WO2013046915A1 - Radiographic imaging unit - Google Patents

Radiographic imaging unit Download PDF

Info

Publication number
WO2013046915A1
WO2013046915A1 PCT/JP2012/069605 JP2012069605W WO2013046915A1 WO 2013046915 A1 WO2013046915 A1 WO 2013046915A1 JP 2012069605 W JP2012069605 W JP 2012069605W WO 2013046915 A1 WO2013046915 A1 WO 2013046915A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
detection unit
semiconductor layer
fluorescence
layer
Prior art date
Application number
PCT/JP2012/069605
Other languages
French (fr)
Japanese (ja)
Inventor
西納直行
岩切直人
中津川晴康
大田恭義
北野浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013046915A1 publication Critical patent/WO2013046915A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2008Measuring radiation intensity with scintillation detectors using a combination of different types of scintillation detectors, e.g. phoswich
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20184Detector read-out circuitry, e.g. for clearing of traps, compensating for traps or compensating for direct hits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4423Constructional features of apparatus for radiation diagnosis related to hygiene or sterilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4494Means for identifying the diagnostic device

Definitions

  • the present invention relates to a radiation imaging apparatus in which two radiation conversion layers are laminated along the incident direction of radiation.
  • JP-A 2000-338297 and JP-A 2010-56397 disclose a radiographic apparatus including a radiation conversion layer containing a substance capable of detecting radiation.
  • Japanese Patent Laid-Open No. 2000-338297 discloses an image reading unit including a photoconductive layer made of amorphous selenium (a-Se) and an image recording unit including a stimulable phosphor layer in order with respect to the incident direction of radiation.
  • a stacked radiographic apparatus is disclosed. In this apparatus, first, image recording is performed by irradiating the stimulable phosphor layer with radiation via an image reading unit. Next, the stimulable phosphor layer is irradiated with excitation light having a wavelength in the vicinity of 600 nm through the image reading unit while applying a voltage (electric field) that causes an avalanche action to the photoconductive layer.
  • a voltage electric field
  • the stimulable phosphor layer generates stimulated emission light having a wavelength near 400 nm
  • the photoconductive layer converts the incident stimulated emission light into electric charge.
  • the electric charge is amplified by an avalanche action and then output as an image signal.
  • JP 2010-56397 A a first radiation conversion layer including an a-Se semiconductor layer and a second radiation conversion layer including a scintillator and a sensor unit are sequentially stacked in the radiation incident direction.
  • a radiation imaging apparatus is disclosed.
  • the semiconductor layer directly converts a low energy component of radiation (energy component of radiation according to the low voltage when the tube voltage of the radiation source that irradiates the radiation is low) into electric charge.
  • the scintillator converts a high energy component of radiation (energy component of radiation according to a high tube voltage) into fluorescence
  • the sensor unit converts the fluorescence into electric charge.
  • a direct conversion radiation conversion layer including an a-Se semiconductor layer can generate a high-quality radiation image as compared with an indirect conversion radiation conversion layer including a scintillator.
  • the a-Se semiconductor layer is less likely to absorb high-energy components of radiation than a scintillator. That is, as shown in FIG. 22, the K edge of a-Se exists on the lower energy side than the K edge of GOS (Gd 2 O 2 S), CsI, or Ba (for example, BaFBr, BaFCl) used in the scintillator. To do. Therefore, a-Se easily absorbs low energy components of radiation, but hardly absorbs high energy components.
  • a GOS, CsI, or Ba scintillator can easily absorb a high-energy component of radiation, but hardly absorbs a low-energy component, as compared with an a-Se semiconductor layer.
  • the thickness of the semiconductor layer of a-Se is about 200 ⁇ m to 300 ⁇ m, 90% or more.
  • the radiation absorption rate of can be obtained. Therefore, in radiography for mammons, soft tissues, or tumors that easily absorb low-energy components of radiation, high-quality radiation images (images corresponding to the low-energy components) are acquired using a direct conversion type radiation conversion layer. be able to.
  • FIG. 24 also shows the relationship between the radiation absorption rate and the film thickness of CsI or GOS used in the scintillator for comparison with a-Se.
  • the radiation absorption is relatively equivalent to that of a 1000 ⁇ m thick a-Se semiconductor layer with a relatively thin film thickness of about 300 ⁇ m to 500 ⁇ m. Rate is obtained.
  • these radiation images are acquired using an indirect conversion type radiation conversion layer.
  • FIG. 23 shows the thickness of the a-Se semiconductor layer when the radiation source for irradiating the mammo is set to the following conditions including the standard radiation quality defined by IEC (International Electrotechnical Commission) 61267. The relationship between (film thickness) and radiation absorption rate was examined.
  • IEC International Electrotechnical Commission
  • RQA-M1 is a result of the standard quality of RQA-M1 obtained when the tube voltage of the radiation source is 25 kV and the thickness of the Al addition filter used in the radiation source is 2 mm.
  • RQA-M2 is the standard quality of RQA-M2, and is the result obtained when the tube voltage is 28 kV and the thickness of the Al-added filter is 2 mm.
  • RQA-M3 is a standard quality of RQA-M3, and is a result obtained when the tube voltage is 30 kV and the thickness of the Al-added filter is 2 mm.
  • RQA-M4 is the standard quality of RQA-M4, and is the result obtained when the tube voltage is 35 kV and the thickness of the Al-added filter is 2 mm.
  • “Mo / Rh” is a result obtained when the target of the radiation source is Mo, the filter is Rh, the tube voltage of the radiation source is 28 kV, the thickness of the Rh filter is 25 ⁇ m, and the thickness of the Al-added filter is 2 mm.
  • “Rh / Rh” is a result obtained when the target and the filter are both Rh, the tube voltage is 28 kV, the thickness of the Rh filter is 25 ⁇ m, and the thickness of the Al-added filter is 2 mm.
  • “W / Rh” is a result obtained when the target is W, the filter is Rh, the tube voltage is 28 kV, the thickness of the Rh filter is 50 ⁇ m, and the thickness of the Al-added filter is 2 mm.
  • “W / Al” is a result obtained when the target is W, the filter is Al, the tube voltage is 28 kV, the thickness of the Al filter is 500 ⁇ m, and the thickness of the Al-added filter is 2 mm.
  • FIG. 24 shows the relationship between the film thickness of the a-Se semiconductor layer and the radiation absorption rate when the radiation source used for general imaging is set to the following conditions including the standard radiation quality defined in IEC61267. The relationship was examined.
  • Se RQA3 “Se RQA3”, “CsI RQA3” and “GOS RQA3” are the standard quality of RQA3 for the a-Se semiconductor layer, the CsI scintillator and the GOS scintillator, respectively. This is a result obtained when the voltage is 50 kV and the thickness of the Al-added filter used for the radiation source is 10 mm.
  • Se RQA5 “CsI RQA5” and “GOS RQA5” are standard quality of RQA5 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, with tube voltage of 70 kV and Al added This is a result obtained when the thickness of the filter is 21 mm.
  • Se RQA7 “Se RQA7”, “CsI RQA7” and “GOS RQA7” are standard quality of RQA7 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, with tube voltage of 90 kV and Al added This is a result obtained when the thickness of the filter is 30 mm.
  • Se RQA9 “CsI RQA9” and “GOS RQA9” are the standard quality of RQA9 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, and the tube voltage is 120 kV and Al is added. This is a result obtained when the thickness of the filter is 40 mm.
  • the thickness of the a-Se semiconductor layer constituting the radiation conversion layer is as follows. Becomes a thick film of 1000 ⁇ m (1 mm) or more. As a result, the deterioration of the image quality and the yield of the radiographic image are incurred.
  • the present invention has been made to solve the above-described problems. By realizing a direct conversion type radiation conversion layer that can be used for general imaging while avoiding thickening, high-quality radiation is achieved.
  • An object of the present invention is to provide a radiation imaging apparatus capable of achieving image acquisition and yield improvement.
  • a radiation imaging apparatus is a radiation imaging apparatus in which two radiation conversion layers are stacked along the incident direction of radiation.
  • One radiation conversion layer has a first radiation detection unit that directly converts the radiation into an electric charge and a first charge detection unit that extracts the electric charge from the first radiation detection unit.
  • the other radiation conversion layer is an indirect conversion type second radiation having a second radiation detection unit that converts the radiation into fluorescence and a second charge detection unit that converts the fluorescence into electric charge.
  • the first radiation detection unit is characterized in that, when the fluorescence converted from the radiation by the second radiation detection unit is incident, the fluorescence can be converted into an electric charge.
  • the above-mentioned generated in the second radiation detection unit The fluorescence is incident on the first radiation conversion layer and the second charge detection unit.
  • the radiation is directly converted into electric charges, and the incident fluorescence is also converted into electric charges. Therefore, in the first radiation conversion layer, in addition to the charge directly converted from the radiation, the charge converted from the fluorescence is also used for forming a radiation image in the first radiation conversion layer.
  • the sensitivity of the first radiation detection part is increased and the first radiation conversion layer is increased.
  • This makes it possible to acquire a high-quality radiation image. Therefore, in the present invention, it is possible to realize a radiation imaging apparatus including a direct conversion type radiation conversion layer that can be used for general imaging such as radiography for the chest and abdomen.
  • it is possible to improve the yield of the radiation imaging apparatus including the first radiation conversion layer since it is not necessary to increase the thickness of the first radiation detection unit, it is possible to improve the yield of the radiation imaging apparatus including the first radiation conversion layer.
  • the first radiation conversion layer and the second radiation conversion layer are sequentially laminated in the radiation incident direction.
  • the first radiation detection unit includes a semiconductor layer that directly converts the radiation into electric charges
  • the second radiation detection unit is a scintillator that converts the radiation into the fluorescence.
  • the semiconductor layer constituting the first radiation detection unit absorbs the low energy component of the radiation and directly converts it into electric charges.
  • the scintillator constituting the second radiation detection unit absorbs the high energy component of the radiation and converts it into fluorescence. In this case, since a part of the fluorescence corresponding to the high energy component is incident on the first radiation conversion layer, the semiconductor layer also converts a part of the fluorescence into an electric charge.
  • a so-called hybrid configuration of the semiconductor layer and the scintillator can be employed to efficiently convert low energy components and high energy components of the radiation into electric charges.
  • the first radiation conversion layer it is possible to form a radiation image including a high energy component in addition to the low energy component of the radiation.
  • the first radiation conversion layer easily realizes high image quality of radiographic images for general imaging such as radiography of the chest and abdomen, and low-energy component radiographic images for mammo, soft tissue, or tumor. In addition, it is possible to avoid increasing the thickness of the semiconductor layer.
  • a radiation image including the high energy component can be formed. Therefore, in the second radiation conversion layer, it is possible to form a radiation image for general imaging and a radiation image for a bone part.
  • the semiconductor layer is selenium, more preferably amorphous selenium (a-Se), but the scintillator absorbs more high-energy components of the radiation than the selenium, the above effect can be easily obtained. be able to.
  • a-Se amorphous selenium
  • the selenium can mainly convert light in the blue wavelength region into electric charge. Therefore, if the scintillator is a phosphor that generates fluorescence in at least the blue wavelength region, the fluorescence in the blue wavelength region is charged in the semiconductor layer by causing the fluorescence in the blue wavelength region to enter the semiconductor layer of selenium. Can be efficiently photoelectrically converted.
  • the scintillator is preferably made of CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr: Tm.
  • CsI: Na generates fluorescence in a wide wavelength region including light in a blue wavelength region and light having a longer wavelength than the blue wavelength region (for example, a long wavelength region of 500 nm or longer). Therefore, when a scintillator made of CsI: Na is used, the fluorescence in the blue wavelength region is photoelectrically converted into charges in the a-Se semiconductor layer, and the fluorescence in the long wavelength region is photoelectrically converted into charges in the second charge detection unit. It can be converted. As a result, photoelectric conversion in the first radiation conversion layer and the second radiation conversion layer can be efficiently performed, and each radiation acquired in the first radiation conversion layer and the second radiation conversion layer. High image quality can be easily realized.
  • the scintillator generates a first fluorescent material that generates fluorescence in a wavelength region that can be converted into charges in the semiconductor layer, and a first fluorescent material that generates fluorescence in a wavelength region that can be converted into charges in the second charge detection unit. And two fluorescent materials.
  • the first fluorescent material that is not normally used is actively used for the scintillator.
  • fluorescence generated in the first fluorescent material for example, fluorescence in the blue wavelength region
  • fluorescence generated in the second fluorescent material for example, long wavelength
  • the fluorescence in the region can be converted into charges by the second charge detection unit.
  • the first scintillator by configuring the scintillator by selecting the first fluorescent substance and the second fluorescent substance according to the characteristics of the semiconductor layer and the second charge detection unit, the first scintillator is configured.
  • a desired radiation image can be acquired in the radiation conversion layer and the second radiation conversion layer.
  • a radiation image corresponding to a low energy component and a medium energy component of the radiation or a radiation image corresponding to a wide range of energy components from a low energy component to a high energy component is acquired.
  • the energy component absorbed in the semiconductor layer can be controlled to obtain a desired radiation image.
  • the semiconductor layer is selenium
  • silicon more specifically, amorphous silicon (a-Si) or crystalline silicon (c-Si)
  • the semiconductor layer may be used.
  • a-Si and c-Si have lower K-edges (Se: 12.7 keV, a-Si: 1.7 keV, c-Si: 1.1 keV) than the materials and selenium constituting the scintillator, and lower energy components Easy to absorb. Therefore, a radiation imaging apparatus using a semiconductor layer made of a-Si or c-Si is suitable for mammography.
  • a scintillator made of a phosphor that generates fluorescence in the blue wavelength region must be selected as the scintillator combined with the selenium semiconductor layer. Absent. That is, scintillator options are limited.
  • the entire visible light region is the sensitivity wavelength region, so any scintillator using a phosphor that generates fluorescence in the visible light region can be used. Even a scintillator can be selected as a scintillator that can be combined with an a-Si or c-Si semiconductor layer. Thereby, the choice of a scintillator can be increased.
  • a semiconductor layer made of CdTe having a K edge of 30 keV may be used.
  • any material constituting the scintillator has a higher K edge than CdTe (for example, CsI: 35 keV).
  • the band gap of CdTe is 1.44 eV and has sensitivity in the visible light region. Therefore, similarly to the a-Si or c-Si semiconductor layer, a phosphor that emits fluorescence in the visible light region can be selected as the scintillator. Accordingly, even in this case, the number of scintillator options can be increased.
  • the first radiation detection unit is formed on the other surface of the semiconductor layer, a plurality of pixel electrodes formed on one surface of the semiconductor layer along the incident direction of the radiation, and the other surface of the semiconductor layer. And a common electrode. In this case, by applying a voltage between each pixel electrode and the common electrode, the charge generated in the semiconductor layer may be taken out by the first charge detection unit via each pixel electrode. .
  • the thickness of the semiconductor layer is thin, an electric field generated in the semiconductor layer increases when a voltage is applied between the pixel electrodes and the common electrode.
  • the charges in the semiconductor layer are amplified by the avalanche effect, and the number of charges taken out by the first charge detection unit via each pixel electrode increases.
  • the sensitivity of the first charge detector is increased, and a high-quality radiation image can be easily acquired.
  • each pixel electrode includes the first charge detection unit in the semiconductor layer.
  • the common electrode is formed on the opposite side of the semiconductor layer from the first charge detection unit side.
  • the common electrode when the common electrode is formed on the second radiation conversion layer side of the semiconductor layer, the common electrode can transmit a larger amount of fluorescence as long as the common electrode is a transparent electrode that can transmit the fluorescence. The light can enter the semiconductor layer.
  • the common electrode when the common electrode is formed on the second radiation conversion layer side in the semiconductor layer, the common electrode may be an optical filter capable of transmitting the fluorescence.
  • an optical filter capable of transmitting the fluorescence may be interposed between the first radiation conversion layer and the second radiation conversion layer. In either case, fluorescence can be reliably incident on the semiconductor layer.
  • the optical filter transmits light in a wavelength region that can be converted into electric charge by the first radiation detection unit to the first radiation conversion layer side, and transmits light in a region other than the wavelength region.
  • a dichroic filter that reflects the light toward the second radiation conversion layer.
  • the second charge detector can efficiently convert the fluorescent light outside the wavelength region into charges. Even in this case, the image quality of each radiation image in the first radiation conversion layer and the second radiation conversion layer can be easily realized.
  • the second charge detection unit includes a photodiode or an organic photoconductor that converts the fluorescence into a charge.
  • the organic photoconductor includes the fluorescence in the fluorescence. It is preferable that light in a wavelength region that can be converted into electric charge by the first radiation detection unit is transmitted to the first radiation conversion layer side and that light outside the wavelength region can be absorbed.
  • the first charge detection unit outputs a first radiation image corresponding to the charge taken out from the first radiation detection unit, and the second charge detection unit converts the fluorescence into the charge converted from the fluorescence. A corresponding second radiation image is output.
  • the first radiographic image and the second radiographic image can be provided by the control unit that is provided in the radiographic apparatus and controls the first radiation conversion layer and the second radiation conversion layer, or an external image processing apparatus. If desired, a desired high-quality image for general imaging can be acquired.
  • FIG. 3A and 3B are explanatory views showing a schematic configuration of the radiation conversion panel of FIG. 4A and 4B are explanatory views showing a schematic configuration of the radiation conversion panel of FIG. 5A and 5B are explanatory diagrams schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 3A.
  • 6A and 6B are explanatory diagrams illustrating a schematic configuration of the switching filter.
  • 7A and 7B are explanatory diagrams illustrating a schematic configuration of the switching filter. It is explanatory drawing which shows schematic structure of a switching filter.
  • 9B are explanatory views schematically showing another configuration of one pixel of the radiation conversion panel.
  • 10A and 10B are explanatory diagrams schematically illustrating another configuration of one pixel of the radiation conversion panel. It is a graph which shows the relationship between the quantum efficiency of a-Se, and a sensitivity wavelength. It is a graph which shows the emission spectrum (relation between emission wavelength and normalized intensity) of the scintillator which generates the fluorescence of blue wavelength. 6 is a graph illustrating the relationship between the electric field of a-Se and the relative signal intensity.
  • 14A to 14D are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 15A to 15D are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 16A to 16C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 17A to 17C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 18A to 18C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 19A and 19B are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A.
  • 20A is an explanatory diagram schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 3B, and FIG.
  • FIG. 20B is an explanation schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 4A.
  • FIG. 21A and 21B are plan views schematically showing the arrangement of the organic photoconductor in FIG. 20B. It is the graph which illustrated the relationship between the energy of a radiation, and a radiation absorption coefficient. It is the graph which illustrated the relationship between the film thickness of selenium and a radiation absorption rate. It is the graph which illustrated the relationship between the film thickness of selenium, CsI, and GOS, and a radiation absorption rate. It is a perspective view of the radiography apparatus which concerns on a 1st modification. It is a perspective view which shows the state which isolate
  • FIG. 27 is a plan view illustrating the main body portion and the extension portion of FIG. It is sectional drawing of the main-body part and extension part of FIG.26 and FIG.27. 5 is a graph showing the relationship between the temperature of a-Si and the leakage current. It is a perspective view of the radiography apparatus which concerns on a 2nd modification. It is the perspective view which illustrated the state which the housing
  • FIG. 31 is a cross-sectional view taken along line XXXII-XXXII in FIG. 30. It is sectional drawing of the radiography apparatus which concerns on a 3rd modification. It is explanatory drawing of the temperature control unit of FIG.
  • FIG. 38 is a side view illustrating a state in which a radiation imaging apparatus is loaded in the cradle of FIG. 37 with a part of the cradle cut away. It is a top view of the cradle of FIG. It is a schematic block diagram of the cradle of FIG.
  • FIG. 3 is a side view illustrating the removal of the radiation imaging apparatus from the cradle with a part of the cradle cut away. It is explanatory drawing which showed typically the structure for 1 pixel in the radiography apparatus which concerns on a 6th modification.
  • the radiation imaging system 12 including the radiation imaging apparatus 10 according to the present embodiment detects a radiation output device 18 that irradiates the subject 14 with radiation 16 and the radiation 16 that has passed through the subject 14.
  • the radiation imaging apparatus 10 for converting to a radiation image, the console 20 for controlling the radiation imaging apparatus 10 and the radiation output apparatus 18, and the display device 22 for displaying the radiation image are provided.
  • a wireless local area network such as UWB (Ultra Wide Band), IEEE802.11a / b / g / n, or Signals are transmitted and received by wireless communication using millimeter waves or the like. It goes without saying that signals may be transmitted and received by wired communication using a cable.
  • RIS radiology information system
  • HIS medical information system
  • the radiation imaging apparatus 10 includes, for example, a radiation conversion panel 28 that is disposed between an imaging table (not shown) and a subject 14 and converts radiation 16 transmitted through the subject 14 into a radiation image. It is a portable electronic cassette housed in a transmissive case.
  • the radiation imaging apparatus 10 is not limited to a portable electronic cassette, but can also be applied to a built-in electronic cassette that is used by being mounted on an imaging table (not shown).
  • the radiation imaging apparatus 10 accommodates the above-described radiation conversion panel 28, cassette control unit 34, communication unit 36, and battery 38 in a housing.
  • the cassette control unit 34 controls the radiation conversion panel 28 through the drive circuit unit 30 and reads out an electrical signal corresponding to the radiation image from the radiation conversion panel 28 through the readout circuit unit 32.
  • the communication unit 36 transmits and receives signals to and from the console 20.
  • the battery 38 supplies power to each unit in the radiation imaging apparatus 10.
  • the radiation conversion panel 28 is configured by sequentially laminating a first radiation conversion layer 28a, a switching filter 28b, and a second radiation conversion layer 28c along the incident direction of the radiation 16.
  • the switching filter 28b is not essential as will be described later, and can be omitted. Therefore, the radiation conversion panel 28 can also employ a laminated structure of the first radiation conversion layer 28a and the second radiation conversion layer 28c. However, in the following description, a laminated structure including the switching filter 28b will be mainly described.
  • the first radiation converting layer 28a mainly absorbs a low energy component of the radiation 16 and directly converts the absorbed energy component into a charge, thereby forming a first radiation image corresponding to the charge. It is a radiation conversion layer.
  • the second radiation conversion layer 28c mainly absorbs the high energy component of the radiation 16, temporarily converts the absorbed energy component into fluorescence, and converts the converted fluorescence into electric charge. It is an indirect conversion type radiation conversion layer which forms the radiation image of this.
  • the switching filter 28b is in a transmission state (transparent state) capable of transmitting light in a specific wavelength region in the fluorescence, or shields the fluorescence to the second radiation conversion layer 28c side. It is a dichroic filter (optical filter) that switches to a non-transmissive state (mirror state) for reflection.
  • the low energy component of the radiation 16 is an energy component of the radiation 16 corresponding to the low voltage when the tube voltage of the radiation source constituting the radiation output device 18 is relatively low. It is easily absorbed by mammo, soft tissue or tumor.
  • the high energy component of the radiation 16 is an energy component of the radiation 16 corresponding to the high voltage when the tube voltage of the radiation source is relatively high, and is easily absorbed by the bone portion of the subject 14. .
  • the radiation imaging apparatus 10 is also provided with a voltage supply unit 42 that supplies a DC voltage necessary for taking out the charges converted in the first radiation conversion layer 28a to the first radiation conversion layer 28a.
  • the cassette control unit 34 includes an address signal generation unit 44, an image memory 46, and a cassette ID memory 48.
  • the address signal generation unit 44 supplies an address signal for instructing the radiation conversion panel 28 to read out a radiation image to the drive circuit unit 30.
  • the image memory 46 stores a radiation image read from the radiation conversion panel 28 via the readout circuit unit 32 under the control of the drive circuit unit 30.
  • the cassette ID memory 48 stores cassette ID information for specifying the radiation imaging apparatus 10.
  • the console (image processing apparatus) 20 includes a communication unit 50, a control processing unit 52, an order information storage unit 54, an imaging condition storage unit 56, an image processing unit 58, and an image memory 60.
  • the communication unit 50 transmits and receives signals to and from the communication unit 36, the radiation output device 18, the display device 22, and the RIS 24.
  • the control processing unit 52 executes predetermined control processing for controlling each unit in the console 20.
  • the order information storage unit 54 stores order information for requesting radiographic imaging (radiographic imaging) of the subject 14.
  • the imaging condition storage unit 56 stores imaging conditions for irradiating the subject 14 with the radiation 16 and the like.
  • the image processing unit 58 performs predetermined image processing on the radiation image received by the communication unit 50 from the communication unit 36.
  • the image memory 60 stores a radiation image or the like that has been subjected to image processing by the image processing unit 58.
  • the order information is created by a doctor in the RIS 24 or HIS 26 and used for radiographic image capturing in addition to subject information for identifying the subject 14 such as the name, age, and sex of the subject 14.
  • subject information for identifying the subject 14 such as the name, age, and sex of the subject 14.
  • the imaging conditions are various conditions necessary for irradiating the imaging region of the subject 14 with the radiation 16 such as the tube voltage and tube current of the radiation source, the exposure time of the radiation 16, and the like.
  • FIG. 2 is a circuit configuration diagram of the radiation conversion panel 28 and the like constituting the radiation imaging apparatus 10.
  • the radiation conversion panel 28 has a stacked structure in which the first radiation conversion layer 28a, the switching filter 28b, and the second radiation conversion layer 28c are sequentially stacked along the incident direction of the radiation 16 (see FIG. 1). It is.
  • the radiation conversion panel 28 has a structure in which a plurality of pixels 62 are arranged in a matrix in the plan view of FIG. In this case, each pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c along the incident direction of the radiation 16. Has been.
  • each pixel 62 directly converts the low energy component of the radiation 16 into an electric charge in the portion of the first radiation conversion layer 28a, and fluoresces the high energy component of the radiation 16 in the portion of the second radiation conversion layer 28c. Is converted into electric charge and then switched to a transmission state or a mirror state in accordance with control from the filter control unit 40 in the switching filter 28b.
  • a plurality of gate lines 64a and 64c extend in parallel to the row direction, and a plurality of signal lines 66a and 66c extend in parallel to the column direction.
  • the gate lines 64 a and 64 c are connected to the drive circuit unit 30, and the signal lines 66 a and 66 c are connected to the readout circuit unit 32.
  • each pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c. Therefore, for each pixel 62 arranged in the row direction, one gate line 64a connected to the first radiation conversion layer 28a (the TFT) and the second radiation conversion layer 28c (the TFT) are connected. Two gate lines are connected to one gate line 64c to be connected. For each pixel 62 arranged in the column direction, one signal line 66a connected to the first radiation conversion layer 28a (TFT) and the second radiation conversion layer 28c (TFT). There are two signal lines, one signal line 66c connected to the other.
  • the charges generated due to the absorption of the radiation 16 are accumulated in the radiation conversion layers 28a and 28c, the charges of the radiation conversion layers 28a and 28c are sequentially turned on for each row. Can be read out as an electrical signal.
  • the TFTs arranged in the row direction are turned on and off from the drive circuit unit 30 to the gate lines 64a and 64c.
  • a control signal to be controlled is supplied.
  • the TFT is turned on by supplying the control signal, the charge held in each pixel 62 connected to the turned-on TFT flows out to the readout circuit section 32 through the TFT and the signal lines 66a and 66c.
  • the readout circuit unit 32 amplifies an electric signal (analog signal) corresponding to the inflowed charge, performs A / D conversion, and supplies the radiographic image converted into the digital signal to the cassette control unit 34.
  • FIGS. 3A to 4B schematically show a schematic configuration of the radiation conversion panel 28.
  • FIG. the configuration of FIGS. 3A to 4B is also referred to as first to fourth embodiments.
  • an ISS (Irradiation Side Sampling) type direct conversion type first radiation conversion layer 28a, a switching filter 28b, and a back surface along the incident direction of the radiation 16 are used.
  • a configuration in which an indirect conversion type second radiation conversion layer 28c of a PSS (Penetration Side Sampling) method as a reading method is sequentially stacked is illustrated.
  • the first radiation conversion layer 28a includes a thin insulating substrate 68a having flexibility along the incident direction of the radiation 16, a first charge detection unit 70a, and the like.
  • the first radiation detection unit 72a is sequentially stacked.
  • the second radiation conversion layer 28c has a flexible thin insulating substrate 68c toward the first radiation conversion layer 28a (from the lower side to the upper side in FIG. 3A) and the second radiation conversion layer 28c.
  • the charge detection unit 70c and the second radiation detection unit 72c are sequentially stacked.
  • the insulating substrate 68a absorbs the radiation 16 in the first radiation detecting unit 72a and the second radiation detecting unit 72c, the insulating substrate 68a has a low electric absorption property of the radiation 16 and has a thin and electrically insulating property.
  • a substrate (a substrate having a thickness of about several tens of ⁇ m) is preferable.
  • the insulating substrate 68a is preferably made of synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
  • the first radiation detection unit 72a includes a semiconductor layer 74a made of amorphous selenium (a-Se), a plurality of pixel electrodes 76a formed on one surface of the semiconductor layer 74a on the first charge detection unit 70a side, and a semiconductor layer And a common electrode 78a formed so as to entirely cover the other surface of 74a.
  • a-Se amorphous selenium
  • the pixel electrode 76a is formed for each pixel 62, and is made of a conductive material (for example, Au) that has low absorbability with respect to the radiation 16 and does not generate electromigration with a-Se. Is preferred.
  • the a-Se semiconductor layer 74a absorbs the low energy component of the radiation 16 and converts it into electric charges.
  • the common electrode 78a has low radiation 16 absorption, does not generate electromigration with a-Se, and transmits at least light in the sensitivity wavelength region of a-Se (for example, light in the blue wavelength region). It is preferably made of a possible conductive material, for example, ITO (Indium Tin Oxide).
  • ITO Indium Tin Oxide
  • the pixel electrode 76a and the common electrode 78a are formed, a-Se may be crystallized depending on the formation temperature. Therefore, in order to suppress crystallization of a-Se, it is necessary to form the pixel electrode 76a and the common electrode 78a at as low a temperature as possible. Therefore, the pixel electrode 76a and the common electrode 78a are desirably formed as an organic film or an organic conductor containing a metal filler by coating, roll-to-roll, ink jet, or the like.
  • the first charge detection unit 70a is configured to include the above-described TFT, and the charge generated in the semiconductor layer 74a is taken out for each pixel 62 through each pixel electrode 76a, and the taken-out charge is used as an electric signal (analog signal).
  • the data is output to the readout circuit section 32 via the signal line 66a (see FIG. 2).
  • the first charge detection unit 70a is preferably made of a material having low absorption of the radiation 16 so that the first radiation detection unit 72a and the like detect the radiation 16.
  • the gate line 64a and the signal line 66a are connected to the TFT, the gate line 64a and the signal line 66a also have a low-resistance conductive material (for example, low absorption of radiation 16). , Al).
  • the switching filter 28b causes the second radiation detection unit 72c to detect the high energy component of the radiation 16, and transmits at least light in the sensitivity wavelength region of a-Se among the fluorescence generated by the second radiation detection unit 72c. Therefore, it is preferable that the material is made of a material that has low absorption of the radiation 16 and can transmit the light.
  • the 2nd radiation detection part 72c consists of a scintillator which converts the high energy component of the incident radiation 16 into fluorescence.
  • the scintillator can generate light in the a-Se sensitivity wavelength region and light in the wavelength region that can be absorbed by the second charge detector 70c (light having a longer wavelength than light in the a-Se sensitivity wavelength region).
  • Such a scintillator that generates fluorescence having a relatively wide wavelength range is desirable.
  • Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and the like, and CsI: Na is more preferable.
  • the second charge detection unit 70c is configured to include the above-described photoelectric conversion elements such as TFTs and photodiodes, converts the fluorescence converted by the scintillator into charges, and signals the converted charges as electric signals (analog signals).
  • the data is output to the readout circuit unit 32 via the line 66c.
  • the low energy component of the radiation 16 is absorbed by the a-Se semiconductor layer 74a and converted into electric charges, and the high energy component of the radiation 16 is converted into the second radiation detection unit 72c. It is absorbed by the scintillator and converted into fluorescence.
  • the TFT and the photoelectric conversion element of the second charge detection unit 70c need not use a material having low radiation 16 absorption. Also, the gate line 64c and the signal line 66c connected to the TFT need not use a conductive material having low radiation 16 absorption.
  • the second charge detection unit 70c that is unlikely to reach the radiation 16 is replaced with the above-described combination of TFT and photodiode, and has a CMOS (Complementary Metal-Oxide Semiconductor) image with low resistance to the radiation 16.
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge-Coupled Device
  • the radiation conversion panel 28 of the second embodiment shown in FIG. 3B includes an ISS direct conversion type first radiation conversion layer 28a, a switching filter 28b, and an ISS indirect conversion along the incident direction of the radiation 16.
  • the second radiation conversion layer 28c of the mold is different from the first embodiment of FIG. 3A in that the second radiation conversion layer 28c is laminated in order.
  • the second radiation conversion layer 28c includes an insulating substrate 68c, a second charge detection unit 70c, and a second radiation detection unit along the incident direction of the radiation 16. 72c and a reflection film 80c for reflecting the fluorescence generated by the second radiation detection unit 72c to the second radiation detection unit 72c side by layer.
  • the insulating substrate 68c needs to detect the radiation 16 in the second radiation detection unit 72c and transmit at least light in the a-Se sensitivity wavelength region among the fluorescence generated in the second radiation detection unit 72c. is there. Therefore, the insulating substrate 68c is an electrically insulating thin substrate having low radiation 16 absorbability and flexibility, as well as the insulating substrate 68a, and also has a light wavelength in the sensitivity wavelength region. Preferably, it is made of a material that can transmit light or has low light absorption and light shielding properties.
  • the second charge detection unit 70c causes the second radiation detection unit 72c to detect the radiation 16, and transmits at least the light in the sensitivity wavelength region of a-Se out of the fluorescence generated by the second radiation detection unit 72c.
  • the radiation 16 has a low absorptivity and can transmit the light, or is made of a material having a low absorptivity and light shielding property.
  • the fluorescence generated by the second radiation detection unit 72c is incident on the first radiation conversion layer 28a via the second charge detection unit 70c and the insulating substrate 68c.
  • the amount of fluorescent light reaching the semiconductor layer 74a of the first radiation conversion layer 28a may be smaller than in the case of the embodiment.
  • the PSS direct conversion type first radiation conversion layer 28a, the switching filter 28b, and the ISS indirect conversion type second radiation are arranged along the incident direction of the radiation 16.
  • stacked the conversion layer 28c in order is shown in figure.
  • the first radiation conversion layer 28a includes a first radiation detection unit 72a, a first charge detection unit 70a, and an insulating substrate along the incident direction of the radiation 16. 68a are laminated in order.
  • the first radiation detection unit 72a is configured by sequentially stacking a common electrode 78a, an a-Se semiconductor layer 74a, and each pixel electrode 76a along the incident direction of the radiation 16.
  • the common electrode 78a is made of a conductive material (for example, Au) that is impermeable to the light, does not generate electromigration with a-Se, and has low absorbability with respect to the radiation 16. It is preferable to become.
  • Au having a resistance lower than that of ITO as an electrode, the voltage distribution in the semiconductor layer 74a is uniformized when the high voltage is applied to the common electrode 78a from the DC power source 106 (see FIG. 5A), and the power consumption is reduced. Reduction can be achieved.
  • each of the pixel electrodes 76a and the insulating substrate 68a are arranged on the second radiation conversion layer 28c side, unlike the first and second embodiments (see FIGS. 3A and 3B). Therefore, each of the pixel electrodes 76a and the insulating substrate 68a is preferably made of a material that is transmissive to the light and has low absorbability and light shielding properties for the radiation 16. Specifically, each pixel electrode 76a is preferably made of, for example, ITO that does not generate electromigration with a-Se. Since the pixel electrode 76a has a smaller area than the common electrode 78a, the resistance value may be slightly increased by using ITO. For the gate line 64a and the signal line 66a connected to the TFT, a metal such as Al that does not transmit light may be used in order to reduce resistance.
  • the switching filter 28b is inserted between the two insulating substrates 68a and 68c, the first radiation conversion layer 28a is provided on one surface of the insulating substrate.
  • the second radiation conversion layer 28c may be disposed on the other surface, and the switching filter 28b may be interposed on either surface.
  • the single insulating substrate is preferably a thin, electrically insulating substrate having low radiation 16 absorption and flexibility. If a single substrate is used, the absorption of the radiation 16 can be further reduced.
  • the PSS direct conversion type first radiation conversion layer 28a, the switching filter 28b, and the PSS indirect conversion type second are arranged along the incident direction of the radiation 16.
  • stacked the radiation conversion layer 28c in order is illustrated.
  • FIGS. 5A to 8 schematically illustrate the radiation conversion panel 28 of the first embodiment in an enlarged manner to one pixel 62.
  • one pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c.
  • one pixel electrode 76a constituting the first radiation detection unit 72a is assigned to one pixel 62.
  • the pixel electrode 76a is made of Au
  • the common electrode 78a is made of ITO.
  • the first charge detection unit 70 a has an array of TFTs 82 a disposed on the surface of the insulating substrate 68 a on the first radiation detection unit 72 a side, and one TFT 82 a is assigned to one pixel 62. It has been. In this case, when an array of TFTs 82a is formed on the insulating substrate 68a, the first radiation detecting portion 72a side of the insulating substrate 68a becomes uneven, so that, for example, a flattening process using a tetrafluoroethylene resin film is performed. It is desirable to form the planarizing film 84a.
  • the TFT 82a is connected to the gate line 64a and the signal line 66a (see FIG. 2) described above.
  • the TFT 82a is an active material composed of amorphous silicon (a-Si), amorphous oxide (for example, a-IGZO (InGaZnO 4 )), an organic semiconductor material, carbon nanotubes, etc. in order to suppress absorption of the radiation 16 in the TFT array. It is preferable that a layer is included and comprised.
  • a glass substrate is used as the insulating substrate 68a.
  • a resin substrate such as polyimide or aramid can be used as the insulating substrate 68a. As a result, a flexible TFT array can be realized.
  • the pixel electrode 76a and the common electrode 78a are electrically connected to the voltage supply unit 42.
  • the second charge detection unit 70 c has an array of TFTs 82 c and photodiodes 86 c disposed on the surface of the insulating substrate 68 c on the second radiation detection unit 72 c side.
  • One TFT 82c and one photodiode 86c are assigned.
  • the second radiation detector 72c side of the insulating substrate 68c becomes uneven, so that the same planarization as the planarizing film 84a is performed. It is desirable to form the film 84c.
  • the TFT 82c is connected to the gate line 64c and the signal line 66c described above.
  • the TFT 82c preferably includes the same active layer as the TFT 82a.
  • the photodiode 86c is preferably made of, for example, a-Si.
  • FIG. 5A and 5B illustrate a CsI: Na (sodium-activated cesium iodide) scintillator as the second radiation detection unit 72c.
  • the CsI: Na scintillator is formed by forming CsI: Na into a strip-like columnar crystal structure 88c by a vacuum deposition method.
  • the base end portion of the scintillator on the flattening film 84c side is a non-columnar crystal portion 90c and is in close contact with the flattening film 84c.
  • Each column constituting the columnar crystal structure 88c is formed along the incident direction of the radiation 16, and a certain amount of gap is secured between adjacent columns.
  • the CsI: Na scintillator has characteristics that the columnar crystal structure 88c is weak against humidity and the non-columnar crystal portion 90c is particularly vulnerable to humidity. It is sealed. And the tip part of the columnar crystal structure 88c and the switching filter 28b are in close contact with the scintillator sealed with the moisture-proof protective material 92c.
  • the radiation conversion panel 28 of the first embodiment includes the first radiation conversion layer 28a including the a-Se semiconductor layer 74a, the switching filter 28b, and the scintillator of the columnar crystal structure 88c of CsI: Na. It has a laminated structure with the second radiation conversion layer 28c.
  • the a-Se semiconductor layer 74a absorbs the low energy component of the radiation 16 to generate a positive charge 94a and a negative charge 96a. Convert to charge pair.
  • the radiation 16 (high energy component thereof) that has not been absorbed by the a-Se semiconductor layer 74a passes through the common electrode 78a and the switching filter 28b and reaches the second radiation detection unit 72c.
  • the columnar crystal structure 88 c (its light emitting portion 100) absorbs the high energy component of the radiation 16 and converts it into fluorescence 98.
  • a part of the fluorescent light 98 generated at the light emitting portion 100 (light in a long wavelength region exceeding 500 nm described later (light in the sensitivity wavelength region of the photodiode 86c)) is a columnar crystal formed substantially parallel to the incident direction of the radiation 16. Is propagated linearly (going straight) to the photodiode 86c.
  • the photodiode 86c converts a part of the fluorescence 98 into electric charge and accumulates it.
  • the switching filter 28b transmits light in the short wavelength region of, for example, 500 nm or less including light in the a-Se sensitivity wavelength region (for example, light in the blue wavelength region).
  • the transmission state is switched will be described.
  • the fluorescence 98 that has reached the switching filter 28b only light (transmitted light) 102 in the short wavelength region of 500 nm or less is transmitted through the switching filter 28b, and light (reflected light) 104 in the long wavelength region exceeding 500 nm is Reflected toward the second charge detector 70c.
  • the reflected light 104 travels straight through the columnar crystal to the photodiode 86c, and the photodiode 86c also converts the reflected light 104 into an electric charge and accumulates it. Therefore, when the TFT 82c is turned on by the control signal from the drive circuit unit 30, the charge corresponding to the fluorescence 98 and the reflected light 104 accumulated in the photodiode 86c flows out through the TFT 82c and flows through the signal line 66c. Can be output to the readout circuit section 32 as an electrical signal corresponding to the above.
  • the transmitted light 102 transmitted through the switching filter 28b passes through the common electrode 78a made of a transparent electrode such as ITO and reaches the a-Se semiconductor layer 74a. Since the transmitted light 102 is light in a short wavelength region of 500 nm or less (light in the sensitivity wavelength region of a-Se), the semiconductor layer 74a absorbs the transmitted light 102 and has a charge pair of a positive charge 94c and a negative charge 96c. Convert to
  • the DC power source 106 and the switch 108 of the voltage supply unit 42 are electrically connected to each pixel electrode 76a and the common electrode 78a.
  • a DC electric field is generated in the semiconductor layer 74a.
  • the positive charges 94a and 94c move to the negative common electrode 78a side
  • the negative charges 96a and 96c move to the positive pixel electrode 76a side.
  • the first charge detection unit 70a can extract the negative charges 96a and 96c through the pixel electrodes 76a.
  • the first charge detection unit 70a passes through the signal line 66a.
  • an electrical signal corresponding to the negative charges 96a and 96c can be output to the readout circuit section 32.
  • each pixel electrode 76a has a positive polarity and common electrode 78a has a negative polarity.
  • each pixel electrode 76a has a negative polarity and a common electrode 78a.
  • the above effect can be obtained even when a positive DC voltage is applied.
  • FIG. 6A the configuration of the switching filter 28b will be described in detail with reference to FIGS. 6A to 8.
  • the switching filter 28b is a member having low absorbability with respect to the radiation 16, and, as shown in FIG. 6A, along the incident direction of the radiation 16 (see FIGS. 1, 3A to 4B, and 5B), the transparent base 110
  • the transparent conductive film 112, the ion storage layer 114, the solid electrolyte layer 116, the buffer layer 118, the catalyst layer 120, and the dimming mirror film layer 122 are laminated in this order.
  • the DC power supply 124 and the switch 126 of the filter control unit 40 are electrically connected to the transparent conductive film 112 and the dimming mirror film layer 122.
  • the transparent substrate 110 is a vapor deposition substrate of the switching filter 28b disposed on the common electrode 78a side, and is a glass substrate or a plastic substrate that can transmit the transmitted light 102 (see FIGS. 5B and 6B).
  • the transparent conductive film 112 is a transparent electrode made of ITO that can transmit the transmitted light 102.
  • the ion storage layer 114 is a thin film made of WO 3 capable of storing hydrogen ions (H + ).
  • the solid electrolyte layer 116 is a thin film made of Ta 2 O 5 .
  • the buffer layer 118 is an Al metal film.
  • the catalyst layer 120 is a thin film made of Pd.
  • the dimming mirror film layer 122 is made of an Mg / Ni-based alloy thin film, and is caused by applying a DC voltage from the DC power source 124 to the transparent conductive film 112 and the dimming mirror film layer 122 when the switch 126 is turned on.
  • a transparent state in which light having a wavelength of 500 nm or less including the sensitivity wavelength region of Se is transmitted as transmitted light 102, or a mirror state in which fluorescence 98 is reflected as reflected light 104 toward the second radiation detection unit 72c ( (Non-transparent state).
  • the light control mirror film layer 122 reflects light in a long wavelength region exceeding 500 nm to the second radiation detection unit 72c side as reflected light 104.
  • the surface of the light control mirror film layer 122 is normally in a mirror state (mirror) that reflects the fluorescence 98 as reflected light 104 toward the second radiation detection unit 72c due to the metallic luster of the Mg / Ni alloy thin film. State).
  • mirror mirror state
  • the switch 126 When the light control mirror film layer 122 is in such a mirror state, as shown in FIG. 6B, the switch 126 is turned on so that the transparent conductive film 112 becomes positive and the light control mirror film layer 122 has negative polarity.
  • a DC voltage DC voltage of several volts
  • the dimming mirror film layer 122 switches from the mirror state to the transparent state. This is because the hydrogen ions (H + ) stored in the ion storage layer 114 move to the dimming mirror film layer 122 through the solid electrolyte layer 116, the buffer layer 118, and the catalyst layer 120, thereby forming a metal state.
  • the Mg / Ni-based alloy is hydrogenated to a non-metallic state and becomes transparent.
  • the dimming mirror film layer 122 When the dimming mirror film layer 122 once becomes transparent as described above, as shown in FIG. 7A, even if the switch 126 is turned off and voltage application (energization) from the DC power supply 124 to the switching filter 28b is stopped. The transparent state of the light control mirror film layer 122 is maintained.
  • the dimming mirror film layer 122 when the dimming mirror film layer 122 is in the transparent state, as described above, light in the short wavelength region of 500 nm or less out of the fluorescence 98 passes through the first radiation detection unit 72a as the transmitted light 102. At the same time, light in a long wavelength region exceeding 500 nm is reflected as reflected light 104 toward the second radiation detector 72c.
  • the switch 126 is turned on so that the dimming mirror film layer 122 becomes positive and the transparent conductive film 112 becomes negative.
  • a DC voltage having a polarity opposite to the voltage polarity shown in FIG. 6B DC voltage of several volts
  • the dimming mirror film layer 122 is switched from the transparent state to the mirror state. This is because hydrogen ions once moved to the light control mirror film layer 122 are transferred to the ion storage layer 114 via the catalyst layer 120, the buffer layer 118, and the solid electrolyte layer 116 due to the application of the reverse polarity DC voltage. This is because the light control mirror film layer 122 changes to the original metal state by returning.
  • the fluorescence 98 in all wavelength regions is reflected as the reflected light 104 toward the second radiation detection unit 72c as described above.
  • the first embodiment is not limited to the above-described configuration, and may have the configuration shown in FIGS. 9A to 10B.
  • the common electrode 78a transmits the fluorescent light 98 in the short wavelength region of 500 nm or less as the transmitted light 102, while the fluorescent light 98 in the long wavelength region longer than 500 nm is used as the reflected light 104, similarly to the switching filter 28b.
  • the case where it functions as a dichroic filter (optical filter) to reflect is illustrated. Therefore, in the configuration of FIG. 9A, the switching filter 28b is omitted.
  • FIG. 9B differs from the configuration of FIG. 9A in that, in the second radiation detection unit 72c, the CsI: Na scintillator is configured only by the columnar crystal structure 88c, and the non-columnar crystal portion 90c does not exist. Since the non-columnar crystal portion 90c does not exist, it is possible to avoid the occurrence of reflection and scattering of the fluorescence 98 and the reflected light 104 on the first radiation conversion layer 28a side in the non-columnar crystal portion 90c.
  • FIG. 10A and FIG. 10B show that the second radiation detector 72c is replaced with a CsI: Na columnar crystal scintillator, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr. : Each of cases where a block scintillator coated with a fluorescent material such as Tm is hardened is illustrated.
  • These scintillators convert the transmitted light 102 into charges 94c and 96c in the semiconductor layer 74a if the transmitted light 102 is linearly incident on the first radiation conversion layer 28a along the incident direction of the radiation 16. can do.
  • these scintillators are more likely to scatter fluorescence 98 and reflected light 104 with the fluorescent material (particles) in the scintillator compared to columnar crystal scintillators, so that when the scattered light enters the photodiode 86c. This may cause image blurring of the second radiation image.
  • the reflected light 104 is absorbed by the switching filter 28b, (2) the switching filter 28b is omitted, or (3) the switching filter 28b is omitted and the common electrode is used. It is desirable to absorb the reflected light 104 at 78a.
  • the radiation imaging apparatus 10 has the radiation conversion panel 28 (see FIG. 3A) of the first embodiment, and a CsI: Na columnar crystal scintillator (see FIGS. 5A and 5B) as the second radiation detection unit 72c. ) Will be described.
  • control processing unit 52 of the console 20 acquires order information from the RIS 24 or the HIS 26, and stores the acquired order information in the order information storage unit 54.
  • control processing unit 52 changes the imaging region of the subject 14 from the radiation output device 18 to the imaging region of the subject 14 based on the imaging region and imaging method of the subject 14 and the information of the radiation imaging device 10 and the radiation output device 18 included in the order information.
  • Imaging conditions tube voltage, tube current, exposure time
  • the set imaging conditions and order information are stored in the imaging condition storage unit 56.
  • control processing unit 52 determines the state (transparent state or mirror state) of the switching filter 28b at the time of radiation imaging based on the imaging part and imaging method of the subject 14 included in the order information.
  • the control processing unit 52 is such that the interpretation image requested by the order information is a radiation image corresponding to the low energy component, and the first radiation image of the low energy component can be acquired in the first radiation conversion layer 28a. Judge that it is desirable to perform radiography.
  • the control processing unit 52 creates instruction information for switching the switching filter 28 b to the transparent state, and stores the created instruction information in the imaging condition storage unit 56.
  • the control processing unit 52 is such that the interpretation image requested by the order information is a radiation image corresponding to the low energy component, and the second radiation image of the high energy component can be acquired in the second radiation conversion layer 28c. Judge that it is desirable to perform radiography.
  • the control processing unit 52 creates instruction information for switching the switching filter 28b to the mirror state, and stores the created instruction information in the imaging condition storage unit 56.
  • the control processing unit 52 is a radiographic image in which the interpretation image requested by the order information absorbs more energy components, and the second radiation conversion layer 28c General radiographing for acquiring two radiographic images, or general radiographing for obtaining an added image by acquiring the first and second radiographic images at each of the radiation conversion layers 28a and 28c and then adding them together. Judge that it is desirable.
  • the control processing unit 52 creates instruction information for switching the switching filter 28 b to the transparent state, and stores the created instruction information in the imaging condition storage unit 56.
  • the doctor or engineer inserts the radiation imaging apparatus 10 between the subject 14 and the imaging table, and then positions the imaging region of the subject 14 with respect to the radiation imaging apparatus 10 and the radiation output apparatus 18.
  • the radiation output device 18 requests the console 20 to transmit imaging conditions and the like, and the control processing unit 52 performs the imaging condition storage unit 56 based on the transmission request of the radiation output device 18 received via the communication unit 50.
  • the radiographing conditions stored in is transmitted to the radiation output device 18 via the communication unit 50 by radio.
  • the cassette control unit 34 transmits order information and the like to the console 20 via the communication unit 36. Request.
  • the control processing unit 52 wirelessly transmits the order information, the imaging conditions, and the instruction information stored in the imaging condition storage unit 56 via the communication unit 50 based on the transmission request of the cassette control unit 34 received via the communication unit 50. Is transmitted to the radiation imaging apparatus 10.
  • the cassette control unit 34 stores the order information, imaging conditions, and instruction information received via the communication unit 36 in the image memory 46 and / or the cassette ID memory 48.
  • each photodiode 86c charges the fluorescence 98 and the reflected light 104 converted from the high energy component of the radiation 16. It becomes a state that can be accumulated by converting to.
  • the filter control unit 40 switches the switching filter 28b to the transparent state or the mirror state based on the instruction information.
  • the doctor or engineer turns on an exposure switch (not shown) on the assumption that preparation for imaging such as positioning of the subject 14 is completed. Accordingly, the control processing unit 52 captures the subject 14 by synchronizing the start of the output of the radiation 16 from the radiation output device 18 with the detection of the radiation 16 in the radiation conversion panel 28 and the conversion to the radiation image. A synchronization control signal for executing radiography for the region is generated. The control processing unit 52 transmits the generated synchronization control signal to the radiation imaging apparatus 10 and the radiation output apparatus 18 via the communication unit 50 wirelessly.
  • the radiation output device 18 irradiates the imaging region of the subject 14 with the radiation 16 having a predetermined dose according to the imaging conditions.
  • the a-Se semiconductor layer 74 a absorbs the low energy component of the radiation 16 to absorb positive charges 94 a and negative. A charge pair of charge 96a is generated.
  • the high energy component of the radiation 16 that has not been absorbed by the semiconductor layer 74a reaches the second radiation detection unit 72c.
  • the columnar crystal structure 88c absorbs a high energy component of the radiation 16 and generates fluorescence 98.
  • the switching filter 28b if the switching filter 28b is in a transparent state, light in a short wavelength region of 500 nm or less including the sensitivity wavelength region of a-Se out of the fluorescence 98 passes through the switching filter 28b as transmitted light 102. On the other hand, light in a long wavelength region exceeding 500 nm is reflected as reflected light 104 in the switching filter 28b. Therefore, the semiconductor layer 74a can absorb the incident transmitted light 102 and generate a charge pair of a positive charge 94c and a negative charge 96c.
  • the positive charges 94a and 94c and the negative charges 96a and 96c are In accordance with the direct current electric field, the pixel electrode 76a or the common electrode 78a is moved. If the DC voltage (DC electric field) is sufficient to generate the avalanche effect, the positive charges 94a and 94c and the negative charges 96a and 96c are amplified by the avalanche effect, and thus the first charge is passed through each pixel electrode 76a. The number of charges taken out by the charge detection unit 70a can be increased.
  • the fluorescent light 98 generated at the light emitting point 100 propagates through the columnar crystal (goes straight) and reaches the photodiode 86c, is reflected by the switching filter 28b, and travels straight through the columnar crystal. Then, the reflected light 104 reaching the photodiode 86c is converted into charges and accumulated.
  • the arrived reflected light 104 is converted into charges and accumulated.
  • the cassette control unit 34 receives the synchronization control signal via the communication unit 36, it is held in each pixel 62 by causing the address signal generation unit 44 to supply an address signal to the drive circuit unit 30.
  • the charge information which is a radiographic image of the subject 14 is read out.
  • the drive circuit unit 30 first passes the one row through the two gate lines 64a and 64c connected to the pixels 62 in the first row.
  • a control signal is supplied to the gates of the TFTs 82a and 82c of each pixel 62 of the eye.
  • the readout circuit unit 32 displays the radiation image, which is the charge information held in each pixel 62 in the first row connected to the gate lines 64a and 64c selected by the drive circuit unit 30, and the signal lines 66a and 66c. Read sequentially.
  • the radiation image read from each pixel 62 in the first row connected to the selected gate lines 64a and 64c is sampled after being amplified in the readout circuit unit 32 and converted into a digital signal by A / D conversion.
  • the radiographic image converted into the digital signal is temporarily stored in the image memory 46 of the cassette control unit 34.
  • the drive circuit unit 30 sequentially performs such an operation on each pixel 62 in each row in accordance with the address signal supplied from the address signal generation unit 44.
  • the readout circuit unit 32 reads out the radiation image, which is the charge information held in each pixel 62 connected to each gate line 64a, 64c, via the signal line 66a, 66c, and the cassette control unit 34 It is stored in the image memory 46.
  • the radiation image obtained by the irradiation of the radiation 16 from the radiation output device 18 is stored in the image memory 46.
  • the cassette control unit 34 After storing the radiation image in the image memory 46, the cassette control unit 34 stores the radiation image (first radiation image acquired from the first radiation conversion layer 28a, second radiation conversion layer 28c) stored in the image memory 46. 2), the cassette ID information stored in the cassette ID memory 48, and the instruction information are wirelessly transmitted to the console 20 via the communication unit 36.
  • the control processing unit 52 of the console 20 outputs the radiographic image received via the communication unit 50 to the image processing unit 58, and sends an appropriate radiographic image corresponding to the instruction information to the image processing unit 58, that is, order information. Control is performed so as to generate an interpretation image that can be interpreted by a doctor according to the situation.
  • the image processing unit 58 selects the first radiographic image and selects the selected first radiographic image if it is radiographic imaging for acquiring a radiographic image corresponding to the low energy component of the radiation 16 such as radiography for mammo.
  • the first radiation image (interpretation image) after the image processing, the first radiation image and the second radiation image sent from the radiation imaging apparatus 10 The cassette ID information and the instruction information are stored in the image memory 60 in association with each other.
  • the image processing unit 58 selects the second radiographic image and performs the predetermined image processing on the selected second radiographic image and then performs the image processing after the image processing for the general imaging of the chest or abdomen.
  • the second radiation image (interpretation image), the first radiation image and the second radiation image sent from the radiation imaging apparatus 10, cassette ID information, and instruction information are associated with each other and stored in the image memory 60.
  • the image processing unit 58 performs an addition process of adding the first radiographic image and the second radiographic image in the case of general imaging, an image after addition (added image, interpretation image), and the radiographic apparatus
  • the first radiation image and the second radiation image sent from 10, the cassette ID information, and the instruction information are stored in the image memory 60 in association with each other.
  • the image processing unit 58 selects and selects the second radiographic image if it is radiographic imaging for acquiring a radiographic image corresponding to the high energy component of the radiation 16 such as radiographic imaging of the bone.
  • the second radiation image (interpretation image) after the image processing
  • the first radiation image sent from the radiation imaging apparatus 10 and the second radiation image are sent.
  • the radiation image, cassette ID information, and instruction information are stored in the image memory 60 in association with each other.
  • control processing unit 52 wirelessly transmits the interpretation image to the display device 22 via the communication unit 50, and the display device 22 displays the received interpretation image.
  • the doctor or engineer visually recognizes the interpretation image displayed on the display device 22 and obtains a desired radiation image, the doctor or the engineer releases the subject 14 from the positioning state and ends the photographing with respect to the subject 14. On the other hand, if the interpretation image displayed on the display device 22 is not a desired radiation image, re-imaging is performed on the subject 14.
  • the radiation imaging apparatus 10 in which the direct conversion type first radiation conversion layer 28a and the indirect conversion type second radiation conversion layer 28c are stacked. 10, a part of the fluorescence 98 (light in a short wavelength region of 500 nm or less including light in the blue wavelength region) generated in the second radiation detection unit 72c is incident on the first radiation detection unit 72a, and the fluorescence 98 is emitted. The other part (light in a longer wavelength region than the short wavelength region exceeding 500 nm) is incident on the second charge detection unit 70c.
  • the radiation 16 is directly converted into the charges 94a and 96a, and the transmitted light 102 which is a part of the incident fluorescence 98 is also converted into the charges 94c and 96c. Therefore, in the first radiation conversion layer 28a, in addition to the charges 94a and 96a directly converted from the radiation 16, the charges 94c and 96c converted from the transmitted light 102 also form a radiation image in the first radiation conversion layer 28a. Will be used for.
  • the sensitivity of the first radiation detection unit 72a is increased without increasing the thickness of the first radiation detection unit 72a that constitutes the first radiation conversion layer 28a, and the first radiation conversion is performed. It becomes possible to acquire a high-quality radiation image with the layer 28a. Therefore, in the present embodiment, the radiation imaging apparatus 10 including the direct conversion type radiation conversion layer 28a that can be used for general imaging such as radiography for the chest and abdomen can be realized. In addition, since it is not necessary to increase the thickness of the first radiation detection unit 72a, the yield of the radiation imaging apparatus 10 including the first radiation conversion layer 28a can be improved.
  • the first radiation conversion layer 28a and the second radiation conversion layer 28c are sequentially laminated in the incident direction of the radiation 16.
  • the first radiation detection unit 72a includes a semiconductor layer 74a that directly converts the radiation 16 into charges 94a and 96a
  • the second radiation detection unit 72c is a scintillator that converts the radiation 16 into fluorescence 98. is there.
  • the semiconductor layer 74a constituting the first radiation detection unit 72a absorbs the low energy component of the radiation 16 (energy component corresponding to the low tube voltage) and charges 94a and 96a. Convert directly to.
  • the scintillator constituting the second radiation detection unit 72 c absorbs the high energy component of the radiation 16 (energy component corresponding to a high tube voltage) and converts it into fluorescence 98. Therefore, if a part of the fluorescence 98 corresponding to the high energy component enters the first radiation conversion layer 28a as the transmitted light 102, the semiconductor layer 74a can convert the transmitted light 102 into charges 94c and 96c. .
  • a so-called hybrid configuration of the semiconductor layer 74a and the scintillator can be adopted to efficiently convert the low energy component and the high energy component of the radiation 16 into charges.
  • a radiation image including a high energy component in addition to the low energy component of the radiation 16 can be formed.
  • the first radiation conversion layer 28a easily realizes high image quality of radiographic images for general imaging such as radiography of the chest and abdomen and low-energy component radiographic images for mammo, soft tissue or tumor.
  • the thickness of the semiconductor layer 74a can be avoided.
  • the unit 70a can form a radiation image that also reflects high energy components.
  • the first charge detection unit 70a is highly sensitive and can easily acquire a high-quality first radiation image, it is substantially the same as the case of the thick semiconductor layer 74a. Equivalent radiographic images can be obtained.
  • a radiographic image including a high energy component can be formed, so that it is possible to form a radiographic image for general imaging or a radiographic image of a bone part.
  • the semiconductor layer 74a is selenium, more preferably a-Se
  • a K edge is present on the low energy component side as shown in FIG. 22, and thus the low energy component of the radiation 16 is easily absorbed.
  • a scintillator having a K edge on the high energy component side of a-Se is used for the second radiation detection unit 72c, a large amount of high energy component of the radiation 16 can be absorbed.
  • the thickness of the semiconductor layer is about 200 ⁇ m at a tube voltage of 28 kV.
  • a part of the fluorescence 98 generated by the scintillator of the second radiation detection unit 72c is made incident on the semiconductor layer 74a as the transmitted light 102, thereby improving the sensitivity of the first radiation conversion layer 28a. Therefore, the thickness of the a-Se semiconductor layer 74a can be set to 200 ⁇ m or less.
  • a-Se has high quantum efficiency in a short wavelength region of 500 nm or less, and the quantum efficiency can be increased by increasing the DC electric field in the a-Se semiconductor layer 74a. That is, the a-Se semiconductor layer 74a has a short wavelength region of 500 nm or less including a blue wavelength region as a sensitivity wavelength region.
  • FIG. 11 also shows the sensitivity wavelength region of the photodiode 86c made of a-Si: H.
  • the a-Si: H photodiode 86c has a long wavelength region exceeding 500 nm (specifically, a wavelength region of 500 nm to 600 nm) as a main sensitivity wavelength region.
  • the scintillator is at least a phosphor that generates fluorescence 98 in the blue wavelength region
  • the fluorescence 98 (transmitted light 102) in the blue wavelength region is incident on the semiconductor layer 74a of a-Se, so that the semiconductor In the layer 74a, the fluorescence 98 in the blue wavelength region can be efficiently photoelectrically converted into charges 94c and 96c.
  • CsI Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr: Tm or the like can be employed.
  • FIG. 12 shows, among these scintillators, typically the wavelength of the generated fluorescence 98 and its normalized intensity (the fluorescence 98 generated by the scintillator) in CsI: Na, CaWO 4 , BaFBr: Eu, YTaO 4 : Nb. The relationship between the maximum intensity and the value when normalized to 1.0) is shown.
  • CsI: Na can generate fluorescence 98 in a wide wavelength region including a blue wavelength region of 500 nm or less and a long wavelength region exceeding 500 nm.
  • the fluorescent light 98 (transmitted light 102) in the blue wavelength region is photoelectrically converted into charges 94c and 96c by the a-Se semiconductor layer 74a.
  • the fluorescent light 98 (and the reflected light 104) in the long wavelength region can be photoelectrically converted into electric charges in the photodiode 86c of the second charge detection unit 70c.
  • the a-Se semiconductor layer 74a is disposed on the radiation 16 incident side and the scintillator of the second radiation detector 72c is disposed behind the a-Se semiconductor layer 74a, the a-Se absorbs and transmits the soft X-rays. X-rays can be hardened. Thereby, even if glass (glass-made insulating substrates 68a and 68c) is interposed between the semiconductor layer 74a and the scintillator, absorption of the radiation 16 by the glass can be suppressed.
  • a scintillator such as a CsI system, a BaFX system (X is Br or Cl), or GOS
  • hard X-rays can be reliably absorbed without reducing the radiation absorption rate. Since these scintillators tend to increase the emission intensity of fluorescence 98 as hard X-rays increase, the absorptive absorption of soft X-rays with a-Se can improve the radiation absorption rate of the scintillator. .
  • the first radiation detector 72a includes an a-Se semiconductor layer 74a, a plurality of pixel electrodes 76a, and a common electrode 78a. In this case, by applying a DC voltage between each pixel electrode 76a and the common electrode 78a, positive charges 94a and 94c or negative charges 96a and 96c generated in the semiconductor layer 74a are transmitted through the pixel electrodes 76a. It can be taken out by one charge detector 70a.
  • FIG. 13 shows the relative value of the detection signal intensity according to the DC electric field in the a-Se semiconductor layer 74a and the number of charges taken out by the first charge detection unit 70a (the detection signal intensity in the DC electric field of 10 V / ⁇ m). The relationship with the value when normalized to 1.0) is illustrated.
  • the first charge detection unit 70a merely has a function of extracting only the positive charges 94a and 94c or the negative charges 96a and 96c generated in the a-Se semiconductor layer 74a by the irradiation of the radiation 16. Absent.
  • the thickness of the a-Se semiconductor layer 74a may be reduced. That is, if the thickness of the a-Se semiconductor layer 74a is thin, a DC electric field generated in the semiconductor layer 74a when a DC voltage is applied between each pixel electrode 76a and the common electrode 78a increases, and an avalanche is formed. This is because the charge multiplying effect due to the effect is easily obtained.
  • the first charge detection unit 70a has high sensitivity, so that a high-quality first radiation image can be easily acquired. Therefore, if the thickness of the semiconductor layer 74a is reduced, a radiation absorption rate and a radiation image substantially equivalent to those of the thick semiconductor layer 74a can be obtained.
  • Each pixel electrode 76a is formed on the first charge detection unit 70a side in the semiconductor layer 74a, and the common electrode 78a is formed on the opposite side of the semiconductor layer 74a from the first charge detection unit 70a side. ing. Therefore, the positive charges 94a and 94c or the negative charges 96a and 96c can be easily and accurately taken out for each pixel 62 through each pixel electrode 76a.
  • the common electrode 78a is a transparent electrode such as ITO that can transmit part of the fluorescence 98 as the transmitted light 102. A large amount of transmitted light 102 can be incident on the semiconductor layer 74a.
  • a switching filter 28b as an optical filter capable of transmitting a part of the fluorescence 98 as the transmitted light 102 is interposed between the first radiation conversion layer 28a and the second radiation conversion layer 28c.
  • the common electrode 78a may function as an optical filter capable of transmitting the transmitted light 102. In any case, light in the short wavelength region including the blue wavelength region of the fluorescence 98 can be reliably incident on the semiconductor layer 74a as the transmitted light 102.
  • the switching electrode 28b or the common electrode 78a functioning as an optical filter transmits light in the sensitivity wavelength region that can be converted into charges 94c and 96c by the a-Se semiconductor layer 74a in the fluorescent light 98. And a dichroic filter that transmits light outside the sensitivity wavelength region as reflected light 104 to the second radiation conversion layer 28c side.
  • the common electrode 78a functioning as the switching filter 28b or the optical filter functions as follows according to the type of scintillator used in the second radiation detection unit 72c.
  • the switching filter 28b or the common electrode 78a transmits the fluorescence 98 having a wavelength of 500 nm or less as the transmitted light 102 and reflects the fluorescence 98 having a wavelength exceeding 500 nm as reflected light, as described above. What is necessary is just to function as a dichroic filter which reflects as 104.
  • the transmitted light 102 is converted into charges 94c and 96c in the semiconductor layer 74a, and the reflected light 104 is received by the photodiode 86c by the light guide effect that travels straight through the columnar crystal and reaches the photodiode 86c. And converted into electric charge.
  • a high-quality first radiographic image is obtained, and a second radiographic image without image blur is obtained.
  • the switching filter 28b or the common electrode 78a transmits fluorescence 98 having a wavelength of 500 nm or less as transmitted light 102 and absorbs fluorescence 98 having a wavelength exceeding 500 nm. It only has to function. As a result, the transmitted light 102 is converted into charges 94c and 96c in the semiconductor layer 74a, and the occurrence of light scattering at the scintillator particles due to reflection at the switching filter 28b or the common electrode 78a can be suppressed. . Even in this case, a high-quality first radiation image can be obtained, and a second radiation image without image blur can be obtained.
  • the image processing unit 58 of the console 20 uses the first radiation image formed by the first radiation conversion layer 28a and the second radiation image formed by the second radiation conversion layer 28c. By adding, a desired high-quality image for general photography can be easily acquired.
  • the cassette control unit 34 may have such an image processing function to generate an addition image on the radiation imaging apparatus 10 side.
  • the radiation imaging apparatus 10 As described above, in the radiation imaging apparatus 10 according to the present embodiment, at least light in the sensitivity wavelength region of a-Se (transmitted light 102 in the blue wavelength region of 500 nm or less) is transmitted to the semiconductor of the first radiation conversion layer 28a.
  • the switching filter 28b is not indispensable because the above-described effects associated with the incident of the transmitted light 102 can be obtained by making the light incident on the layer 74a.
  • the radiation conversion panel 28 is configured by the laminated structure of the first radiation conversion layer 28a and the second radiation conversion layer 28c, and the fluorescence 98 converted from the high energy component of the radiation 16 by the second radiation detection unit 72c. May be incident on the semiconductor layer 74a of the first radiation detector 72a as transmitted light 102 as it is.
  • the fluorescence 98 converted from the high energy component of the radiation 16 (a high voltage component with a relatively high tube voltage) is incident on the semiconductor layer 74 a as the transmitted light 102 and transmitted.
  • an addition image is generated by adding the first radiation image and the second radiation image based on the charges 94c and 96c.
  • an image in which a bone part is reflected is formed as a second radiographic image, so an addition image is formed by adding the first radiographic image and the second radiographic image. Then, there is a possibility that the bone part can be easily seen.
  • 14A to 15D illustrate the manufacturing process of the radiation conversion panel 28 (see FIG. 3A) of the first embodiment.
  • a first charge detector 70a is formed on an insulating substrate 68a by a known vapor deposition technique.
  • a plurality of pixel electrodes 76a are formed on the first charge detection unit 70a by vapor deposition.
  • an a-Se semiconductor layer 74a is formed on the first charge detection unit 70a and the pixel electrode 76a by vapor deposition.
  • a common electrode 78a is formed on the a-Se semiconductor layer 74a by vapor deposition.
  • the second charge detector 70c is formed on the insulating substrate 68c by vapor deposition.
  • a second radiation detection unit 72c (scintillator) is formed on the second charge detection unit 70c by vapor deposition.
  • the switching filter 28b is attached to the second radiation detection unit 72c via the adhesive layer 128 (or adhesive layer).
  • the common electrode 78a formed in the step of FIG. 14D and the switching filter 28b attached in the step of FIG. 15C are pasted through the adhesive layer 130 (or adhesive layer). To wear. Thereby, the radiation conversion panel 28 of the first embodiment is completed.
  • the tip of the columnar crystal structure 88c is as much as possible. It is preferably flat. Therefore, in the process of FIG. 15B, the temperature of the second charge detector 70c as the substrate for the scintillator and the temperature of the insulating substrate 68c are controlled at the final stage of vapor deposition of the CsI: Na scintillator on the second charge detector 70c. Thus, the tip portion of the columnar crystal structure 88c is made as flat as possible.
  • the temperature of the second charge detection unit 70c and the insulating substrate 68c is 110 ° C.
  • the angle of the tip portion of the columnar crystal structure 88c is 170 °
  • the temperature is 140 ° C.
  • the angle is 60 °.
  • the angle is 70 °
  • the temperature is 260 ° C. and the angle is 120 °.
  • 16A to 16C illustrate a first modification of the manufacturing process of FIGS. 14A to 15D.
  • the scintillator of the second radiation detection unit 72c is formed on the vapor deposition substrate 132 by vapor deposition via the release layer 134.
  • the vapor deposition substrate 132 and the peeling layer 134 are peeled off from the second radiation detector 72c.
  • the second charge detection unit 70c and the second radiation detection unit 72c formed on the insulating substrate 68c in the step of FIG. 15A are bonded to the adhesive layer 136 (or adhesive layer). To stick through.
  • the radiation conversion panel 28 can be obtained by performing the process of FIG. 15C and FIG. 15D.
  • FIGS. 17A to 17C illustrate a second modification of the manufacturing process of FIGS. 14A to 15D.
  • the switching filter 28b is formed by vapor deposition on the common electrode 78a formed on the a-Se semiconductor layer 74a by the process of FIG. 14D.
  • the scintillator of the second radiation detector 72c is formed on the switching filter 28b by vapor deposition.
  • the second charge detection unit 70c and the second radiation detection unit 72c formed on the insulating substrate 68c in the step of FIG. 15A are connected to the adhesive layer 136 (or adhesive layer).
  • the radiation conversion panel 28 is obtained by sticking through the sheet.
  • FIGS. 18A to 19B illustrate a third modification of the manufacturing process of FIGS. 14A to 15D.
  • the switching filter 28b is formed by vapor deposition on the second radiation detection unit 72c attached to the second charge detection unit 70c by the process of FIG. 16C.
  • a common electrode 78a is formed on the switching filter 28b by vapor deposition.
  • an a-Se semiconductor layer 74a is formed on the common electrode 78a by vapor deposition.
  • a plurality of pixel electrodes 76a are formed on the semiconductor layer 74a.
  • the first charge detector 70a formed on the insulating substrate 68a in the process of FIG. 14A, the plurality of pixel electrodes 76a and the semiconductor layer 74a are bonded to the adhesive layer 138 (or adhesive layer). ) To obtain the radiation conversion panel 28.
  • the surface of the semiconductor layer 74a on the side of the insulating substrate 68a becomes uneven by forming the plurality of pixel electrodes 76a on the semiconductor layer 74a, and thus the first charge detection unit 70a.
  • the pixel electrode 76a and the semiconductor layer 74a are attached to each other via the adhesive layer 138, so that the adhesive layer 138 functions as a planarizing film.
  • the second radiation detector 72c is a CsI: Na columnar crystal scintillator has been described. However, when a scintillator having no columnar crystal such as CaWO 4 is used.
  • the term “deposition substrate 132” is replaced with “substrate such as PET”, and the term “deposition formed” is replaced with “application”. made to the description of the manufacturing process of the radiation conversion panel 28 using a scintillator of CaWO 4, or the like.
  • FIG. 20A is an enlarged view of the radiation conversion panel 28 (see FIG. 3B) of the second embodiment with respect to one pixel 62
  • FIG. 20B shows the radiation conversion panel 28 (see FIG. 4A) of the third embodiment. ) Is enlarged and illustrated for one pixel 62.
  • the radiation 16 passes through the second charge detector 70c and the insulating substrate 68c, and is generated in the columnar crystal structure 88c of the CsI: Na scintillator of the second radiation detector 72c.
  • the second charge detection unit 70c and the insulating substrate 68c have the absorption of the radiation 16. It is preferably made of a material that is low and can transmit the light, or has low light absorption and light shielding properties.
  • the insulating substrate 68c is preferably made of the same material as the insulating substrate 68a.
  • the TFT 82c includes an active layer made of amorphous silicon (a-Si), amorphous oxide (for example, a-IGZO (InGaZnO 4 )), an organic semiconductor material, a carbon nanotube, and the like.
  • the diode 86c is also preferably made of a-Si. Therefore, the gate line 64c and the signal line 66c connected to the TFT 82c also have low radiation 16 absorptivity and can transmit the light, or have a low absorptivity and light shielding property. It is preferable to consist of materials.
  • the second radiation detection unit 72c absorbs the high energy component of the radiation 16 and converts it into fluorescence 98 at the light emitting portion 100 of the columnar crystal structure 88c.
  • the fluorescence 98 generated at the light emitting portion 100 travels straight through the columnar crystal and directly reaches the photodiode 86c, or propagates through the columnar crystal to the reflection film 80c side and reflects the reflection film 80c.
  • the reflected light 140 travels straight through the columnar crystal and reaches the photodiode 86c. Therefore, the photodiode 86c converts the fluorescent light 98 that has directly reached through the columnar crystal and the reflected light 140 into electric charges and accumulates them.
  • the a-Si: H photodiode 86c mainly converts light in a long wavelength region exceeding 500 nm into electric charges, and for light in a short wavelength region of 500 nm or less, Low efficiency. Therefore, in the second embodiment, the second charge detection unit 70c transmits and transmits light having a short wavelength region of 500 nm or less (for example, light in the blue wavelength region) out of the incident fluorescence 98 and reflected light 140. The light 102 is incident on the first radiation detector 72a. Thereby, the semiconductor layer 74a of the first radiation detection unit 72a can photoelectrically convert the incident transmitted light 102 into a charge pair of a positive charge 94c and a negative charge 96c. Therefore, the radiation conversion panel 28 of the second embodiment can achieve the same effect as that of the first embodiment.
  • the second charge detector 70c includes an organic photoconductor 144c instead of the photodiode 86c.
  • the TFT 82c and the organic photoconductor 144c are sequentially stacked along the incident direction of the radiation 16.
  • FIGS. 21A and 21B schematically show the planar arrangement of the organic photoconductor 144c in the second charge detection unit 70c, and one organic photoconductor 144c (and TFT 82c) is assigned to one pixel 62. It has been.
  • the second charge detectors 70c and the TFTs 82c are tiled in a matrix in a plan view.
  • the organic photoconductor 144c includes, for example, quinacridone so as to absorb the fluorescent light 98 in the green wavelength region (magenta color) and convert it into charges, or green (magenta) or red (cyan). It is preferable to absorb the fluorescence 98 in the wavelength region and convert it into charges.
  • FIG. 21A illustrates a case where all the organic photoconductors 144c that are tilingly arranged on the second charge detection unit 70c are photoelectric conversion elements that absorb fluorescence 98 in the green wavelength region.
  • FIG. 21B shows a photoelectric conversion element in which most of the organic photoconductors 144c among all the organic photoconductors 144c arranged on the second charge detection unit 70c absorb the fluorescence 98 in the green wavelength region.
  • some organic photoconductors 144c shown by hatching in FIG. 21B are photoelectric conversion elements that absorb fluorescence 98 in the red wavelength region is illustrated. Note that since red is difficult to refract the fluorescence 98 and may cause image blur of the second radiation image, the organic photoconductor 144c that absorbs the fluorescence 98 in the red wavelength region is the second one. What is necessary is just to use it as a sensor for a monitor for detecting the presence or absence of irradiation of the radiation
  • the light in the green wavelength region or the light in the green wavelength region and the red wavelength region is emitted from the organic photoconductor 144c. It is absorbed by the conductor 144c and converted into electric charge.
  • light in a shorter wavelength region (for example, light in the blue wavelength region) is transmitted as the transmitted light 102 through the organic photoconductor 144c, the TFT 82c, and the first charge detection unit 70a, so that the first radiation detection is performed. It reaches part 72a.
  • the semiconductor layer 74a of the first radiation detection unit 72a can photoelectrically convert the incident transmitted light 102 into a charge pair of a positive charge 94c and a negative charge 96c. Therefore, the same effect as that of the first embodiment can be obtained in the radiation conversion panel 28 of the third embodiment.
  • the scintillator is not limited to the blue wavelength region, and a phosphor that generates a green wavelength region such as CsI: Tl or GOS can be used. Even when a CsI: Na scintillator is used, the organic photoconductor 144c can absorb light having a wavelength in the wavelength band from green to red, so that the light detection efficiency can be improved.
  • the photodiode 86c or the organic photoconductor 144c transmits the transmitted light 102 in the short wavelength region including the blue wavelength region which is the sensitivity wavelength region of a-Se, and absorbs the fluorescence 98 and the reflected light 140 in the longer wavelength region than the transmitted light 102.
  • the incident transmitted light 102 can be efficiently converted into charges 94c and 96c, and in the photodiode 86c or the organic photoconductor 144c, light in a long wavelength region exceeding the sensitivity wavelength region is reliably converted into charges. Can be converted. Therefore, even with these configurations, it is possible to easily realize high image quality of each radiation image in the first radiation conversion layer 28a and the second radiation conversion layer 28c.
  • the scintillator as the second radiation detection unit 72c is composed of one type of phosphor.
  • a scintillator in which a plurality of phosphors are blended can be used. is there.
  • the sensitivity wavelength region of the first fluorescent substance that generates fluorescence 98 (transmitted light 102) in the sensitivity wavelength region of a-Se and the photodiode 86c or the organic photoconductor 144c of the second charge detection unit 70c.
  • a scintillator configured by blending the fluorescent material 98 and the second fluorescent material that generates the reflected lights 104 and 140 is used as the second radiation detection unit 72c.
  • the first fluorescent material that is not normally used is actively used as a constituent material of the scintillator.
  • fluorescence 98 for example, fluorescence 98 in the blue wavelength region
  • the transmitted light 102 is transmitted in the semiconductor layer 74a.
  • the charges 94c and 96c can be reliably converted.
  • the fluorescence 98 (for example, fluorescence 98 in the long wavelength region of 500 nm or more) generated by the second fluorescent material is reliably converted into charges by the photodiode 86c or the organic photoconductor 144c of the second charge detection unit 70c. be able to.
  • the scintillator obtained by selecting and blending the first fluorescent material and the second fluorescent material according to the characteristics of the semiconductor layer 74a and the characteristics of the photodiode 86c or the organic photoconductor 144c is used for the second radiation detection. Used as part 72c.
  • the absorption energy of the radiation 16 is controlled without increasing the thickness of the a-Se semiconductor layer 74a, and a desired radiation image is obtained in the first radiation conversion layer 28a and the second radiation conversion layer 28c. It becomes possible to do.
  • a radiation image corresponding to a low energy component and a medium energy component (energy component corresponding to a low tube voltage and a medium tube voltage) of the radiation 16 or a low energy component to a high energy component Absorbed by the semiconductor layer 74a by selecting the first fluorescent material for the purpose of acquiring a radiation image corresponding to a wide range of energy components from low to high tube voltages.
  • the desired radiation image can be acquired by controlling the energy component.
  • BaFBr Eu that mainly generates purple fluorescence at the K edge 37 keV is used as the first fluorescent material
  • GOS Tb that mainly generates green fluorescence at the K edge 60 keV and generates blue fluorescence as the second fluorescence is used as the second fluorescence.
  • both are blended to form a scintillator.
  • the fluorescence generated by GOS: Tb is mainly received by the photodiode 86c or the organic photoconductor 144c.
  • a part of the fluorescence generated in BaFBr: Eu is also received by the photodiode 86c or the organic photoconductor 144c, but most of the fluorescence passes through the photodiode 86c or the organic photoconductor 144c, and is a semiconductor layer of a-Se. 74a enters as transmitted light 102.
  • the TFT 82a obtains a first radiation image corresponding to the low energy component and the medium energy component
  • the TFT 82c obtains a second radiation image corresponding to the high energy component.
  • the first radiographic image and the second radiographic image are added, a radiographic image of a wide range of energy components from a low energy component to a high energy component can be obtained.
  • the transmitted light 102 passes through the second charge detection unit 70c.
  • the a-Si TFT 82c may absorb the transmitted light 102 and cause switching noise.
  • violet light having low sensitivity in a-Si is passed through the second charge detection unit 70c as transmitted light 102, the a-Si TFT 82c absorbs the transmitted light 102. Since it is suppressed, generation
  • the radiation imaging apparatus 10 according to the present embodiment can be modified to the modifications shown in FIGS. 25 to 44 (radiation imaging apparatuses 10A to 10F according to the first to sixth modifications).
  • the radiation imaging apparatus 10A according to the first modification is basically used as a portable electronic cassette, and as shown in FIGS. 25 to 28, a hexahedral housing 150 that houses the radiation conversion panel 28 and the like. However, it can be separated into a large-capacity main body 150 a that accommodates the radiation conversion panel 28 and a small-capacity expansion portion 150 b that accommodates the communication unit 36 and the battery 38.
  • a guide line 154 serving as a reference for an imaging region and an imaging position is formed on the irradiation surface 152 to which the radiation 16 is irradiated in the main body 150a which is a large-volume housing.
  • the subject 14 is positioned with respect to the radiation imaging apparatus 10A using the guide line 154 and the irradiation range of the radiation 16 is set, an appropriate radiographic image can be captured.
  • a handle 156 is provided on a side surface (a side surface distal to the main body 150a) of the expansion portion 150b which is a small-volume housing.
  • a release button 158 for releasing the connection state between the main body 150a and the extension 150b is provided on the distal side surface.
  • a display unit 160 capable of displaying various types of information is provided on the upper surface of the expansion unit 150b.
  • a power switch 162 for activating the radiation imaging apparatus 10A and an input terminal 164 of an AC adapter capable of supplying power from the outside are provided on the distal side surface.
  • a USB (Universal Serial Bus) cable is connected to one side surface connected to the main unit 150a, so that information can be transmitted / received to / from an external device such as the console 20 by wired communication.
  • a USB terminal 166 is provided.
  • necessary information is recorded by loading the memory card 168 on the other side surface connected to the main body unit 150a, and after the information is recorded, the memory card 168 is taken out and loaded into an external device.
  • a card slot 170 capable of transmitting / receiving information is provided.
  • FIG. 26 illustrates a state in which the main body 150a and the extension 150b are separated.
  • a recess 174 is formed on a side surface 172 facing the extension 150b.
  • a convex part 178 that can be fitted into the concave part 174 is formed on the side face 176 that faces the side face 172 of the main body part 150a.
  • the left and right wall portions in the recess 174 are provided with receiving recesses 180 and 182, respectively.
  • Locking portions 184 and 186 that can be locked to the housing recesses 180 and 182 are provided on the left and right side surfaces of the convex portion 178, respectively.
  • a connector 188 is provided on the back side of the recess 174.
  • the convex portion 178 is provided with a connector 190 that can be connected to the connector 188 when the concave portion 174 and the convex portion 178 are fitted.
  • the doctor or an engineer inserts the protrusion 178 into the recess 174 while holding the handle 156 in a state where the main body 150a and the extension 150b are separated,
  • the connectors 188 and 190 are connected, and the locking portions 184 and 186 are locked in the housing recesses 180 and 182, respectively.
  • the main body 150a and the extension 150b are integrally connected and fixed, and the side surface 172 of the main body 150a and the side 176 of the extension 150b are in surface contact.
  • FIG. 27 illustrates the inside of the main body 150a and the additional part 150b by breaking a part of the upper surface (irradiation surface 152) of the main body part 150a and a part of the upper surface of the additional part 150b.
  • FIG. 28 is a cross-sectional view of the main body 150a and the extension 150b.
  • a plate-like base 196 is disposed in the main body 150a.
  • the base 196 is accommodated in the main body 150a by a fixing member (not shown).
  • the radiation conversion panel 28 is interposed between the inner wall on the irradiation surface 152 side of the main body 150a and the upper surface of the base 196 (the surface on the irradiation surface 152 side).
  • the second radiation conversion layer 28c, the switching filter 28b, and the first radiation conversion layer 28a are sequentially laminated from the upper surface of the base 196 toward the irradiation surface 152.
  • the switching filter 28b is not essential, and an arrangement structure in which the second radiation conversion layer 28c and the first radiation conversion layer 28a are stacked in this order may be employed. In any case, it is desirable that the first radiation conversion layer 28a is in surface contact with the inner wall on the irradiation surface 152 side.
  • the plane area of the base 196 is slightly larger than the plane area of the radiation conversion panel 28.
  • the outer frame of the guide line 154 corresponds to the outline of the radiation conversion panel 28.
  • a plurality of flexible boards 198 to 204 are connected to each side surface of the radiation conversion panel 28 at a predetermined interval.
  • the flexible substrates 198 to 204 are connected to different side surfaces of the radiation conversion panel 28.
  • a plurality of flexible substrates 198 are connected to one side surface (the left side surface in FIG. 27) of the first radiation conversion layer 28a at a predetermined interval.
  • a plurality of flexible substrates 202 are connected to the other side surface (the right side surface in FIG. 27) of the first radiation conversion layer 28a at a predetermined interval.
  • a plurality of flexible boards 204 are connected at a predetermined interval to one side surface of the switching filter 28b (a side surface distal to the additional portion 150b in FIG. 27 and a right side surface in FIG. 28).
  • a plurality of flexible boards 200 are connected to one side surface of the second radiation conversion layer 28c (a side surface in the vicinity of the extension portion 150b in FIG. 27, a left side surface in FIG. 28) at a predetermined interval.
  • Insulating substrates 206a to 206c are disposed on the bottom surface of the base 196, and the driving circuit unit 30, the reading circuit unit 32, the cassette control unit 34, the filter control unit 40, and / or the voltage supply are provided on each of the insulating substrates 206a to 206c.
  • Electronic components 208a to 208c that function as the unit 42 (see FIG. 1) are mounted.
  • the flexible substrates 198 and 202 are connected to the electronic component 208a
  • the flexible substrate 200 is connected to the electronic component 208c
  • the flexible substrate 204 is connected to the electronic component 208b.
  • these electronic components 208a to 208c are connected to a connector 188 via a cable (not shown).
  • the connector 190 that can be connected to the connector 188 is connected to the communication unit 36 and the battery 38 via a cable (not shown).
  • Each flexible substrate 198 to 204 functions as a signal line for transmitting an electrical signal and a power supply line for supplying voltage and current. Therefore, the electronic component 208a is electrically connected to the first radiation conversion layer 28a via the flexible substrates 198 and 202, and functions as a part of the drive circuit unit 30, the readout circuit unit 32, and the cassette control unit 34.
  • the electronic component 208 b is electrically connected to the switching filter 28 b via the flexible substrate 204 and functions as the filter control unit 40 and the voltage supply unit 42.
  • the electronic component 208 c is electrically connected to the second radiation conversion layer 28 c via the flexible substrate 200 and functions as a part of the drive circuit unit 30, the readout circuit unit 32, and the cassette control unit 34.
  • each of the electronic components 208a to 208c can send and receive signals to and from the communication unit 36 via the two connectors 188 and 190. Therefore, the communication unit 36 transmits signals from the electronic components 208a to 208c to the console 20 by wireless communication, while information received from the console 20 is transmitted to the electronic components 208a to 208 via the two connectors 188 and 190. 208c can be transmitted. Since the extension unit 150b is provided with a display unit 160, information from each electronic component 208a to 208c, information transmitted and received between the communication unit 36 and each electronic component 208a to 208c, Information transmitted and received between the console 36 and the console 20 can also be displayed on the display unit 160.
  • the expansion unit 150b is also provided with an input terminal 164, a USB terminal 166, and a card slot 170. Therefore, even in the portable radiation imaging apparatus 10 ⁇ / b> A, the battery 38 can be charged from the outside via the input terminal 164 or the USB terminal 166.
  • wireless communication by the communication unit 36 cannot be performed, wired communication via the USB terminal 166 is also possible. Further, when the wireless communication or the wired communication cannot be performed, the information from each of the electronic components 208 a to 208 c is stored in the memory card 168 loaded in the card slot 170, and the user 192 holds the memory card 168 to the console 20. You can carry it around.
  • the first radiation conversion layer 28a includes the a-Se semiconductor layer 74a (see FIGS. 3A to 10B, 20A, and 20B), as described with reference to FIGS. 1 to 24.
  • Type radiation conversion layer. a-Se may deteriorate due to the progress of crystallization in a temperature higher than 30 ° C. Therefore, when adopting a radiation conversion layer containing a-Se, it is necessary to take a temperature control measure using some means, that is, a measure to keep the temperature of the semiconductor layer 74a below 30 ° C.
  • the first radiation conversion layer 28a is in surface contact with the inner wall on the irradiation surface 152 side in the main body 150a. Further, if the main body 150a is connected to the extension 150b, the side surface 172 of the main body 150a and the side 176 of the extension 150b are in surface contact.
  • the portion on the irradiation surface 152 side in the main body 150a functions as a heat sink for the first radiation conversion layer 28a.
  • the heat generated in the first radiation conversion layer 28a (the semiconductor layer 74a) is dissipated through the irradiation surface 152, and the temperature of the semiconductor layer 74a can be suppressed to less than 30 ° C.
  • the extension part 150b also functions as a heat sink for the first radiation conversion layer 28a.
  • the heat radiation area for the first radiation conversion layer 28a can be easily expanded. Thereby, the heat generated in the first radiation conversion layer 28a can be efficiently radiated through the irradiation surface 152 and the additional portion 150b, and the temperature of the semiconductor layer 74a can be effectively suppressed to less than 30 ° C.
  • the expansion unit 150b can be separated from the main body unit 150a, the following a-Se temperature management measures can be taken.
  • the user 192 connects the expansion unit 150b to the main body 150a.
  • radiation imaging of the subject 14 according to the order information may be performed using the radiation imaging apparatus 10A coupled and fixed.
  • the user 192 separates the extension unit 150b from the main body 150a.
  • radiation imaging of the subject 14 according to the order information may be performed using the radiation imaging apparatus 10A including only the main body 150a.
  • a connector with a cable (not shown) and the connector 188 may be connected to supply power to the main body 150a from the outside, and to transmit and receive signals by wire communication with the outside.
  • the a-Si TFTs 82a and 82c and the a-Si photodiode 86c exceed 40 ° C.
  • the leakage current flowing out to the readout circuit section 32 via the signal lines 66a and 66c increases rapidly. Therefore, it is necessary to take the same temperature control measures as the a-Se semiconductor layer 74a, that is, to keep the temperature below 40 ° C. for the a-Si TFTs 82a and 82c and the a-Si photodiode 86c.
  • the portion on the irradiation surface 152 side of the main body 150a and the additional portion 150b function as a heat sink, and thus are generated in the a-Si TFTs 82a and 82c and the a-Si photodiode 86c.
  • the heat to be radiated can be radiated to the outside through the irradiation surface 152 and the extension part 150b.
  • the temperature of the a-Si TFTs 82a and 82c and the a-Si photodiode 86c can be suppressed to less than 40 ° C., and a sudden increase in leakage current can be prevented.
  • the radiographic apparatus 10B according to the second modification is also basically used as a portable electronic cassette, and as shown in FIGS. 30 to 32, a handle 156 is provided on one side surface of the casing 150, On the other side surface, a lid 210 that can be opened and closed is provided.
  • the lid 210 is provided with an indicator 212 made up of LEDs or the like that display various conditions of the radiation imaging apparatus 10B. .
  • the indicator 212 may be omitted, and the display unit 160 may display various situations of the radiation imaging apparatus 10B.
  • the hollow portion 214 in the housing 150 communicates with the outside.
  • rails 220 and 222 extending linearly along the direction are formed on the two side walls 216 and 218 along the direction from the lid 210 toward the handle 156, respectively.
  • the radiation conversion panel 28, the drive circuit unit 30, the readout circuit unit 32, the cassette control unit 34, the communication unit 36, and the battery are disposed below the rails 220 and 222, as shown in FIG. 38, a radiation detection unit 224 that houses the filter control unit 40 and the voltage supply unit 42 (see FIG. 1) is disposed.
  • the radiation conversion panel 28 is accommodated in a location near the irradiation surface 152 in the radiation detection unit 224.
  • a cable 228 with a connector 230 is connected to the side surface of the radiation detection unit 224 facing the lid 210.
  • the connector 230 can be connected to a connector 232 provided on the lid 210.
  • the connector 232 is electrically connected to the display unit 160, the power switch 162, the input terminal 164, the USB terminal 166, the card slot 170, and the indicator 212 provided on the lid 210. Therefore, when the two connectors 230 and 232 are connected, the above-described units on the lid 210 side are electrically connected to the cassette control unit 34 and the like in the radiation detection unit 224 via the connectors 230 and 232. become.
  • the heat radiation unit 226 is disposed at a position between the radiation detection unit 224 and the inner wall on the irradiation surface 152 side of the housing 150 so as to come into contact with the radiation detection unit 224 and the inner wall, respectively. Is arranged. As will be described later, the heat dissipation unit 226 needs to efficiently dissipate the heat generated by the radiation detection unit 224 (inside the radiation conversion panel 28), and thus is preferably made of a material having a high heat transfer coefficient. .
  • the radiation unit 226 since the heat dissipation unit 226 is disposed in front of the radiation detection unit 224 along the incident direction of the radiation 16, the radiation unit 226 transmits the radiation 16 or is made of a material having a low absorption rate of the radiation 16. Is desirable. Further, side portions of the heat dissipating unit 226 facing the rails 220 and 222 are formed as step portions 234 and 236 corresponding to the shapes of the rails 220 and 222, as shown in FIG.
  • the user 192 detects radiation from the lid 210 side along the rails 220 and 222 and the inner wall on the bottom surface 238 side of the housing 150 with the lid 210 open and the hollow portion 214 communicating with the outside.
  • the radiation detection unit 224 can be accommodated in the lower portion of the hollow portion 214.
  • the heat radiation unit 226 is accommodated in the upper portion of the hollow portion 214. can do.
  • the radiation conversion panel 28 is accommodated in the radiation detection unit 224 on the radiation unit 226 side, and the radiation unit 226 is an irradiation surface of the radiation detection unit 224 and the housing 150. It is in contact with the inner wall on the 152 side.
  • the heat radiating unit 226 and the portion on the irradiation surface 152 side of the housing 150 function as a heat sink for the radiation conversion panel 28.
  • the heat generated in the semiconductor layer 74a (see FIGS. 3A to 10B, 20A, and 20B) of the first radiation conversion layer 28a constituting the radiation conversion panel 28 is transmitted through the heat dissipation unit 226 and the irradiation surface 152. It is possible to dissipate heat and suppress the temperature of the semiconductor layer 74a to less than 30 ° C.
  • the heat generated in the a-Si TFTs 82a and 82c and the a-Si photodiode 86c is also dissipated through the heat dissipation unit 226 and the irradiation surface 152, so that the a-Si TFTs 82a and 82c and the a-Si TFT
  • the temperature of the photodiode 86c can be suppressed to less than 40 ° C., and a sudden increase in leakage current can be prevented.
  • the radiation imaging apparatus 10C according to the third modification has a heat circulation channel 240 formed in a relatively thick base 196 along the plane direction. Circulating fluid 252 circulates in 240. Therefore, the base 196 functions as a thermal circulation bus (thermal circulation part) as will be described later.
  • the electronic components 208a to 208c mounted on the insulating substrates 206a to 206c are fixed to the bottom surface of the base 196 via the adhesive layers 242a to 242c.
  • An opening 244 that communicates with the outside is formed on the bottom surface 238 of the housing 150.
  • a heat exchanger 246 including a Peltier element is fixed to a location facing the opening 244 on the bottom surface of the base 196.
  • the heat exchanger 246 is disposed between the inner wall on the bottom surface 238 side of the housing 150 and the bottom surface of the base 196 so as to block the communication state between the opening 244 and the hollow portion 214.
  • the heat exchanger 246 includes, for example, a Peltier element in which a P-type semiconductor and an N-type semiconductor are joined by a plate-like electrode, and the plate-like electrode is disposed on the base 196 side.
  • the Peltier The element can absorb the heat of the circulating fluid 252 from the circulating fluid 252 flowing through the thermal circulation channel 240 through the base 196 and the plate-like electrode, and can radiate the heat to the outside through the opening 244.
  • the Peltier element Can absorb the heat of the outside air through the opening 244, and can radiate the heat of the outside air to the circulating fluid 252 flowing through the thermal circulation channel 240 through the plate electrode and the base 196.
  • the cassette control unit 34 further includes a temperature detection unit 248 and a temperature control unit 250.
  • the temperature detection unit 248 has signal lines 66a and 66c (see FIG. 2). The leakage current leaked to the readout circuit section 32 (see FIG. 1) via each of these is detected, and based on each detected leakage current, the a-Si TFT 82a (a-Se semiconductor layer 74a connected to) , And the temperatures of the a-Si TFT 82c and the a-Si photodiode 86c.
  • the temperature detection unit 248 estimates the a-Si temperature for each column (each block including a plurality of pixels 62).
  • the temperature control unit 250 includes the above-described DC power supply, and based on the temperature estimated by the temperature detection unit 248, the temperature of the a-Se semiconductor layer 74a does not exceed 30 ° C.
  • the heat exchanger 246 is controlled so that the a-Si TFTs 82a and 82c and the a-Si photodiode 86c do not exceed 40 ° C. and fall within a predetermined temperature range (for example, 20 ° C. to 40 ° C.). To do.
  • the a-Se semiconductor layer 74a, the a-Si TFT 82a, the TFT 82c, and the a-Si photodiode are formed by the base 196, the heat circulation channel 240, the heat exchanger 246, the temperature detection unit 248, and the temperature control unit 250.
  • a temperature control unit 247 for managing and controlling each temperature of 86c is configured.
  • the radiation imaging apparatus 10C is suitable for a built-in type electronic cassette. However, if the temperature control unit 247 can be reduced in size, the radiation imaging apparatus 10C can be applied as a portable electronic cassette.
  • the temperature control unit 247 will be specifically described.
  • the temperature control unit 250 supplies a direct current to the Peltier element of the heat exchanger 246 based on the temperature estimated by the temperature detection unit 248.
  • the Peltier element is removed from the circulating fluid 252.
  • the heat of the circulating fluid 252 is absorbed through the base 196 and the plate electrode, and is radiated to the outside through the opening 244.
  • the circulating fluid 252 flowing in the heat circulation channel 240 absorbs the heat generated in the radiation conversion panel 28 through the base 196, and heat The exchanger 246 absorbs the heat of the circulating fluid 252 and radiates the heat from the opening 244 to the outside.
  • the temperature of the a-Se semiconductor layer 74a can be suppressed to a temperature lower than 30 ° C. (for example, 25 ° C.) to prevent the deterioration of the a-Se. It is also possible to prevent the leakage current from rapidly increasing by suppressing the temperature of the a-Si TFTs 82a and 82c or the a-Si photodiode 86c to a temperature lower than 40 ° C.
  • the temperature of the semiconductor layer 74a falls below a predetermined temperature range (temperature around 25 ° C.), or the temperature of the TFTs 82a, 82c or the photodiode 86c is within a predetermined temperature range (20 ° C. to 40 ° C.
  • the Peltier element absorbs the heat of the outside air through the opening 244 and dissipates heat to the circulating fluid 252 through the plate electrode and the base 196.
  • the radiation conversion panel 28 absorbs the heat of the circulating fluid 252 via the base 196, so that each of the above temperatures falls within a predetermined temperature range. Can fit.
  • the temperature control unit 247 is similar to the case of the semiconductor layer 74a. It is possible to take a temperature control measure so that .about.208c falls within a predetermined temperature range.
  • the base 196 functions as a thermal circulation bus, and therefore, for each column (each block) based on the temperature of the semiconductor layer 74a, TFT 82a, 82c, or photodiode 86c. ) Can be controlled uniformly.
  • the radiation imaging apparatus 10D according to the fourth modification is a built-in type electronic cassette that is capable of performing standing imaging with respect to the subject 14 by being mounted on an imaging table 254.
  • a hexahedral casing 260 is mounted on a support column 258 standing on a base 256 so as to be movable up and down.
  • a guide wire 264 having the same function as the guide wire 154 is formed on the front surface of the casing 260.
  • a loading case 268 in which the radiation imaging apparatus 10 ⁇ / b> D is mounted is loaded in the casing 260 from the side surface 266 of the casing 260.
  • the subject 14 is positioned with respect to the guide line 264 while holding the handle 272 provided on the side surface 266.
  • the outer frame of the guide line 264 is set as the irradiation range of the radiation 16 and then the subject 14 is irradiated with the radiation 16 from the radiation output device 18, an appropriate radiation image can be taken.
  • FIG. 35 the case where the handle 272 is provided on the left side surface 266 of the casing 260 is illustrated, but it is needless to say that the handle 272 is also provided on the right side surface.
  • a longitudinal slot 274 is formed in the side surface 266 of the casing 260, and a loading case 268 can be loaded in the slot 274.
  • the loading case 268 has a box shape that can accommodate the housing 150 of the radiation imaging apparatus 10 ⁇ / b> D, and a part of the side surface facing the slot 274 is formed as a notch 278. Further, a handle 270 to be held by the user 192 is provided on the side surface of the loading case 268 that is substantially flush with the side surface 266 when loaded.
  • the radiation imaging apparatus 10D corresponds to, for example, the main body 150a of the radiation imaging apparatus 10A of the first modified example, and a recess 174 and a connector 188 are provided at a position facing the notch 278. Yes. Therefore, if the block 284 provided at the distal end portion of the cable 282 is inserted into the recess 174 through the notch 278 in a state where the radiation imaging apparatus 10D is accommodated in the loading case 268, the cable 282 is provided in the block 284.
  • the connector 286 electrically connected to the connector 188 and the connector 188 can be connected. Note that the cable 282 extends into the casing 260 via the slot 274.
  • the user 192 holds the handle 270 and faces the notch 278 to the slot 274.
  • the loading case 268 and the radiation imaging apparatus 10D can be loaded into the casing 260.
  • the subject 14 is positioned with respect to the guide wire 264.
  • the radiation imaging apparatuses 10A and 10B may be configured without the handle 156.
  • the radiation imaging apparatus 10D can be housed in the loading case 268.
  • the radiation imaging apparatus 10C (see FIGS. 33 and 34) can be used as the radiation imaging apparatus 10D. That is, in the fourth modification, the radiation imaging apparatuses 10A and 10B according to the first and second modifications are partially modified and used as the radiation imaging apparatus 10D, or the radiation imaging apparatus 10C is used as the radiation imaging apparatus 10D. By using it as it is, it can be used as a built-in type electronic cassette.
  • the radiation imaging apparatus 10E according to the fifth modification can be basically used by partially modifying the radiation imaging apparatuses 10A to 10D (see FIGS. 25 to 36) according to the first to fourth modifications. is there.
  • the fifth modification example as shown in FIGS. 37 to 43, for example, when the radiation imaging apparatus 10E is loaded into the cradle 290 and charged after the imaging, the disinfecting liquid is injected to the radiation imaging apparatus 10E. By doing so, the radiation imaging apparatus 10E is different from the first to fourth modifications in that charging, disinfection and cooling are performed at once.
  • the display unit 160 the power switch 162, the input terminal 164, the USB terminal 166, the card slot 170, the connectors 188 and 190, the indicator 212, and the heat exchanger 246 are provided in the portion where the disinfectant is ejected. It is desirable not to provide such electrical parts or electronic parts.
  • a handle 288 is provided on one side surface of the housing 150 (upper side surface in FIG. 37).
  • the cradle 290 has a substantially U-shape when viewed from the side, and upright portions 294 and 296 extend upward from both side portions of the base portion 292.
  • the radiation imaging apparatus 10E is loaded between the two standing portions 294 and 296.
  • the upper end position of the standing portion 294 facing the irradiation surface 152 where the guide line 154 is formed is set higher than the upper end position of the standing portion 296 facing the bottom surface 238.
  • both side portions of the standing portions 294 and 296 are connected by connecting portions 300 and 302, respectively.
  • the upper end positions of the two connecting portions 300 and 302 are set lower than the upper end positions of the two standing portions 294 and 296.
  • the connecting portions 300 and 302 guide the radiation imaging apparatus 10E when loading the radiation imaging apparatus 10E from above the cradle 290, and after loading, guide grooves 304 for positioning and holding the radiation imaging apparatus 10E, 306 is formed.
  • the user 192 (see FIG. 26) holds the handle 288, and the two standing portions 294 and 296 in the plan view of FIG. And the radiographic apparatus 10E to the cradle 290 from above toward the base portion 292 so that both sides of the radiographic apparatus 10E are fitted in the guide grooves 304 and 306 and fit in the two connecting portions 300 and 302. Will be loaded.
  • the space defined by the two standing portions 294 and 296 and the two connecting portions 300 and 302 becomes the accommodation space 298 of the radiation imaging apparatus 10E loaded in the cradle 290. Therefore, the charging process, the cooling process, and the disinfection process for the radiation imaging apparatus 10E are performed in a state where the radiation imaging apparatus 10E is loaded in the accommodation space 298.
  • a plurality of nozzles 310 for injecting disinfectant liquid onto the irradiation surface 152 are two-dimensionally arranged on the side surface 308 of the standing portion 294 facing the irradiation surface 152. Further, a blower 312 for blowing air to the irradiation surface 152 is provided above the side surface 308.
  • a plurality of nozzles 316 for injecting a disinfecting liquid to the bottom surface 238 are two-dimensionally arranged.
  • a blower 318 that blows air against the bottom surface 238 is provided above the side surface 314.
  • a display unit 320 is provided on the outer surface of the standing unit 296 to display the operation state of the cradle 290, the state of the radiation imaging apparatus 10E, various information from the radiation imaging apparatus 10E, and the like.
  • the lower part of the radiation imaging apparatus 10E loaded in the cradle 290 (the side surface of the radiation imaging apparatus 10E facing the upper surface 326 of the base part 292) is provided at a location near the coupling parts 300 and 302 on the upper surface 326 of the base part 292. Support portions 322 and 324 to be supported are respectively provided. Therefore, when the radiation imaging apparatus 10E is loaded in the cradle 290, a slight gap is formed between the upper surface 326 of the base portion 292 and the lower part of the radiation imaging apparatus 10E.
  • FIG. 40 illustrates a schematic configuration of the cradle 290.
  • the cradle 290 includes a sensor 328, a communication unit 330, a power supply unit 332, a control unit 335, a power supply unit 336, a tank 338, a pump 340, and fan motors 342 and 344 in addition to the display unit 320 described above.
  • the sensor 328 is, for example, an optical or ultrasonic sensor, emits a transmission wave (light, ultrasonic wave), and the radiation imaging apparatus 10E cradles based on a change in the reflected wave (light, ultrasonic wave). It is detected whether it is loaded in 290 or not.
  • the communication unit 330 transmits and receives signals by wireless communication with the communication unit 36 of the radiation imaging apparatus 10E.
  • the power supply unit 332 When the radiation imaging apparatus 10E is loaded in the cradle 290, the power supply unit 332 performs non-contact power supply (non-contact power supply, power supply, charging) to the radiation imaging apparatus 10E. Specifically, the radiation imaging apparatus 10 ⁇ / b> E is provided with a power receiving unit 334 at a location facing the power supply unit 332. In a state where the radiation imaging apparatus 10E is loaded in the cradle 290 and the power supply unit 332 and the power reception unit 334 are opposed to each other, the power supply unit 332 receives power supply from the power supply unit 336 and supplies power to the power reception unit 334 without contact. To charge the battery 38.
  • the non-contact power supply means a known non-contact power supply such as a microwave power supply method, an electromagnetic induction method, a resonance method, or a magnetic resonance method, and therefore, the details of these power supply methods are omitted. .
  • the control unit 335 is realized by a microcomputer and controls each unit in the cradle 290. Specifically, when a detection signal indicating that the radiation imaging apparatus 10E is loaded in the cradle 290 is input from the sensor 328, the control unit 335 performs wireless communication between the communication unit 330 and the communication unit 36. Transmission / reception of signals is permitted, and non-contact power feeding to the power reception unit 334 by the power supply unit 332 is permitted. On the other hand, when input of the detection signal from the sensor 328 is stopped, the control unit 335 prohibits wireless communication in the communication unit 330 and non-contact power supply in the power supply unit 332.
  • a disinfectant containing alcohol is stored as a coolant.
  • the pump 340 sends the cooling liquid to the nozzles 310 and 316.
  • the fan motor 342 ejects air from the blower 312 by rotating a fan (not shown).
  • the fan motor 344 also blows air from the blower 318 by rotating a fan (not shown).
  • the sensor 328 loads the radiation imaging apparatus 10E. And the detection signal is output to the control unit 335.
  • the control unit 335 determines that the radiation imaging apparatus 10E is loaded in the cradle 290 by inputting the detection signal, and transmits / receives a signal to / from the communication unit 36 by the communication unit 330 and a power reception unit 334 by the power supply unit 332. Allow non-contact power feeding to. Further, the control unit 335 causes the display unit 320 to display information indicating that the radiation imaging apparatus 10E is loaded in the cradle 290. Thereby, the user 192 can recognize that the radiation imaging apparatus 10E is correctly loaded in the cradle 290.
  • the power supply unit 332 receives power supply from the power supply unit 336, performs non-contact power supply to the power reception unit 334, and charges the battery 38.
  • the control unit 335 causes the display unit 320 to display information indicating that the battery 38 is being charged and the amount of charge of the battery 38.
  • the user 192 can grasp that the radiation imaging apparatus 10E (the battery 38 thereof) is being charged and the amount of charge thereof.
  • control unit 335 drives the pump 340 to send the disinfecting liquid stored in the tank 338 to the nozzles 310 and 316.
  • disinfectants 346 and 348 are sprayed from the respective nozzles 310 and 316 onto the respective surfaces including the irradiation surface 152 and the bottom surface 238 of the radiation imaging apparatus 10E.
  • the radiation imaging apparatus 10 ⁇ / b> E can be cooled by spraying the disinfecting liquids 346 and 348 by the temperature of the disinfecting liquids 346 and 348 themselves and the heat absorption when the disinfecting liquids 346 and 348 are vaporized.
  • the upper end position of the standing portion 294 facing the irradiation surface 152 is higher than the upper end position of the standing portion 296 facing the bottom surface 238, and the standing portion 294 covers the irradiation surface 152. It is arranged.
  • a plurality of nozzles 310 are two-dimensionally arranged on the side surface 308 of the standing portion 294. Therefore, each nozzle 310 sprays the disinfectant 346 so as to cover the irradiation surface 152 as a whole.
  • the subject 14 is positioned on the irradiation surface 152 side, so that the irradiation surface 152 can be efficiently sterilized by spraying the disinfecting liquid 346 on the entire irradiation surface 152.
  • the radiation conversion panel 28 is disposed near the irradiation surface 152 in the radiation imaging apparatus 10E, if the disinfecting liquid 346 is sprayed on the entire irradiation surface 152, the radiation conversion panel 28 is effectively cooled. can do.
  • the ejection time of the disinfecting liquids 346 and 348 from the nozzles 310 and 316 may be a predetermined fixed time.
  • the injection of the disinfecting liquids 346 and 348 may be stopped when the temperature on the radiation imaging apparatus 10E side is lowered to a predetermined temperature after the injection of the disinfecting liquids 346 and 348 is started.
  • the temperature detection unit 248 (see FIG. 34) of the cassette control unit 34 performs the a-Si TFT 82a (the a-Se semiconductor layer 74a connected thereto) based on the leakage current. , And temperatures of the a-Si TFT 82c and the a-Si photodiode 86c can be estimated.
  • the temperature detection unit 248 may sequentially execute estimation processing of each temperature based on the leakage current, and transmit the estimation result as temperature information from the communication unit 36 to the communication unit 330 by wireless communication.
  • the control unit 335 sequentially acquires the temperature information received by the communication unit 330, and the temperature indicated by the acquired temperature information is reduced to a predetermined temperature (a-Si: 40 ° C. or less, a-Se: 30 ° C. or less).
  • a predetermined temperature a-Si: 40 ° C. or less, a-Se: 30 ° C. or less.
  • the control unit 335 drives the fan motor 342 and blows out the air 349 from the blower 312 as shown in FIG.
  • a slight gap is formed between the lower portion of the radiation imaging apparatus 10E and the upper surface 326 of the base portion 292. Therefore, the air 349 blown out from the blower 312 reaches downward along the irradiation surface 152 and the side surface 308 and flows upward along the bottom surface 238 and the side surface 314 from the gap. Accordingly, the air 349 blown out from the blower 312 circulates around the radiation imaging apparatus 10E, and as a result, vaporization of the disinfecting liquids 346 and 348 attached to the radiation imaging apparatus 10E can be accelerated.
  • blow time of the air 349 from the blower 312 may be a predetermined fixed time, or, as described above, when the temperature indicated by the temperature information from the temperature detector 248 decreases to a predetermined temperature. The blowing of air 349 from the blower 312 may be stopped.
  • the user 192 takes out the radiation imaging apparatus 10E from the cradle 290 by holding the handle 288 and pulling the radiation imaging apparatus 10E upward.
  • the control unit 335 drives the fan motors 342 and 344 to blow out the air 349 and 350 from the blowers 312 and 318 as shown in FIG. 43, thereby remaining attached to the radiation imaging apparatus 10E.
  • the disinfectants 346 and 348 may be blown off.
  • the charge amount of the battery 38 is sequentially displayed on the display unit 320, after confirming that the cooling process and the disinfection process for the radiation imaging apparatus 10E are completed and the battery 38 is fully charged.
  • the user 192 may hold the handle 288 and pull up the radiation imaging apparatus 10E.
  • the above-described charging process, cooling process, and disinfection process are performed at a time with the radiation imaging apparatus 10E loaded in the cradle 290, so that the radiation imaging apparatus 10E can be cooled in a short time. it can. Further, if the charging of the battery 38 is completed and the cooling process and the disinfection process for the radiation imaging apparatus 10E are also completed, the charged radiation imaging apparatus 10E can be used for the next imaging as it is.
  • the charging process, the cooling process, and the disinfection process for the radiation imaging apparatus 10E are performed all at once after imaging or before imaging is described.
  • the temperature detected by the temperature detection unit 248 is within a predetermined range. (When a certain temperature is reached), the radiographic apparatus 10E is immediately loaded into the cradle 290, and charging, cooling and disinfection are performed, thereby reducing a-Se degradation and rapid increase in leakage current. It can also be suppressed.
  • the first radiation conversion layer 28a is formed in a structure that suppresses crystallization of a-Se in the semiconductor layer 74a. This is different from the present embodiment and the first to fifth modifications.
  • a crystallization suppression layer 352 is formed on the pixel electrode 76a and the planarization film 84a.
  • the crystallization suppression layer 352 is made of a-Se containing arsenic (As) of 10 atomic% or more and 40 atomic% or less, has excellent heat resistance, and functions as a charge injection layer. Further, the crystallization suppressing layer 352 cooperates with the electric field relaxation layer 354 described later to absorb the uneven shape formed by the pixel electrode 76a and the planarization film 84a, and a-Se crystallization in the semiconductor layer 74a. And the crystallization of a-Se in the electric field relaxation layer 354 is also suppressed.
  • an electric field relaxation layer 354 and a first thermal characteristic enhancement layer 356 are sequentially stacked.
  • the electric field relaxation layer 354 is made of a-Se containing As and lithium fluoride, and the lithium fluoride captures holes to reduce the electric field and prevent the holes from being injected into the semiconductor layer 74a. To do. Further, the electric field relaxation layer 354 covers the crystallization suppressing layer 352 so as to flatten the surface. Note that the electric field relaxation layer 354 preferably contains 0.5 atomic% or more and 5 atomic% or less As, and preferably contains 0.02 wt% or more and 5 wt% or less lithium fluoride.
  • the first thermal characteristic enhancement layer 356 is made of a-Se containing As and suppresses thermal diffusion of lithium fluoride from the electric field relaxation layer 354 to the semiconductor layer 74a.
  • strengthening layer 356 contains 10 atomic% or more and 40 atomic% or less As.
  • a second thermal characteristic enhancement layer 358 and an electron injection blocking layer 360 are sequentially stacked between the semiconductor layer 74a and the common electrode 78a.
  • the second thermal property enhancement layer 358 is made of a-Se containing As.
  • the second thermal characteristic enhancement layer 358 has excellent heat resistance and covers the stacked body from the crystallization suppressing layer 352 to the semiconductor layer 74a, thereby suppressing crystallization of the semiconductor layer 74a and the electric field relaxation layer 354.
  • the electron injection blocking layer 360 includes a first electron injection blocking layer 360a and a second electron injection blocking layer 360b.
  • the first electron injection blocking layer 360a is an a-Se layer containing 5 atomic% or less As
  • the second electron injection blocking layer 360b is a layer made of antimony trisulfide.
  • the electron injection blocking layer 360 blocks the injection of electrons from the common electrode 78a to the semiconductor layer 74a.
  • the electric field relaxation layer 354 captures holes from the pixel electrode 76a by lithium fluoride and injects holes into the semiconductor layer 74a. It can be suppressed. Thereby, an increase in dark current can be suppressed.
  • the electric field relaxation layer 354 contains As, the heat resistance is improved, the action of lithium fluoride, ie, suppression of hole injection into the semiconductor layer 74a, can be maintained, and an increase in dark current can be suppressed. .
  • the electric field relaxation layer 354 covers the crystallization suppressing layer 352 and flattens the surface, the concavo-convex shape of the pixel electrode 76a and the flattening film 84a causes crystallization of a-Se and deformation of each layer on the semiconductor layer 74a. Etc. can be suppressed. As a result, the semiconductor layer 74a can be made uniform as a whole and a uniform electric field can be applied.
  • the thermal diffusion of lithium fluoride in the electric field relaxation layer 354 to the semiconductor layer 74a can be effectively suppressed.
  • an increase in dark current accompanying thermal diffusion of lithium fluoride to the semiconductor layer 74a can be suppressed.
  • a high voltage can be applied to the semiconductor layer 74a, and various characteristics of the radiation imaging apparatus 10F including sensitivity characteristics can be improved.
  • the atomic concentration of As contained in the crystallization suppression layer 352 and the first thermal characteristic enhancement layer 356 is higher than the atomic concentration of As contained in the electric field relaxation layer 354, radiography is performed while maintaining the electric field relaxation effect. Deterioration of heat resistance of the device 10F can be suppressed, and dark current can be effectively suppressed.
  • the second thermal property enhancement layer 358 the heat resistance of the entire first radiation conversion layer 28a is improved, and the function of the electric field relaxation layer 354 is more effectively achieved together with the first thermal property enhancement layer 356.
  • the hole can be effectively prevented from being injected into the semiconductor layer 74a.
  • the crystallization suppression layer 352 and the electric field relaxation layer 354 cooperates with the electric field relaxation layer 354 to absorb the uneven shape of the pixel electrode 76a and the planarization film 84a, thereby forming a semiconductor layer. While suppressing the crystallization of 74a, the crystallization of the electric field relaxation layer 354 can be suppressed, and the improved heat resistance can be stably maintained.
  • the semiconductor layer 74a absorbs the above uneven shape sufficiently in cooperation with the electric field relaxation layer 354.
  • the crystallization of the electric field relaxation layer 354 can be sufficiently suppressed.
  • an a-Si or crystalline silicon (c-Si) semiconductor layer 74a may be used instead of the a-Se semiconductor layer 74a.
  • A-Si and c-Si have a lower K edge than various materials constituting a scintillator and a-Se, and easily absorb lower energy components. That is, the K edge of a-Se is 12.7 keV, whereas the K edge of a-Si is 1.7 keV, and the K edge of c-Si is 1.1 keV.
  • the radiographic apparatuses 10 and 10A to 10F using the a-Si or c-Si semiconductor layer 74a are suitable for radiographing a mammo of the subject 14 for which radiography with a lower energy component is desired. is there.
  • the a-Se semiconductor layer 74a can convert the light 102 in the blue wavelength region from the second radiation conversion layer 28c into charges 94c and 96c. Therefore, as the scintillator of the second radiation detector 72c combined with the a-Se semiconductor layer 74a, a scintillator made of a phosphor that generates light 102 in the blue wavelength region must be selected. That is, when the semiconductor layer 74a is made of a-Se, the scintillator options are limited.
  • the semiconductor layer 74a is made of a-Si or c-Si
  • the entire visible light region is a sensitivity wavelength region. Therefore, a scintillator using a phosphor that generates light 102 in the visible light region is used. If so, it can be selected as a scintillator that can be combined with the a-Si or c-Si semiconductor layer 74a. That is, when the a-Si or c-Si semiconductor layer 74a is used, the number of scintillator options can be greatly increased.
  • the semiconductor layer 74a made of CdTe having a K edge of 30 keV may be used. As shown in FIG. 22, all the materials constituting the scintillator have a higher K edge than CdTe. For example, the K edge of CsI is about 35 keV.
  • the band gap of CdTe is 1.44 eV and has sensitivity in the visible light region.
  • a phosphor that emits light 102 in the visible light region can be selected as a scintillator, like the a-Si or c-Si semiconductor layer 74a. Accordingly, even in this case, the number of scintillator options can be increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

A radiographic imaging unit (10) is configured by laminating a direct conversion-type first radiation conversion layer (28a) and an indirect conversion-type second radiation conversion layer (28c). A first radiation detection section (72a) in the first radiation conversion layer (28a) converts fluorescent light (102) into electric charge (94c, 96c), when said fluorescent light (102) converted from radiation (16) in a second radiation detection section (72c) of the second radiation conversion layer (28c) has been incident. A first electric charge detection section (70a) in the first radiation conversion layer (28a) can extract the electric charge (94c, 96c) converted from said fluorescent light (102).

Description

放射線撮影装置Radiography equipment
 本発明は、放射線の入射方向に沿って2つの放射線変換層を積層した放射線撮影装置に関する。 The present invention relates to a radiation imaging apparatus in which two radiation conversion layers are laminated along the incident direction of radiation.
 放射線を検出可能な物質を含む放射線変換層を備えた放射線撮影装置が特開2000-338297号公報及び特開2010-56397号公報に開示されている。 JP-A 2000-338297 and JP-A 2010-56397 disclose a radiographic apparatus including a radiation conversion layer containing a substance capable of detecting radiation.
 特開2000-338297号公報には、放射線の入射方向に対して、アモルファスセレン(a-Se)からなる光導電層を含む画像読取部と、蓄積性蛍光体層を含む画像記録部とを順に積層した放射線撮影装置が開示されている。この装置では、先ず、画像読取部を介して蓄積性蛍光体層に放射線を照射することにより画像記録を行う。次に、アバランシェ作用が発生する程度の電圧(電界)を光導電層に印加しながら、600nm近傍の波長を有する励起光を、画像読取部を介して蓄積性蛍光体層に照射する。これにより、蓄積性蛍光体層は、400nm近傍の波長を有する輝尽発光光を発生し、光導電層は、入射した輝尽発光光を電荷に変換する。該電荷は、アバランシェ作用により増幅された後に、画像信号として出力される。 Japanese Patent Laid-Open No. 2000-338297 discloses an image reading unit including a photoconductive layer made of amorphous selenium (a-Se) and an image recording unit including a stimulable phosphor layer in order with respect to the incident direction of radiation. A stacked radiographic apparatus is disclosed. In this apparatus, first, image recording is performed by irradiating the stimulable phosphor layer with radiation via an image reading unit. Next, the stimulable phosphor layer is irradiated with excitation light having a wavelength in the vicinity of 600 nm through the image reading unit while applying a voltage (electric field) that causes an avalanche action to the photoconductive layer. Thereby, the stimulable phosphor layer generates stimulated emission light having a wavelength near 400 nm, and the photoconductive layer converts the incident stimulated emission light into electric charge. The electric charge is amplified by an avalanche action and then output as an image signal.
 特開2010-56397号公報には、放射線の入射方向に対して、a-Seの半導体層を含む第1の放射線変換層と、シンチレータ及びセンサ部を含む第2の放射線変換層とを順に積層した放射線撮影装置が開示されている。この装置において、半導体層は、放射線の低エネルギー成分(放射線を照射する放射線源の管電圧が低電圧である場合における該低電圧に応じた放射線のエネルギー成分)を電荷に直接変換する。また、第2の放射線変換層において、シンチレータは、放射線の高エネルギー成分(高い管電圧に応じた放射線のエネルギー成分)を蛍光に変換し、センサ部は、前記蛍光を電荷に変換する。 In JP 2010-56397 A, a first radiation conversion layer including an a-Se semiconductor layer and a second radiation conversion layer including a scintillator and a sensor unit are sequentially stacked in the radiation incident direction. A radiation imaging apparatus is disclosed. In this apparatus, the semiconductor layer directly converts a low energy component of radiation (energy component of radiation according to the low voltage when the tube voltage of the radiation source that irradiates the radiation is low) into electric charge. In the second radiation conversion layer, the scintillator converts a high energy component of radiation (energy component of radiation according to a high tube voltage) into fluorescence, and the sensor unit converts the fluorescence into electric charge.
 ところで、a-Seの半導体層を含む直接変換型の放射線変換層は、シンチレータを含む間接変換型の放射線変換層と比較して、高画質の放射線画像を生成することができる。しかしながら、a-Seの半導体層は、シンチレータと比較して放射線の高エネルギー成分を吸収しにくい。すなわち、図22に示すように、a-SeのKエッジは、シンチレータに用いられるGOS(GdS)、CsI又はBa(例えば、BaFBr、BaFCl)のKエッジよりも低エネルギー側に存在する。従って、a-Seは、放射線の低エネルギー成分を吸収しやすいが、高エネルギー成分は吸収し難い。一方、GOS、CsI又はBaのシンチレータは、a-Seの半導体層と比較して、放射線の高エネルギー成分を吸収しやすいが、低エネルギー成分は吸収し難い。 By the way, a direct conversion radiation conversion layer including an a-Se semiconductor layer can generate a high-quality radiation image as compared with an indirect conversion radiation conversion layer including a scintillator. However, the a-Se semiconductor layer is less likely to absorb high-energy components of radiation than a scintillator. That is, as shown in FIG. 22, the K edge of a-Se exists on the lower energy side than the K edge of GOS (Gd 2 O 2 S), CsI, or Ba (for example, BaFBr, BaFCl) used in the scintillator. To do. Therefore, a-Se easily absorbs low energy components of radiation, but hardly absorbs high energy components. On the other hand, a GOS, CsI, or Ba scintillator can easily absorb a high-energy component of radiation, but hardly absorbs a low-energy component, as compared with an a-Se semiconductor layer.
 そのため、例えば、直接変換型の放射線変換層を用いて、マンモに対する放射線撮影を行うと、図23に示すように、a-Seの半導体層の厚みが200μm~300μm程度であれば、90%以上の放射線吸収率が得られる。従って、放射線の低エネルギー成分を吸収しやすいマンモ、軟部組織又は腫瘍に対する放射線撮影では、直接変換型の放射線変換層を用いて、高画質の放射線画像(低エネルギー成分に応じた画像)を取得することができる。 Therefore, for example, when radiography is performed on a mammo using a direct conversion type radiation conversion layer, as shown in FIG. 23, if the thickness of the semiconductor layer of a-Se is about 200 μm to 300 μm, 90% or more. The radiation absorption rate of can be obtained. Therefore, in radiography for mammons, soft tissues, or tumors that easily absorb low-energy components of radiation, high-quality radiation images (images corresponding to the low-energy components) are acquired using a direct conversion type radiation conversion layer. be able to.
 一方、該直接変換型の放射線変換層を用いて、胸部や腹部に対する放射線撮影等のいわゆる一般撮影を行うと、図24に示すように、a-Seの半導体層の厚みが1000μmであっても、該半導体層は、放射線の高エネルギー成分に対して吸収が小さいため、90%以上の放射線吸収率には到達しない。従って、放射線の高エネルギー成分に対して90%以上の高い放射線吸収率を実現するためには、半導体層を1000μm以上の厚膜にする必要がある。しかしながら、厚膜の半導体層を基板に蒸着すると、該基板上のゴミや蒸着中に発生する突沸によって、蒸着後の半導体層の表面に大きな突起が発生する。これにより、該突起が画像欠陥の原因になると共に、放射線変換層を含めた放射線撮影装置の歩留まりの低下を招くおそれがある。 On the other hand, when so-called general imaging such as radiography of the chest and abdomen is performed using the direct conversion type radiation conversion layer, as shown in FIG. 24, even if the thickness of the semiconductor layer of a-Se is 1000 μm. The semiconductor layer does not reach a radiation absorption rate of 90% or more because its absorption is small with respect to a high energy component of radiation. Therefore, in order to realize a high radiation absorption rate of 90% or more with respect to a high energy component of radiation, the semiconductor layer needs to be a thick film of 1000 μm or more. However, when a thick semiconductor layer is deposited on a substrate, large protrusions are generated on the surface of the semiconductor layer after deposition due to dust on the substrate or bumping that occurs during deposition. As a result, the protrusions cause image defects, and the yield of the radiographic apparatus including the radiation conversion layer may be reduced.
 また、図24では、a-Seとの比較のために、シンチレータに用いられるCsI又はGOSの膜厚と放射線吸収率との関係も図示している。CsI又はGOSからなるシンチレータのように、大きな原子番号の元素を含むシンチレータの場合、300μm~500μm程度の比較的薄い膜厚で、1000μmの厚膜のa-Seの半導体層と略同等の放射線吸収率が得られる。そのため、従来、被写体の胸部、腹部又は骨部の放射線撮影では、間接変換型の放射線変換層を用いて、これらの放射線画像を取得するようにしている。 FIG. 24 also shows the relationship between the radiation absorption rate and the film thickness of CsI or GOS used in the scintillator for comparison with a-Se. In the case of a scintillator including an element with a large atomic number, such as a scintillator made of CsI or GOS, the radiation absorption is relatively equivalent to that of a 1000 μm thick a-Se semiconductor layer with a relatively thin film thickness of about 300 μm to 500 μm. Rate is obtained. For this reason, conventionally, in radiography of the subject's chest, abdomen, or bone, these radiation images are acquired using an indirect conversion type radiation conversion layer.
 なお、図23は、マンモに放射線を照射する放射線源について、IEC(International Electrotechnical Commission)61267で定義された標準線質等を含む下記の条件に設定した場合における、a-Seの半導体層の厚み(膜厚)と放射線吸収率との関係を調べたものである。 FIG. 23 shows the thickness of the a-Se semiconductor layer when the radiation source for irradiating the mammo is set to the following conditions including the standard radiation quality defined by IEC (International Electrotechnical Commission) 61267. The relationship between (film thickness) and radiation absorption rate was examined.
 「RQA-M1」は、RQA-M1の標準線質であって、放射線源の管電圧が25kV、放射線源で用いたAl付加フィルタの厚みが2mmにおいて得られた結果である。「RQA-M2」は、RQA-M2の標準線質であって、管電圧が28kV、Al付加フィルタの厚みが2mmにおいて得られた結果である。「RQA-M3」は、RQA-M3の標準線質であって、管電圧が30kV、Al付加フィルタの厚みが2mmにおいて得られた結果である。「RQA-M4」は、RQA-M4の標準線質であって、管電圧が35kV、Al付加フィルタの厚みが2mmにて得られた結果である。 “RQA-M1” is a result of the standard quality of RQA-M1 obtained when the tube voltage of the radiation source is 25 kV and the thickness of the Al addition filter used in the radiation source is 2 mm. “RQA-M2” is the standard quality of RQA-M2, and is the result obtained when the tube voltage is 28 kV and the thickness of the Al-added filter is 2 mm. “RQA-M3” is a standard quality of RQA-M3, and is a result obtained when the tube voltage is 30 kV and the thickness of the Al-added filter is 2 mm. “RQA-M4” is the standard quality of RQA-M4, and is the result obtained when the tube voltage is 35 kV and the thickness of the Al-added filter is 2 mm.
 また、「Mo/Rh」は、放射線源のターゲットがMo、フィルタがRh、放射線源の管電圧が28kV、Rhフィルタの厚みが25μm、Al付加フィルタの厚みが2mmにおいて得られた結果である。「Rh/Rh」は、ターゲット及びフィルタが共にRh、管電圧が28kV、Rhフィルタの厚みが25μm、Al付加フィルタの厚みが2mmにおいて得られた結果である。「W/Rh」は、ターゲットがW、フィルタがRh、管電圧が28kV、Rhフィルタの厚みが50μm、Al付加フィルタの厚みが2mmにおいて得られた結果である。「W/Al」は、ターゲットがW、フィルタがAl、管電圧が28kV、Alフィルタの厚みが500μm、Al付加フィルタの厚みが2mmにおいて得られた結果である。 “Mo / Rh” is a result obtained when the target of the radiation source is Mo, the filter is Rh, the tube voltage of the radiation source is 28 kV, the thickness of the Rh filter is 25 μm, and the thickness of the Al-added filter is 2 mm. “Rh / Rh” is a result obtained when the target and the filter are both Rh, the tube voltage is 28 kV, the thickness of the Rh filter is 25 μm, and the thickness of the Al-added filter is 2 mm. “W / Rh” is a result obtained when the target is W, the filter is Rh, the tube voltage is 28 kV, the thickness of the Rh filter is 50 μm, and the thickness of the Al-added filter is 2 mm. “W / Al” is a result obtained when the target is W, the filter is Al, the tube voltage is 28 kV, the thickness of the Al filter is 500 μm, and the thickness of the Al-added filter is 2 mm.
 一方、図24は、一般撮影に使用する放射線源について、IEC61267で定義された標準線質等を含む下記の条件に設定した場合における、a-Seの半導体層の膜厚と放射線吸収率との関係を調べたものである。 On the other hand, FIG. 24 shows the relationship between the film thickness of the a-Se semiconductor layer and the radiation absorption rate when the radiation source used for general imaging is set to the following conditions including the standard radiation quality defined in IEC61267. The relationship was examined.
 ここで、「Se RQA3」、「CsI RQA3」及び「GOS RQA3」は、a-Seの半導体層、CsIのシンチレータ及びGOSのシンチレータのそれぞれについて、RQA3の標準線質であって、放射線源の管電圧が50kV、放射線源に用いたAl付加フィルタの厚みが10mmにおいて得られた結果である。 Here, “Se RQA3”, “CsI RQA3” and “GOS RQA3” are the standard quality of RQA3 for the a-Se semiconductor layer, the CsI scintillator and the GOS scintillator, respectively. This is a result obtained when the voltage is 50 kV and the thickness of the Al-added filter used for the radiation source is 10 mm.
 「Se RQA5」、「CsI RQA5」及び「GOS RQA5」は、a-Seの半導体層、CsIのシンチレータ及びGOSのシンチレータのそれぞれについて、RQA5の標準線質であって、管電圧が70kV、Al付加フィルタの厚みが21mmにおいて得られた結果である。 “Se RQA5”, “CsI RQA5” and “GOS RQA5” are standard quality of RQA5 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, with tube voltage of 70 kV and Al added This is a result obtained when the thickness of the filter is 21 mm.
 「Se RQA7」、「CsI RQA7」及び「GOS RQA7」は、a-Seの半導体層、CsIのシンチレータ及びGOSのシンチレータのそれぞれについて、RQA7の標準線質であって、管電圧が90kV、Al付加フィルタの厚みが30mmにおいて得られた結果である。 “Se RQA7”, “CsI RQA7” and “GOS RQA7” are standard quality of RQA7 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, with tube voltage of 90 kV and Al added This is a result obtained when the thickness of the filter is 30 mm.
 「Se RQA9」、「CsI RQA9」及び「GOS RQA9」は、a-Seの半導体層、CsIのシンチレータ及びGOSのシンチレータのそれぞれについて、RQA9の標準線質であって、管電圧が120kV、Al付加フィルタの厚みが40mmにおいて得られた結果である。 “Se RQA9”, “CsI RQA9” and “GOS RQA9” are the standard quality of RQA9 for the a-Se semiconductor layer, CsI scintillator and GOS scintillator, respectively, and the tube voltage is 120 kV and Al is added. This is a result obtained when the thickness of the filter is 40 mm.
 このように、高画質の放射線画像を取得する目的で、一般撮影にも使用可能な直接変換型の放射線変換層を実現しようとすると、該放射線変換層を構成するa-Seの半導体層の厚みが1000μm(1mm)以上の厚膜となる。この結果、放射線画像の画質の低下や歩留まりの低下を却って招くことになる。 As described above, in order to obtain a direct conversion type radiation conversion layer that can be used for general imaging for the purpose of obtaining a high-quality radiation image, the thickness of the a-Se semiconductor layer constituting the radiation conversion layer is as follows. Becomes a thick film of 1000 μm (1 mm) or more. As a result, the deterioration of the image quality and the yield of the radiographic image are incurred.
 本発明は、上記の課題を解消するためになされたものであり、厚膜化を回避しつつ、一般撮影にも使用可能な直接変換型の放射線変換層を実現することにより、高画質の放射線画像の取得や歩留まりの向上を達成することができる放射線撮影装置を提供することを目的とする。 The present invention has been made to solve the above-described problems. By realizing a direct conversion type radiation conversion layer that can be used for general imaging while avoiding thickening, high-quality radiation is achieved. An object of the present invention is to provide a radiation imaging apparatus capable of achieving image acquisition and yield improvement.
 上記の目的を達成するために、本発明に係る放射線撮影装置は、放射線の入射方向に沿って2つの放射線変換層が積層された放射線撮影装置において、
 一方の放射線変換層は、前記放射線を電荷に直接変換する第1の放射線検出部と該第1の放射線検出部から電荷を取り出す第1の電荷検出部とを有する直接変換型の第1の放射線変換層であり、他方の放射線変換層は、前記放射線を蛍光に変換する第2の放射線検出部と前記蛍光を電荷に変換する第2の電荷検出部とを有する間接変換型の第2の放射線変換層であり、
 前記第1の放射線検出部は、前記第2の放射線検出部で放射線から変換された蛍光が入射した際に、該蛍光を電荷に変換可能であることを特徴としている。
In order to achieve the above object, a radiation imaging apparatus according to the present invention is a radiation imaging apparatus in which two radiation conversion layers are stacked along the incident direction of radiation.
One radiation conversion layer has a first radiation detection unit that directly converts the radiation into an electric charge and a first charge detection unit that extracts the electric charge from the first radiation detection unit. The other radiation conversion layer is an indirect conversion type second radiation having a second radiation detection unit that converts the radiation into fluorescence and a second charge detection unit that converts the fluorescence into electric charge. Conversion layer,
The first radiation detection unit is characterized in that, when the fluorescence converted from the radiation by the second radiation detection unit is incident, the fluorescence can be converted into an electric charge.
 この構成によれば、直接変換型の前記第1の放射線変換層と間接変換型の前記第2の放射線変換層とが積層された放射線撮影装置において、前記第2の放射線検出部で発生した前記蛍光は、前記第1の放射線変換層と前記第2の電荷検出部とに入射される。この場合、前記第1の放射線検出部では、前記放射線を電荷に直接変換すると共に、入射した前記蛍光も電荷に変換することになる。そのため、前記第1の放射線変換層では、前記放射線から直接変換した電荷に加え、前記蛍光から変換した電荷も、該第1の放射線変換層での放射線画像の形成に使用することになる。 According to this configuration, in the radiation imaging apparatus in which the first radiation conversion layer of the direct conversion type and the second radiation conversion layer of the indirect conversion type are stacked, the above-mentioned generated in the second radiation detection unit The fluorescence is incident on the first radiation conversion layer and the second charge detection unit. In this case, in the first radiation detection unit, the radiation is directly converted into electric charges, and the incident fluorescence is also converted into electric charges. Therefore, in the first radiation conversion layer, in addition to the charge directly converted from the radiation, the charge converted from the fluorescence is also used for forming a radiation image in the first radiation conversion layer.
 これにより、本発明では、前記第1の放射線変換層を構成する前記第1の放射線検出部を厚くすることなく、該第1の放射線検出部の感度を高めて、前記第1の放射線変換層で高画質の放射線画像を取得することが可能になる。従って、本発明では、胸部や腹部に対する放射線撮影等の一般撮影にも使用可能な直接変換型の放射線変換層を含む放射線撮影装置を実現することができる。また、前記第1の放射線検出部を厚くする必要がないので、前記第1の放射線変換層を含めた前記放射線撮影装置の歩留まりの向上も実現することができる。 Thereby, in this invention, without increasing the thickness of the first radiation detection part constituting the first radiation conversion layer, the sensitivity of the first radiation detection part is increased and the first radiation conversion layer is increased. This makes it possible to acquire a high-quality radiation image. Therefore, in the present invention, it is possible to realize a radiation imaging apparatus including a direct conversion type radiation conversion layer that can be used for general imaging such as radiography for the chest and abdomen. In addition, since it is not necessary to increase the thickness of the first radiation detection unit, it is possible to improve the yield of the radiation imaging apparatus including the first radiation conversion layer.
 ここで、前記放射線撮影装置では、前記放射線の入射方向に沿って、前記第1の放射線変換層と前記第2の放射線変換層とが順に積層されている。この場合、前記第1の放射線検出部は、前記放射線を電荷に直接変換する半導体層を含み構成され、前記第2の放射線検出部は、前記放射線を前記蛍光に変換するシンチレータであることが好ましい。 Here, in the radiation imaging apparatus, the first radiation conversion layer and the second radiation conversion layer are sequentially laminated in the radiation incident direction. In this case, it is preferable that the first radiation detection unit includes a semiconductor layer that directly converts the radiation into electric charges, and the second radiation detection unit is a scintillator that converts the radiation into the fluorescence. .
 これにより、前記第1の放射線変換層では、前記第1の放射線検出部を構成する前記半導体層が、前記放射線の低エネルギー成分を吸収して電荷に直接変換する。一方、前記第2の放射線変換層では、前記第2の放射線検出部を構成する前記シンチレータが前記放射線の高エネルギー成分を吸収して蛍光に変換することになる。この場合、前記高エネルギー成分に応じた蛍光の一部が前記第1の放射線変換層に入射されるので、前記半導体層は、該蛍光の一部も電荷に変換する。 Thereby, in the first radiation conversion layer, the semiconductor layer constituting the first radiation detection unit absorbs the low energy component of the radiation and directly converts it into electric charges. On the other hand, in the second radiation conversion layer, the scintillator constituting the second radiation detection unit absorbs the high energy component of the radiation and converts it into fluorescence. In this case, since a part of the fluorescence corresponding to the high energy component is incident on the first radiation conversion layer, the semiconductor layer also converts a part of the fluorescence into an electric charge.
 このように、前記放射線撮影装置では、前記半導体層と前記シンチレータとのいわゆるハイブリッド構成を採用して、前記放射線の低エネルギー成分や高エネルギー成分を効率よく電荷に変換することができる。この結果、前記第1の放射線変換層では、前記放射線の低エネルギー成分に加え、高エネルギー成分も含む放射線画像を形成することが可能になる。 Thus, in the radiographic apparatus, a so-called hybrid configuration of the semiconductor layer and the scintillator can be employed to efficiently convert low energy components and high energy components of the radiation into electric charges. As a result, in the first radiation conversion layer, it is possible to form a radiation image including a high energy component in addition to the low energy component of the radiation.
 従って、前記第1の放射線変換層では、胸部や腹部の放射線撮影等の一般撮影向けの放射線画像や、マンモ、軟部組織又は腫瘍向けの低エネルギー成分の放射線画像の高画質化を容易に実現することができると共に、前記半導体層の厚膜化を回避することができる。 Therefore, the first radiation conversion layer easily realizes high image quality of radiographic images for general imaging such as radiography of the chest and abdomen, and low-energy component radiographic images for mammo, soft tissue, or tumor. In addition, it is possible to avoid increasing the thickness of the semiconductor layer.
 なお、前記第2の放射線変換層においては、前記高エネルギー成分を含む放射線画像を形成することができる。そのため、前記第2の放射線変換層では、一般撮影向けの放射線画像や、骨部向けの放射線画像を形成することが可能である。 In the second radiation conversion layer, a radiation image including the high energy component can be formed. Therefore, in the second radiation conversion layer, it is possible to form a radiation image for general imaging and a radiation image for a bone part.
 そして、前記半導体層がセレン、より好ましくは、アモルファスセレン(a-Se)である一方で、前記シンチレータが前記セレンよりも前記放射線の高エネルギー成分を多く吸収すれば、上記の効果を容易に得ることができる。 If the semiconductor layer is selenium, more preferably amorphous selenium (a-Se), but the scintillator absorbs more high-energy components of the radiation than the selenium, the above effect can be easily obtained. be able to.
 また、前記セレンは、主として、青色波長領域の光を電荷に変換することが可能である。そのため、前記シンチレータが少なくとも青色波長領域の蛍光を発生する蛍光体であれば、該青色波長領域の蛍光を前記セレンの半導体層に入射させることにより、前記半導体層において前記青色波長領域の蛍光を電荷に効率よく光電変換させることができる。 The selenium can mainly convert light in the blue wavelength region into electric charge. Therefore, if the scintillator is a phosphor that generates fluorescence in at least the blue wavelength region, the fluorescence in the blue wavelength region is charged in the semiconductor layer by causing the fluorescence in the blue wavelength region to enter the semiconductor layer of selenium. Can be efficiently photoelectrically converted.
 このような効果を得るため、前記シンチレータは、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBr若しくはCl)、又は、LaOBr:Tmからなることが好ましい。特に、CsI:Naは、青色波長領域の光や、該青色波長領域よりも長波長(例えば、500nm以上の長波長領域)の光を含めた、広範囲の波長領域の蛍光を発生する。従って、CsI:Naからなるシンチレータを使用した場合、青色波長領域の蛍光をa-Seの半導体層で電荷に光電変換させると共に、長波長領域の蛍光を前記第2の電荷検出部で電荷に光電変換させることが可能となる。この結果、前記第1の放射線変換層及び前記第2の放射線変換層における光電変換を効率よく行うことができ、前記第1の放射線変換層及び前記第2の放射線変換層で取得される各放射線画像の高画質化を容易に実現することができる。 In order to obtain such an effect, the scintillator is preferably made of CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr: Tm. In particular, CsI: Na generates fluorescence in a wide wavelength region including light in a blue wavelength region and light having a longer wavelength than the blue wavelength region (for example, a long wavelength region of 500 nm or longer). Therefore, when a scintillator made of CsI: Na is used, the fluorescence in the blue wavelength region is photoelectrically converted into charges in the a-Se semiconductor layer, and the fluorescence in the long wavelength region is photoelectrically converted into charges in the second charge detection unit. It can be converted. As a result, photoelectric conversion in the first radiation conversion layer and the second radiation conversion layer can be efficiently performed, and each radiation acquired in the first radiation conversion layer and the second radiation conversion layer. High image quality can be easily realized.
 また、前記シンチレータは、前記半導体層において電荷に変換可能な波長領域の蛍光を発生する第1の蛍光物質と、前記第2の電荷検出部において電荷に変換可能な波長領域の蛍光を発生する第2の蛍光物質とを含み構成されていてもよい。この場合、間接変換型の前記第2の放射線変換層では、通常使用されることのない前記第1の蛍光物質を前記シンチレータに積極的に使用している。そのため、前記第1の蛍光物質で発生した蛍光(例えば、青色波長領域の蛍光)を前記半導体層に入射させて電荷に変換させると共に、前記第2の蛍光物質で発生した蛍光(例えば、長波長領域の蛍光)を前記第2の電荷検出部で電荷に変換させることができる。 The scintillator generates a first fluorescent material that generates fluorescence in a wavelength region that can be converted into charges in the semiconductor layer, and a first fluorescent material that generates fluorescence in a wavelength region that can be converted into charges in the second charge detection unit. And two fluorescent materials. In this case, in the second radiation conversion layer of the indirect conversion type, the first fluorescent material that is not normally used is actively used for the scintillator. For this reason, fluorescence generated in the first fluorescent material (for example, fluorescence in the blue wavelength region) is incident on the semiconductor layer to be converted into electric charges, and fluorescence generated in the second fluorescent material (for example, long wavelength) The fluorescence in the region) can be converted into charges by the second charge detection unit.
 このように、前記半導体層及び前記第2の電荷検出部の特性に応じて、前記第1の蛍光物質及び前記第2の蛍光物質を選択して前記シンチレータを構成することにより、前記第1の放射線変換層及び前記第2の放射線変換層において所望の放射線画像を取得することが可能となる。例えば、前記第1の放射線変換層において、前記放射線の低エネルギー成分及び中エネルギー成分に応じた放射線画像、又は、低エネルギー成分から高エネルギー成分までの広い範囲のエネルギー成分に応じた放射線画像を取得する目的で、前記第1の蛍光物質を選択することにより、前記半導体層で吸収されるエネルギー成分を制御して、所望の放射線画像を取得することができる。 Thus, by configuring the scintillator by selecting the first fluorescent substance and the second fluorescent substance according to the characteristics of the semiconductor layer and the second charge detection unit, the first scintillator is configured. A desired radiation image can be acquired in the radiation conversion layer and the second radiation conversion layer. For example, in the first radiation conversion layer, a radiation image corresponding to a low energy component and a medium energy component of the radiation or a radiation image corresponding to a wide range of energy components from a low energy component to a high energy component is acquired. For this purpose, by selecting the first fluorescent material, the energy component absorbed in the semiconductor layer can be controlled to obtain a desired radiation image.
 なお、上記の説明では、半導体層がセレンである場合について説明したが、セレンに代えて、シリコン(Si)、より詳細には、アモルファスシリコン(a-Si)又は結晶性シリコン(c-Si)の半導体層を用いてもよい。a-Si及びc-Siは、シンチレータを構成する材料やセレンよりもKエッジが低く(Se:12.7keV、a-Si:1.7keV、c-Si:1.1keV)、より低いエネルギー成分を吸収しやすい。従って、a-Si又はc-Siからなる半導体層を用いた放射線撮影装置は、マンモの放射線撮影に好適である。 In the above description, the case where the semiconductor layer is selenium has been described, but instead of selenium, silicon (Si), more specifically, amorphous silicon (a-Si) or crystalline silicon (c-Si) is used. Alternatively, the semiconductor layer may be used. a-Si and c-Si have lower K-edges (Se: 12.7 keV, a-Si: 1.7 keV, c-Si: 1.1 keV) than the materials and selenium constituting the scintillator, and lower energy components Easy to absorb. Therefore, a radiation imaging apparatus using a semiconductor layer made of a-Si or c-Si is suitable for mammography.
 また、セレンは、青色波長領域の光を電荷に変換可能であるため、セレンの半導体層と組み合わされるシンチレータとしては、前記青色波長領域の蛍光を発生する蛍光体からなるシンチレータを選択せざるを得ない。すなわち、シンチレータの選択肢が限定される。 In addition, since selenium can convert light in the blue wavelength region into electric charges, a scintillator made of a phosphor that generates fluorescence in the blue wavelength region must be selected as the scintillator combined with the selenium semiconductor layer. Absent. That is, scintillator options are limited.
 これに対して、a-Si又はc-Siの半導体層では、可視光領域全般が感度波長領域となるため、可視光領域の蛍光を発生する蛍光体を用いたシンチレータであれば、どのようなシンチレータであっても、a-Si又はc-Siの半導体層と組み合わせ可能なシンチレータとして選択可能である。これにより、シンチレータの選択肢を増やすことができる。 On the other hand, in the a-Si or c-Si semiconductor layer, the entire visible light region is the sensitivity wavelength region, so any scintillator using a phosphor that generates fluorescence in the visible light region can be used. Even a scintillator can be selected as a scintillator that can be combined with an a-Si or c-Si semiconductor layer. Thereby, the choice of a scintillator can be increased.
 さらに、Kエッジが30keVのCdTeからなる半導体層を用いてもよい。図22に示すように、シンチレータを構成する材料は、いずれも、CdTeよりもKエッジが高い(例えば、CsI:35keV)。また、CdTeのバンドギャップは、1.44eVであり、可視光領域に感度を有する。そのため、a-Si又はc-Siの半導体層と同様に、可視光領域の蛍光を発生する蛍光体をシンチレータとして選択可能である。従って、この場合でも、シンチレータの選択肢を増やすことができる。 Furthermore, a semiconductor layer made of CdTe having a K edge of 30 keV may be used. As shown in FIG. 22, any material constituting the scintillator has a higher K edge than CdTe (for example, CsI: 35 keV). The band gap of CdTe is 1.44 eV and has sensitivity in the visible light region. Therefore, similarly to the a-Si or c-Si semiconductor layer, a phosphor that emits fluorescence in the visible light region can be selected as the scintillator. Accordingly, even in this case, the number of scintillator options can be increased.
 また、前記第1の放射線検出部は、前記半導体層と、前記放射線の入射方向に沿った前記半導体層の一面に複数形成された画素電極と、前記半導体層の他面に全体的に形成された共通電極とから構成されている。この場合、前記各画素電極と前記共通電極との間に電圧を印加することにより、前記半導体層に発生した電荷を、前記各画素電極を介して前記第1の電荷検出部で取り出してもよい。 In addition, the first radiation detection unit is formed on the other surface of the semiconductor layer, a plurality of pixel electrodes formed on one surface of the semiconductor layer along the incident direction of the radiation, and the other surface of the semiconductor layer. And a common electrode. In this case, by applying a voltage between each pixel electrode and the common electrode, the charge generated in the semiconductor layer may be taken out by the first charge detection unit via each pixel electrode. .
 これにより、前記半導体層の厚みが薄ければ、前記各画素電極と前記共通電極との間に電圧を印加した際に、該半導体層に発生する電界が大きくなる。この結果、前記半導体層内の電荷がアバランシェ効果によって増幅され、前記各画素電極を介して前記第1の電荷検出部で取り出される電荷数が増大する。このように、前記半導体層を薄膜化することにより、前記第1の電荷検出部が高感度化され、高画質の放射線画像を容易に取得することができる。 Thus, if the thickness of the semiconductor layer is thin, an electric field generated in the semiconductor layer increases when a voltage is applied between the pixel electrodes and the common electrode. As a result, the charges in the semiconductor layer are amplified by the avalanche effect, and the number of charges taken out by the first charge detection unit via each pixel electrode increases. As described above, by reducing the thickness of the semiconductor layer, the sensitivity of the first charge detector is increased, and a high-quality radiation image can be easily acquired.
 また、前記放射線の入射方向に沿って前記第1の放射線検出部及び前記第1の電荷検出部が積層されている場合に、前記各画素電極は、前記半導体層における前記第1の電荷検出部側に形成されると共に、前記共通電極は、前記半導体層における前記第1の電荷検出部側とは反対側に形成されることが好ましい。これにより、前記各画素電極を介して画素毎に前記電荷を容易に且つ精度よく取り出すことができる。 In addition, when the first radiation detection unit and the first charge detection unit are stacked along the incident direction of the radiation, each pixel electrode includes the first charge detection unit in the semiconductor layer. Preferably, the common electrode is formed on the opposite side of the semiconductor layer from the first charge detection unit side. Thereby, the electric charge can be easily and accurately taken out for each pixel through the pixel electrodes.
 さらに、前記共通電極が前記半導体層における前記第2の放射線変換層側に形成される場合に、前記共通電極は、前記蛍光を透過可能な透明電極であれば、より多くの光量の蛍光を前記半導体層に入射させることができる。 Furthermore, when the common electrode is formed on the second radiation conversion layer side of the semiconductor layer, the common electrode can transmit a larger amount of fluorescence as long as the common electrode is a transparent electrode that can transmit the fluorescence. The light can enter the semiconductor layer.
 また、前記共通電極が前記半導体層における前記第2の放射線変換層側に形成される場合に、前記共通電極は、前記蛍光を透過可能な光学フィルタであってもよい。あるいは、前記第1の放射線変換層と前記第2の放射線変換層との間に、前記蛍光を透過可能な光学フィルタを介挿してもよい。いずれの場合であっても、前記半導体層に蛍光を確実に入射させることができる。 Further, when the common electrode is formed on the second radiation conversion layer side in the semiconductor layer, the common electrode may be an optical filter capable of transmitting the fluorescence. Alternatively, an optical filter capable of transmitting the fluorescence may be interposed between the first radiation conversion layer and the second radiation conversion layer. In either case, fluorescence can be reliably incident on the semiconductor layer.
 この場合、前記光学フィルタは、前記蛍光のうち、前記第1の放射線検出部で電荷に変換可能な波長領域の光を前記第1の放射線変換層側に透過させると共に、前記波長領域以外の光を前記第2の放射線変換層側に反射させるダイクロイックフィルタであることが好ましい。 In this case, the optical filter transmits light in a wavelength region that can be converted into electric charge by the first radiation detection unit to the first radiation conversion layer side, and transmits light in a region other than the wavelength region. Is preferably a dichroic filter that reflects the light toward the second radiation conversion layer.
 これにより、前記第1の放射線検出部において電荷に変換可能な波長領域の蛍光のみが前記第1の放射線変換層に入射するので、入射した前記蛍光を前記第1の放射線検出部で効率よく電荷に変換できると共に、前記波長領域以外の蛍光を前記第2の電荷検出部で効率よく電荷に変換させることができる。この場合でも、前記第1の放射線変換層及び前記第2の放射線変換層における各放射線画像の高画質化を容易に実現することができる。 As a result, only the fluorescence in the wavelength region that can be converted into electric charge in the first radiation detection unit is incident on the first radiation conversion layer, so that the incident fluorescence is efficiently charged in the first radiation detection unit. In addition, the second charge detector can efficiently convert the fluorescent light outside the wavelength region into charges. Even in this case, the image quality of each radiation image in the first radiation conversion layer and the second radiation conversion layer can be easily realized.
 また、前記第2の電荷検出部は、前記蛍光を電荷に変換するフォトダイオード又は有機フォトコンダクタを含み構成されることが好ましい。 In addition, it is preferable that the second charge detection unit includes a photodiode or an organic photoconductor that converts the fluorescence into a charge.
 ここで、前記第1の放射線変換層に対して、前記第2の電荷検出部及び前記第2の放射線検出部が順に積層されている場合に、前記有機フォトコンダクタは、前記蛍光のうち、前記第1の放射線検出部で電荷に変換可能な波長領域の光を前記第1の放射線変換層側に透過させると共に、前記波長領域以外の光を吸収可能であることが好ましい。 Here, when the second charge detection unit and the second radiation detection unit are sequentially stacked with respect to the first radiation conversion layer, the organic photoconductor includes the fluorescence in the fluorescence. It is preferable that light in a wavelength region that can be converted into electric charge by the first radiation detection unit is transmitted to the first radiation conversion layer side and that light outside the wavelength region can be absorbed.
 この場合でも、前記第1の放射線検出部において電荷に変換可能な波長領域の蛍光のみ前記第1の放射線変換層に入射する。これにより、入射した前記蛍光を前記第1の放射線検出部で効率よく電荷に変換できると共に、前記波長領域以外の蛍光を前記有機フォトコンダクタで確実に電荷に変換することができる。従って、この構成でも、前記第1の放射線変換層及び前記第2の放射線変換層における各放射線画像の高画質化を容易に実現することができる。 Even in this case, only the fluorescence in the wavelength region that can be converted into electric charge in the first radiation detection unit is incident on the first radiation conversion layer. Thereby, the incident fluorescence can be efficiently converted into charges by the first radiation detection unit, and fluorescence other than the wavelength region can be reliably converted into charges by the organic photoconductor. Therefore, even with this configuration, it is possible to easily realize high image quality of each radiation image in the first radiation conversion layer and the second radiation conversion layer.
 そして、前記第1の電荷検出部は、前記第1の放射線検出部から取り出した電荷に応じた第1の放射線画像を出力し、前記第2の電荷検出部は、前記蛍光から変換した電荷に応じた第2の放射線画像を出力する。これにより、前記放射線撮影装置に備わり且つ前記第1の放射線変換層及び前記第2の放射線変換層を制御する制御部、あるいは、外部の画像処理装置により、前記第1の放射線画像と前記第2の放射線画像とを加算すれば、一般撮影向けの所望の高画質な画像を取得することができる。 The first charge detection unit outputs a first radiation image corresponding to the charge taken out from the first radiation detection unit, and the second charge detection unit converts the fluorescence into the charge converted from the fluorescence. A corresponding second radiation image is output. Accordingly, the first radiographic image and the second radiographic image can be provided by the control unit that is provided in the radiographic apparatus and controls the first radiation conversion layer and the second radiation conversion layer, or an external image processing apparatus. If desired, a desired high-quality image for general imaging can be acquired.
本実施形態に係る放射線撮影装置を有する放射線撮影システムの構成図である。It is a block diagram of the radiography system which has a radiography apparatus which concerns on this embodiment. 図1の放射線撮影装置の回路構成図である。It is a circuit block diagram of the radiography apparatus of FIG. 図3A及び図3Bは、図1の放射線変換パネルの概略構成を示す説明図である。3A and 3B are explanatory views showing a schematic configuration of the radiation conversion panel of FIG. 図4A及び図4Bは、図1の放射線変換パネルの概略構成を示す説明図である。4A and 4B are explanatory views showing a schematic configuration of the radiation conversion panel of FIG. 図5A及び図5Bは、図3Aの放射線変換パネルの1画素分の構成を模式的に示した説明図である。5A and 5B are explanatory diagrams schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 3A. 図6A及び図6Bは、切換フィルタの概略構成を示す説明図である。6A and 6B are explanatory diagrams illustrating a schematic configuration of the switching filter. 図7A及び図7Bは、切換フィルタの概略構成を示す説明図である。7A and 7B are explanatory diagrams illustrating a schematic configuration of the switching filter. 切換フィルタの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of a switching filter. 図9A及び図9Bは、放射線変換パネルの1画素分の他の構成を模式的に示した説明図である。FIG. 9A and FIG. 9B are explanatory views schematically showing another configuration of one pixel of the radiation conversion panel. 図10A及び図10Bは、放射線変換パネルの1画素分の他の構成を模式的に示した説明図である。10A and 10B are explanatory diagrams schematically illustrating another configuration of one pixel of the radiation conversion panel. a-Seの量子効率と感度波長との関係を示すグラフである。It is a graph which shows the relationship between the quantum efficiency of a-Se, and a sensitivity wavelength. 青色波長の蛍光を発生するシンチレータの発光スペクトル(発光波長と規格化強度との関係)を示すグラフである。It is a graph which shows the emission spectrum (relation between emission wavelength and normalized intensity) of the scintillator which generates the fluorescence of blue wavelength. a-Seの電界と相対信号強度との関係を図示したグラフである。6 is a graph illustrating the relationship between the electric field of a-Se and the relative signal intensity. 図14A~図14Dは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。14A to 14D are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図15A~図15Dは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。15A to 15D are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図16A~図16Cは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。16A to 16C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図17A~図17Cは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。17A to 17C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図18A~図18Cは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。18A to 18C are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図19A及び図19Bは、図3Aの放射線変換パネルの製造工程の一例を示す説明図である。19A and 19B are explanatory views showing an example of a manufacturing process of the radiation conversion panel of FIG. 3A. 図20Aは、図3Bの放射線変換パネルの1画素分の構成を模式的に示した説明図であり、図20Bは、図4Aの放射線変換パネルの1画素分の構成を模式的に示した説明図である。20A is an explanatory diagram schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 3B, and FIG. 20B is an explanation schematically showing the configuration of one pixel of the radiation conversion panel of FIG. 4A. FIG. 図21A及び図21Bは、図20Bの有機フォトコンダクタの配置を模式的に示した平面図である。21A and 21B are plan views schematically showing the arrangement of the organic photoconductor in FIG. 20B. 放射線のエネルギーと放射線吸収係数との関係を図示したグラフである。It is the graph which illustrated the relationship between the energy of a radiation, and a radiation absorption coefficient. セレンの膜厚と放射線吸収率との関係を図示したグラフである。It is the graph which illustrated the relationship between the film thickness of selenium and a radiation absorption rate. セレン、CsI及びGOSの膜厚と放射線吸収率との関係を図示したグラフである。It is the graph which illustrated the relationship between the film thickness of selenium, CsI, and GOS, and a radiation absorption rate. 第1変形例に係る放射線撮影装置の斜視図である。It is a perspective view of the radiography apparatus which concerns on a 1st modification. 図25の放射線撮影装置の本体部と増設部とを分離した状態を示す斜視図である。It is a perspective view which shows the state which isolate | separated the main-body part and extension part of the radiography apparatus of FIG. 図26の本体部及び増設部を一部破断して図示した平面図である。FIG. 27 is a plan view illustrating the main body portion and the extension portion of FIG. 図26及び図27の本体部及び増設部の断面図である。It is sectional drawing of the main-body part and extension part of FIG.26 and FIG.27. a-Siの温度とリーク電流との関係を示すグラフである。5 is a graph showing the relationship between the temperature of a-Si and the leakage current. 第2変形例に係る放射線撮影装置の斜視図である。It is a perspective view of the radiography apparatus which concerns on a 2nd modification. 図30の筐体と放射線検出ユニット及び放熱ユニットとが分離している状態を図示した斜視図である。It is the perspective view which illustrated the state which the housing | casing of FIG. 30, the radiation detection unit, and the thermal radiation unit have isolate | separated. 図30のXXXII-XXXII線に沿った断面図である。FIG. 31 is a cross-sectional view taken along line XXXII-XXXII in FIG. 30. 第3変形例に係る放射線撮影装置の断面図である。It is sectional drawing of the radiography apparatus which concerns on a 3rd modification. 図33の温度制御ユニットの説明図である。It is explanatory drawing of the temperature control unit of FIG. 第4変形例に係る放射線撮影装置を撮影台に組み込んだ状態を示す斜視図である。It is a perspective view which shows the state which incorporated the radiography apparatus which concerns on a 4th modification in the imaging stand. 撮影台への放射線撮影装置の組み込みを図示した斜視図である。It is the perspective view which illustrated integration of the radiography apparatus to an imaging stand. 第5変形例に係る放射線撮影装置のクレードルへの装填を図示した斜視図である。It is the perspective view which illustrated loading to the cradle of the radiography apparatus which concerns on a 5th modification. 図37のクレードルに放射線撮影装置が装填された状態をクレードルの一部を破断して図示した側面図である。FIG. 38 is a side view illustrating a state in which a radiation imaging apparatus is loaded in the cradle of FIG. 37 with a part of the cradle cut away. 図37のクレードルの平面図である。It is a top view of the cradle of FIG. 図37のクレードルの概略構成ブロック図である。It is a schematic block diagram of the cradle of FIG. クレードルに装填された放射線撮影装置に対して消毒液を噴射した状態をクレードルの一部を破断して図示した側面図である。It is the side view which fractured | ruptured a part of cradle and illustrated the state which injected the disinfection liquid with respect to the radiography apparatus with which the cradle was loaded. クレードルに装填された放射線撮影装置に対して空気を吹き出した状態をクレードルの一部を破断して図示した側面図である。It is the side view which fractured | ruptured and illustrated the state which blown air with respect to the radiography apparatus with which the cradle was loaded. クレードルからの放射線撮影装置の取り出しをクレードルの一部を破断して図示した側面図である。FIG. 3 is a side view illustrating the removal of the radiation imaging apparatus from the cradle with a part of the cradle cut away. 第6変形例に係る放射線撮影装置における1画素分の構成を模式的に示した説明図である。It is explanatory drawing which showed typically the structure for 1 pixel in the radiography apparatus which concerns on a 6th modification.
 本発明に係る放射線撮影装置について、好適な実施形態を、図1~図44を参照しながら以下詳細に説明する。 A preferred embodiment of the radiation imaging apparatus according to the present invention will be described below in detail with reference to FIGS.
[本実施形態の構成]
 本実施形態に係る放射線撮影装置10を具備する放射線撮影システム12は、図1に示すように、被写体14に対して放射線16を照射する放射線出力装置18と、被写体14を透過した放射線16を検出して放射線画像に変換する放射線撮影装置10と、放射線撮影装置10及び放射線出力装置18を制御するコンソール20と、放射線画像を表示する表示装置22とを備える。
[Configuration of this embodiment]
As shown in FIG. 1, the radiation imaging system 12 including the radiation imaging apparatus 10 according to the present embodiment detects a radiation output device 18 that irradiates the subject 14 with radiation 16 and the radiation 16 that has passed through the subject 14. The radiation imaging apparatus 10 for converting to a radiation image, the console 20 for controlling the radiation imaging apparatus 10 and the radiation output apparatus 18, and the display device 22 for displaying the radiation image are provided.
 コンソール20と放射線撮影装置10、放射線出力装置18及び表示装置22との間では、例えば、UWB(Ultra Wide Band)、IEEE802.11a/b/g/n等の無線LAN(Local Area Network)、又は、ミリ波等を用いた無線通信により信号の送受信が行われる。なお、ケーブルを用いた有線通信により信号の送受信を行ってもよいことは勿論である。 Between the console 20 and the radiation imaging apparatus 10, the radiation output apparatus 18, and the display apparatus 22, for example, a wireless local area network (UWB) such as UWB (Ultra Wide Band), IEEE802.11a / b / g / n, or Signals are transmitted and received by wireless communication using millimeter waves or the like. It goes without saying that signals may be transmitted and received by wired communication using a cable.
 コンソール20には、病院内の放射線科において取り扱われる放射線画像やその他の情報を統括的に管理する放射線科情報システム(RIS)24が接続されている。RIS24には、病院内の医事情報を統括的に管理する医事情報システム(HIS)26が接続されている。 Connected to the console 20 is a radiology information system (RIS) 24 that comprehensively manages radiographic images and other information handled in the radiology department in the hospital. Connected to the RIS 24 is a medical information system (HIS) 26 that comprehensively manages medical information in the hospital.
 本実施形態に係る放射線撮影装置10は、例えば、図示しない撮影台と被写体14との間に配置され、被写体14を透過した放射線16を放射線画像に変換する放射線変換パネル28を、該放射線16を透過可能な筐体内に収容した可搬型の電子カセッテである。なお、放射線撮影装置10は、可搬型の電子カセッテに限定されるものではなく、図示しない撮影台に装填して使用されるビルトイン型の電子カセッテにも適用可能である。 The radiation imaging apparatus 10 according to the present embodiment includes, for example, a radiation conversion panel 28 that is disposed between an imaging table (not shown) and a subject 14 and converts radiation 16 transmitted through the subject 14 into a radiation image. It is a portable electronic cassette housed in a transmissive case. The radiation imaging apparatus 10 is not limited to a portable electronic cassette, but can also be applied to a built-in electronic cassette that is used by being mounted on an imaging table (not shown).
 放射線撮影装置10は、前述した放射線変換パネル28と、カセッテ制御部34と、通信部36と、バッテリ38とを筐体内に収容している。カセッテ制御部34は、駆動回路部30を介して放射線変換パネル28を制御すると共に、放射線変換パネル28から読出回路部32を介して放射線画像に応じた電気信号を読み出す。通信部36は、コンソール20との間で信号の送受信を行う。バッテリ38は、放射線撮影装置10内の各部に電力を供給する。 The radiation imaging apparatus 10 accommodates the above-described radiation conversion panel 28, cassette control unit 34, communication unit 36, and battery 38 in a housing. The cassette control unit 34 controls the radiation conversion panel 28 through the drive circuit unit 30 and reads out an electrical signal corresponding to the radiation image from the radiation conversion panel 28 through the readout circuit unit 32. The communication unit 36 transmits and receives signals to and from the console 20. The battery 38 supplies power to each unit in the radiation imaging apparatus 10.
 放射線変換パネル28は、放射線16の入射方向に沿って、第1の放射線変換層28a、切換フィルタ28b及び第2の放射線変換層28cを順に積層して構成される。なお、本実施形態において、切換フィルタ28bは、後述するように必須ではなく、省略することも可能である。従って、放射線変換パネル28は、第1の放射線変換層28a及び第2の放射線変換層28cとの積層構造を採用することも可能である。但し、以下の説明では、主として、切換フィルタ28bを含めた積層構造について説明する。 The radiation conversion panel 28 is configured by sequentially laminating a first radiation conversion layer 28a, a switching filter 28b, and a second radiation conversion layer 28c along the incident direction of the radiation 16. In the present embodiment, the switching filter 28b is not essential as will be described later, and can be omitted. Therefore, the radiation conversion panel 28 can also employ a laminated structure of the first radiation conversion layer 28a and the second radiation conversion layer 28c. However, in the following description, a laminated structure including the switching filter 28b will be mainly described.
 第1の放射線変換層28aは、主として放射線16の低エネルギー成分を吸収し、吸収したエネルギー成分を電荷に直接変換することにより、該電荷に応じた第1の放射線画像を形成する直接変換型の放射線変換層である。第2の放射線変換層28cは、主として放射線16の高エネルギー成分を吸収し、吸収したエネルギー成分を蛍光に一旦変換して、変換した蛍光を電荷に変換することにより、該電荷に応じた第2の放射線画像を形成する間接変換型の放射線変換層である。 The first radiation converting layer 28a mainly absorbs a low energy component of the radiation 16 and directly converts the absorbed energy component into a charge, thereby forming a first radiation image corresponding to the charge. It is a radiation conversion layer. The second radiation conversion layer 28c mainly absorbs the high energy component of the radiation 16, temporarily converts the absorbed energy component into fluorescence, and converts the converted fluorescence into electric charge. It is an indirect conversion type radiation conversion layer which forms the radiation image of this.
 切換フィルタ28bは、フィルタ制御部40からの制御に従って、蛍光のうち特定波長領域の光を透過可能な透過状態(透明状態)、又は、該蛍光を遮光して第2の放射線変換層28c側に反射させる非透過状態(鏡状態)に切り換わるダイクロイックフィルタ(光学フィルタ)である。 According to control from the filter control unit 40, the switching filter 28b is in a transmission state (transparent state) capable of transmitting light in a specific wavelength region in the fluorescence, or shields the fluorescence to the second radiation conversion layer 28c side. It is a dichroic filter (optical filter) that switches to a non-transmissive state (mirror state) for reflection.
 なお、放射線16の低エネルギー成分とは、放射線出力装置18を構成する放射線源の管電圧が比較的低電圧である場合での該低電圧に応じた放射線16のエネルギー成分であり、被写体14のマンモ、軟部組織又は腫瘍等に吸収されやすい。また、放射線16の高エネルギー成分とは、放射線源の管電圧が比較的高電圧である場合での該高電圧に応じた放射線16のエネルギー成分であり、被写体14の骨部等に吸収されやすい。 The low energy component of the radiation 16 is an energy component of the radiation 16 corresponding to the low voltage when the tube voltage of the radiation source constituting the radiation output device 18 is relatively low. It is easily absorbed by mammo, soft tissue or tumor. The high energy component of the radiation 16 is an energy component of the radiation 16 corresponding to the high voltage when the tube voltage of the radiation source is relatively high, and is easily absorbed by the bone portion of the subject 14. .
 また、放射線撮影装置10には、第1の放射線変換層28aにおいて変換された電荷を取り出すために必要な直流電圧を第1の放射線変換層28aに供給する電圧供給部42も設けられている。 The radiation imaging apparatus 10 is also provided with a voltage supply unit 42 that supplies a DC voltage necessary for taking out the charges converted in the first radiation conversion layer 28a to the first radiation conversion layer 28a.
 カセッテ制御部34は、アドレス信号発生部44と、画像メモリ46と、カセッテIDメモリ48とを有する。アドレス信号発生部44は、放射線変換パネル28に対する放射線画像の読み出しを指示するためのアドレス信号を駆動回路部30に供給する。画像メモリ46は、駆動回路部30の制御によって放射線変換パネル28から読出回路部32を介して読み出された放射線画像を記憶する。カセッテIDメモリ48は、放射線撮影装置10を特定するためのカセッテID情報を記憶する。 The cassette control unit 34 includes an address signal generation unit 44, an image memory 46, and a cassette ID memory 48. The address signal generation unit 44 supplies an address signal for instructing the radiation conversion panel 28 to read out a radiation image to the drive circuit unit 30. The image memory 46 stores a radiation image read from the radiation conversion panel 28 via the readout circuit unit 32 under the control of the drive circuit unit 30. The cassette ID memory 48 stores cassette ID information for specifying the radiation imaging apparatus 10.
 コンソール(画像処理装置)20は、通信部50、制御処理部52、オーダ情報記憶部54、撮影条件記憶部56、画像処理部58及び画像メモリ60を有する。 The console (image processing apparatus) 20 includes a communication unit 50, a control processing unit 52, an order information storage unit 54, an imaging condition storage unit 56, an image processing unit 58, and an image memory 60.
 通信部50は、通信部36や、放射線出力装置18、表示装置22及びRIS24との間で信号の送受信を行う。制御処理部52は、コンソール20内の各部を制御するための所定の制御処理を実行する。オーダ情報記憶部54は、被写体14に対する放射線画像の撮影(放射線撮影)を要求するためのオーダ情報を記憶する。撮影条件記憶部56は、被写体14に放射線16を照射させるための撮影条件等を記憶する。画像処理部58は、通信部50が通信部36から受信した放射線画像に対して所定の画像処理を施す。画像メモリ60は、画像処理部58において画像処理が施された放射線画像等を記憶する。 The communication unit 50 transmits and receives signals to and from the communication unit 36, the radiation output device 18, the display device 22, and the RIS 24. The control processing unit 52 executes predetermined control processing for controlling each unit in the console 20. The order information storage unit 54 stores order information for requesting radiographic imaging (radiographic imaging) of the subject 14. The imaging condition storage unit 56 stores imaging conditions for irradiating the subject 14 with the radiation 16 and the like. The image processing unit 58 performs predetermined image processing on the radiation image received by the communication unit 50 from the communication unit 36. The image memory 60 stores a radiation image or the like that has been subjected to image processing by the image processing unit 58.
 なお、オーダ情報とは、RIS24又はHIS26において、医師により作成されるものであり、被写体14の氏名、年齢、性別等、被写体14を特定するための被写体情報に加えて、放射線画像の撮影に使用する放射線出力装置18及び放射線撮影装置10の情報や、被写体14の撮影部位及び撮影方法等が含まれる。また、撮影条件とは、例えば、放射線源の管電圧や管電流、放射線16の曝射時間等、被写体14の撮影部位に対して放射線16を照射させるために必要な各種の条件である。 The order information is created by a doctor in the RIS 24 or HIS 26 and used for radiographic image capturing in addition to subject information for identifying the subject 14 such as the name, age, and sex of the subject 14. Information on the radiation output device 18 and the radiation imaging apparatus 10, the imaging region and imaging method of the subject 14, and the like. The imaging conditions are various conditions necessary for irradiating the imaging region of the subject 14 with the radiation 16 such as the tube voltage and tube current of the radiation source, the exposure time of the radiation 16, and the like.
 図2は、放射線撮影装置10を構成する放射線変換パネル28等の回路構成図である。 FIG. 2 is a circuit configuration diagram of the radiation conversion panel 28 and the like constituting the radiation imaging apparatus 10.
 放射線変換パネル28は、前述のように、放射線16(図1参照)の入射方向に沿って第1の放射線変換層28a、切換フィルタ28b及び第2の放射線変換層28cが順に積層された積層構造である。また、放射線変換パネル28は、図2の平面視では、複数の画素62がマトリックス状に配列された構造となっている。この場合、各画素62は、それぞれ、放射線16の入射方向に沿って、第1の放射線変換層28aの一部分と、切換フィルタ28bの一部分と、第2の放射線変換層28cの一部分とを含み構成されている。 As described above, the radiation conversion panel 28 has a stacked structure in which the first radiation conversion layer 28a, the switching filter 28b, and the second radiation conversion layer 28c are sequentially stacked along the incident direction of the radiation 16 (see FIG. 1). It is. In addition, the radiation conversion panel 28 has a structure in which a plurality of pixels 62 are arranged in a matrix in the plan view of FIG. In this case, each pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c along the incident direction of the radiation 16. Has been.
 そのため、各画素62は、それぞれ、第1の放射線変換層28aの部分で放射線16の低エネルギー成分を電荷に直接変換し、第2の放射線変換層28cの部分で放射線16の高エネルギー成分を蛍光に一旦変換した後に電荷に変換し、切換フィルタ28bの部分でフィルタ制御部40からの制御に従って透過状態又は鏡状態に切り換わる。 Therefore, each pixel 62 directly converts the low energy component of the radiation 16 into an electric charge in the portion of the first radiation conversion layer 28a, and fluoresces the high energy component of the radiation 16 in the portion of the second radiation conversion layer 28c. Is converted into electric charge and then switched to a transmission state or a mirror state in accordance with control from the filter control unit 40 in the switching filter 28b.
 また、放射線変換パネル28では、行方向と平行に複数のゲート線64a、64cが延びると共に、列方向と平行に複数の信号線66a、66cが延びている。各ゲート線64a、64cは駆動回路部30に接続され、各信号線66a、66cは読出回路部32に接続されている。 In the radiation conversion panel 28, a plurality of gate lines 64a and 64c extend in parallel to the row direction, and a plurality of signal lines 66a and 66c extend in parallel to the column direction. The gate lines 64 a and 64 c are connected to the drive circuit unit 30, and the signal lines 66 a and 66 c are connected to the readout circuit unit 32.
 前述のように、各画素62は、それぞれ、第1の放射線変換層28aの一部分と、切換フィルタ28bの一部分と、第2の放射線変換層28cの一部分とを含み構成されている。そのため、行方向に配置された各画素62に対して、第1の放射線変換層28a(のTFT)に接続される1本のゲート線64aと、第2の放射線変換層28c(のTFT)に接続される1本のゲート線64cとの2本のゲート線が配設されている。また、列方向に配置された各画素62に対しては、第1の放射線変換層28a(のTFT)に接続される1本の信号線66aと、第2の放射線変換層28c(のTFT)に接続される1本の信号線66cとの2本の信号線が配設されている。 As described above, each pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c. Therefore, for each pixel 62 arranged in the row direction, one gate line 64a connected to the first radiation conversion layer 28a (the TFT) and the second radiation conversion layer 28c (the TFT) are connected. Two gate lines are connected to one gate line 64c to be connected. For each pixel 62 arranged in the column direction, one signal line 66a connected to the first radiation conversion layer 28a (TFT) and the second radiation conversion layer 28c (TFT). There are two signal lines, one signal line 66c connected to the other.
 そして、各放射線変換層28a、28cには、放射線16の吸収に起因して発生した電荷が蓄積されるので、各行毎に各放射線変換層28a、28cのTFTを順次オンにすることにより前記電荷を電気信号として読み出すことができる。 Then, since the charges generated due to the absorption of the radiation 16 are accumulated in the radiation conversion layers 28a and 28c, the charges of the radiation conversion layers 28a and 28c are sequentially turned on for each row. Can be read out as an electrical signal.
 具体的に、カセッテ制御部34のアドレス信号発生部44から駆動回路部30にアドレス信号が供給されると、駆動回路部30から各ゲート線64a、64cに、行方向に配列されたTFTをオンオフ制御する制御信号が供給される。制御信号の供給によってTFTがオンになると、オンとなったTFTに接続された各画素62に保持されている電荷がTFT及び信号線66a、66cを介して読出回路部32に流出する。読出回路部32は、流入した電荷に応じた電気信号(アナログ信号)を増幅した後にA/D変換を行い、デジタル信号に変換された放射線画像をカセッテ制御部34に供給する。 Specifically, when an address signal is supplied from the address signal generation unit 44 of the cassette control unit 34 to the drive circuit unit 30, the TFTs arranged in the row direction are turned on and off from the drive circuit unit 30 to the gate lines 64a and 64c. A control signal to be controlled is supplied. When the TFT is turned on by supplying the control signal, the charge held in each pixel 62 connected to the turned-on TFT flows out to the readout circuit section 32 through the TFT and the signal lines 66a and 66c. The readout circuit unit 32 amplifies an electric signal (analog signal) corresponding to the inflowed charge, performs A / D conversion, and supplies the radiographic image converted into the digital signal to the cassette control unit 34.
[第1~第4実施例の構成]
 図3A~図4Bは、放射線変換パネル28の概略構成を模式的に図示したものである。なお、以下の説明では、図3A~図4Bの構成を第1~第4実施例ともいう。
[Configuration of the first to fourth embodiments]
3A to 4B schematically show a schematic configuration of the radiation conversion panel 28. FIG. In the following description, the configuration of FIGS. 3A to 4B is also referred to as first to fourth embodiments.
 図3Aの第1実施例は、放射線16の入射方向に沿って、表面読取方式としてのISS(Irradiation Side Sampling)方式の直接変換型の第1の放射線変換層28a、切換フィルタ28b、及び、裏面読取方式としてのPSS(Penetration Side Sampling)方式の間接変換型の第2の放射線変換層28cを順に積層した構成を図示したものである。 In the first embodiment of FIG. 3A, an ISS (Irradiation Side Sampling) type direct conversion type first radiation conversion layer 28a, a switching filter 28b, and a back surface along the incident direction of the radiation 16 are used. A configuration in which an indirect conversion type second radiation conversion layer 28c of a PSS (Penetration Side Sampling) method as a reading method is sequentially stacked is illustrated.
 第1実施例の放射線変換パネル28において、第1の放射線変換層28aは、放射線16の入射方向に沿って、可撓性を有する薄型の絶縁性基板68aと、第1の電荷検出部70aと、第1の放射線検出部72aとを順に積層して構成されている。また、第2の放射線変換層28cは、第1の放射線変換層28aに向かって(図3Aの下方向から上方向に向かって)可撓性を有する薄型の絶縁性基板68cと、第2の電荷検出部70cと、第2の放射線検出部72cとを順に積層して構成されている。 In the radiation conversion panel 28 of the first embodiment, the first radiation conversion layer 28a includes a thin insulating substrate 68a having flexibility along the incident direction of the radiation 16, a first charge detection unit 70a, and the like. The first radiation detection unit 72a is sequentially stacked. In addition, the second radiation conversion layer 28c has a flexible thin insulating substrate 68c toward the first radiation conversion layer 28a (from the lower side to the upper side in FIG. 3A) and the second radiation conversion layer 28c. The charge detection unit 70c and the second radiation detection unit 72c are sequentially stacked.
 絶縁性基板68aは、第1の放射線検出部72a及び第2の放射線検出部72cにおいて放射線16を吸収させるため、放射線16の吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板(数十μm程度の厚みを有する基板)であることが好ましい。具体的に、絶縁性基板68aは、合成樹脂、アラミド、バイオナノファイバ、あるいは、ロール状に巻き取ることが可能なフイルム状ガラス(超薄板ガラス)等からなることが好ましい。 Since the insulating substrate 68a absorbs the radiation 16 in the first radiation detecting unit 72a and the second radiation detecting unit 72c, the insulating substrate 68a has a low electric absorption property of the radiation 16 and has a thin and electrically insulating property. A substrate (a substrate having a thickness of about several tens of μm) is preferable. Specifically, the insulating substrate 68a is preferably made of synthetic resin, aramid, bionanofiber, or film glass (ultra thin glass) that can be wound into a roll.
 第1の放射線検出部72aは、アモルファスセレン(a-Se)からなる半導体層74aと、該半導体層74aの第1の電荷検出部70a側の一面に複数形成された画素電極76aと、半導体層74aの他面を全体的に覆うように形成された共通電極78aとから構成される。 The first radiation detection unit 72a includes a semiconductor layer 74a made of amorphous selenium (a-Se), a plurality of pixel electrodes 76a formed on one surface of the semiconductor layer 74a on the first charge detection unit 70a side, and a semiconductor layer And a common electrode 78a formed so as to entirely cover the other surface of 74a.
 画素電極76aは、各画素62毎に形成されており、放射線16に対する吸収性が低く、且つ、a-Seとの間でエレクトロマイグレーションが発生しないような導電性材料(例えば、Au)からなることが好ましい。a-Seの半導体層74aは、放射線16が入射すると、該放射線16の低エネルギー成分を吸収して電荷に変換する。 The pixel electrode 76a is formed for each pixel 62, and is made of a conductive material (for example, Au) that has low absorbability with respect to the radiation 16 and does not generate electromigration with a-Se. Is preferred. When the radiation 16 is incident, the a-Se semiconductor layer 74a absorbs the low energy component of the radiation 16 and converts it into electric charges.
 共通電極78aは、放射線16の吸収性が低く、a-Seとの間でエレクトロマイグレーションが発生せず、且つ、少なくともa-Seの感度波長領域の光(例えば、青色波長領域の光)を透過可能な導電性材料、例えば、ITO(Indium Tin Oxide)からなることが好ましい。このような導電性材料で共通電極78aを構成することにより、第2の放射線検出部72cで放射線16の高エネルギー成分を検出させると共に、後述するように、第2の放射線変換層28cで放射線16から変換された蛍光のうち、少なくともa-Seの感度波長領域の光を透過させることができる。 The common electrode 78a has low radiation 16 absorption, does not generate electromigration with a-Se, and transmits at least light in the sensitivity wavelength region of a-Se (for example, light in the blue wavelength region). It is preferably made of a possible conductive material, for example, ITO (Indium Tin Oxide). By configuring the common electrode 78a with such a conductive material, the second radiation detector 72c detects the high energy component of the radiation 16, and, as will be described later, the second radiation conversion layer 28c causes the radiation 16 to be detected. Can transmit light in at least the sensitivity wavelength region of a-Se.
 なお、画素電極76a及び共通電極78aを形成する場合、形成温度によっては、a-Seが結晶化するおそれがある。従って、a-Seの結晶化を抑制するためには、できる限り低温で画素電極76a及び共通電極78aを形成する必要がある。そこで、画素電極76a及び共通電極78aは、塗布、ロールツーロール、インクジェット等により、金属フィラーを含む有機膜や有機導電体として形成されることが望ましい。 Note that when the pixel electrode 76a and the common electrode 78a are formed, a-Se may be crystallized depending on the formation temperature. Therefore, in order to suppress crystallization of a-Se, it is necessary to form the pixel electrode 76a and the common electrode 78a at as low a temperature as possible. Therefore, the pixel electrode 76a and the common electrode 78a are desirably formed as an organic film or an organic conductor containing a metal filler by coating, roll-to-roll, ink jet, or the like.
 第1の電荷検出部70aは、前述したTFTを含み構成され、半導体層74aで発生した電荷を各画素電極76aを介して各画素62毎に取り出し、取り出した電荷を電気信号(アナログ信号)として信号線66a(図2参照)を介し読出回路部32に出力する。また、第1の電荷検出部70aは、第1の放射線検出部72a等において放射線16を検出させるため、放射線16の吸収性が低い材料からなることが好ましい。さらに、前記TFTには、ゲート線64a及び信号線66aが接続されるため、これらのゲート線64a及び信号線66aについても、放射線16の吸収性が低く、且つ、低抵抗の導電性材料(例えば、Al)からなることが好ましい。 The first charge detection unit 70a is configured to include the above-described TFT, and the charge generated in the semiconductor layer 74a is taken out for each pixel 62 through each pixel electrode 76a, and the taken-out charge is used as an electric signal (analog signal). The data is output to the readout circuit section 32 via the signal line 66a (see FIG. 2). In addition, the first charge detection unit 70a is preferably made of a material having low absorption of the radiation 16 so that the first radiation detection unit 72a and the like detect the radiation 16. Furthermore, since the gate line 64a and the signal line 66a are connected to the TFT, the gate line 64a and the signal line 66a also have a low-resistance conductive material (for example, low absorption of radiation 16). , Al).
 切換フィルタ28bは、第2の放射線検出部72cにおいて放射線16の高エネルギー成分を検出させると共に、第2の放射線検出部72cで発生した蛍光のうち、少なくともa-Seの感度波長領域の光を透過させるために、放射線16の吸収性が低く、且つ、該光を透過可能な材料からなることが好ましい。 The switching filter 28b causes the second radiation detection unit 72c to detect the high energy component of the radiation 16, and transmits at least light in the sensitivity wavelength region of a-Se among the fluorescence generated by the second radiation detection unit 72c. Therefore, it is preferable that the material is made of a material that has low absorption of the radiation 16 and can transmit the light.
 第2の放射線検出部72cは、入射した放射線16の高エネルギー成分を蛍光に変換するシンチレータからなる。シンチレータとしては、a-Seの感度波長領域の光や、第2の電荷検出部70cで吸収可能な波長領域の光(a-Seの感度波長領域の光よりも長波長の光)を発生できるような、比較的広範囲の波長領域を有した蛍光を発生するシンチレータが望ましい。このようなシンチレータとしては、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBr若しくはCl)、又は、LaOBr:Tm等があり、特に、CsI:Naがより好ましい。 The 2nd radiation detection part 72c consists of a scintillator which converts the high energy component of the incident radiation 16 into fluorescence. The scintillator can generate light in the a-Se sensitivity wavelength region and light in the wavelength region that can be absorbed by the second charge detector 70c (light having a longer wavelength than light in the a-Se sensitivity wavelength region). Such a scintillator that generates fluorescence having a relatively wide wavelength range is desirable. Examples of such a scintillator include CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), LaOBr: Tm, and the like, and CsI: Na is more preferable.
 第2の電荷検出部70cは、前述したTFTやフォトダイオード等の光電変換素子を含み構成され、該シンチレータで変換された蛍光を電荷に変換し、変換した電荷を電気信号(アナログ信号)として信号線66cを介し読出回路部32に出力する。なお、第1実施例の構成では、放射線16の低エネルギー成分がa-Seの半導体層74aで吸収されて電荷に変換されると共に、放射線16の高エネルギー成分が第2の放射線検出部72cのシンチレータで吸収されて蛍光に変換される。そのため、第1実施例において、第2の電荷検出部70cのTFT及び光電変換素子については、放射線16の吸収性が低い材料を用いなくてもよい。また、前記TFTに接続されるゲート線64c及び信号線66cについても、放射線16の吸収性が低い導電性材料を用いなくてもよい。 The second charge detection unit 70c is configured to include the above-described photoelectric conversion elements such as TFTs and photodiodes, converts the fluorescence converted by the scintillator into charges, and signals the converted charges as electric signals (analog signals). The data is output to the readout circuit unit 32 via the line 66c. In the configuration of the first embodiment, the low energy component of the radiation 16 is absorbed by the a-Se semiconductor layer 74a and converted into electric charges, and the high energy component of the radiation 16 is converted into the second radiation detection unit 72c. It is absorbed by the scintillator and converted into fluorescence. For this reason, in the first embodiment, the TFT and the photoelectric conversion element of the second charge detection unit 70c need not use a material having low radiation 16 absorption. Also, the gate line 64c and the signal line 66c connected to the TFT need not use a conductive material having low radiation 16 absorption.
 さらに、放射線16が到達する可能性が低い第2の電荷検出部70cについては、前述したTFTとフォトダイオードとの組み合わせに代えて、放射線16に対する耐性が低い、CMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等の他の撮影素子とTFTとを組み合わせてもよい。また、TFTで言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge-Coupled Device)イメージセンサに置き換えることも可能である。 Further, the second charge detection unit 70c that is unlikely to reach the radiation 16 is replaced with the above-described combination of TFT and photodiode, and has a CMOS (Complementary Metal-Oxide Semiconductor) image with low resistance to the radiation 16. You may combine TFT with other imaging elements, such as a sensor. Further, it can be replaced with a CCD (Charge-Coupled Device) image sensor that transfers charges while shifting charges by a shift pulse corresponding to a gate signal referred to as a TFT.
 図3Bに示す第2実施例の放射線変換パネル28は、放射線16の入射方向に沿って、ISS方式の直接変換型の第1の放射線変換層28a、切換フィルタ28b、及び、ISS方式の間接変換型の第2の放射線変換層28cが順に積層された構成である点で、図3Aの第1実施例の構成とは異なる。 The radiation conversion panel 28 of the second embodiment shown in FIG. 3B includes an ISS direct conversion type first radiation conversion layer 28a, a switching filter 28b, and an ISS indirect conversion along the incident direction of the radiation 16. The second radiation conversion layer 28c of the mold is different from the first embodiment of FIG. 3A in that the second radiation conversion layer 28c is laminated in order.
 なお、図3B~図4Bに示す第2~第4実施例の説明では、図3Aの第1実施例等とは異なる構成のみ説明する。 In the description of the second to fourth embodiments shown in FIGS. 3B to 4B, only the configuration different from the first embodiment of FIG. 3A will be described.
 第2実施例の放射線変換パネル28において、第2の放射線変換層28cは、放射線16の入射方向に沿って、絶縁性基板68cと、第2の電荷検出部70cと、第2の放射線検出部72cと、第2の放射線検出部72cで発生した蛍光を該第2の放射線検出部72c側に反射させる反射膜80cとを順に積層して構成されている。 In the radiation conversion panel 28 of the second embodiment, the second radiation conversion layer 28c includes an insulating substrate 68c, a second charge detection unit 70c, and a second radiation detection unit along the incident direction of the radiation 16. 72c and a reflection film 80c for reflecting the fluorescence generated by the second radiation detection unit 72c to the second radiation detection unit 72c side by layer.
 絶縁性基板68cは、第2の放射線検出部72cにおいて放射線16を検出させると共に、第2の放射線検出部72cで発生した蛍光のうち、少なくともa-Seの感度波長領域の光を透過させる必要がある。そのため、絶縁性基板68cは、絶縁性基板68aと同様に、放射線16の吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板であって、なおかつ、該感度波長領域の光を透過可能であるか、又は、該光に対する吸収性や遮光性が低い材料からなることが好ましい。 The insulating substrate 68c needs to detect the radiation 16 in the second radiation detection unit 72c and transmit at least light in the a-Se sensitivity wavelength region among the fluorescence generated in the second radiation detection unit 72c. is there. Therefore, the insulating substrate 68c is an electrically insulating thin substrate having low radiation 16 absorbability and flexibility, as well as the insulating substrate 68a, and also has a light wavelength in the sensitivity wavelength region. Preferably, it is made of a material that can transmit light or has low light absorption and light shielding properties.
 第2の電荷検出部70cは、第2の放射線検出部72cにおいて放射線16を検出させると共に、第2の放射線検出部72cで発生した蛍光のうち、少なくともa-Seの感度波長領域の光を透過させるために、放射線16の吸収性が低く、且つ、該光を透過可能であるか、又は、該光の吸収性や遮光性が低い材料からなることが好ましい。 The second charge detection unit 70c causes the second radiation detection unit 72c to detect the radiation 16, and transmits at least the light in the sensitivity wavelength region of a-Se out of the fluorescence generated by the second radiation detection unit 72c. In order to achieve this, it is preferable that the radiation 16 has a low absorptivity and can transmit the light, or is made of a material having a low absorptivity and light shielding property.
 なお、第2実施例では、第2の放射線検出部72cで発生した蛍光が、第2の電荷検出部70c及び絶縁性基板68cを介して第1の放射線変換層28aに入射するため、第1実施例の場合よりも、第1の放射線変換層28aの半導体層74a内に到達する蛍光の光量が減少する可能性がある。 In the second embodiment, the fluorescence generated by the second radiation detection unit 72c is incident on the first radiation conversion layer 28a via the second charge detection unit 70c and the insulating substrate 68c. There is a possibility that the amount of fluorescent light reaching the semiconductor layer 74a of the first radiation conversion layer 28a may be smaller than in the case of the embodiment.
 図4Aの第3実施例は、放射線16の入射方向に沿って、PSS方式の直接変換型の第1の放射線変換層28a、切換フィルタ28b、及び、ISS方式の間接変換型の第2の放射線変換層28cを順に積層した構成を図示したものである。 In the third embodiment of FIG. 4A, the PSS direct conversion type first radiation conversion layer 28a, the switching filter 28b, and the ISS indirect conversion type second radiation are arranged along the incident direction of the radiation 16. The structure which laminated | stacked the conversion layer 28c in order is shown in figure.
 第3実施例の放射線変換パネル28において、第1の放射線変換層28aは、放射線16の入射方向に沿って、第1の放射線検出部72aと、第1の電荷検出部70aと、絶縁性基板68aとを順に積層して構成されている。また、第1の放射線検出部72aは、放射線16の入射方向に沿って、共通電極78aと、a-Seの半導体層74aと、各画素電極76aとを順に積層して構成されている。 In the radiation conversion panel 28 of the third embodiment, the first radiation conversion layer 28a includes a first radiation detection unit 72a, a first charge detection unit 70a, and an insulating substrate along the incident direction of the radiation 16. 68a are laminated in order. The first radiation detection unit 72a is configured by sequentially stacking a common electrode 78a, an a-Se semiconductor layer 74a, and each pixel electrode 76a along the incident direction of the radiation 16.
 なお、第3実施例の構成では、前述したa-Seの感度波長領域の光が共通電極78aに到達する可能性が低い。そこで、該共通電極78aは、該光に対して非透過であり、a-Seとの間でエレクトロマイグレーションが発生せず、且つ、放射線16に対する吸収性が低い導電性材料(例えば、Au)からなることが好ましい。ITOよりも低抵抗のAuを電極として用いることにより、共通電極78aに直流電源106(図5A参照)から高電圧を印加したときの半導体層74a内での電圧分布の均一化や、消費電力の低減を図ることができる。 In the configuration of the third embodiment, it is unlikely that light in the a-Se sensitivity wavelength region described above reaches the common electrode 78a. Therefore, the common electrode 78a is made of a conductive material (for example, Au) that is impermeable to the light, does not generate electromigration with a-Se, and has low absorbability with respect to the radiation 16. It is preferable to become. By using Au having a resistance lower than that of ITO as an electrode, the voltage distribution in the semiconductor layer 74a is uniformized when the high voltage is applied to the common electrode 78a from the DC power source 106 (see FIG. 5A), and the power consumption is reduced. Reduction can be achieved.
 一方、各画素電極76a及び絶縁性基板68aは、第1及び第2実施例(図3A及び図3B参照)の場合とは異なり、第2の放射線変換層28c側に配置されている。そのため、各画素電極76a及び絶縁性基板68aは、それぞれ、前記光に対して透過性を有し、且つ、放射線16に対する吸収性や遮光性が低い材料からなることが好ましい。具体的に、各画素電極76aは、例えば、a-Seとの間でエレクトロマイグレーションが発生しないITOからなることが好ましい。なお、画素電極76aは、共通電極78aよりも面積が小さいため、ITOを用いることで抵抗値が多少高くなってもよい。また、TFTに接続されるゲート線64a及び信号線66aについては、低抵抗化のため、前記光に対する透過性を有しないAl等の金属を用いてもよい。 On the other hand, the pixel electrodes 76a and the insulating substrate 68a are arranged on the second radiation conversion layer 28c side, unlike the first and second embodiments (see FIGS. 3A and 3B). Therefore, each of the pixel electrodes 76a and the insulating substrate 68a is preferably made of a material that is transmissive to the light and has low absorbability and light shielding properties for the radiation 16. Specifically, each pixel electrode 76a is preferably made of, for example, ITO that does not generate electromigration with a-Se. Since the pixel electrode 76a has a smaller area than the common electrode 78a, the resistance value may be slightly increased by using ITO. For the gate line 64a and the signal line 66a connected to the TFT, a metal such as Al that does not transmit light may be used in order to reduce resistance.
 また、図4Aでは、2枚の絶縁性基板68a、68cの間に切換フィルタ28bを介挿させた場合について図示しているが、1枚の絶縁性基板の一面に第1の放射線変換層28a、他面に第2の放射線変換層28cを配設し、いずれか一方の面に切換フィルタ28bを介挿させてもよい。この場合、該1枚の絶縁性基板は、絶縁性基板68aと同様に、放射線16の吸収性が低く、且つ、可撓性を有する電気絶縁性の薄厚の基板であることが好ましい。また、1枚の基板にすれば、放射線16の吸収をさらに小さくすることができる。 4A shows the case where the switching filter 28b is inserted between the two insulating substrates 68a and 68c, the first radiation conversion layer 28a is provided on one surface of the insulating substrate. The second radiation conversion layer 28c may be disposed on the other surface, and the switching filter 28b may be interposed on either surface. In this case, like the insulating substrate 68a, the single insulating substrate is preferably a thin, electrically insulating substrate having low radiation 16 absorption and flexibility. If a single substrate is used, the absorption of the radiation 16 can be further reduced.
 図4Bに示す第4実施例は、放射線16の入射方向に沿って、PSS方式の直接変換型の第1の放射線変換層28a、切換フィルタ28b、及び、PSS方式の間接変換型の第2の放射線変換層28cを順に積層した構成を図示したものである。 In the fourth embodiment shown in FIG. 4B, the PSS direct conversion type first radiation conversion layer 28a, the switching filter 28b, and the PSS indirect conversion type second are arranged along the incident direction of the radiation 16. The structure which laminated | stacked the radiation conversion layer 28c in order is illustrated.
[第1実施例の構成の詳細]
 次に、図3A~図4Bで説明した第1~第4実施例の放射線変換パネル28のうち、代表的に、第1実施例(図3A参照)の構成について、図5A~図8を参照しながら詳細に説明する。なお、図5A~図8では、第1実施例の放射線変換パネル28について、1つの画素62に拡大して模式的に図示したものである。
[Details of Configuration of First Embodiment]
Next, of the radiation conversion panels 28 of the first to fourth embodiments described with reference to FIGS. 3A to 4B, the configuration of the first embodiment (see FIG. 3A) is typically shown in FIGS. 5A to 8. The details will be described. 5A to 8 schematically illustrate the radiation conversion panel 28 of the first embodiment in an enlarged manner to one pixel 62. FIG.
 上述のように、1つの画素62は、第1の放射線変換層28aの一部分と、切換フィルタ28bの一部分と、第2の放射線変換層28cの一部分とを含み構成されている。 As described above, one pixel 62 includes a part of the first radiation conversion layer 28a, a part of the switching filter 28b, and a part of the second radiation conversion layer 28c.
 具体的に、1つの画素62には、第1の放射線検出部72aを構成する1つの画素電極76aが割り当てられている。なお、図3Aの説明においても述べたように、例えば、画素電極76aは、Auからなり、共通電極78aは、ITOからなる。 More specifically, one pixel electrode 76a constituting the first radiation detection unit 72a is assigned to one pixel 62. 3A, for example, the pixel electrode 76a is made of Au, and the common electrode 78a is made of ITO.
 また、第1の電荷検出部70aは、絶縁性基板68aの第1の放射線検出部72a側の表面に配設されたTFT82aのアレイを有し、1つの画素62に対して1つのTFT82aが割り当てられている。この場合、絶縁性基板68aにTFT82aのアレイを形成すると、該絶縁性基板68aの第1の放射線検出部72a側は凹凸状となるので、例えば、四フッ化エチレン樹脂膜による平坦化処理を施して平坦化膜84aを形成しておくことが望ましい。 The first charge detection unit 70 a has an array of TFTs 82 a disposed on the surface of the insulating substrate 68 a on the first radiation detection unit 72 a side, and one TFT 82 a is assigned to one pixel 62. It has been. In this case, when an array of TFTs 82a is formed on the insulating substrate 68a, the first radiation detecting portion 72a side of the insulating substrate 68a becomes uneven, so that, for example, a flattening process using a tetrafluoroethylene resin film is performed. It is desirable to form the planarizing film 84a.
 また、TFT82aは、前述したゲート線64a及び信号線66a(図2参照)に接続されている。TFT82aは、TFTアレイでの放射線16の吸収を抑制するために、アモルファスシリコン(a-Si)、アモルファス酸化物(例えば、a-IGZO(InGaZnO))、有機半導体材料、カーボンナノチューブ等からなる活性層を含み構成されることが好ましい。 The TFT 82a is connected to the gate line 64a and the signal line 66a (see FIG. 2) described above. The TFT 82a is an active material composed of amorphous silicon (a-Si), amorphous oxide (for example, a-IGZO (InGaZnO 4 )), an organic semiconductor material, carbon nanotubes, etc. in order to suppress absorption of the radiation 16 in the TFT array. It is preferable that a layer is included and comprised.
 この場合、a-Siは、300℃程度の基板温度で成膜する必要があるため、ガラス基板を絶縁性基板68aとして用いることになる。これに対して、a-IGZOや有機半導体は、200℃程度の基板温度の低温プロセスにより成膜することが可能であるため、ポリイミド、アラミド等の樹脂基板を絶縁性基板68aとして用いることができ、この結果、可撓性を有するTFTアレイを実現することができる。 In this case, since a-Si needs to be deposited at a substrate temperature of about 300 ° C., a glass substrate is used as the insulating substrate 68a. On the other hand, since a-IGZO and organic semiconductor can be formed by a low temperature process at a substrate temperature of about 200 ° C., a resin substrate such as polyimide or aramid can be used as the insulating substrate 68a. As a result, a flexible TFT array can be realized.
 画素電極76a及び共通電極78aは、電圧供給部42と電気的に接続されている。 The pixel electrode 76a and the common electrode 78a are electrically connected to the voltage supply unit 42.
 一方、第2の電荷検出部70cは、絶縁性基板68cの第2の放射線検出部72c側の表面に配設されたTFT82c及びフォトダイオード86cのアレイを有し、1つの画素62に対して1つのTFT82cと1つのフォトダイオード86cとが割り当てられている。この場合も、絶縁性基板68cにTFT82c及びフォトダイオード86cのアレイを形成すると、該絶縁性基板68cの第2の放射線検出部72c側は凹凸状となるので、平坦化膜84aと同様の平坦化膜84cを形成しておくことが望ましい。 On the other hand, the second charge detection unit 70 c has an array of TFTs 82 c and photodiodes 86 c disposed on the surface of the insulating substrate 68 c on the second radiation detection unit 72 c side. One TFT 82c and one photodiode 86c are assigned. Also in this case, when an array of TFTs 82c and photodiodes 86c is formed on the insulating substrate 68c, the second radiation detector 72c side of the insulating substrate 68c becomes uneven, so that the same planarization as the planarizing film 84a is performed. It is desirable to form the film 84c.
 また、TFT82cは、前述したゲート線64c及び信号線66cに接続されている。TFT82cは、TFT82aと同様の活性層を含み構成されることが好ましい。さらに、フォトダイオード86cは、例えば、a-Siからなることが好ましい。 The TFT 82c is connected to the gate line 64c and the signal line 66c described above. The TFT 82c preferably includes the same active layer as the TFT 82a. Furthermore, the photodiode 86c is preferably made of, for example, a-Si.
 さらに、図5A及び図5Bでは、第2の放射線検出部72cとして、CsI:Na(ナトリウム賦活ヨウ化セシウム)のシンチレータを図示している。CsI:Naのシンチレータは、CsI:Naを真空蒸着法で短冊状の柱状結晶構造88cとして形成したものである。この場合、シンチレータの平坦化膜84c側の基端部分は、非柱状結晶部分90cとされ、平坦化膜84cと密着している。非柱状結晶部分90cを設けることにより、第2の放射線検出部72cのシンチレータと、第2の電荷検出部70c及び絶縁性基板68cとの密着性を高めることができる。また、非柱状結晶部分90cの空隙率を0%に近づけたり、(例えば、10μm程度にまで)その厚みを薄くすることにより、後述する蛍光98の反射を抑えることができる。 5A and 5B illustrate a CsI: Na (sodium-activated cesium iodide) scintillator as the second radiation detection unit 72c. The CsI: Na scintillator is formed by forming CsI: Na into a strip-like columnar crystal structure 88c by a vacuum deposition method. In this case, the base end portion of the scintillator on the flattening film 84c side is a non-columnar crystal portion 90c and is in close contact with the flattening film 84c. By providing the non-columnar crystal portion 90c, the adhesion between the scintillator of the second radiation detection unit 72c, the second charge detection unit 70c, and the insulating substrate 68c can be enhanced. Further, by reducing the porosity of the non-columnar crystal portion 90c to 0% or reducing the thickness thereof (for example, up to about 10 μm), reflection of fluorescence 98 described later can be suppressed.
 柱状結晶構造88cを構成する各柱は、放射線16の入射方向に沿ってそれぞれ形成され、隣接する各柱の間には、ある程度の隙間が確保されている。また、CsI:Naのシンチレータは、柱状結晶構造88cが湿度に弱く、非柱状結晶部分90cが湿度に特に弱いという特性を有するので、ポリパラキシリレン樹脂からなる光透過性の防湿保護材92cで封止されている。そして、シンチレータが防湿保護材92cで封止された状態で、柱状結晶構造88cの先端部分と切換フィルタ28bとが密着されている。 Each column constituting the columnar crystal structure 88c is formed along the incident direction of the radiation 16, and a certain amount of gap is secured between adjacent columns. Further, the CsI: Na scintillator has characteristics that the columnar crystal structure 88c is weak against humidity and the non-columnar crystal portion 90c is particularly vulnerable to humidity. It is sealed. And the tip part of the columnar crystal structure 88c and the switching filter 28b are in close contact with the scintillator sealed with the moisture-proof protective material 92c.
 このように、第1実施例の放射線変換パネル28は、a-Seの半導体層74aを含む第1の放射線変換層28aと、切換フィルタ28bと、CsI:Naの柱状結晶構造88cのシンチレータを含む第2の放射線変換層28cとの積層構造からなる。この放射線変換パネル28において、図5Bに示すように、放射線16が入射すると、先ず、a-Seの半導体層74aは、放射線16の低エネルギー成分を吸収して、正電荷94a及び負電荷96aの電荷対に変換する。 Thus, the radiation conversion panel 28 of the first embodiment includes the first radiation conversion layer 28a including the a-Se semiconductor layer 74a, the switching filter 28b, and the scintillator of the columnar crystal structure 88c of CsI: Na. It has a laminated structure with the second radiation conversion layer 28c. In the radiation conversion panel 28, as shown in FIG. 5B, when the radiation 16 is incident, first, the a-Se semiconductor layer 74a absorbs the low energy component of the radiation 16 to generate a positive charge 94a and a negative charge 96a. Convert to charge pair.
 また、a-Seの半導体層74aで吸収されなかった放射線16(の高エネルギー成分)は、共通電極78a及び切換フィルタ28bを透過して第2の放射線検出部72cに到達する。 Further, the radiation 16 (high energy component thereof) that has not been absorbed by the a-Se semiconductor layer 74a passes through the common electrode 78a and the switching filter 28b and reaches the second radiation detection unit 72c.
 第2の放射線検出部72cでは、柱状結晶構造88c(の発光箇所100)で放射線16の高エネルギー成分を吸収して蛍光98に変換する。発光箇所100で発生した蛍光98の一部(後述する500nmを超える長波長領域の光(フォトダイオード86cの感度波長領域の光))は、放射線16の入射方向に略平行に形成された柱状結晶を直線的に伝播して(直進して)フォトダイオード86cに至る。フォトダイオード86cは、蛍光98の一部を電荷に変換して蓄積する。 In the second radiation detection unit 72 c, the columnar crystal structure 88 c (its light emitting portion 100) absorbs the high energy component of the radiation 16 and converts it into fluorescence 98. A part of the fluorescent light 98 generated at the light emitting portion 100 (light in a long wavelength region exceeding 500 nm described later (light in the sensitivity wavelength region of the photodiode 86c)) is a columnar crystal formed substantially parallel to the incident direction of the radiation 16. Is propagated linearly (going straight) to the photodiode 86c. The photodiode 86c converts a part of the fluorescence 98 into electric charge and accumulates it.
 また、発光箇所100で発生した蛍光98の他の一部は、切換フィルタ28bの方向に向かって柱状結晶を直進する。 Further, another part of the fluorescence 98 generated at the light emitting portion 100 travels straight through the columnar crystal toward the switching filter 28b.
 ここで、フィルタ制御部40からの制御によって、切換フィルタ28bがa-Seの感度波長領域の光(例えば、青色波長領域の光)を含む、例えば、500nm以下の短波長領域の光を透過する透過状態に切り換わっている場合について説明する。この場合、切換フィルタ28bに到達した蛍光98のうち、500nm以下の短波長領域の光(透過光)102のみが切換フィルタ28bを透過し、500nmを超える長波長領域の光(反射光)104は、第2の電荷検出部70c側に反射する。 Here, under the control of the filter control unit 40, the switching filter 28b transmits light in the short wavelength region of, for example, 500 nm or less including light in the a-Se sensitivity wavelength region (for example, light in the blue wavelength region). A case where the transmission state is switched will be described. In this case, of the fluorescence 98 that has reached the switching filter 28b, only light (transmitted light) 102 in the short wavelength region of 500 nm or less is transmitted through the switching filter 28b, and light (reflected light) 104 in the long wavelength region exceeding 500 nm is Reflected toward the second charge detector 70c.
 この結果、反射光104は、柱状結晶を直進してフォトダイオード86cに至り、該フォトダイオード86cは、反射光104も電荷に変換して蓄積する。従って、駆動回路部30からの制御信号によってTFT82cがオンすると、フォトダイオード86cに蓄積された、蛍光98及び反射光104に応じた電荷がTFT82cを介して流出し、信号線66cを介して該電荷に応じた電気信号として読出回路部32に出力することができる。 As a result, the reflected light 104 travels straight through the columnar crystal to the photodiode 86c, and the photodiode 86c also converts the reflected light 104 into an electric charge and accumulates it. Therefore, when the TFT 82c is turned on by the control signal from the drive circuit unit 30, the charge corresponding to the fluorescence 98 and the reflected light 104 accumulated in the photodiode 86c flows out through the TFT 82c and flows through the signal line 66c. Can be output to the readout circuit section 32 as an electrical signal corresponding to the above.
 一方、切換フィルタ28bを透過した透過光102は、ITO等の透明電極からなる共通電極78aを通過して、a-Seの半導体層74aに至る。透過光102は、500nm以下の短波長領域の光(a-Seの感度波長領域の光)であるため、半導体層74aは、透過光102を吸収して正電荷94c及び負電荷96cの電荷対に変換する。 On the other hand, the transmitted light 102 transmitted through the switching filter 28b passes through the common electrode 78a made of a transparent electrode such as ITO and reaches the a-Se semiconductor layer 74a. Since the transmitted light 102 is light in a short wavelength region of 500 nm or less (light in the sensitivity wavelength region of a-Se), the semiconductor layer 74a absorbs the transmitted light 102 and has a charge pair of a positive charge 94c and a negative charge 96c. Convert to
 各画素電極76a及び共通電極78aには、電圧供給部42の直流電源106及びスイッチ108が電気的に接続されている。ここで、スイッチ108をオンにして、各画素電極76aが正極性、共通電極78aが負極性となるような直流電圧を直流電源106から印加すると、半導体層74aに直流電界が発生する。この直流電界に従って、正電荷94a、94cは、負極性の共通電極78a側に移動すると共に、負電荷96a、96cは、正極性の各画素電極76a側に移動する。この結果、第1の電荷検出部70aは、各画素電極76aを介して負電荷96a、96cを取り出すことが可能となり、駆動回路部30からの制御信号によってTFT82aがオンすると、信号線66aを介して負電荷96a、96cに応じた電気信号を読出回路部32に出力することが可能となる。 The DC power source 106 and the switch 108 of the voltage supply unit 42 are electrically connected to each pixel electrode 76a and the common electrode 78a. Here, when the switch 108 is turned on and a DC voltage is applied from the DC power source 106 such that each pixel electrode 76a has a positive polarity and the common electrode 78a has a negative polarity, a DC electric field is generated in the semiconductor layer 74a. According to this DC electric field, the positive charges 94a and 94c move to the negative common electrode 78a side, and the negative charges 96a and 96c move to the positive pixel electrode 76a side. As a result, the first charge detection unit 70a can extract the negative charges 96a and 96c through the pixel electrodes 76a. When the TFT 82a is turned on by the control signal from the drive circuit unit 30, the first charge detection unit 70a passes through the signal line 66a. Thus, an electrical signal corresponding to the negative charges 96a and 96c can be output to the readout circuit section 32.
 また、半導体層74a内でアバランシェ効果が発生する程度の直流電圧が各画素電極76aと共通電極78aとの間に印加されると、該アバランシェ効果によって、半導体層74a内の正電荷94a、94c及び負電荷96a、96cが増幅される。この結果、各画素電極76aを介して第1の電荷検出部70a(のTFT82a)で取り出される電荷数を増大させることができる。 Further, when a DC voltage that causes an avalanche effect in the semiconductor layer 74a is applied between each pixel electrode 76a and the common electrode 78a, the positive charges 94a, 94c and Negative charges 96a and 96c are amplified. As a result, the number of charges taken out by the first charge detector 70a (the TFT 82a) via each pixel electrode 76a can be increased.
 なお、図5Bでは、各画素電極76aが正極性、共通電極78aが負極性となるように、直流電圧を印加した場合を図示しているが、各画素電極76aに負極性及び共通電極78aに正極性の直流電圧を印加した場合でも、上記の効果が得られることは勿論である。 5B shows a case where a DC voltage is applied so that each pixel electrode 76a has a positive polarity and common electrode 78a has a negative polarity. However, each pixel electrode 76a has a negative polarity and a common electrode 78a. Of course, the above effect can be obtained even when a positive DC voltage is applied.
 次に、切換フィルタ28bの構成について、図6A~図8を参照しながら詳細に説明する。 Next, the configuration of the switching filter 28b will be described in detail with reference to FIGS. 6A to 8. FIG.
 切換フィルタ28bは、放射線16に対する吸収性が低い部材であり、図6Aに示すように、放射線16(図1、図3A~図4B及び図5B参照)の入射方向に沿って、透明基材110、透明導電膜112、イオン貯蔵層114、固体電解質層116、バッファ層118、触媒層120及び調光ミラーフイルム層122の順に積層して構成される。この場合、透明導電膜112と調光ミラーフイルム層122とには、フィルタ制御部40の直流電源124及びスイッチ126が電気的に接続されている。 The switching filter 28b is a member having low absorbability with respect to the radiation 16, and, as shown in FIG. 6A, along the incident direction of the radiation 16 (see FIGS. 1, 3A to 4B, and 5B), the transparent base 110 The transparent conductive film 112, the ion storage layer 114, the solid electrolyte layer 116, the buffer layer 118, the catalyst layer 120, and the dimming mirror film layer 122 are laminated in this order. In this case, the DC power supply 124 and the switch 126 of the filter control unit 40 are electrically connected to the transparent conductive film 112 and the dimming mirror film layer 122.
 透明基材110は、共通電極78a側に配置された切換フィルタ28bの蒸着基板であり、透過光102(図5B及び図6B参照)を透過可能なガラス基板又はプラスチック基板である。透明導電膜112は、透過光102を透過可能なITOからなる透明電極である。イオン貯蔵層114は、水素イオン(H)を蓄積可能なWOからなる薄膜である。固体電解質層116は、Taからなる薄膜である。バッファ層118は、Alの金属膜である。触媒層120は、Pdからなる薄膜である。 The transparent substrate 110 is a vapor deposition substrate of the switching filter 28b disposed on the common electrode 78a side, and is a glass substrate or a plastic substrate that can transmit the transmitted light 102 (see FIGS. 5B and 6B). The transparent conductive film 112 is a transparent electrode made of ITO that can transmit the transmitted light 102. The ion storage layer 114 is a thin film made of WO 3 capable of storing hydrogen ions (H + ). The solid electrolyte layer 116 is a thin film made of Ta 2 O 5 . The buffer layer 118 is an Al metal film. The catalyst layer 120 is a thin film made of Pd.
 調光ミラーフイルム層122は、Mg・Ni系合金薄膜からなり、スイッチ126のオンによる直流電源124から透明導電膜112及び調光ミラーフイルム層122への直流電圧の印加に起因して、a-Seの感度波長領域を含む500nm以下の波長の光を透過光102として透過させる透明状態(透過状態)、あるいは、蛍光98を反射光104として第2の放射線検出部72c側に反射させる鏡状態(非透過状態)に切り換わる。なお、調光ミラーフイルム層122は、透明状態のときには、500nmを超える長波長領域の光を反射光104として第2の放射線検出部72c側に反射させる。 The dimming mirror film layer 122 is made of an Mg / Ni-based alloy thin film, and is caused by applying a DC voltage from the DC power source 124 to the transparent conductive film 112 and the dimming mirror film layer 122 when the switch 126 is turned on. A transparent state (transmission state) in which light having a wavelength of 500 nm or less including the sensitivity wavelength region of Se is transmitted as transmitted light 102, or a mirror state in which fluorescence 98 is reflected as reflected light 104 toward the second radiation detection unit 72c ( (Non-transparent state). In the transparent state, the light control mirror film layer 122 reflects light in a long wavelength region exceeding 500 nm to the second radiation detection unit 72c side as reflected light 104.
 ここで、調光ミラーフイルム層122における鏡状態又は透明状態の切り換えについて具体的に説明する。 Here, switching of the mirror state or the transparent state in the light control mirror film layer 122 will be specifically described.
 調光ミラーフイルム層122の表面は、通常、Mg・Ni系合金薄膜の金属光沢に起因して、蛍光98を反射光104として第2の放射線検出部72c側に反射可能な鏡の状態(鏡状態)となっている。 The surface of the light control mirror film layer 122 is normally in a mirror state (mirror) that reflects the fluorescence 98 as reflected light 104 toward the second radiation detection unit 72c due to the metallic luster of the Mg / Ni alloy thin film. State).
 調光ミラーフイルム層122がこのような鏡状態である場合に、図6Bに示すように、スイッチ126をオンにして、透明導電膜112が正極性になると共に調光ミラーフイルム層122が負極性になるように、切換フィルタ28bに直流電圧(数Vの直流電圧)を印加すると、調光ミラーフイルム層122は、鏡状態から透明状態に切り換わる。これは、イオン貯蔵層114に蓄えられている水素イオン(H)が、固体電解質層116、バッファ層118及び触媒層120を介して調光ミラーフイルム層122に移動することにより、金属状態のMg・Ni系合金が水素化されて非金属状態になり、透明化するためである。 When the light control mirror film layer 122 is in such a mirror state, as shown in FIG. 6B, the switch 126 is turned on so that the transparent conductive film 112 becomes positive and the light control mirror film layer 122 has negative polarity. When a DC voltage (DC voltage of several volts) is applied to the switching filter 28b, the dimming mirror film layer 122 switches from the mirror state to the transparent state. This is because the hydrogen ions (H + ) stored in the ion storage layer 114 move to the dimming mirror film layer 122 through the solid electrolyte layer 116, the buffer layer 118, and the catalyst layer 120, thereby forming a metal state. This is because the Mg / Ni-based alloy is hydrogenated to a non-metallic state and becomes transparent.
 このように調光ミラーフイルム層122が一旦透明状態になった場合、図7Aに示すように、スイッチ126をオフにして直流電源124から切換フィルタ28bへの電圧印加(通電)を停止しても、調光ミラーフイルム層122の透明状態は維持される。 When the dimming mirror film layer 122 once becomes transparent as described above, as shown in FIG. 7A, even if the switch 126 is turned off and voltage application (energization) from the DC power supply 124 to the switching filter 28b is stopped. The transparent state of the light control mirror film layer 122 is maintained.
 従って、調光ミラーフイルム層122が透明状態にある場合には、前述のように、蛍光98のうち、500nm以下の短波長領域の光が透過光102として第1の放射線検出部72aを透過すると共に、500nmを超える長波長領域の光が反射光104として第2の放射線検出部72c側に反射されることになる。 Therefore, when the dimming mirror film layer 122 is in the transparent state, as described above, light in the short wavelength region of 500 nm or less out of the fluorescence 98 passes through the first radiation detection unit 72a as the transmitted light 102. At the same time, light in a long wavelength region exceeding 500 nm is reflected as reflected light 104 toward the second radiation detector 72c.
 一方、調光ミラーフイルム層122が透明状態である場合、図7Bに示すように、スイッチ126をオンにして、調光ミラーフイルム層122が正極性になると共に透明導電膜112が負極性となるように、切換フィルタ28bに図6Bに示す電圧極性とは逆極性の直流電圧(数Vの直流電圧)を印加すると、調光ミラーフイルム層122は、透明状態から鏡状態に切り換わる。これは、調光ミラーフイルム層122に一旦移動した水素イオンが、前記逆極性の直流電圧の印加に起因して、触媒層120、バッファ層118及び固体電解質層116を介してイオン貯蔵層114に戻ることにより、調光ミラーフイルム層122が元の金属状態に変化するためである。 On the other hand, when the dimming mirror film layer 122 is in a transparent state, as shown in FIG. 7B, the switch 126 is turned on so that the dimming mirror film layer 122 becomes positive and the transparent conductive film 112 becomes negative. Thus, when a DC voltage having a polarity opposite to the voltage polarity shown in FIG. 6B (DC voltage of several volts) is applied to the switching filter 28b, the dimming mirror film layer 122 is switched from the transparent state to the mirror state. This is because hydrogen ions once moved to the light control mirror film layer 122 are transferred to the ion storage layer 114 via the catalyst layer 120, the buffer layer 118, and the solid electrolyte layer 116 due to the application of the reverse polarity DC voltage. This is because the light control mirror film layer 122 changes to the original metal state by returning.
 このように調光ミラーフイルム層122が鏡状態に戻った場合、図8に示すように、スイッチ126をオフにして直流電源124から切換フィルタ28bへの直流電圧の印加を停止しても、調光ミラーフイルム層122の鏡状態は維持される。 When the light control mirror film layer 122 returns to the mirror state in this way, as shown in FIG. 8, even if the application of the DC voltage from the DC power supply 124 to the switching filter 28b is stopped by turning off the switch 126, the light control The mirror state of the optical mirror film layer 122 is maintained.
 従って、調光ミラーフイルム層122が鏡状態にある場合には、前述のように、全ての波長領域の蛍光98が反射光104として第2の放射線検出部72c側に反射される。 Therefore, when the light control mirror film layer 122 is in the mirror state, the fluorescence 98 in all wavelength regions is reflected as the reflected light 104 toward the second radiation detection unit 72c as described above.
 なお、第1実施例は、上述した構成に限定されることはなく、図9A~図10Bに示す構成であってもよい。 The first embodiment is not limited to the above-described configuration, and may have the configuration shown in FIGS. 9A to 10B.
 図9Aは、共通電極78aが、切換フィルタ28bと同様に、500nm以下の短波長領域の蛍光98を透過光102として透過させ、一方で、500nmよりも長波長領域の蛍光98を反射光104として反射させるダイクロイックフィルタ(光学フィルタ)として機能する場合を図示したものである。従って、図9Aの構成では、切換フィルタ28bは省略されている。 In FIG. 9A, the common electrode 78a transmits the fluorescent light 98 in the short wavelength region of 500 nm or less as the transmitted light 102, while the fluorescent light 98 in the long wavelength region longer than 500 nm is used as the reflected light 104, similarly to the switching filter 28b. The case where it functions as a dichroic filter (optical filter) to reflect is illustrated. Therefore, in the configuration of FIG. 9A, the switching filter 28b is omitted.
 図9Bは、第2の放射線検出部72cにおいて、CsI:Naのシンチレータが柱状結晶構造88cのみから構成され、非柱状結晶部分90cが存在しない点で、図9Aの構成とは異なる。非柱状結晶部分90cが存在しないことにより、該非柱状結晶部分90cでの蛍光98及び反射光104の第1の放射線変換層28a側への反射や散乱の発生を回避することができる。 FIG. 9B differs from the configuration of FIG. 9A in that, in the second radiation detection unit 72c, the CsI: Na scintillator is configured only by the columnar crystal structure 88c, and the non-columnar crystal portion 90c does not exist. Since the non-columnar crystal portion 90c does not exist, it is possible to avoid the occurrence of reflection and scattering of the fluorescence 98 and the reflected light 104 on the first radiation conversion layer 28a side in the non-columnar crystal portion 90c.
 図10A及び図10Bは、第2の放射線検出部72cを、CsI:Naの柱状結晶のシンチレータに代えて、CaWO、YTaO:Nb、BaFX:Eu(XはBr若しくはCl)、又は、LaOBr:Tm等の蛍光物質を塗布して固めたブロック状のシンチレータを用いた場合をそれぞれ図示したものである。 FIG. 10A and FIG. 10B show that the second radiation detector 72c is replaced with a CsI: Na columnar crystal scintillator, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr. : Each of cases where a block scintillator coated with a fluorescent material such as Tm is hardened is illustrated.
 これらのシンチレータは、放射線16の入射方向に沿って、第1の放射線変換層28aに直線的に入射する透過光102であれば、半導体層74aにおいて、該透過光102を電荷94c、96cに変換することができる。一方、これらのシンチレータは、柱状結晶のシンチレータと比較して、シンチレータ内の蛍光物質(粒子)で蛍光98及び反射光104の散乱等が発生しやすいため、散乱した光がフォトダイオード86cに入射すると、第2の放射線画像の画像ボケの原因になる可能性がある。 These scintillators convert the transmitted light 102 into charges 94c and 96c in the semiconductor layer 74a if the transmitted light 102 is linearly incident on the first radiation conversion layer 28a along the incident direction of the radiation 16. can do. On the other hand, these scintillators are more likely to scatter fluorescence 98 and reflected light 104 with the fluorescent material (particles) in the scintillator compared to columnar crystal scintillators, so that when the scattered light enters the photodiode 86c. This may cause image blurring of the second radiation image.
 そのため、これらのシンチレータを使用する場合には、(1)切換フィルタ28bにおいて反射光104を吸収させるか、(2)切換フィルタ28bを省略するか、(3)切換フィルタ28bを省略して共通電極78aで反射光104を吸収させることが望ましい。 Therefore, when using these scintillators, (1) the reflected light 104 is absorbed by the switching filter 28b, (2) the switching filter 28b is omitted, or (3) the switching filter 28b is omitted and the common electrode is used. It is desirable to absorb the reflected light 104 at 78a.
[本実施形態(第1実施例)の動作]
 次に、本実施形態に係る放射線撮影装置10を備えた放射線撮影システム12の動作について説明する。
[Operation of this embodiment (first example)]
Next, operation | movement of the radiography system 12 provided with the radiography apparatus 10 which concerns on this embodiment is demonstrated.
 ここでは、第1実施例の放射線変換パネル28(図3A参照)を有する放射線撮影装置10であって、第2の放射線検出部72cとしてCsI:Naの柱状結晶のシンチレータ(図5A及び図5B参照)を用いた場合について説明する。 Here, the radiation imaging apparatus 10 has the radiation conversion panel 28 (see FIG. 3A) of the first embodiment, and a CsI: Na columnar crystal scintillator (see FIGS. 5A and 5B) as the second radiation detection unit 72c. ) Will be described.
 先ず、コンソール20(図1参照)の制御処理部52は、RIS24又はHIS26からオーダ情報を取得し、取得したオーダ情報をオーダ情報記憶部54に記憶する。 First, the control processing unit 52 of the console 20 (see FIG. 1) acquires order information from the RIS 24 or the HIS 26, and stores the acquired order information in the order information storage unit 54.
 次に、制御処理部52は、オーダ情報に含まれる被写体14の撮影部位及び撮影方法や、放射線撮影装置10及び放射線出力装置18の情報に基づいて、放射線出力装置18から被写体14の撮影部位に放射線16を照射させるための撮影条件(管電圧、管電流、曝射時間)を設定し、設定した撮影条件とオーダ情報とを撮影条件記憶部56に記憶する。 Next, the control processing unit 52 changes the imaging region of the subject 14 from the radiation output device 18 to the imaging region of the subject 14 based on the imaging region and imaging method of the subject 14 and the information of the radiation imaging device 10 and the radiation output device 18 included in the order information. Imaging conditions (tube voltage, tube current, exposure time) for irradiating the radiation 16 are set, and the set imaging conditions and order information are stored in the imaging condition storage unit 56.
 また、制御処理部52は、オーダ情報に含まれる被写体14の撮影部位及び撮影方法に基づいて、放射線撮影時の切換フィルタ28bの状態(透明状態又は鏡状態)を決定する。 Further, the control processing unit 52 determines the state (transparent state or mirror state) of the switching filter 28b at the time of radiation imaging based on the imaging part and imaging method of the subject 14 included in the order information.
 例えば、撮影部位がマンモであれば、該マンモは、放射線16の低エネルギー成分を吸収しやすい。そこで、制御処理部52は、オーダ情報で要求される読影画像が低エネルギー成分に応じた放射線画像であり、第1の放射線変換層28aにおいて低エネルギー成分の第1の放射線画像を取得できるような放射線撮影を行うことが望ましいと判断する。次に、制御処理部52は、切換フィルタ28bを透明状態に切り換える旨の指示情報を作成して、作成した指示情報を撮影条件記憶部56に記憶する。 For example, if the imaging region is a mammo, the mammo can easily absorb the low energy component of the radiation 16. Therefore, the control processing unit 52 is such that the interpretation image requested by the order information is a radiation image corresponding to the low energy component, and the first radiation image of the low energy component can be acquired in the first radiation conversion layer 28a. Judge that it is desirable to perform radiography. Next, the control processing unit 52 creates instruction information for switching the switching filter 28 b to the transparent state, and stores the created instruction information in the imaging condition storage unit 56.
 また、撮影部位が骨部であれば、該骨部は、放射線16の高エネルギー成分を吸収しやすい。そこで、制御処理部52は、オーダ情報で要求される読影画像が低エネルギー成分に応じた放射線画像であり、第2の放射線変換層28cにおいて高エネルギー成分の第2の放射線画像を取得できるような放射線撮影を行うことが望ましいと判断する。次に、制御処理部52は、切換フィルタ28bを鏡状態に切り換える旨の指示情報を作成して、作成した指示情報を撮影条件記憶部56に記憶する。 Also, if the imaging site is a bone part, the bone part is likely to absorb the high energy component of the radiation 16. Therefore, the control processing unit 52 is such that the interpretation image requested by the order information is a radiation image corresponding to the low energy component, and the second radiation image of the high energy component can be acquired in the second radiation conversion layer 28c. Judge that it is desirable to perform radiography. Next, the control processing unit 52 creates instruction information for switching the switching filter 28b to the mirror state, and stores the created instruction information in the imaging condition storage unit 56.
 さらに、撮影部位が胸部又は腹部であれば、制御処理部52は、オーダ情報で要求される読影画像が、より多くのエネルギー成分を吸収した放射線画像であり、第2の放射線変換層28cにおいて第2の放射線画像を取得するような一般撮影、又は、各放射線変換層28a、28cで第1及び第2の放射線画像をそれぞれ取得した後に両者を加算して加算画像を得るような一般撮影を行うことが望ましいと判断する。次に、制御処理部52は、切換フィルタ28bを透明状態に切り換える旨の指示情報を作成して、作成した指示情報を撮影条件記憶部56に記憶する。 Furthermore, if the imaging region is the chest or abdomen, the control processing unit 52 is a radiographic image in which the interpretation image requested by the order information absorbs more energy components, and the second radiation conversion layer 28c General radiographing for acquiring two radiographic images, or general radiographing for obtaining an added image by acquiring the first and second radiographic images at each of the radiation conversion layers 28a and 28c and then adding them together. Judge that it is desirable. Next, the control processing unit 52 creates instruction information for switching the switching filter 28 b to the transparent state, and stores the created instruction information in the imaging condition storage unit 56.
 次に、医師又は技師は、被写体14と撮影台との間に放射線撮影装置10を挿入した後に、放射線撮影装置10及び放射線出力装置18に対する被写体14の撮影部位のポジショニングを行う。 Next, the doctor or engineer inserts the radiation imaging apparatus 10 between the subject 14 and the imaging table, and then positions the imaging region of the subject 14 with respect to the radiation imaging apparatus 10 and the radiation output apparatus 18.
 この場合、放射線出力装置18は、コンソール20に撮影条件等の送信を要求し、制御処理部52は、通信部50を介して受信した放射線出力装置18の送信要求に基づき、撮影条件記憶部56に記憶された撮影条件を通信部50を介して無線により放射線出力装置18に送信する。 In this case, the radiation output device 18 requests the console 20 to transmit imaging conditions and the like, and the control processing unit 52 performs the imaging condition storage unit 56 based on the transmission request of the radiation output device 18 received via the communication unit 50. The radiographing conditions stored in is transmitted to the radiation output device 18 via the communication unit 50 by radio.
 一方、放射線撮影装置10内において、バッテリ38からカセッテ制御部34及び通信部36に電力が供給されていれば、カセッテ制御部34は、通信部36を介してコンソール20にオーダ情報等の送信を要求する。制御処理部52は、通信部50を介して受信したカセッテ制御部34の送信要求に基づき、撮影条件記憶部56に記憶されたオーダ情報、撮影条件及び指示情報を、通信部50を介して無線により放射線撮影装置10に送信する。カセッテ制御部34は、通信部36を介して受信したオーダ情報、撮影条件及び指示情報を画像メモリ46及び/又はカセッテIDメモリ48に記憶する。 On the other hand, in the radiation imaging apparatus 10, if power is supplied from the battery 38 to the cassette control unit 34 and the communication unit 36, the cassette control unit 34 transmits order information and the like to the console 20 via the communication unit 36. Request. The control processing unit 52 wirelessly transmits the order information, the imaging conditions, and the instruction information stored in the imaging condition storage unit 56 via the communication unit 50 based on the transmission request of the cassette control unit 34 received via the communication unit 50. Is transmitted to the radiation imaging apparatus 10. The cassette control unit 34 stores the order information, imaging conditions, and instruction information received via the communication unit 36 in the image memory 46 and / or the cassette ID memory 48.
 また、バッテリ38から各画素62(を構成するフォトダイオード86c)にバイアス電圧が供給されることにより、各フォトダイオード86cでは、放射線16の高エネルギー成分から変換された蛍光98や反射光104を電荷に変換して蓄積可能な状態に至る。 Further, by supplying a bias voltage from the battery 38 to each pixel 62 (the photodiode 86c constituting the pixel), each photodiode 86c charges the fluorescence 98 and the reflected light 104 converted from the high energy component of the radiation 16. It becomes a state that can be accumulated by converting to.
 さらに、バッテリ38からの電圧供給と、カセッテ制御部34からの制御とに従って、フィルタ制御部40は、前記指示情報に基づき、切換フィルタ28bを透明状態又は鏡状態に切り換える。 Further, according to the voltage supply from the battery 38 and the control from the cassette control unit 34, the filter control unit 40 switches the switching filter 28b to the transparent state or the mirror state based on the instruction information.
 そして、被写体14のポジショニング等の撮影準備が完了したことを前提に、医師又は技師は、図示しない曝射スイッチを投入する。これにより、制御処理部52は、放射線出力装置18からの放射線16の出力の開始と、放射線変換パネル28における放射線16の検出及び放射線画像への変換との同期を取ることにより、被写体14の撮影部位に対する放射線撮影を実行するための同期制御信号を生成する。そして、制御処理部52は、生成した同期制御信号を通信部50を介して無線により放射線撮影装置10及び放射線出力装置18に送信する。 The doctor or engineer turns on an exposure switch (not shown) on the assumption that preparation for imaging such as positioning of the subject 14 is completed. Accordingly, the control processing unit 52 captures the subject 14 by synchronizing the start of the output of the radiation 16 from the radiation output device 18 with the detection of the radiation 16 in the radiation conversion panel 28 and the conversion to the radiation image. A synchronization control signal for executing radiography for the region is generated. The control processing unit 52 transmits the generated synchronization control signal to the radiation imaging apparatus 10 and the radiation output apparatus 18 via the communication unit 50 wirelessly.
 これにより、放射線出力装置18は、同期制御信号を受信すると、前記撮影条件に従って、所定の線量からなる放射線16を被写体14の撮影部位に照射する。 Thereby, when receiving the synchronization control signal, the radiation output device 18 irradiates the imaging region of the subject 14 with the radiation 16 having a predetermined dose according to the imaging conditions.
 放射線16が被写体14の撮影部位を透過して放射線撮影装置10内の放射線変換パネル28に至ると、a-Seの半導体層74aでは、放射線16の低エネルギー成分を吸収して正電荷94a及び負電荷96aの電荷対を生成する。半導体層74aで吸収されなかった放射線16の高エネルギー成分は、第2の放射線検出部72cに至る。柱状結晶構造88cは、放射線16の高エネルギー成分を吸収して蛍光98を発生する。 When the radiation 16 passes through the imaging region of the subject 14 and reaches the radiation conversion panel 28 in the radiation imaging apparatus 10, the a-Se semiconductor layer 74 a absorbs the low energy component of the radiation 16 to absorb positive charges 94 a and negative. A charge pair of charge 96a is generated. The high energy component of the radiation 16 that has not been absorbed by the semiconductor layer 74a reaches the second radiation detection unit 72c. The columnar crystal structure 88c absorbs a high energy component of the radiation 16 and generates fluorescence 98.
 ここで、切換フィルタ28bが透明状態であれば、蛍光98のうち、a-Seの感度波長領域を含む500nm以下の短波長領域の光が、透過光102として切換フィルタ28bを透過する。一方、500nmを超える長波長領域の光は、切換フィルタ28bにおいて、反射光104として反射される。従って、半導体層74aでは、入射した透過光102を吸収して正電荷94c及び負電荷96cの電荷対を生成することができる。 Here, if the switching filter 28b is in a transparent state, light in a short wavelength region of 500 nm or less including the sensitivity wavelength region of a-Se out of the fluorescence 98 passes through the switching filter 28b as transmitted light 102. On the other hand, light in a long wavelength region exceeding 500 nm is reflected as reflected light 104 in the switching filter 28b. Therefore, the semiconductor layer 74a can absorb the incident transmitted light 102 and generate a charge pair of a positive charge 94c and a negative charge 96c.
 ここで、電圧供給部42から各画素電極76a及び共通電極78a間に直流電圧が印加されて、半導体層74aに直流電界が発生していれば、正電荷94a、94c及び負電荷96a、96cは、直流電界に従って、各画素電極76a又は共通電極78aに移動する。アバランシェ効果を発生させる程度の直流電圧(直流電界)であれば、各正電荷94a、94c及び各負電荷96a、96cは、アバランシェ効果によって増幅されるので、各画素電極76aを介して第1の電荷検出部70aで取り出される電荷数を増大させることができる。 Here, if a DC voltage is applied from the voltage supply unit 42 to each pixel electrode 76a and the common electrode 78a and a DC electric field is generated in the semiconductor layer 74a, the positive charges 94a and 94c and the negative charges 96a and 96c are In accordance with the direct current electric field, the pixel electrode 76a or the common electrode 78a is moved. If the DC voltage (DC electric field) is sufficient to generate the avalanche effect, the positive charges 94a and 94c and the negative charges 96a and 96c are amplified by the avalanche effect, and thus the first charge is passed through each pixel electrode 76a. The number of charges taken out by the charge detection unit 70a can be increased.
 また、第2の電荷検出部70cでは、発光箇所100で発生し柱状結晶を伝播して(直進して)フォトダイオード86cに至った蛍光98や、切換フィルタ28bで反射され、柱状結晶を直進してフォトダイオード86cに至った反射光104が、電荷にそれぞれ変換され蓄積される。 Further, in the second charge detection unit 70c, the fluorescent light 98 generated at the light emitting point 100, propagates through the columnar crystal (goes straight) and reaches the photodiode 86c, is reflected by the switching filter 28b, and travels straight through the columnar crystal. Then, the reflected light 104 reaching the photodiode 86c is converted into charges and accumulated.
 一方、切換フィルタ28bが鏡状態であれば、発光箇所100から柱状結晶を直進して切換フィルタ28bに到達した蛍光98は、波長領域に関わりなく、全て、反射光104として反射される。従って、半導体層74aに入射する透過光102は発生しない。 On the other hand, if the switching filter 28b is in a mirror state, all of the fluorescence 98 that has reached the switching filter 28b by going straight through the columnar crystal from the light emitting portion 100 is reflected as reflected light 104 regardless of the wavelength region. Therefore, the transmitted light 102 incident on the semiconductor layer 74a is not generated.
 そのため、電圧供給部42から各画素電極76a及び共通電極78a間に直流電圧が印加された場合、半導体層74aでは、該直流電圧に起因して発生する直流電界に従って、正電荷94a及び負電荷96aが各画素電極76a又は共通電極78aに移動する。また、アバランシェ効果を発生させる程度の直流電圧(直流電界)であれば、正電荷94a及び負電荷96aは、アバランシェ効果によって増幅されるので、各画素電極76aを介して第1の電荷検出部70aで取り出される電荷数を増大させることができる。 Therefore, when a DC voltage is applied from the voltage supply unit 42 between each pixel electrode 76a and the common electrode 78a, the positive charge 94a and the negative charge 96a are generated in the semiconductor layer 74a according to the DC electric field generated due to the DC voltage. Moves to each pixel electrode 76a or common electrode 78a. Further, if the DC voltage (DC electric field) is sufficient to generate the avalanche effect, the positive charge 94a and the negative charge 96a are amplified by the avalanche effect, and therefore the first charge detection unit 70a via each pixel electrode 76a. The number of charges taken out can be increased.
 また、第2の電荷検出部70cでは、発光箇所100で発生し柱状結晶を直進してフォトダイオード86cに至った蛍光98や、切換フィルタ28bで反射され、柱状結晶を直進してフォトダイオード86cに至った反射光104が、電荷にそれぞれ変換され蓄積される。 In the second charge detection unit 70c, the fluorescent light 98 generated at the light emitting point 100 and travels straight through the columnar crystal and reaches the photodiode 86c, and is reflected by the switching filter 28b, travels straight through the columnar crystal and travels to the photodiode 86c. The arrived reflected light 104 is converted into charges and accumulated.
 次に、カセッテ制御部34は、通信部36を介して同期制御信号を受信しているので、アドレス信号発生部44から駆動回路部30にアドレス信号を供給させることにより、各画素62に保持された被写体14の放射線画像である電荷情報を読み出す。 Next, since the cassette control unit 34 receives the synchronization control signal via the communication unit 36, it is held in each pixel 62 by causing the address signal generation unit 44 to supply an address signal to the drive circuit unit 30. The charge information which is a radiographic image of the subject 14 is read out.
 この場合、駆動回路部30は、アドレス信号発生部44から供給されるアドレス信号に従って、先ず、1行目の各画素62に接続された2本のゲート線64a、64cを介して、該1行目の各画素62のTFT82a、82cのゲートに制御信号を供給する。 In this case, according to the address signal supplied from the address signal generating unit 44, the drive circuit unit 30 first passes the one row through the two gate lines 64a and 64c connected to the pixels 62 in the first row. A control signal is supplied to the gates of the TFTs 82a and 82c of each pixel 62 of the eye.
 一方、読出回路部32は、駆動回路部30によって選択されたゲート線64a、64cに接続された1行目の各画素62に保持された電荷情報である放射線画像を、信号線66a、66cを介して順次読み出す。 On the other hand, the readout circuit unit 32 displays the radiation image, which is the charge information held in each pixel 62 in the first row connected to the gate lines 64a and 64c selected by the drive circuit unit 30, and the signal lines 66a and 66c. Read sequentially.
 選択されたゲート線64a、64cに接続された1行目の各画素62から読み出された放射線画像は、読出回路部32において増幅された後にサンプリングされ、A/D変換によりデジタル信号に変換される。デジタル信号に変換された放射線画像は、カセッテ制御部34の画像メモリ46に一旦記憶される。 The radiation image read from each pixel 62 in the first row connected to the selected gate lines 64a and 64c is sampled after being amplified in the readout circuit unit 32 and converted into a digital signal by A / D conversion. The The radiographic image converted into the digital signal is temporarily stored in the image memory 46 of the cassette control unit 34.
 駆動回路部30は、このような動作を、アドレス信号発生部44から供給されるアドレス信号に従って、それぞれの行の各画素62に対して順次行う。これにより、読出回路部32は、各ゲート線64a、64cに接続されている各画素62に保持された電荷情報である放射線画像を、信号線66a、66cを介して読み出し、カセッテ制御部34の画像メモリ46に記憶させる。 The drive circuit unit 30 sequentially performs such an operation on each pixel 62 in each row in accordance with the address signal supplied from the address signal generation unit 44. As a result, the readout circuit unit 32 reads out the radiation image, which is the charge information held in each pixel 62 connected to each gate line 64a, 64c, via the signal line 66a, 66c, and the cassette control unit 34 It is stored in the image memory 46.
 このようにして、放射線出力装置18からの放射線16の照射によって得られた放射線画像が画像メモリ46に記憶される。 In this way, the radiation image obtained by the irradiation of the radiation 16 from the radiation output device 18 is stored in the image memory 46.
 画像メモリ46への放射線画像の記憶後、カセッテ制御部34は、画像メモリ46に記憶された放射線画像(第1の放射線変換層28aから取得した第1の放射線画像、第2の放射線変換層28cから取得した第2の放射線画像)と、カセッテIDメモリ48に記憶されたカセッテID情報と、指示情報とを、通信部36を介して無線によりコンソール20に送信する。 After storing the radiation image in the image memory 46, the cassette control unit 34 stores the radiation image (first radiation image acquired from the first radiation conversion layer 28a, second radiation conversion layer 28c) stored in the image memory 46. 2), the cassette ID information stored in the cassette ID memory 48, and the instruction information are wirelessly transmitted to the console 20 via the communication unit 36.
 コンソール20の制御処理部52は、通信部50を介して受信した放射線画像を画像処理部58に出力し、画像処理部58に対して、指示情報に応じた適切な放射線画像、すなわち、オーダ情報に応じた医師による読影診断が可能な読影画像を生成するように制御する。 The control processing unit 52 of the console 20 outputs the radiographic image received via the communication unit 50 to the image processing unit 58, and sends an appropriate radiographic image corresponding to the instruction information to the image processing unit 58, that is, order information. Control is performed so as to generate an interpretation image that can be interpreted by a doctor according to the situation.
 画像処理部58は、マンモに対する放射線撮影のような、放射線16の低エネルギー成分に応じた放射線画像を取得するための放射線撮影であれば、第1の放射線画像を選択し、選択した第1の放射線画像に対して所定の画像処理を施した後に、画像処理後の第1の放射線画像(読影画像)と、放射線撮影装置10から送られてきた第1の放射線画像及び第2の放射線画像と、カセッテID情報と、指示情報とを対応付けて画像メモリ60に記憶する。 The image processing unit 58 selects the first radiographic image and selects the selected first radiographic image if it is radiographic imaging for acquiring a radiographic image corresponding to the low energy component of the radiation 16 such as radiography for mammo. After performing predetermined image processing on the radiation image, the first radiation image (interpretation image) after the image processing, the first radiation image and the second radiation image sent from the radiation imaging apparatus 10, The cassette ID information and the instruction information are stored in the image memory 60 in association with each other.
 また、画像処理部58は、胸部又は腹部に対する一般撮影であれば、第2の放射線画像を選択し、選択した第2の放射線画像に対して所定の画像処理を施した後に、画像処理後の第2の放射線画像(読影画像)と、放射線撮影装置10から送られてきた第1の放射線画像及び第2の放射線画像と、カセッテID情報と、指示情報とを対応付けて画像メモリ60に記憶する。あるいは、画像処理部58は、一般撮影であれば、第1の放射線画像と第2の放射線画像とを加算する加算処理を行い、加算後の画像(加算画像、読影画像)と、放射線撮影装置10から送られてきた第1の放射線画像及び第2の放射線画像と、カセッテID情報と、指示情報とを対応付けて画像メモリ60に記憶する。 Further, the image processing unit 58 selects the second radiographic image and performs the predetermined image processing on the selected second radiographic image and then performs the image processing after the image processing for the general imaging of the chest or abdomen. The second radiation image (interpretation image), the first radiation image and the second radiation image sent from the radiation imaging apparatus 10, cassette ID information, and instruction information are associated with each other and stored in the image memory 60. To do. Alternatively, the image processing unit 58 performs an addition process of adding the first radiographic image and the second radiographic image in the case of general imaging, an image after addition (added image, interpretation image), and the radiographic apparatus The first radiation image and the second radiation image sent from 10, the cassette ID information, and the instruction information are stored in the image memory 60 in association with each other.
 さらに、画像処理部58は、骨部に対する放射線撮影のような、放射線16の高エネルギー成分に応じた放射線画像を取得するための放射線撮影であれば、第2の放射線画像を選択し、選択した第2の放射線画像に対して所定の画像処理を施した後に、画像処理後の第2の放射線画像(読影画像)と、放射線撮影装置10から送られてきた第1の放射線画像及び第2の放射線画像と、カセッテID情報と、指示情報とを対応付けて画像メモリ60に記憶する。 Further, the image processing unit 58 selects and selects the second radiographic image if it is radiographic imaging for acquiring a radiographic image corresponding to the high energy component of the radiation 16 such as radiographic imaging of the bone. After performing predetermined image processing on the second radiation image, the second radiation image (interpretation image) after the image processing, the first radiation image sent from the radiation imaging apparatus 10 and the second radiation image are sent. The radiation image, cassette ID information, and instruction information are stored in the image memory 60 in association with each other.
 そして、制御処理部52は、通信部50を介して無線により表示装置22に読影画像を送信し、表示装置22は、受信した読影画像を表示する。 Then, the control processing unit 52 wirelessly transmits the interpretation image to the display device 22 via the communication unit 50, and the display device 22 displays the received interpretation image.
 医師又は技師は、表示装置22に表示された読影画像を視認して所望の放射線画像が得られたのであれば、被写体14をポジショニング状態から解放して、被写体14に対する撮影を終了させる。一方、表示装置22に表示された読影画像が所望の放射線画像でなければ、被写体14に対する再撮影を実行する。 If the doctor or engineer visually recognizes the interpretation image displayed on the display device 22 and obtains a desired radiation image, the doctor or the engineer releases the subject 14 from the positioning state and ends the photographing with respect to the subject 14. On the other hand, if the interpretation image displayed on the display device 22 is not a desired radiation image, re-imaging is performed on the subject 14.
[本実施形態の効果]
 以上説明したように、本実施形態に係る放射線撮影装置10によれば、直接変換型の第1の放射線変換層28aと間接変換型の第2の放射線変換層28cとが積層された放射線撮影装置10において、第2の放射線検出部72cで発生した蛍光98の一部(青色波長領域の光を含む500nm以下の短波長領域の光)は、第1の放射線検出部72aに入射され、蛍光98の他の一部(500nmを超える前記短波長領域よりも長波長領域の光)は、第2の電荷検出部70cに入射される。
[Effect of this embodiment]
As described above, according to the radiation imaging apparatus 10 according to the present embodiment, the radiation imaging apparatus in which the direct conversion type first radiation conversion layer 28a and the indirect conversion type second radiation conversion layer 28c are stacked. 10, a part of the fluorescence 98 (light in a short wavelength region of 500 nm or less including light in the blue wavelength region) generated in the second radiation detection unit 72c is incident on the first radiation detection unit 72a, and the fluorescence 98 is emitted. The other part (light in a longer wavelength region than the short wavelength region exceeding 500 nm) is incident on the second charge detection unit 70c.
 この場合、第1の放射線検出部72aでは、放射線16を電荷94a、96aに直接変換すると共に、入射した蛍光98の一部である透過光102も、電荷94c、96cに変換することになる。そのため、第1の放射線変換層28aでは、放射線16から直接変換した電荷94a、96aに加え、透過光102から変換した電荷94c、96cも、該第1の放射線変換層28aでの放射線画像の形成に使用することになる。 In this case, in the first radiation detection unit 72a, the radiation 16 is directly converted into the charges 94a and 96a, and the transmitted light 102 which is a part of the incident fluorescence 98 is also converted into the charges 94c and 96c. Therefore, in the first radiation conversion layer 28a, in addition to the charges 94a and 96a directly converted from the radiation 16, the charges 94c and 96c converted from the transmitted light 102 also form a radiation image in the first radiation conversion layer 28a. Will be used for.
 これにより、本実施形態では、第1の放射線変換層28aを構成する第1の放射線検出部72aを厚くすることなく、該第1の放射線検出部72aの感度を高めて、第1の放射線変換層28aで高画質の放射線画像を取得することが可能になる。従って、本実施形態では、胸部や腹部に対する放射線撮影等の一般撮影にも使用可能な直接変換型の放射線変換層28aを含む放射線撮影装置10を実現することができる。また、第1の放射線検出部72aを厚くする必要がないので、第1の放射線変換層28aを含めた放射線撮影装置10の歩留まりの向上も実現することができる。 Thereby, in this embodiment, the sensitivity of the first radiation detection unit 72a is increased without increasing the thickness of the first radiation detection unit 72a that constitutes the first radiation conversion layer 28a, and the first radiation conversion is performed. It becomes possible to acquire a high-quality radiation image with the layer 28a. Therefore, in the present embodiment, the radiation imaging apparatus 10 including the direct conversion type radiation conversion layer 28a that can be used for general imaging such as radiography for the chest and abdomen can be realized. In addition, since it is not necessary to increase the thickness of the first radiation detection unit 72a, the yield of the radiation imaging apparatus 10 including the first radiation conversion layer 28a can be improved.
 また、放射線撮影装置10では、放射線16の入射方向に沿って、第1の放射線変換層28aと第2の放射線変換層28cとが順に積層されている。この場合、第1の放射線検出部72aは、放射線16を電荷94a、96aに直接変換する半導体層74aを含み構成され、第2の放射線検出部72cは、放射線16を蛍光98に変換するシンチレータである。 Further, in the radiation imaging apparatus 10, the first radiation conversion layer 28a and the second radiation conversion layer 28c are sequentially laminated in the incident direction of the radiation 16. In this case, the first radiation detection unit 72a includes a semiconductor layer 74a that directly converts the radiation 16 into charges 94a and 96a, and the second radiation detection unit 72c is a scintillator that converts the radiation 16 into fluorescence 98. is there.
 そのため、第1の放射線変換層28aでは、第1の放射線検出部72aを構成する半導体層74aが、放射線16の低エネルギー成分(低い管電圧に応じたエネルギー成分)を吸収して電荷94a、96aに直接変換する。一方、第2の放射線変換層28cでは、第2の放射線検出部72cを構成するシンチレータが放射線16の高エネルギー成分(高い管電圧に応じたエネルギー成分)を吸収して蛍光98に変換する。そのため、高エネルギー成分に応じた蛍光98の一部が透過光102として第1の放射線変換層28aに入射すれば、半導体層74aは、該透過光102を電荷94c、96cに変換することができる。 Therefore, in the first radiation conversion layer 28a, the semiconductor layer 74a constituting the first radiation detection unit 72a absorbs the low energy component of the radiation 16 (energy component corresponding to the low tube voltage) and charges 94a and 96a. Convert directly to. On the other hand, in the second radiation conversion layer 28 c, the scintillator constituting the second radiation detection unit 72 c absorbs the high energy component of the radiation 16 (energy component corresponding to a high tube voltage) and converts it into fluorescence 98. Therefore, if a part of the fluorescence 98 corresponding to the high energy component enters the first radiation conversion layer 28a as the transmitted light 102, the semiconductor layer 74a can convert the transmitted light 102 into charges 94c and 96c. .
 このように、放射線撮影装置10では、半導体層74aとシンチレータとのいわゆるハイブリッド構成を採用して、放射線16の低エネルギー成分や高エネルギー成分を効率よく電荷に変換することができる。この結果、第1の放射線変換層28aでは、放射線16の低エネルギー成分に加え、高エネルギー成分も含む放射線画像を形成することが可能になる。 As described above, in the radiation imaging apparatus 10, a so-called hybrid configuration of the semiconductor layer 74a and the scintillator can be adopted to efficiently convert the low energy component and the high energy component of the radiation 16 into charges. As a result, in the first radiation conversion layer 28a, a radiation image including a high energy component in addition to the low energy component of the radiation 16 can be formed.
 従って、第1の放射線変換層28aでは、胸部や腹部の放射線撮影等の一般撮影向けの放射線画像や、マンモ、軟部組織又は腫瘍向けの低エネルギー成分の放射線画像の高画質化を容易に実現することができると共に、半導体層74aの厚膜化を回避することができる。 Therefore, the first radiation conversion layer 28a easily realizes high image quality of radiographic images for general imaging such as radiography of the chest and abdomen and low-energy component radiographic images for mammo, soft tissue or tumor. In addition, the thickness of the semiconductor layer 74a can be avoided.
 すなわち、半導体層74aでは、放射線16の低エネルギー成分を吸収して電荷94a、96aに変換すると共に、高エネルギー成分に応じた透過光102を電荷94c、96cに変換するため、第1の電荷検出部70aは、高エネルギー成分も反映した放射線画像を形成することができる。このように、第1の電荷検出部70aが高感度化されて、高画質の第1の放射線画像を容易に取得することができることにより、実質的に、厚膜の半導体層74aの場合と略同等の放射線画像を得ることができる。 That is, in the semiconductor layer 74a, the low energy component of the radiation 16 is absorbed and converted into charges 94a and 96a, and the transmitted light 102 corresponding to the high energy component is converted into charges 94c and 96c. The unit 70a can form a radiation image that also reflects high energy components. As described above, since the first charge detection unit 70a is highly sensitive and can easily acquire a high-quality first radiation image, it is substantially the same as the case of the thick semiconductor layer 74a. Equivalent radiographic images can be obtained.
 なお、第2の放射線変換層28cにおいては、高エネルギー成分を含む放射線画像を形成することができるため、一般撮影向けの放射線画像や、骨部の放射線画像を形成することが可能である。 In the second radiation conversion layer 28c, a radiographic image including a high energy component can be formed, so that it is possible to form a radiographic image for general imaging or a radiographic image of a bone part.
 そして、半導体層74aがセレン、より好ましくは、a-Seであれば、図22に示すように、低エネルギー成分側にKエッジが存在するので、放射線16の低エネルギー成分を吸収しやすい。また、a-Seよりも高エネルギー成分側にKエッジが存在するシンチレータを第2の放射線検出部72cに用いれば、放射線16の高エネルギー成分を多く吸収することができる。このような物質を第1の放射線検出部72a及び第2の放射線検出部72cにそれぞれ用いることで、上記の各効果を容易に得ることができる。 If the semiconductor layer 74a is selenium, more preferably a-Se, a K edge is present on the low energy component side as shown in FIG. 22, and thus the low energy component of the radiation 16 is easily absorbed. Further, if a scintillator having a K edge on the high energy component side of a-Se is used for the second radiation detection unit 72c, a large amount of high energy component of the radiation 16 can be absorbed. By using such substances for the first radiation detection unit 72a and the second radiation detection unit 72c, the above-described effects can be easily obtained.
 例えば、マンモ撮影用のa-Seの半導体層を用いた従来の放射線変換パネルの場合、管電圧が28kVにおいて、半導体層の厚みが200μm程度となる。これに対して、本実施形態では、第2の放射線検出部72cのシンチレータで発生した蛍光98の一部を透過光102として半導体層74aに入射させて、第1の放射線変換層28aの感度向上を図っているので、a-Seの半導体層74aの厚みを200μm以下にすることが可能である。 For example, in the case of a conventional radiation conversion panel using an a-Se semiconductor layer for mammography, the thickness of the semiconductor layer is about 200 μm at a tube voltage of 28 kV. On the other hand, in this embodiment, a part of the fluorescence 98 generated by the scintillator of the second radiation detection unit 72c is made incident on the semiconductor layer 74a as the transmitted light 102, thereby improving the sensitivity of the first radiation conversion layer 28a. Therefore, the thickness of the a-Se semiconductor layer 74a can be set to 200 μm or less.
 また、a-Seは、図11に示すように、500nm以下の短波長領域において量子効率が高く、a-Seの半導体層74a内の直流電界を大きくすれば、量子効率を高めることができる。つまり、a-Seの半導体層74aは、青色波長領域を含む500nm以下の短波長領域を感度波長領域としている。なお、図11には、比較のために、a-Si:Hからなるフォトダイオード86cの感度波長領域も図示している。a-Si:Hのフォトダイオード86cは、500nmを超える長波長領域(詳しくは500nm~600nmの波長領域)を主たる感度波長領域としている。 Further, as shown in FIG. 11, a-Se has high quantum efficiency in a short wavelength region of 500 nm or less, and the quantum efficiency can be increased by increasing the DC electric field in the a-Se semiconductor layer 74a. That is, the a-Se semiconductor layer 74a has a short wavelength region of 500 nm or less including a blue wavelength region as a sensitivity wavelength region. For comparison, FIG. 11 also shows the sensitivity wavelength region of the photodiode 86c made of a-Si: H. The a-Si: H photodiode 86c has a long wavelength region exceeding 500 nm (specifically, a wavelength region of 500 nm to 600 nm) as a main sensitivity wavelength region.
 従って、シンチレータは、少なくとも、青色波長領域の蛍光98を発生する蛍光体であれば、該青色波長領域の蛍光98(透過光102)をa-Seの半導体層74aに入射させることにより、該半導体層74aにおいて青色波長領域の蛍光98を電荷94c、96cに効率よく光電変換させることができる。 Therefore, if the scintillator is at least a phosphor that generates fluorescence 98 in the blue wavelength region, the fluorescence 98 (transmitted light 102) in the blue wavelength region is incident on the semiconductor layer 74a of a-Se, so that the semiconductor In the layer 74a, the fluorescence 98 in the blue wavelength region can be efficiently photoelectrically converted into charges 94c and 96c.
 このような効果を得るため、本実施形態では、第2の放射線検出部72cに用いるシンチレータとして、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBr若しくはCl)、又は、LaOBr:Tm等を採用可能である。 In order to obtain such an effect, in the present embodiment, as the scintillator used in the second radiation detection unit 72c, CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr: Tm or the like can be employed.
 図12は、これらのシンチレータのうち、代表的に、CsI:Na、CaWO、BaFBr:Eu、YTaO:Nbにおける、発生した蛍光98の波長と、その規格化強度(シンチレータで発生した蛍光98の最大強度を1.0に規格化したときの値)との関係を示す。これらのシンチレータのうち、特に、CsI:Naは、500nm以下の青色波長領域や、500nmを超える長波長領域も含む、広範囲の波長領域の蛍光98を発生可能である。 FIG. 12 shows, among these scintillators, typically the wavelength of the generated fluorescence 98 and its normalized intensity (the fluorescence 98 generated by the scintillator) in CsI: Na, CaWO 4 , BaFBr: Eu, YTaO 4 : Nb. The relationship between the maximum intensity and the value when normalized to 1.0) is shown. Among these scintillators, in particular, CsI: Na can generate fluorescence 98 in a wide wavelength region including a blue wavelength region of 500 nm or less and a long wavelength region exceeding 500 nm.
 従って、CsI:Naからなるシンチレータを第2の放射線検出部72cに用いた場合、青色波長領域の蛍光98(透過光102)をa-Seの半導体層74aで電荷94c、96cに光電変換させると共に、長波長領域の蛍光98(及び反射光104)を第2の電荷検出部70cのフォトダイオード86cにおいて、電荷に光電変換させることが可能となる。 Therefore, when a scintillator made of CsI: Na is used for the second radiation detection unit 72c, the fluorescent light 98 (transmitted light 102) in the blue wavelength region is photoelectrically converted into charges 94c and 96c by the a-Se semiconductor layer 74a. The fluorescent light 98 (and the reflected light 104) in the long wavelength region can be photoelectrically converted into electric charges in the photodiode 86c of the second charge detection unit 70c.
 この結果、第1の放射線変換層28a及び第2の放射線変換層28cにおける光電変換を効率よく行うことができ、第1の放射線変換層28a及び第2の放射線変換層28cで取得される各放射線画像の高画質化を容易に実現することができる。 As a result, photoelectric conversion in the first radiation conversion layer 28a and the second radiation conversion layer 28c can be efficiently performed, and each radiation acquired in the first radiation conversion layer 28a and the second radiation conversion layer 28c. High image quality can be easily realized.
 また、a-Seの半導体層74aが放射線16の入射側に配置され、その背後に第2の放射線検出部72cのシンチレータが配置されていれば、a-Seで軟X線を吸収して透過X線を硬くすることができる。これにより、半導体層74aとシンチレータとの間にガラス(ガラス製の絶縁性基板68a、68c)が介挿されていても、該ガラスでの放射線16の吸収を抑制することができる。この結果、CsI系、BaFX系(XはBr又はCl)、GOS等のシンチレータにおいて、放射線吸収率を低下させることなく、硬いX線を確実に吸収することができる。これらのシンチレータは、硬いX線程、蛍光98の発光強度が大きくなる傾向があるので、a-Seで軟X線を積極的に吸収させることで、シンチレータでの放射線吸収率を向上させることができる。 Further, if the a-Se semiconductor layer 74a is disposed on the radiation 16 incident side and the scintillator of the second radiation detector 72c is disposed behind the a-Se semiconductor layer 74a, the a-Se absorbs and transmits the soft X-rays. X-rays can be hardened. Thereby, even if glass (glass-made insulating substrates 68a and 68c) is interposed between the semiconductor layer 74a and the scintillator, absorption of the radiation 16 by the glass can be suppressed. As a result, in a scintillator such as a CsI system, a BaFX system (X is Br or Cl), or GOS, hard X-rays can be reliably absorbed without reducing the radiation absorption rate. Since these scintillators tend to increase the emission intensity of fluorescence 98 as hard X-rays increase, the absorptive absorption of soft X-rays with a-Se can improve the radiation absorption rate of the scintillator. .
 また、第1の放射線検出部72aは、a-Seの半導体層74aと、複数の画素電極76aと、共通電極78aとから構成されている。この場合、各画素電極76aと共通電極78aとの間に直流電圧を印加することにより、半導体層74aに発生した正電荷94a、94c又は負電荷96a、96cを、各画素電極76aを介して第1の電荷検出部70aで取り出し可能である。 The first radiation detector 72a includes an a-Se semiconductor layer 74a, a plurality of pixel electrodes 76a, and a common electrode 78a. In this case, by applying a DC voltage between each pixel electrode 76a and the common electrode 78a, positive charges 94a and 94c or negative charges 96a and 96c generated in the semiconductor layer 74a are transmitted through the pixel electrodes 76a. It can be taken out by one charge detector 70a.
 図13は、a-Seの半導体層74a内の直流電界と、第1の電荷検出部70aで取り出される電荷数に応じた検出信号強度の相対値(10V/μmの直流電界における検出信号強度を1.0に規格化したときの値)との関係を図示したものである。 FIG. 13 shows the relative value of the detection signal intensity according to the DC electric field in the a-Se semiconductor layer 74a and the number of charges taken out by the first charge detection unit 70a (the detection signal intensity in the DC electric field of 10 V / μm). The relationship with the value when normalized to 1.0) is illustrated.
 この場合、50V/μmまでの直流電界では、実線に示すように、相対信号強度は1.0近傍の値に留まる。そのため、第1の電荷検出部70aとしては、単に、放射線16の照射によってa-Seの半導体層74a内で発生する正電荷94a、94c又は負電荷96a、96cを取り出すだけの機能を有するに過ぎない。 In this case, in a DC electric field up to 50 V / μm, the relative signal strength remains at a value near 1.0 as shown by the solid line. Therefore, the first charge detection unit 70a merely has a function of extracting only the positive charges 94a and 94c or the negative charges 96a and 96c generated in the a-Se semiconductor layer 74a by the irradiation of the radiation 16. Absent.
 これに対して、80V/μm以上の直流電界では、破線に示すように、相対信号強度は10~100にも上昇する。これは、80V/μm以上の高電界によって、電荷94a、94c、96a、96cがa-Seの半導体層74a内を走行中に、アバランシェ効果によるキャリア増倍が発生するためである。この結果、各画素電極76aを介して第1の電荷検出部70aで取り出される電荷数(検出信号強度)を容易に増大させることができる。 On the other hand, in a DC electric field of 80 V / μm or more, the relative signal strength increases to 10 to 100 as shown by the broken line. This is because carrier multiplication due to the avalanche effect occurs while the electric charges 94a, 94c, 96a, and 96c travel in the a-Se semiconductor layer 74a due to a high electric field of 80 V / μm or more. As a result, the number of charges (detection signal intensity) taken out by the first charge detection unit 70a via each pixel electrode 76a can be easily increased.
 このような電荷数の増倍効果を得ようとするためには、a-Seの半導体層74aの厚みを薄くすればよい。すなわち、a-Seの半導体層74aの厚みが薄ければ、各画素電極76aと共通電極78aとの間に直流電圧を印加した際に、該半導体層74aに発生する直流電界が大きくなり、アバランシェ効果による電荷増倍作用が得られやすくなるからである。 In order to obtain such a charge number multiplication effect, the thickness of the a-Se semiconductor layer 74a may be reduced. That is, if the thickness of the a-Se semiconductor layer 74a is thin, a DC electric field generated in the semiconductor layer 74a when a DC voltage is applied between each pixel electrode 76a and the common electrode 78a increases, and an avalanche is formed. This is because the charge multiplying effect due to the effect is easily obtained.
 このように、半導体層74aを薄膜化すれば、第1の電荷検出部70aが高感度化されるため、高画質の第1の放射線画像を容易に取得することができる。従って、半導体層74aの厚みを薄くすれば、実質的に、厚膜の半導体層74aと略同等の放射線吸収率及び放射線画像を得ることができる。 As described above, if the semiconductor layer 74a is thinned, the first charge detection unit 70a has high sensitivity, so that a high-quality first radiation image can be easily acquired. Therefore, if the thickness of the semiconductor layer 74a is reduced, a radiation absorption rate and a radiation image substantially equivalent to those of the thick semiconductor layer 74a can be obtained.
 また、各画素電極76aは、半導体層74aにおける第1の電荷検出部70a側に形成されると共に、共通電極78aは、半導体層74aにおける第1の電荷検出部70a側とは反対側に形成されている。そのため、各画素電極76aを介して画素62毎に正電荷94a、94c又は負電荷96a、96cを容易に且つ精度よく取り出すことができる。 Each pixel electrode 76a is formed on the first charge detection unit 70a side in the semiconductor layer 74a, and the common electrode 78a is formed on the opposite side of the semiconductor layer 74a from the first charge detection unit 70a side. ing. Therefore, the positive charges 94a and 94c or the negative charges 96a and 96c can be easily and accurately taken out for each pixel 62 through each pixel electrode 76a.
 さらに、共通電極78aが半導体層74aにおける第2の放射線変換層28c側に形成される場合に、共通電極78aが蛍光98の一部を透過光102として透過可能なITO等の透明電極であれば、半導体層74aにより多くの光量の透過光102を入射させることができる。 Furthermore, when the common electrode 78a is formed on the second radiation conversion layer 28c side of the semiconductor layer 74a, the common electrode 78a is a transparent electrode such as ITO that can transmit part of the fluorescence 98 as the transmitted light 102. A large amount of transmitted light 102 can be incident on the semiconductor layer 74a.
 また、第1の放射線変換層28aと第2の放射線変換層28cとの間には、蛍光98の一部を透過光102として透過可能な光学フィルタとしての切換フィルタ28bが介挿されている。あるいは、共通電極78aが半導体層74aにおける第2の放射線変換層28c側に形成される場合には、共通電極78aを透過光102を透過可能な光学フィルタとして機能させてもよい。いずれの場合であっても、蛍光98のうち、青色波長領域を含む短波長領域の光を透過光102として、半導体層74aに確実に入射させることができる。 Further, a switching filter 28b as an optical filter capable of transmitting a part of the fluorescence 98 as the transmitted light 102 is interposed between the first radiation conversion layer 28a and the second radiation conversion layer 28c. Alternatively, when the common electrode 78a is formed on the second radiation conversion layer 28c side in the semiconductor layer 74a, the common electrode 78a may function as an optical filter capable of transmitting the transmitted light 102. In any case, light in the short wavelength region including the blue wavelength region of the fluorescence 98 can be reliably incident on the semiconductor layer 74a as the transmitted light 102.
 そして、上記の切換フィルタ28b、又は、光学フィルタとして機能する共通電極78aは、蛍光98のうち、a-Seの半導体層74aで電荷94c、96cに変換可能な感度波長領域の光を透過光102として第1の放射線変換層28a側に透過させると共に、該感度波長領域以外の光を第2の放射線変換層28c側に反射光104として反射させるダイクロイックフィルタである。 The switching electrode 28b or the common electrode 78a functioning as an optical filter transmits light in the sensitivity wavelength region that can be converted into charges 94c and 96c by the a-Se semiconductor layer 74a in the fluorescent light 98. And a dichroic filter that transmits light outside the sensitivity wavelength region as reflected light 104 to the second radiation conversion layer 28c side.
 このように、半導体層74aにおいて電荷94c、96cに変換可能な感度波長領域の蛍光98(透過光102)のみが半導体層74aに入射するので、入射した透過光102を半導体層74aで効率よく電荷94c、96cに変換できると共に、該感度波長領域以外の蛍光98及び反射光104を第2の電荷検出部70cのフォトダイオード86cで効率よく電荷に変換させることができる。これにより、第1の放射線変換層28a及び第2の放射線変換層28cにおける各放射線画像のさらなる高画質化を容易に実現することができる。 Thus, since only the fluorescence 98 (transmitted light 102) in the sensitivity wavelength region that can be converted into charges 94c and 96c in the semiconductor layer 74a is incident on the semiconductor layer 74a, the incident transmitted light 102 is efficiently charged in the semiconductor layer 74a. 94c and 96c, and fluorescence 98 and reflected light 104 outside the sensitivity wavelength region can be efficiently converted into charges by the photodiode 86c of the second charge detection unit 70c. Thereby, further improvement in the image quality of each radiation image in the 1st radiation conversion layer 28a and the 2nd radiation conversion layer 28c is easily realizable.
 なお、切換フィルタ28b、又は、光学フィルタとして機能する共通電極78aは、第2の放射線検出部72cに用いられるシンチレータの種類に応じて、下記のように機能することが望ましい。 In addition, it is desirable that the common electrode 78a functioning as the switching filter 28b or the optical filter functions as follows according to the type of scintillator used in the second radiation detection unit 72c.
 CsIの柱状結晶のシンチレータを用いた場合、切換フィルタ28b又は共通電極78aは、前述のように、500nm以下の波長の蛍光98を透過光102として透過させ、500nmを超える波長の蛍光98を反射光104として反射させるダイクロイックフィルタとして機能すればよい。これにより、透過光102は、半導体層74aにおいて電荷94c、96cに変換されると共に、反射光104は、柱状結晶を直進してフォトダイオード86cに至る光ガイド効果により、該フォトダイオード86cにて受光され電荷に変換される。この結果、高画質の第1の放射線画像が得られると共に、画像ボケのない第2の放射線画像が得られる。 When a CsI columnar crystal scintillator is used, the switching filter 28b or the common electrode 78a transmits the fluorescence 98 having a wavelength of 500 nm or less as the transmitted light 102 and reflects the fluorescence 98 having a wavelength exceeding 500 nm as reflected light, as described above. What is necessary is just to function as a dichroic filter which reflects as 104. As a result, the transmitted light 102 is converted into charges 94c and 96c in the semiconductor layer 74a, and the reflected light 104 is received by the photodiode 86c by the light guide effect that travels straight through the columnar crystal and reaches the photodiode 86c. And converted into electric charge. As a result, a high-quality first radiographic image is obtained, and a second radiographic image without image blur is obtained.
 一方、GOS等の粒状のシンチレータを用いた場合、切換フィルタ28b又は共通電極78aは、500nm以下の波長の蛍光98を透過光102として透過させ、500nmを超える波長の蛍光98を吸収する吸収フィルタとして機能すればよい。これにより、透過光102は、半導体層74aにおいて電荷94c、96cに変換されると共に、切換フィルタ28b又は共通電極78aでの反射に起因したシンチレータの粒子での光散乱の発生を抑制することができる。この場合でも、高画質の第1の放射線画像が得られると共に、画像ボケのない第2の放射線画像が得られる。 On the other hand, when a granular scintillator such as GOS is used, the switching filter 28b or the common electrode 78a transmits fluorescence 98 having a wavelength of 500 nm or less as transmitted light 102 and absorbs fluorescence 98 having a wavelength exceeding 500 nm. It only has to function. As a result, the transmitted light 102 is converted into charges 94c and 96c in the semiconductor layer 74a, and the occurrence of light scattering at the scintillator particles due to reflection at the switching filter 28b or the common electrode 78a can be suppressed. . Even in this case, a high-quality first radiation image can be obtained, and a second radiation image without image blur can be obtained.
 また、本実施形態では、コンソール20の画像処理部58において、第1の放射線変換層28aが形成した第1の放射線画像と、第2の放射線変換層28cが形成した第2の放射線画像とを加算することにより、一般撮影向けの所望の高画質な画像を容易に取得することができる。なお、カセッテ制御部34でこのような画像処理機能を持たせることにより、放射線撮影装置10側で加算画像を生成させてもよいことは勿論である。 In the present embodiment, the image processing unit 58 of the console 20 uses the first radiation image formed by the first radiation conversion layer 28a and the second radiation image formed by the second radiation conversion layer 28c. By adding, a desired high-quality image for general photography can be easily acquired. Of course, the cassette control unit 34 may have such an image processing function to generate an addition image on the radiation imaging apparatus 10 side.
 ところで、前述したように、本実施形態に係る放射線撮影装置10では、少なくともa-Seの感度波長領域の光(500nm以下の青色波長領域の透過光102)を第1の放射線変換層28aの半導体層74aに入射させることにより、透過光102の入射に伴う上記の各効果が得られればよいので、切換フィルタ28bは必須ではない。従って、第1の放射線変換層28aと第2の放射線変換層28cとの積層構造により放射線変換パネル28を構成し、第2の放射線検出部72cで放射線16の高エネルギー成分から変換された蛍光98を、透過光102として、第1の放射線検出部72aの半導体層74aにそのまま入射させてもよい。 As described above, in the radiation imaging apparatus 10 according to the present embodiment, at least light in the sensitivity wavelength region of a-Se (transmitted light 102 in the blue wavelength region of 500 nm or less) is transmitted to the semiconductor of the first radiation conversion layer 28a. The switching filter 28b is not indispensable because the above-described effects associated with the incident of the transmitted light 102 can be obtained by making the light incident on the layer 74a. Accordingly, the radiation conversion panel 28 is configured by the laminated structure of the first radiation conversion layer 28a and the second radiation conversion layer 28c, and the fluorescence 98 converted from the high energy component of the radiation 16 by the second radiation detection unit 72c. May be incident on the semiconductor layer 74a of the first radiation detector 72a as transmitted light 102 as it is.
 但し、被写体14に対する放射線撮影において、撮影部位によっては、放射線16の高エネルギー成分(比較的高い管電圧の高圧成分)から変換された蛍光98を透過光102として半導体層74aに入射させ、該透過光に起因する電荷94c、96cを発生させた場合に、各電荷94c、96cに基づく第1の放射線画像と、第2の放射線画像とを加算して加算画像を生成すると、該加算画像を医師が読影する際に、前記加算画像に写り込んだ撮影部位を観察しづらいことがある。 However, in radiography of the subject 14, depending on the radiographic part, the fluorescence 98 converted from the high energy component of the radiation 16 (a high voltage component with a relatively high tube voltage) is incident on the semiconductor layer 74 a as the transmitted light 102 and transmitted. When charges 94c and 96c caused by light are generated, an addition image is generated by adding the first radiation image and the second radiation image based on the charges 94c and 96c. When interpreting images, it may be difficult to observe the imaged part reflected in the added image.
 例えば、軟部組織又は腫瘍に対する放射線撮影では、骨部が写り込んだ画像が第2の放射線画像として形成されるため、第1の放射線画像と第2の放射線画像とを加算して加算画像を形成すると、骨部が見えやすくなる可能性がある。 For example, in radiography for a soft tissue or tumor, an image in which a bone part is reflected is formed as a second radiographic image, so an addition image is formed by adding the first radiographic image and the second radiographic image. Then, there is a possibility that the bone part can be easily seen.
 このような問題に対しては、切換フィルタ28bを介挿させて、該切換フィルタ28bを鏡状態にすることにより、シンチレータで発生した蛍光98のうち、500nm以下の青色波長領域の光のみを透過光102として第1の放射線変換層28aに入射させる一方で、500nmを超える光については遮光すればよい。このように、切換フィルタ28bを鏡状態にして、シンチレータで発生した蛍光98の一部を意図的に遮断することにより、医師による読影が容易な加算画像を確実に取得することができる。 For such a problem, by inserting the switching filter 28b and making the switching filter 28b into a mirror state, only the light in the blue wavelength region of 500 nm or less is transmitted among the fluorescence 98 generated in the scintillator. While the light 102 is incident on the first radiation conversion layer 28a, light exceeding 500 nm may be shielded. In this way, by setting the switching filter 28b in a mirror state and intentionally blocking a part of the fluorescence 98 generated by the scintillator, an added image that can be easily interpreted by a doctor can be reliably acquired.
[放射線変換パネルの製造方法]
 次に、本実施形態に係る放射線撮影装置10を構成する放射線変換パネル28の製造方法について、図14A~図19Bを参照しながら説明する。
[Production method of radiation conversion panel]
Next, a method for manufacturing the radiation conversion panel 28 constituting the radiation imaging apparatus 10 according to the present embodiment will be described with reference to FIGS. 14A to 19B.
 図14A~図15Dは、第1実施例の放射線変換パネル28(図3A参照)の製造工程を図示したものである。 14A to 15D illustrate the manufacturing process of the radiation conversion panel 28 (see FIG. 3A) of the first embodiment.
 先ず、図14Aに示すように、絶縁性基板68aに第1の電荷検出部70aを公知の蒸着技術により形成する。次に、図14Bに示すように、第1の電荷検出部70aに蒸着により複数の画素電極76aを形成する。その後、図14Cに示すように、第1の電荷検出部70a及び画素電極76a上に蒸着によりa-Seの半導体層74aを形成する。次に、図14Dに示すように、a-Seの半導体層74a上に蒸着により共通電極78aを形成する。 First, as shown in FIG. 14A, a first charge detector 70a is formed on an insulating substrate 68a by a known vapor deposition technique. Next, as shown in FIG. 14B, a plurality of pixel electrodes 76a are formed on the first charge detection unit 70a by vapor deposition. Thereafter, as shown in FIG. 14C, an a-Se semiconductor layer 74a is formed on the first charge detection unit 70a and the pixel electrode 76a by vapor deposition. Next, as shown in FIG. 14D, a common electrode 78a is formed on the a-Se semiconductor layer 74a by vapor deposition.
 一方、図15Aに示すように、絶縁性基板68cに第2の電荷検出部70cを蒸着により形成する。次に、図15Bに示すように、第2の電荷検出部70cに蒸着により第2の放射線検出部72c(シンチレータ)を形成する。その後、図15Cに示すように、第2の放射線検出部72cに粘着層128(又は接着層)を介して切換フィルタ28bを貼着する。最後に、図15Dに示すように、図14Dの工程で形成された共通電極78aと、図15Cの工程で貼着された切換フィルタ28bとを、粘着層130(又は接着層)を介して貼着する。これにより、第1実施例の放射線変換パネル28が完成する。 On the other hand, as shown in FIG. 15A, the second charge detector 70c is formed on the insulating substrate 68c by vapor deposition. Next, as shown in FIG. 15B, a second radiation detection unit 72c (scintillator) is formed on the second charge detection unit 70c by vapor deposition. Thereafter, as shown in FIG. 15C, the switching filter 28b is attached to the second radiation detection unit 72c via the adhesive layer 128 (or adhesive layer). Finally, as shown in FIG. 15D, the common electrode 78a formed in the step of FIG. 14D and the switching filter 28b attached in the step of FIG. 15C are pasted through the adhesive layer 130 (or adhesive layer). To wear. Thereby, the radiation conversion panel 28 of the first embodiment is completed.
 なお、図15Bの工程において、第2の放射線検出部72cとして、CsI:Naの柱状結晶のシンチレータを第2の電荷検出部70c上に蒸着する場合には、柱状結晶構造88cの先端部分ができるだけ平坦であることが好ましい。そこで、図15Bの工程では、第2の電荷検出部70cに対するCsI:Naのシンチレータの蒸着の最終段階で、シンチレータに対する基板としての第2の電荷検出部70c及び絶縁性基板68cの温度を制御することにより、柱状結晶構造88cの先端部分をできる限り平坦にしている。 In the step of FIG. 15B, when a CsI: Na columnar crystal scintillator is deposited on the second charge detection unit 70c as the second radiation detection unit 72c, the tip of the columnar crystal structure 88c is as much as possible. It is preferably flat. Therefore, in the process of FIG. 15B, the temperature of the second charge detector 70c as the substrate for the scintillator and the temperature of the insulating substrate 68c are controlled at the final stage of vapor deposition of the CsI: Na scintillator on the second charge detector 70c. Thus, the tip portion of the columnar crystal structure 88c is made as flat as possible.
 例えば、第2の電荷検出部70c及び絶縁性基板68cの温度が110℃で柱状結晶構造88cの先端部分の角度が170°となり、前記温度が140℃で前記角度が60°になり、前記温度が200℃で前記角度が70°になり、前記温度が260℃で前記角度が120°になる。 For example, the temperature of the second charge detection unit 70c and the insulating substrate 68c is 110 ° C., the angle of the tip portion of the columnar crystal structure 88c is 170 °, the temperature is 140 ° C., and the angle is 60 °. Is 200 ° C., the angle is 70 °, and the temperature is 260 ° C. and the angle is 120 °.
 図16A~図16Cは、図14A~図15Dの製造工程の第1の変形例を図示したものである。 16A to 16C illustrate a first modification of the manufacturing process of FIGS. 14A to 15D.
 この場合、先ず、図16Aに示すように、蒸着基板132に剥離層134を介して蒸着により第2の放射線検出部72cのシンチレータを形成する。次に、剥離層134に図示しないレーザ光を照射することにより、図16Bに示すように、第2の放射線検出部72cに対して蒸着基板132及び剥離層134を剥離させる。その後、図16Cに示すように、図15Aの工程で絶縁性基板68c上に形成された第2の電荷検出部70cと、第2の放射線検出部72cとを、粘着層136(又は接着層)を介して貼着する。その後、図15C及び図15Dの工程を実施することにより、放射線変換パネル28を得ることができる。 In this case, first, as shown in FIG. 16A, the scintillator of the second radiation detection unit 72c is formed on the vapor deposition substrate 132 by vapor deposition via the release layer 134. Next, by irradiating the peeling layer 134 with a laser beam (not shown), as shown in FIG. 16B, the vapor deposition substrate 132 and the peeling layer 134 are peeled off from the second radiation detector 72c. Thereafter, as shown in FIG. 16C, the second charge detection unit 70c and the second radiation detection unit 72c formed on the insulating substrate 68c in the step of FIG. 15A are bonded to the adhesive layer 136 (or adhesive layer). To stick through. Then, the radiation conversion panel 28 can be obtained by performing the process of FIG. 15C and FIG. 15D.
 図17A~図17Cは、図14A~図15Dの製造工程の第2の変形例を図示したものである。 FIGS. 17A to 17C illustrate a second modification of the manufacturing process of FIGS. 14A to 15D.
 この場合、先ず、図17Aにおいて、図14Dの工程によりa-Seの半導体層74aに形成された共通電極78aに対して、蒸着により、切換フィルタ28bを形成する。次に、図17Bに示すように、切換フィルタ28b上に蒸着により第2の放射線検出部72cのシンチレータを形成する。その後、図17Cに示すように、図15Aの工程で絶縁性基板68c上に形成された第2の電荷検出部70cと、第2の放射線検出部72cとを、粘着層136(又は接着層)を介して貼着することにより、放射線変換パネル28を得る。 In this case, first, in FIG. 17A, the switching filter 28b is formed by vapor deposition on the common electrode 78a formed on the a-Se semiconductor layer 74a by the process of FIG. 14D. Next, as shown in FIG. 17B, the scintillator of the second radiation detector 72c is formed on the switching filter 28b by vapor deposition. Thereafter, as shown in FIG. 17C, the second charge detection unit 70c and the second radiation detection unit 72c formed on the insulating substrate 68c in the step of FIG. 15A are connected to the adhesive layer 136 (or adhesive layer). The radiation conversion panel 28 is obtained by sticking through the sheet.
 図18A~図19Bは、図14A~図15Dの製造工程の第3の変形例を図示したものである。 FIGS. 18A to 19B illustrate a third modification of the manufacturing process of FIGS. 14A to 15D.
 この場合、先ず、図18Aにおいて、図16Cの工程により第2の電荷検出部70cに貼着された第2の放射線検出部72cに対して、蒸着により、切換フィルタ28bを形成する。次に、図18Bに示すように、切換フィルタ28b上に蒸着により共通電極78aを形成する。その後、図18Cに示すように、共通電極78a上にa-Seの半導体層74aを蒸着により形成する。次に、図19Aに示すように、半導体層74a上に複数の画素電極76aを形成する。最後に、図19Bに示すように、図14Aの工程で絶縁性基板68aに形成された第1の電荷検出部70aと、複数の画素電極76a及び半導体層74aとを粘着層138(又は接着層)を介して貼着することにより、放射線変換パネル28を得る。 In this case, first, in FIG. 18A, the switching filter 28b is formed by vapor deposition on the second radiation detection unit 72c attached to the second charge detection unit 70c by the process of FIG. 16C. Next, as shown in FIG. 18B, a common electrode 78a is formed on the switching filter 28b by vapor deposition. Thereafter, as shown in FIG. 18C, an a-Se semiconductor layer 74a is formed on the common electrode 78a by vapor deposition. Next, as shown in FIG. 19A, a plurality of pixel electrodes 76a are formed on the semiconductor layer 74a. Finally, as shown in FIG. 19B, the first charge detector 70a formed on the insulating substrate 68a in the process of FIG. 14A, the plurality of pixel electrodes 76a and the semiconductor layer 74a are bonded to the adhesive layer 138 (or adhesive layer). ) To obtain the radiation conversion panel 28.
 なお、第3の変形例では、半導体層74a上に複数の画素電極76aを形成することにより、半導体層74aの絶縁性基板68a側の表面が凹凸状になるため、第1の電荷検出部70aと各画素電極76a及び半導体層74aとを粘着層138を介して貼着することで、該粘着層138が平坦化膜として機能する。 In the third modification, the surface of the semiconductor layer 74a on the side of the insulating substrate 68a becomes uneven by forming the plurality of pixel electrodes 76a on the semiconductor layer 74a, and thus the first charge detection unit 70a. The pixel electrode 76a and the semiconductor layer 74a are attached to each other via the adhesive layer 138, so that the adhesive layer 138 functions as a planarizing film.
 なお、図14A~図19Bの説明では、第2の放射線検出部72cがCsI:Naの柱状結晶のシンチレータである場合について説明したが、CaWO等の柱状結晶を有しないシンチレータを使用する場合には、上述した第2の放射線検出部72cについて、「蒸着基板132」の文言を「PET等の基板」に置換し、「蒸着して形成」等の文言を「塗布」に置換することにより、CaWO等のシンチレータを使用した放射線変換パネル28の製造工程の説明になる。 In the description of FIGS. 14A to 19B, the case where the second radiation detector 72c is a CsI: Na columnar crystal scintillator has been described. However, when a scintillator having no columnar crystal such as CaWO 4 is used. For the second radiation detection unit 72c described above, the term “deposition substrate 132” is replaced with “substrate such as PET”, and the term “deposition formed” is replaced with “application”. made to the description of the manufacturing process of the radiation conversion panel 28 using a scintillator of CaWO 4, or the like.
[本実施形態の変形例]
 次に、本実施形態に係る放射線撮影装置10の変形例について、図20A~図21Bを参照しながら説明する。なお、以下の説明では、これまでに説明した構成要素と同じ構成要素については、同じ参照符号を付けて、その詳細な説明を省略する。
[Modification of this embodiment]
Next, a modification of the radiation imaging apparatus 10 according to the present embodiment will be described with reference to FIGS. 20A to 21B. In the following description, the same reference numerals are assigned to the same components as those described above, and the detailed description thereof is omitted.
 図20Aは、第2実施例の放射線変換パネル28(図3B参照)を1つの画素62について拡大して図示したものであり、図20Bは、第3実施例の放射線変換パネル28(図4A参照)を1つの画素62について拡大して図示したものである。 20A is an enlarged view of the radiation conversion panel 28 (see FIG. 3B) of the second embodiment with respect to one pixel 62, and FIG. 20B shows the radiation conversion panel 28 (see FIG. 4A) of the third embodiment. ) Is enlarged and illustrated for one pixel 62.
 図20Aの第2実施例においては、第2の電荷検出部70c及び絶縁性基板68cを放射線16が透過すると共に、第2の放射線検出部72cのCsI:Naのシンチレータの柱状結晶構造88cで発生した蛍光98のうち、a-Seの感度波長領域を含む短波長領域の光を透過光102として透過させるために、第2の電荷検出部70c及び絶縁性基板68cは、放射線16の吸収性が低く、且つ、該光を透過可能であるか、又は、該光の吸収性や遮光性が低い材料からなることが好ましい。 In the second embodiment of FIG. 20A, the radiation 16 passes through the second charge detector 70c and the insulating substrate 68c, and is generated in the columnar crystal structure 88c of the CsI: Na scintillator of the second radiation detector 72c. In order to transmit the light in the short wavelength region including the sensitivity wavelength region of a-Se as the transmitted light 102 in the fluorescent light 98, the second charge detection unit 70c and the insulating substrate 68c have the absorption of the radiation 16. It is preferably made of a material that is low and can transmit the light, or has low light absorption and light shielding properties.
 具体的に、第2実施例において、絶縁性基板68cは、絶縁性基板68aと同じ材質の基板からなることが好ましい。また、TFT82cは、TFT82aと同様に、アモルファスシリコン(a-Si)、アモルファス酸化物(例えば、a-IGZO(InGaZnO))、有機半導体材料、カーボンナノチューブ等からなる活性層を含み構成され、フォトダイオード86cについても、a-Siからなることが好ましい。従って、TFT82cに接続されるゲート線64c及び信号線66cについても、放射線16の吸収性が低く、且つ、該光を透過可能であるか、又は、該光の吸収性や遮光性が低い導電性材料からなることが好ましい。 Specifically, in the second embodiment, the insulating substrate 68c is preferably made of the same material as the insulating substrate 68a. Similarly to the TFT 82a, the TFT 82c includes an active layer made of amorphous silicon (a-Si), amorphous oxide (for example, a-IGZO (InGaZnO 4 )), an organic semiconductor material, a carbon nanotube, and the like. The diode 86c is also preferably made of a-Si. Therefore, the gate line 64c and the signal line 66c connected to the TFT 82c also have low radiation 16 absorptivity and can transmit the light, or have a low absorptivity and light shielding property. It is preferable to consist of materials.
 この第2実施例においても、第2の放射線検出部72cでは、柱状結晶構造88cの発光箇所100において、放射線16の高エネルギー成分を吸収して蛍光98に変換する。但し、第2実施例では、発光箇所100で発生した蛍光98は、柱状結晶を直進してフォトダイオード86cに直接到達するか、あるいは、柱状結晶を反射膜80c側に伝播して該反射膜80cで反射し、反射光140として柱状結晶を直進してフォトダイオード86cに至る。従って、フォトダイオード86cは、柱状結晶を直進して直接到達した蛍光98、及び、反射光140を電荷に変換して蓄積する。 Also in the second embodiment, the second radiation detection unit 72c absorbs the high energy component of the radiation 16 and converts it into fluorescence 98 at the light emitting portion 100 of the columnar crystal structure 88c. However, in the second embodiment, the fluorescence 98 generated at the light emitting portion 100 travels straight through the columnar crystal and directly reaches the photodiode 86c, or propagates through the columnar crystal to the reflection film 80c side and reflects the reflection film 80c. The reflected light 140 travels straight through the columnar crystal and reaches the photodiode 86c. Therefore, the photodiode 86c converts the fluorescent light 98 that has directly reached through the columnar crystal and the reflected light 140 into electric charges and accumulates them.
 ここで、図11でも説明したように、a-Si:Hのフォトダイオード86cは、主として、500nmを超える長波長領域の光を電荷に変換し、500nm以下の短波長領域の光については、量子効率が低い。従って、第2実施例において、第2の電荷検出部70cは、入射した蛍光98及び反射光140のうち、500nm以下の短波長領域の光(例えば、青色波長領域の光)を透過させ、透過光102として第1の放射線検出部72aに入射させる。これにより、第1の放射線検出部72aの半導体層74aは、入射した透過光102を正電荷94c及び負電荷96cの電荷対に光電変換することが可能となる。従って、第2実施例の放射線変換パネル28においても、第1実施例と同様の効果が得られる。 Here, as described with reference to FIG. 11, the a-Si: H photodiode 86c mainly converts light in a long wavelength region exceeding 500 nm into electric charges, and for light in a short wavelength region of 500 nm or less, Low efficiency. Therefore, in the second embodiment, the second charge detection unit 70c transmits and transmits light having a short wavelength region of 500 nm or less (for example, light in the blue wavelength region) out of the incident fluorescence 98 and reflected light 140. The light 102 is incident on the first radiation detector 72a. Thereby, the semiconductor layer 74a of the first radiation detection unit 72a can photoelectrically convert the incident transmitted light 102 into a charge pair of a positive charge 94c and a negative charge 96c. Therefore, the radiation conversion panel 28 of the second embodiment can achieve the same effect as that of the first embodiment.
 図20Bの第3実施例においては、絶縁性基板68aと絶縁性基板68cとを粘着層142(又は接着層)を介して貼着している。また、第2の電荷検出部70cは、フォトダイオード86cに代えて、有機フォトコンダクタ144cを有する。この場合、放射線16の入射方向に沿って、TFT82cと有機フォトコンダクタ144cとが順に積層されている。 20B, the insulating substrate 68a and the insulating substrate 68c are attached via the adhesive layer 142 (or adhesive layer). The second charge detector 70c includes an organic photoconductor 144c instead of the photodiode 86c. In this case, the TFT 82c and the organic photoconductor 144c are sequentially stacked along the incident direction of the radiation 16.
 図21A及び図21Bは、第2の電荷検出部70cにおける有機フォトコンダクタ144cの平面配置を模式的に図示したものであり、1つの画素62について、1つの有機フォトコンダクタ144c(及びTFT82c)が割り当てられている。図21A及び図21Bに示すように、第3実施例では、第2の電荷検出部70c及びTFT82cは、平面視で、マトリックス状にタイリング配置されている。 21A and 21B schematically show the planar arrangement of the organic photoconductor 144c in the second charge detection unit 70c, and one organic photoconductor 144c (and TFT 82c) is assigned to one pixel 62. It has been. As shown in FIGS. 21A and 21B, in the third embodiment, the second charge detectors 70c and the TFTs 82c are tiled in a matrix in a plan view.
 そして、有機フォトコンダクタ144cは、例えば、キナクリドンを含むことにより、緑色波長領域(マゼンタ色)の蛍光98を吸収して電荷に変換するか、あるいは、緑色(マゼンタ色)又は赤色(シアン色)の波長領域の蛍光98を吸収して電荷に変換することが好ましい。 The organic photoconductor 144c includes, for example, quinacridone so as to absorb the fluorescent light 98 in the green wavelength region (magenta color) and convert it into charges, or green (magenta) or red (cyan). It is preferable to absorb the fluorescence 98 in the wavelength region and convert it into charges.
 図21Aは、第2の電荷検出部70cにタイリング配置された全ての有機フォトコンダクタ144cが、緑色波長領域の蛍光98を吸収する光電変換素子である場合を図示している。 FIG. 21A illustrates a case where all the organic photoconductors 144c that are tilingly arranged on the second charge detection unit 70c are photoelectric conversion elements that absorb fluorescence 98 in the green wavelength region.
 また、図21Bは、第2の電荷検出部70cにタイリング配置された全ての有機フォトコンダクタ144cのうち、大部分の有機フォトコンダクタ144cが緑色波長領域の蛍光98を吸収する光電変換素子である一方で、一部の有機フォトコンダクタ144c(図21Bで斜線で図示)が赤色波長領域の蛍光98を吸収する光電変換素子である場合を図示している。なお、赤色は、蛍光98が屈折し難く、第2の放射線画像の画像ボケの原因となり得る可能性が高いため、赤色波長領域の蛍光98を吸収する有機フォトコンダクタ144cについては、該第2の放射線画像の画像形成用のセンサには用いずに、放射線16の照射の有無を検出するためのモニタ用センサとして使用すればよい。 FIG. 21B shows a photoelectric conversion element in which most of the organic photoconductors 144c among all the organic photoconductors 144c arranged on the second charge detection unit 70c absorb the fluorescence 98 in the green wavelength region. On the other hand, the case where some organic photoconductors 144c (shown by hatching in FIG. 21B) are photoelectric conversion elements that absorb fluorescence 98 in the red wavelength region is illustrated. Note that since red is difficult to refract the fluorescence 98 and may cause image blur of the second radiation image, the organic photoconductor 144c that absorbs the fluorescence 98 in the red wavelength region is the second one. What is necessary is just to use it as a sensor for a monitor for detecting the presence or absence of irradiation of the radiation | emission 16, without using for the sensor for image formation of a radiographic image.
 そして、第3実施例の放射線変換パネル28において、有機フォトコンダクタ144cに入射した蛍光98及び反射光140のうち、緑色波長領域の光、あるいは、緑色波長領域及び赤色波長領域の光は、有機フォトコンダクタ144cに吸収されて電荷に変換される。一方、それよりも短波長領域の光(例えば、青色波長領域の光)は、透過光102として、有機フォトコンダクタ144c、TFT82c及び第1の電荷検出部70aを透過して、第1の放射線検出部72aに至る。 In the radiation conversion panel 28 of the third embodiment, among the fluorescent light 98 and the reflected light 140 incident on the organic photoconductor 144c, the light in the green wavelength region or the light in the green wavelength region and the red wavelength region is emitted from the organic photoconductor 144c. It is absorbed by the conductor 144c and converted into electric charge. On the other hand, light in a shorter wavelength region (for example, light in the blue wavelength region) is transmitted as the transmitted light 102 through the organic photoconductor 144c, the TFT 82c, and the first charge detection unit 70a, so that the first radiation detection is performed. It reaches part 72a.
 これにより、第1の放射線検出部72aの半導体層74aは、入射した透過光102を正電荷94c及び負電荷96cの電荷対に光電変換することが可能となる。従って、第3実施例の放射線変換パネル28においても、第1実施例と同様の効果が得られる。 Thereby, the semiconductor layer 74a of the first radiation detection unit 72a can photoelectrically convert the incident transmitted light 102 into a charge pair of a positive charge 94c and a negative charge 96c. Therefore, the same effect as that of the first embodiment can be obtained in the radiation conversion panel 28 of the third embodiment.
 しかも、有機フォトコンダクタ144cを用いれば、シンチレータとしては、青色波長領域に限定されず、CsI:TlやGOS等の緑色波長領域を発生する蛍光体を使用することが可能となる。なお、CsI:Naのシンチレータを用いた場合でも、有機フォトコンダクタ144cは、緑色から赤色までの波長帯の波長の光を吸収可能であるため、光検出効率を向上させることができる。 Moreover, if the organic photoconductor 144c is used, the scintillator is not limited to the blue wavelength region, and a phosphor that generates a green wavelength region such as CsI: Tl or GOS can be used. Even when a CsI: Na scintillator is used, the organic photoconductor 144c can absorb light having a wavelength in the wavelength band from green to red, so that the light detection efficiency can be improved.
 このように、図20A~図21Bで説明した第2及び第3実施例においては、透過光102が通過する途中にフォトダイオード86c又は有機フォトコンダクタ144cが配置されていても、フォトダイオード86c又は有機フォトコンダクタ144cは、a-Seの感度波長領域である青色波長領域を含む短波長領域の透過光102を透過させる共に、該透過光102よりも長波長領域の蛍光98及び反射光140を吸収して電荷に変換する。従って、半導体層74aでは、入射した透過光102を効率よく電荷94c、96cに変換できると共に、フォトダイオード86c又は有機フォトコンダクタ144cでは、前記感度波長領域を超える長波長領域の光を確実に電荷に変換することができる。従って、これらの構成でも、第1の放射線変換層28a及び第2の放射線変換層28cにおける各放射線画像の高画質化を容易に実現することができる。 As described above, in the second and third embodiments described with reference to FIGS. 20A to 21B, even if the photodiode 86c or the organic photoconductor 144c is disposed in the middle of passing the transmitted light 102, the photodiode 86c or the organic The photoconductor 144c transmits the transmitted light 102 in the short wavelength region including the blue wavelength region which is the sensitivity wavelength region of a-Se, and absorbs the fluorescence 98 and the reflected light 140 in the longer wavelength region than the transmitted light 102. And convert it into electric charge Therefore, in the semiconductor layer 74a, the incident transmitted light 102 can be efficiently converted into charges 94c and 96c, and in the photodiode 86c or the organic photoconductor 144c, light in a long wavelength region exceeding the sensitivity wavelength region is reliably converted into charges. Can be converted. Therefore, even with these configurations, it is possible to easily realize high image quality of each radiation image in the first radiation conversion layer 28a and the second radiation conversion layer 28c.
 また、上記の説明では、第2の放射線検出部72cとしてのシンチレータは、一種類の蛍光体から構成されているが、本実施形態では、複数の蛍光物質をブレンドしたシンチレータを用いることも可能である。 In the above description, the scintillator as the second radiation detection unit 72c is composed of one type of phosphor. However, in this embodiment, a scintillator in which a plurality of phosphors are blended can be used. is there.
 具体的には、a-Seの感度波長領域の蛍光98(透過光102)を発生する第1の蛍光物質と、第2の電荷検出部70cのフォトダイオード86c又は有機フォトコンダクタ144cの感度波長領域の蛍光98及び反射光104、140を発生する第2の蛍光物質とをブレンドして構成されるシンチレータを第2の放射線検出部72cとして使用する。 Specifically, the sensitivity wavelength region of the first fluorescent substance that generates fluorescence 98 (transmitted light 102) in the sensitivity wavelength region of a-Se and the photodiode 86c or the organic photoconductor 144c of the second charge detection unit 70c. A scintillator configured by blending the fluorescent material 98 and the second fluorescent material that generates the reflected lights 104 and 140 is used as the second radiation detection unit 72c.
 この場合、間接変換型の第2の放射線変換層28cでは、通常使用されることのない第1の蛍光物質をシンチレータの構成材料として積極的に使用することになる。ここで、第1の蛍光物質で発生した蛍光98(例えば、青色波長領域の蛍光98)を透過光102としてa-Seの半導体層74aに入射させると、該半導体層74aでは、透過光102を電荷94c、96cに確実に変換することができる。一方、第2の蛍光物質で発生した蛍光98(例えば、500nm以上の長波長領域の蛍光98)は、第2の電荷検出部70cのフォトダイオード86c又は有機フォトコンダクタ144cで電荷に確実に変換することができる。 In this case, in the indirect conversion type second radiation conversion layer 28c, the first fluorescent material that is not normally used is actively used as a constituent material of the scintillator. Here, when fluorescence 98 (for example, fluorescence 98 in the blue wavelength region) generated by the first fluorescent material is incident on the a-Se semiconductor layer 74a as transmitted light 102, the transmitted light 102 is transmitted in the semiconductor layer 74a. The charges 94c and 96c can be reliably converted. On the other hand, the fluorescence 98 (for example, fluorescence 98 in the long wavelength region of 500 nm or more) generated by the second fluorescent material is reliably converted into charges by the photodiode 86c or the organic photoconductor 144c of the second charge detection unit 70c. be able to.
 このように、半導体層74aの特性と、フォトダイオード86c又は有機フォトコンダクタ144cの特性とに応じて、第1の蛍光物質及び第2の蛍光物質を選択してブレンドしたシンチレータを第2の放射線検出部72cとして使用する。これにより、a-Seの半導体層74aを厚膜化することなく、放射線16の吸収エネルギーを制御して、第1の放射線変換層28a及び第2の放射線変換層28cにおいて所望の放射線画像を取得することが可能となる。 As described above, the scintillator obtained by selecting and blending the first fluorescent material and the second fluorescent material according to the characteristics of the semiconductor layer 74a and the characteristics of the photodiode 86c or the organic photoconductor 144c is used for the second radiation detection. Used as part 72c. Thus, the absorption energy of the radiation 16 is controlled without increasing the thickness of the a-Se semiconductor layer 74a, and a desired radiation image is obtained in the first radiation conversion layer 28a and the second radiation conversion layer 28c. It becomes possible to do.
 例えば、第1の放射線変換層28aにおいて、放射線16の低エネルギー成分及び中エネルギー成分(低い管電圧及び中程度の管電圧に応じたエネルギー成分)に応じた放射線画像、又は、低エネルギー成分から高エネルギー成分(低い管電圧から高い管電圧に応じたエネルギー成分)までの広い範囲のエネルギー成分に応じた放射線画像を取得する目的で、第1の蛍光物質を選択することにより、半導体層74aで吸収されるエネルギー成分を制御して、所望の放射線画像を取得することができる。 For example, in the first radiation conversion layer 28a, a radiation image corresponding to a low energy component and a medium energy component (energy component corresponding to a low tube voltage and a medium tube voltage) of the radiation 16 or a low energy component to a high energy component. Absorbed by the semiconductor layer 74a by selecting the first fluorescent material for the purpose of acquiring a radiation image corresponding to a wide range of energy components from low to high tube voltages. The desired radiation image can be acquired by controlling the energy component.
 上述したブレンドのシンチレータについて、蛍光物質を具体的に例示して説明する。 The above-described blend scintillator will be described with specific examples of fluorescent materials.
 Kエッジ37keVで主として紫色の蛍光を発生するBaFBr:Euを第1の蛍光物質とし、Kエッジ60keVで主として緑色の蛍光を発生し、サブとして青色の蛍光を発生するGOS:Tbを第2の蛍光物質として、両者をブレンドしてシンチレータを構成する。この場合、GOS:Tbで発生した蛍光は、主として、フォトダイオード86c又は有機フォトコンダクタ144cで受光される。BaFBr:Euで発生した蛍光は、その一部がフォトダイオード86c又は有機フォトコンダクタ144cでも受光されるが、大部分は、フォトダイオード86c又は有機フォトコンダクタ144cを通過して、a-Seの半導体層74aに透過光102として入射する。 BaFBr: Eu that mainly generates purple fluorescence at the K edge 37 keV is used as the first fluorescent material, GOS: Tb that mainly generates green fluorescence at the K edge 60 keV and generates blue fluorescence as the second fluorescence is used as the second fluorescence. As a substance, both are blended to form a scintillator. In this case, the fluorescence generated by GOS: Tb is mainly received by the photodiode 86c or the organic photoconductor 144c. A part of the fluorescence generated in BaFBr: Eu is also received by the photodiode 86c or the organic photoconductor 144c, but most of the fluorescence passes through the photodiode 86c or the organic photoconductor 144c, and is a semiconductor layer of a-Se. 74a enters as transmitted light 102.
 従って、TFT82aでは、低エネルギー成分及び中エネルギー成分に応じた第1の放射線画像が得られ、TFT82cでは、高エネルギー成分に応じた第2の放射線画像が得られる。また、第1の放射線画像と第2の放射線画像とを加算すれば、低エネルギー成分から高エネルギー成分までの広範囲のエネルギー成分の放射線画像が得られる。 Therefore, the TFT 82a obtains a first radiation image corresponding to the low energy component and the medium energy component, and the TFT 82c obtains a second radiation image corresponding to the high energy component. Moreover, if the first radiographic image and the second radiographic image are added, a radiographic image of a wide range of energy components from a low energy component to a high energy component can be obtained.
 ところで、上述した図3B及び図20Aの第2実施例や、図4A及び図20Bの第3実施例にブレンドしたシンチレータを適用する場合、透過光102が第2の電荷検出部70cを通過するため、a-SiのTFT82cが透過光102を吸収し、スイッチングノイズの原因になる可能性がある。これに対しては、a-Siでの感度が低い紫色の光を透過光102として第2の電荷検出部70cを通過させるようにすれば、a-SiのTFT82cでの透過光102の吸収が抑制されるので、スイッチングノイズの発生を抑えることができる。 By the way, when the scintillator blended with the second embodiment of FIGS. 3B and 20A described above or the third embodiment of FIGS. 4A and 20B is applied, the transmitted light 102 passes through the second charge detection unit 70c. The a-Si TFT 82c may absorb the transmitted light 102 and cause switching noise. On the other hand, if violet light having low sensitivity in a-Si is passed through the second charge detection unit 70c as transmitted light 102, the a-Si TFT 82c absorbs the transmitted light 102. Since it is suppressed, generation | occurrence | production of switching noise can be suppressed.
[本実施形態の他の変形例]
 さらに、本実施形態に係る放射線撮影装置10は、図25~図44に示す変形例(第1~第6変形例に係る放射線撮影装置10A~10F)に改変することも可能である。
[Other Modifications of this Embodiment]
Furthermore, the radiation imaging apparatus 10 according to the present embodiment can be modified to the modifications shown in FIGS. 25 to 44 (radiation imaging apparatuses 10A to 10F according to the first to sixth modifications).
[第1変形例]
 第1変形例に係る放射線撮影装置10Aは、基本的には、可搬型の電子カセッテとして用いられ、図25~図28に示すように、放射線変換パネル28等を収容する六面体形状の筐体150が、放射線変換パネル28を収容する大容積の本体部150aと、通信部36及びバッテリ38を収容する小容積の増設部150bとに分離可能である。
[First Modification]
The radiation imaging apparatus 10A according to the first modification is basically used as a portable electronic cassette, and as shown in FIGS. 25 to 28, a hexahedral housing 150 that houses the radiation conversion panel 28 and the like. However, it can be separated into a large-capacity main body 150 a that accommodates the radiation conversion panel 28 and a small-capacity expansion portion 150 b that accommodates the communication unit 36 and the battery 38.
 具体的に、図25に示すように、大容積の筐体である本体部150aのうち、放射線16が照射される照射面152には、撮影領域及び撮影位置の基準となるガイド線154が形成されている。ガイド線154を用いて、放射線撮影装置10Aに対する被写体14(図1参照)の位置決めを行い、また、放射線16の照射範囲を設定すれば、適切な放射線画像を撮影することができる。 Specifically, as shown in FIG. 25, a guide line 154 serving as a reference for an imaging region and an imaging position is formed on the irradiation surface 152 to which the radiation 16 is irradiated in the main body 150a which is a large-volume housing. Has been. If the subject 14 (see FIG. 1) is positioned with respect to the radiation imaging apparatus 10A using the guide line 154 and the irradiation range of the radiation 16 is set, an appropriate radiographic image can be captured.
 一方、小容積の筐体である増設部150bの側面(本体部150aから遠位の側面)には、取っ手156が設けられている。前記遠位の側面には、本体部150aと増設部150bとの連結状態を解除するための解除ボタン158が設けられている。また、増設部150bの上面には、各種の情報を表示可能な表示部160が設けられている。さらに、前記遠位の側面には、放射線撮影装置10Aを起動させるための電源スイッチ162と、外部からの電力供給が可能なACアダプタの入力端子164とが設けられている。 On the other hand, a handle 156 is provided on a side surface (a side surface distal to the main body 150a) of the expansion portion 150b which is a small-volume housing. A release button 158 for releasing the connection state between the main body 150a and the extension 150b is provided on the distal side surface. A display unit 160 capable of displaying various types of information is provided on the upper surface of the expansion unit 150b. Furthermore, a power switch 162 for activating the radiation imaging apparatus 10A and an input terminal 164 of an AC adapter capable of supplying power from the outside are provided on the distal side surface.
 また、増設部150bにおいて、本体部150aに連なる一方の側面には、USB(Universal Serial Bus)ケーブルを接続することで、コンソール20等の外部機器との間で有線通信による情報の送受信を行うことが可能なUSB端子166が設けられている。一方、増設部150bにおいて、本体部150aに連なる他方の側面には、メモリカード168を装填することで必要な情報を記録し、当該情報の記録後にメモリカード168を取り出して外部機器に装填することにより、情報の送受信を行うことが可能なカードスロット170が設けられている。 In addition, in the expansion unit 150b, a USB (Universal Serial Bus) cable is connected to one side surface connected to the main unit 150a, so that information can be transmitted / received to / from an external device such as the console 20 by wired communication. A USB terminal 166 is provided. On the other hand, in the expansion unit 150b, necessary information is recorded by loading the memory card 168 on the other side surface connected to the main body unit 150a, and after the information is recorded, the memory card 168 is taken out and loaded into an external device. Thus, a card slot 170 capable of transmitting / receiving information is provided.
 図26は、本体部150aと増設部150bとが分離している状態を図示したものである。 FIG. 26 illustrates a state in which the main body 150a and the extension 150b are separated.
 本体部150aにおいて、増設部150bに対向する側面172には、凹部174が形成されている。一方、増設部150bにおいて、本体部150aの側面172に対向する側面176には、凹部174に嵌合可能な凸部178が形成されている。 In the main body 150a, a recess 174 is formed on a side surface 172 facing the extension 150b. On the other hand, in the extension part 150b, a convex part 178 that can be fitted into the concave part 174 is formed on the side face 176 that faces the side face 172 of the main body part 150a.
 凹部174内の左右の壁部には、それぞれ、収容凹部180、182が対向して設けられている。凸部178の左右の側面には、収容凹部180、182に係止可能な係止部184、186がそれぞれ設けられている。 The left and right wall portions in the recess 174 are provided with receiving recesses 180 and 182, respectively. Locking portions 184 and 186 that can be locked to the housing recesses 180 and 182 are provided on the left and right side surfaces of the convex portion 178, respectively.
 また、凹部174の奥側には、コネクタ188が設けられている。一方、凸部178には、凹部174と凸部178とが嵌合した際に、コネクタ188と接続可能なコネクタ190が設けられている。 Further, a connector 188 is provided on the back side of the recess 174. On the other hand, the convex portion 178 is provided with a connector 190 that can be connected to the connector 188 when the concave portion 174 and the convex portion 178 are fitted.
 ここで、本体部150aと増設部150bとが分離している状態で、医師又は技師(以下、ユーザ192ともいう。)が取っ手156を把持しながら凸部178を凹部174に挿入すると、2つのコネクタ188、190が接続され、係止部184、186が収容凹部180、182にそれぞれ係止される。これにより、本体部150aと増設部150bとが一体的に連結固定され、本体部150aの側面172と増設部150bの側面176とが面接触の状態となる。 Here, if the doctor or an engineer (hereinafter also referred to as a user 192) inserts the protrusion 178 into the recess 174 while holding the handle 156 in a state where the main body 150a and the extension 150b are separated, The connectors 188 and 190 are connected, and the locking portions 184 and 186 are locked in the housing recesses 180 and 182, respectively. Thus, the main body 150a and the extension 150b are integrally connected and fixed, and the side surface 172 of the main body 150a and the side 176 of the extension 150b are in surface contact.
 一方、ユーザ192が解除ボタン158を押すと、係止部184、186が凸部178側に後退し、係止部184、186と収容凹部180、182との係止状態が解除される。この状態で、ユーザ192が取っ手156を把持しながら増設部150bをユーザ192側に引っ張ると、増設部150bが本体部150aから離間する。この結果、凹部174と凸部178との嵌合状態や、2つのコネクタ188、190の接続状態が解除される。 On the other hand, when the user 192 presses the release button 158, the locking portions 184 and 186 are retracted toward the convex portion 178, and the locking state between the locking portions 184 and 186 and the housing recesses 180 and 182 is released. In this state, when the user 192 holds the handle 156 and pulls the expansion unit 150b toward the user 192, the expansion unit 150b is separated from the main body unit 150a. As a result, the fitting state between the concave portion 174 and the convex portion 178 and the connection state between the two connectors 188 and 190 are released.
 図27は、本体部150aの上面(照射面152)の一部や、増設部150bの上面の一部を破断して、本体部150a及び増設部150bの内部を図示したものである。また、図28は、本体部150a及び増設部150bの断面図である。 FIG. 27 illustrates the inside of the main body 150a and the additional part 150b by breaking a part of the upper surface (irradiation surface 152) of the main body part 150a and a part of the upper surface of the additional part 150b. FIG. 28 is a cross-sectional view of the main body 150a and the extension 150b.
 本体部150a内には、板状の基台196が配置されている。基台196は、図示しない固定部材により、本体部150a内に収容されている。本体部150aの照射面152側の内壁と、基台196の上面(照射面152側の面)との間には、放射線変換パネル28が介挿されている。この場合、基台196の上面から照射面152に向かって、第2の放射線変換層28c、切換フィルタ28b及び第1の放射線変換層28aが順に積層されている。 A plate-like base 196 is disposed in the main body 150a. The base 196 is accommodated in the main body 150a by a fixing member (not shown). The radiation conversion panel 28 is interposed between the inner wall on the irradiation surface 152 side of the main body 150a and the upper surface of the base 196 (the surface on the irradiation surface 152 side). In this case, the second radiation conversion layer 28c, the switching filter 28b, and the first radiation conversion layer 28a are sequentially laminated from the upper surface of the base 196 toward the irradiation surface 152.
 なお、第1変形例においても、切換フィルタ28bは必須ではなく、第2の放射線変換層28c及び第1の放射線変換層28aの順に積層された配置構造であってもよい。いずれの場合であっても、第1の放射線変換層28aは、照射面152側の内壁に面接触していることが望ましい。 In the first modification, the switching filter 28b is not essential, and an arrangement structure in which the second radiation conversion layer 28c and the first radiation conversion layer 28a are stacked in this order may be employed. In any case, it is desirable that the first radiation conversion layer 28a is in surface contact with the inner wall on the irradiation surface 152 side.
 基台196の平面積は、放射線変換パネル28の平面積よりも僅かに大きい。また、ガイド線154の外枠は、放射線変換パネル28の輪郭に対応している。 The plane area of the base 196 is slightly larger than the plane area of the radiation conversion panel 28. The outer frame of the guide line 154 corresponds to the outline of the radiation conversion panel 28.
 ここで、図27に示すように、放射線変換パネル28の各側面には、複数のフレキシブル基板198~204が所定間隔で接続されている。しかも、各フレキシブル基板198~204は、放射線変換パネル28の異なる側面に接続されている。 Here, as shown in FIG. 27, a plurality of flexible boards 198 to 204 are connected to each side surface of the radiation conversion panel 28 at a predetermined interval. In addition, the flexible substrates 198 to 204 are connected to different side surfaces of the radiation conversion panel 28.
 具体的に、図27及び図28に示すように、第1の放射線変換層28aの一方の側面(図27の左側面)には、複数のフレキシブル基板198が所定間隔で接続されている。また、第1の放射線変換層28aの他方の側面(図27の右側面)には、複数のフレキシブル基板202が所定間隔で接続されている。さらに、切換フィルタ28bの一側面(図27では増設部150bから遠位の側面、図28の右側面)には、複数のフレキシブル基板204が所定間隔で接続されている。さらにまた、第2の放射線変換層28cの一側面(図27では増設部150b近傍の側面、図28の左側面)には、複数のフレキシブル基板200が所定間隔で接続されている。 Specifically, as shown in FIGS. 27 and 28, a plurality of flexible substrates 198 are connected to one side surface (the left side surface in FIG. 27) of the first radiation conversion layer 28a at a predetermined interval. A plurality of flexible substrates 202 are connected to the other side surface (the right side surface in FIG. 27) of the first radiation conversion layer 28a at a predetermined interval. Further, a plurality of flexible boards 204 are connected at a predetermined interval to one side surface of the switching filter 28b (a side surface distal to the additional portion 150b in FIG. 27 and a right side surface in FIG. 28). Furthermore, a plurality of flexible boards 200 are connected to one side surface of the second radiation conversion layer 28c (a side surface in the vicinity of the extension portion 150b in FIG. 27, a left side surface in FIG. 28) at a predetermined interval.
 基台196の底面には、絶縁基板206a~206cが配置され、各絶縁基板206a~206cには、駆動回路部30、読出回路部32、カセッテ制御部34、フィルタ制御部40及び/又は電圧供給部42(図1参照)として機能する電子部品208a~208cが搭載されている。 Insulating substrates 206a to 206c are disposed on the bottom surface of the base 196, and the driving circuit unit 30, the reading circuit unit 32, the cassette control unit 34, the filter control unit 40, and / or the voltage supply are provided on each of the insulating substrates 206a to 206c. Electronic components 208a to 208c that function as the unit 42 (see FIG. 1) are mounted.
 ここで、フレキシブル基板198、202は、電子部品208aと接続され、フレキシブル基板200は、電子部品208cと接続され、フレキシブル基板204は、電子部品208bと接続されている。また、これらの電子部品208a~208cは、図示しないケーブルを介してコネクタ188と接続されている。さらに、コネクタ188と接続可能なコネクタ190は、図示しないケーブルを介して通信部36及びバッテリ38と接続されている。 Here, the flexible substrates 198 and 202 are connected to the electronic component 208a, the flexible substrate 200 is connected to the electronic component 208c, and the flexible substrate 204 is connected to the electronic component 208b. Further, these electronic components 208a to 208c are connected to a connector 188 via a cable (not shown). Further, the connector 190 that can be connected to the connector 188 is connected to the communication unit 36 and the battery 38 via a cable (not shown).
 各フレキシブル基板198~204は、電気信号を伝送する信号ラインや、電圧及び電流を供給するための電源ラインとして機能する。そのため、電子部品208aは、フレキシブル基板198、202を介して第1の放射線変換層28aと電気的に接続され、駆動回路部30、読出回路部32及びカセッテ制御部34の一部として機能する。また、電子部品208bは、フレキシブル基板204を介して切換フィルタ28bと電気的に接続され、フィルタ制御部40及び電圧供給部42として機能する。さらに、電子部品208cは、フレキシブル基板200を介して第2の放射線変換層28cと電気的に接続され、駆動回路部30、読出回路部32及びカセッテ制御部34の一部として機能する。 Each flexible substrate 198 to 204 functions as a signal line for transmitting an electrical signal and a power supply line for supplying voltage and current. Therefore, the electronic component 208a is electrically connected to the first radiation conversion layer 28a via the flexible substrates 198 and 202, and functions as a part of the drive circuit unit 30, the readout circuit unit 32, and the cassette control unit 34. The electronic component 208 b is electrically connected to the switching filter 28 b via the flexible substrate 204 and functions as the filter control unit 40 and the voltage supply unit 42. Further, the electronic component 208 c is electrically connected to the second radiation conversion layer 28 c via the flexible substrate 200 and functions as a part of the drive circuit unit 30, the readout circuit unit 32, and the cassette control unit 34.
 本体部150aと増設部150bとが連結固定され、2つのコネクタ188、190が接続されている状態では、バッテリ38から2つのコネクタ188、190を介して各電子部品208a~208c等に電力供給を行うことができる。なお、増設部150bには電源スイッチ162が設けられているので、ユーザ192が電源スイッチ162をオン又はオフする毎に、バッテリ38は、各電子部品208a~208cに対する電力供給を開始又は停止してもよい。 When the main body 150a and the extension 150b are connected and fixed and the two connectors 188 and 190 are connected, power is supplied from the battery 38 to the electronic components 208a to 208c through the two connectors 188 and 190. It can be carried out. Since the power supply switch 162 is provided in the expansion unit 150b, the battery 38 starts or stops supplying power to the electronic components 208a to 208c each time the user 192 turns the power switch 162 on or off. Also good.
 また、各電子部品208a~208cは、2つのコネクタ188、190を介して通信部36との間で信号の送受信が可能である。そのため、通信部36は、各電子部品208a~208cからの信号を無線通信によりコンソール20に送信し、一方で、コンソール20から受信した情報を2つのコネクタ188、190を介して各電子部品208a~208cに送信することができる。なお、増設部150bには表示部160が設けられているので、各電子部品208a~208cからの情報や、通信部36と各電子部品208a~208cとの間で送受信される情報や、通信部36とコンソール20との間で送受信される情報を、表示部160に表示することも可能である。 In addition, each of the electronic components 208a to 208c can send and receive signals to and from the communication unit 36 via the two connectors 188 and 190. Therefore, the communication unit 36 transmits signals from the electronic components 208a to 208c to the console 20 by wireless communication, while information received from the console 20 is transmitted to the electronic components 208a to 208 via the two connectors 188 and 190. 208c can be transmitted. Since the extension unit 150b is provided with a display unit 160, information from each electronic component 208a to 208c, information transmitted and received between the communication unit 36 and each electronic component 208a to 208c, Information transmitted and received between the console 36 and the console 20 can also be displayed on the display unit 160.
 さらに、増設部150bには、入力端子164、USB端子166及びカードスロット170も設けられている。そのため、可搬型の放射線撮影装置10Aであっても、外部から入力端子164又はUSB端子166を介してバッテリ38を充電することが可能である。また、通信部36による無線通信が行えない場合には、USB端子166を介した有線通信も可能である。さらに、前記無線通信又は前記有線通信が行えない場合には、カードスロット170に装填されたメモリカード168に各電子部品208a~208cからの情報を記憶し、ユーザ192がコンソール20までメモリカード168を持ち運んでもよい。 Furthermore, the expansion unit 150b is also provided with an input terminal 164, a USB terminal 166, and a card slot 170. Therefore, even in the portable radiation imaging apparatus 10 </ b> A, the battery 38 can be charged from the outside via the input terminal 164 or the USB terminal 166. In addition, when wireless communication by the communication unit 36 cannot be performed, wired communication via the USB terminal 166 is also possible. Further, when the wireless communication or the wired communication cannot be performed, the information from each of the electronic components 208 a to 208 c is stored in the memory card 168 loaded in the card slot 170, and the user 192 holds the memory card 168 to the console 20. You can carry it around.
 ところで、第1の放射線変換層28aは、図1~図24でも説明したように、a-Seの半導体層74a(図3A~図10B、図20A及び図20B参照)を含み構成される直接変換型の放射線変換層である。a-Seは、30℃よりも高温の状態では、結晶化が進行して劣化するおそれがある。そのため、a-Seを含む放射線変換層を採用する場合には、何らかの手段を用いた温度管理対策、すなわち、半導体層74aの温度を30℃未満に抑える対応を講ずる必要がある。 The first radiation conversion layer 28a includes the a-Se semiconductor layer 74a (see FIGS. 3A to 10B, 20A, and 20B), as described with reference to FIGS. 1 to 24. Type radiation conversion layer. a-Se may deteriorate due to the progress of crystallization in a temperature higher than 30 ° C. Therefore, when adopting a radiation conversion layer containing a-Se, it is necessary to take a temperature control measure using some means, that is, a measure to keep the temperature of the semiconductor layer 74a below 30 ° C.
 そこで、第1変形例に係る放射線撮影装置10Aにおいて、第1の放射線変換層28aは、本体部150aにおける照射面152側の内壁に面接触している。また、本体部150aが増設部150bに連結されていれば、本体部150aの側面172と増設部150bの側面176とが面接触する。 Therefore, in the radiation imaging apparatus 10A according to the first modification, the first radiation conversion layer 28a is in surface contact with the inner wall on the irradiation surface 152 side in the main body 150a. Further, if the main body 150a is connected to the extension 150b, the side surface 172 of the main body 150a and the side 176 of the extension 150b are in surface contact.
 この場合、本体部150aにおける照射面152側の部分が第1の放射線変換層28aに対するヒートシンクとして機能する。この結果、第1の放射線変換層28a(の半導体層74a)で発生する熱が照射面152を介して放熱され、半導体層74aの温度を30℃未満に抑えることが可能となる。 In this case, the portion on the irradiation surface 152 side in the main body 150a functions as a heat sink for the first radiation conversion layer 28a. As a result, the heat generated in the first radiation conversion layer 28a (the semiconductor layer 74a) is dissipated through the irradiation surface 152, and the temperature of the semiconductor layer 74a can be suppressed to less than 30 ° C.
 しかも、本体部150aに対して増設部150bが連結固定されていれば、該増設部150bも第1の放射線変換層28aに対するヒートシンクとして機能する。増設部150bを本体部150aに連結することで、第1の放射線変換層28aに対する放熱面積を容易に拡大することができる。これにより、第1の放射線変換層28aで発生する熱を照射面152及び増設部150bを介して効率よく放熱し、半導体層74aの温度を30℃未満に効果的に抑えることができる。 In addition, if the extension part 150b is connected and fixed to the main body part 150a, the extension part 150b also functions as a heat sink for the first radiation conversion layer 28a. By connecting the expansion part 150b to the main body part 150a, the heat radiation area for the first radiation conversion layer 28a can be easily expanded. Thereby, the heat generated in the first radiation conversion layer 28a can be efficiently radiated through the irradiation surface 152 and the additional portion 150b, and the temperature of the semiconductor layer 74a can be effectively suppressed to less than 30 ° C.
 このように、半導体層74aの温度上昇を抑制することにより、a-Seの結晶化を抑制することが可能となる。 Thus, by suppressing the temperature rise of the semiconductor layer 74a, it is possible to suppress the crystallization of a-Se.
 なお、増設部150bが本体部150aから分離可能であるため、下記のようなa-Seの温度管理対策を行うこともできる。 Since the expansion unit 150b can be separated from the main body unit 150a, the following a-Se temperature management measures can be taken.
 すなわち、a-Seの温度上昇が予測されるオーダ情報である場合(例えば、撮影枚数が多いオーダ情報、又は、撮影時間が長いオーダ情報)、ユーザ192は、本体部150aに増設部150bを連結固定した後に、連結固定した放射線撮影装置10Aを用いて、オーダ情報に従った被写体14に対する放射線撮影を行えばよい。 That is, in the case of order information in which the temperature rise of a-Se is predicted (for example, order information with a large number of shots or order information with a long shooting time), the user 192 connects the expansion unit 150b to the main body 150a. After fixing, radiation imaging of the subject 14 according to the order information may be performed using the radiation imaging apparatus 10A coupled and fixed.
 一方、30℃を超えないことが予測されるオーダ情報である場合(例えば、撮影枚数が少ないオーダ情報、又は、撮影時間が短いオーダ情報)、ユーザ192は、本体部150aから増設部150bを分離させた状態で、本体部150aのみから構成される放射線撮影装置10Aを用いて、オーダ情報に従った被写体14に対する放射線撮影を行えばよい。この場合、例えば、図示しないケーブル付きのコネクタとコネクタ188とを連結して、外部から本体部150aに対して電力供給を行うと共に、外部との間で有線通信による信号の送受信を行えばよい。 On the other hand, when the order information is predicted not to exceed 30 ° C. (for example, order information with a small number of shots or order information with a short shooting time), the user 192 separates the extension unit 150b from the main body 150a. In this state, radiation imaging of the subject 14 according to the order information may be performed using the radiation imaging apparatus 10A including only the main body 150a. In this case, for example, a connector with a cable (not shown) and the connector 188 may be connected to supply power to the main body 150a from the outside, and to transmit and receive signals by wire communication with the outside.
 ところで、図29に示すように、a-SiのTFT82a、82c及びa-Siのフォトダイオード86c(図5A、図5B、図9A~図10B、図20A及び図20B参照)は、40℃を超えると、信号線66a、66c(図2参照)を介して読出回路部32に流れ出るリーク電流が急増する。従って、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cに対しても、a-Seの半導体層74aと同様の温度管理対策、すなわち、40℃未満に抑える対応を講ずる必要がある。 By the way, as shown in FIG. 29, the a-Si TFTs 82a and 82c and the a-Si photodiode 86c (see FIGS. 5A, 5B, 9A to 10B, 20A and 20B) exceed 40 ° C. As a result, the leakage current flowing out to the readout circuit section 32 via the signal lines 66a and 66c (see FIG. 2) increases rapidly. Therefore, it is necessary to take the same temperature control measures as the a-Se semiconductor layer 74a, that is, to keep the temperature below 40 ° C. for the a-Si TFTs 82a and 82c and the a-Si photodiode 86c.
 第1変形例では、前述のように、本体部150aの照射面152側の部分や、増設部150bがヒートシンクとして機能するので、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cで発生する熱を、照射面152及び増設部150bを介して外部に放熱することができる。この結果、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cの温度を40℃未満に抑制して、リーク電流の急増を防止することができる。 In the first modified example, as described above, the portion on the irradiation surface 152 side of the main body 150a and the additional portion 150b function as a heat sink, and thus are generated in the a-Si TFTs 82a and 82c and the a-Si photodiode 86c. The heat to be radiated can be radiated to the outside through the irradiation surface 152 and the extension part 150b. As a result, the temperature of the a-Si TFTs 82a and 82c and the a-Si photodiode 86c can be suppressed to less than 40 ° C., and a sudden increase in leakage current can be prevented.
[第2変形例]
 第2変形例に係る放射線撮影装置10Bも、基本的には、可搬型の電子カセッテとして用いられ、図30~図32に示すように、筐体150の一方の側面に取っ手156が設けられ、他方の側面には、開閉自在な蓋体210が設けられている。
[Second Modification]
The radiographic apparatus 10B according to the second modification is also basically used as a portable electronic cassette, and as shown in FIGS. 30 to 32, a handle 156 is provided on one side surface of the casing 150, On the other side surface, a lid 210 that can be opened and closed is provided.
 蓋体210には、表示部160、電源スイッチ162、入力端子164、USB端子166及びカードスロット170に加え、放射線撮影装置10Bの各種の状況を表示するLED等からなるインジケータ212が設けられている。なお、インジケータ212を省略し、表示部160で放射線撮影装置10Bの各種の状況を表示してもよい。また、蓋体210が開くことにより、筐体150内の中空部214が外部と連通することになる。 In addition to the display unit 160, the power switch 162, the input terminal 164, the USB terminal 166, and the card slot 170, the lid 210 is provided with an indicator 212 made up of LEDs or the like that display various conditions of the radiation imaging apparatus 10B. . Note that the indicator 212 may be omitted, and the display unit 160 may display various situations of the radiation imaging apparatus 10B. In addition, when the lid 210 is opened, the hollow portion 214 in the housing 150 communicates with the outside.
 筐体150内において、蓋体210から取っ手156に向かう方向に沿った2つの側壁216、218には、前記方向に沿って直線状に延在するレール220、222がそれぞれ形成されている。 In the housing 150, rails 220 and 222 extending linearly along the direction are formed on the two side walls 216 and 218 along the direction from the lid 210 toward the handle 156, respectively.
 中空部214において、レール220、222よりも下側の箇所には、図32に示すように、放射線変換パネル28、駆動回路部30、読出回路部32、カセッテ制御部34、通信部36、バッテリ38、フィルタ制御部40及び電圧供給部42(図1参照)を収容した放射線検出ユニット224が配置される。この場合、放射線変換パネル28は、放射線検出ユニット224内における照射面152寄りの箇所に収容されている。 In the hollow portion 214, the radiation conversion panel 28, the drive circuit unit 30, the readout circuit unit 32, the cassette control unit 34, the communication unit 36, and the battery are disposed below the rails 220 and 222, as shown in FIG. 38, a radiation detection unit 224 that houses the filter control unit 40 and the voltage supply unit 42 (see FIG. 1) is disposed. In this case, the radiation conversion panel 28 is accommodated in a location near the irradiation surface 152 in the radiation detection unit 224.
 放射線検出ユニット224における蓋体210と対向する側面には、コネクタ230付きのケーブル228が接続されている。コネクタ230は、蓋体210に設けられたコネクタ232と連結可能である。コネクタ232は、蓋体210に設けられた表示部160、電源スイッチ162、入力端子164、USB端子166、カードスロット170及びインジケータ212と電気的に接続されている。従って、2つのコネクタ230、232が連結することにより、蓋体210側の上記の各部は、コネクタ230、232を介して放射線検出ユニット224内のカセッテ制御部34等と電気的に接続されることになる。 A cable 228 with a connector 230 is connected to the side surface of the radiation detection unit 224 facing the lid 210. The connector 230 can be connected to a connector 232 provided on the lid 210. The connector 232 is electrically connected to the display unit 160, the power switch 162, the input terminal 164, the USB terminal 166, the card slot 170, and the indicator 212 provided on the lid 210. Therefore, when the two connectors 230 and 232 are connected, the above-described units on the lid 210 side are electrically connected to the cassette control unit 34 and the like in the radiation detection unit 224 via the connectors 230 and 232. become.
 一方、中空部214において、放射線検出ユニット224と、筐体150の照射面152側の内壁との間の箇所には、放射線検出ユニット224と前記内壁とにそれぞれ接触するように、放熱ユニット226が配置されている。放熱ユニット226は、後述するように、放射線検出ユニット224(内の放射線変換パネル28)で発生する熱を効率よく放熱する必要があるため、熱伝達係数の高い物質で構成されていることが望ましい。 On the other hand, in the hollow portion 214, the heat radiation unit 226 is disposed at a position between the radiation detection unit 224 and the inner wall on the irradiation surface 152 side of the housing 150 so as to come into contact with the radiation detection unit 224 and the inner wall, respectively. Is arranged. As will be described later, the heat dissipation unit 226 needs to efficiently dissipate the heat generated by the radiation detection unit 224 (inside the radiation conversion panel 28), and thus is preferably made of a material having a high heat transfer coefficient. .
 また、放熱ユニット226は、放射線16の入射方向に沿って放射線検出ユニット224の前方に配置されているため、放射線16を透過させるか、あるいは、放射線16の吸収率が低い物質で構成されることが望ましい。さらに、放熱ユニット226におけるレール220、222に対向する側部は、図31に示すように、レール220、222の形状に応じた段差部234、236として形成されている。 In addition, since the heat dissipation unit 226 is disposed in front of the radiation detection unit 224 along the incident direction of the radiation 16, the radiation unit 226 transmits the radiation 16 or is made of a material having a low absorption rate of the radiation 16. Is desirable. Further, side portions of the heat dissipating unit 226 facing the rails 220 and 222 are formed as step portions 234 and 236 corresponding to the shapes of the rails 220 and 222, as shown in FIG.
 従って、蓋体210が開いて中空部214が外部に連通している状態で、ユーザ192が蓋体210側からレール220、222と、筐体150の底面238側の内壁とに沿って放射線検出ユニット224を挿入すると、中空部214の下側の箇所に放射線検出ユニット224を収容することができる。また、ユーザ192が蓋体210側からレール220、222と、筐体150の照射面152側の内壁とに沿って放熱ユニット226を挿入すると、中空部214の上側の箇所に放熱ユニット226を収容することができる。 Accordingly, the user 192 detects radiation from the lid 210 side along the rails 220 and 222 and the inner wall on the bottom surface 238 side of the housing 150 with the lid 210 open and the hollow portion 214 communicating with the outside. When the unit 224 is inserted, the radiation detection unit 224 can be accommodated in the lower portion of the hollow portion 214. Further, when the user 192 inserts the heat radiation unit 226 from the lid 210 side along the rails 220 and 222 and the inner wall on the irradiation surface 152 side of the housing 150, the heat radiation unit 226 is accommodated in the upper portion of the hollow portion 214. can do.
 そして、第2変形例に係る放射線撮影装置10Bでは、放射線検出ユニット224内における放熱ユニット226側の箇所に放射線変換パネル28が収容され、放熱ユニット226が放射線検出ユニット224と筐体150の照射面152側の内壁とに接触している。 In the radiation imaging apparatus 10 </ b> B according to the second modification, the radiation conversion panel 28 is accommodated in the radiation detection unit 224 on the radiation unit 226 side, and the radiation unit 226 is an irradiation surface of the radiation detection unit 224 and the housing 150. It is in contact with the inner wall on the 152 side.
 従って、放熱ユニット226と筐体150の照射面152側の部分とは、放射線変換パネル28に対するヒートシンクとして機能する。 Therefore, the heat radiating unit 226 and the portion on the irradiation surface 152 side of the housing 150 function as a heat sink for the radiation conversion panel 28.
 これにより、放射線変換パネル28を構成する第1の放射線変換層28aの半導体層74a(図3A~図10B、図20A及び図20B参照)で発生した熱を放熱ユニット226及び照射面152を介して放熱し、半導体層74aの温度を30℃未満に抑えることが可能となる。 As a result, the heat generated in the semiconductor layer 74a (see FIGS. 3A to 10B, 20A, and 20B) of the first radiation conversion layer 28a constituting the radiation conversion panel 28 is transmitted through the heat dissipation unit 226 and the irradiation surface 152. It is possible to dissipate heat and suppress the temperature of the semiconductor layer 74a to less than 30 ° C.
 また、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cで発生する熱も、放熱ユニット226及び照射面152を介して放熱されるので、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cの温度を40℃未満に抑制して、リーク電流の急増を防止することができる。 The heat generated in the a-Si TFTs 82a and 82c and the a-Si photodiode 86c is also dissipated through the heat dissipation unit 226 and the irradiation surface 152, so that the a-Si TFTs 82a and 82c and the a-Si TFT The temperature of the photodiode 86c can be suppressed to less than 40 ° C., and a sudden increase in leakage current can be prevented.
[第3変形例]
 第3変形例に係る放射線撮影装置10Cは、図33及び図34に示すように、比較的厚みのある基台196内に平面方向に沿って熱循環流路240が形成され、熱循環流路240内を循環流体252が循環している。そのため、基台196は、後述するように、熱循環バス(熱循環部)として機能する。
[Third Modification]
As shown in FIGS. 33 and 34, the radiation imaging apparatus 10C according to the third modification has a heat circulation channel 240 formed in a relatively thick base 196 along the plane direction. Circulating fluid 252 circulates in 240. Therefore, the base 196 functions as a thermal circulation bus (thermal circulation part) as will be described later.
 この場合、絶縁基板206a~206cに搭載された電子部品208a~208cは、接着層242a~242cを介して基台196の底面に固着されている。また、筐体150の底面238には、外部に連通する開口部244が形成されている。基台196の底面における開口部244に対向する箇所には、ペルチェ素子を含む熱交換器246が固着されている。 In this case, the electronic components 208a to 208c mounted on the insulating substrates 206a to 206c are fixed to the bottom surface of the base 196 via the adhesive layers 242a to 242c. An opening 244 that communicates with the outside is formed on the bottom surface 238 of the housing 150. A heat exchanger 246 including a Peltier element is fixed to a location facing the opening 244 on the bottom surface of the base 196.
 熱交換器246は、開口部244と中空部214との連通状態を遮断するように、筐体150の底面238側の内壁と基台196の底面との間に配設されている。熱交換器246は、例えば、P型半導体とN型半導体とを板状電極で接合したペルチェ素子を含み、前記板状電極を基台196側に配置したものである。この場合、直流電源の正極をN型半導体に接続すると共に、負極をP型半導体に接続して、N型半導体から板状電極を介してP型半導体の方向に直流電流を流せば、前記ペルチェ素子は、熱循環流路240を流れる循環流体252から基台196及び板状電極を介して循環流体252の熱を吸熱し、開口部244を介して外部に放熱することができる。 The heat exchanger 246 is disposed between the inner wall on the bottom surface 238 side of the housing 150 and the bottom surface of the base 196 so as to block the communication state between the opening 244 and the hollow portion 214. The heat exchanger 246 includes, for example, a Peltier element in which a P-type semiconductor and an N-type semiconductor are joined by a plate-like electrode, and the plate-like electrode is disposed on the base 196 side. In this case, if the positive electrode of the DC power source is connected to the N-type semiconductor, the negative electrode is connected to the P-type semiconductor, and a DC current is passed from the N-type semiconductor to the P-type semiconductor through the plate electrode, the Peltier The element can absorb the heat of the circulating fluid 252 from the circulating fluid 252 flowing through the thermal circulation channel 240 through the base 196 and the plate-like electrode, and can radiate the heat to the outside through the opening 244.
 一方、直流電源の正極をP型半導体に接続すると共に、負極をN型半導体に接続して、P型半導体から板状電極を介してN型半導体の方向に直流電流を流せば、前記ペルチェ素子は、開口部244を介して外気の熱を吸熱し、板状電極及び基台196を介して熱循環流路240を流れる循環流体252に外気の熱を放熱することができる。 On the other hand, if the positive electrode of the DC power source is connected to the P-type semiconductor, the negative electrode is connected to the N-type semiconductor, and a DC current is passed from the P-type semiconductor to the N-type semiconductor through the plate electrode, the Peltier element Can absorb the heat of the outside air through the opening 244, and can radiate the heat of the outside air to the circulating fluid 252 flowing through the thermal circulation channel 240 through the plate electrode and the base 196.
 カセッテ制御部34は、温度検知部248及び温度制御部250をさらに有する。温度検知部248は、a-SiのTFT82a、82c(図5A、図5B、図9A~図10B、図20A及び図20B参照)がオフである場合に、信号線66a、66c(図2参照)を介して読出回路部32(図1参照)に漏れ出たリーク電流をそれぞれ検知し、検知した各リーク電流に基づいて、a-SiのTFT82a(に接続されるa-Seの半導体層74a)の温度、a-SiのTFT82c及びa-Siのフォトダイオード86cの各温度を推定する。 The cassette control unit 34 further includes a temperature detection unit 248 and a temperature control unit 250. When the a-Si TFTs 82a and 82c (see FIGS. 5A, 5B, 9A to 10B, 20A, and 20B) are off, the temperature detection unit 248 has signal lines 66a and 66c (see FIG. 2). The leakage current leaked to the readout circuit section 32 (see FIG. 1) via each of these is detected, and based on each detected leakage current, the a-Si TFT 82a (a-Se semiconductor layer 74a connected to) , And the temperatures of the a-Si TFT 82c and the a-Si photodiode 86c.
 なお、前述のように、複数の画素62は、マトリックス状に配列され、1本の信号線66a、66cには、一列分の各画素62のTFT82a、82cが接続されている。そのため、温度検知部248は、列毎(複数の画素62からなるブロック毎)にa-Siの温度を推定する。温度制御部250は、前述した直流電源を含み、温度検知部248が推定した温度に基づいて、a-Seの半導体層74aの温度が30℃を超えず、25℃程度の温度に収まり、且つ、a-SiのTFT82a、82c及びa-Siのフォトダイオード86cについても、40℃を超えず、所定の温度範囲(例えば、20℃~40℃の範囲)に収まるように熱交換器246を制御する。 As described above, the plurality of pixels 62 are arranged in a matrix, and the TFTs 82a and 82c of the pixels 62 for one column are connected to one signal line 66a and 66c. Therefore, the temperature detection unit 248 estimates the a-Si temperature for each column (each block including a plurality of pixels 62). The temperature control unit 250 includes the above-described DC power supply, and based on the temperature estimated by the temperature detection unit 248, the temperature of the a-Se semiconductor layer 74a does not exceed 30 ° C. and falls within a temperature of about 25 ° C., and The heat exchanger 246 is controlled so that the a-Si TFTs 82a and 82c and the a-Si photodiode 86c do not exceed 40 ° C. and fall within a predetermined temperature range (for example, 20 ° C. to 40 ° C.). To do.
 そして、基台196、熱循環流路240、熱交換器246、温度検知部248及び温度制御部250により、a-Seの半導体層74a、a-SiのTFT82a、TFT82c及びa-Siのフォトダイオード86cの各温度を管理制御するための温度制御ユニット247が構成される。このように、温度制御ユニット247は、比較的大掛かりな構成であるため、放射線撮影装置10Cは、ビルトイン型の電子カセッテに好適である。但し、温度制御ユニット247を小型化することが可能であれば、放射線撮影装置10Cは、可搬型の電子カセッテとして適用することも可能である。 The a-Se semiconductor layer 74a, the a-Si TFT 82a, the TFT 82c, and the a-Si photodiode are formed by the base 196, the heat circulation channel 240, the heat exchanger 246, the temperature detection unit 248, and the temperature control unit 250. A temperature control unit 247 for managing and controlling each temperature of 86c is configured. Thus, since the temperature control unit 247 has a relatively large configuration, the radiation imaging apparatus 10C is suitable for a built-in type electronic cassette. However, if the temperature control unit 247 can be reduced in size, the radiation imaging apparatus 10C can be applied as a portable electronic cassette.
 ここで、温度制御ユニット247について具体的に説明する。 Here, the temperature control unit 247 will be specifically described.
 温度制御ユニット247において、温度制御部250は、温度検知部248が推定した温度に基づいて、熱交換器246のペルチェ素子に直流電流を供給する。 In the temperature control unit 247, the temperature control unit 250 supplies a direct current to the Peltier element of the heat exchanger 246 based on the temperature estimated by the temperature detection unit 248.
 a-Seの半導体層74aの温度が30℃を超えたり、a-SiのTFT82a、82c又はa-Siのフォトダイオード86cが40℃を超える可能性がある場合、ペルチェ素子は、循環流体252から基台196及び板状電極を介して循環流体252の熱を吸熱し、開口部244を介して外部に放熱する。すなわち、放射線変換パネル28が基台196に面接触しているため、熱循環流路240内を流れる循環流体252は、放射線変換パネル28で発生した熱を基台196を介して吸熱し、熱交換器246は、循環流体252の熱を吸熱して開口部244から外部に放熱することになる。 If the temperature of the a-Se semiconductor layer 74a exceeds 30 ° C., or the a-Si TFTs 82a and 82c or the a-Si photodiode 86c may exceed 40 ° C., the Peltier element is removed from the circulating fluid 252. The heat of the circulating fluid 252 is absorbed through the base 196 and the plate electrode, and is radiated to the outside through the opening 244. That is, since the radiation conversion panel 28 is in surface contact with the base 196, the circulating fluid 252 flowing in the heat circulation channel 240 absorbs the heat generated in the radiation conversion panel 28 through the base 196, and heat The exchanger 246 absorbs the heat of the circulating fluid 252 and radiates the heat from the opening 244 to the outside.
 この結果、a-Seの半導体層74aの温度を30℃未満の温度(例えば、25℃)に抑えて、a-Seの劣化を防止することが可能となる。また、a-SiのTFT82a、82c又はa-Siのフォトダイオード86cの温度を40℃未満の温度に抑えて、リーク電流の急増を防止することも可能となる。 As a result, the temperature of the a-Se semiconductor layer 74a can be suppressed to a temperature lower than 30 ° C. (for example, 25 ° C.) to prevent the deterioration of the a-Se. It is also possible to prevent the leakage current from rapidly increasing by suppressing the temperature of the a-Si TFTs 82a and 82c or the a-Si photodiode 86c to a temperature lower than 40 ° C.
 一方、半導体層74aの温度が所定の温度範囲(25℃近傍の温度)よりも低下する可能性がある場合や、TFT82a、82c又はフォトダイオード86cの温度が所定の温度範囲(20℃~40℃の温度)よりも低下する可能性がある場合、ペルチェ素子は、開口部244を介して外気の熱を吸熱し、板状電極及び基台196を介して循環流体252に放熱する。吸熱した循環流体252が熱循環流路240内を循環することにより、放射線変換パネル28は、循環流体252の熱を基台196を介して吸熱するので、上記の各温度を所定の温度範囲に収めることができる。 On the other hand, when there is a possibility that the temperature of the semiconductor layer 74a falls below a predetermined temperature range (temperature around 25 ° C.), or the temperature of the TFTs 82a, 82c or the photodiode 86c is within a predetermined temperature range (20 ° C. to 40 ° C. The Peltier element absorbs the heat of the outside air through the opening 244 and dissipates heat to the circulating fluid 252 through the plate electrode and the base 196. As the circulating fluid 252 that has absorbed heat circulates in the thermal circulation channel 240, the radiation conversion panel 28 absorbs the heat of the circulating fluid 252 via the base 196, so that each of the above temperatures falls within a predetermined temperature range. Can fit.
 なお、基台196の底面には、接着層242a~242cを介して各電子部品208a~208cも固着されているため、温度制御ユニット247は、半導体層74aの場合と同様に、各電子部品208a~208cが所定の温度範囲に収まるように温度管理対策を行うことが可能である。 Since the electronic components 208a to 208c are also fixed to the bottom surface of the base 196 via the adhesive layers 242a to 242c, the temperature control unit 247 is similar to the case of the semiconductor layer 74a. It is possible to take a temperature control measure so that .about.208c falls within a predetermined temperature range.
 このように、第3変形例に係る放射線撮影装置10Cでは、基台196が熱循環バスとして機能するので、半導体層74a、TFT82a、82c又はフォトダイオード86cの温度に基づいて、列毎(ブロック毎)に温度を均一に制御することができる。 As described above, in the radiation imaging apparatus 10C according to the third modification, the base 196 functions as a thermal circulation bus, and therefore, for each column (each block) based on the temperature of the semiconductor layer 74a, TFT 82a, 82c, or photodiode 86c. ) Can be controlled uniformly.
[第4変形例]
 第4変形例に係る放射線撮影装置10Dは、図35及び図36に示すように、撮影台254に装填することにより、被写体14に対する立位撮影が可能となるビルトイン型の電子カセッテである。
[Fourth Modification]
As shown in FIGS. 35 and 36, the radiation imaging apparatus 10D according to the fourth modification is a built-in type electronic cassette that is capable of performing standing imaging with respect to the subject 14 by being mounted on an imaging table 254.
 撮影台254において、ベース256に立設する支柱258には、六面体形状のケーシング260が昇降自在に装着されている。ケーシング260の前面には、ガイド線154と同様の機能を有するガイド線264が形成されている。また、ケーシング260には、放射線撮影装置10Dが装着された装填ケース268が、該ケーシング260の側面266から装填されている。 In the photographing table 254, a hexahedral casing 260 is mounted on a support column 258 standing on a base 256 so as to be movable up and down. A guide wire 264 having the same function as the guide wire 154 is formed on the front surface of the casing 260. In addition, a loading case 268 in which the radiation imaging apparatus 10 </ b> D is mounted is loaded in the casing 260 from the side surface 266 of the casing 260.
 従って、被写体14は、側面266に設けられた取っ手272を掴んだ状態でガイド線264に対して位置決めされる。この結果、ガイド線264の外枠を放射線16の照射範囲として設定した後に、放射線出力装置18から被写体14に放射線16を照射すれば、適切な放射線画像を撮影することができる。なお、図35では、ケーシング260の左側の側面266に取っ手272がある場合を図示しているが、右側の側面にも取っ手272が設けられていることは勿論である。 Therefore, the subject 14 is positioned with respect to the guide line 264 while holding the handle 272 provided on the side surface 266. As a result, if the outer frame of the guide line 264 is set as the irradiation range of the radiation 16 and then the subject 14 is irradiated with the radiation 16 from the radiation output device 18, an appropriate radiation image can be taken. In FIG. 35, the case where the handle 272 is provided on the left side surface 266 of the casing 260 is illustrated, but it is needless to say that the handle 272 is also provided on the right side surface.
 図36に示すように、ケーシング260の側面266には縦長のスロット274が形成され、該スロット274に装填ケース268を装填可能である。装填ケース268は、放射線撮影装置10Dの筐体150を収容可能な箱型形状であり、スロット274に対向する側面の一部は、切欠部278として形成されている。また、装填時に側面266と略面一となる装填ケース268の側面には、ユーザ192が把持する取っ手270が設けられている。 36, a longitudinal slot 274 is formed in the side surface 266 of the casing 260, and a loading case 268 can be loaded in the slot 274. The loading case 268 has a box shape that can accommodate the housing 150 of the radiation imaging apparatus 10 </ b> D, and a part of the side surface facing the slot 274 is formed as a notch 278. Further, a handle 270 to be held by the user 192 is provided on the side surface of the loading case 268 that is substantially flush with the side surface 266 when loaded.
 放射線撮影装置10Dは、例えば、第1変形例の放射線撮影装置10Aのうち、本体部150aの部分に対応しており、切欠部278に対向する箇所には、凹部174及びコネクタ188が設けられている。従って、放射線撮影装置10Dを装填ケース268に収容した状態で、切欠部278を介して、ケーブル282の先端部に設けられたブロック284を凹部174に挿入すれば、ブロック284に設けられ且つケーブル282と電気的に接続されたコネクタ286と、コネクタ188とを接続することができる。なお、ケーブル282は、スロット274を介してケーシング260内に延在している。 The radiation imaging apparatus 10D corresponds to, for example, the main body 150a of the radiation imaging apparatus 10A of the first modified example, and a recess 174 and a connector 188 are provided at a position facing the notch 278. Yes. Therefore, if the block 284 provided at the distal end portion of the cable 282 is inserted into the recess 174 through the notch 278 in a state where the radiation imaging apparatus 10D is accommodated in the loading case 268, the cable 282 is provided in the block 284. The connector 286 electrically connected to the connector 188 and the connector 188 can be connected. Note that the cable 282 extends into the casing 260 via the slot 274.
 このように、放射線撮影装置10Dが装填ケース268に収容され、且つ、2つのコネクタ188、286が連結された状態で、ユーザ192は、取っ手270を把持し、切欠部278側をスロット274と対向させつつ、装填ケース268をスロット274に挿入すれば、装填ケース268及び放射線撮影装置10Dをケーシング260に装填することができる。ケーシング260への装填後に、ガイド線264に対する被写体14の位置決めが行われる。 As described above, in a state where the radiation imaging apparatus 10D is accommodated in the loading case 268 and the two connectors 188 and 286 are connected, the user 192 holds the handle 270 and faces the notch 278 to the slot 274. When the loading case 268 is inserted into the slot 274, the loading case 268 and the radiation imaging apparatus 10D can be loaded into the casing 260. After loading into the casing 260, the subject 14 is positioned with respect to the guide wire 264.
 なお、上記の説明では、第1変形例における本体部150aを放射線撮影装置10Dとした場合について説明したが、放射線撮影装置10A、10B(図25~図32参照)で取っ手156のない構成であれば、放射線撮影装置10Dとして装填ケース268に収容することが可能である。また、放射線撮影装置10C(図33及び図34参照)を放射線撮影装置10Dとして使用することも可能である。すなわち、第4変形例では、第1及び第2変形例に係る放射線撮影装置10A、10Bを一部改変し、放射線撮影装置10Dとして利用したり、あるいは、放射線撮影装置10Cを放射線撮影装置10Dとしてそのまま利用することで、ビルトイン型の電子カセッテとして用いることができる。 In the above description, the case where the main body 150a in the first modification is the radiation imaging apparatus 10D has been described. However, the radiation imaging apparatuses 10A and 10B (see FIGS. 25 to 32) may be configured without the handle 156. For example, the radiation imaging apparatus 10D can be housed in the loading case 268. Further, the radiation imaging apparatus 10C (see FIGS. 33 and 34) can be used as the radiation imaging apparatus 10D. That is, in the fourth modification, the radiation imaging apparatuses 10A and 10B according to the first and second modifications are partially modified and used as the radiation imaging apparatus 10D, or the radiation imaging apparatus 10C is used as the radiation imaging apparatus 10D. By using it as it is, it can be used as a built-in type electronic cassette.
[第5変形例]
 第5変形例に係る放射線撮影装置10Eは、基本的には、第1~第4変形例に係る放射線撮影装置10A~10D(図25~図36参照)を一部改変することで利用可能である。但し、第5変形例では、図37~図43に示すように、例えば、撮影前又は撮影後に、クレードル290に放射線撮影装置10Eを装填して充電する際、放射線撮影装置10Eに消毒液を噴射することにより、放射線撮影装置10Eに対する充電、消毒及び冷却とを一挙に行う点で、第1~第4変形例とは異なる。
[Fifth Modification]
The radiation imaging apparatus 10E according to the fifth modification can be basically used by partially modifying the radiation imaging apparatuses 10A to 10D (see FIGS. 25 to 36) according to the first to fourth modifications. is there. However, in the fifth modification example, as shown in FIGS. 37 to 43, for example, when the radiation imaging apparatus 10E is loaded into the cradle 290 and charged after the imaging, the disinfecting liquid is injected to the radiation imaging apparatus 10E. By doing so, the radiation imaging apparatus 10E is different from the first to fourth modifications in that charging, disinfection and cooling are performed at once.
 従って、放射線撮影装置10Eにおいて、消毒液が噴射される部分には、表示部160、電源スイッチ162、入力端子164、USB端子166、カードスロット170、コネクタ188、190、インジケータ212、熱交換器246等の電気部品又は電子部品を設けないようにすることが望ましい。 Therefore, in the radiation imaging apparatus 10E, the display unit 160, the power switch 162, the input terminal 164, the USB terminal 166, the card slot 170, the connectors 188 and 190, the indicator 212, and the heat exchanger 246 are provided in the portion where the disinfectant is ejected. It is desirable not to provide such electrical parts or electronic parts.
 図37において、筐体150の一側面(図37の上方の側面)には、取っ手288が設けられている。 37, a handle 288 is provided on one side surface of the housing 150 (upper side surface in FIG. 37).
 一方、クレードル290は、図37~図39に示すように、側面視で略U字状の形状であり、ベース部292の両側部から上方に立設部294、296が延在している。図37及び図38に示すように、放射線撮影装置10Eは、2つの立設部294、296の間に装填される。この場合、ガイド線154が形成された照射面152に対向する立設部294の上端位置は、底面238に対向する立設部296の上端位置よりも高く設定されている。 On the other hand, as shown in FIGS. 37 to 39, the cradle 290 has a substantially U-shape when viewed from the side, and upright portions 294 and 296 extend upward from both side portions of the base portion 292. As shown in FIGS. 37 and 38, the radiation imaging apparatus 10E is loaded between the two standing portions 294 and 296. In this case, the upper end position of the standing portion 294 facing the irradiation surface 152 where the guide line 154 is formed is set higher than the upper end position of the standing portion 296 facing the bottom surface 238.
 図39に示すように、立設部294、296の両側部は、連結部300、302でそれぞれ連結されている。2つの連結部300、302の上端位置は、2つの立設部294、296の上端位置よりも低く設定されている。また、各連結部300、302には、クレードル290の上方から放射線撮影装置10Eを装填する際に放射線撮影装置10Eを案内し、装填後には放射線撮影装置10Eを位置決め保持するための案内溝304、306が形成されている。 As shown in FIG. 39, both side portions of the standing portions 294 and 296 are connected by connecting portions 300 and 302, respectively. The upper end positions of the two connecting portions 300 and 302 are set lower than the upper end positions of the two standing portions 294 and 296. In addition, the connecting portions 300 and 302 guide the radiation imaging apparatus 10E when loading the radiation imaging apparatus 10E from above the cradle 290, and after loading, guide grooves 304 for positioning and holding the radiation imaging apparatus 10E, 306 is formed.
 従って、ユーザ192(図26参照)は、取っ手288を把持した状態で、図38の側面視で2つの立設部294、296の間、図39の平面視で2つの立設部294、296及び2つの連結部300、302内に収まり、且つ、放射線撮影装置10Eの両側部が案内溝304、306に嵌まり込むように、上方からベース部292に向かって放射線撮影装置10Eをクレードル290に装填することになる。 Accordingly, the user 192 (see FIG. 26) holds the handle 288, and the two standing portions 294 and 296 in the plan view of FIG. And the radiographic apparatus 10E to the cradle 290 from above toward the base portion 292 so that both sides of the radiographic apparatus 10E are fitted in the guide grooves 304 and 306 and fit in the two connecting portions 300 and 302. Will be loaded.
 すなわち、2つの立設部294、296と、2つの連結部300、302とによって画成される空間が、クレードル290に装填される放射線撮影装置10Eの収容空間298となる。従って、この収容空間298に放射線撮影装置10Eが装填された状態で、放射線撮影装置10Eに対する充電処理、冷却処理及び消毒処理が実行される。 That is, the space defined by the two standing portions 294 and 296 and the two connecting portions 300 and 302 becomes the accommodation space 298 of the radiation imaging apparatus 10E loaded in the cradle 290. Therefore, the charging process, the cooling process, and the disinfection process for the radiation imaging apparatus 10E are performed in a state where the radiation imaging apparatus 10E is loaded in the accommodation space 298.
 具体的に、立設部294における照射面152と対向する側面308には、照射面152に対して消毒液を噴射する複数のノズル310が2次元状に配列されている。また、側面308の上方には、照射面152に対して空気を吹き付けるブロワ312が設けられている。 Specifically, a plurality of nozzles 310 for injecting disinfectant liquid onto the irradiation surface 152 are two-dimensionally arranged on the side surface 308 of the standing portion 294 facing the irradiation surface 152. Further, a blower 312 for blowing air to the irradiation surface 152 is provided above the side surface 308.
 一方、立設部296における底面238と対向する側面314には、底面238に対して消毒液を噴射する複数のノズル316が2次元状に配列されている。また、側面314の上方には、底面238に対して空気を吹き付けるブロワ318が設けられている。立設部296の外表面には、クレードル290の動作状態、放射線撮影装置10Eの状態、放射線撮影装置10Eからの各種の情報等を表示する表示部320が設けられている。 On the other hand, on the side surface 314 facing the bottom surface 238 in the standing portion 296, a plurality of nozzles 316 for injecting a disinfecting liquid to the bottom surface 238 are two-dimensionally arranged. A blower 318 that blows air against the bottom surface 238 is provided above the side surface 314. A display unit 320 is provided on the outer surface of the standing unit 296 to display the operation state of the cradle 290, the state of the radiation imaging apparatus 10E, various information from the radiation imaging apparatus 10E, and the like.
 なお、ベース部292の上面326における連結部300、302近傍の箇所には、クレードル290に装填された放射線撮影装置10Eの下部(ベース部292の上面326に対向する放射線撮影装置10Eの側面)を支持する支持部322、324がそれぞれ設けられている。従って、放射線撮影装置10Eをクレードル290に装填した場合、ベース部292の上面326と放射線撮影装置10Eの下部との間には、僅かな隙間が形成される。 It should be noted that the lower part of the radiation imaging apparatus 10E loaded in the cradle 290 (the side surface of the radiation imaging apparatus 10E facing the upper surface 326 of the base part 292) is provided at a location near the coupling parts 300 and 302 on the upper surface 326 of the base part 292. Support portions 322 and 324 to be supported are respectively provided. Therefore, when the radiation imaging apparatus 10E is loaded in the cradle 290, a slight gap is formed between the upper surface 326 of the base portion 292 and the lower part of the radiation imaging apparatus 10E.
 図40は、クレードル290の概略構成を図示したものである。 FIG. 40 illustrates a schematic configuration of the cradle 290.
 クレードル290は、前述した表示部320に加え、センサ328、通信部330、電力供給部332、制御部335、電源部336、タンク338、ポンプ340及びファンモータ342、344を有する。 The cradle 290 includes a sensor 328, a communication unit 330, a power supply unit 332, a control unit 335, a power supply unit 336, a tank 338, a pump 340, and fan motors 342 and 344 in addition to the display unit 320 described above.
 センサ328は、例えば、光学式又は超音波式のセンサであり、送信波(光、超音波)を出射し、その反射波(光、超音波)の変化に基づいて、放射線撮影装置10Eがクレードル290に装填されたか否かを検出する。通信部330は、クレードル290に放射線撮影装置10Eが装填された場合に、放射線撮影装置10Eの通信部36との間で、無線通信により信号の送受信を行う。 The sensor 328 is, for example, an optical or ultrasonic sensor, emits a transmission wave (light, ultrasonic wave), and the radiation imaging apparatus 10E cradles based on a change in the reflected wave (light, ultrasonic wave). It is detected whether it is loaded in 290 or not. When the radiation imaging apparatus 10E is loaded in the cradle 290, the communication unit 330 transmits and receives signals by wireless communication with the communication unit 36 of the radiation imaging apparatus 10E.
 電力供給部332は、クレードル290に放射線撮影装置10Eが装填された場合に、放射線撮影装置10Eに対して非接触での給電(非接触給電、電力供給、充電)を行う。具体的に、放射線撮影装置10Eには、電力供給部332に対向する箇所に受電部334が設けられている。クレードル290に放射線撮影装置10Eが装填され、電力供給部332と受電部334とが対向した状態で、電力供給部332は、電源部336からの電力供給を受けて、受電部334に非接触給電を行うことにより、バッテリ38を充電する。 When the radiation imaging apparatus 10E is loaded in the cradle 290, the power supply unit 332 performs non-contact power supply (non-contact power supply, power supply, charging) to the radiation imaging apparatus 10E. Specifically, the radiation imaging apparatus 10 </ b> E is provided with a power receiving unit 334 at a location facing the power supply unit 332. In a state where the radiation imaging apparatus 10E is loaded in the cradle 290 and the power supply unit 332 and the power reception unit 334 are opposed to each other, the power supply unit 332 receives power supply from the power supply unit 336 and supplies power to the power reception unit 334 without contact. To charge the battery 38.
 なお、非接触給電とは、マイクロ波給電方式、電磁誘導方式、共鳴方式又は磁気共鳴方式等の公知の非接触の電力供給をいい、従って、これらの給電方式の詳細については、説明を省略する。 Note that the non-contact power supply means a known non-contact power supply such as a microwave power supply method, an electromagnetic induction method, a resonance method, or a magnetic resonance method, and therefore, the details of these power supply methods are omitted. .
 制御部335は、マイクロコンピュータにより実現され、クレードル290内の各部を制御する。具体的に、クレードル290に放射線撮影装置10Eが装填されたことを示す検出信号がセンサ328から入力された場合に、制御部335は、通信部330と通信部36との間での無線通信による信号の送受信を許可し、電力供給部332による受電部334への非接触給電を許可する。一方、センサ328からの前記検出信号の入力が停止した場合に、制御部335は、通信部330での無線通信と、電力供給部332での非接触給電とを禁止する。 The control unit 335 is realized by a microcomputer and controls each unit in the cradle 290. Specifically, when a detection signal indicating that the radiation imaging apparatus 10E is loaded in the cradle 290 is input from the sensor 328, the control unit 335 performs wireless communication between the communication unit 330 and the communication unit 36. Transmission / reception of signals is permitted, and non-contact power feeding to the power reception unit 334 by the power supply unit 332 is permitted. On the other hand, when input of the detection signal from the sensor 328 is stopped, the control unit 335 prohibits wireless communication in the communication unit 330 and non-contact power supply in the power supply unit 332.
 タンク338には、アルコールを含んだ消毒液が冷却液として貯留されている。ポンプ340は、冷却液をノズル310、316に送液する。ファンモータ342は、図示しないファンを回転させることにより、ブロワ312から空気を噴出させる。ファンモータ344も図示しないファンを回転させることにより、ブロワ318から空気を噴出させる。 In the tank 338, a disinfectant containing alcohol is stored as a coolant. The pump 340 sends the cooling liquid to the nozzles 310 and 316. The fan motor 342 ejects air from the blower 312 by rotating a fan (not shown). The fan motor 344 also blows air from the blower 318 by rotating a fan (not shown).
 そして、第5変形例では、放射線撮影後、又は、放射線撮影前において、ユーザ192が取っ手288を把持して上方から放射線撮影装置10Eをクレードル290に装填すると、センサ328が放射線撮影装置10Eの装填を検出し、その検出信号を制御部335に出力する。 In the fifth modification, after radiation imaging or before radiation imaging, when the user 192 holds the handle 288 and loads the radiation imaging apparatus 10E into the cradle 290 from above, the sensor 328 loads the radiation imaging apparatus 10E. And the detection signal is output to the control unit 335.
 制御部335は、検出信号の入力によって、クレードル290に放射線撮影装置10Eが装填されたと判断し、通信部330による通信部36との間での信号の送受信と、電力供給部332による受電部334への非接触給電とを許可する。また、制御部335は、放射線撮影装置10Eがクレードル290に装填されたことを示す情報を表示部320に表示させる。これにより、ユーザ192は、放射線撮影装置10Eがクレードル290に正しく装填されたことを認識することができる。 The control unit 335 determines that the radiation imaging apparatus 10E is loaded in the cradle 290 by inputting the detection signal, and transmits / receives a signal to / from the communication unit 36 by the communication unit 330 and a power reception unit 334 by the power supply unit 332. Allow non-contact power feeding to. Further, the control unit 335 causes the display unit 320 to display information indicating that the radiation imaging apparatus 10E is loaded in the cradle 290. Thereby, the user 192 can recognize that the radiation imaging apparatus 10E is correctly loaded in the cradle 290.
 電力供給部332は、電源部336からの電力供給を受けて、受電部334に対して非接触給電を行い、バッテリ38を充電する。この場合、通信部36と通信部330との間で無線通信による信号の送受信が可能であるため、バッテリ38の充電量は、通信部36から通信部330を介して制御部335に送信される。従って、制御部335は、バッテリ38が充電中であることを示す情報と、バッテリ38の充電量とを表示部320に表示させる。これにより、ユーザ192は、放射線撮影装置10E(のバッテリ38)が充電中であることや、その充電量を把握することができる。 The power supply unit 332 receives power supply from the power supply unit 336, performs non-contact power supply to the power reception unit 334, and charges the battery 38. In this case, since signals can be transmitted and received by wireless communication between the communication unit 36 and the communication unit 330, the charge amount of the battery 38 is transmitted from the communication unit 36 to the control unit 335 via the communication unit 330. . Therefore, the control unit 335 causes the display unit 320 to display information indicating that the battery 38 is being charged and the amount of charge of the battery 38. Thereby, the user 192 can grasp that the radiation imaging apparatus 10E (the battery 38 thereof) is being charged and the amount of charge thereof.
 また、制御部335は、ポンプ340を駆動させ、タンク338に貯留された消毒液を各ノズル310、316に送液させる。これにより、図41に示すように、各ノズル310、316から放射線撮影装置10Eの照射面152及び底面238を含む各面に、消毒液346、348が霧状に噴射される。消毒液346、348の噴射によって、消毒液346、348自体の温度及び消毒液346、348が気化する際の吸熱によって放射線撮影装置10Eを冷却することができる。 In addition, the control unit 335 drives the pump 340 to send the disinfecting liquid stored in the tank 338 to the nozzles 310 and 316. As a result, as shown in FIG. 41, disinfectants 346 and 348 are sprayed from the respective nozzles 310 and 316 onto the respective surfaces including the irradiation surface 152 and the bottom surface 238 of the radiation imaging apparatus 10E. The radiation imaging apparatus 10 </ b> E can be cooled by spraying the disinfecting liquids 346 and 348 by the temperature of the disinfecting liquids 346 and 348 themselves and the heat absorption when the disinfecting liquids 346 and 348 are vaporized.
 前述のように、照射面152に対向する立設部294の上端位置は、底面238に対向する立設部296の上端位置よりも高く、該立設部294は、照射面152を覆うように配設されている。しかも、立設部294の側面308には、複数のノズル310が2次元状に配列されている。そのため、各ノズル310は、全体的に、照射面152を覆うように消毒液346を噴射することになる。 As described above, the upper end position of the standing portion 294 facing the irradiation surface 152 is higher than the upper end position of the standing portion 296 facing the bottom surface 238, and the standing portion 294 covers the irradiation surface 152. It is arranged. In addition, a plurality of nozzles 310 are two-dimensionally arranged on the side surface 308 of the standing portion 294. Therefore, each nozzle 310 sprays the disinfectant 346 so as to cover the irradiation surface 152 as a whole.
 撮影時には、被写体14は、照射面152側に位置決めされるので、照射面152全体に消毒液346を噴射することで、該照射面152に対する消毒を効率よく行うことができる。また、放射線撮影装置10E内において、放射線変換パネル28は、照射面152寄りの箇所に配置されているので、照射面152全体に消毒液346を噴射すれば、放射線変換パネル28を効果的に冷却することができる。 At the time of photographing, the subject 14 is positioned on the irradiation surface 152 side, so that the irradiation surface 152 can be efficiently sterilized by spraying the disinfecting liquid 346 on the entire irradiation surface 152. In addition, since the radiation conversion panel 28 is disposed near the irradiation surface 152 in the radiation imaging apparatus 10E, if the disinfecting liquid 346 is sprayed on the entire irradiation surface 152, the radiation conversion panel 28 is effectively cooled. can do.
 なお、各ノズル310、316からの消毒液346、348の噴射時間は、予め定めた固定時間であってもよい。あるいは、以下に説明するように、消毒液346、348の噴射開始後、放射線撮影装置10E側の温度が所定温度まで低下した時点で、消毒液346、348の噴射を停止してもよい。 Note that the ejection time of the disinfecting liquids 346 and 348 from the nozzles 310 and 316 may be a predetermined fixed time. Alternatively, as described below, the injection of the disinfecting liquids 346 and 348 may be stopped when the temperature on the radiation imaging apparatus 10E side is lowered to a predetermined temperature after the injection of the disinfecting liquids 346 and 348 is started.
 第3変形例において説明したように、カセッテ制御部34の温度検知部248(図34参照)は、リーク電流に基づいて、a-SiのTFT82a(に接続されるa-Seの半導体層74a)の温度、a-SiのTFT82c及びa-Siのフォトダイオード86cの各温度を推定可能である。 As described in the third modification, the temperature detection unit 248 (see FIG. 34) of the cassette control unit 34 performs the a-Si TFT 82a (the a-Se semiconductor layer 74a connected thereto) based on the leakage current. , And temperatures of the a-Si TFT 82c and the a-Si photodiode 86c can be estimated.
 そこで、温度検知部248は、リーク電流に基づく各温度の推定処理を逐次実行し、その推定結果を温度情報として、通信部36から無線通信により通信部330に送信すればよい。これにより、制御部335は、通信部330で受信した温度情報を逐次取得し、取得した温度情報の示す温度が所定温度(a-Si:40℃以下、a-Se:30℃以下)に低下した時点で、ポンプ340の駆動を停止させる。これにより、放射線撮影装置10Eに対する冷却処理及び消毒処理を効率よく行うことができる。 Therefore, the temperature detection unit 248 may sequentially execute estimation processing of each temperature based on the leakage current, and transmit the estimation result as temperature information from the communication unit 36 to the communication unit 330 by wireless communication. Thereby, the control unit 335 sequentially acquires the temperature information received by the communication unit 330, and the temperature indicated by the acquired temperature information is reduced to a predetermined temperature (a-Si: 40 ° C. or less, a-Se: 30 ° C. or less). At that time, the drive of the pump 340 is stopped. Thereby, the cooling process and the disinfection process for the radiation imaging apparatus 10E can be performed efficiently.
 ポンプ340の駆動停止によってノズル310、316からの消毒液346、348の噴射が停止した後、制御部335は、ファンモータ342を駆動させ、図42に示すように、ブロワ312から空気349を吹き出させる。前述のように、放射線撮影装置10Eの下部とベース部292の上面326との間には、僅かな隙間が形成されている。そのため、ブロワ312から吹き出された空気349は、照射面152及び側面308に沿って下方に至り、前記隙間から底面238及び側面314に沿って上方に流れる。従って、ブロワ312から吹き出された空気349は、放射線撮影装置10Eの周囲を循環することになり、この結果、放射線撮影装置10Eに付着した消毒液346、348の気化を早めることができる。 After stopping the pump 340 from stopping the injection of the disinfecting liquids 346 and 348 from the nozzles 310 and 316, the control unit 335 drives the fan motor 342 and blows out the air 349 from the blower 312 as shown in FIG. Let As described above, a slight gap is formed between the lower portion of the radiation imaging apparatus 10E and the upper surface 326 of the base portion 292. Therefore, the air 349 blown out from the blower 312 reaches downward along the irradiation surface 152 and the side surface 308 and flows upward along the bottom surface 238 and the side surface 314 from the gap. Accordingly, the air 349 blown out from the blower 312 circulates around the radiation imaging apparatus 10E, and as a result, vaporization of the disinfecting liquids 346 and 348 attached to the radiation imaging apparatus 10E can be accelerated.
 なお、ブロワ312からの空気349の吹出時間は、予め定めた固定時間であってもよいし、前述のように、温度検知部248からの温度情報の示す温度が所定温度まで低下した時点で、ブロワ312からの空気349の吹き出しを停止させてもよい。 Note that the blow time of the air 349 from the blower 312 may be a predetermined fixed time, or, as described above, when the temperature indicated by the temperature information from the temperature detector 248 decreases to a predetermined temperature. The blowing of air 349 from the blower 312 may be stopped.
 このようにして、放射線撮影装置10Eに対する冷却処理及び消毒処理が完了した後に、ユーザ192は、取っ手288を把持して放射線撮影装置10Eを上方に引き上げることにより、クレードル290から放射線撮影装置10Eを取り出す。この場合、制御部335は、ファンモータ342、344を駆動させて、図43に示すように、ブロワ312、318から空気349、350を吹き出させることにより、放射線撮影装置10Eに付着して残った消毒液346、348を吹き飛ばしてもよい。 In this way, after the cooling process and the disinfection process for the radiation imaging apparatus 10E are completed, the user 192 takes out the radiation imaging apparatus 10E from the cradle 290 by holding the handle 288 and pulling the radiation imaging apparatus 10E upward. . In this case, the control unit 335 drives the fan motors 342 and 344 to blow out the air 349 and 350 from the blowers 312 and 318 as shown in FIG. 43, thereby remaining attached to the radiation imaging apparatus 10E. The disinfectants 346 and 348 may be blown off.
 なお、表示部320には、バッテリ38の充電量が逐次表示されているため、放射線撮影装置10Eに対する冷却処理及び消毒処理が完了し、且つ、バッテリ38が満充電になったことを確認した後に、ユーザ192は、取っ手288を把持して放射線撮影装置10Eを引き上げてもよい。 In addition, since the charge amount of the battery 38 is sequentially displayed on the display unit 320, after confirming that the cooling process and the disinfection process for the radiation imaging apparatus 10E are completed and the battery 38 is fully charged. The user 192 may hold the handle 288 and pull up the radiation imaging apparatus 10E.
 このように、第5変形例では、クレードル290に放射線撮影装置10Eを装填した状態で上述の充電処理、冷却処理及び消毒処理を一挙に行うので、放射線撮影装置10Eを短時間で冷却することができる。また、バッテリ38に対する充電が完了し、且つ、放射線撮影装置10Eに対する冷却処理及び消毒処理も完了していれば、充電後の放射線撮影装置10Eをそのまま次の撮影に使用することが可能となる。 As described above, in the fifth modification, the above-described charging process, cooling process, and disinfection process are performed at a time with the radiation imaging apparatus 10E loaded in the cradle 290, so that the radiation imaging apparatus 10E can be cooled in a short time. it can. Further, if the charging of the battery 38 is completed and the cooling process and the disinfection process for the radiation imaging apparatus 10E are also completed, the charged radiation imaging apparatus 10E can be used for the next imaging as it is.
 なお、上述の説明では、撮影後、又は、撮影前に、放射線撮影装置10Eに対する充電処理、冷却処理及び消毒処理を一挙に行う場合について説明したが、温度検知部248で検知した温度が所定範囲を超えた場合(一定温度に到達した場合)、クレードル290に放射線撮影装置10Eを直ちに装填して充電処理、冷却処理及び消毒処理を行わせることで、a-Seの劣化やリーク電流の急増を抑えることも可能である。 In the above description, the case where the charging process, the cooling process, and the disinfection process for the radiation imaging apparatus 10E are performed all at once after imaging or before imaging is described. However, the temperature detected by the temperature detection unit 248 is within a predetermined range. (When a certain temperature is reached), the radiographic apparatus 10E is immediately loaded into the cradle 290, and charging, cooling and disinfection are performed, thereby reducing a-Se degradation and rapid increase in leakage current. It can also be suppressed.
[第6変形例]
 第6変形例に係る放射線撮影装置10Fは、図44に示すように、第1の放射線変換層28aが、半導体層74aでのa-Seの結晶化を抑制するような構造に形成されている点で、本実施形態及び第1~第5変形例とは異なる。
[Sixth Modification]
In the radiation imaging apparatus 10F according to the sixth modification, as shown in FIG. 44, the first radiation conversion layer 28a is formed in a structure that suppresses crystallization of a-Se in the semiconductor layer 74a. This is different from the present embodiment and the first to fifth modifications.
 具体的に、画素電極76a及び平坦化膜84aに結晶化抑制層352が形成されている。結晶化抑制層352は、10原子%以上40原子%以下の砒素(As)を含むa-Seからなり、耐熱性に優れ、電荷注入層としても機能する。また、結晶化抑制層352は、後述する電界緩和層354と協働して、画素電極76a及び平坦化膜84aにより形成される凸凹形状を吸収し、半導体層74aでのa-Seの結晶化を抑制すると共に、電界緩和層354でのa-Seの結晶化も抑制する。 Specifically, a crystallization suppression layer 352 is formed on the pixel electrode 76a and the planarization film 84a. The crystallization suppression layer 352 is made of a-Se containing arsenic (As) of 10 atomic% or more and 40 atomic% or less, has excellent heat resistance, and functions as a charge injection layer. Further, the crystallization suppressing layer 352 cooperates with the electric field relaxation layer 354 described later to absorb the uneven shape formed by the pixel electrode 76a and the planarization film 84a, and a-Se crystallization in the semiconductor layer 74a. And the crystallization of a-Se in the electric field relaxation layer 354 is also suppressed.
 結晶化抑制層352と半導体層74aとの間には、電界緩和層354及び第1熱特性強化層356が順に積層されている。電界緩和層354は、As及びフッ化リチウムを含むa-Seからなり、前記フッ化リチウムが正孔を捕獲することにより電界を低減して、半導体層74aに正孔が注入されることを阻止する。また、電界緩和層354は、結晶化抑制層352を覆うことで、表面を平坦化する。なお、電界緩和層354は、0.5原子%以上5原子%以下のAsを含み、0.02重量%以上5重量%以下のフッ化リチウムを含むことが好ましい。 Between the crystallization suppression layer 352 and the semiconductor layer 74a, an electric field relaxation layer 354 and a first thermal characteristic enhancement layer 356 are sequentially stacked. The electric field relaxation layer 354 is made of a-Se containing As and lithium fluoride, and the lithium fluoride captures holes to reduce the electric field and prevent the holes from being injected into the semiconductor layer 74a. To do. Further, the electric field relaxation layer 354 covers the crystallization suppressing layer 352 so as to flatten the surface. Note that the electric field relaxation layer 354 preferably contains 0.5 atomic% or more and 5 atomic% or less As, and preferably contains 0.02 wt% or more and 5 wt% or less lithium fluoride.
 第1熱特性強化層356は、Asを含むa-Seからなり、電界緩和層354から半導体層74aにフッ化リチウムが熱拡散されることを抑制する。なお、第1熱特性強化層356は、10原子%以上40原子%以下のAsを含むことが好ましい。 The first thermal characteristic enhancement layer 356 is made of a-Se containing As and suppresses thermal diffusion of lithium fluoride from the electric field relaxation layer 354 to the semiconductor layer 74a. In addition, it is preferable that the 1st thermal characteristic reinforcement | strengthening layer 356 contains 10 atomic% or more and 40 atomic% or less As.
 一方、半導体層74aと共通電極78aとの間には、第2熱特性強化層358と電子注入阻止層360とが順に積層されている。 On the other hand, a second thermal characteristic enhancement layer 358 and an electron injection blocking layer 360 are sequentially stacked between the semiconductor layer 74a and the common electrode 78a.
 第2熱特性強化層358は、Asを含むa-Seからなる。また、第2熱特性強化層358は、耐熱性に優れ、結晶化抑制層352から半導体層74aまでの積層体を覆うことで、半導体層74a及び電界緩和層354の結晶化を抑制する。 The second thermal property enhancement layer 358 is made of a-Se containing As. The second thermal characteristic enhancement layer 358 has excellent heat resistance and covers the stacked body from the crystallization suppressing layer 352 to the semiconductor layer 74a, thereby suppressing crystallization of the semiconductor layer 74a and the electric field relaxation layer 354.
 電子注入阻止層360は、第1電子注入阻止層360aと第2電子注入阻止層360bとから構成される。第1電子注入阻止層360aは、5原子%以下のAsを含むa-Se層であり、第2電子注入阻止層360bは3硫化アンチモンからなる層である。電子注入阻止層360は、共通電極78aから半導体層74aへの電子の注入を阻止する。 The electron injection blocking layer 360 includes a first electron injection blocking layer 360a and a second electron injection blocking layer 360b. The first electron injection blocking layer 360a is an a-Se layer containing 5 atomic% or less As, and the second electron injection blocking layer 360b is a layer made of antimony trisulfide. The electron injection blocking layer 360 blocks the injection of electrons from the common electrode 78a to the semiconductor layer 74a.
 第6変形例では、第1の放射線変換層28aが上述した構造であるため、電界緩和層354では、フッ化リチウムによって画素電極76aからの正孔を捕獲し、半導体層74aに正孔が注入されることを抑制することができる。これにより、暗電流の増加を抑制することができる。また、電界緩和層354が、Asを含んでいるため、耐熱性が向上し、半導体層74aへの正孔注入抑制というフッ化リチウムの作用を維持させ、暗電流の増加を抑制することができる。 In the sixth modification, since the first radiation conversion layer 28a has the above-described structure, the electric field relaxation layer 354 captures holes from the pixel electrode 76a by lithium fluoride and injects holes into the semiconductor layer 74a. It can be suppressed. Thereby, an increase in dark current can be suppressed. In addition, since the electric field relaxation layer 354 contains As, the heat resistance is improved, the action of lithium fluoride, ie, suppression of hole injection into the semiconductor layer 74a, can be maintained, and an increase in dark current can be suppressed. .
 また、電界緩和層354は、結晶化抑制層352を覆って表面を平坦化するので、画素電極76a及び平坦化膜84aの凸凹形状が半導体層74aに及ぼすa-Seの結晶化や各層の変形等の影響を抑制することができる。この結果、半導体層74aを全体的に均一にし、均一な電界が印加されるようにすることができる。 Further, since the electric field relaxation layer 354 covers the crystallization suppressing layer 352 and flattens the surface, the concavo-convex shape of the pixel electrode 76a and the flattening film 84a causes crystallization of a-Se and deformation of each layer on the semiconductor layer 74a. Etc. can be suppressed. As a result, the semiconductor layer 74a can be made uniform as a whole and a uniform electric field can be applied.
 さらに、第1熱特性強化層356と結晶化抑制層352とを備えることにより、電界緩和層354中のフッ化リチウムが半導体層74aに熱拡散することを効果的に抑制することができる。これにより、フッ化リチウムの半導体層74aへの熱拡散に伴う暗電流の増加を抑制することができる。また、暗電流の増加を抑制することにより、半導体層74aに高電圧を印加することができ、感度特性を含む放射線撮影装置10Fの各種特性を向上させることができる。 Furthermore, by providing the first thermal characteristic enhancement layer 356 and the crystallization suppression layer 352, the thermal diffusion of lithium fluoride in the electric field relaxation layer 354 to the semiconductor layer 74a can be effectively suppressed. Thereby, an increase in dark current accompanying thermal diffusion of lithium fluoride to the semiconductor layer 74a can be suppressed. Further, by suppressing an increase in dark current, a high voltage can be applied to the semiconductor layer 74a, and various characteristics of the radiation imaging apparatus 10F including sensitivity characteristics can be improved.
 また、放射線撮影装置10Fでは、上述のように、耐熱性が改善されているため、温度管理等の取り扱いが容易である。 Moreover, in the radiation imaging apparatus 10F, as described above, since heat resistance is improved, handling such as temperature management is easy.
 さらに、結晶化抑制層352及び第1熱特性強化層356に含まれるAsの原子濃度がそれぞれ、電界緩和層354に含まれるAsの原子濃度より高いので、電界緩和効果を保持しつつ、放射線撮影装置10Fの耐熱性の劣化を抑制し、効果的に暗電流を抑制することができる。 Furthermore, since the atomic concentration of As contained in the crystallization suppression layer 352 and the first thermal characteristic enhancement layer 356 is higher than the atomic concentration of As contained in the electric field relaxation layer 354, radiography is performed while maintaining the electric field relaxation effect. Deterioration of heat resistance of the device 10F can be suppressed, and dark current can be effectively suppressed.
 さらにまた、第2熱特性強化層358を備えることで、第1の放射線変換層28a全体の耐熱性が向上し、第1熱特性強化層356と共に、電界緩和層354の機能をより効果的に維持させ、半導体層74aへ正孔が注入されることを効果的に阻止することができる。 Furthermore, by providing the second thermal property enhancement layer 358, the heat resistance of the entire first radiation conversion layer 28a is improved, and the function of the electric field relaxation layer 354 is more effectively achieved together with the first thermal property enhancement layer 356. The hole can be effectively prevented from being injected into the semiconductor layer 74a.
 また、結晶化抑制層352及び電界緩和層354を備えているため、結晶化抑制層352が電界緩和層354と協働して画素電極76a及び平坦化膜84aの凸凹形状を吸収して半導体層74aの結晶化を抑制すると共に、電界緩和層354の結晶化を抑制し、向上された耐熱性を安定的に維持することができる。 In addition, since the crystallization suppression layer 352 and the electric field relaxation layer 354 are provided, the crystallization suppression layer 352 cooperates with the electric field relaxation layer 354 to absorb the uneven shape of the pixel electrode 76a and the planarization film 84a, thereby forming a semiconductor layer. While suppressing the crystallization of 74a, the crystallization of the electric field relaxation layer 354 can be suppressed, and the improved heat resistance can be stably maintained.
 さらに、結晶化抑制層352の膜厚を、第1熱特性強化層356の膜厚よりも大きくすれば、電界緩和層354と協働して上記の凸凹形状を十分に吸収して半導体層74aの結晶化を抑制すると共に、電界緩和層354の結晶化を十分に抑制することができる。 Further, if the film thickness of the crystallization suppressing layer 352 is made larger than the film thickness of the first thermal characteristic enhancement layer 356, the semiconductor layer 74a absorbs the above uneven shape sufficiently in cooperation with the electric field relaxation layer 354. The crystallization of the electric field relaxation layer 354 can be sufficiently suppressed.
[その他の変形例]
 これまでの説明では、半導体層74aがa-Seである場合について説明した。
[Other variations]
In the above description, the case where the semiconductor layer 74a is a-Se has been described.
 本実施形態及び上述の各変形例では、上記のa-Seの半導体層74aに代えて、a-Si又は結晶性シリコン(c-Si)の半導体層74aを用いてもよい。 In the present embodiment and each of the above-described modifications, an a-Si or crystalline silicon (c-Si) semiconductor layer 74a may be used instead of the a-Se semiconductor layer 74a.
 a-Si及びc-Siは、シンチレータを構成する各種の材料やa-SeよりもKエッジが低く、より低いエネルギー成分を吸収しやすい。すなわち、a-SeのKエッジが12.7keVであるのに対して、a-SiのKエッジは、1.7keV、c-SiのKエッジは、1.1keVである。 A-Si and c-Si have a lower K edge than various materials constituting a scintillator and a-Se, and easily absorb lower energy components. That is, the K edge of a-Se is 12.7 keV, whereas the K edge of a-Si is 1.7 keV, and the K edge of c-Si is 1.1 keV.
 従って、a-Si又はc-Siの半導体層74aを用いた放射線撮影装置10、10A~10Fは、より低いエネルギー成分での放射線撮影が望まれている、被写体14のマンモに対する放射線撮影に好適である。 Therefore, the radiographic apparatuses 10 and 10A to 10F using the a-Si or c-Si semiconductor layer 74a are suitable for radiographing a mammo of the subject 14 for which radiography with a lower energy component is desired. is there.
 また、a-Seの半導体層74aは、第2の放射線変換層28cからの青色波長領域の光102を、電荷94c、96cに変換可能である。そのため、a-Seの半導体層74aと組み合わされる第2の放射線検出部72cのシンチレータとしては、青色波長領域の光102を発生する蛍光体からなるシンチレータを選択せざるを得ない。すなわち、半導体層74aがa-Seからなる場合、シンチレータの選択肢が限定されてしまう。 The a-Se semiconductor layer 74a can convert the light 102 in the blue wavelength region from the second radiation conversion layer 28c into charges 94c and 96c. Therefore, as the scintillator of the second radiation detector 72c combined with the a-Se semiconductor layer 74a, a scintillator made of a phosphor that generates light 102 in the blue wavelength region must be selected. That is, when the semiconductor layer 74a is made of a-Se, the scintillator options are limited.
 これに対して、半導体層74aがa-Si又はc-Siからなる場合には、可視光領域全般が感度波長領域となるため、可視光領域の光102を発生する蛍光体を用いたシンチレータであれば、a-Si又はc-Siの半導体層74aと組み合わせ可能なシンチレータとして選択可能である。すなわち、a-Si又はc-Siの半導体層74aを用いた場合には、シンチレータの選択肢を格段に増やすことができる。 On the other hand, when the semiconductor layer 74a is made of a-Si or c-Si, the entire visible light region is a sensitivity wavelength region. Therefore, a scintillator using a phosphor that generates light 102 in the visible light region is used. If so, it can be selected as a scintillator that can be combined with the a-Si or c-Si semiconductor layer 74a. That is, when the a-Si or c-Si semiconductor layer 74a is used, the number of scintillator options can be greatly increased.
 本実施形態及び上述の各変形例では、Kエッジが30keVのCdTeからなる半導体層74aを用いてもよい。図22に示すように、シンチレータを構成する材料は、いずれも、CdTeよりもKエッジが高い。例えば、CsIのKエッジは、35keV程度である。また、CdTeのバンドギャップは、1.44eVであり、可視光領域に感度を有する。 In the present embodiment and each of the above-described modifications, the semiconductor layer 74a made of CdTe having a K edge of 30 keV may be used. As shown in FIG. 22, all the materials constituting the scintillator have a higher K edge than CdTe. For example, the K edge of CsI is about 35 keV. The band gap of CdTe is 1.44 eV and has sensitivity in the visible light region.
 そのため、CdTeの半導体層74aは、a-Si又はc-Siの半導体層74aと同様に、可視光領域の光102を発生する蛍光体をシンチレータとして選択可能である。従って、この場合でも、シンチレータの選択肢を増やすことができる。 Therefore, as the CdTe semiconductor layer 74a, a phosphor that emits light 102 in the visible light region can be selected as a scintillator, like the a-Si or c-Si semiconductor layer 74a. Accordingly, even in this case, the number of scintillator options can be increased.
 なお、本発明は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。 It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention.

Claims (16)

  1.  放射線(16)の入射方向に沿って2つの放射線変換層(28a、28c)が積層された放射線撮影装置(10、10A-10F)において、
     一方の放射線変換層(28a)は、前記放射線(16)を電荷(94a、96 a)に直接変換する第1の放射線検出部(72a)と、該第1の放射線検出部(72a)から電荷(94a、94c、96a、96c)を取り出す第1の電荷検出部(70a)とを有する直接変換型の第1の放射線変換層であり、
     他方の放射線変換層(28c)は、前記放射線(16)を蛍光(98、102、104、140)に変換する第2の放射線検出部(72c)と、前記蛍光(98、104、140)を電荷に変換する第2の電荷検出部(70c)とを有する間接変換型の第2の放射線変換層であり、
     前記第1の放射線検出部(72a)は、前記第2の放射線検出部(72c)で放射線(16)から変換された蛍光(102)が入射した際に、該蛍光(102)を電荷(94c、96c)に変換可能であることを特徴とする放射線撮影装置。
    In the radiation imaging apparatus (10, 10A-10F) in which the two radiation conversion layers (28a, 28c) are laminated along the incident direction of the radiation (16),
    One radiation conversion layer (28a) includes a first radiation detection section (72a) that directly converts the radiation (16) into charges (94a, 96a), and charges from the first radiation detection section (72a). (94a, 94c, 96a, 96c) a first radiation detection layer of a direct conversion type having a first charge detection unit (70a) for taking out (94a, 94c, 96a, 96c),
    The other radiation conversion layer (28c) includes a second radiation detector (72c) that converts the radiation (16) into fluorescence (98, 102, 104, 140), and the fluorescence (98, 104, 140). An indirect conversion type second radiation conversion layer having a second charge detection unit (70c) for converting into a charge,
    The first radiation detection unit (72a) charges the fluorescence (102) with a charge (94c) when the fluorescence (102) converted from the radiation (16) by the second radiation detection unit (72c) is incident. , 96c).
  2.  請求項1記載の装置(10、10A-10F)において、
     前記放射線(16)の入射方向に沿って、前記第1の放射線変換層(28a)と前記第2の放射線変換層(28c)とが順に積層され、
     前記第1の放射線検出部(72a)は、前記放射線(16)を電荷(94a、96a)に直接変換する半導体層(74a)を含み構成され、
     前記第2の放射線検出部(72c)は、前記放射線(16)を前記蛍光(98、102、104、140)に変換するシンチレータであることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 1,
    Along the incident direction of the radiation (16), the first radiation conversion layer (28a) and the second radiation conversion layer (28c) are sequentially laminated,
    The first radiation detection unit (72a) includes a semiconductor layer (74a) that directly converts the radiation (16) into electric charges (94a, 96a),
    The radiation imaging apparatus, wherein the second radiation detection unit (72c) is a scintillator that converts the radiation (16) into the fluorescence (98, 102, 104, 140).
  3.  請求項2記載の装置(10、10A-10F)において、
     前記半導体層(74a)は、セレン、シリコン又はCdTeからなることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 2,
    The radiographic apparatus according to claim 1, wherein the semiconductor layer (74a) is made of selenium, silicon or CdTe.
  4.  請求項3記載の装置(10、10A-10F)において、
     前記シンチレータは、前記セレン、前記シリコン又は前記CdTeよりも前記放射線(16)の高エネルギー成分を多く吸収することを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 3,
    The scintillator absorbs a higher energy component of the radiation (16) than the selenium, the silicon, or the CdTe.
  5.  請求項3又は4記載の装置(10、10A-10F)において、
     前記シンチレータは、少なくとも青色波長領域の蛍光(102)を発生することを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 3 or 4,
    The radiographic apparatus according to claim 1, wherein the scintillator generates fluorescence (102) in at least a blue wavelength region.
  6.  請求項2~5のいずれか1項に記載の装置(10、10A-10F)において、
     前記シンチレータは、CsI:Na、CaWO、YTaO:Nb、BaFX:Eu(XはBr若しくはCl)、又は、LaOBr:Tmからなることを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to any one of claims 2 to 5,
    The scintillator is made of CsI: Na, CaWO 4 , YTaO 4 : Nb, BaFX: Eu (X is Br or Cl), or LaOBr: Tm.
  7.  請求項2~6のいずれか1項に記載の装置(10、10A-10F)において、
     前記シンチレータは、前記半導体層(74a)において電荷(94c、96c)に変換可能な波長領域の蛍光(102)を発生する第1の蛍光物質と、前記第2の電荷検出部(70c)において電荷に変換可能な波長領域の蛍光(98、104、140)を発生する第2の蛍光物質とを含み構成されていることを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to any one of claims 2 to 6,
    The scintillator includes a first fluorescent material that generates fluorescence (102) in a wavelength region that can be converted into charges (94c, 96c) in the semiconductor layer (74a), and charges in the second charge detection unit (70c). And a second fluorescent material that generates fluorescence (98, 104, 140) in a wavelength region that can be converted into a radiation image.
  8.  請求項2~7のいずれか1項に記載の装置(10、10A-10F)において、
     前記第1の放射線検出部(72a)は、前記半導体層(74a)と、前記放射線(16)の入射方向に沿った前記半導体層(74a)の一面に複数形成された画素電極(76a)と、前記半導体層(74a)の他面に全体的に形成された共通電極(78a)とから構成され、
     前記各画素電極(76a)と前記共通電極(78a)との間に電圧を印加することにより、前記半導体層(74a)に発生した電荷(94a、94c、96a、96c)を、前記各画素電極(76a)を介して前記第1の電荷検出部(70a)で取り出すことを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to any one of claims 2 to 7,
    The first radiation detector (72a) includes the semiconductor layer (74a) and a plurality of pixel electrodes (76a) formed on one surface of the semiconductor layer (74a) along the incident direction of the radiation (16). A common electrode (78a) formed entirely on the other surface of the semiconductor layer (74a),
    By applying a voltage between each of the pixel electrodes (76a) and the common electrode (78a), charges (94a, 94c, 96a, 96c) generated in the semiconductor layer (74a) are transferred to the pixel electrodes. The radiation imaging apparatus, wherein the first charge detection unit (70a) takes out via (76a).
  9.  請求項8記載の装置(10、10A-10F)において、
     前記放射線(16)の入射方向に沿って前記第1の放射線検出部(72a)及び前記第1の電荷検出部(70a)が積層されている場合に、前記各画素電極(76a)は、前記半導体層(74a)における前記第1の電荷検出部(70a)側に形成されると共に、前記共通電極(78a)は、前記半導体層(74a)における前記第1の電荷検出部(70a)側とは反対側に形成されることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 8,
    When the first radiation detector (72a) and the first charge detector (70a) are stacked along the incident direction of the radiation (16), the pixel electrodes (76a) The common electrode (78a) is formed on the first charge detection unit (70a) side of the semiconductor layer (74a) and is formed on the first charge detection unit (70a) side of the semiconductor layer (74a). Is formed on the opposite side of the radiation imaging apparatus.
  10.  請求項9記載の装置(10、10A-10F)において、
     前記共通電極(78a)が前記半導体層(74a)における前記第2の放射線変換層(28c)側に形成される場合に、前記共通電極(78a)は、前記蛍光(102)を透過可能な透明電極であることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 9,
    When the common electrode (78a) is formed on the second radiation conversion layer (28c) side of the semiconductor layer (74a), the common electrode (78a) is transparent to transmit the fluorescence (102). A radiation imaging apparatus characterized by being an electrode.
  11.  請求項9記載の装置(10、10A-10F)において、
     前記共通電極(78a)が前記半導体層(74a)における前記第2の放射線変換層(28c)側に形成される場合に、前記共通電極(78a)は、前記蛍光(102)を透過可能な光学フィルタであることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to claim 9,
    When the common electrode (78a) is formed on the second radiation conversion layer (28c) side of the semiconductor layer (74a), the common electrode (78a) is an optical that can transmit the fluorescence (102). A radiographic apparatus characterized by being a filter.
  12.  請求項1~10のいずれか1項に記載の装置(10、10A-10F)において、
     前記第1の放射線変換層(28a)と前記第2の放射線変換層(28c)との間に介挿され、前記蛍光(102)を透過可能な光学フィルタ(28b)をさらに有することを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to any one of claims 1 to 10,
    It further includes an optical filter (28b) interposed between the first radiation conversion layer (28a) and the second radiation conversion layer (28c) and capable of transmitting the fluorescence (102). Radiography equipment.
  13.  請求項11又は12記載の装置(10、10A-10F)において、
     前記光学フィルタ(28b、78a)は、前記蛍光(98)のうち、前記第1の放射線検出部(72a)で電荷(94c、96c)に変換可能な波長領域の光(102)を前記第1の放射線変換層(28a)側に透過させると共に、前記波長領域以外の光(104)を前記第2の放射線変換層(28c)側に反射させるダイクロイックフィルタであることを特徴とする放射線撮影装置。
    Device (10, 10A-10F) according to claim 11 or 12,
    The optical filter (28b, 78a) includes light (102) in a wavelength region that can be converted into electric charges (94c, 96c) by the first radiation detection unit (72a) out of the fluorescence (98). A radiation imaging apparatus characterized by being a dichroic filter that transmits the light (104) outside the wavelength region to the second radiation conversion layer (28c) side while transmitting to the radiation conversion layer (28a) side.
  14.  請求項1~13のいずれか1項に記載の装置(10、10A-10F)において、
     前記第2の電荷検出部(70c)は、前記蛍光(98、104、140)を電荷に変換するフォトダイオード(86c)又は有機フォトコンダクタ(144c)を含み構成されることを特徴とする放射線撮影装置。
    The apparatus (10, 10A-10F) according to any one of claims 1 to 13,
    The second charge detection unit (70c) includes a photodiode (86c) or an organic photoconductor (144c) that converts the fluorescence (98, 104, 140) into a charge, and is configured to perform radiography. apparatus.
  15.  請求項14記載の装置(10、10A-10F)において、
     前記第1の放射線変換層(28a)に対して、前記第2の電荷検出部(70c)及び前記第2の放射線検出部(72c)が順に積層されている場合に、前記有機フォトコンダクタ(144c)は、前記蛍光(98)のうち、前記第1の放射線検出部(72a)で電荷(94c、96c)に変換可能な波長領域の光(102)を前記第1の放射線変換層(28a)側に透過させると共に、前記波長領域以外の光(98、104、140)を吸収可能であることを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to claim 14,
    When the second charge detector (70c) and the second radiation detector (72c) are sequentially stacked on the first radiation conversion layer (28a), the organic photoconductor (144c) ) Of the fluorescence (98), the light (102) in a wavelength region that can be converted into electric charges (94c, 96c) by the first radiation detection unit (72a) is converted into the first radiation conversion layer (28a). A radiation imaging apparatus characterized by being capable of absorbing light (98, 104, 140) outside the wavelength region while being transmitted to the side.
  16.  請求項1~15のいずれか1項に記載の装置(10、10A-10F)において、
     前記第1の電荷検出部(70a)は、前記第1の放射線検出部(72a)から取り出した電荷(94a、94c、96a、96c)に応じた第1の放射線画像を出力し、
     前記第2の電荷検出部(70c)は、前記蛍光(98、104、140)から変換した電荷に応じた第2の放射線画像を出力し、
     前記放射線撮影装置(10、10A-10F)に備わり且つ前記第1の放射線変換層(28a)及び前記第2の放射線変換層(28c)を制御する制御部(34)、あるいは、外部の画像処理装置(20)は、前記第1の放射線画像と前記第2の放射線画像とを加算して、所望の画像を取得することを特徴とする放射線撮影装置。
    The device (10, 10A-10F) according to any one of claims 1 to 15,
    The first charge detector (70a) outputs a first radiation image corresponding to the charges (94a, 94c, 96a, 96c) taken out from the first radiation detector (72a),
    The second charge detector (70c) outputs a second radiation image corresponding to the charges converted from the fluorescence (98, 104, 140),
    Control unit (34) provided in the radiation imaging apparatus (10, 10A-10F) and controlling the first radiation conversion layer (28a) and the second radiation conversion layer (28c), or external image processing The apparatus (20) adds the first radiographic image and the second radiographic image to obtain a desired image, and the radiographic imaging device.
PCT/JP2012/069605 2011-09-30 2012-08-01 Radiographic imaging unit WO2013046915A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217706 2011-09-30
JP2011217706 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046915A1 true WO2013046915A1 (en) 2013-04-04

Family

ID=47994969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069605 WO2013046915A1 (en) 2011-09-30 2012-08-01 Radiographic imaging unit

Country Status (1)

Country Link
WO (1) WO2013046915A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044364A1 (en) * 2014-09-16 2016-03-24 General Electric Company X-ray detector
JP2016118527A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiation detection device and radiographic imaging system
EP3858242A1 (en) * 2020-02-03 2021-08-04 Koninklijke Philips N.V. Cleaning and charging portable x-ray detectors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105100A (en) * 1990-08-24 1992-04-07 Fuji Photo Film Co Ltd Radioactive image conversion panel and method for regenerating radioactive image
JPH08211518A (en) * 1995-02-07 1996-08-20 Toshiba Corp Radiation detector and x-ray radiographing device
JPH11188025A (en) * 1997-12-25 1999-07-13 Shimadzu Corp Movable radiography device
JP2000338297A (en) * 1999-03-24 2000-12-08 Fuji Photo Film Co Ltd Method and device for reading out video data by using image record sheet
JP2007170908A (en) * 2005-12-20 2007-07-05 Shimadzu Corp Radiation detector and imaging device using the same
JP2010056397A (en) * 2008-08-29 2010-03-11 Fujifilm Corp X-ray detection element
JP2011000235A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Radiation detecting device and radiation image detection system
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04105100A (en) * 1990-08-24 1992-04-07 Fuji Photo Film Co Ltd Radioactive image conversion panel and method for regenerating radioactive image
JPH08211518A (en) * 1995-02-07 1996-08-20 Toshiba Corp Radiation detector and x-ray radiographing device
JPH11188025A (en) * 1997-12-25 1999-07-13 Shimadzu Corp Movable radiography device
JP2000338297A (en) * 1999-03-24 2000-12-08 Fuji Photo Film Co Ltd Method and device for reading out video data by using image record sheet
JP2007170908A (en) * 2005-12-20 2007-07-05 Shimadzu Corp Radiation detector and imaging device using the same
JP2010056397A (en) * 2008-08-29 2010-03-11 Fujifilm Corp X-ray detection element
JP2011000235A (en) * 2009-06-17 2011-01-06 Fujifilm Corp Radiation detecting device and radiation image detection system
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016044364A1 (en) * 2014-09-16 2016-03-24 General Electric Company X-ray detector
JP2016118527A (en) * 2014-12-22 2016-06-30 キヤノン株式会社 Radiation detection device and radiographic imaging system
EP3858242A1 (en) * 2020-02-03 2021-08-04 Koninklijke Philips N.V. Cleaning and charging portable x-ray detectors
WO2021156123A1 (en) 2020-02-03 2021-08-12 Koninklijke Philips N.V. Cleaning and charging portable x-ray detectors
US11712211B2 (en) 2020-02-03 2023-08-01 Koninklijke Philips N.V. Cleaning and charging portable X-ray detectors

Similar Documents

Publication Publication Date Title
US8742356B2 (en) Radiation image detecting device
JP5507415B2 (en) Radiation imaging device
CN102770783B (en) Radiation imaging apparatus
JP5711700B2 (en) Radiation imaging device
WO2013046915A1 (en) Radiographic imaging unit
WO2013015016A1 (en) Radiographic equipment
WO2012165155A1 (en) Radiographic imaging device
JP2012029844A (en) Moving power source vehicle and power supply method
JP2013027654A (en) Radiation detecting device, radiographic device, mobile radiographic imaging device
JP2012202735A (en) Radiation imaging apparatus
WO2013002087A1 (en) Radiation image capturing device, method, and system
JP2011133465A (en) Radiation imaging apparatus
WO2013065680A1 (en) Radiological imaging device, radiological image processing device, radiological imaging system, radiological imaging method, and radiological imaging program
JP5669673B2 (en) Radiation imaging apparatus and power supply method for radiation imaging apparatus
WO2012165156A1 (en) Radiation-image-capturing device
JP5608533B2 (en) Radiation imaging equipment
JP2012030062A (en) Move type radiographic apparatus and power supply method of move type radiographic apparatus
WO2013015062A1 (en) Radiographic equipment
JP5666276B2 (en) Radiation imaging equipment
WO2013046916A1 (en) Radiographic imaging unit
JP5689758B2 (en) Mobile radiographic imaging apparatus and power supply method for mobile radiographic imaging apparatus
JP2011156348A (en) Device and system for radiation imaging
JP5635893B2 (en) Radiation image capturing apparatus, radiation image capturing system, and power supply method for radiation image capturing apparatus
JP5635894B2 (en) Radiation imaging apparatus and power supply method for radiation imaging apparatus
JP5628098B2 (en) Radiation imaging system and power supply method for radiation imaging apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP