段とを備えることを特徴とする欠陥修復装置。
  9.  前記検出手段は、
      前記基板の前記第1電極層が積層される側とは反対側に設けられ、該基板に光を照射する発光手段と、
      前記基板の前記第1電極層が積層される側に設けられ、前記発光手段からの光を受光する受光手段とを備えることを特徴とする請求項8に記載の欠陥修復装置。
  10.  前記受光手段が受光する輝度に基づいて、欠陥の種類を判別する判別手段をさらに備えることを特徴とする請求項9に記載の欠陥修復装置。
PCT/JP2012/074608 2011-10-07 2012-09-26 光起電力素子の欠陥修復方法および欠陥修復装置 WO2013051433A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-223421 2011-10-07
JP2011223421A JP2013084751A (ja) 2011-10-07 2011-10-07 光起電力素子の欠陥修復方法および欠陥修復装置

Publications (1)

Publication Number Publication Date
WO2013051433A1 true WO2013051433A1 (ja) 2013-04-11

Family

ID=48043595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074608 WO2013051433A1 (ja) 2011-10-07 2012-09-26 光起電力素子の欠陥修復方法および欠陥修復装置

Country Status (2)

Country Link
JP (1) JP2013084751A (ja)
WO (1) WO2013051433A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071834A1 (en) * 2017-03-31 2022-10-12 The Boeing Company Method of processing inconsistencies in solar cell devices and devices formed thereby
WO2023137748A1 (zh) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 外壳及其修复方法、相关的二次电池、电池模块、电池包和用电装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018020B2 (en) * 2013-05-24 2015-04-28 The Boeing Company Shunt treatment in inverted and wafer bonded solar cells
FR3059940B1 (fr) * 2016-12-12 2021-03-19 Commissariat Energie Atomique Procede de formation d'un empilement et empilement
JP7203320B2 (ja) * 2018-07-02 2023-01-13 パナソニックIpマネジメント株式会社 太陽電池の評価装置および太陽電池の評価方法
JP7282961B1 (ja) * 2022-07-28 2023-05-29 株式会社東芝 光電変換素子の検査装置、光電変換素子の製造装置、光電変換素子の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451970A (en) * 1982-10-21 1984-06-05 Energy Conversion Devices, Inc. System and method for eliminating short circuit current paths in photovoltaic devices
JPH04336471A (ja) * 1991-05-13 1992-11-24 Canon Inc 半導体薄膜のピンホールの除去方法
WO1993023881A1 (en) * 1992-05-12 1993-11-25 Solar Cells, Inc. Process and apparatus for making photovoltaic devices and resultant product
JP2002203978A (ja) * 2000-12-28 2002-07-19 Canon Inc 光起電力素子モジュールの短絡欠陥検出方法及び短絡欠陥修復方法
JP2009195968A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp レーザスクライブ装置
WO2010052884A1 (ja) * 2008-11-04 2010-05-14 株式会社アルバック 太陽電池の製造方法及び製造装置
JP2011243970A (ja) * 2010-04-23 2011-12-01 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4451970A (en) * 1982-10-21 1984-06-05 Energy Conversion Devices, Inc. System and method for eliminating short circuit current paths in photovoltaic devices
JPH04336471A (ja) * 1991-05-13 1992-11-24 Canon Inc 半導体薄膜のピンホールの除去方法
WO1993023881A1 (en) * 1992-05-12 1993-11-25 Solar Cells, Inc. Process and apparatus for making photovoltaic devices and resultant product
JP2002203978A (ja) * 2000-12-28 2002-07-19 Canon Inc 光起電力素子モジュールの短絡欠陥検出方法及び短絡欠陥修復方法
JP2009195968A (ja) * 2008-02-25 2009-09-03 Mitsubishi Electric Corp レーザスクライブ装置
WO2010052884A1 (ja) * 2008-11-04 2010-05-14 株式会社アルバック 太陽電池の製造方法及び製造装置
JP2011243970A (ja) * 2010-04-23 2011-12-01 Semiconductor Energy Lab Co Ltd 光電変換装置及びその作製方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4071834A1 (en) * 2017-03-31 2022-10-12 The Boeing Company Method of processing inconsistencies in solar cell devices and devices formed thereby
US11742442B2 (en) 2017-03-31 2023-08-29 The Boeing Company Method of processing inconsistencies in solar cell devices and devices formed thereby
WO2023137748A1 (zh) * 2022-01-24 2023-07-27 宁德时代新能源科技股份有限公司 外壳及其修复方法、相关的二次电池、电池模块、电池包和用电装置
US11996524B2 (en) 2022-01-24 2024-05-28 Contemporary Amperex Technology Co., Limited Shell and repairing method therefor, related secondary battery, battery module, battery pack and power consuming device

Also Published As

Publication number Publication date
JP2013084751A (ja) 2013-05-09

Similar Documents

Publication Publication Date Title
WO2013051433A1 (ja) 光起電力素子の欠陥修復方法および欠陥修復装置
US8470615B2 (en) Thin layer solar cell module and method for producing it
TWI555219B (zh) 製造太陽能電池之方法與結構
US7906365B2 (en) Method of manufacturing solar cell panel
US20090032109A1 (en) Cis based thin-film photovoltaic module and process for producing the same
US20110000521A1 (en) Thin film solar cell and method for manufacturing the same
US8497150B2 (en) Method for defect isolation of thin-film solar cell
JP6340079B2 (ja) 電気活性素子および電気活性素子の作製方法
JP2011138969A (ja) 薄膜太陽電池モジュールの検査方法及び薄膜太陽電池モジュールの製造方法
US20110177627A1 (en) Assembly line for photovoltaic devices
EP2187449A1 (en) Photoelectric conversion device, and its manufacturing method
KR20170094422A (ko) 태양 전지의 포일 기반 금속화를 위한 두꺼운 손상 버퍼
JP5295369B2 (ja) 光電変換素子の製造方法
KR20110099061A (ko) 태양 전지 모듈 및 그 제조 방법
JP5174179B2 (ja) 光電変換装置の製造方法
JP2011088799A (ja) 半導体装置の製造方法およびレーザー加工装置
JP2010103170A (ja) 薄膜太陽電池の製造方法および薄膜太陽電池の製造装置
JP5230153B2 (ja) 光電変換装置の製造方法
JP2007087807A (ja) 有機el表示装置の製造方法
JP5711596B2 (ja) 光電変換装置の作製方法
JP2012069566A (ja) 薄膜太陽電池の製造方法
Gebhardt et al. Laser structuring of flexible organic solar cells: manufacturing of polymer solar cells in a cost‐effective roll‐to‐roll process
KR101241714B1 (ko) 태양전지 및 그의 수리방법
JP2009094272A (ja) 光電変換モジュールおよび光電変換モジュールの製造方法
US20200001592A1 (en) Light transmission processing system and method for solar chip module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837672

Country of ref document: EP

Kind code of ref document: A1