WO2013051097A1 - 窒素添加レス・オゾン発生ユニット - Google Patents

窒素添加レス・オゾン発生ユニット Download PDF

Info

Publication number
WO2013051097A1
WO2013051097A1 PCT/JP2011/072817 JP2011072817W WO2013051097A1 WO 2013051097 A1 WO2013051097 A1 WO 2013051097A1 JP 2011072817 W JP2011072817 W JP 2011072817W WO 2013051097 A1 WO2013051097 A1 WO 2013051097A1
Authority
WO
WIPO (PCT)
Prior art keywords
ozone
gas
nitrogen
less
ozone generator
Prior art date
Application number
PCT/JP2011/072817
Other languages
English (en)
French (fr)
Inventor
紀幸 中村
田畑 要一郎
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=48043289&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013051097(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to JP2013537303A priority Critical patent/JP5824062B2/ja
Priority to US14/349,240 priority patent/US9295967B2/en
Priority to KR1020147006442A priority patent/KR101596178B1/ko
Priority to EP11873749.3A priority patent/EP2765116B1/en
Priority to CN201180073951.6A priority patent/CN103857620B/zh
Priority to PCT/JP2011/072817 priority patent/WO2013051097A1/ja
Priority to TW100143672A priority patent/TWI435844B/zh
Publication of WO2013051097A1 publication Critical patent/WO2013051097A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/32Constructional details of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary

Definitions

  • This invention relates to a nitrogen addition-less ozone generation unit equipped with a nitrogen addition-less ozone generator using high purity oxygen gas with a nitrogen addition amount of less than several thousand ppm as a raw material gas.
  • a source gas in which nitrogen gas of several thousand ppm or more is added to oxygen gas is supplied to an ozone generator to generate high-concentration ozone gas.
  • ozone oxide insulating film formation and ozone It is often used in ozone treatment processes such as cleaning.
  • this semiconductor manufacturing field, etc. when supplying ozone gas to a multi-ozone processing apparatus composed of a plurality of ozone processing apparatuses, each corresponds to a plurality of ozone processing apparatuses, each of which includes an ozone generator, an ozone power source, and a flow rate.
  • an ozone gas supply system unit
  • each ozone generation mechanism independently supplies ozone gas to a corresponding ozone treatment apparatus.
  • MFC controller
  • a general oxygen gas In high-purity oxygen gas containing about 50 to several thousand ppm of nitrogen gas and having a low nitrogen content (less than 50 ppm), a trace amount (500 ppm or more) is contained in the ozone generator together with the high-purity oxygen gas. ) N 2 gas is added.
  • the source oxygen gas contains 500 ppm or more of N 2 gas
  • high concentration of ozone is generated by a catalytic reaction of a small amount of NO 2 generated by the discharge reaction shown in FIG.
  • ozone is efficiently generated by a catalytic reaction of a small amount of nitrogen dioxide generated by discharge.
  • the highest concentration of ozone is generated, and it has been experimentally verified that the raw material gas having a nitrogen addition amount in the range of 500 to 20000 ppm is the optimum condition for ozone generation performance.
  • the discharge reaction shown in FIG. 10 generates high-concentration ozone by using photoelectric discharge light and a small amount of NO 2 catalyst gas as raw material oxygen O 2. Is realized.
  • NO x by -product gases such as N 2 O 5 and N 2 O and nitric acid are also generated by silent discharge in the ozone generator.
  • Specific chemical formulas for generating NO x by -product gas and nitric acid are as follows.
  • nitric acid (HNO 3 ) clusters steam are generated by the reaction between the NO x gas component and the moisture contained in the raw material gas, and a small amount of NO together with oxygen and ozone gas.
  • Ozonated gas is taken out with X gas and nitric acid clusters mixed. If this small amount of nitric acid cluster is contained in several hundred ppm or more, rust such as chromium oxide is precipitated by nitric acid on the inner surface of the stainless steel pipe that is the ozone gas outlet pipe, and metal impurities are mixed into the clean ozone gas.
  • Metal impurities as gases adversely affect semiconductor manufacturing, and the small amount of generated nitric acid clusters can adversely affect semiconductor etching equipment's “etching of silicon oxide film with ozone” and “cleaning of wafers with ozone water” as reactive poisons. There was an interim topic to bring.
  • the ozone gas supply system equipped with an ozone generator, ozone power supply, etc. is a raw material gas pipe that supplies the ozone generator via an ozone generator, ozone power supply, flow rate adjusting means such as MFC that controls the flow rate of ozone gas or raw material gas.
  • the system has a pressure adjusting means such as APC for controlling the gas atmosphere pressure in the ozone generator, and has an ozone concentration detector and an ozone flow meter for detecting the concentration with respect to the ozone gas output from the ozone generator. It is generally conceivable to provide as many output gas piping systems as the number of systems of the multi-ozone treatment apparatus.
  • Oxygen molecules which are the source gas, have a continuous light absorption spectrum (ultraviolet wavelength of 130 to 200 nm) at a wavelength of ultraviolet light of 245 nm or less, and the oxygen molecules dissociate into oxygen atoms by absorbing excimer light of ultraviolet light of 245 nm or less.
  • the generation of ozone by the three-body collision of the dissociated oxygen atoms, oxygen molecules, and third substance is known for excimer lamps that emit ultraviolet rays.
  • silent discharge such as an ozone generator in high pressure of 1 atm or higher mainly composed of oxygen gas does not emit excimer light with ultraviolet light of 245 nm or less. Therefore, the reaction constant of the reaction process of oxygen atom dissociation and ozone generation by silent discharge light is very small, and it cannot be considered as a reaction capable of generating high concentration ozone gas of several percent or more.
  • a raw material gas containing nitrogen gas of several thousand ppm or more or a raw material oxygen as disclosed in Patent Document 1 a raw material gas containing nitrogen gas of several thousand ppm or more or a raw material oxygen as disclosed in Patent Document 1
  • One set of ozone is used to supply raw material gas with nitrogen gas forcibly added to the gas to the ozone generator, generate high-concentration ozone, and supply ozone gas to multiple ozone treatment devices.
  • An ozone gas supply system is adopted that increases the capacity of the generator, separates the piping system that outputs ozone gas into multiple piping, and outputs ozone gas at a predetermined flow rate and concentration to each multi-ozone treatment device in a stepwise manner. It was coming.
  • the conventional ozone gas supply system for supplying ozone to the multi-ozone treatment apparatus disclosed in Patent Document 1 is configured as described above, and supplies a raw material oxygen gas containing nitrogen and moisture to provide one ozone generator 71.
  • Ozone gas is output from the pipe, and the output piping system is distributed. Therefore, the ozone gas to be output is supplied with an active gas containing nitrogen oxidation by-products, nitric acid clusters, and OH radicals, and the output piping material, nitrogen oxidation by-products, nitric acid clusters, and OH radicals are supplied.
  • ozone gas containing a large amount of metal contamination due to abnormal heating or corrosion is supplied by chemical decomposition or oxidation reaction with a substance.
  • the present invention has been made to solve the above-described problems, and it is possible to produce a high-purity and high-concentration ozone gas using only high-purity oxygen gas that does not add nitrogen gas to the raw material gas.
  • an ozone generator cooling the ozone generator to a low temperature, and covering the ozone generator with a heat insulating material so that the discharge part of the generator can be efficiently cooled, the nitrogen addition less ozone
  • An object of the present invention is to obtain a nitrogen addition-less ozone generation unit capable of outputting a larger amount of ozone gas output from a generator.
  • the nitrogen addition-less ozone generation unit has a photocatalytic substance for generating ozone on a discharge surface, and generates a nitrogen addition-less ozone generator that generates ozone gas, and the nitrogen addition-less ozone generator.
  • a mass flow controller MFC that includes an ozone power source for supplying a high voltage and a control unit related to the ozone generator, and the control unit controls the flow rate of the raw material gas supplied to the ozone generator without nitrogen addition.
  • a pressure detection / pressure adjustment means including an auto pressure controller (APC) for automatically controlling an internal pressure which is a pressure in the ozone generator.
  • APC auto pressure controller
  • Addition-less ozone generation unit is an integrated structure integrating the nitrogen addition-less ozone generator, the ozone power supply, and the control means.
  • the nitrogen addition-less ozone generator is formed with a high voltage terminal for receiving the high voltage from the ozone power source and a cooling medium input for supplying and discharging a low temperature cooling medium of 15 ° C. or less obtained from the outside.
  • a storage portion for storing the photocatalyst layer and the cooling path therein, and the cooling medium inlet / outlet is formed on a predetermined configuration surface constituting a part of the outer peripheral portion of the storage portion, and the outer periphery of the storage portion Pierce
  • the high-voltage terminal is provided, is formed over at least said predetermined configuration surface in the housing part, further comprising an insulating layer made of heat insulating material.
  • the nitrogen addition-less ozone generator in the nitrogen addition-less ozone generation unit according to the present invention is provided with a cooling medium inlet / outlet that is a supply and discharge port of a low-temperature cooling medium at 15 ° C. or lower, and there is a concern about the occurrence of condensation. Since a heat insulating layer made of a heat insulating material is formed so as to cover a predetermined component surface, condensation is generated on the predetermined component surface by cooling the ozone generator itself to a low temperature without being affected by the atmospheric temperature by the heat insulating layer. Can be reliably prevented. As a result, the ozone generator, ozone power supply, and control means can reliably avoid problems caused by intrusion of moisture in the ozone power supply and control means existing outside the storage section of the nitrogen addition-less ozone generator. Can be integrated.
  • the photocatalytic effect by the photocatalytic layer is improved, and as a result, the ozone generation efficiency and the ozone decomposition effect are enhanced. This produces the effect that more high quality ozone can be generated.
  • FIG. 1 is a block diagram showing the configuration of a gas system centered on an ozone generator that does not contain nitrogen.
  • an ozone generator using a high-purity oxygen source gas with a nitrogen addition amount of 10 ppm or more and 1000 ppm or less is called a “nitrogen addition suppression / ozone generator”, and a high-purity oxygen source gas with a nitrogen addition amount of less than 10 ppm is called The ozone generator used is called “nitrogen addition-less ozone generator”.
  • an ozone generator using a high-purity oxygen source gas of 1000 ppm or less is collectively referred to as “nitrogen addition-less ozone generator”.
  • FIG. 2 is a characteristic diagram showing the ozone concentration characteristics by the nitrogen addition-less ozone generator 1 shown in FIG.
  • FIG. 3 is a schematic diagram for explaining the dissociation mechanism of oxygen molecules into oxygen atoms by oxygen molecules and a photocatalyst.
  • FIG. 4 is a schematic diagram for explaining the generation mechanism of ozone by the triple collision of oxygen atoms and oxygen molecules generated by the nitrogen addition-less ozone generator 1.
  • symbol shows the same or an equivalent part.
  • the nitrogen addition-less ozone generator in this invention is a high-quality product that eliminates by-products such as high-concentration ozone gas of 200 g / m 3 or more, clean ozone gas such as semiconductor manufacturing equipment and cleaning equipment, NO x and OH radical substances. This is effective in the case where a nitrogen-less ozone gas or a device with high ozone generation efficiency is required.
  • a raw material supply system 99 for supplying oxygen (raw material gas) with a purity of 99.99% or more is composed of a high-purity oxygen cylinder 991, a pressure reducing valve 992, and an on-off valve 993, and supplies oxygen gas 994 to the outside. To do. Then, oxygen gas 994 is supplied to the nitrogen addition-less ozone generator 1 as raw material gas 995 through MFC 3.
  • the nitrogen addition-less ozone generator 1 includes electrodes 1a and 1b, a dielectric 1c, and a photocatalyst (layer) 1d. The two electrodes 1a and 1b are opposed to each other, and a dielectric 1c is provided on a surface (discharge surface) of the electrode 1a facing the electrode 1b. And it is the structure which apply
  • a moisture removal gas filter for reducing the amount of water contained in the high-purity oxygen supplied from the cylinder to 0.1 ppm or less is provided, and nitrogen, a moisture-free raw material that suppresses the amount of moisture as much as possible.
  • An oxygen gas 994 is supplied to the nitrogen addition-less ozone generator 1 as a raw material gas 995 through a flow rate regulator (MFC) 3 that regulates the amount of gas.
  • MFC flow rate regulator
  • N 2 is contained in 151 ⁇ 10 2 ppb (ie, 15 ppm). Thus, inevitable N 2 is mixed, but in order to obtain high-purity ozone gas, it is desirable to use raw material oxygen gas with less N 2 mixing.
  • FIG. 3 schematically shows the electron coordination structure in solid and the dissociation mechanism of oxygen molecules in the solid electron theory (bandgap theory) of the photocatalyst during silent discharge.
  • bandgap theory solid electron theory
  • Holes are formed in the valence band where the electrons have moved.
  • the lifetime of the electrons that have moved to the conduction band ends depending on whether they move to the surroundings or emit electrons to the discharge region. That is, the electrons that have moved to the conduction band have a very short lifetime and several tens of psec. Since holes in the valence band continue to exist unless electrons moved to the conduction band return by recombination, the lifetime of the holes is as long as 200 to 300 nsec.
  • the light absorption wavelength is visible light having a wavelength of 428 nm to 620 nm.
  • Silent discharge is generated in this visible light regardless of whether oxygen does not contain nitrogen or oxygen and argon gas. It has the ability to emit light wavelengths in the region (discharge). Therefore, when a photocatalyst with a band gap of 2.0 eV to 2.9 eV is applied to the electrode surface (wall surface) of the ozone generator, the discharge light emitted by the silent discharge in the case of oxygen not containing nitrogen or in oxygen and argon gas.
  • the photocatalyst is absorbed to excite the photocatalyst, and oxygen can be dissociated by the adsorption dissociation action of the excited photocatalyst and oxygen gas. Further, as shown in the schematic diagram of FIG. 4, the coupling action is caused on the photocatalyst 1 d (wall M) by the three-body collision between the dissociated oxygen atom, the supplied oxygen molecule (raw material oxygen gas), and the third substance. Ozone can be generated by the promoted work.
  • silent discharge with nitrogen gas in an ozone generator has the ability to emit (discharge) light wavelengths in the ultraviolet region (ultraviolet light of 413 nm to 344 nm).
  • the photocatalyst having a band gap of 3.0 eV to 3.6 eV can be photoexcited. Can produce high quality ozone gas by its ability to dissociate oxygen molecules.
  • a photocatalyst with a band gap of 3.0 eV to 3.6 eV can be photoexcited
  • a photocatalyst with a bandgap of 2.0 eV to 2.9 eV can be photoexcited
  • the allowable band gap range of the photocatalyst provided on the dielectric or electrode in the discharge region can be from 2.0 eV to 3.6 eV.
  • the ozone generation reaction can be promoted by using not only oxygen but also nitrogen discharge light (ultraviolet light). That is, when N 2 gas is included, the ozone generation function by the invention effect of the present application is enhanced.
  • the photocatalytic substance applied to the discharge surface of the ozone generator is a kind of semiconductor and has a band gap peculiar to a semiconductor, and shows a value larger than the band gap of a normal semiconductor substance.
  • the photocatalytic substance is a metal oxide substance in which a metal and an oxygen atom are usually bonded, and the crystal of the metal oxide substance is not a complete bond between the metal atom and the oxygen atom, but an oxide having a crystal structure having an oxygen deficiency.
  • a metal material is said to have a semiconductor effect or a photocatalytic effect.
  • the photocatalytic materials such as iron oxide and tungsten oxide are Fe 2 O x and WO x , and oxygen bonds
  • X ⁇ 3 the number of oxygen atoms
  • up to three oxygen atoms can be bonded, but in order to be a photocatalytic substance, it has a crystal structure that leaves an oxygen deficient portion in the oxygen bond. .
  • the photocatalytic substance is applied to the discharge surface to increase the photocatalytic effect and generate high-concentration ozone. In order to greatly increase the surface area of the applied photocatalytic substance on the discharge surface.
  • FIG. 5 is an explanatory diagram showing the configuration of the nitrogen addition-less ozone generation unit and its periphery according to the embodiment of the present invention. In the figure, the same components as those shown in FIG.
  • the nitrogen addition-less ozone generation unit 7 of the present embodiment has a nitrogen addition-less ozone generator 1 having means for generating ozone gas, and means for supplying predetermined power to the ozone gas.
  • the MFC 3 having means for controlling the raw material gas flow rate Q supplied to the ozone generator 2 and the nitrogen addition-less ozone generator 1 to a constant value, and the pressure value in the nitrogen addition-less ozone generator 1 to a constant value It has APC4 which has a means to do.
  • the nitrogen addition-less ozone generator 1 has a high voltage terminal housing portion 20 for guiding the high voltage HV from the ozone power source 2 into the ozone generator outer frame 1x outside the ozone generator outer frame 1x. ing.
  • the nitrogen addition-less ozone generator 1x is a housing that serves as a housing for the nitrogen addition-less ozone generator 1, and includes a high-voltage electrode 1a, a ground electrode 1b, a dielectric 1c, a photocatalyst 1d, and a connection block 498 (FIG.
  • the high-pressure cooling plate 45 (not shown in FIG. 5) is housed inside.
  • adiabatic cooling water pipes 31 for supplying / discharging low-temperature cooling water 33 (cooling medium) to / from the ozone generator outer frame 1x are supplied with ozone. It is provided outside the generator outer frame 1x. A high voltage terminal PH and a ground terminal PL in the high voltage terminal storage unit 20 are provided so as to penetrate the ozone generator outer frame 1x.
  • the nitrogen addition-less ozone generator 1 includes a raw material inlet 38 for supplying the raw material gas 995 obtained through the MFC 3 and an ozone gas outlet 39 for outputting the generated ozone gas 996 to the external APC 4. It is provided on the outer frame 1x.
  • the nitrogen addition-less ozone generator 1 is further used for input of low-temperature cooling water 33 (cooling medium) from the adiabatic cooling water input pipe 31I and output of low-temperature cooling water 33 to the adiabatic cooling water output pipe 31O.
  • the cooling water inlet / outlet 34 is provided in the ozone generator outer frame 1x.
  • the nitrogen addition-less ozone generation unit 7 includes the above-described nitrogen addition-less ozone generator 1 (including the high-voltage terminal storage unit 20), the ozone power source 2, the MFC 3, the APC 4, and the adiabatic cooling.
  • a plurality of functional means such as the water pipe 31 (31I + 31O) are integrated to form a unit package unit.
  • the heat insulating layer 8 is made of a heat insulating material such as an insulator, and is formed to cover substantially the entire surface of the ozone generator outer frame 1x. In other words, it is formed so as to cover the outer periphery of the ozone generator outer frame 1x while ensuring a flow path to the cooling water inlet / outlet 34, the raw material inlet 38 and the ozone gas outlet 39. However, the heat insulating layer 8 is not formed on the outer periphery of the high-voltage terminal storage unit 20.
  • a high voltage HV is applied from the ozone power source 2 to the high-voltage electrode 1a through the high-voltage terminal PH in the high-voltage terminal storage section 20, and a ground voltage LV is applied to the ground electrode 1b through the ground terminal PL. Is done.
  • the high-voltage terminal storage unit 20 is configured to store the high-voltage terminal PH in a predetermined space capable of air insulation and supply the purge gas 23 from the purge gas system 21 via a purge gas input pipe described later. ing.
  • the adiabatic cooling water input pipe 31I is provided to input the low-temperature cooling water 33 obtained from the cooling water system 30 into the nitrogen addition-less ozone generator 1, and the adiabatic cooling water output pipe 31O does not contain nitrogen addition / ozone generation. It is provided to return the low-temperature cooling water 33 discharged from the vessel 1 to the cooling water system 30.
  • the cooling water system 30 sets the temperature of the low-temperature cooling water 33 to 15 ° C. or less.
  • the nitrogen addition-less / ozone generation unit 7 includes a nitrogen addition-less / ozone generator 1 (including the high-voltage terminal storage unit 20), an ozone power source 2 and control devices (MFC3, APC4, etc.) Are aggregated and unitized.
  • a nitrogen addition-less ozone generation unit 7 is cooled to a low temperature by the low-temperature cooling water 33, the surface of the ozone generator outer frame 1x of the nitrogen addition-less ozone generator 1 is cooled.
  • the nitrogen addition-less / ozone generation unit 7 of the present embodiment covers substantially the entire outer periphery of the nitrogen addition-less / ozone generator 1, and is a heat insulating layer made of a heat insulating material that does not pass moisture and has low thermal conductivity. Therefore, the surface of the ozone generator outer frame 1x of the ozone generator 1 is not in direct contact with the atmosphere, so that dew generation on the surface of the ozone generator outer frame 1x is ensured. It can be avoided.
  • the nitrogen addition-less ozone generator 1 has an effect of increasing the ozone generation efficiency and decreasing the effect of decomposing the generated ozone as the temperature is lowered to a low temperature, and increasing the amount of ozone to be extracted. For this reason, means (such as the low-temperature cooling water system 30 and the adiabatic cooling water pipe 31) for cooling the nitrogen addition-less ozone generator 1 itself to a low temperature is provided.
  • the low-temperature refrigerant cooling water 33
  • step S1 The cold heat that is cooled in step S1 is taken to the atmosphere side, and the discharge electrode cell itself composed of the high-voltage electrode 1a and the ground electrode 1b of the nitrogen addition-less ozone generator 1 cannot be sufficiently cooled. As a result, the ozone generation efficiency is lowered and the ozone performance is lowered.
  • the nitrogen addition-less ozone generation unit 7 of the present embodiment covers the substantially entire outer periphery of the nitrogen addition-less ozone generator 1 and forms a heat insulating layer 8 made of a heat insulating material having a low thermal conductivity. Therefore, the phenomenon in which the cold heat in the nitrogen addition-less ozone generator 1 is taken to the atmosphere side can be reliably prevented.
  • the cooling effect of the nitrogen addition-less ozone generator 1 is not hindered by the atmospheric temperature. Therefore, by sufficiently cooling the nitrogen addition-less ozone generator 1 (ozone generator outer frame 1x), There is an effect that the ozone generation efficiency can be sufficiently increased.
  • the heat insulation layer 8 is formed so as to cover substantially the entire outer peripheral portion of the ozone generator outer frame 1x which is a storage portion. It is possible to reliably avoid problems caused by the intrusion of moisture into the ozone power source 2 and the control means (MFC3, APC4) existing outside the generator 1.
  • the cooling water 33 is used as the low-temperature cooling medium, but the following cooling medium may be used instead of the cooling water 33.
  • an ethylene glycol aqueous solution (PRTR) having a refrigerant temperature of ⁇ 20 ° C. to 65 ° C. and a hydrofluoropolyether (HFPE) having a refrigerant temperature of ⁇ 40 ° C. to 60 ° C. can be considered.
  • the temperature at the time of supplying the cooling water 33 to the nitrogen addition-less ozone generator 1 is set to 5 ° C. or less. The reason for this will be described. Conventionally, it has been common to generate ozone by flowing water at a temperature of 20 ° C. into the ozone generator 1 and cooling it with ozone.
  • the nitrogen addition-less ozone generator 1 when the inside of the nitrogen addition-less ozone generator 1 is cooled using 20 ° C. water, which is substantially the same as the atmospheric temperature, and the discharge cell is discharged to generate ozone, the nitrogen addition-less ozone generator is generated.
  • the instantaneous micro discharge gas temperature in the micro discharge space of the dielectric barrier discharge is 37 ° C. when compared with the conventional discharge input power. To 22 ° C. or lower.
  • the dielectric barrier discharge sustain voltage V * spark voltage
  • V * spark voltage
  • the photocatalytic effect of the photocatalyst (substance) 1d applied to the surfaces of the electrodes 1a and 1b is greatly increased, and the ability to dissociate oxygen gas into oxygen atoms is further promoted and dissociated.
  • the concentration of ozone inevitably generated can be increased.
  • the amount of ozone decomposition due to the gas temperature is slightly reduced when the average gas temperature is low, and the ozone concentration that can be output is also increased.
  • FIG. 6 is a graph showing the ozone concentration characteristic of the ozone gas concentration with respect to the raw material gas flow rate Q, which is the flow rate of the raw material gas 995.
  • the ozone concentration characteristic LA has a set temperature of the cooling water 33 of 20 ° C.
  • the ozone concentration characteristic LB has a set temperature of the cooling water 33 of 20 ° C. in the case of the conventional configuration in which the heat insulating layer 8 is not provided.
  • the ozone concentration characteristic LC indicates the ozone concentration characteristic when the temperature of the cooling water 33 is 5 ° C. and the heat insulating layer 8 is provided.
  • the ozone concentration characteristics are improved in the order of the ozone concentration characteristic LA, the ozone concentration characteristic LB, and the ozone concentration characteristic LC. That is, from FIG. 6, setting the temperature of the cooling water 33 to 5 ° C. or less and providing the heat insulating layer 8 have the effect of improving the ozone concentration characteristics related to the ozone generated by the nitrogen addition-less ozone generator 1. I understand that.
  • the cooling water 33 serving as a low-temperature cooling medium is set to a temperature of 5 ° C. or less when supplied into the nitrogen addition-less / ozone generator 1. Therefore, it is possible to further improve the concentration of generated ozone by further enhancing the photocatalytic effect in the photocatalyst (layer) 1d.
  • Heat insulation material used for the heat insulation layer 8 As the heat insulating material used for the heat insulation layer 8, a material that does not allow water or moisture to pass through and has a very small thermal conductivity compared to metal is effective. For example, there are carbon fibers, ceramic fibers, Teflon (registered trademark) fibers, which are heat-resistant inorganic fibers. A heat insulating board made of hard urethane or the like whose heat insulating material is shaped into a board shape may be used as the heat insulating layer 8.
  • FIG. 7 is an explanatory view showing details of the high-voltage terminal storage section 20.
  • the high voltage terminal PH provided in the high voltage terminal accommodating portion 20 includes a high voltage insulator 24, an electrode rod 25, and nuts 26 (26a, 26b).
  • the high voltage insulator 24 made of an insulating material is provided from the inside of the ozone generator 1 through the ozone generator outer frame 1x to the inside of the housing 22 of the high voltage terminal storage unit 20 from the inside of the ozone generator 1. That is, the high-voltage insulator 24 that forms the high-voltage terminal PH1 is formed through the ozone generator outer frame 1x that separates the inside and outside of the nitrogen addition-less ozone generator 1.
  • the high voltage HV is applied to the high-voltage electrode 1a of the discharge electrode cell via the electrode rod 25 in the high-voltage insulator 24 constituting the high-voltage terminal PH and the electric wires 27a and 27b.
  • the high voltage insulator 24 touches the atmosphere and the nitrogen addition-less ozone generator 1 is cooled to a temperature lower than the atmospheric temperature, the high voltage insulator 24 also becomes low temperature, so that the surface of the high voltage insulator 24 is condensed. There is a concern that the insulation property of the high-voltage insulator 24 deteriorates.
  • the high voltage insulator 24 of the high voltage terminal PH is arranged in the high voltage terminal accommodating portion 20, and the purge gas 23 (nitrogen, inert gas) generated from the purge gas system 21 from the purge gas input pipe 28 is provided. Therefore, the purge gas 23 can reliably prevent the surface of the high-voltage insulator 24 from condensing at a low temperature. As a result, in the present embodiment, by reducing the temperature of the ozone generator, even if the high voltage insulator 24 in the nitrogen addition-less ozone generator 1 becomes low temperature, the surface of the high voltage insulator 24 is condensed. However, the high voltage insulator 24 has an effect of maintaining good insulation.
  • the purge gas 23, which is a dry gas, is constantly supplied to a predetermined space in the housing 22, so that the purge gas 23 exists around the high voltage insulator 24, and the surface of the high voltage insulator 24. Condensation is prevented.
  • the high-voltage terminal storage unit that can supply the purge gas 23 from the purge gas system 21 to the predetermined space in the housing 22 from the purge gas input pipe 28.
  • the dew point purge gas 23 having a relatively low dew point can be present around the high voltage insulator 24. For this reason, it is possible to reliably avoid the occurrence of condensation on the surface of the high voltage insulator 24 without deteriorating the application capability of the high voltage HV by the high voltage terminal PH.
  • FIG. 8 is an explanatory diagram showing details of the configuration of the nitrogen addition-less ozone generator 1. As shown in the figure, in a form in which two high-voltage electrodes 1a share one ground electrode 1b, a plurality of electrode cells each made up of a pair of high-voltage electrodes 1a and ground electrodes 1b are formed.
  • the dielectric 1c is formed on both surfaces thereof, and the photocatalyst (layer) 1d is formed on the surface (discharge surface) of the dielectric 1c on the ground electrode 1b side of the two dielectrics 1c formed on both surfaces. Is applied, and a high-pressure cooling plate 45 serving as a cooling path is provided on the surface of the dielectric 1c opposite to the ground electrode 1b.
  • the ozone generator outer frame 1x, the high-pressure cooling plate 45, and a connecting block 49 described later are made of a metal material.
  • Each ground electrode 1b is coated with a photocatalyst (layer) 1d on both sides, and a space between the photocatalyst 1d coated on the dielectric 1c of the high-voltage electrode 1a and the photocatalyst 1d of the ground electrode 1b is a discharge space 46.
  • ozone gas 996 is generated by the photocatalytic effect of the photocatalyst 1d in the discharge space 46 using the raw material gas 995 supplied from the MFC 3 through the raw material inlet 38 provided in the ozone generator outer frame 1x.
  • connection block 49 is provided so as to connect the end regions of the high-pressure cooling plate 45 and the ground electrode 1b.
  • connection block 49, the high-pressure cooling plate 45, and the ground electrode 1b are provided with cooling water passages through which the low-temperature cooling water 33 can circulate, so that they can be obtained from the outside of the nitrogen addition-less ozone generator 1.
  • the low-temperature cooling water 33 to be generated is connected to the connecting block 49, the high-pressure cooling plate 45, and the ground electrode 1b that constitute the cooling path portion via the cooling water inlet / outlet 34 (cooling medium inlet / outlet) provided in the ozone generator outer frame 1x. It can be circulated in the cooling water flow path.
  • the high-voltage electrode 1a and the ground electrode 1b themselves existing in the vicinity of the high-pressure cooling plate 45 can be effectively cooled.
  • a cooling water inlet / outlet 34, a raw material inlet 38, and an ozone gas outlet are provided on the upper surface 1xu (predetermined constituent surface) of the ozone generator outer frame 1x. 39 and the high-voltage terminal storage portion 20 (high-voltage terminal PH) are provided collectively.
  • the heat insulating layer formation shown in FIG. 8 that covers only the upper surface portion 1 xu, not the aspect in which the heat insulating layer 8 is formed so as to cover substantially the entire surface of the ozone generator outer frame 1 x.
  • Other modes in which the heat insulating layer is selectively formed only in the region 48 may be adopted.
  • the inside of the ozone generator outer frame 1x is effectively exhibited by the heat-insulating function of the cooling water inlet / outlet 34 serving as the inlet / outlet of the cooling water supplied from the low-temperature cooling water system 30 and the vicinity thereof.
  • the temperature low there is an effect that a lot of ozone can be generated.
  • the temperature difference between the inside and outside of the ozone generator outer frame 1x is larger than that of other portions, and the cooling water inlet / outlet 34, the raw material inlet 38, the ozone gas outlet 39, and the high voltage terminal storage unit 20 (high voltage terminal PH) ) And its vicinity region can effectively exhibit a heat insulating action to prevent condensation.
  • another aspect of the present embodiment has the effect of generating a large amount of ozone without generating condensation while minimizing the formation volume of the heat insulating layer 8.
  • a high-quality oxide insulating film can be formed in a relatively short time by utilizing the nitrogen addition-less ozone generation unit 7 according to this embodiment (including other aspects) for semiconductor manufacturing technology. .

Abstract

 本発明は、オゾンガスをより多く出力することが可能な窒素添加レス・オゾン発生ユニットを得ることを目的とする。そして、本発明において、窒素添加レス・オゾン発生ユニット(7)は、低温に冷却した窒素添加レス・オゾン発生器(1)、オゾン電源(2)、MFC(3)、APC(4)、断熱冷却水入力用配管(31I)、及び断熱冷却水出力用配管(31O)を含む複数個の機能手段を集約し1単位のパッケージユニットとして構成している。そして、窒素添加レス・オゾン発生器1は、絶縁物等の断熱材で構成された断熱層8を、オゾン発生器外枠(1x)の略全面を覆って形成している。さらに、冷却水系(30)は断熱冷却水入力用配管(31I)を介して窒素添加レス・オゾン発生器(1)に供給する冷却水(33)の温度を5℃以下に設定して、窒素添加レス・オゾン発生器(1)自身を低温化構成にしている。

Description

窒素添加レス・オゾン発生ユニット
 この発明は、窒素添加量が数千ppm未満の高純度酸素ガスを原料ガスとした窒素添加レス・オゾン発生器を搭載した窒素添加レス・オゾン発生ユニットに関する。
 従来技術においては、次のように各種技術が展開されている。酸素ガスに数千ppm以上の窒素ガスを添加した原料ガスをオゾン発生器に供給し、高濃度オゾンガスを生成し、この高濃度オゾンガスを用いて、半導体製造分野で、オゾン酸化絶縁膜形成やオゾン洗浄等のオゾン処理工程に多く用いられている。この半導体製造分野等においては、複数のオゾン処理装置より構成される多オゾン処理装置に対してオゾンガスを供給する場合、複数のオゾン処理装置に対応して、各々がオゾン発生器、オゾン電源、流量コントローラ(MFC)等を含む複数のオゾン発生機構(手段)を設け、各オゾン発生機構が独立して対応するオゾン処理装置に対してオゾンガス供給するオゾンガス供給システム(ユニット)を構築することが一般的に考えられる。
 図9に示すように、従来、オゾン電源72から電源供給を受け、電極71a,71b、誘電体71c等により構成されるオゾン発生器71によるオゾンガスの生成効率をアップさせるために、一般の酸素ガスにおいては、約50~数千ppmの窒素ガスが含まれており、また、窒素含有率が少ない(50ppm未満)の高純度酸素ガスでは、オゾン発生器中に高純度酸素ガスと共に微量(500ppm以上)のN2ガスを添加している。
 そのため、原料酸素ガスに500ppm以上のN2ガスが含まれると、図10に示す放電反応によって生成される微量のNO2の触媒反応で、高濃度のオゾンが生成されていた。特に、窒素ガスを500~20000ppm添加すれば、放電によって生成される微量の二酸化窒素量の触媒反応で効率良くオゾンが生成される。結果として最も高濃度のオゾンが生成され、窒素添加量500~20000ppm範囲の原料ガスがオゾン発生性能において最適条件であることが実験で検証されている。
 以下、図10で示す放電反応は以下の(1)~(3)に示すように、原料酸素O2に、光電気放電光と微量のNO2の触媒ガスを利用して、高濃度オゾン発生を実現している。
 (1) 放電による微量のNO2ガス生成反応
 ・窒素分子のイオン化反応
 N2+e⇒2N+
 ・NO2の生成反応
 2N++O2+M⇒NO2
 (数ppm~数十ppmのNO2ガス生成)
 (2) NO2の放電光による触媒効果での酸素原子Oの生成
 ・NO2の光解離反応
 NO2+hν⇒NO+O
 ・NOの酸化反応
 NO+O2(原料酸素)⇒NO2+O
 *上記2つの反応でNO2が触媒になって酸素原子が生成
 (2)の反応で生成した多量の酸素原子Oと酸素ガス分子O2との反応でオゾンO3が生成される。
 (3) オゾンO3の生成(三体衝突)
 R2;O+O2+M→O3+M
 上記(1)~(3)によって、高濃度なオゾンを発生させている。
 しかし、原料の酸素ガスにN2ガスが多く含むことにより、オゾン発生器内で無声放電によってオゾンガス以外にN25,N2O等のNOX副生ガスや硝酸も生成される。具体的なNOX副生ガスや硝酸も生成の化学式は以下の通りである。
 N2+e⇒N2*+e⇒N2+hν(310,316,337,358nm)
 N2*;窒素の励起
 窒素ガスによる紫外光
 H2O+e⇒H+OH+e (水蒸気の電離)
 N2+e⇒2N-+e (窒素分子の電離)
 NO2+hν(295~400nm)⇒NO+O(3P)
 H+O2+M⇒HO2+M
 HO2+NO⇒OH+NO2
 N25+H2O⇒2HNO3
 OH+NO2+M⇒HNO3+M
 このように、オゾンガス以外にNOX副生ガスや硝酸も生成される。
 また、多量のNOX副生物が生成されると、NOXガス成分と原料ガス中に含まれる水分との反応により硝酸(HNO3)クラスタ(蒸気)が生成され、酸素、オゾンガスとともに微量のNOXガス,硝酸クラスタが混合した状態でオゾン化ガスが取り出される。この微量の硝酸クラスタ量が数百ppm以上含まれると、オゾンガス出口配管であるステンレス配管の内面に硝酸によって酸化クロム等の錆が析出され、クリーンオゾンガスに金属不純物が混入し、半導体製造装置用反応ガスとして金属不純物が半導体の製造に悪影響を及ぼすとともに、生成した微量の硝酸クラスタが半導体製造装置の「オゾンによるシリコン酸化膜のエッチング処理」や「ウェハ等のオゾン水洗浄」に反応毒として悪影響をもたらす間題点があった。
 また、オゾン発生器、オゾン電源等を搭載したオゾンガス供給システムは、オゾン発生器、オゾン電源、オゾンガスもしくは原料ガス流量をコントロールするMFC等の流量調整手段を介してオゾン発生器に供給する原料ガス配管系統、オゾン発生器内のガス雰囲気圧力をコントロールするAPC等の圧力調整する手段を有して、オゾン発生器から出力されるオゾンガスに対し濃度を検知するオゾン濃度検知器、オゾン流量計を有した出力ガス配管系統等を、多オゾン処理装置の系統数分、設けることが一般的に考えられる。
 しかしながら、多量のNOX副生物が非常に少ない高濃度のオゾン化酸素を供給できなく、その上、このような多オゾン処理装置に対応するオゾン発生システムを構築するのに非常に大きなスペースを要し、さらに、多オゾン処理装置に対し統合的な制御を行って、オゾンガスを供給するシステムを構築する場合、さらに大きなシステム構成となり、コスト面や配置スペース等の問題点があり実用上不利な点が多々あった。
 そこで、従来のオゾン発生器中に窒素ガスを含めないで、高純度酸素ガスのみでオゾン発生を試みたが、発生したオゾンは極わずかしか得られなかった。これは次のように考えられる。原料ガスである酸素分子は、紫外光245nm以下の波長で連続スペクトルの光吸収スペクトル(紫外線波長130~200nm)をもっており、酸素分子が紫外光245nm以下のエキシマ光を吸収することで酸素原子に解離し、この解離した酸素原子と酸素分子と第三物質との三体衝突でオゾンが生成されることは、紫外線を出すエキシマランプ等で知られている。しかし、オゾン発生器のような、酸素ガスを主体にした1気圧以上の高気圧中の無声放電では紫外光245nm以下のエキシマ光の発光は全くない。そのため、無声放電光による酸素原子の解離およびオゾン生成の反応過程の反応定数は非常に小さく、数%以上の高濃度オゾンガス生成できる反応とは考えられない。
 そのため、従来は、多オゾン処理装置へのオゾン供給方式としては、例えば、特許文献1に開示されているように、原料酸素ガスに数千ppm以上の窒素ガスを含んだ原料ガスもしくは、原料酸素ガスに強制的に窒素ガスを数千ppm以上添加した原料ガスをオゾン発生器に供給し、高濃度オゾンを発生させ、しかも、複数のオゾン処理装置にオゾンガスを供給するために、1式のオゾン発生器の容量を大きくして、オゾンガスを出力する配管系統を複数配管に分離させ、多オゾン処理装置へそれぞれへの所定流量、濃度のオゾンガスをステップ的に出力させる方式のオゾンガス供給システムが採用されて来ていた。
特表2009-500855号公報(図2,図3,図5)
 特許文献1に開示された従来の多オゾン処理装置へのオゾン供給するオゾンガス供給システムは以上のように構成されており、窒素や水分を含んだ原料酸素ガスを供給し、1つのオゾン発生器71からオゾンガスを出力し、出力する配管系統を分配配管させる構成にしている。このため、出力するオゾンガスには、窒素酸化副生物質や硝酸クラスタやOHラジカル物質が含まれた活性ガスを供給されることになり、出力配管材質と窒素酸化副生物質や硝酸クラスタやOHラジカル物質との化学分解や酸化反応で、異常加熱や腐食に伴う金属コンタミネーションが多く含まれるオゾンガスを供給することになるという問題点があった。
 この発明は上記のような課題を解決するためになされたものであり、原料ガスに窒素ガスを添加させない高純度酸素ガスのみで、高純度で、かつ高濃度のオゾンガスを生成できる窒素添加レス・オゾン発生器を搭載し、上記オゾン発生器自身を低温に冷やし、オゾン発生器自身を断熱材で覆って発生器の放電部分を効率良く冷やせるよう構成にすることにより、該窒素添加レス・オゾン発生器から出力されるオゾンガスをより多く出力することが可能な窒素添加レス・オゾン発生ユニットを得ることを目的とする。
 この発明に係る窒素添加レス・オゾン発生ユニットは、放電面にオゾンを生成するための光触媒物質を有し、オゾンガスを発生する窒素添加レス・オゾン発生器と、前記窒素添加レス・オゾン発生器に高電圧を供給するオゾン電源と、前記オゾン発生器に関連した制御手段とを備え、前記制御手段は、前記窒素添加レス・オゾン発生器に供給される原料ガス流量を制御するマスフローコントローラ(MFC)を含む流量検出・流量調整手段と、前記窒素添加レス・オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)を含む圧力検出・圧力調整手段とを有し、前記窒素添加レス・オゾン発生ユニットは、前記窒素添加レス・オゾン発生器、前記オゾン電源、及び前記制御手段を集約して一体化構造で形成され、窒素添加レス・オゾン発生器は、前記オゾン電源からの前記高電圧を受ける高電圧用端子と、外部から得られる15℃以下の低温の冷却媒体を供給及び排出するための冷却媒体入出口と、前記高電圧用端子を介して前記高電圧が付与される高圧電極とを含み、前記高圧電極の少なくとも一つの主面が前記放電面として規定され、前記高圧電極の前記放電面側に設けられた前記光触媒物質からなる光触媒層と、前記高圧電極の近傍に設けられ、前記冷却媒体入出口を介して供給される前記冷却媒体が内部を流通可能な冷却経路部と、前記高圧電極、前記光触媒層及び前記冷却経路を内部に収納する収納部とを含み、前記収納部の外周部の一部を構成する所定の構成面に前記冷却媒体入出口が形成され、前記収納部の前記外周部を貫通して前記高電圧用端子が設けられ、前記収納部における前記所定の構成面を少なくとも覆って形成される、断熱材からなる断熱層をさらに含む。
 この発明に係る窒素添加レス・オゾン発生ユニットにおける窒素添加レス・オゾン発生器は、15℃以下の低温冷却媒体の供給及び排出口である冷却媒体入出口が形成されており結露発生が懸念される所定の構成面を覆って断熱材からなる断熱層を形成しているため、断熱層によって大気温度の影響を受けることなくオゾン発生器自身を低温に冷却することにより、所定の構成面における結露発生を確実に防止することができる。その結果、窒素添加レス・オゾン発生器の収納部の外部に存在するオゾン電源、制御手段に結露した水分が浸入することによる不具合を確実に回避することができオゾン発生器、オゾン電源、制御手段を一体構成にできる。
 加えて、上述した断熱層によって大気温度の影響を低減化して収納部内の温度を比較的低温に保つことにより、光触媒層による光触媒効果を向上させ、その結果、オゾン発生効率及びオゾン分解効果を高め、品質の高いオゾンをより多く発生させることができる効果を奏する。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の実施の形態で用いる窒素添加レス・オゾン発生器の構成を示すブロック図である。 図1で示した窒素添加レス・オゾン発生器による出力オゾン濃度特性を示すグラフである。 オゾン発生時における酸素分子と光触媒とによる酸素分子の酸素原子への解離メカニズムを示す模式図である。 酸素原子と酸素分子との三体衝突によるオゾンの生成メカニズムを示す模式図である。 この発明の実施の形態である窒素添加レス・オゾン発生ユニット7及びその周辺の構成を示す説明図である。 原料ガス流量Qに対するオゾンガス濃度のオゾン濃度特性を示すグラフである。 図5で示した高電圧供給部の詳細を示す説明図である。 窒素添加レス・オゾン発生器の構成の詳細を示す説明図である。 従来のオゾン発生器の構成図である。 窒素を添加した原料酸素ガスと従来のオゾン発生器との組合せで、オゾン発生内容を模式的に示す説明図である。
 <窒素添加レス・オゾン発生器>
 この発明の実施の形態で述べるオゾンガス供給システムで用いる窒素添加レス・オゾン発生器を図1ないし図4について説明する。図1は窒素添加レス・オゾン発生器を中心としたガス系統の構成を示すブロック図である。
 なお、狭義では窒素添加量が10ppm以上1000ppm以下の高純度酸素原料ガスを用いたオゾン発生器を「窒素添加抑制・オゾン発生器」と呼び、窒素添加量が10ppm未満の高純度酸素原料ガスを用いたオゾン発生器を「窒素添加レス・オゾン発生器」と呼ぶ。本明細書では広義の意味として、上述した「窒素添加抑制・オゾン発生器」を含めて、1000ppm以下の高純度酸素原料ガスを用いたオゾン発生器を総称して「窒素添加レス・オゾン発生器」と呼ぶ。
 図2は図1で示した窒素添加レス・オゾン発生器1によるオゾン濃度特性を示す特性図である。図3は酸素分子と光触媒とによる酸素分子の酸素原子への解離メカニズムを説明する模式図である。
 図4は窒素添加レス・オゾン発生器1によって生じる酸素原子と酸素分子との三体衝突によるオゾンの生成メカニズムを説明する模式図である。なお、明細書中で各図中、同一符号は同一又は相当部分を示す。
 この発明での窒素添加レス・オゾン発生器は、200g/m3以上の高濃度オゾンガス、半導体製造装置や洗浄装置等のクリーンなオゾンガス、NOXやOHラジカル物質等の副生物を無くした高品質の窒素レスオゾンガス,又はオゾン生成効率のよい装置を必要とするところに有効である。
 図1において、純度99.99%以上の酸素(原料ガス)を供給する原料供給系99は、高純度酸素ボンベ991,減圧弁992,及び開閉弁993で構成され、酸素ガス994を外部に供給する。そして、酸素ガス994がMFC3を介して原料ガス995として窒素添加レス・オゾン発生器1に供給される。窒素添加レス・オゾン発生器1は内部に電極1a,1b、誘電体1c及び光触媒(層)1dを有している。2枚の電極1a、1bは互いに対向し、電極1aの電極1bとの対向面(放電面)上に誘電体1cが設けられる。そして、誘電体1c及び電極1b間の対向面にそれぞれ光触媒1dを塗布した構成になっている。
 図1では、付記されていないが、ボンベから供給される高純度酸素に含まれる水分量を0.1ppm以下まで下げる水分除去ガスフィルターを設け、窒素、水分量を極力抑えた窒素、水分レス原料ガスのガス量を調整する流量調整器(MFC)3を介して、酸素ガス994が原料ガス995として窒素添加レス・オゾン発生器1に供給される。
 なお、酸素ガスとして、純度99.99%以上の酸素を用いても、具体的には、99.995%高純度酸素を用いても、N2が151×102ppb(即ち15ppm)含まれるように、避けられないN2が混入するが、高純度のオゾンガスを得るためには、N2の混入がより少ない原料酸素ガスを使用することが望まれる。
 図3は、無声放電中での光触媒の固体電子論(バンドギャップ理論)の固体中の電子配位構造と酸素分子の解離メカニズムを模式的に示したものである。光触媒物質と放電光による光触媒反応機能の動作と作用について説明する。無声放電空間中の電極等の壁面に光触媒を塗布すると、光触媒のバンドギャップの電子配位構造は図3に示すように、バンドギャップ以上のエネルギーを有する無声放電光を光吸収する。そうすると、光触媒は価電子帯から電子が飛び出し伝導帯へ移動(ポンピング)する。
 電子が移動した価電子帯では正孔(ホール)が形成される。伝導帯に移動した電子は周囲に移動するか、放電領域に電子放出をするかで寿命が終る。つまり、伝導帯に移動した電子は非常に寿命が短く数十psecである。価電子帯の正孔は伝導帯に移動した電子が再結合で戻ってこない限り、存在し続けるため、正孔の寿命は200~300nsecと長い。この正孔が存在する励起状態の光触媒と酸素分子が量子的に接触すると、酸素分子の共有電子を奪いとり、酸素分子を物理的に解離する(光触媒による酸素の吸着解離現象[酸化反応])。
 一方、バンドギャップ2.0eV~2.9eVの光触媒では光吸収波長は428nm~620nmの可視光であり、窒素を含まない酸素の場合でも又は酸素とアルゴンガスの場合でも、無声放電はこの可視光領域の光波長を発光する能力(放電)を有している。そのため、オゾン発生器の電極面(壁面)にバンドギャップ2.0eV~2.9eVの光触媒を塗布すると、窒素を含まない酸素の場合でも又は酸素とアルゴンガスでも、その無声放電で発光した放電光を、前記光触媒が吸収して、光触媒が励起され、励起された光触媒と酸素ガスの吸着解離作用で酸素が解離できることが判明した。さらに、図4の模式図で示したように、解離した酸素原子と供給される酸素分子(原料酸素ガス)と第三物質との三体衝突で結合作用が、光触媒1d(壁M)上で促進される働きでオゾンが生成できる。
 他方、オゾン発生器中の窒素ガスによる無声放電では、紫外領域(413nm~344nmの紫外光)の光波長を発光(放電)する能力を有する。
 そのため、本願の光触媒物質を放電面に塗布した窒素添加レス・オゾン発生器1では、窒素を含んだ無声放電において、バンドギャップ3.0eV~3.6eVの光触媒は、光励起でき、励起したこの光触媒は、酸素分子を解離する能力によって高品質なオゾンガスが生成でできる。
 さらに、窒素を含んだ無声放電においては、バンドギャップ3.0eV~3.6eVの光触媒は、光励起でき、酸素による無声放電においては、バンドギャップ2.0eV~2.9eVの光触媒は、光励起でき、結果として、酸素に微量の窒素(抑制した窒素量)を添加することで、放電領域の誘電体又は電極に設けられた光触媒の許容バンドギャップ範囲は、2.0eV~3.6eVまで可能になり、酸素のみならず窒素の放電光(紫外光)を利用してオゾン生成反応を促進させることができる。つまり、N2ガスが含まれると、本願の発明効果によるオゾン発生機能が高められる。
 オゾン発生器の放電面に塗布する光触媒物質は、半導体の一種に位置付けられ、半導体特有のバンドギャップを有した物質であり、通常の半導体物質のバンドギャップよりも大きい値を示している。また、光触媒物質は、通常金属と酸素原子が結合した酸化金属物質であって、その酸化金属物質の結晶において金属原子と酸素原子との完全結合ではなく、酸素欠損を有した結晶構造を有する酸化金属物質が半導体効果や光触媒効果を有する物質と言われている。
 例えば、光触媒物質である酸化鉄(Fe23)や酸化タングステン(WO3)に関し、正確には、光触媒物質である酸化鉄や酸化タングステンはFe2X 、WOXであり、酸素の結合数Xの値が3未満(X<3)の酸化鉄が光触媒物質となる結晶構造である。つまり2個の鉄原子と酸素原子との結合では、3個の酸素原子までは、結合できるが、光触媒物質であるためには、酸素結合において酸素欠損した部分を残した結晶構造になっている。
 窒素添加レス・オゾン発生ユニットで用いる窒素添加レス・オゾン発生器では、放電面に光触媒物質を塗布し、光触媒効果を能力アップして高濃度オゾンを生成させるため、放電している酸素ガスの通過する放電面に、塗布した光触媒物質の表面積を大幅に増やす工夫がされている。
 <実施の形態>
 図5はこの発明の実施の形態である窒素添加レス・オゾン発生ユニット及びその周辺の構成を示す説明図である。なお、同図において、図1で示した構成と同様な構成は同一符号を付して説明を適宜省略し特徴部分を中心に説明する。
 同図に示すように、本実施の形態の窒素添加レス・オゾン発生ユニット7は、オゾンガスを発生する手段を有した窒素添加レス・オゾン発生器1、オゾンガスに所定の電力を供給する手段を有したオゾン電源2、窒素添加レス・オゾン発生器1内に供給する原料ガス流量Qを一定値に制御する手段を有するMFC3、及び窒素添加レス・オゾン発生器1内の圧力値を一定値に制御する手段を有するAPC4を有している。
 そして、窒素添加レス・オゾン発生器1は、オゾン電源2からの高電圧HVを、オゾン発生器外枠1x内に導く高電圧用端子収納部20がオゾン発生器外枠1xの外部に有している。窒素添加レス・オゾン発生器1xは窒素添加レス・オゾン発生器1の収納部となる筐体であり、高圧電極1a、接地電極1b、誘電体1c及び光触媒1d、連結ブロック498(図5では図示せず)、高圧冷却板45(図5では図示せず)を内部に収納している。
 さらに、オゾン発生器外枠1x内への低温の冷却水33(冷却媒体)の供給・排出を行う断熱冷却水配管31(断熱冷却水入力用配管31I,断熱冷却水出力用配管31O)をオゾン発生器外枠1xの外部に設けている。そして、高電圧用端子収納部20内の高電圧用端子PHと接地用端子PLとがオゾン発生器外枠1xを貫通して設けられる。
 さらに、窒素添加レス・オゾン発生器1は、MFC3を介して得られる原料ガス995を内部に供給するための原料入口38、生成したオゾンガス996を外部のAPC4に出力するオゾンガス出口39をオゾン発生器外枠1xに設けている。窒素添加レス・オゾン発生器1は、さらに、断熱冷却水入力用配管31Iからの低温冷却水33(冷却媒体)の入力用及び断熱冷却水出力用配管31Oへの低温冷却水33の出力用の冷却水出入口34をオゾン発生器外枠1xに設けている。
 窒素添加レス・オゾン発生ユニット7は、図5に示すように、上述した窒素添加レス・オゾン発生器1(高電圧用端子収納部20を含む)、オゾン電源2、MFC3、APC4、及び断熱冷却水配管31(31I+31O)等の複数個の機能手段を集約し1単位のパッケージユニットとして構成している。
 断熱層8は絶縁物等の断熱材で構成され、オゾン発生器外枠1xの略全面を覆って形成されている。すなわち、冷却水出入口34、原料入口38、及びオゾンガス出口39への流通経路を確保しつつ、オゾン発生器外枠1xの外周を覆って形成される。ただし、高電圧用端子収納部20の外周には断熱層8は形成されない。なお、断熱冷却水入力用配管31I及断熱冷却水出力用配管31Oの外周も断熱層で覆う方が、低温冷却水33に対してより断熱効果を高めるため望ましい。
 また、オゾン電源2より高電圧HVが高電圧用端子収納部20内の高電圧用端子PHを介して高圧電極1aに付与され、接地電圧LVが接地用端子PLを介して接地電極1bに付与される。
 高電圧用端子収納部20は高電圧用端子PHを空気絶縁可能な所定の空間内に配置した状態で収納し、後述するパージガス入力管を介してパージガス系21よりパージガス23を供給可能に構成されている。
 断熱冷却水入力用配管31Iは冷却水系30より得られる低温冷却水33を窒素添加レス・オゾン発生器1内に入力するために設けられ、断熱冷却水出力用配管31Oは窒素添加レス・オゾン発生器1から排出される低温冷却水33を冷却水系30に戻すために設けられる。なお、冷却水系30は低温の冷却水33の温度を15℃以下に設定する。
 (効果)
 図5に示すように、窒素添加レス・オゾン発生ユニット7として、窒素添加レス・オゾン発生器1(高電圧用端子収納部20を含む)、オゾン電源2及び制御機器(MFC3、APC4等)とが集約してユニット化されている。このような窒素添加レス・オゾン発生ユニット7に対し、低温冷却水33によって窒素添加レス・オゾン発生器1を低温に冷やすと、窒素添加レス・オゾン発生器1のオゾン発生器外枠1xの表面が大気との温度差で結露して、結露した水滴が、オゾン電源2やMFC3,APC4等の制御機器に付着することにより、電気絶縁性が悪くなり、オゾン電源2及び上記制御機器の故障原因になる。
 しかし、本実施の形態の窒素添加レス・オゾン発生ユニット7は、窒素添加レス・オゾン発生器1の外周の略全面を覆って、水分を通さずかつ熱伝導率の低い断熱材からなる断熱層8を形成しているため、窒素添加レス・オゾン発生器1のオゾン発生器外枠1xの表面が大気と直接接触することはなく、オゾン発生器外枠1xの表面への結露発生を確実に回避することができる。
 窒素添加レス・オゾン発生器1は、低温に冷やすほど、オゾン発生効率が上昇することや、発生したオゾンを分解させる効果が少なくなり、取り出すオゾン量を増す効果がある。このため、窒素添加レス・オゾン発生器1自身を低温に冷やす手段(低温冷却水系30及び断熱冷却水配管31等)を有している。しかし、窒素添加レス・オゾン発生器1を冷却する温度と大気温度の差が大きく、大気温度の方が高い場合、窒素添加レス・オゾン発生器1を冷やしても、低温冷媒(冷却水33)で冷やしている冷熱が大気側へ奪われ、窒素添加レス・オゾン発生器1の高圧電極1a及び接地電極1bより構成される放電電極セル自身を十分に冷却できなくなる。その結果、オゾン発生効率を低下させ、オゾン性能低下を招く。
 しかし、本実施の形態の窒素添加レス・オゾン発生ユニット7は、窒素添加レス・オゾン発生器1の外周の略全面を覆って、熱伝導率の低い断熱材からなる断熱層8を形成しているため、窒素添加レス・オゾン発生器1内の冷熱が大気側へ奪われる現象を確実に防止することができる。
 その結果、大気温度のよって窒素添加レス・オゾン発生器1の冷却効果を妨げることがなくなるため、窒素添加レス・オゾン発生器1(オゾン発生器外枠1x)内を十分に冷却することにより、オゾン発生効率を十分高くすることができる効果を奏する。
 さらに、本実施の形態の窒素添加レス・オゾン発生ユニット7において、断熱層8は収納部であるオゾン発生器外枠1xの外周部の略全面を覆って形成されるため、窒素添加レス・オゾン発生器1の外部に存在するオゾン電源2、制御手段(MFC3,APC4)に結露した水分が浸入することによる不具合を確実に回避することができる。
 (冷却媒体について)
 本実施の形態では、低温の冷却媒体として冷却水33を用いたが、冷却水33に代えて以下の冷却媒体を用いても良い。例えば、冷媒温度-20℃~65℃のエチレングリコール水溶液(PRTR)や冷媒温度-40℃~60℃のハイドロフルオロポリエーテル(HFPE)等が考えられる。
 (冷却水33の温度について)
 本実施の形態では冷却水33の窒素添加レス・オゾン発生器1への供給時の温度を5℃以下に設定した。この理由について説明する。従来は、水温20℃の水を窒素添加レス・オゾン発生器1内に流して冷却してオゾンを発生させるのが一般的であった。
 しかしながら、大気温度とほぼ同じ温度である20℃の水を用いて窒素添加レス・オゾン発生器1内を冷却して、放電セルを放電させオゾンを発生させた場合、窒素添加レス・オゾン発生器1の下流での冷却水の温度は、30℃程度まで上昇し、平均ガス温度は35℃(ΔTav=5deg)になる。そして、誘電体バリア放電の微小放電空間の瞬時な微小放電ガス温度も、平均ガス温度に対し数℃のガス温度上昇があり、37℃(ΔTd=2deg)程度になってしまうと推測される。
 一方、低温冷却水33の供給時の水温を5℃にして窒素添加レス・オゾン発生器1内を冷却してオゾンを発生させると、窒素添加レス・オゾン発生器1の下流での低温冷却水33の温度は、15℃程度までしか温度上昇せず、平均ガス温度は20℃(ΔTav =5deg)となり、誘電体バリア放電の微小放電空間の瞬時な微小放電ガス温度は、22℃ (ΔTd=2℃)にまで低下させることができる。
 したがって、冷媒温度である低温冷却水33の設定温度を5℃以下にすることにより、従来の放電投入電力時に比べた場合、誘電体バリア放電の微小放電空間の瞬時な微小放電ガス温度を37℃から22℃以下に低下させることができる。
 その結果、誘電体バリア放電の微小放電空間の瞬時な微小放電ガス温度の低減に比例して、誘電体バリア放電の維持電圧V*(火花電圧)が高くなるため、放電空間の電界Eが高くなり、誘電体バリア放電の発する放電光の波長の短い光の強度が大幅に高くなる。
 放電光の波長の短い光の強度が高まると、電極1a,1b面に塗布した光触媒(物質)1dの光触媒効果が大幅に増し、酸素ガスを酸素原子に解離する能力がより促進され、解離した酸素原子と酸素分子との三体衝突で、必然的に生成されるオゾン濃度を高めることができる。また、オゾン生成を高める効果とともに、平均ガス温度が低いと若干ではあるが、ガス温度によるオゾン分解量も少なくなり、出力できるオゾン濃度も高められる効果がある。
 したがって、種々の構成のオゾン発生器の中でも特に窒素添加レス・オゾン発生器1に対して、5℃以下の低温冷却水33で冷却することによる効果が顕著になると考えられる。
 図6は原料ガス995の流量である原料ガス流量Qに対するオゾンガス濃度のオゾン濃度特性を示すグラフである。
 同図において、オゾン濃度特性LAは冷却水33の設定温度が20℃で、かつ断熱層8も設けない従来構成の場合、オゾン濃度特性LBは冷却水33の設定温度が20℃であるが図5で示すように断熱層8を設けた場合、オゾン濃度特性LCは冷却水33の温度が5℃で、かつ断熱層8を設けた場合におけるオゾン濃度特性をそれぞれ示している。
 同図に示すように、オゾン濃度特性LA、オゾン濃度特性LB及びオゾン濃度特性LCの順でオゾン濃度特性が向上していることがわかる。すなわち、図6から、冷却水33の温度を5℃以下にすること、断熱層8を設けることは共に、窒素添加レス・オゾン発生器1により発生するオゾンに関するオゾン濃度特性を向上させる効果があることがわかる。
 このように、本実施の形態の窒素添加レス・オゾン発生ユニット7において、低温冷却媒体となる冷却水33は窒素添加レス・オゾン発生器1内への供給時の温度を5℃以下に設定しているため、光触媒(層)1dにおける光触媒効果をより高めることにより、生成されるオゾン濃度のさらなる向上を図ることができる効果を奏する。
 (断熱層8に用いる断熱材)
 断熱層8に用いる断熱材としては、水や湿気を通さず、金属に比べ、熱伝導が非常に小さいものが有効である。例えば、耐熱性無機繊維である炭素繊維やセラミック繊維やテフロン(登録商標)繊維等がある。断熱材がボード状に整形された硬質ウレタン等を素材にした断熱ボードを断熱層8として用いても良い。
 (高電圧用端子収納部20による効果)
 図7は高電圧用端子収納部20の詳細を示す説明図である。同図に示すように、高電圧用端子収納部20内に設けられる高電圧用端子PHは、高電圧碍子24、電極棒25、ナット26(26a,26b)から構成される。
 絶縁材よりなる高電圧碍子24はオゾン発生器外枠1xを貫通して窒素添加レス・オゾン発生器1内から高電圧用端子収納部20の筐体22内にかけて設けられる。すなわち、窒素添加レス・オゾン発生器1の内外を分離するオゾン発生器外枠1xを貫通して高電圧用端子PH1を構成する高電圧碍子24が形成される。
 そして、高電圧用端子PHを構成する高電圧碍子24内の電極棒25、電線27a,27bを介して放電電極セルの高圧電極1aに高電圧HVを印加している。高電圧碍子24が大気に触れ、かつ、窒素添加レス・オゾン発生器1を大気温度以下の温度に冷却すると、高電圧碍子24も低温になることから、高電圧碍子24の表面が結露して、高電圧碍子24の絶縁性が悪化することが懸念される。
 しかし、本実施の形態では、高電圧用端子収納部20内に高電圧用端子PHの高電圧碍子24を配置し、パージガス入力管28からパージガス系21より生成されるパージガス23(窒素、不活性ガス等の乾燥したガス、すなわち、露点が低いガス)を供給可能に構成しているため、パージガス23によって、高電圧碍子24の表面が低温により結露することを確実に防止することができる。その結果、本実施の形態において、オゾン発生器を低温にすることで、窒素添加レス・オゾン発生器1内の高電圧碍子24が低温になっても、高電圧碍子24の面が結露することはなく、高電圧碍子24は良好な絶縁性を保持することができる効果を奏する。
 本実施の形態では、乾燥したガスでるパージガス23を筐体22内の所定の空間に常時供給することにより、高電圧碍子24の周りにパージガス23が存在するようにして、高電圧碍子24の表面における結露を防止している。この方法以外にも、パージガス23を常時供給することなくパージガス23等の乾燥ガスを高電圧碍子24の周りに封じ切ることや、間欠的に供給することにより、パージガス23の結露を防ぐことも可能である。
 このように、本実施の形態の窒素添加レス・オゾン発生ユニット7では、パージガス入力管28からパージガス系21からのパージガス23が筐体22内の所定の空間に供給可能な高電圧用端子収納部20を有することにより、露点が比較的低い結露防止用のパージガス23を高電圧碍子24の周りに存在させることができる。このため、高電圧用端子PHによる高電圧HVの付与能力を劣化させることなく、高電圧碍子24の表面における結露発生を確実に回避することができる。
 (他の態様)
 図8は窒素添加レス・オゾン発生器1の構成の詳細を示す説明図である。同図に示すように、2つの高圧電極1aが一つの接地電極1bを共有する態様で、一対の高圧電極1a、接地電極1bよりなる電極セルが複数個積層して形成される。
 複数の高圧電極1aそれぞれにおいて、その両面に誘電体1cが形成され、両面に形成された2つの誘電体1cのうち接地電極1b側の誘電体1cの表面(放電面)に光触媒(層)1dが塗布され、接地電極1bと反対側の誘電体1cの表面に冷却経路部となる高圧冷却板45が設けられる。なお、オゾン発生器外枠1x、高圧冷却板45及び後述する連結ブロック49は金属材料で構成されている。
 各接地電極1bは両面に光触媒(層)1dが塗布されており、高圧電極1aの誘電体1c上に塗布された光触媒1dと、接地電極1bの光触媒1dとの間の空間が放電空間46となる。したがって、MFC3からオゾン発生器外枠1xに設けられた原料入口38を介して供給される原料ガス995を用いて、この放電空間46における上述した光触媒1dによる光触媒効果によってオゾンガス996が発生する。
 複数の高圧冷却板45及び接地電極1bにおいて、互いに隣接する高圧冷却板45,接地電極1b間は連結ブロック49を介在させることによって接合されている。連結ブロック49は高圧冷却板45及び接地電極1bそれぞれの端部領域を連結するように設けられる。
 これら連結ブロック49、高圧冷却板45及び接地電極1bにはそれぞれ内部に低温冷却水33が内部を流通可能な冷却水流路が設けられているため、窒素添加レス・オゾン発生器1の外部から得られる低温冷却水33を、オゾン発生器外枠1xに設けられた冷却水出入口34(冷却媒体入出口)を介して、冷却経路部を構成する連結ブロック49及び高圧冷却板45並びに接地電極1bの冷却水流路内に流通させることができる。その結果、高圧冷却板45近傍に存在する高圧電極1aと接地電極1b自体とをそれぞれ効果的に冷却することができる。
 図8に示すように、本実施の形態の窒素添加レス・オゾン発生器1では、オゾン発生器外枠1xの上面部1xu(所定の構成面)に冷却水出入口34、原料入口38、オゾンガス出口39及び高電圧用端子収納部20(高電圧用端子PH)を集約して設けている。
 このような構成の場合、図5に示すように、オゾン発生器外枠1xの略全面を覆って断熱層8を形成する態様でなく、上面部1xuのみを覆った図8に示す断熱層形成領域48のみ選択的に断熱層を形成する他の態様を採用しても良い。
 このような他の態様でも、低温冷却水系30より供給される冷却水の出入口となる冷却水出入口34及びその近傍領域に対して効果的に断熱作用を発揮させてオゾン発生器外枠1x内を低温維持することにより、多くのオゾンを発生させることができる効果を奏する。
 加えて、オゾン発生器外枠1xの内外における温度差が他の部分より大きく結露が生じやすい冷却水出入口34、原料入口38、オゾンガス出口39及び高電圧用端子収納部20(高電圧用端子PH)並びにその近傍領域に対して効果的に断熱作用を発揮させて結露防止を図ることができる。
 その結果、本実施の形態の他の態様は、断熱層8形成体積を必要最小限に抑えながら、結露を発生させることなく、多くのオゾンを発生させることができる効果を奏する。
 (半導体技術分野への適用)
 また、半導体分野では、窒素を含まない酸素とオゾンガスのみの高純度なオゾンガスを用いて、半導体の高品質な酸化膜を形成した絶縁成膜をすることが特に望まれている。そのため、窒素レスとしたオゾン発生装置は必須の条件であって、かつ、オゾン発生器から供給される窒素レスオゾンガスは、より高濃度化されたオゾンガスが求められており、酸化絶縁成膜の成膜速度をより高めることや成膜厚みを増すことで、絶縁性能アップさせることが望まれている。
 したがって、本実施の形態(他の態様も含む)による窒素添加レス・オゾン発生ユニット7を半導体製造技術に活用することにより、高品質な酸化絶縁成膜を比較的短時間で形成することができる。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (5)

  1.  窒素添加レス・オゾン発生ユニット(7)であって、
     放電面にオゾンを生成するための光触媒物質を有し、オゾンガスを発生する窒素添加レス・オゾン発生器(1)と、
     前記窒素添加レス・オゾン発生器に高電圧(HV)を供給するオゾン電源(2)と、
     前記オゾン発生器に関連した制御手段(3,4)とを備え、
     前記制御手段は、
     前記窒素添加レス・オゾン発生器に供給される原料ガス流量(Q)を制御するマスフローコントローラ(MFC)(3)を含む流量検出・流量調整手段と、
     前記窒素添加レス・オゾン発生器内の圧力である内部圧力を自動制御するオートプレッシャコントローラ(APC)(4)を含む圧力検出・圧力調整手段とを有し、
     前記窒素添加レス・オゾン発生ユニットは、前記窒素添加レス・オゾン発生器、前記オゾン電源、及び前記制御手段を集約して一体化構造で形成され、
     窒素添加レス・オゾン発生器は、
     前記オゾン電源からの前記高電圧を受ける高電圧用端子(PH)と、
     外部から得られる15℃以下の低温の冷却媒体を供給及び排出するための冷却媒体入出口(34)と、
     前記高電圧用端子を介して前記高電圧が付与される高圧電極(1a)とを含み、前記高圧電極の少なくとも一つの主面が前記放電面として規定され、
     前記高圧電極の前記放電面側に設けられた前記光触媒物質からなる光触媒層(1d)と、
     前記高圧電極の近傍に設けられ、前記冷却媒体入出口を介して供給される前記冷却媒体が内部を流通可能な冷却経路部(45)と、
     前記高圧電極、前記光触媒層及び前記冷却経路を内部に収納する収納部(1x)とを含み、前記収納部の外周部の一部を構成する所定の構成面に前記冷却媒体入出口が形成され、前記収納部の前記外周部を貫通して前記高電圧用端子が設けられ、
     前記収納部における前記所定の構成面を少なくとも覆って形成される、断熱材からなる断熱層(8)をさらに含む、
    窒素添加レス・オゾン発生ユニット。
  2.  請求項1記載の窒素添加レス・オゾン発生ユニットであって、
     前記窒素添加レス・オゾン発生器は、
     外部から原料ガス(995)を前記流量検出・流量調整手段を介して供給するための原料ガス入口部(38)と、
     生成したオゾンガスを前記圧力検出・圧力調整手段を介して外部に出力するためのオゾンガス出口部(39)とをさらに含み、
     前記所定の構成面に前記原料ガス入口部、前記オゾンガス出口部が形成されるとともに、前記高電圧用端子は前記所定の構成面を貫通して形成され、
     前記断熱層は前記所定の構成面のみを選択的に覆って形成される、
    窒素添加レス・オゾン発生ユニット。
  3.  請求項1記載の窒素添加レス・オゾン発生ユニットであって、
     前記断熱層は前記収納部の外周部の略全面を覆って形成される、
    窒素添加レス・オゾン発生ユニット。
  4.  請求項1記載の窒素添加レス・オゾン発生ユニットであって、
     前記冷却媒体は前記窒素添加レス・オゾン発生器の前記収納部内への供給時の温度を5℃以下に設定可能な低温冷却媒体を含み、前記窒素添加レス・オゾン発生器自身を低温にして構成する、
    窒素添加レス・オゾン発生ユニット。
  5.  請求項1ないし請求項4のうち、いずれか1項に記載の窒素添加レス・オゾン発生ユニットであって、
     前記高電圧用端子(PH)の主要部を所定の空間内に配置するように収納する高電圧用端子収納部(20)をさらに備え、
     前記高電圧用端子収納部は、所定の空間に露点が比較的低い結露防止用のパージガス(23)を外部から供給可能なパージガス供給口(28)を有する、
    窒素添加レス・オゾン発生ユニット。
PCT/JP2011/072817 2011-10-04 2011-10-04 窒素添加レス・オゾン発生ユニット WO2013051097A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013537303A JP5824062B2 (ja) 2011-10-04 2011-10-04 窒素添加レス・オゾン発生ユニット
US14/349,240 US9295967B2 (en) 2011-10-04 2011-10-04 Nitrogen-free ozone generating unit
KR1020147006442A KR101596178B1 (ko) 2011-10-04 2011-10-04 질소 첨가리스·오존 발생 유닛
EP11873749.3A EP2765116B1 (en) 2011-10-04 2011-10-04 Ozone generation unit with less nitrogen added
CN201180073951.6A CN103857620B (zh) 2011-10-04 2011-10-04 未添加氮的臭氧产生单元
PCT/JP2011/072817 WO2013051097A1 (ja) 2011-10-04 2011-10-04 窒素添加レス・オゾン発生ユニット
TW100143672A TWI435844B (zh) 2011-10-04 2011-11-29 無添加氮之臭氧產生單元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072817 WO2013051097A1 (ja) 2011-10-04 2011-10-04 窒素添加レス・オゾン発生ユニット

Publications (1)

Publication Number Publication Date
WO2013051097A1 true WO2013051097A1 (ja) 2013-04-11

Family

ID=48043289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072817 WO2013051097A1 (ja) 2011-10-04 2011-10-04 窒素添加レス・オゾン発生ユニット

Country Status (7)

Country Link
US (1) US9295967B2 (ja)
EP (1) EP2765116B1 (ja)
JP (1) JP5824062B2 (ja)
KR (1) KR101596178B1 (ja)
CN (1) CN103857620B (ja)
TW (1) TWI435844B (ja)
WO (1) WO2013051097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334309B1 (ja) 2022-07-15 2023-08-28 日本特殊陶業株式会社 オゾン発生体、及びオゾン発生器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067380A1 (ja) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 放電発生器とその電源装置
JP6235162B2 (ja) 2014-10-29 2017-11-22 東芝三菱電機産業システム株式会社 オゾン発生装置
EP3388390A4 (en) * 2015-12-08 2019-05-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation OZONE PRODUCTION PROCESS
JP6884034B2 (ja) * 2017-05-18 2021-06-09 東京エレクトロン株式会社 オゾン用マスフローコントローラの出力検査方法
TWI667047B (zh) * 2018-10-01 2019-08-01 泉康科技有限公司 可自動調整臭氧排放濃度的裝置及其操作方法
US20220174807A1 (en) * 2020-02-27 2022-06-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Active gas generation apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086008A (ja) * 1983-10-17 1985-05-15 Senichi Masuda 高性能オゾナイザ−
JPH09142811A (ja) * 1995-11-29 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd オゾン生成装置
WO2005080263A1 (ja) * 2004-02-25 2005-09-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation オゾン発生装置およびオゾン発生方法
JP2008143729A (ja) * 2006-12-07 2008-06-26 Fuji Electric Water Environmental Systems Co Ltd オゾン発生装置
JP2009500855A (ja) 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム
WO2009069774A1 (ja) * 2007-11-30 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法
WO2011108410A1 (ja) * 2010-03-02 2011-09-09 三菱電機株式会社 無声放電プラズマ装置および無声放電プラズマ発生方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130595A (ja) 1974-09-10 1976-03-15 Mitsubishi Heavy Ind Ltd Ozonhatsuseisochi
JP2641886B2 (ja) 1988-02-15 1997-08-20 東京エレクトロン株式会社 オゾン発生装置
JP3124124B2 (ja) * 1992-09-04 2001-01-15 旭光学工業株式会社 画像情報読取り装置
US5377215A (en) * 1992-11-13 1994-12-27 Cymer Laser Technologies Excimer laser
US5520893A (en) * 1993-09-29 1996-05-28 Oxidyn, Incorporated Apparatus with safety means for sterilizing articles with ozone
JP3968762B2 (ja) 1997-09-19 2007-08-29 石川島播磨重工業株式会社 高濃度オゾン発生装置
JP3607905B2 (ja) * 2002-10-22 2005-01-05 東芝三菱電機産業システム株式会社 オゾン発生器
JP3642572B2 (ja) 2003-05-09 2005-04-27 東芝三菱電機産業システム株式会社 オゾン発生装置およびオゾン発生方法
EP2735367B1 (en) 2005-07-15 2018-10-17 Toshiba Mitsubishi-Electric Industrial Systems Corporation Photocatalyst material producing method and photocatalyst material producing apparatus
JP4948007B2 (ja) 2006-03-22 2012-06-06 住友精密工業株式会社 オゾン発生装置用放電セル
WO2008004278A1 (fr) 2006-07-04 2008-01-10 Toshiba Mitsubishi-Electric Industrial Systems Corporation Procédé et dispositif de concentration / dilution de gaz spécifique
JP5189269B2 (ja) 2006-07-26 2013-04-24 トヨタ自動車株式会社 燃料電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086008A (ja) * 1983-10-17 1985-05-15 Senichi Masuda 高性能オゾナイザ−
JPH09142811A (ja) * 1995-11-29 1997-06-03 Ishikawajima Harima Heavy Ind Co Ltd オゾン生成装置
WO2005080263A1 (ja) * 2004-02-25 2005-09-01 Toshiba Mitsubishi-Electric Industrial Systems Corporation オゾン発生装置およびオゾン発生方法
JP2009500855A (ja) 2005-07-07 2009-01-08 エム ケー エス インストルメンツ インコーポレーテッド マルチ・チャンバ・ツールのためのオゾン・システム
JP2008143729A (ja) * 2006-12-07 2008-06-26 Fuji Electric Water Environmental Systems Co Ltd オゾン発生装置
WO2009069774A1 (ja) * 2007-11-30 2009-06-04 Toshiba Mitsubishi-Electric Industrial Systems Corporation 高濃度オゾンガス生成装置および高濃度オゾンガス生成方法
WO2011108410A1 (ja) * 2010-03-02 2011-09-09 三菱電機株式会社 無声放電プラズマ装置および無声放電プラズマ発生方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7334309B1 (ja) 2022-07-15 2023-08-28 日本特殊陶業株式会社 オゾン発生体、及びオゾン発生器

Also Published As

Publication number Publication date
EP2765116B1 (en) 2021-08-11
CN103857620A (zh) 2014-06-11
JPWO2013051097A1 (ja) 2015-03-30
EP2765116A4 (en) 2015-08-05
JP5824062B2 (ja) 2015-11-25
US20140255256A1 (en) 2014-09-11
CN103857620B (zh) 2016-01-13
TW201315678A (zh) 2013-04-16
KR20140053305A (ko) 2014-05-07
KR101596178B1 (ko) 2016-02-19
TWI435844B (zh) 2014-05-01
EP2765116A1 (en) 2014-08-13
US9295967B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
JP5824062B2 (ja) 窒素添加レス・オゾン発生ユニット
JP4953814B2 (ja) オゾン発生装置およびオゾン発生方法
JP5588974B2 (ja) オゾンガス供給システム
US8608832B2 (en) Apparatus for concentrating and diluting specific gas and method for concentrating and diluting specific gas
KR100882052B1 (ko) 자외선 경화 시스템용 질소 부화 냉각 공기 모듈
US20070298167A1 (en) Ozone abatement in a re-circulating cooling system
WO2015037565A1 (ja) 有機物合成方法および液中プラズマ装置
TWI449660B (zh) 無添加氮之臭氧產生單元及臭氧氣體供給系統
JP5620573B2 (ja) オゾン生成システム
JPH0226804A (ja) 酸素原子発生方法および装置
WO2013183300A1 (ja) ガス処理装置および方法
JP5924606B2 (ja) 有機物合成方法
JP2006143522A (ja) オゾン発生器
Wu et al. Degradation of SF6 by dielectric barrier discharge cooperating with TiO2 photocatalysis: Insights into the reaction mechanism
JP2009298669A (ja) オゾン製造方法およびオゾン発生装置
JP2005289750A (ja) オゾン発生装置
JPH08133704A (ja) プレ−ト型オゾン発生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873749

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537303

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011873749

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147006442

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14349240

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE