WO2013047586A1 - フラットパネルディスプレイ用ガラス基板 - Google Patents

フラットパネルディスプレイ用ガラス基板 Download PDF

Info

Publication number
WO2013047586A1
WO2013047586A1 PCT/JP2012/074707 JP2012074707W WO2013047586A1 WO 2013047586 A1 WO2013047586 A1 WO 2013047586A1 JP 2012074707 W JP2012074707 W JP 2012074707W WO 2013047586 A1 WO2013047586 A1 WO 2013047586A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass substrate
mol
temperature
less
Prior art date
Application number
PCT/JP2012/074707
Other languages
English (en)
French (fr)
Inventor
小山 昭浩
諭 阿美
学 市川
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to JP2013509354A priority Critical patent/JP5753895B2/ja
Priority to KR1020127031515A priority patent/KR101463672B1/ko
Publication of WO2013047586A1 publication Critical patent/WO2013047586A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass substrate for a flat panel display.
  • the present invention relates to a glass substrate for a low-temperature polysilicon thin film transistor (hereinafter referred to as LTPS ⁇ TFT (Low-Temperature-Polycrystalline-Silicon-Thin-Film-Transistor)) flat panel display.
  • the present invention also relates to a transparent oxide semiconductor thin film transistor (hereinafter referred to as TOS.TFT (Transparent Oxide-Semiconductor Thin-Film-Transistor)) flat panel display glass substrate.
  • this invention relates to the manufacturing method of the glass substrate for flat panel displays whose said flat panel display is a liquid crystal display.
  • the said flat panel display is related with the manufacturing method of the glass substrate for flat panel displays which is an organic electroluminescent display.
  • LTPS / TFT flat panel display manufacturing process LTPS / TFT is formed on the glass substrate surface, and the substrate surface is etched to manufacture a flat panel display.
  • TOS / TFT flat panel display manufacturing process a flat display is manufactured by forming TOS on the surface of a glass substrate.
  • weight reduction and thinning of displays have become important issues. For this reason, for example, in the manufacture of a liquid crystal display, the glass substrate surface is subjected to an etching process after the array and color filters are bonded together, thereby thinning the glass substrate of the display. In addition, by reducing the thickness, the weight is reduced at the same time.
  • LTPS is applied to TFT production for the display mounted on portable devices and the like because power consumption can be reduced.
  • LTPS / TFT production is relatively high at 400 to 600 ° C. Heat treatment is required.
  • higher definition has been required for displays of small portable devices. Therefore, there is a problem of thermal shrinkage of the glass substrate that occurs during display panel manufacturing, which causes a problem of pixel pitch deviation.
  • the thermal contraction rate of a glass substrate is to increase the characteristic temperature (hereinafter referred to as the low-viscosity characteristic temperature) in the low-temperature viscosity range represented by the strain point and Tg (glass transition point) of glass, or the average heat. It can be reduced by lowering the expansion coefficient. Further, the thermal shrinkage rate of the glass substrate can be reduced by lowering the cooling rate within the temperature range from Tg to Tg-100 ° C.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2004-315354 (Patent Document 1) and Japanese Unexamined Patent Publication No. 2007-302550 (Patent Document 2) as references disclosing glass substrates that pay attention to the heat shrinkage rate.
  • Patent Documents 1 and 2 each disclose an invention relating to a glass substrate for a liquid crystal display. The entire description of Patent Documents 1 and 2 is specifically incorporated herein by reference.
  • the glass substrate described in Patent Document 1 has a high devitrification temperature, and is difficult to use in a molding method such as an overflow down draw method that can improve productivity by omitting a polishing step on the surface of the glass substrate. There was a problem. Further, since the glass substrate described in Patent Document 2 does not have a sufficiently high strain point, it is necessary to extremely slow the cooling rate in the temperature range from Tg to Tg-100 ° C. in order to reduce the thermal shrinkage rate. There is. Therefore, the glass substrate described in Patent Document 2 has a problem that it is difficult to reduce the thermal shrinkage rate while maintaining productivity.
  • the present invention provides a glass substrate for a flat panel display, particularly a flat panel display glass substrate suitable for a flat panel display using LTPS / TFT, which is made of glass having both productivity and a reduction in heat shrinkage. With the goal. Furthermore, it is an object of the present invention to provide a glass substrate suitable for TOS / TFT, which is compatible with reduction in productivity and heat shrinkage rate.
  • the present inventors have devised the glass composition to make a glass substrate for flat panel display, particularly LTPS / TFT suitable for a flat panel display made of glass that achieves both productivity and reduction in heat shrinkage rate.
  • the present invention was completed by finding that a glass substrate for a TFT flat panel display can be provided. Furthermore, the present invention was completed by finding that the glass substrate can be used for TOS / TFT.
  • the present invention is as follows. [1] In mol% SiO 2 55-80%, Al 2 O 3 3-20%, B 2 O 3 3-15%, Containing SiO 2 -1 / 2Al 2 O 3 is 70% or less, Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 8.5 and not more than 19.0, Made of glass with a strain point of 665 ° C or higher and a devitrification temperature of less than 1280 ° C, The temperature was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, heated again at 10 ° C / min, held at 550 ° C for 1 hour, 10 A glass substrate for flat panel display having a heat shrinkage rate of 75 ppm or less represented by the following formula after the temperature is lowered to room temperature at a temperature of ° C / min.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6 [2] In mol% SiO 2 55-80%, Al 2 O 3 3-20%, B 2 O 3 3-15%, Containing SiO 2 -1 / 2Al 2 O 3 is 70% or less, Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 9.5 and not more than 19.0, Made of glass with a devitrification temperature of less than 1280 ° C, The temperature was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, heated again at 10 ° C / min, held at 550 ° C for 1 hour, 10 A flat panel display glass substrate having a thermal shrinkage rate of 60 ppm or less represented by the following formula after the temperature is lowered to room temperature at a temperature of ° C / min.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • a mixed etching solution of HF and HCl HF concentration 1 mol / kg, HCl concentration 5 mol / kg, temperature 40 ° C.
  • the etching rate expressed as the thickness reduction of one glass surface is 50 ⁇ m / h or more
  • the temperature was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then cooled to room temperature
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the glass substrate is such that the glass substrate surface is subjected to an etching process after TFT formation in the manufacture of a flat panel display, and the etching amount in the etching process is in the range of 50 to 650 ⁇ m [1] to [3] The glass substrate of any one of these.
  • a flat panel display that achieves both productivity and reduction in heat shrinkage, in particular, an LTPS / TFT flat panel display glass substrate and a TOS / TFT flat panel display suitable for a flat panel display using LTPS / TFT.
  • a glass substrate can be provided.
  • the composition of the glass constituting the glass substrate is expressed in mol%, and the ratio of the components constituting the glass is expressed in molar ratio.
  • the composition and physical properties of the glass substrate mean the composition and physical properties of the glass constituting the glass substrate unless otherwise specified, and when simply referred to as glass, it means the glass constituting the glass substrate.
  • the etching rate and thermal shrinkage rate of the glass substrate mean values measured under the conditions described in the examples for the glass substrates formed under the predetermined conditions described in the examples.
  • the low viscosity characteristic temperature means a temperature at which the glass exhibits a viscosity in the range of 10 7.6 to 10 14.5 dPa ⁇ s
  • the low viscosity characteristic temperature includes a strain point and Tg. Therefore, increasing the low viscosity characteristic temperature also means increasing the strain point and Tg, and conversely increasing the strain point and / or Tg means increasing the low viscosity characteristic temperature.
  • the melting temperature is a temperature at which the glass exhibits a viscosity of 10 2.5 dPa ⁇ s, and is a temperature that is an index of meltability.
  • the glass substrate of the present invention is used for manufacturing a flat panel display in which, for example, in the case of a liquid crystal display, an LTPS • TFT for etching the glass substrate surface is formed after the array / color filter is bonded. Therefore, it is suitable for a glass substrate. Furthermore, the glass substrate of the present invention is also suitable as a glass substrate for TOS / TFT. Hereinafter, the glass substrate for LTPS / TFT will be described, but the same applies to the glass substrate for TOS / TFT.
  • LTPS • TFTs are formed on the surface of a glass substrate.
  • an array / color filter is further bonded.
  • the glass substrate surface on the non-processed side is etched to make the glass substrate thin.
  • the etching amount (thickness) in the etching treatment may be in the range of 50 to 650 ⁇ m, for example.
  • a substrate having a thickness of 0.4 to 0.7 mm may be etched to have a thickness in the range of 0.05 to 0.65 mm.
  • the glass substrate of the present invention is suitable for a glass substrate on which the surface of the glass substrate is etched after the TFTs are formed and, for example, in the case of a liquid crystal display, after the array and color filters are bonded together.
  • the first glass substrate belonging to the first aspect of the glass substrate of the present invention has the following glass composition and physical properties.
  • mol% SiO 2 55-80%, Al 2 O 3 3-20%, B 2 O 3 3-15%, Containing SiO 2 -1 / 2Al 2 O 3 is 70% or less
  • Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 8.5 and not more than 19.0
  • Made of glass with a strain point of 665 ° C or higher and a devitrification temperature of less than 1280 ° C The temperature was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, heated again at 10 ° C / min, held at 550 ° C for 1 hour, 10
  • the thermal shrinkage rate represented by the following formula after the temperature is lowered to room temperature at a temperature of ° C / min is 75 ppm or less.
  • the second glass substrate belonging to the first aspect of the present invention has the following glass composition and physical properties.
  • mol% SiO 2 55-80%, Al 2 O 3 3-20%, B 2 O 3 3-15%, Containing SiO 2 -1 / 2Al 2 O 3 is 70% or less
  • Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 9.5 and not more than 19.0
  • Made of glass with a devitrification temperature of less than 1280 ° C The temperature was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, heated again at 10 ° C / min, held at 550 ° C for 1 hour, 10
  • the heat shrinkage rate represented by the following formula after the temperature is lowered to room temperature at a temperature of ° C / min is 60 ppm or less.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after
  • the 1st glass substrate which belongs to the 2nd aspect of the glass substrate of this invention is as follows about a glass composition and a physical property.
  • Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 8.5 and not more than 19.0
  • MgO + CaO + SrO + BaO is 5 mol% or more and less than 14 mol%
  • Made of glass with a strain point of 665 ° C or higher and a devitrification temperature of less than 1280 ° C When the glass substrate is immersed for 1 hour in a mixed etching solution of HF and HCl (HF concentration 1 mol / kg, HCl concentration 5 mol / kg, temperature 40 ° C.), the etching rate expressed as the thickness reduction of one glass surface is 50 ⁇ m
  • the temperature is 10 ° C / min from room temperature, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, raised again at 10 °
  • the heat shrinkage rate represented by the following formula is 75 ppm or less.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the glass composition and physical properties of the second glass substrate belonging to the second aspect of the present invention are as follows. Contains MgO + CaO + SrO + BaO 5 mol% or more and less than 14 mol%, Made of glass with a molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 > 9.5, When the glass substrate is immersed for 1 hour in a mixed etching solution of HF and HCl (HF concentration 1 mol / kg, HCl concentration 5 mol / kg, temperature 40 ° C.), the etching rate expressed as the thickness reduction of one glass surface is 50 ⁇ m The temperature is 10 ° C / min from room temperature, held at 550 ° C for 1 hour, then cooled to room temperature at 10 ° C / min, raised again at 10 ° C / min, and then at 550 ° C.
  • thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • a first glass belonging to the third aspect of the glass substrate of the present invention which is a glass substrate for use in the manufacture of a flat panel display in which TFTs for etching the glass substrate surface after the array and color filter are bonded together are formed.
  • the glass substrate has the following glass composition and physical properties. Contains MgO + CaO + SrO + BaO 5 mol% or more, less than 14 mol%, Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 8.5 and not more than 19.0,
  • the glass has an average coefficient of thermal expansion (100-300 ° C) of less than 38x10 -7 ° C -1 and a strain point of 665 ° C or higher.
  • the etching rate expressed as the thickness reduction of one glass surface is 50 ⁇ m More than / h.
  • the glass composition and physical properties of the second glass substrate belonging to the third aspect of the present invention are as follows. Contains MgO + CaO + SrO + BaO 5 mol% or more, less than 14 mol%, Molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is more than 9.5 and not more than 19.0, It is made of glass with an average coefficient of thermal expansion (100-300 ° C) of less than 38x10 -7 ° C -1 and Tg of 720 ° C or higher.
  • the etching rate expressed as the thickness reduction of one glass surface is 50 ⁇ m More than / h.
  • the glass substrate of the present invention is made of glass containing SiO 2 , Al 2 O 3 and B 2 O 3 in common with the first to third aspects.
  • the glass substrate of the first to third aspects is targeted.
  • the glass contains SiO 2 55-80 mol%, Al 2 O 3 3-20 mol%, B 2 O 3 3-15 mol%.
  • the glass preferably contains SiO 2 55-80 mol%, Al 2 O 3 3-20 mol%, and B 2 O 3 3-15 mol%.
  • the molar ratio (SiO 2 + 2 ⁇ Al of a total amount of SiO 2 and 2 times the Al 2 O 3 with respect to B 2 O 3 glass (SiO 2 + 2 ⁇ Al 2 O 3) 2 O 3 ) / B 2 O 3 is in the range of more than 8.5 and 19.0 or less, more preferably in the range of more than 9.5 to 19.0.
  • the molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is an indicator of an increase in low viscosity characteristic temperature and resistance to devitrification.
  • (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is not more than the above lower limit, it is difficult to produce a glass substrate for TFT having a heat shrinkage rate of 75 ppm or less, more preferably less than 60 ppm, not more than a predetermined value.
  • (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is preferably in the range of more than 9.5 to 17.0, more preferably in the range of 10.0 to 15.5, and still more preferably in the range of 10.0 to 14.0. .
  • the molar ratio (SiO 2 + 2 ⁇ Al 2 O 3 ) / B 2 O 3 is preferable. Is more than 8.5 to 19.0, more preferably 9 to 19, still more preferably 9 to 15, still more preferably 9 to 14, and still more preferably more than 9.5 to 13.
  • MgO + CaO + SrO + BaO RO, which is the total amount of MgO, CaO, SrO and BaO in the glass, is preferably 3 to 25 mol%, more preferably 5 mol% to less than 14 mol%.
  • RO is a component that improves meltability. If the RO content is too small, the meltability deteriorates. When there is too much RO content, low viscosity characteristic temperature will fall, a density will rise, and Young's modulus will fall.
  • RO is more preferably in the range of 6 to 14 mol%, further preferably in the range of 8 to 13 mol%, and still more preferably in the range of 9 to 12 mol%.
  • the etching rate in order to perform etching with high productivity, is preferably 50 ⁇ m / h or more.
  • the second aspect and the third aspect of the glass substrate of the present invention are In order to perform etching with high productivity, the etching rate is 50 ⁇ m / h or more.
  • the etching rate of the glass substrate of the present invention is preferably 160 ⁇ m / h or less.
  • the etching rate is preferably 60 to 140 ⁇ m / h, more preferably 70 to 120 ⁇ m / h.
  • the etching rate is defined as measured under the following conditions.
  • the etching rate ( ⁇ m / h) is the unit time (1 hour) when the glass substrate is immersed in a mixed etching solution of HF and HCl (HF concentration 1 mol / kg, HCl concentration 5 mol / kg, temperature 40 ° C.) for 1 hour. It is expressed as the thickness reduction amount of one surface of the hit glass substrate.
  • the glass component of SiO 2 and Al 2 O 3 by adjusting the glass component of SiO 2 and Al 2 O 3, respectively, it may be those having the etching rate. More specifically, the value of SiO 2 -1 / 2Al 2 O 3 is the difference obtained by subtracting the half of the content of Al 2 O 3 from the content of SiO 2 is, by more than 70 mol%, the It can have an etching rate. Note that if the value of SiO 2 -1 / 2Al 2 O 3 is too small to increase the etching rate, the devitrification temperature tends to increase. Further, since the strain point may not be sufficiently high, the value of SiO 2 -1 / 2Al 2 O 3 is 50 mol% or more.
  • the value of SiO 2 -1 / 2Al 2 O 3 is preferably 55 to 68 mol%, more preferably 56 to 66 mol%, still more preferably 58 to 64 mol%, More preferably, it is ⁇ 62 mol%.
  • the devitrification temperature of the glass is less than 1280 ° C, preferably 1260 ° C or less, more preferably 1250 ° C or less, and even more preferably 1230 ° C or less. is there.
  • the devitrification temperature of the glass is preferably less than 1280 ° C, more preferably 1260 ° C or less, still more preferably 1250 ° C or less, and even more preferably 1230 ° C or less. .
  • the devitrification temperature is less than 1280 ° C., it becomes easy to stably form the glass plate by the downdraw method.
  • the devitrification temperature of the glass constituting the glass substrate is preferably 1050 to less than 1280 ° C, more preferably 1110 to 1250 ° C, The temperature is preferably 1150 to 1240 ° C, more preferably 1160 to 1230 ° C, and still more preferably 1170 to 1220 ° C.
  • the thermal shrinkage rate is 75 ppm or less, more preferably 65 ppm, more preferably 60 ppm or less, preferably 55 ppm or less, more preferably 50 ppm or less, and further preferably Is 48 ppm or less, more preferably 45 ppm or less.
  • the thermal shrinkage rate is preferably 75 ppm or less, more preferably 65 ppm, further preferably 60 ppm or less, more preferably 55 ppm or less, still more preferably 50 ppm or less, More preferably, it is 48 ppm or less, More preferably, it is 45 ppm or less.
  • the strain point of the glass substrate is preferably 665 ° C. or higher, and more preferably 670 ° C. or higher.
  • the strain point of the glass substrate is preferably in the range of 665 to 750 ° C, more preferably 680 to 750 ° C, and more preferably in the range of 680 to 730 ° C.
  • the thermal shrinkage rate is set to 0 ppm
  • the cooling rate in the slow cooling process for example, the temperature range from Tg to Tg-100 ° C.
  • the thermal shrinkage reduction process process is separate from the cooling process described later. It is necessary to provide.
  • the thermal shrinkage rate can be reduced (offline annealing) by providing a thermal shrinkage reduction treatment step in which the glass ribbon is cut and then slowly cooled again.
  • the productivity is lowered and the cost is increased.
  • the heat shrinkage rate is preferably 5 to 75 ppm, more preferably 5 to 60 ppm, further preferably 8 to 55 ppm, more preferably 8 to 50 ppm, still more preferably 10 to 48 ppm, and even more. Preferably it is 10 to less than 45 ppm, and still more preferably 15 to 43 ppm.
  • SiO 2 is a skeletal component of glass and is therefore an essential component.
  • the content of SiO 2 is preferably in the range of 55 to 80 mol%, and more preferably in the range of 60 to 78 mol%.
  • the content of SiO 2 is more preferably in the range of 62 to 75 mol%, further preferably 63 to 72 mol%, more preferably 65 to 71 mol%, and still more preferably 65 to 70 mol%.
  • Al 2 O 3 is an essential component that suppresses phase separation and raises the strain point. If the content is too small, the glass tends to phase-separate and the strain point decreases. Furthermore, the Young's modulus also decreases, and the etching rate by acid tends to decrease.
  • the Al 2 O 3 content is too large, the devitrification temperature of the glass rises, since the devitrification resistance is decreased, there is a tendency that moldability is deteriorated. From such a viewpoint, the content of Al 2 O 3 is preferably in the range of 3 to 20 mol%.
  • the content of Al 2 O 3 is more preferably in the range of 5 to 18 mol%, further preferably 5 to 15 mol%, more preferably 7 to 14 mol%, and still more preferably 10 to 14 mol%.
  • B 2 O 3 is an essential component that lowers the melting temperature of glass and improves meltability.
  • the meltability is lowered, the devitrification resistance is lowered, the BHF resistance is lowered, and the average thermal expansion coefficient tends to be increased.
  • the B 2 O 3 content is too small, it is difficult to reduce the density.
  • the strain point is lowered, the acid resistance is lowered, and the Young's modulus is lowered. Further, due to the volatilization of B 2 O 3 during melting of the glass, non-uniformity of the glass becomes prominent and striae easily occur.
  • the B 2 O 3 content is preferably in the range of 3 to 15 mol%, more preferably 3 to 9.5 mol%, still more preferably less than 3 to 8.9 mol%, and still more preferably 4 to It is in the range of less than 8.9 mol%, more preferably 5 to 8.5 mol%, still more preferably 6 to 8 mol%.
  • the content of B 2 O 3 is more preferably 5 to 13 mol%, further preferably 5 to 12 mol%, and less than 6 to 10 mol% (6% or more and 10% or more) Less).
  • MgO is a component that improves meltability. Moreover, since it is a component which is hard to increase a density in alkaline-earth metal, when the content is increased relatively, it will become easy to achieve a low density. Although it is not essential, by making it contain, since meltability is improved, generation
  • the MgO content is preferably 0 to 15 mol%, more preferably 0 to 10 mol%, still more preferably 0 to 5 mol%, still more preferably 0 to less than 2 mol%, still more preferably 0 to 1.5 mol%, even more preferably 0 to 1 mol%, still more preferably 0 to 0.5 mol%, still more preferably 0 to less than 0.2 mol%, most preferably substantially contained. Is not to.
  • CaO is an effective component for improving the meltability of glass without rapidly increasing the devitrification temperature of the glass. Moreover, since it is a component which is hard to increase a density in alkaline-earth metal, when the content is increased relatively, it will become easy to achieve a low density. When there is too little content, there exists a tendency which produces the fall of the meltability by the raise of melting temperature, and the fall of devitrification resistance. On the other hand, if the CaO content is too large, the average thermal expansion coefficient tends to increase.
  • the CaO content is preferably 0 to 20 mol%, more preferably 3.6 to 16 mol%, further preferably 4 to 16 mol%, more preferably 6 to 16 mol%, still more preferably more than 7 to 16 mol%, still more preferably. It is in the range of 8 to 15 mol%, more preferably 9 to 13 mol%.
  • SrO is a component that can lower the devitrification resistance. SrO is not essential, but if it is contained, devitrification resistance is improved and meltability is improved. On the other hand, when there is too much SrO content, a density will rise.
  • the SrO content is preferably in the range of 0 to 10 mol%, more preferably 0 to 2 mol%, still more preferably 0 to 1 mol%, more preferably 0 to less than 0.5 mol%, still more preferably 0 to less than 0.1 mol%. It is. When it is desired to reduce the density of the glass, it is preferable that SrO is not substantially contained.
  • BaO is not substantially contained because of environmental load problems. Moreover, an average thermal expansion coefficient will also increase.
  • the BaO content is preferably 0 to 10 mol%, more preferably 0 to less than 5 mol%, further preferably 0 to less than 1 mol%, more preferably 0 to less than 0.5 mol%, and even more preferably 0. It is less than 0.1 mol%, and even more preferably, it is not substantially contained.
  • Li 2 O and Na 2 O are eluted from the glass substrate to degrade the TFT characteristics, increase the average thermal expansion coefficient of the glass to damage the substrate during display manufacturing heat treatment, and greatly reduce the strain point. It is a component that may reduce heat resistance excessively.
  • Li 2 O and Na 2 O are preferably 0 to 0.3 mol%, more preferably 0 to 0.2 mol%, still more preferably 0 to 0.1 mol%, and even more preferably substantially none of them.
  • K 2 O is a component that increases the basicity of the glass and exhibits clarity. It is also a component that improves meltability and lowers specific resistance. Although it is not essential, when it is contained, the clarity is improved, the meltability is improved, and the specific resistance is lowered. If the K 2 O content is too large, it tends to be eluted from the glass substrate and deteriorate the TFT characteristics. Also, the average coefficient of thermal expansion tends to increase. Furthermore, it is a component that may greatly reduce the heat resistance by greatly reducing the strain point of the glass.
  • the K 2 O content is preferably in the range of 0 to 0.8 mol%, more preferably 0.01 to 0.5 mol%, and still more preferably 0.1 to 0.3 mol%.
  • ZrO 2 and TiO 2 are components that improve the chemical durability of the glass and increase the strain point.
  • ZrO 2 and TiO 2 are not essential components, but by containing them, an increase in strain point and an improvement in acid resistance can be realized.
  • the ZrO 2 content and the TiO 2 content are excessively increased, the devitrification temperature is remarkably increased, so that the devitrification resistance and the moldability may be deteriorated.
  • ZrO 2 has a high melting point and is hardly melted, it causes a problem that a part of the raw material is deposited on the bottom of the melting furnace. When these unmelted components are mixed into the glass substrate, the quality of the glass is deteriorated as inclusions.
  • TiO 2 is a component that colors glass, and thus is not preferable for a display substrate.
  • the content of ZrO 2 and TiO 2 is preferably 0 to 5 mol%, more preferably 0 to 3 mol%, still more preferably 0 to 2 mol%, and more preferably 0 to 1 mol. % Is more preferable. More preferably, the glass substrate of the present invention does not substantially contain ZrO 2 and TiO 2 .
  • ZnO is a component that improves BHF resistance and meltability. However, it is not essential. When the ZnO content is too high, the devitrification temperature is increased, the strain point is decreased, and the density tends to be increased. Therefore, the ZnO content is preferably in the range of 0 to 5 mol%, more preferably 0 to 3 mol%, still more preferably 0 to 2 mol%, still more preferably 0 to 1 mol%. It is preferable that ZnO is not substantially contained.
  • P 2 O 5 is a component that lowers the melting temperature and improves meltability. However, it is not essential. If the P 2 O 5 content is too high, the glass will become non-homogeneous due to volatilization of P 2 O 5 during glass melting, and striae are likely to occur. In addition, the acid resistance is remarkably deteriorated. Moreover, milky white is likely to occur.
  • the content of P 2 O 5 is preferably in the range of 0 to 3 mol%, more preferably 0 to 1 mol%, still more preferably 0 to 0.5 mol%, and it is particularly preferable that the P 2 O 5 content is not substantially contained.
  • the glass which comprises the glass substrate of this invention can contain a clarifier.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • the fining agent is selected from the group of Sn, Fe, Ce, Tb, Mo and W metal oxides. At least one can be mentioned.
  • SnO 2 is suitable. If the content of the fining agent is too small, the foam quality deteriorates. If the clarifier content is too high, it may cause devitrification or coloring.
  • the content of the fining agent is, for example, 0.05 to 0.5 mol%, preferably 0.05 to 0.3 mol%, more preferably 0.05 to 0.2 mol%, depending on the type of fining agent and the glass composition. Is appropriate. In the case of SnO 2 , for example, it is preferably in the range of 0.01 to 0.2 mol%, more preferably 0.03 to 0.15 mol%, still more preferably 0.05 to 0.12 mol%.
  • Fe 2 O 3 is a component that lowers the specific resistance of glass in addition to having a function as a fining agent. In a glass with a high melting temperature that is difficult to understand, it is preferably contained in order to reduce the specific resistance of the glass. However, if the Fe 2 O 3 content is too high, the glass is colored and the transmittance is lowered.
  • the Fe 2 O 3 content is in the range of 0 to 0.1 mol%, preferably 0 to 0.05 mol%, more preferably 0.001 to 0.05 mol%, still more preferably 0.005 to 0.05 mol%, and still more preferably 0.005 to 0.03. mol%, and still more preferably in the range of 0.005 to 0.02 mol%.
  • the glass constituting the glass substrate of the present invention does not substantially contain As 2 O 3 due to environmental load problems.
  • substantially free means that the glass raw material does not use substances that are the raw materials of these components, and excludes the inclusion of components contained as impurities in other glass raw materials. Not what you want.
  • the glass constituting the glass substrate of the present invention preferably contains 0 to 0.5 mol%, more preferably 0 to 0.1 mol%, and most preferably substantially no Sb 2 O 3 because of environmental load problems.
  • the glass constituting the glass substrate of the present invention preferably contains substantially no PbO and F for environmental reasons.
  • Minus half the content of Al 2 O 3 from the content of SiO 2 (SiO 2 -Al 2 O 3/2) when the value is too small, although the etching rate is improved, devitrification Sex is reduced. If the value is too high, the etching rate decreases. From such a viewpoint, it is preferably 69 mol% or less, more preferably 60 to 68 mol%, and still more preferably 63 to 67 mol%. In addition, when slimming a glass substrate in display manufacturing, in order to improve the productivity, it is required to further increase the etching rate.
  • (SiO 2 -Al 2 O 3 /2) is preferably from 69 mol%, more preferably 50 ⁇ 68 mol%, more preferably 55 ⁇ 65mol%, 57 ⁇ 63 mol% is more preferable, and 58 to 62 mol% is even more preferable.
  • SiO 2 + Al 2 O 3 is the total amount of SiO 2 and Al 2 O 3 is too small, there is a tendency that the strain point is lowered, while when too large, there is a tendency that the devitrification resistance is deteriorated. Therefore, SiO 2 + Al 2 O 3 is preferably 70 mol% or more, preferably 75 mol% or more, more preferably 76 to 88 mol%, still more preferably 77 to 85 mol%, still more preferably 78 to 82 mol. %.
  • B 2 O 3 + P 2 O 5 is preferably 3 to 15 mol%, more preferably 3 to 9.5 mol%, further preferably 4 to 9 mol%, more preferably 5 to 9 mol%, and still more preferably 6 to 8 mol%.
  • B 2 O 3 + P 2 O 5 is more preferably 5 to 13 mol%, further preferably 5 to 12 mol%, and further preferably less than 6 to 10 mol%.
  • B 2 O 3 molar ratio CaO / B 2 O 3 of CaO with respect to the while preventing a decrease in strain point from the viewpoint of improving the meltability, preferably 0.5 or more, more preferably 0.9 or more, more preferably greater than 1.2 More preferably, it is in the range of more than 1.2 to 5, even more preferably in the range of more than 1.2 to 3, even more preferably in the range of 1.3 to 2.5, and most preferably in the range of 1.3 to 2.
  • 0.5 to 5 is preferable, 0.9 to 3 is more preferable, 1 to 2.5 is more preferable, 1 to 2 is more preferable, 1.1 to 2 is more preferable, and 1.2 is preferable Even more preferred is ⁇ 1.5.
  • the molar ratio CaO / RO is an index of devitrification resistance and the temperature in the low temperature viscosity region.
  • CaO / RO is preferably 0.5 to 1, more preferably 0.7 to 1, further preferably more than 0.85 to 1, more preferably 0.88 to 1, even more preferably 0.9 to 1, even more preferably 0.92 to 1, Most preferably, it is 0.95 to 1.
  • improvement of devitrification resistance and reduction of thermal shrinkage can be compatible.
  • the density can be reduced.
  • the strain point can be increased by containing only CaO, rather than containing a plurality of alkaline earth metals.
  • CaO has the advantage that the raw materials are inexpensive and are easily available.
  • SrO and BaO are components that can lower the devitrification temperature of glass. Although not essential, when it is contained, the devitrification resistance is improved and the meltability is improved. However, when there is too much content, a density will rise.
  • SrO + BaO which is the total amount of SrO and BaO, is preferably 0 to 10 mol%. In particular, when weight reduction is required, it is preferably in the range of 0 to less than 3 mol%, more preferably 0 to 2 mol%, and still more preferably 0 to 1 mol% from the viewpoint of reducing the weight by reducing the density. . When it is desired to reduce the density of the glass substrate, it is preferable that SrO and BaO are not substantially contained.
  • RO + ZnO + B 2 O 3 which is the total amount of RO, ZnO, and B 2 O 3 , is too small, the meltability is lowered. On the other hand, if the amount is too large, the strain point tends to decrease. Therefore, RO + ZnO + B 2 O 3 is preferably less than 7 to 25 mol%, more preferably 10 to 23 mol%, further preferably 12 to 22 mol%, more preferably 14 to 21 mol%, and still more preferably 16 to 20 mol%. % Range. On the other hand, in order to improve the meltability, RO + ZnO + B 2 O 3 is more preferably 12 to 25 mol%, further preferably 14 to 25 mol%, further preferably 17 to 23 mol%.
  • the total amount of SiO 2 and Al 2 O 3 (SiO 2 + Al 2 O 3) molar ratio of the RO with respect to RO / (SiO 2 + Al 2 O 3) is a strain point and the melting of the indicator. From the viewpoint of achieving both an increase in strain point and meltability, and also achieving both an increase in strain point and a reduction in the specific resistance of the glass melt, it is preferably in the range of 0.07 to 0.2, more preferably 0.08 to 0.18, and even more preferably Is in the range of 0.09 to 0.16, more preferably 0.11 to 0.15.
  • R 2 O which is the total amount of Li 2 O, Na 2 O, and K 2 O, is a component that enhances the basicity of the glass, facilitates the oxidization of the fining agent, and exhibits fining properties. Moreover, it is a component which improves meltability and reduces specific resistance.
  • R 2 O is not essential, but if it is contained, the specific resistance of the glass melt is lowered, the clarity is improved, and the meltability is improved. However, if the R 2 O content is too large, it may be eluted from the glass substrate to deteriorate the TFT characteristics. In addition, the average thermal expansion coefficient tends to increase.
  • R 2 O is preferably 0 to 0.8 mol%, more preferably 0.01 to 0.5 mol%, still more preferably 0.05 to 0.4 mol%, and still more preferably 0.1 to 0.3 mol%.
  • K 2 O has a higher molecular weight than Li 2 O and Na 2 O, and thus is difficult to elute from the glass substrate. Therefore, when R 2 O is contained, it is preferable to contain K 2 O. When the ratio of Li 2 O and Na 2 O is large, there is a strong possibility of elution from the glass substrate and deterioration of TFT characteristics.
  • the molar ratio K 2 O / R 2 O is preferably in the range of 0.5 to 1, more preferably 0.6 to 1, still more preferably 0.7 to 1, more preferably 0.8 to 1, and still more preferably 0.95 to 1.
  • the glass constituting the glass substrate of the present invention preferably uses a metal oxide as a fining agent.
  • a metal oxide for example, ammonium salt or chloride
  • the clarity of the metal oxide. Will decline.
  • the NH 4 + content is preferably less than 1 ⁇ 10 ⁇ 4 mol%, and is preferably 0 to 0.5 ⁇ 10 ⁇ 4. More preferably, it is less than mol%, and it is further more preferable not to contain substantially.
  • the glass constituting the glass substrate of the present invention preferably has a Cl content of less than 0.05 mol%, more preferably 0 to less than 0.05 mol%, and more preferably 0 to less than 0.03 mol%. More preferably, it is more preferably 0 to less than 0.005 mol%, and still more preferably substantially not contained.
  • the NH 4 + and Cl are components that remain in the glass as an ammonium salt and chloride (especially ammonium chloride) in the hope that a clarification effect is expected. For reasons, the use of these raw materials is not preferable.
  • the glass substrate that defines the strain point has a strain point of 665 ° C. or higher.
  • the strain point of the glass substrate of the present invention is preferably 670 ° C. or higher, more preferably 680 ° C. or higher, further preferably 690 ° C. or higher, more preferably 695 ° C. or higher, still more preferably 700 ° C. or higher.
  • the strain point of the glass substrate can be appropriately selected depending on the composition of the glass substrate, and a glass composition capable of setting the strain point to 665 ° C. or higher will be described later.
  • the glass substrate of the present invention has an average coefficient of thermal expansion (100-300 ° C.) of, for example, less than 38 ⁇ 10 ⁇ 7 ° C. ⁇ 1 , preferably less than 37 ⁇ 10 ⁇ 7 ° C. ⁇ 1 , more preferably 28 to 36 ⁇ 10 -7 ° C. less than -1, more preferably 30 ⁇ 36 ⁇ 10 -7 °C less than -1, more preferably 31 ⁇ 35 ⁇ 10 -7 °C -1 , even more preferably 32 ⁇ 35 ⁇ 10 -7
  • the range is less than -1 ° C.
  • the average thermal expansion coefficient is small, it is difficult to match the average thermal expansion coefficient with peripheral materials such as metals and organic adhesives formed on the glass substrate, and the peripheral members may peel off. .
  • rapid heating and rapid cooling are repeated, and the thermal shock applied to the glass substrate increases.
  • a large glass substrate tends to have a temperature difference (temperature distribution) in the heat treatment process, and the probability of destruction of the glass substrate increases.
  • the average thermal expansion coefficient (100-300 ° C) is 40 x 10 -7 from the standpoint of matching the average thermal expansion coefficient with the peripheral materials such as metals and organic adhesives formed on the glass substrate. Is preferably less than 28 ° C., more preferably less than 28 to 40 ⁇ 10 ⁇ 7 ° C., further preferably less than 30 to 39 ⁇ 10 ⁇ 7 ° C., and more preferably less than 32 to 38 ⁇ 10 ⁇ 7 ° C. More preferably, it is more preferably 34 to 38 ⁇ 10 ⁇ 7 ° C.
  • the glass substrate of the present invention has a density of, for example, 2.55 g / cm 3 or less, preferably less than 2.5 g / cm 3 , more preferably 2.45 g / cm, from the viewpoint of reducing the weight of the glass substrate and the display. 3 or less, more preferably 2.42 g / cm 3 or less.
  • the density is high, it is difficult to reduce the weight of the glass substrate, and it is impossible to reduce the weight of the display.
  • the glass substrate of the present invention has a Tg of preferably 720 ° C. or higher, more preferably 730 ° C. or higher, further preferably 740 ° C. or higher, more preferably 750 ° C. or higher.
  • Tg preferably 720 ° C. or higher, more preferably 730 ° C. or higher, further preferably 740 ° C. or higher, more preferably 750 ° C. or higher.
  • it is appropriate to increase the Tg for example, to contain more components such as SiO 2 and Al 2 O 3 in the composition range of the glass substrate of the present invention.
  • the glass of the present invention preferably has a melting temperature of 1680 ° C. or lower. By setting the melting temperature to 1680 ° C.
  • the glass constituting the glass substrate of the present invention can have good meltability.
  • Glass having a low melting temperature tends to have a low strain point.
  • the melting temperature is preferably 1550 to 1650 ° C., more preferably 1580 to 1640 ° C., more preferably 1590 to 1630 ° C., and further preferably 1600 to 1620 ° C.
  • the components such as B 2 O 3 and RO which lower the viscosity within the range of the composition of the glass substrate of the present invention.
  • the glass constituting the glass substrate of the present invention has a glass melt specific resistance (at 1550 ° C.) of preferably 50 to 300 ⁇ ⁇ cm, more preferably 50 to 250 ⁇ ⁇ cm, still more preferably 50 to 200 ⁇ ⁇ cm, More preferably, it is in the range of 100 to 200 ⁇ ⁇ cm. If the specific resistance becomes too small, the current value necessary for melting becomes excessive, and there may be restrictions on the equipment. In addition, there is a tendency that the consumption of the electrode increases. If the specific resistance of the molten glass becomes too large, the current may flow not to the glass but to the heat-resistant brick forming the melting tank, and the melting tank may be melted.
  • the specific resistance of the molten glass can be adjusted to the above range mainly by controlling the contents of RO and Fe 2 O 3 which are essential components of the glass substrate of the present invention.
  • the liquid phase viscosity (viscosity at the devitrification temperature) of the glass constituting the glass substrate of the present invention is preferably 30,000 ( ⁇ 10 4.48 ) dPa ⁇ s or more, more preferably 40,000 ( ⁇ 10 4.6 ) dPa ⁇ s or more, More preferably, it is in the range of 50,000 ( ⁇ 10 4.8 ) dPa ⁇ s or more.
  • devitrification crystals are less likely to occur at the time of molding, and it becomes easy to mold a glass substrate by the overflow downdraw method. Thereby, while being able to improve the surface quality of a glass substrate, the production cost of a glass substrate can be reduced.
  • the liquidus viscosity of the glass of the present invention is preferably 10 4.5 ⁇ 10 6.0 dPa ⁇ s , more preferably 10 4.5 ⁇ 10 5. 9 dPa ⁇ s, more preferably 10 4.6 ⁇ 10 5.8 dPa ⁇ s , and more The range is preferably 10 4.8 to 10 5.7 dPa ⁇ s, more preferably 10 4.8 to 10 5.6 dPa ⁇ s, and still more preferably 10 4.9 to 10 5.5 dPa ⁇ s.
  • the glass substrate has characteristics necessary for a glass substrate for TFT flat panel display, and devitrification crystals are less likely to occur at the time of molding, so that the glass substrate can be easily molded by the overflow downdraw method.
  • the liquid phase viscosity of the glass substrate can be adjusted to the above range by appropriately adjusting the content of each component.
  • the etching rate of the glass constituting the glass substrate of the present invention is 50 to 160 ⁇ m / h, preferably 60 to 140 ⁇ m / h, and more preferably 70 to 120 ⁇ m / h.
  • Productivity improves as the etching rate increases.
  • the etching rate affects the productivity.
  • the etching rate becomes too high, there is a possibility that inconvenience may occur due to the reaction with the chemical solution in the panel manufacturing process.
  • the value of SiO 2 -1 / 2Al 2 O 3 may be reduced.
  • the value of SiO 2 -1 / 2Al 2 O 3 may be increased.
  • the size of the glass substrate of the present invention is not particularly limited.
  • the width direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm.
  • the longitudinal direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm. As the larger glass substrate is used, the productivity of the liquid crystal display and the organic EL display is improved.
  • the glass substrate of the present invention can have a plate thickness in the range of, for example, 0.1 to 1.1 mm. However, it is not intended to limit to this range.
  • the plate thickness may be in the range of 0.1 to 0.7 mm, 0.3 to 0.7 mm, 0.3 to 0.5 mm, for example. If the glass plate is too thin, the strength of the glass substrate itself is reduced. For example, breakage during display manufacturing is likely to occur. If the plate thickness is too thick, the amount of etching for thinning increases and productivity decreases.
  • the glass substrate of the present invention is a glass substrate for use in the manufacture of a flat panel display in which a TFT for etching the surface of the glass substrate is formed after the TFT is formed, for example, after the array and color filter are bonded together. It is particularly suitable for a glass substrate for flat panel display on which LTPS or TOS is formed. Specifically, it is suitable for a glass substrate for liquid crystal display and a glass substrate for organic EL display. Particularly, it is suitable for a glass substrate for LTPS / TFT liquid crystal display and a glass substrate for LTPS / TFT organic EL display. Furthermore, it is suitable for glass substrates for TOS / TFT liquid crystal displays and glass substrates for TOS / TFT organic EL displays. Especially, it is suitable for the glass substrate for displays, such as a portable terminal in which high definition is calculated
  • the method for producing a glass substrate of the present invention comprises a melting step of melting a glass raw material prepared in a predetermined composition using, for example, direct current heating or gas combustion heating, and a flat plate of molten glass melted in the melting step.
  • the glass raw material prepared to have a predetermined composition is melted using, for example, direct current heating or gas combustion heating.
  • the glass raw material can be appropriately selected from known materials.
  • the molten glass melted in the melting step is formed into flat glass.
  • the down-draw method particularly the overflow down-draw method is suitable as a method for forming the flat glass, and a glass ribbon is formed as the flat glass.
  • a float method, a redraw method, a rollout method, etc. can be applied.
  • the main surface of the obtained glass substrate is a hot-formed surface compared to the case where other forming methods such as the float method are used.
  • the step of polishing the surface of the glass substrate after molding becomes unnecessary, the manufacturing cost can be reduced and the productivity can be improved.
  • both main surfaces of the glass substrate molded using the downdraw method have a uniform composition, the etching can be performed uniformly when the etching process is performed.
  • the glass substrate having a surface state free from microcracks can be obtained by molding using the downdraw method, the strength of the glass substrate itself can be improved.
  • the heat shrinkage rate of the glass substrate can be controlled by appropriately adjusting the conditions during slow cooling.
  • the thermal shrinkage rate of the glass substrate is 75 ppm, preferably 70 ppm or less, more preferably 60 ppm or less.
  • the temperature of the glass ribbon as a flat glass is within the temperature range of Tg to Tg-100 ° C. It is desirable to perform slow cooling so that the cooling takes 20 to 200 seconds. If it is less than 20 seconds, the thermal shrinkage rate may not be sufficiently reduced.
  • the glass manufacturing apparatus when it exceeds 200 seconds, productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • productivity is lowered and a glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • a preferable range of the cooling rate is 30 to 300 ° C./min, more preferably 50 to 200 ° C./min, and further preferably 60 to 120 ° C./min.
  • the thermal shrinkage rate can also be reduced by separately cooling it offline, but in this case, in addition to the equipment for performing the slow cooling step, separately Equipment that performs slow cooling offline is required. Therefore, as described above, it is preferable from the viewpoint of productivity and cost to control the temperature of the glass ribbon so that the thermal shrinkage rate of the glass substrate can be reduced so that offline slow cooling can be omitted.
  • Examples 1 to 4 Glasses of Examples 1 to 4 were produced according to the following procedure so as to have the glass composition shown in Table 1. With respect to the obtained glass and glass substrate, the etching rate, thermal shrinkage rate, devitrification temperature, average thermal expansion coefficient in the range of 100 to 300 ° C., strain point, Tg, and density were determined.
  • the blended batch is melted at 1560 to 1640 ° C. and clarified at 1620 to 1670 ° C. using a continuous melting apparatus equipped with a refractory brick melting tank and a platinum alloy clarification tank (conditioning tank). After stirring at ⁇ 1530 ° C, it was formed into a 0.7mm-thick sheet by the overflow downdraw method, and in the temperature range from Tg to Tg-100 ° C, Example 1 was carried out at an average cooling rate of 35 ° C / min. In Examples 2 to 4, slow cooling was performed at an average cooling rate of 60 ° C./min to obtain glass substrates for liquid crystal displays (for organic EL displays).
  • the glass substrate is cut into a size of about 20 mm x about 10 mm, washed, and then mixed with a mixed etching solution of HF and HCl (HF concentration 1 mol / kg, HCl concentration 5 mol / kg, temperature 40 ° C) in a container. Both sides were immersed for 1 hour. After rinsing with water, the thickness before and after the test was measured to determine the amount of decrease in thickness on both sides, and the etching rate of the glass plate was calculated using 1/2 of that as the amount of decrease in thickness on one surface of the glass substrate.
  • Heat shrinkage The heat shrinkage rate was raised from room temperature at 10 ° C / min, held at 550 ° C for 1 hour, then lowered to room temperature at 10 ° C / min, raised again at 10 ° C / min, and 1 at 550 ° C.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / length of glass before heat treatment ⁇ ⁇ 10 6 Specifically, for example, the amount of heat shrinkage was determined using the following method. 1. Put parallel marking lines near the ends of the glass plate using a diamond pen. 2.
  • a glass plate is cut in half in a direction perpendicular to the marking line, and one is heat-treated (in the above, 550 ° C. for 1 hour twice). 3. The glass plate after the heat treatment and the other glass plate are put together, the amount of misalignment between the marking lines on both sides is measured, and the shrinkage rate is calculated according to the above formula.
  • the glass substrate was pulverized and passed through a 2380 ⁇ m sieve to obtain glass particles that remained on the 1000 ⁇ m sieve.
  • the glass particles were immersed in ethanol, subjected to ultrasonic cleaning, and then dried in a thermostatic bath.
  • the dried glass particles were placed on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 10 mm so that the glass particles had an almost constant thickness.
  • This platinum boat was kept in an electric furnace having a temperature gradient of 1080 to 1320 ° C. for 5 hours, and then removed from the furnace, and devitrification generated in the glass was observed with a 50 ⁇ optical microscope.
  • the maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • strain point Measurement was performed using a beam bending measuring apparatus (manufactured by Tokyo Kogyo Co., Ltd.), and a strain point was obtained by calculation according to the beam bending method (ASTM C-598).
  • the density of the glass substrate was measured by the Archimedes method.
  • the glass substrate obtained as described above has an etching rate of 50 ⁇ m / h or more, can be rapidly etched, and has excellent productivity. Furthermore, the glass substrate obtained as described above has a heat shrinkage rate of 75 ppm or less. In addition, the expansion coefficient is less than 38 ⁇ 10 -7 °C, has a Tg of 720 °C or more, a strain point of 670 °C or more, and a devitrification temperature of 1280 °C, thermal shrinkage rate, average thermal expansion coefficient , Tg, strain point and devitrification temperature also satisfied the conditions of the glass substrate of the present invention.
  • the glass substrate obtained in this example is a glass substrate having excellent characteristics that can be used for a display to which LTPS ⁇ TFT or TOS ⁇ TFT is applied. Furthermore, the glass substrates obtained in Examples 2 to 4 had a density of 2.5 g / cm 3 or less, and were particularly preferable glass substrates from the viewpoint of reducing the weight of the glass substrate and the display.
  • the present invention can be used in the field of manufacturing glass substrates for displays. Particularly, it is suitable for a glass substrate for display in which LTPS ⁇ TFT is formed on the surface of the glass substrate. Moreover, it is suitable also for the glass substrate for a display which forms TOS * TFT in the glass substrate surface.

Abstract

生産性と熱収縮率の低減を両立した、TFTを用いたフラットパネルディスプレイに適したフラットパネルディスプレイ用ガラス基板を提供する。 モル%表示で、 SiO2 55~80%、 Al2O3 3~20%、 B2O3 3~15%、 SiO2-1/2Al2O3が70%以下であり、 モル比(SiO2+2×Al2O3)/B2O3が9.5超19.0以下であり、 失透温度が1280℃未満であり、 常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が60ppm以下である、TFTが形成されるフラットパネルディスプレイの製造に用いられるためのガラス基板。 熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106

Description

フラットパネルディスプレイ用ガラス基板
 本発明は、フラットパネルディスプレイ用ガラス基板に関する。特に、本発明は、低温ポリシリコン薄膜トランジスタ(以下、LTPS・TFT(Low-Temperature-Polycrystalline-Silicon Thin-Film-Transistor)と記載する)フラットパネルディスプレイ用ガラス基板に関する。また、本発明は、透明酸化物半導体薄膜トランジスタ(以下、TOS・TFT(Transparent Oxide-Semiconductor Thin-Film-Transistor)と記載する) フラットパネルディスプレイ用ガラス基板に関する。さらに詳細には、本発明は、前記フラットパネルディスプレイが液晶ディスプレイであるフラットパネルディスプレイ用ガラス基板の製造方法に関する。または前記フラットパネルディスプレイが、有機ELディスプレイであるフラットパネルディスプレイ用ガラス基板の製造方法に関する。
 LTPS・TFTフラットパネルディスプレイ製造工程では、ガラス基板表面にLTPS・TFTを形成し、かつ基板表面にエッチング処理が施されてフラットパネルディスプレイが製造される。TOS・TFTフラットパネルディスプレイ製造工程では、ガラス基板表面にTOSを形成してフラットディスプレイが製造される。近年、携帯型ディスプレイの分野では、ディスプレイの軽量化・薄板化が重要な課題となっている。そのため、例えば液晶ディスプレイの製造においては、アレイ・カラーフィルタ張り合わせ後に、ガラス基板表面にエッチング処理を行い、ディスプレイのガラス基板を薄板化している。また、薄板化することにより、同時に軽量化も図っている。
 また、携帯機器などに搭載されたディスプレイは、消費電力を低減できるなどの理由から、TFTの製造にLTPSを適用することが望まれるが、LTPS・TFTの製造において400~600℃という比較的高温での熱処理が必要である。
 一方、小型携帯機器のディスプレイには、近年ますます高精細化が求められている。そのため、画素のピッチズレの問題を引き起こす、ディスプレイパネル製造時に生じるガラス基板の熱収縮が問題となっている。
 ガラス基板の熱収縮率は、一般に、ガラスの歪点やTg(ガラス転移点)に代表される低温粘性域での特性温度(以下、低粘特性温度と記す)を高くすること、または平均熱膨張係数を低下させることで低減することが可能である。また、ガラス基板の熱収縮率は、TgからTg-100℃の温度範囲内での冷却速度を低下することでも低減することが可能である。
 熱収縮率に注目したガラス基板を開示する文献としては、特開2004-315354号公報(特許文献1)及び特開2007-302550号公報(特許文献2)がある。特許文献1~2は、いずれも液晶ディスプレイ用ガラス基板に関する発明を開示する。特許文献1~2の全記載は、ここに特に開示として援用される。
 しかし、特許文献1に記載のガラス基板は、失透温度が高く、ガラス基板表面の研磨工程などを省略して生産性を向上することができるオーバーフローダウンドロー法などの成形方法に用いることが難しいという問題があった。また、特許文献2に記載のガラス基板は、歪点が十分に高くないので、熱収縮率を低減させようとすると、TgからTg-100℃の温度範囲内での冷却速度を極めて遅くする必要がある。そのため、特許文献2に記載のガラス基板は、生産性を保ちつつ熱収縮率を低減することが難しいという問題があった。
 ディスプレイの製造では生産性を向上させることが求められ、ガラス基板自体の生産性を高めることに加えて、ディスプレイのガラス基板を薄板化する工程の生産性の向上も求められている。ディスプレイのガラス基板を薄板化する工程の生産性は、ガラス基板のエッチングにかかる時間に大きく依存する。そのため、LTPS・TFTを用いたフラットパネルディスプレイガラス基板には、エッチングレートの向上による生産性の向上と熱収縮率の低減とを両立することが求められている。しかし、上記特許文献1及び2に記載のガラス基板については、エッチングレートの向上について配慮されたものではなかった。
 そこで本発明は、生産性と熱収縮率の低減を両立したガラスからなる、フラットパネルディスプレイ用ガラス基板、特にLTPS・TFTを用いたフラットパネルディスプレイに適したフラットパネルディスプレイ用ガラス基板を提供することを目的とする。さらには、生産性と熱収縮率の低減を両立した、TOS・TFT用としても適したガラス基板を提供することも本発明の目的である。
 本発明者らは、ガラス組成を工夫することで、生産性と熱収縮率の低減を両立したガラスからなる、フラットパネルディスプレイ用ガラス基板、特にLTPS・TFTを用いたフラットパネルディスプレイに適したLTPS・TFTフラットパネルディスプレイ用ガラス基板を提供できることを見出して、本発明を完成させた。さらに、上記ガラス基板は、TOS・TFT用としても利用可能であることも見出して、本発明を完成させた。
 本発明は以下のとおりである。
[1]
モル%表示で、
SiO2 55~80%、
Al2O3 3~20%、
B2O3 3~15%、
を含有し、
SiO2-1/2Al2O3が70%以下であり、
モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である、フラットパネルディスプレイ用ガラス基板。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
[2]
モル%表示で、
SiO2 55~80%、
Al2O3 3~20%、
B2O3 3~15%、
を含有し、
SiO2-1/2Al2O3が70%以下であり、
モル比(SiO2+2×Al2O3)/B2O3が9.5超19.0以下であり、
失透温度が1280℃未満であるガラスからなり、
常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が60ppm以下である、フラットパネルディスプレイガラス基板。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
[3]
フラットパネルディスプレイ用ガラス基板であって、
モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
MgO+CaO+SrO+BaOが5 mol%以上、14 mol%未満であり、
歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量として表されるエッチングレートが50μm/h以上であり、
常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である、ガラス基板。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
[4]
前記ガラス基板は、フラットパネルディスプレイの製造においてTFT形成後にガラス基板表面をエッチング処理に付されるものであり、かつ前記エッチング処理におけるエッチング量が50~650μmの範囲である[1]~[3]のいずれか1項に記載のガラス基板。
[5]
前記ガラス基板は、LTPS・TFTフラットパネルディスプレイ用であるか、又はTOS・TFTフラットパネルディスプレイ用である、[1]~[4]のいずれか1項に記載のガラス基板。
 本発明によれば、生産性と熱収縮率の低減を両立したフラットパネルディスプレイ、特にLTPS・TFTを用いたフラットパネルディスプレイに適したLTPS・TFTフラットパネルディスプレイ用ガラス基板及びTOS・TFTフラットパネルディスプレイ用ガラス基板を提供することができる。
 本願明細書において、ガラス基板を構成するガラスの組成は特に断らない限り、mol%で表示し、ガラスを構成する成分の比はモル比で表示する。また、ガラス基板の組成及び物性は、特に断らない限りガラス基板を構成するガラスの組成及び物性を意味し、単にガラスと表記するときは、ガラス基板を構成するガラスを意味する。但し、ガラス基板のエッチングレートおよび熱収縮率は、実施例に記載の所定の条件で形成したガラス基板について、実施例に記載の条件で測定した値を意味する。また、本願明細書において、低粘特性温度とは、ガラスが107.6~1014.5dPa・sの範囲の粘度を示す温度を意味し、低粘特性温度には、歪点およびTgが含まれる。従って、低粘特性温度を高めるということは、歪点およびTgを高めることも意味し、逆に、歪点及び/又はTgを高めるということは低粘特性温度を高めることを意味する。また、熔融温度とは、ガラスが102.5dPa・sの粘度を示す温度であり、熔解性の指標となる温度である。
 本発明のガラス基板は、TFTが形成された後、例えば、液晶ディスプレイの場合にはアレイ・カラーフィルタ張り合わせ後にガラス基板表面をエッチング処理するLTPS・TFTが形成されるフラットパネルディスプレイの製造に用いられるためのガラス基板に好適である。さらに、本発明のガラス基板は、TOS・TFT用のガラス基板としても好適である。以下、LTPS・TFT用ガラス基板について説明するが、TOS・TFT用のガラス基板についても同様である。
 フラットパネルディスプレイの製造においては、ガラス基板表面にLTPS・TFTが形成され、例えば、液晶ディスプレイの場合にはさらにアレイ・カラーフィルタが張り合わせられる。ディスプレイの軽量化・薄板化を必要としないフラットパネルディスプレイの場合には、このまま商品化されるが、軽量化・薄板化を必要とするフラットパネルディスプレイの場合には、アレイ・カラーフィルタ張り合わせ後に、加工を施していない側のガラス基板表面をエッチング処理して、ガラス基板を薄膜化する。本発明において、前記エッチング処理におけるエッチング量(厚み)は、例えば、50~650μmの範囲とすることができる。より具体的には、例えば、0.4~0.7mmの基板をエッチング処理して0.05~0.65mmの範囲の厚みにすることが行われ得る。本発明のガラス基板は、このようなTFTが形成された後、例えば、液晶ディスプレイの場合にはアレイ・カラーフィルタ張り合わせ後にガラス基板表面がエッチング処理されるガラス基板に好適である。
 本発明のガラス基板の第1の態様に属する第1のガラス基板は、ガラス組成及び物性については以下のとおりである。
モル%表示で、
SiO2 55~80%、
Al2O3 3~20%、
B2O3 3~15%、
を含有し、
SiO2-1/2Al2O3が70%以下であり、
モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本発明の第1の態様に属する第2のガラス基板は、ガラス組成及び物性については以下のとおりである。
モル%表示で、
SiO2 55~80%、
Al2O3 3~20%、
B2O3 3~15%、
を含有し、
SiO2-1/2Al2O3が70%以下であり、
モル比(SiO2+2×Al2O3)/B2O3が9.5超19.0以下であり、
失透温度が1280℃未満であるガラスからなり、
常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が60ppm以下である。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 また、本発明のガラス基板の第2の態様に属する第1のガラス基板は、ガラス組成及び物性については以下のとおりである。
モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
MgO+CaO+SrO+BaOが5mol%以上、14mol%未満であり、
歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量として表されるエッチングレートが50μm/h以上であり、常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本発明の第2の態様に属する第2のガラス基板は、ガラス組成及び物性については以下のとおりである。
MgO+CaO+SrO+BaOを5 mol%以上、14 mol%未満含有し、
モル比(SiO2+2×Al2O3)/B2O3が9.5超であるガラスからなり、
HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量として表されるエッチングレートが50μm/h以上であり、常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が60ppm以下である。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 また、アレイ・カラーフィルタ張り合わせ後にガラス基板表面をエッチング処理するTFTが形成されるフラットパネルディスプレイの製造に用いられるためのガラス基板である、本発明のガラス基板の第3の態様に属する第1のガラス基板は、ガラス組成及び物性については以下のとおりである。
MgO+CaO+SrO+BaOを5mol%以上、14mol%未満含有し、
モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
平均熱膨張係数(100-300℃)が38×10-7-1未満であり、歪点が665℃以上であるガラスからなり、
HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量として表されるエッチングレートが50μm/h以上である。
 本発明の第3の態様に属する第2のガラス基板は、ガラス組成及び物性については以下のとおりである。
MgO+CaO+SrO+BaOを5mol%以上、14mol%未満含有し、
モル比(SiO2+2×Al2O3)/B2O3が9.5超19.0以下であり、
平均熱膨張係数(100-300℃)が38×10-7-1未満であり、Tgが720℃以上であるガラスからなり、
HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量として表されるエッチングレートが50μm/h以上である。
 本発明のガラス基板は、第1の態様~第3の態様に共通して、SiO2、Al2O3及びB2O3を含有するガラスからなる。以下、単に本発明のガラス基板と記載する場合、第1の態様~第3の態様のガラス基板を対象とする。
 本発明のガラス基板の第1の態様においては、ガラスはSiO2 55~80mol%、Al2O3 3~20mol%、B2O3 3~15mol%を含有する。本発明のガラス基板の第2の態様及び第3の態様においても、ガラスは好ましくはSiO2 55~80mol%、Al2O3 3~20mol%、B2O3 3~15mol%を含有する。
 本発明のガラス基板において、ガラスのB2O3に対するSiO2と2倍のAl2O3の合量である(SiO2+2×Al2O3)のモル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下の範囲であり、より好ましくは9.5超~19.0の範囲である。モル比(SiO2+2×Al2O3)/B2O3は、低粘特性温度の上昇と耐失透性の指標となる。(SiO2+2×Al2O3)/B2O3が上記下限以下では、所定以下の熱収縮率75ppm、より好ましくは60ppm未満を有するTFT用のガラス基板を製造することは困難である。(SiO2+2×Al2O3)/B2O3は、好ましくは9.5超~17.0の範囲であり、さらに好ましくは10.0~15.5の範囲であり、一層好ましくは10.0~14.0の範囲である。他方、失透温度を十分に低下させることに加えて、エッチングレートが十分に速いガラス基板を得ることも考慮すると、モル比(SiO2+2×Al2O3)/B2O3は好ましくは8.5超~19.0であり、より好ましくは9~19であり、さらに好ましくは9~15であり、一層好ましくは9~14であり、尚一層好ましくは9.5超~13である。
 本発明のガラス基板の第1の態様においては、ガラスのMgO、CaO、SrO及びBaOの合量であるMgO+CaO+SrO+BaO= ROが3~25mol%であることが好ましく、より好ましくは5mol%~14mol%未満である。本発明のガラス基板の第2の態様及び第3の態様においては、ガラスのMgO+CaO+SrO+BaO= ROは5mol%~14mol%未満である。ROは、熔解性を向上させる成分である。RO含有量が少なすぎると、熔解性が悪化する。RO含有量が多すぎると、低粘特性温度が低下し、密度が上昇し、ヤング率が低下する。また、RO含有量が多すぎると、平均熱膨張係数が増大する傾向もある。このような観点から、ROは、より好ましくは6~14mol%の範囲であり、さらに好ましくは8~13mol%の範囲、一層好ましくは9~12mol%の範囲である。
 本発明のガラス基板の第1の態様は、生産性よくエッチングを行うために、エッチングレートが50μm/h以上であることが好ましく、本発明のガラス基板の第2の態様及び第3の態様は、生産性よくエッチングを行うために、エッチングレートが50μm/h以上である。一方、過度にエッチングレートが高いと、パネル作製工程での薬液との反応で不都合が生じる虞があるため、本発明のガラス基板のエッチングレートは160μm/h以下であることが好ましい。エッチングレートは好ましくは60~140μm/h 、より好ましくは70~120μm/hである。本発明においては、上記エッチングレートは以下の条件で測定したものと定義する。
 エッチングレート(μm/h)は、ガラス基板をHFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)に1時間浸漬した場合の、単位時間(1時間)当たりのガラス基板の一方の表面の厚み減少量として表す。
 本発明のガラス基板の第1の態様において、SiO2とAl2O3のガラス成分をそれぞれ調整することで、上記エッチングレートを有するものにすることができる。より詳細には、SiO2 の含有量からAl2O3の含有量の1/2を引いた差であるSiO2-1/2Al2O3の値が、70mol%以下とすることにより、上記エッチングレートを有するものとすることができる。なお、エッチングレートを高くするために、SiO2-1/2Al2O3の値を小さくしすぎると、失透温度が上昇してしまう傾向がある。また、歪点が十分に高くできない場合もあるため、SiO2-1/2Al2O3の値が50mol%以上である。以上のことから、SiO2-1/2Al2O3の値が55~68mol%であることが好ましく、56~66mol%であることがより好ましく、58~64mol%であることがさらに好ましく、58~62mol%であることが一層好ましい。
 本発明のガラス基板の第1の態様及び第2の態様において、ガラスの失透温度が、1280℃未満であり、好ましくは1260℃以下、より好ましくは1250℃以下、さらに好ましくは1230℃以下である。本発明のガラス基板の第3の態様において、ガラスの失透温度が、1280℃未満であることが好ましく、より好ましくは1260℃以下、さらに好ましくは1250℃以下、一層好ましくは1230℃以下である。失透温度が1280℃未満であれば、ダウンドロー法でガラス板の安定した成形がしやすくなる。ダウンドロー法を適用することで、ガラス基板の表面品質を向上できる。また、生産コストも低減することができる。失透温度が高すぎると、失透が生じやすく、ガラス板の安定した生産が困難となる。特に、ダウンドロー法での安定した生産が難しくなる。他方、熱収縮率や密度のなどのフラットパネルディスプレイ用基板の特性を考慮すると、ガラス基板を構成するガラスの失透温度が、好ましくは1050~1280℃未満、より好ましくは1110~1250℃、さらに好ましくは1150~1240℃、一層好ましくは1160~1230℃、より一層好ましくは1170~1220℃である。
 本発明のガラス基板の第1の態様及び第2の態様は、熱収縮率が75ppm以下、より好ましくは65ppm、さらに好ましくは60ppm以下であり、好ましくは55ppm以下、より好ましくは50ppm以下、さらに好ましくは48ppm以下、より一層好ましくは45ppm以下である。本発明のガラス基板の第3の態様は、熱収縮率が、75ppm以下であることが好ましく、より好ましくは65ppm、さらに好ましくは60ppm以下であり、より好ましくは55ppm以下、さらに好ましくは50ppm以下、一層好ましくは48ppm以下、より一層好ましくは45ppm以下である。熱収縮率(量)が大きくなると、画素の大きなピッチズレを引き起こし、高精細なディスプレイを実現できなくなる。熱収縮率(量)を所定範囲に制御するためには、ガラス基板の歪点を665℃以上にすることが好ましく、670℃以上にすることが好ましい。他方、ガラス基板の成形性を合わせて考慮すると、ガラス基板の歪点は、665~750℃の範囲が好ましく、680~750℃がより好ましく、より好ましくは680~730℃の範囲である。
 なお、熱収縮率を0ppmにしようとすると、徐冷工程(例えば、TgからTg-100℃の温度範囲)の冷却速度を極めて低減することや、後述する冷却工程とは別に熱収縮低減処理工程を設ける必要がある。具体的には、ガラスリボンを切断した後に再度徐冷を行う熱収縮低減処理工程を設けることで、熱収縮率を低減することができる(オフラインアニール)。しかし、徐冷工程におけるガラスリボンの冷却速度を極めて低減することや徐冷工程とは別に熱収縮低減処理工程を設けると、生産性が低下し、コストが高騰してしまう。生産性及びコストを鑑みると、熱収縮率が、好ましくは5~75ppm、より好ましくは5~60ppm、さらに好ましくは8~55ppm、一層好ましくは8~50ppm、より一層好ましくは10~48ppm、さらに一層好ましくは10~45ppm未満、尚一層好ましくは15~43ppmである。
 尚、熱収縮率は、常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/分で常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 次に、本発明のガラス基板を構成するガラスについて、各成分の含有割合、組成比の限定理由について説明する。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、耐酸性が低下し、歪点が低下し、平均熱膨張係数が増加し、かつ耐BHF(バッファードフッ酸)が低下する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化するのが難しくなる。一方、SiO2含有量が多すぎると、高温度域の粘性が著しく高くなり熔解が困難になる傾向がある。また、SiO2含有量が多すぎると、耐失透性が低下する傾向もある。このような観点から、SiO2の含有量は、55~80mol%の範囲とすることが好ましく、60~78mol%の範囲とすることがより好ましい。SiO2の含有量は、より好ましくは62~75mol%、さらに好ましくは63~72mol%、一層好ましくは65~71mol%、さらに一層好ましくは65~70mol%の範囲である。
 Al2O3は、分相を抑制し、歪点を高くする必須成分である。含有量が少なすぎると、ガラスが分相しやすくなり、歪点が低下する。さらに、ヤング率も低下し、かつ酸によるエッチングレートも低下する傾向がある。Al2O3含有量が多すぎると、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、Al2O3の含有量は 3~20mol%の範囲であることが好ましい。Al2O3の含有量は、より好ましくは5~18mol%、さらに好ましくは5~15mol%、一層好ましくは7~14mol%、さらに一層好ましくは10~14mol%の範囲である。
 B2O3は、ガラスの熔融温度を低下させ、熔解性を改善する必須成分である。B2O3含有量が少なすぎると、熔解性が低下し、耐失透性が低下し、耐BHFが低下し、かつ平均熱膨張係数が増大する傾向がある。また、B2O3含有量が少なすぎると、低密度化が図りがたくなる。一方、B2O3含有量が多すぎると、歪点が低下し、耐酸性が低下し、かつヤング率が低下する。
 また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、3~15mol%の範囲であることが好ましく、より好ましくは3~9.5mol%、さらに好ましくは3~8.9mol%未満、一層好ましくは4~8.9mol%未満、より一層好ましくは5~8.5mol%、さらに一層好ましくは6~8mol%の範囲である。他方、失透温度の上昇を防止するためには、B2O3の含有量は、5~13mol%がより好ましく、5~12mol%がさらに好ましい、6~10mol%未満(6%以上10%未満)がさらに好ましい。
 MgOは、熔解性を向上させる成分である。また、アルカリ土類金属の中では密度を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、熔解性を向上するので切粉の発生を抑制できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、成形性が悪化(耐失透性が低下)する。また、MgOの含有量が多すぎると、耐BHF低下、耐酸性低下の傾向がある。特に、失透温度を低下させたい場合には、MgOは実質的に含有させないことが好ましい。このような観点から、MgO含有量は、好ましくは0~15mol%、より好ましくは0~10mol%、さらに好ましくは0~5mol%、一層好ましくは0~2 mol%未満、より一層好ましくは0~1.5mol%であり、さらに一層好ましくは0~1mol%であり、尚一層好ましくは0~0.5mol%であり、さらに尚一層好ましくは0~0.2mol%未満であり、最も好ましくは実質的に含有しないことである。
 CaOは、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。また、アルカリ土類金属の中では密度を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。含有量が少な過ぎると、熔融温度の上昇による熔解性の低下及び耐失透性の低下を生じる傾向がある。一方、CaO含有量が多すぎると、平均熱膨張係数が増加する傾向がある。CaO含有量は、好ましくは0~20mol%、より好ましくは3.6~16mol%、さらに好ましくは4~16mol%、一層好ましくは6~16mol%、より一層好ましくは7超~16mol%、さらに一層好ましくは8~15mol%、尚一層好ましくは9~13mol%の範囲である。
 SrOは、耐失透性を下げることができる成分である。SrOは、必須ではないが、含有させると、耐失透性が向上し、かつ熔解性が向上する。一方、SrO含有量が多すぎると、密度が上昇してしまう。SrO含有量は、好ましくは0~10mol%、より好ましくは0~2mol%、さらに好ましくは0~1mol%、一層好ましくは0~0.5mol%未満、より一層好ましくは0~0.1mol%未満の範囲である。ガラスの密度を低下させたい場合には、SrOは実質的に含有させないことが好ましい。
 BaOは、環境負荷の問題から、実質的に含有させないことが好ましい。また、平均熱膨張係数も増大してしまう。BaO含有量は、好ましくは0~10mol%、より好ましくは0~5 mol%未満、さらに好ましくは0~1mol%未満であり、一層好ましくは0~0.5mol%未満であり、より一層好ましくは0~0.1mol%未満であり、さらに一層好ましくは実質的に含有させない。
 Li2O及びNa2Oは、ガラス基板から溶出してTFT特性を劣化させたり、ガラスの平均熱膨張係数を大きくしてディスプレイ製造の熱処理時に基板を破損したり、歪点を大きく低下させて過度に耐熱性を低下させる虞のある成分である。Li2O及びNa2Oは、0~0.3mol%が好ましく、0~0.2mol%がより好ましく、0~0.1mol%がさらに好ましく、いずれも実質的に含有しないことが一層好ましい。
 K2Oは、ガラスの塩基性度を高め、清澄性を発揮させる成分である。また、熔解性向上、比抵抗低下させる成分である。必須ではないが、含有させると、清澄性は向上し、熔解性は向上し、かつ比抵抗は低下する。K2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる傾向がある。また、平均熱膨張係数も増大する傾向がある。さらに、ガラスの歪点を大きく低下させて過度に耐熱性を低下させるおそれのある成分である。K2O含有量は、好ましくは0~0.8mol%、より好ましくは0.01~0.5mol%、さらに好ましくは0.1~0.3mol%の範囲である。
 ZrO2およびTiO2は、ガラスの化学的耐久性を向上させ、歪点を上げる成分である。ZrO2およびTiO2は、必須成分ではないが、含有させることで歪点の上昇および耐酸性向上を実現できる。しかし、ZrO2含有量およびTiO2含有量が多くなりすぎると、失透温度が著しく上昇するため、耐失透性および成形性が低下する場合がある。特に、ZrO2は融点が高く難熔なため、原料の一部が熔解炉の底部に堆積するといった問題を引き起こす。これらの未熔解の成分がガラス素地に混入するとインクルージョンとしてガラスの品質悪化を引き起こす。また、TiO2は、ガラスを着色させる成分なので、ディスプレイ用基板には好ましくない。以上の理由から、本発明のガラス基板では、ZrO2およびTiO2の含有率は、それぞれ、0~5mol%が好ましく、0~3mol%がより好ましく、0~2mol%がさらに好ましく、0~1mol%がさらに好ましい。さらに好ましくは、本発明のガラス基板が、ZrO2およびTiO2を実質的に含有させないことである。
 ZnOは、耐BHF性や熔解性を向上させる成分である。但し、必須ではない。
 ZnO含有量が多くなりすぎると、失透温度が上昇し、歪点が低下し、かつ密度が上昇する傾向がある。そのため、ZnO含有量は、好ましくは0~5mol%、より好ましくは0~3mol%、さらに好ましくは0~2mol%、一層好ましくは0~1mol%の範囲である。ZnOは実質的に含有させないことが好ましい。
 P2O5は、熔融温度を低下させ、熔解性を向上させる成分である。但し、必須ではない。P2O5含有量が多すぎると、ガラス熔解時のP2O5の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。また、耐酸性が著しく悪化する。また、乳白が生じやすくなる。P2O5含有量は、好ましくは0~3mol%、より好ましくは0~1mol%、さらに好ましくは0~0.5mol%の範囲であり、実質的に含有させないことが特に好ましい。
 本発明のガラス基板を構成するガラスは清澄剤を含むことができる。清澄剤としては、環境への負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、Sn、Fe、Ce、Tb、MoおよびWの金属酸化物の群から選ばれる少なくとも1種を挙げることができる。清澄剤としては、SnO2が好適である。清澄剤の含有量は、少なすぎると、泡品質が悪化する。清澄剤の含有量が多くなりすぎると、失透や着色などの原因となる場合がある。清澄剤の含有量は、清澄剤の種類やガラスの組成にもよるが、例えば、0.05~0.5mol%、好ましくは0.05~0.3mol%、より好ましくは0.05~0.2mol%の範囲とすることが適当である。尚、SnO2の場合、例えば、0.01~0.2mol%の範囲とすることが好ましく、より好ましくは0.03~0.15mol%、さらに好ましくは0.05~0.12mol%の範囲である。
 Fe2O3は、清澄剤としての働きを有する以外に、ガラスの比抵抗を低下させる成分である。熔融温度が高く、難解なガラスにおいては、ガラスの比抵抗を低下させるために含有させることが好ましい。しかし、Fe2O3含有量が多くなりすぎると、ガラスが着色し、透過率が低下する。Fe2O3含有量は、0~0.1mol%の範囲であり、好ましくは0~0.05mol%、より好ましくは0.001~0.05mol%、さらに好ましくは0.005~0.05mol%、一層好ましくは0.005~0.03mol%、より一層好ましくは0.005~0.02mol%の範囲である。
 本発明のガラス基板を構成するガラスは、環境負荷の問題から、As2O3は実質的に含有しない。本明細書において、「実質的に含有せず」とは、ガラス原料にこれら成分の原料となる物質を用いないことを意味し、他の成分のガラス原料に不純物として含まれる成分の混入を排除するものではない。本発明のガラス基板を構成するガラスは、環境負荷の問題から、Sb2O3は、好ましくは0~0.5mol%、より好ましくは0~0.1mol%、最も好ましくは実質的に含有しない。
 本発明のガラス基板を構成するガラスは、環境上の理由からPbO及びFは実質的に含有しないことが好ましい。
 SiO2の含有量からAl2O3の含有量の1/2を引いた差(SiO2-Al2O3/2)は、値が小さすぎると、エッチングレートは向上するものの、耐失透性が低下する。値が高すぎると、エッチングレートが低下する。このような観点から、69 mol%以下であることが好ましく、より好ましくは60~68mol%、さらに好ましく63~67 mol%である。なお、ディスプレイ製造においてガラス基板にスリミングを行う場合、その生産性を向上させるために、エッチングレートをさらに高めることが求められる。このような場合、さらにエッチングレートを向上させるために、(SiO2-Al2O3/2)は69mol%以下が好ましく、50~68mol%がより好ましく、55~65mol%がさらに好ましく、57~63mol%が一層好ましく、58~62mol%がより一層好ましい。
 SiO2とAl2O3の合量であるSiO2+Al2O3は少なすぎると、歪点が低下する傾向があり、多すぎると、耐失透性が悪化する傾向がある。そのためSiO2+Al2O3は、70mol%以上であることが好ましく、75mol%以上であることが好ましく、より好ましくは76~88mol%、さらに好ましくは77~85mol%、一層好ましくは78~82mol%である。
 B2O3とP2O5の合量であるB2O3+P2O5は少なすぎると、熔解性が低下する傾向があり、多すぎると、B2O3+P2O5のガラスの不均質が顕著となり、脈理が発生しやすくなり、歪点が低下する傾向がある。そのためB2O3+P2O5は好ましくは3~15mol%、より好ましくは3~9.5mol%、さらに好ましくは4~9 mol%、一層好ましくは5~9mol%、より一層好ましくは6~8mol%である。他方、失透温度の上昇を防止するためには、B2O3+P2O5は5~13mol%がより好ましく、5~12mol%がさらに好ましく、6~10mol%未満がさらに好ましい。
 B2O3に対するCaOのモル比CaO/B2O3は歪点の低下を防止しつつ、熔解性を向上させるという観点から、好ましくは0.5以上、より好ましくは0.9以上、さらに好ましくは1.2超、一層好ましくは1.2超~5の範囲、なお一層好ましくは1.2超~3の範囲、より一層好ましくは1.3~2.5の範囲、最も好ましくは1.3~2の範囲である。他方、熔解性を向上させるには、0.5~5が好ましく、0.9~3がより好ましく、1超~2.5がさらに好ましく、1超~2が一層好ましく、1.1超~2がより一層好ましく、1.2超~1.5がさらに一層好ましい。
 モル比CaO/ROは耐失透性および低温粘性域の温度の指標となる。CaO/ROは好ましくは0.5~1、より好ましくは0.7~1、さらに好ましくは0.85超~1、一層好ましくは0.88~1、より一層好ましくは0.9~1の範囲、さらに一層好ましくは0.92~1、最も好ましくは0.95~1である。これらの範囲とすることで、耐失透性の向上と熱収縮の低減を両立することができる。さらに、低密度化を図ることができる。また、複数のアルカリ土類金属を含有させるよりも、CaOのみを含有させた方が歪点を上げることができる。さらに、CaOは原料が安価であり、入手が容易であるという利点もある。
 SrOとBaOは、ガラスの失透温度を下げることができる成分である。必須ではないが、含有させると、耐失透性は向上し、かつ熔解性は向上する。しかし、含有量が多すぎると、密度が上昇してしまう。SrOとBaOの合量であるSrO+BaOは、0~10mol%であることが好ましい。特に、軽量化が求められる場合には、密度を低減して軽量化するという観点から、好ましくは0~3mol%未満、より好ましくは0~2mol%、さらに好ましくは0~1mol%の範囲である。ガラス基板の密度を低下させたい場合には、SrOとBaOは、実質的に含有させないことが好ましい。
 ROとZnOとB2O3の合量であるRO+ZnO+B2O3は、少なすぎると、熔解性が低下する。一方、多すぎると、歪点が低下する傾向がある。そこでRO+ZnO+B2O3は、好ましくは7~25mol%未満、より好ましくは10~23mol%、さらに好ましくは12~22mol%、一層好ましくは14~21mol%、より一層好ましくは16~20mol%の範囲である。他方、熔解性を向上させるためには、RO+ZnO+B2O3は、12~25mol%がさらに好ましく、14~25mol%がさらに好ましく、17~23mol%がさらに好ましい。
 SiO2とAl2O3の合量(SiO2+Al2O3)に対するROのモル比RO/(SiO2+Al2O3)は、歪点と熔解性の指標となる。歪点の上昇と熔解性を両立し、歪点の上昇とガラス融液の比抵抗の低減も両立するという観点から、好ましくは0.07~0.2の範囲であり、より好ましくは0.08~0.18、さらに好ましくは0.09~0.16、一層好ましくは0.11~0.15の範囲である。
 Li2O、Na2O及びK2Oの合量であるR2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、熔解性を向上し、かつ比抵抗を低下させる成分である。R2Oは、必須ではないが、含有させると、ガラス融液の比抵抗が低下し、清澄性が向上し、かつ熔解性が向上する。しかし、R2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる虞がある。また、平均熱膨張係数が増大する傾向がある。R2Oは好ましくは0~0.8mol%、より好ましくは0.01~0.5mol%、さらに好ましくは0.05~0.4mol%、一層好ましくは0.1~0.3mol%である。
 K2Oは、Li2OやNa2Oと比較して、分子量が大きいため、ガラス基板から溶出しにくい。そのため、R2Oを含有させる場合には、K2Oを含有させることが好ましい。Li2O及びNa2Oの割合が大きいと、ガラス基板から溶出してTFT特性を劣化させる虞が強くなる。モル比K2O/R2Oは、好ましくは0.5~1、より好ましくは0.6~1、さらに好ましくは0.7~1、一層好ましくは0.8~1、より一層好ましくは0.95~1の範囲である。
 本発明のガラス基板を構成するガラスは、清澄剤として金属酸化物を使用することが好ましい。前記金属酸化物の清澄性を高めるためには、ガラスを酸化性にすることが好ましくが、還元性の原料(例えば、アンモニウム塩、塩化物)を使用することで、前記金属酸化物の清澄性は低下する。前記還元性の原料を用いるとガラス中にNH4 +やClが残存するという観点からNH4 +の含有量が1×10-4 mol%未満であることが好ましく、0~0.5×10-4mol%未満であることがよりに好ましく、実質的に含有しないことがさらに好ましい。また、本発明のガラス基板を構成するガラスは、Clの含有量が0.05mol%未満であることが好ましく、0~0.05mol%未満であることがよりに好ましく、0~0.03mol%未満であることがさらに好ましく、0~0.005mol%未満であることが一層に好ましく、実質的に含有しないことが尚一層好ましい。なお、上記NH4 +及びClは清澄効果を期待して、アンモニウム塩および塩化物(特に塩化アンモニウム)としてガラス原料に用いられることでガラス中に残存する成分であるが、環境上および設備腐食の理由からも、これらの原料の使用は好ましくない。
 本発明において、歪点を規定するガラス基板は、歪点が665℃以上である。ガラス基板は、歪点が低いと、熱処理工程(ディスプレイ製造時)において熱収縮が大きくなる。本発明のガラス基板の歪点は、好ましくは670℃以上、より好ましくは680℃以上、さらに好ましくは690℃以上、一層好ましくは695℃以上、より一層好ましくは700℃以上である。ガラス基板の歪点は、ガラス基板の組成により適宜選択することができ、歪点を665℃以上とし得るガラス組成については後述する。
 本発明のガラス基板は、平均熱膨張係数(100-300℃)が、例えば、38×10-7-1未満であり、好ましくは37×10-7-1未満、より好ましくは28~36×10-7-1未満、さらに好ましくは30~36×10-7-1未満、一層好ましくは31~35×10-7-1、より一層好ましくは32~35×10-7-1未満の範囲である。平均熱膨張係数が大きいと、熱処理工程において、熱衝撃や熱収縮量が増大する傾向がある。他方、平均熱膨張係数が小さいと、ガラス基板上に形成される金属、有機系接着剤などの周辺材料と平均熱膨張係数との整合がとりにくくなり、周辺部材が剥離してしまう場合がある。また、ディスプレイ製造工程では、急加熱と急冷が繰り返され、ガラス基板にかかる熱衝撃は大きくなる。さらに、大型のガラス基板は、熱処理工程において、温度差(温度分布)がつきやすく、ガラス基板の破壊確率が高くなる。平均熱膨張係数を上記範囲とすることで、熱膨張差から生じる熱応力を低減することができ、結果として、熱処理工程において、ガラス基板の破壊確率が低下する。つまり、平均熱膨張係数を上記範囲とすることは、幅方向2000~3500mmであり、縦方向が2000~3500mmであるガラス基板について、ガラス基板の破壊確率が低下させるという観点から、特に有効である。なお、ガラス基板上に形成される金属、有機系接着剤などの周辺材料と平均熱膨張係数との整合が重視させる観点からは、平均熱膨張係数(100-300℃)が40×10-7℃未満であることが好ましく、28~40×10-7℃未満であることがより好ましく、30~39×10-7℃未満であることがさらに好ましく、32~38×10-7℃未満であることが一層好ましく、34~38×10-7℃未満であることがより一層好ましい。
 本発明のガラス基板は密度が、ガラス基板の軽量化及びディスプレイの軽量化という観点から、例えば、2.55 g/cm3以下であり、好ましくは2.5 g/cm3未満、より好ましくは2.45 g/cm3以下、さらに好ましくは2.42 g/cm3以下である。密度が高くなると、ガラス基板の軽量化が困難となり、ディスプレイの軽量化も図れなくなる。
 ガラスのTgが低くなると、耐熱性が低下する傾向がある。また、熱処理工程において熱収縮が生じやすくなる傾向もある。本発明のガラス基板はTgが、好ましくは720℃以上、より好ましくは730℃以上、さらに好ましくは740℃以上、一層好ましくは750℃以上である。ガラス基板のTgを上記範囲にするには、本発明のガラス基板の組成の範囲において、Tgを高める、例えば、SiO2及びAl2O3等の成分を多めにすることが適当である。
 本発明のガラス基板を構成するガラスは粘度(logη=2(=102dPa・s))を示す温度が、好ましくは1750℃以下、より好ましくは1600~1750℃の範囲、さらに好ましくは1620~1730℃、一層好ましくは1650~1720℃の範囲である。また、ガラスの熔解性は、熔融温度(粘度logη=2.5(=102.5dPa・s)を示す温度)によって評価できる。本発明のガラスは、熔融温度が1680℃以下であることが好ましい。熔融温度を1680℃以下とすることで、本実発明のガラス基板を構成するガラスは良好な熔解性を有することができる。熔融温度が低いガラスは、歪点が低くなりやすい。歪点を高くするには、熔融温度もある程度高くする必要がある。熔解温度が高いと、熔解槽への負荷が大きくなる。また、エネルギーを大量に使用するため、コストも高くなる。したがって、熔融温度は、好ましくは1550~1650℃であり、より好ましくは1580~1640℃であり、より好ましくは1590~1630℃であり、さらに好ましくは1600~1620℃である。ガラス基板の熔解温度を上記範囲にするには、本発明のガラス基板の組成の範囲において、粘度を低下させる、例えば、B2O3、RO等の成分を調整することが適当である。
 本発明のガラス基板を構成するガラスは、ガラス融液の比抵抗(1550℃における)が、好ましくは50~300Ω・cm、より好ましくは50~250Ω・cm、さらに好ましくは50~200Ω・cm、一層好ましくは100~200Ω・cmの範囲である。比抵抗が小さくなりすぎると、熔解に必要な電流値が過大になり、設備上の制約がでる場合がある。また、電極の消耗が多くなる傾向もある。熔融ガラスの比抵抗が大きくなりすぎると、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が熔損してしまう場合もある。熔融ガラスの比抵抗は、主に、本発明のガラス基板の必須成分であるROとFe2O3含有量をコントロールすることで、上記範囲に調整できる。
 本発明のガラス基板を構成するガラスの液相粘度(失透温度での粘度)は、好ましくは30,000(≒104.48)dPa・s以上、より好ましくは40,000(≒104.6)dPa・s以上、さらに好ましくは50,000(≒104.8)dPa・s以上の範囲である。これらの範囲内にあることで、成形時に失透結晶が発生し難くなるため、オーバーフローダウンドロー法でガラス基板を成形しやすくなる。これにより、ガラス基板の表面品位を向上できるとともに、ガラス基板の生産コストを低減することができる。あるいは、本発明のガラスの液相粘度は、好ましくは104.5~106.0 dPa・s、より好ましくは104.5~105. 9 dPa・s、より好ましくは104.6~105.8 dPa・s、より好ましくは104.8~105.7 dPa・s、さらに好ましくは104.8~105.6 dPa・s、さらに好ましくは104.9~105.5 dPa・sの範囲である。これらの範囲内にあることで、TFTフラットパネルディスプレイ用ガラス基板として必要な特性を有すると共に、成形時に失透結晶が発生し難くなるため、オーバーフローダウンドロー法でガラス基板を成形しやすくなる。
 本発明のガラス基板の組成の範囲において、各成分の含有量を適宜調整することで、ガラス基板は液相粘度を上記範囲にすることができる。
 本発明のガラス基板を構成するガラスのエッチングレートは、50~160μm/hであり、60~140μm/hであることが好ましく、70~120μm/hであることがより好ましい。エッチングレートが速くなると、生産性が向上する。特に、TFTやカラーフィルタ形成後にガラス板のエッチングを行い、軽量化を図る場合には、エッチングレートが生産性を左右する。しかし、エッチングレートが高くなりすぎるとパネル作製工程での薬液との反応で不都合が生じる虞がある。ガラスのエッチングレートを高めるためには、SiO2-1/2Al2O3の値を小さくすればよい。他方、ガラスのエッチングレートを低くするためには、SiO2-1/2Al2O3の値を大きくすればよい。
 本発明のガラス基板は大きさには特に制限はない。幅方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。縦方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。大きいガラス基板を使用するほど、液晶ディスプレイや有機ELディスプレイの生産性が向上する。
 本発明のガラス基板は板厚が、例えば、0.1~1.1mmの範囲であることができる。但し、この範囲に限定する意図ではない。板厚は、例えば、0.1~0.7 mm、0.3~0.7 mm、0.3~0.5 mmの範囲であることもできる。ガラス板の厚さが薄すぎると、ガラス基板自体の強度が低下する。例えば、ディスプレイ製造時の破損が生じやすくなる。板厚が厚すぎると、薄板化のためのエッチング量が増加し、生産性が低下してしまう。
 本発明のガラス基板は、TFTが形成された後、例えば、アレイ・カラーフィルタ張り合わせ後にガラス基板表面をエッチング処理するTFTが形成されるフラットパネルディスプレイの製造に用いられるためのガラス基板である。特にLTPSまたはTOSが表面に形成されるフラットパネルディスプレイ用ガラス基板に好適である。具体的には、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板に好適である。特に、LTPS・TFT液晶ディスプレイ用ガラス基板、LTPS・TFT有機ELディスプレイ用ガラス基板に好適である。さらに、TOS・TFT液晶ディスプレイ用ガラス基板、TOS・TFT有機ELディスプレイ用ガラス基板にせ好適である。中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。
<ガラス基板の製造方法>
 本発明のガラス基板の製造方法は、所定の組成に調合したガラス原料を、例えば、直接通電加熱やガス燃焼加熱を用いて、熔解する熔解工程と、前記熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する成形工程と、前記平板状ガラスを徐冷する徐冷工程と、を有する。
[熔解工程]
 熔解工程においては、所定の組成となるように調合したガラス原料を、例えば、直接通電加熱やガス燃焼加熱を用いて熔解する。ガラス原料は、公知の材料から適宜選択できる。
[成形工程]
 成形工程では、熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する。平板状ガラスへの成形方法は、例えば、ダウンドロー法、特にオーバーフローダウンドロー法が好適であり、平板状ガラスとしてガラスリボンが成形される。その他、フロート法、リドロー法、ロールアウト法などを適用できる。ダウンドロー法を採用することにより、フロート法など他の成形方法を用いた場合に比べ、得られたガラス基板の主表面が熱間成形された表面であるために、極めて高い平滑性を有しており、成形後のガラス基板表面の研磨工程が不要となるために、製造コストを低減することができ、さらに生産性も向上させることができる。さらに、ダウンドロー法を使用して成形したガラス基板の両主表面は均一な組成を有しているために、エッチング処理を行った際に、均一にエッチングを行うことができる。加えて、ダウンドロー法を使用して成形することで、マイクロクラックのない表面状態を有するガラス基板を得ることができるため、ガラス基板自体の強度も向上させることができる。
[徐冷工程]
 徐冷時の条件を適宜調整することでガラス基板の熱収縮率をコントロールすることができる。ガラス基板の熱収縮率は上述のように75ppm、好ましくは70ppm以下、より好ましくは60ppm以下である。熱収縮率が前記上限以下のガラス基板を製造するためには、例えば、ダウンドロー法を使用する場合は、平板状ガラスとしてのガラスリボンの温度を、TgからTg-100℃の温度範囲内を20~200秒かけて冷却するように、徐冷を行うことが望ましい。20秒未満であると、熱収縮率を十分低減することができない場合がある。一方、200秒を超えると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。あるいは、平板状ガラスとしてのガラスリボンの冷却速度を、TgからTg-100℃の温度範囲内において、30~300℃/minとするように徐冷を行うことが好ましい。冷却速度が、300℃/minを超えると、熱収縮率を十分低減することができない場合がある。一方、30℃/min未満であると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。冷却速度の好ましい範囲は、30~300℃/minであり、50~200℃/minがより好ましく、60~120℃/minがさらに好ましい。なお、徐冷工程の下流で平板状ガラスを切断した後に、別途オフラインで徐冷を行うことでも熱収縮率は低下させることができるが、この場合、徐冷工程を行う設備の他に、別途オフラインで徐冷を行う設備が必要となる。そのため、上述したように、オフライン徐冷を省略することができるように、ガラス基板の熱収縮率を低減できるようにガラスリボンの温度制御した方が、生産性及びコストの観点からも好ましい。
 以下、本発明を実施例に基づいてさらに詳細に説明する。但し、本発明は実施例に限定されるものではない。
実施例1~4
 表1に示すガラス組成になるように、実施例1~4のガラスを以下の手順に従って作製した。得られたガラスおよびガラス基板について、エッチングレート、熱収縮率、失透温度、100~300℃の範囲における平均熱膨張係数、歪点、Tg、密度を求めた。
Figure JPOXMLDOC01-appb-T000001
 (ガラスの作製)
 まず、表1に示すガラス組成となるように、通常のガラス原料である、シリカ,アルミナ,酸化ホウ素,炭酸カリウム,塩基性炭酸マグネシウム,炭酸カルシウム,炭酸ストロンチウム,酸化第二スズおよび三酸化二鉄を用いて、ガラス原料バッチ(以下バッチと呼ぶ)を調合した。
 前記調合したバッチを、耐火煉瓦製の熔解槽と白金合金製の清澄槽(調整槽)を備えた連続熔解装置を用いて、1560~1640℃で熔解し、1620~1670℃で清澄し、1440~1530℃で攪拌した後にオーバーフローダウンドロー法により厚さ0.7mmの薄板状に成形し、TgからTg-100℃の温度範囲内において、実施例1は35℃/分の平均冷却速度で、実施例2~4は60℃/分の平均冷却速度で徐冷を行い、液晶ディスプレイ用(有機ELディスプレイ用)ガラス基板を得た。
 (エッチングレート)
 ガラス基板を約20mm×約10mmの大きさに切断し、洗浄後、容器に入れたHFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス板の両面を1時間浸漬した。水洗した後に、試験前後の厚みを測定して両面の厚み減少量を求め、その1/2をガラス基板の一方の表面の厚み減少量として、ガラス板のエッチングレートを算出した。
 (熱収縮率)
 熱収縮率は、常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後のガラス基板の収縮量を用いて、以下の式にて求めた。
熱収縮率(ppm)
 ={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
具体的には、例えば下記の方法を用いて熱収縮量を求めた。
1.ガラス板の両端近傍にダイヤモンドペンを用いて平行なケガキ線を入れる。
2.ガラス板をケガキ線に対して垂直方向に半分に切断し、1つを熱処理する(上記では、550℃1時間を2回)。
3.熱処理後のガラス板と、他方のガラス板とをつき合わせて、両側のケガキ線のズレ量を測定し、上記の式に従って収縮率を計算する。
 (失透温度の測定方法)
 前記ガラス基板を粉砕し、2380μmのふるいを通過し、1000μmのふるい上に留まったガラス粒を得た。このガラス粒をエタノールに浸漬し、超音波洗浄した後、恒温槽で乾燥させた。乾燥させたガラス粒を、幅12mm、長さ200mm、深さ10mmの白金ボート上に、前記ガラス粒25gをほぼ一定の厚さになるように入れた。この白金ボートを、1080~1320℃の温度勾配をもった電気炉内に5時間保持し、その後、炉から取り出して、ガラス内部に発生した失透を50倍の光学顕微鏡にて観察した。失透が観察された最高温度を、失透温度とした。
 (100~300℃の範囲における平均熱膨張係数αおよびTgの測定方法)
 示差熱膨張計(Thermo Plus2 TMA8310)を用いて、昇温過程における温度と試験片の伸縮量を測定した。この時の昇温速度は5℃/minとした。前記温度と試験片の伸縮量との測定結果を元に100~300℃の温度範囲における平均熱膨張係数およびTgを測定した。
 (歪点)
 ビーム曲げ測定装置(東京工業株式会社製)を用いて測定を行い、ビーム曲げ法(ASTM C-598)に従い、計算により歪点を求めた。
 (密度)
 前記ガラス基板の密度は、アルキメデス法によって測定した。
 上記のように得られたガラス基板は、エッチングレートが50μm/h以上であり、エッチング処理が迅速に行えるものであり、生産性に優れたガラス基板である。さらに上記のように得られたガラス基板は、熱収縮率が75ppm以下である。加えて、膨張係数は38×10-7℃未満であり、720℃以上のTg、670℃以上の歪点、1280℃未満の失透温度を有しており、熱収縮率、平均熱膨張係数、Tg、歪点および失透温度も、本発明のガラス基板の条件を満たしていた。したがって、本実施例で得られたガラス基板は、LTPS・TFTまたはTOS・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。
 さらに実施例2~4で得られたガラス基板は、密度が2.5g/cm3以下であり、ガラス基板の軽量化及びディスプレイの軽量化という観点から特に好ましいガラス基板であった。
 本発明は、ディスプレイ用ガラス基板の製造分野に利用可能である。特に、LTPS・TFTをガラス基板表面に形成するディスプレイ用ガラス基板に好適である。また、TOS・TFTをガラス基板表面に形成するディスプレイ用ガラス基板にも好適である。

Claims (5)

  1. モル%表示で、
    SiO2 55~80%、
    Al2O3 3~20%、
    B2O3 3~15%、
    SiO2-1/2Al2O3が70%以下であり、
    モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
    歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
    常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である、フラットパネルディスプレイ用ガラス基板。
    熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
  2. モル%表示で、
    SiO2 55~80%、
    Al2O3 3~20%、
    B2O3 3~15%、
    SiO2-1/2Al2O3が70%以下であり、
    モル比(SiO2+2×Al2O3)/B2O3が9.5超19.0以下であり、
    失透温度が1280℃未満であるガラスからなり、
    常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が60ppm以下である、フラットパネルディスプレイ用ガラス基板。
    熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
  3. フラットパネルディスプレイ用ガラス基板であって、
    モル比(SiO2+2×Al2O3)/B2O3が8.5超19.0以下であり、
    MgO+CaO+SrO+BaOが5 mol%以上、14 mol%未満であり、
    歪点が665℃以上であり、失透温度が1280℃未満であるガラスからなり、
    HFとHClの混合エッチング液(HF濃度1mol/kg、HCl濃度5mol/kg、温度40℃)にガラス基板を1時間浸漬した場合の一方のガラス表面の厚み減少量(μm)として表されるエッチングレートが50μm/h以上であり、常温から10℃/minで昇温し、550℃で1時間保持し、その後、10℃/minで常温まで降温し、再び10℃/minで昇温し、550℃で1時間保持し、10℃/minで常温まで降温した後の下記式で示される熱収縮率が75ppm以下である、ガラス基板。
    熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
  4. 前記ガラス基板は、フラットパネルディスプレイの製造において薄膜トランジスタ(以下、TFTと略記する)形成後にガラス基板表面をエッチング処理に付されるものであり、かつ前記エッチング処理におけるエッチング量が50~650μmの範囲である請求項1~3のいずれか1項に記載のガラス基板。
  5. 前記ガラス基板は、低温ポリシリコン薄膜トランジスタ(以下、LTPS・TFTと略記する)フラットパネルディスプレイ用であるか、又は酸化物半導体薄膜トランジスタ(以下、TOS・TFTと略記する)フラットパネルディスプレイ用である、請求項1~4のいずれか1項に記載のガラス基板。
PCT/JP2012/074707 2011-09-30 2012-09-26 フラットパネルディスプレイ用ガラス基板 WO2013047586A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013509354A JP5753895B2 (ja) 2011-09-30 2012-09-26 フラットパネルディスプレイ用ガラス基板
KR1020127031515A KR101463672B1 (ko) 2011-09-30 2012-09-26 플랫 패널 디스플레이용 유리 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011217582 2011-09-30
JP2011-217582 2011-09-30
JP2012063408 2012-03-21
JP2012-063408 2012-03-21

Publications (1)

Publication Number Publication Date
WO2013047586A1 true WO2013047586A1 (ja) 2013-04-04

Family

ID=47995616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074707 WO2013047586A1 (ja) 2011-09-30 2012-09-26 フラットパネルディスプレイ用ガラス基板

Country Status (4)

Country Link
JP (1) JP5753895B2 (ja)
KR (1) KR101463672B1 (ja)
TW (1) TWI518045B (ja)
WO (1) WO2013047586A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183085A (ja) * 2015-03-26 2016-10-20 AvanStrate株式会社 ガラス基板の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102254058B1 (ko) * 2013-12-17 2021-05-18 엘지디스플레이 주식회사 터치스크린 구현 유기전계 발광소자 및 이의 제조 방법

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295530A (ja) * 1995-04-27 1996-11-12 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JPH0948632A (ja) * 1995-08-02 1997-02-18 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JPH09100135A (ja) * 1995-07-28 1997-04-15 Asahi Glass Co Ltd 無アルカリガラス及びディスプレイ用基板
JPH09110460A (ja) * 1995-10-18 1997-04-28 Central Glass Co Ltd 無アルカリガラス
JPH09156953A (ja) * 1995-12-11 1997-06-17 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JPH09169539A (ja) * 1994-11-30 1997-06-30 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JPH09169538A (ja) * 1994-11-30 1997-06-30 Asahi Glass Co Ltd 無アルカリガラス及び液晶ディスプレイパネル
JP2001172041A (ja) * 1999-12-14 2001-06-26 Asahi Glass Co Ltd 液晶ディスプレイ基板用ガラス
JP2004091244A (ja) * 2002-08-30 2004-03-25 Nippon Electric Glass Co Ltd 無アルカリガラス基板及びその製造方法
JP2005089259A (ja) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd ガラス基板
JP2008001588A (ja) * 2006-05-25 2008-01-10 Nippon Electric Glass Co Ltd 無アルカリガラスおよび無アルカリガラス基板
JP2008001589A (ja) * 2006-05-23 2008-01-10 Nippon Electric Glass Co Ltd 無アルカリガラスおよび無アルカリガラス基板並びにその製造方法
WO2008007676A1 (fr) * 2006-07-13 2008-01-17 Asahi Glass Company, Limited substrat de verre sans alcalin, son processus de fabrication et panneaux d'affichage à cristaux liquides
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5327702B2 (ja) * 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169539A (ja) * 1994-11-30 1997-06-30 Asahi Glass Co Ltd 無アルカリガラスおよび液晶ディスプレイパネル
JPH09169538A (ja) * 1994-11-30 1997-06-30 Asahi Glass Co Ltd 無アルカリガラス及び液晶ディスプレイパネル
JPH08295530A (ja) * 1995-04-27 1996-11-12 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JPH09100135A (ja) * 1995-07-28 1997-04-15 Asahi Glass Co Ltd 無アルカリガラス及びディスプレイ用基板
JPH0948632A (ja) * 1995-08-02 1997-02-18 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JPH09110460A (ja) * 1995-10-18 1997-04-28 Central Glass Co Ltd 無アルカリガラス
JPH09156953A (ja) * 1995-12-11 1997-06-17 Nippon Electric Glass Co Ltd 無アルカリガラス基板
JP2001172041A (ja) * 1999-12-14 2001-06-26 Asahi Glass Co Ltd 液晶ディスプレイ基板用ガラス
JP2004091244A (ja) * 2002-08-30 2004-03-25 Nippon Electric Glass Co Ltd 無アルカリガラス基板及びその製造方法
JP2005089259A (ja) * 2003-09-18 2005-04-07 Nippon Electric Glass Co Ltd ガラス基板
JP2008001589A (ja) * 2006-05-23 2008-01-10 Nippon Electric Glass Co Ltd 無アルカリガラスおよび無アルカリガラス基板並びにその製造方法
JP2008001588A (ja) * 2006-05-25 2008-01-10 Nippon Electric Glass Co Ltd 無アルカリガラスおよび無アルカリガラス基板
WO2008007676A1 (fr) * 2006-07-13 2008-01-17 Asahi Glass Company, Limited substrat de verre sans alcalin, son processus de fabrication et panneaux d'affichage à cristaux liquides
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183085A (ja) * 2015-03-26 2016-10-20 AvanStrate株式会社 ガラス基板の製造方法

Also Published As

Publication number Publication date
JPWO2013047586A1 (ja) 2015-03-26
JP5753895B2 (ja) 2015-07-22
TW201318999A (zh) 2013-05-16
KR20130057440A (ko) 2013-05-31
KR101463672B1 (ko) 2014-11-19
TWI518045B (zh) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6420282B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6375265B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6105539B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP6122461B2 (ja) ディスプレイ用ガラス基板およびその製造方法
WO2017002808A1 (ja) ディスプレイ用ガラス基板およびその製造方法
JP2017178711A (ja) 磁気記録媒体用ガラス基板及びその製造方法
WO2017002807A1 (ja) ディスプレイ用ガラス基板およびその製造方法
JP5753895B2 (ja) フラットパネルディスプレイ用ガラス基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20127031515

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013509354

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835675

Country of ref document: EP

Kind code of ref document: A1