WO2013046863A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2013046863A1
WO2013046863A1 PCT/JP2012/067801 JP2012067801W WO2013046863A1 WO 2013046863 A1 WO2013046863 A1 WO 2013046863A1 JP 2012067801 W JP2012067801 W JP 2012067801W WO 2013046863 A1 WO2013046863 A1 WO 2013046863A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
molybdenum
aluminum
layer
semiconductor layer
Prior art date
Application number
PCT/JP2012/067801
Other languages
French (fr)
Japanese (ja)
Inventor
和則 麻埜
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Publication of WO2013046863A1 publication Critical patent/WO2013046863A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66522Unipolar field-effect transistors with an insulated gate, i.e. MISFET with an active layer made of a group 13/15 material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to a semiconductor device and its manufacturing technology, and more particularly to a semiconductor device having an ohmic electrode in ohmic contact with a nitride semiconductor layer and a technology effectively applicable to its manufacturing technology.
  • Patent Document 1 titanium (Ti), aluminum (Al), refractory metal (nickel (Ni) or titanium (Ti)), gold (gold (Ni) or titanium (Ti)) are sequentially deposited on an n-type GaN layer from the bottom.
  • stacked Au) is described. By heat-treating this ohmic electrode at a high temperature of 800 ° C. or higher, a good ohmic electrode with low contact resistance can be obtained.
  • JP 2009-200290 A has a structure in which a niobium (Nb) film is inserted between an aluminum (Al) film and a platinum (Pt) film (or a molybdenum (Mo) film). Ohmic electrodes are described.
  • the niobium (Nb) film introduced into this ohmic electrode has a function to prevent the aluminum (Al) film from forming a eutectic with other metal films and to prevent an increase in contact resistance. It is supposed to be.
  • Non-Patent Document 1 molybdenum (Mo) (15 nm), aluminum (Al) (60 nm), molybdenum (Mo) (35 nm) and gold (Au) (50 nm) are sequentially stacked from the bottom on the AlGaN layer. It is described that a good ohmic electrode is formed by heat treatment at a high temperature of 650 ° C. or higher.
  • an ohmic electrode is generally formed to have an ohmic contact with the nitride semiconductor layer.
  • a layered structure of titanium (Ti) and aluminum (Al) or a layered structure of molybdenum (Mo) and aluminum (Al) is used as an ohmic electrode in ohmic contact with an n-type nitride semiconductor layer.
  • Such an ohmic electrode not only reduces the contact resistance (contact resistance) between the ohmic electrode and the nitride semiconductor layer from the viewpoint of the performance improvement (including the reliability improvement) of the semiconductor device, but also the ohmic electrode and the nitriding It is required to suppress deterioration of surface morphology (surface roughness) at the interface with the object semiconductor layer.
  • a semiconductor device and a method of manufacturing the same include an electrode formed by performing heat treatment on a stacked body.
  • the laminated body includes a first molybdenum film formed on a nitride semiconductor layer, an aluminum film formed on the first molybdenum film, a second molybdenum film formed on the aluminum film, and a second molybdenum film. If the film thickness of the first molybdenum film is X, the relationship of 2 nm ⁇ X ⁇ 10 nm is satisfied.
  • the semiconductor device and the method of manufacturing the same include an electrode formed by performing heat treatment on the stacked body.
  • the laminated body includes a first molybdenum film formed on a nitride semiconductor layer, an aluminum film formed on the first molybdenum film, a second molybdenum film formed on the aluminum film, and a second molybdenum film. If the film thickness of the aluminum film is Y and the film thickness of the gold film is Z, the relationship of Y ⁇ Z ⁇ 2Y is satisfied.
  • the semiconductor device in one embodiment is formed on a nitride semiconductor layer, has a structure in which aluminum, molybdenum, and gold interdiffuse, and an ohmic contact with the nitride semiconductor layer. And an ohmic electrode. At this time, at the interface between the nitride semiconductor layer and the ohmic electrode, the atomic percent of aluminum is the largest among aluminum, molybdenum, and gold.
  • the reduction of the contact resistance (contact resistance) and the suppression of the deterioration of the surface morphology (surface roughness) can be compatible. Thereby, the performance of the semiconductor device can be improved.
  • FIG. 5 shows the band structure in equilibrium in Schottky contact. In Schottky contact, it is a figure which shows the band structure of a forward state.
  • FIG. 5 shows a band structure in the reverse direction in Schottky contact. It is the graph which showed the current-voltage characteristic in Schottky contact.
  • FIG. 5 is a diagram showing a band structure in a forward direction in ohmic contact.
  • FIG. 6 is a schematic view showing a structure of an ohmic electrode described in Study Technique 2.
  • FIG. 2 is a schematic view showing a configuration of a laminate in Embodiment 1;
  • FIG. 2 is a schematic view showing a configuration of a laminate in Embodiment 1;
  • Mo molybdenum
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the ohmic electrode in the first embodiment.
  • FIG. 18 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 17;
  • FIG. 19 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 18;
  • FIG. 20 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 19;
  • FIG. 21 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 20;
  • FIG. 22 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 21;
  • FIG. 10 is a schematic view showing a configuration of a laminate in Embodiment 2;
  • FIG. 10 is a schematic view showing a configuration of a laminate in Embodiment 2; It is a graph which shows the relationship between Au / Al film thickness ratio, and the contact resistance of an ohmic electrode and a semiconductor layer. It is a graph which shows the relationship between Au / Al film thickness ratio, and the surface roughness (RMS) in the interface of an ohmic electrode and a semiconductor layer.
  • FIG. 14 is a cross-sectional view showing the manufacturing process of the ohmic electrode in the second embodiment.
  • FIG. 28 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 27;
  • FIG. 29 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 28;
  • FIG. 30 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 29;
  • FIG. 18 is a cross-sectional view showing the configuration of the HEMT in Embodiment 3;
  • FIG. 7 is a band diagram for illustrating the off operation of the HEMT.
  • FIG. 7 is a band diagram for explaining the on operation of the HEMT.
  • FIG. 18 is a cross-sectional view showing the manufacturing process of the HEMT in the third embodiment.
  • FIG. 35 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 34
  • FIG. 36 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 35
  • FIG. 37 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 36
  • FIG. 38 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 37
  • FIG. 39 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 38
  • FIG. 40 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 39
  • FIG. 39 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 39
  • FIG. 39 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 39
  • FIG. 39 is a cross-sectional view
  • FIG. 41 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 40;
  • FIG. 42 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 41;
  • FIG. 21 is a cross-sectional view showing the configuration of the MISFET in the fourth embodiment. It is a schematic diagram for demonstrating the off operation
  • FIG. 21 is a cross-sectional view showing a configuration of a blue light-emitting diode in Embodiment 5; It is a band figure for demonstrating the OFF operation
  • FIG. 6 is a band diagram for illustrating the on operation of the blue light emitting diode.
  • Embodiment 1 ⁇ Shotkey contact>
  • a semiconductor device for example, a semiconductor layer is formed on a semiconductor device, and a metal film is used for a wire (including an electrode). Therefore, a circuit is configured by electrically connecting the semiconductor device and the wire.
  • the semiconductor layer and the metal film may be in Schottky contact or in ohmic contact.
  • Schottky contact and ohmic contact will be described, and in the case of merely electrically connecting the semiconductor layer and the metal film, it will be described that it is necessary to make ohmic contact.
  • FIG. 1 is a view showing respective band structures before contacting a metal and an n-type semiconductor.
  • the metal band structure is shown on the left side of FIG. 1, and the band structure of the n-type semiconductor is shown on the right side of FIG.
  • What is indicated by a broken line in FIG. 1 is a vacuum level, which indicates the energy level of vacuum.
  • the Fermi level ⁇ FM of the metal is shown, and the difference between the Fermi level ⁇ FM of the metal and the vacuum level is the work function m m .
  • the work function m m has the meaning of energy required to extract an electron having Fermi energy in the metal from the metal into a vacuum.
  • the valence band E v and the conduction band E c are shown, and the Fermi level ⁇ FS of the n-type semiconductor is near the conduction band E c To be present.
  • the difference between the Fermi level ⁇ FS of the n-type semiconductor and the vacuum level is the work function s s .
  • This work function s s has the meaning of the energy required to extract an electron having Fermi energy in an n-type semiconductor into a vacuum.
  • the magnitude of the work function m m of the metal is larger than the work function ⁇ s of the n-type semiconductor.
  • the metal and the n-type semiconductor Contact is a Schottky contact.
  • the metal and the n-type semiconductor Contact is a Schottky contact.
  • FIG. 2 shows the band structure in this equilibrium state. That is, as shown in FIG. 2, in the equilibrium state, the Fermi level ⁇ FM of the metal and the Fermi level ⁇ FS of the n-type semiconductor coincide with each other. At this time, since the electron density does not change from the state before contact in the sufficient interior of the n-type semiconductor, the energy difference between the Fermi level ⁇ FS of the n-type semiconductor and the bottom of the conduction band E c does not change. The band of the semiconductor will bend upward, as shown in FIG.
  • the bottom energy of the conduction band E c is, to become higher than the bottom energy of the n-type semiconductor inside the conduction band E c, a metal of the n-type semiconductor Electrons do not exist in the contact region with and a depletion layer is formed.
  • the magnitude of the work function m m of the metal is larger than the work function ⁇ s of the n-type semiconductor
  • the contact of the metal and the n-type semiconductor becomes Schottky contact Become.
  • the height ⁇ B of the Schottky barrier is defined as the difference between the energy at the bottom of the conduction band E c in the contact region of the n-type semiconductor with the metal and the Fermi level ⁇ FM of the metal.
  • a forward voltage is applied between a metal forming a Schottky contact and an n-type semiconductor. That is, a case is considered in which a voltage is applied such that the metal side has a positive potential with respect to the n-type semiconductor side. In this case, most of the forward voltage is applied to the high resistance depletion layer, so the external electric field due to this forward voltage suppresses the inflow of electrons from the n-type semiconductor to the metal in the depletion layer. It will weaken. As a result, electrons flow from the n-type semiconductor into the metal, and current flows from the metal to the n-type semiconductor. This is the forward direction.
  • FIG. 3 is a diagram showing a band structure in the forward direction.
  • the n-type semiconductor when a forward voltage V is applied between the metal and the n-type semiconductor, the n-type semiconductor is energetically higher than the metal for electrons, so the n-type semiconductor is The Fermi level ⁇ FS of is higher by qV than the Fermi level ⁇ FM of the metal.
  • the energy barrier seen from the electrons in the n-type semiconductor is qV lower than the energy barrier in an equilibrium state (voltage ⁇ B of the Schottky barrier) in which no voltage is applied.
  • a current forward current
  • FIG. 4 is a diagram showing a band structure in the reverse direction.
  • the n-type semiconductor when a reverse voltage V is applied between a metal and an n-type semiconductor, the n-type semiconductor is lower in energy than the metal for electrons, so the n-type semiconductor The Fermi level ⁇ FS of is lower by qV than the Fermi level ⁇ FM of the metal. Then, the energy barrier seen from electrons in the n-type semiconductor becomes qV higher than the energy barrier in an equilibrium state (the height ⁇ B of the Schottky barrier) in which no voltage is applied. As a result, it is understood that electrons are less likely to flow from the n-type semiconductor to the metal, and almost no current flows from the metal to the n-type semiconductor.
  • the reason that almost no current flows is that in the reverse state, as a result of the slight flow of electrons from the metal to the n-type semiconductor, a slight reverse current flows from the n-type semiconductor to the metal . That is, when the reverse voltage V is applied, as shown in FIG. 4, the Fermi level ⁇ FM of the metal becomes qV higher than the Fermi level ⁇ FS of the n-type semiconductor, so the electrons are rather It flows from metal to n-type semiconductor.
  • the Fermi level ⁇ FM of the metal is qV higher than the Fermi level ⁇ FS of the n-type semiconductor
  • the Fermi level ⁇ FM in the metal is higher than the height ⁇ B of the Schottky barrier
  • FIG. 5 is a graph showing current-voltage characteristics at Schottky contact.
  • the horizontal axis shows the voltage applied between the Schottky contacts
  • the vertical axis shows the current flowing between the Schottky contacts.
  • the forward current rises exponentially as the forward voltage increases.
  • the reverse current is constant at a substantially small value even if the reverse voltage increases. From this, it can be seen that the current-voltage characteristics of the Schottky contact are completely different from the current-voltage characteristics in the forward direction and the current-voltage characteristics in the reverse direction. That is, it can be seen that the Schottky contact has a rectifying characteristic that a current flows sufficiently in the forward direction, and a current hardly flows in the reverse direction.
  • the contact between the semiconductor layer and the metal film is a Schottky contact. It occurs. This is because even if the semiconductor layer and the metal film are electrically connected, if the contact between the semiconductor layer and the metal film is a Schottky contact, the Schottky contact has a rectifying characteristic like a diode. As a result, a diode is additionally connected between the semiconductor layer and the metal film, which is different from the intended circuit configuration. From this, the contact of the semiconductor layer and the metal film requires a resistive ohmic contact having no rectifying characteristic.
  • FIG. 6 is a view showing respective band structures before contacting a metal and an n-type semiconductor.
  • the metal band structure is shown on the left side of FIG. 6, and the band structure of the n-type semiconductor is shown on the right side of FIG.
  • the magnitude of the work function m m of the metal is smaller than the work function ⁇ s of the n-type semiconductor.
  • the contact of the metal and the n-type semiconductor is Ohmic contact.
  • the metal and the n-type semiconductor Contact is an ohmic contact.
  • the mechanism by which the ohmic contact is formed will be described.
  • the position of the Fermi level ⁇ FM of the metal is higher than the Fermi level ⁇ FS of the n-type semiconductor.
  • the energy is lower in the n-type semiconductor than in the metal. From this, when the metal and the n-type semiconductor are brought into contact, electrons present in the metal flow from the metal toward the n-type semiconductor. As a result, the electron concentration of the surface region of the n-type semiconductor in contact with the metal becomes high, and the same amount of positive charge is induced on the metal side.
  • an electric field is generated in a direction from the metal to the n-type semiconductor, and the electric field suppresses the inflow of electrons present in the metal from the metal to the n-type semiconductor. That is, after a certain amount of electrons flow from the metal into the n-type semiconductor, the electrons no longer flow into the n-type semiconductor, and an equilibrium state is realized.
  • FIG. 7 shows the band structure in this equilibrium state. That is, as shown in FIG. 7, in the equilibrium state, the Fermi level ⁇ FM of the metal and the Fermi level ⁇ FS of the n-type semiconductor coincide with each other. At this time, since the electron density does not change from the state before contact in the sufficient interior of the n-type semiconductor, the energy difference between the Fermi level ⁇ FS of the n-type semiconductor and the bottom of the conduction band E c does not change. The band of the semiconductor bends downward as shown in FIG.
  • the bottom energy of the conduction band E c is, becomes lower than the bottom energy of the n-type semiconductor inside the conduction band E c, a metal of the n-type semiconductor Many electrons will be present in the contact area with.
  • the size of the work function m m of the metal is smaller than the work function ⁇ s of the n-type semiconductor, when the metal and the n-type semiconductor are brought into contact, the contact between the metal and the n-type semiconductor becomes an ohmic contact .
  • a Schottky barrier different from the Schottky contact is not formed.
  • FIG. 8 is a diagram showing a band structure when the first voltage is applied so that the metal side has a positive potential with respect to the n-type semiconductor side.
  • the metal when the above-described first voltage V is applied between the metal and the n-type semiconductor, the metal is lower in energy than the n-type semiconductor for electrons, so the metal The Fermi level ⁇ FM of is lower by qV than the Fermi level ⁇ FS of the n-type semiconductor. Then, a large number of electrons present in the vicinity of the conduction band in the n-type semiconductor flow from the n-type semiconductor into the metal, and a current flows from the metal toward the n-type semiconductor.
  • FIG. 9 is a diagram showing a band structure when the second voltage is applied so that the metal side has a negative potential with respect to the n-type semiconductor side.
  • the metal when the above-described second voltage V is applied between the metal and the n-type semiconductor, the metal is higher in energy than the n-type semiconductor for electrons, so the metal The Fermi level ⁇ FM of is higher by qV than the Fermi level ⁇ FS of the n-type semiconductor. Then, electrons present in the metal flow from the metal to the n-type semiconductor, and a current flows from the n-type semiconductor to the metal.
  • FIG. 10 is a graph showing current-voltage characteristics in ohmic contact.
  • the horizontal axis indicates the voltage applied between the ohmic contacts
  • the vertical axis indicates the current flowing between the ohmic contacts.
  • the current-voltage characteristic of the ohmic contact is completely equal to the current-voltage characteristic at the first voltage polarity and the current-voltage characteristic at the second voltage polarity. That is, it can be understood that the ohmic contact is a resistive contact and does not have rectifying characteristics like a Schottky contact.
  • the contact between the semiconductor layer and the metal film is an ohmic contact. It proves to be advantageous because it has no rectifying properties like contacts. That is, when the semiconductor layer and the metal film make ohmic contact, it can be seen that the semiconductor layer and the metal film become resistive contact having no rectifying characteristic, and the target circuit configuration can be realized.
  • ⁇ Need to improve the characteristics of ohmic electrode> As described above, in a device having a semiconductor layer, in many cases, it is necessary to electrically connect the semiconductor layer and the metal film to constitute an integrated circuit. At this time, an integrated circuit using a device having a semiconductor layer is realized by bringing the semiconductor layer and the metal film into ohmic contact with each other.
  • the ohmic electrode is used, for example, as a source electrode or a drain electrode in a transistor, an electrode when a semiconductor layer is used as a resistance element, or the like. Therefore, in order to realize an integrated circuit using a device having a semiconductor layer, it is necessary to form an ohmic electrode in ohmic contact with the semiconductor layer.
  • a device having a nitride semiconductor which is a type of compound semiconductor is no exception, and in order to realize an integrated circuit using a device having a nitride semiconductor layer, an ohmic electrode in ohmic contact with the nitride semiconductor layer is used. It needs to be formed.
  • the reason for focusing on the nitride semiconductor in the present invention is that among the compound semiconductors, there are many points where the characteristics of the nitride semiconductor are excellent.
  • advantages of the nitride semiconductor, which is a type of compound semiconductor, in comparison with a compound semiconductor represented by GaAs will be described.
  • nitride semiconductors For example, in compound semiconductors typified by GaAs and AlGaAs, in general, the mobility of electrons is higher than that of silicon (Si), while the mobility of holes is equivalent to that of silicon (Si) or silicon Less than (Si). Therefore, for example, when a compound semiconductor is used as a component of a device (semiconductor element), a device using electrons as a majority carrier can utilize the characteristics of the compound semiconductor.
  • nitride semiconductors typified by GaN and AlGaN have attracted attention in recent years, although they are compound semiconductors having such characteristics. This is because a nitride semiconductor (an example of a compound semiconductor) represented by GaN or AlGaN has a larger band gap than a compound semiconductor represented by GaAs or AlGaAs, and as a result, the dielectric breakdown voltage is increased. It is because Therefore, in recent years, nitride semiconductors represented by GaN and AlGaN are used, for example, in the field of high frequency devices and power devices.
  • HEMT high electron mobility transistor
  • the surface charge of the two-dimensional electron gas based on the heterojunction of an AlGaN layer and a GaN layer Is sufficiently larger (for example, 10 times) than the surface charge (for example, 1 ⁇ 10 12 / cm 2 ) of the two-dimensional electron gas based on the heterojunction of the AlGaAs layer and the GaAs layer.
  • This conduction band discontinuity Delta] E c of the AlGaN layer and the GaN layer is, with greater than the conduction band discontinuity Delta] E c of the AlGaAs layer and the GaAs layer, a heterojunction AlGaN layer and the GaN layer, the piezoelectric effect due to spontaneous polarization
  • the bottom of the well potential is lowered to the lower side (the valence band side).
  • the magnitude of the well potential formed at the heterojunction of the AlGaN layer and the GaN layer is larger than the magnitude of the well potential formed at the heterojunction of the AlGaAs layer and the GaAs layer.
  • the surface charge of the two-dimensional electron gas based on the heterojunction of the AlGaN layer and the GaN layer becomes sufficiently larger than the surface charge of the two-dimensional electron gas based on the heterojunction of the AlGaAs layer and the GaAs layer. Therefore, according to the HEMT using the heterojunction of the AlGaN layer and the GaN layer, there is an advantage that it is easy to obtain a large current as compared with the HEMT using the heterojunction of the AlGaAs layer and the GaAs layer.
  • nitride semiconductors typified by GaN and AlGaN are used in the fields of high frequency devices and power devices, and in particular, according to HEMTs using nitride semiconductors, the above-mentioned advantages can be obtained. it can. Furthermore, in recent years, the application field of nitride semiconductors has also spread to the field of optical devices. For example, a nitride semiconductor represented by InGaN is used as a light emitting layer of a blue light emitting diode. As described above, the present invention focuses on the advantages of the nitride semiconductor and aims to improve the performance of the semiconductor device using the nitride semiconductor.
  • the present invention focuses on improving the characteristics of the ohmic electrode in ohmic contact with the nitride semiconductor layer.
  • a study technique for the ohmic electrode in ohmic contact with the nitride semiconductor layer and its problems will be described, and then the technical concept of the present invention will be described.
  • FIG. 11 is a schematic view prepared by the present inventor with reference to the ohmic electrode described in Study Technique 1 (Japanese Patent No. 3154364).
  • the ohmic electrode OE in Study Technique 1 is formed on the n-type GaN layer nGNL.
  • the ohmic electrode OE is formed of an alloy film (or multilayer film) TAF formed of titanium (Ti) and aluminum (Al) formed on the n-type GaN layer nGNL, and a high melting point metal formed on the alloy film TAF. It comprises a film HMF and a gold film AUF formed on the refractory metal film HMF.
  • TAF titanium
  • Al aluminum
  • the examination technique 1 had the following problems.
  • the first problem of the examination technique 1 is that the surface morphology (surface roughness) of the ohmic electrode OE is poor. This is due to the fact that aluminum (Al) and a high melting point metal such as nickel (Ni) easily form an alloy at a low temperature, and this alloy is formed uneven in plan view.
  • the deterioration of the surface morphology promotes the exfoliation of the ohmic electrode OE from the n-type GaN layer nGNL and causes the device breakdown (element breakdown) due to the exfoliation of the ohmic electrode OE.
  • device breakdown due to local concentration of the electric field at a portion where the electrode edge becomes uneven may cause generation of unnecessary leak current and the like. As a result, the reliability of the semiconductor device is reduced.
  • FIG. 12 is a schematic view created by the present inventor with reference to the ohmic electrode described in Study Technique 2 (Non-Patent Document 1).
  • the ohmic electrode OE in Study Technique 2 has the AlGaN layer AGNL formed on the GaN layer GNL, and is formed on the AlGaN layer AGNL.
  • the ohmic electrode OE in Study Technique 2 includes the first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL and the aluminum (Al) film formed on the first molybdenum (Mo) film MF1.
  • the first molybdenum (Mo) film is formed in the lowermost layer of the ohmic electrode OE, but molybdenum (Mo) has a higher melting point than titanium (Ti) Therefore, the problem of diffusion of molybdenum (Mo) into, for example, a high resistance buffer layer through crystal transition is avoided.
  • the ohmic electrode OE in the examination technique 2 has a problem in that the contact resistance and the surface morphology are not necessarily good.
  • the thickness of the first molybdenum (Mo) film MF1 is 15 nm
  • the thickness of the aluminum (Al) film ALF is 60 nm
  • the thickness of the second molybdenum (Mo) film MF2 is 35 nm
  • the gold film AUF The film thickness is 50 nm, but with these film thicknesses, the contact resistance and the surface morphology can not always be compatible. That is, in order to make the contact resistance and the surface morphology compatible, it is necessary to adjust the film thickness of each layer constituting the ohmic electrode OE well, and depending on the film thickness condition, there is a possibility that the contact resistance increases and the surface morphology deteriorates.
  • FIG. 13 is a schematic view showing the configuration of the stacked body LAB in the first embodiment.
  • the laminated body LAB shown in FIG. 13 is subjected to a heat treatment, whereby the ohmic electrode in the first embodiment is formed. That is, the stacked body LAB shown in FIG. 13 has a structure before heat treatment to form an ohmic electrode.
  • the stacked body LAB in the first embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL.
  • the stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
  • an aluminum (Al) film can be mentioned as a metal film in ohmic contact with the AlGaN layer AGNL. That is, the aluminum (Al) film ALF used in the stacked body LAB shown in FIG. 13 is a film having a function of ensuring ohmic contact with the AlGaN layer AGNL. At this time, it is conceivable to form an aluminum (Al) film ALF directly on the AlGaN layer AGNL from the viewpoint of securing an ohmic contact with the AlGaN layer AGNL. However, the adhesion between the aluminum (Al) film ALF and the AlGaN layer AGNL is poor.
  • the phenomenon that the aluminum (Al) film ALF bulges due to surface tension when the heat treatment is performed to form the ohmic electrode (ball-up phenomenon and )
  • the surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF is degraded. Deterioration of the surface morphology leads to a decrease in adhesion between the ohmic electrode and the semiconductor layer, causing device breakdown due to peeling of the ohmic electrode and generation of unnecessary leak current, which becomes a problem from the viewpoint of improving the reliability of the semiconductor device. .
  • the first molybdenum (Mo) film MF1 is inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF. That is, the first molybdenum (Mo) film MF1 has a function of improving the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF, and by forming the first molybdenum (Mo) film MF1, The surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved.
  • the gold (Au) film AUF formed on the laminate LAB is subjected to a heat treatment on the laminate LAB to oxidize the surface of the aluminum (Al) film ALF when forming the ohmic electrode.
  • a heat treatment on the laminate LAB to oxidize the surface of the aluminum (Al) film ALF when forming the ohmic electrode.
  • the gold (Au) film AUF is formed on the aluminum (Al) film ALF.
  • the gold (Au) film AUF is formed on the aluminum (Al) film ALF so as to be in direct contact
  • the aluminum (Al) film ALF and the gold (Au) film AUF are formed.
  • a rapid alloy reaction will occur. Since this alloy reaction also causes deterioration of the surface morphology, it is necessary to suppress the alloy reaction as much as possible.
  • the second molybdenum (Mo) film MF2 which is a high melting point metal is formed as an intermediate layer between the aluminum (Al) film ALF and the gold (Au) film AUF. That is, the second molybdenum (Mo) film MF2 has a function of suppressing a rapid alloy reaction between the aluminum (Al) film ALF and the gold (Au) film AUF.
  • the laminated body LAB in the first embodiment includes the first molybdenum (Mo) film, the aluminum (Al) film ALF, the second molybdenum (Mo) film MF2, and the gold (Au) film AUF. It will be comprised from laminated film. Then, the functions of the respective films constituting laminated body LAB in the first embodiment are summarized as follows.
  • the lowermost first molybdenum (Mo) film MF1 is a film that functions as an adhesion film, and the first molybdenum (Mo) film is formed between the AlGaN layer AGNL and the aluminum (Al) film ALF.
  • the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved.
  • the surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved.
  • the aluminum (Al) film ALF is a film that functions as an ohmic metal for achieving an ohmic contact with the AlGaN layer AGNL, and the aluminum (Al) film ALF is made between the aluminum (Al) film and the AlGaN layer AGNL.
  • An ohmic electrode in ohmic contact can be formed. Further, since the resistance of the aluminum (Al) film ALF is relatively small, the contact resistance (contact resistance) between the ohmic electrode and the AlGaN layer AGNL can be reduced.
  • the second molybdenum (Mo) film MF2 suppresses rapid alloy reaction between the aluminum (Al) film ALF and the gold (Au) film AUF when the laminate LAB is subjected to heat treatment
  • the membrane has the function of
  • the second molybdenum (Mo) film MF2 which is a high melting point metal between the aluminum (Al) film ALF and the gold (Au) film AUF, the aluminum (Al) film ALF and the gold (gold) Au
  • the gold (Au) film AUF has a function of preventing the surface of the aluminum (Al) film ALF from being oxidized when the laminate LAB is subjected to heat treatment.
  • the gold (Au) film AUF on the aluminum (Al) film ALF, the oxidation of the aluminum (Al) film can be prevented, and the resistance increase of the ohmic electrode can be suppressed.
  • a titanium (Ti) film is used as an adhesive film for improving the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF.
  • the first molybdenum (Mo) film MF1 is used.
  • molybdenum (Mo) has a melting point higher than that of titanium (Ti)
  • diffusion of a metal into a semiconductor layer for example, a high resistance buffer layer
  • the ohmic electrode is formed by performing the heat treatment on the laminate LAB in the first embodiment, but at this time, since molybdenum (Mo) has a higher melting point than titanium (Ti), Diffusion of molybdenum into the semiconductor layer (eg, high-resistance buffer layer) can be suppressed through crystal transition. As a result, it is possible to suppress the generation of unnecessary leak current in the semiconductor layer (for example, the high resistance buffer layer).
  • Mo molybdenum
  • Ti titanium
  • the first molybdenum (Mo) film formed in the lowermost layer as an intermediate layer inserted between the aluminum (Al) film ALF and the gold (Au) film AUF A second molybdenum (Mo) film MF2 which is a film of the same type as MF1 is used. For this reason, there is also an advantage that when the ohmic electrode is formed, the unnecessary alloy film is not easily formed by performing the heat treatment on the laminate LAB.
  • the first molybdenum (Mo) film MF1 functioning as an adhesion film is inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF.
  • the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved, and the surface morphology can be improved.
  • the inventor found that the contact resistance increases when the thickness of the first molybdenum (Mo) film MF1 is too large. That is, it has been found that it is a problem that the film thickness of the first molybdenum (Mo) film MF1 is too thick from the viewpoint of reducing the contact resistance (contact resistance).
  • the stacked body LAB is subjected to a heat treatment to form an ohmic electrode, atoms are mutually diffused from each layer constituting the stacked body LAB.
  • the effect of the contact with the aluminum atoms becomes large. It is considered that the contact between AGNL and the ohmic electrode is an ohmic contact, and the contact resistance can be reduced.
  • the film thickness of the first molybdenum (Mo) film MF1 is too large, aluminum is formed at the interface between the ohmic electrode and the AlGaN layer AGNL, even when atoms interdiffuse from each layer constituting the stacked body LAB.
  • the atomic percent of atoms is often less than the atomic percent of molybdenum atoms.
  • the contact between the AlGaN layer AGNL and the ohmic electrode is greatly affected by the contact with the molybdenum forming the Schottky contact, and an increase in contact resistance occurs.
  • the first molybdenum (between the AlGaN layer AGNL and the aluminum (Al) film ALF is used to improve the adhesion.
  • Mo molybdenum
  • the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is devised It is necessary. Therefore, in the first embodiment, the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is devised. The technical idea in the first embodiment to which this device is applied will be described below.
  • the stacked body LAB in the first embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL.
  • the stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
  • the feature of the first embodiment is that 2 nm ⁇ X ⁇ where the film thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is X nm. It is characterized in that the 10 nm relationship is satisfied.
  • the laminated electrode LAB configured in this way is heat-treated at a high temperature of 650 ° C. to 850 ° C., for example, to form an ohmic electrode that achieves both improvement of surface morphology and reduction of contact resistance. It can be formed on layer AGNL.
  • the film thickness of the film other than the first molybdenum (Mo) film MF1 (aluminum (Al) film ALF, second molybdenum (Mo) film MF2, gold (Au) film AUF)
  • the thickness of the aluminum (Al) film ALF is 70 nm
  • the thickness of the second molybdenum (Mo) film MF2 is 30 nm
  • the thickness of the gold (Au) film AUF is 50 nm. ing.
  • FIG. 13 illustrates an example in which the stacked body LAB is formed on the AlGaN layer AGNL, for example, as shown in FIG. 14, the stacked body LAB is also formed on the n-type GaN layer nGNL.
  • the technical idea in the first embodiment can be applied. Specifically, assuming that the thickness of the first molybdenum (Mo) film MF1 inserted between the n-type GaN layer nGNL and the aluminum (Al) film ALF is X nm, the relationship of 2 nm ⁇ X ⁇ 10 nm is satisfied. To form a stack LAB. Then, the laminated body LAB is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode on the n-type GaN layer nGNL in which the improvement of the surface morphology and the reduction of the contact resistance are compatible. it can.
  • the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF Adhesion is bad.
  • a phenomenon (called a ball-up phenomenon) in which the aluminum (Al) film ALF swells due to surface tension occurs, and the AlGaN layer AGNL or the n-type GaN layer nGNL
  • the problem is that the surface morphology at the interface with the aluminum (Al) film ALF is deteriorated.
  • the first molybdenum (Mo) film MF1 functioning as an adhesion film between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF.
  • the contact resistance contact resistance
  • the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF is devised .
  • the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF is set to X nm.
  • the stacked body LAB is configured to satisfy the relationship of 2 nm ⁇ X ⁇ 10 nm.
  • the laminated electrode LAB configured in this way is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., to thereby form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on the AlGaN layer AGNL or on the n-type GaN layer nGNL.
  • FIG. 15 shows the relationship between the film thickness of the first molybdenum (Mo) film and the contact resistance between the ohmic electrode and the semiconductor layer (hereinafter, the AlGaN layer and the n-type GaN layer are collectively referred to as the semiconductor layer).
  • the horizontal axis indicates the film thickness (nm) of the first molybdenum (Mo) film
  • the vertical axis indicates the contact resistance ( ⁇ mm) between the ohmic electrode and the semiconductor layer.
  • the film thickness of the first molybdenum (Mo) film indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the contact resistance shown in FIG. 15 indicates the contact resistance between the ohmic electrode and the semiconductor layer. This contact resistance is measured using the usual TLM method (Transmission Line Method).
  • TLM method Transmission Line Method
  • the contact resistance between the ohmic electrode and the semiconductor layer is reduced from 0.3 ⁇ mm to 0.2 ⁇ mm.
  • the thickness of the first molybdenum (Mo) film is 2 nm or more and 7 nm or less, the contact resistance is low.
  • the contact resistance between the ohmic electrode and the semiconductor layer increases as the thickness of the first molybdenum (Mo) film increases.
  • the thickness of the first molybdenum (Mo) film exceeds 10 nm, it can be seen that the contact resistance between the ohmic electrode and the semiconductor layer is significantly increased.
  • the mechanism showing such behavior can be considered as shown below. That is, first, when the first molybdenum (Mo) film is not formed, the contact resistance between the ohmic electrode and the semiconductor layer is large because the adhesion between the aluminum (Al) film and the semiconductor layer is bad. It is thought that it will become. Then, when the first molybdenum (Mo) film is formed, the adhesion between the aluminum (Al) film and the semiconductor layer is improved, and the contact resistance between the ohmic electrode and the semiconductor layer is reduced. It is considered that this phenomenon occurs when the film thickness of the first molybdenum (Mo) film is between 0 nm and 2 nm.
  • the contact resistance between the ohmic electrode and the semiconductor layer increases.
  • This phenomenon can be considered as follows. That is, when the stack is subjected to heat treatment to form an ohmic electrode, atoms are mutually diffused from each layer constituting the stack.
  • the atomic percentage of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode and the semiconductor layer is the ohmic electrode and the semiconductor layer
  • the contact between the semiconductor layer and the ohmic electrode becomes an ohmic contact, and it is considered that the contact resistance can be reduced.
  • the film thickness of the first molybdenum (Mo) film is too large, atoms of aluminum atoms are formed at the interface between the ohmic electrode and the semiconductor layer, even when atoms interdiffuse from each layer constituting the laminate. It is considered that in many cases the% will be less than the atomic% of the molybdenum atom. In this case, the contact between the semiconductor layer and the ohmic electrode is largely affected by the contact with the molybdenum that constitutes the Schottky contact, and it is considered that an increase in contact resistance occurs.
  • the contact resistance between the ohmic electrode and the semiconductor layer can be reduced if the thickness of the first molybdenum (Mo) film is 0 nm or more and 10 nm or less.
  • the contact resistance between the ohmic electrode and the semiconductor layer can be 0.4 ⁇ mm or less.
  • the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode and the semiconductor layer is often larger than the atomic percent of molybdenum atoms present on the surface of the semiconductor layer It is guessed.
  • FIG. 16 is a graph showing the relationship between the film thickness of the first molybdenum (Mo) film and the surface roughness (RMS) at the interface between the ohmic electrode and the semiconductor layer.
  • the horizontal axis indicates the film thickness (nm) of the first molybdenum (Mo) film
  • the vertical axis indicates the surface roughness ( ⁇ m) at the interface between the ohmic electrode and the semiconductor layer.
  • the film thickness of the first molybdenum (Mo) film indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed.
  • the surface roughness shown in FIG. 16 indicates the surface roughness at the interface between the ohmic electrode and the semiconductor layer. That is, in the first embodiment, surface roughness is used as an index of surface morphology. This surface roughness is evaluated by using, for example, a surface roughness meter, a laser microscope, or an atomic force microscope. In FIG. 16, the result of having evaluated surface roughness using the laser microscope is shown.
  • the surface roughness is 0.3 ⁇ m.
  • the film thickness of the first molybdenum (Mo) film is 2 nm or more, the surface roughness is smaller than 0.1 ⁇ m. Therefore, as apparent from FIG. 16, when the film thickness of the first molybdenum (Mo) film is 0 nm (when the aluminum (Al) film is in direct contact with the semiconductor layer), the surface roughness is extremely deteriorated.
  • the film thickness of the first molybdenum (Mo) film is 2 nm or more, the surface roughness can be sufficiently improved. This is because the first molybdenum (Mo) film contributes to the improvement of the adhesion between the aluminum (Al) film and the semiconductor layer, and suppresses the ball-up phenomenon of the aluminum (Al) film due to the heat treatment. It is because it is thought that it is acting.
  • the film thickness of the first molybdenum (Mo) film is 0 nm or more and 10 nm or less .
  • the thickness of the first molybdenum (Mo) film is 2 nm or more, as shown in FIG. . Therefore, in consideration of FIGS. 15 and 16, in the first embodiment, the thickness of the first molybdenum (Mo) film inserted between the aluminum (Al) film and the semiconductor layer is X nm.
  • the laminate is configured to satisfy the relationship of 2 nm ⁇ X ⁇ 10 nm.
  • the laminated body configured in this manner is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., to thereby form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on a layer.
  • the contact resistance is about 0.2 ⁇ mm, and an ohmic electrode with a very low contact resistance can be formed.
  • a substrate 1S is prepared.
  • the substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, or a silicon (Si) substrate.
  • a buffer layer BUF which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition).
  • the buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
  • the substrate 1S is formed of a nitride semiconductor substrate is not shown, but the substrate 1S may be a nitride semiconductor substrate such as GaN or AlGaN. In this case, since the substrate 1S is lattice-matched with GaN, the buffer layer BUF can be thin or eliminated.
  • the resist film FR1 is patterned by subjecting the resist film FR1 to exposure and development processing.
  • the patterning of the resist film FR1 is performed such that the opening OP1 is formed in the ohmic electrode formation region.
  • a laminated film is formed on the substrate 1S (AlGaN layer AGNL) on which the patterned resist film FR1 is formed by using, for example, an electron beam evaporation method.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF.
  • a second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed.
  • FIG. 19 a laminated film is formed on the substrate 1S (AlGaN layer AGNL) on which the patterned resist film FR1 is formed by using, for example, an electron beam evaporation method.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum
  • the laminated film is formed in the opening OP1 formed in the resist film FR1 and on the resist film FR1.
  • the film thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film ALF and the AlGaN layer AGNL is X nm, 2 nm ⁇ X ⁇ 10 nm
  • the laminated film is configured to satisfy the following relationship.
  • the film thicknesses of the films are, in particular, the respective films It is not particularly limited as long as the function possessed is exhibited.
  • the thickness of the aluminum (Al) film ALF is 70 nm
  • the thickness of the second molybdenum (Mo) film MF2 is 30 nm
  • the thickness of the gold (Au) film AUF is 50 nm. ing.
  • the resist film FR1 is removed.
  • the laminated film formed on the resist film FR1 is also removed by lift-off. Therefore, after removing the resist film FR1, only the laminated film formed in the opening OP1 of the resist film FR1 remains, thereby forming the laminated body LAB made of the laminated film in the ohmic electrode formation region. Can.
  • heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on substrate 1S on which laminate LAB is formed.
  • This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace.
  • the heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C.
  • the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease.
  • the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
  • the atomic percent of the aluminum atoms diffused to the interface with is larger than the atomic percent of the molybdenum atoms present at the interface between the ohmic electrode OE and the AlGaN layer AGNL in many cases. That is, the average amount (atomic%) of aluminum atoms at the interface between the ohmic electrode OE and the AlGaN layer AGNL is larger than the average amount (atomic%) of molybdenum atoms.
  • the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced.
  • the thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film and the AlGaN layer AGNL is X nm, the relationship of 2 nm ⁇ X ⁇ 10 nm.
  • the laminated body LAB is configured to satisfy Then, in the first embodiment, an ohmic electrode in which the improvement of surface morphology and the reduction of contact resistance are compatible by heat treating laminated body LAB configured in this manner at a high temperature of 650 ° C. to 850 ° C., for example.
  • OE can be formed on the AlGaN layer AGNL.
  • Second Embodiment In the first embodiment, attention is paid to the film thickness of the first molybdenum (Mo) film inserted between the semiconductor layer and the aluminum (Al) film to achieve both improvement in surface morphology and reduction in contact resistance. The technical idea of forming the ohmic electrode OE on the semiconductor layer has been described. In the second embodiment, attention is paid to the relationship between the film thickness of the aluminum (Al) film constituting the laminate and the film thickness of the gold (Au) film, to achieve both improvement in surface morphology and reduction in contact resistance. The technical idea of forming the ohmic electrode OE on the semiconductor layer will be described.
  • the stacked body LAB in the second embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL.
  • the stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
  • the feature of the second embodiment is Y ⁇ Z ⁇
  • the film thickness of the aluminum (Al) film ALF is constant between the film thickness of the gold (Au) film AUF. It is found out that it is necessary to satisfy the correlation of (1), and the realization of this finding is the technical idea in the second embodiment.
  • the laminated electrode LAB configured in this way is heat-treated at a high temperature of 650 ° C. to 850 ° C., for example, to form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on layer AGNL.
  • the film thickness of the aluminum (Al) film ALF and the film thickness of the gold (Au) film AUF may be within the range of the aforementioned correlation, and further, the first molybdenum
  • the thickness of the (Mo) film MF1 and the thickness of the second molybdenum (Mo) film MF2 are not particularly limited as long as the functions of the respective films are exhibited.
  • the film thickness of the first molybdenum (Mo) film MF1 is 7 nm
  • the film thickness of the aluminum (Al) film ALF is 50 nm to 75 nm
  • the film thickness of the second molybdenum (Mo) film MF2 is 30 nm to 50 nm
  • the film thickness of the (Au) film AUF can be set to 75 nm to 150 nm.
  • FIG. 23 illustrates an example in which the stacked body LAB is formed on the AlGaN layer AGNL, for example, as shown in FIG. 24, the stacked body LAB is also formed on the n-type GaN layer nGNL.
  • the film thickness of the aluminum (Al) film ALF is Y (nm)
  • the film thickness of the gold (Au) film AUF is Z (nm)
  • the laminated body LAB is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode on the n-type GaN layer nGNL in which the improvement of the surface morphology and the reduction of the contact resistance are compatible. it can.
  • the film thickness of the aluminum (Al) film ALF is sufficiently large relative to the film thickness of the gold (Au) film AUF
  • aluminum (Al) will be present in excess with respect to gold (Au).
  • aluminum (Al) present in excess causes local alloy reaction with molybdenum (Mo) or gold (Au).
  • Mo molybdenum
  • Au gold
  • the surface morphology is locally deteriorated. That is, when aluminum (Ai) is present in excess relative to gold (Au), excess aluminum (Al) causes an extra alloy reaction with molybdenum (Mo) or gold (Au). And the surface morphology gets worse.
  • the amount of aluminum (Al) does not exist in excess from gold (Au) from the viewpoint of improving the surface morphology, and from this viewpoint, the thickness of the aluminum (Al) film ALF is Au) It is necessary to make the film thickness of the film AUF or less.
  • the film thickness of the gold (Au) film AUF is sufficiently larger than the film thickness of the aluminum (Al) film ALF
  • gold (Au) is present in excess to aluminum (Al). become.
  • excess gold (Au) is diffused to reach the interface between the stack and the semiconductor layer.
  • the ratio between the stack and the semiconductor layer is more than atomic% of aluminum (Al) diffused to the interface between the stack and the semiconductor layer. It is considered that the atomic percent of gold (Au) reaching the interface may increase.
  • FIG. 25 shows the film thickness ratio between the aluminum (Al) film and the gold (Au) film (hereinafter referred to as Au / Al film thickness ratio) (Au film thickness / Al film thickness), the ohmic electrode and the semiconductor layer
  • Au / Al film thickness ratio Au film thickness / Al film thickness
  • the horizontal axis indicates the Au / Al film thickness ratio
  • the vertical axis indicates the contact resistance ( ⁇ mm) between the ohmic electrode and the semiconductor layer.
  • the Au / Al film thickness ratio indicates the film thickness ratio when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the contact resistance shown in FIG. 25 indicates the contact resistance between the ohmic electrode and the semiconductor layer. This contact resistance is measured using the usual TLM method (Transmission Line Method).
  • the contact resistance is 0.3 ⁇ mm or less, and it can be seen that the contact resistance can be sufficiently reduced.
  • the Au / Al film thickness ratio exceeds 2.0 it can be seen that the contact resistance rises sharply. This may be due to the following reasons. That is, that the Au / Al film thickness ratio exceeds 2.0 means that the film thickness of the gold (Au) film AUF becomes sufficiently larger than the film thickness of the aluminum (Al) film ALF, As a result, gold (Au) is present in excess to aluminum (Al). In this case, when the stack is heat-treated, excess gold (Au) is diffused to reach the interface between the stack and the semiconductor layer.
  • the ratio between the stack and the semiconductor layer is more than atomic% of aluminum (Al) diffused to the interface between the stack and the semiconductor layer. It is considered that the atomic percent of gold (Au) reaching the interface may increase. For this reason, when the atomic percent of gold (Au) reaching the interface between the stacked body and the semiconductor layer increases, the contact between the semiconductor layer and the ohmic electrode is affected by the contact with gold (Au) constituting the Schottky contact. It is believed that a sharp increase in contact resistance will occur. From this, it is understood that the Au / Al film thickness ratio is preferably in the range of 0.5 to 2.0 from the viewpoint of reducing the contact resistance of the ohmic electrode.
  • FIG. 26 is a graph showing the relationship between the Au / Al film thickness ratio and the surface roughness (RMS) at the interface between the ohmic electrode and the semiconductor layer.
  • the horizontal axis indicates the Au / Al film thickness ratio
  • the vertical axis indicates the surface roughness ( ⁇ m) at the interface between the ohmic electrode and the semiconductor layer.
  • the Au / Al film thickness ratio indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed.
  • the surface roughness shown in FIG. 26 indicates the surface roughness at the interface between the ohmic electrode and the semiconductor layer. That is, in the second embodiment, surface roughness is used as an index of surface morphology. This surface roughness is evaluated by using, for example, a surface roughness meter, a laser microscope, or an atomic force microscope. In FIG. 26, the result of having evaluated surface roughness using the laser microscope is shown.
  • the surface roughness is 0.1 ⁇ m or less, and it can be seen that the surface morphology can be sufficiently improved.
  • the surface roughness rapidly increases. That is, FIG. 26 shows that the surface morphology is rapidly deteriorated when the Au / Al film thickness ratio is smaller than 1. This may be due to the following reasons. That is, the fact that the Au / Al film thickness ratio is smaller than 1 means that the film thickness of the aluminum (Al) film becomes sufficiently larger than the film thickness of the gold (Au) film. Al) will be present in excess to gold (Au).
  • the Au / Al film thickness ratio is desirably in the range of 1 or more from the viewpoint of improving the surface morphology at the interface between the ohmic electrode and the semiconductor layer. More preferably, the Au / Al film thickness ratio is preferably 1.3 or more.
  • the Au / Al film thickness ratio be in the range of 0.5 to 2 .
  • the Au / Al film thickness ratio is configured to be in the range of 1 to 2.
  • the laminated body thus configured is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on a layer. From FIG. 26, since the surface roughness can be further reduced if the Au / Al film thickness ratio is 1.3 or more, the film thickness Z of gold (Au) further satisfies 1.3 Y ⁇ Z ⁇ 2Y. Can be flat, which is preferable.
  • the substrate 1S is prepared.
  • the substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, a silicon (Si) substrate, or a GaN substrate.
  • a buffer layer BUF which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition).
  • the buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
  • the resist film FR1 is exposed and developed to form a resist film FR1. Pattern it.
  • the patterning of the resist film FR1 is performed such that the opening OP1 is formed in the ohmic electrode formation region.
  • a laminated film is formed on the substrate 1S on which the patterned resist film FR1 is formed, for example, by using an electron beam evaporation method or the like.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF.
  • a second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed.
  • FIG. 1 the laminated film is formed on the substrate 1S on which the patterned resist film FR1 is formed, for example, by using an electron beam evaporation method or the like.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al)
  • the laminated film is formed in the opening OP1 formed in the resist film FR1 and on the resist film FR1.
  • the film thickness of the first molybdenum (Mo) film MF1 is 7 nm.
  • the film thickness of the aluminum (Al) film ALF is Y (nm)
  • the film thickness of the gold (Au) film AUF is Z (nm)
  • the respective relationships satisfy Y ⁇ Z ⁇ 2Y.
  • the film thickness is adjusted.
  • the film thickness of the aluminum (Al) film ALF is set to 75 nm
  • the film thickness of the gold (Au) film AUF is set to 120 nm.
  • the thickness of the second molybdenum (Mo) film MF2 is not particularly limited, but is, for example, in the range of 30 nm to 50 nm.
  • the resist film FR1 is removed.
  • the laminated film formed on the resist film FR1 is also removed by lift-off. Therefore, after removing the resist film FR1, only the laminated film formed in the opening OP1 of the resist film FR1 remains, thereby forming the laminated body LAB made of the laminated film in the ohmic electrode formation region. Can.
  • heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on substrate 1S on which laminated body LAB is formed.
  • This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace.
  • the heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C.
  • the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease.
  • the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
  • the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (A) at the interface between the ohmic electrode OE and the AlGaN layer AGNL.
  • the relationship of Y ⁇ Z ⁇ 2Y is satisfied.
  • the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is more than the atomic percent of gold atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL It is thought that there will be many cases of becoming larger. At this time, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced. That is, in the second embodiment, the Au / Al film thickness ratio is configured to be in the range of 1 to 2.
  • ohmic electrode in which improvement of surface morphology and reduction of contact resistance are compatible by heat treating laminated body LAB configured in this way at a high temperature of, for example, 650 ° C. to 850 ° C. OE can be formed on the AlGaN layer AGNL.
  • the thickness of the first molybdenum (Mo) film MF1 formed in the lowermost layer of the stacked body LAB is not particularly limited.
  • the stacked body LAB is satisfied so as to satisfy the relationship of 2 nm ⁇ X ⁇ 10 nm. Due to the synergetic effect of the features of the first embodiment and the features of the second embodiment, the surface morphology of the ohmic electrode OE can be further improved and the contact resistance can be reduced.
  • the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL corresponds to the ohmic electrode OE and the AlGaN layer AGNL
  • the atomic ratio of the gold atom diffused to the interface of Si is often larger than the atomic percentage of the gold atom, and the atomic ratio of the gold atom larger than the atomic percentage of the molybdenum atom is large. That is, it is considered that, at the interface between the semiconductor layer and the ohmic electrode OE, the atomic% of aluminum among aluminum, molybdenum, and gold is most often increased.
  • FIG. 31 is a cross-sectional view showing the device structure of the HEMT in the third embodiment.
  • a buffer layer BUF consisting of a GaN layer is formed on a substrate 1S composed of a sapphire substrate, a SiC (silicon carbide) substrate, a silicon (Si) substrate, or a GaN substrate.
  • the non-doped GaN layer GNL in which the conductive impurity is not introduced is formed on the buffer layer BUF
  • the non-doped AlGaN layer AGNL in which the conductive impurity is not introduced is formed on the GaN layer GNL. It is done. That is, in the HEMT according to the third embodiment, a heterojunction composed of the GaN layer GNL and the AlGaN layer AGNL is formed on the substrate 1S.
  • the source electrode SE and the drain electrode DE which are disposed apart from each other are formed.
  • the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE, and the ohmic electrode OE has the features described in the first embodiment and the second embodiment. Therefore, according to the HEMT in the third embodiment, since the ohmic electrode OE to which the technical idea of the present invention is applied is used for the source electrode SE or the drain electrode DE, the surface of the source electrode SE or the drain electrode DE It is possible to improve the morphology and reduce the contact resistance.
  • the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between the ohmic electrode OE and the AlGaN layer AGNL,
  • the atomic% is considered to be larger than the atomic% of the molybdenum atom or the atomic% of the gold atom in many cases.
  • the gate electrode GE is formed on the AlGaN layer AGNL between the source electrode SE and the drain electrode DE.
  • the gate electrode GE is formed of a laminated film of a nickel film NIF and a gold film AUF2, and the contact between the gate electrode GE and the AlGaN layer AGNL is a Schottky contact.
  • a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the AlGaN layer AGNL.
  • the HEMT in the third embodiment is configured as described above, and the operation thereof will be described below. In particular, in the third embodiment, the operation will be described by taking a normally-on type HEMT as an example.
  • FIG. 32 is a diagram showing a band structure in the case where the negative voltage lower than the threshold voltage is applied to the gate electrode and the HEMT is turned off.
  • the band structure of the metal constituting the gate electrode is shown on the left side of FIG. 32, and the band structure of the AlGaN layer is shown in the center of FIG.
  • the band structure of the GaN layer is shown on the right side of FIG.
  • the Fermi level ⁇ FM of the gate electrode corresponds to the voltage applied from the Fermi level ⁇ FS2 of the GaN layer. Get higher.
  • the conduction band of the AlGaN layer at the interface with the gate electrode is increased by a predetermined Schottky barrier height B B , and there is a predetermined conduction band discontinuity ⁇ E c at the interface between the AlGaN layer and the GaN layer.
  • the Fermi level ⁇ FM of the electrode increases, the conduction band is pulled and raised.
  • a channel for electrically connecting the source electrode SE and the drain electrode DE is not formed.
  • the HEMT according to the third embodiment is turned off when a negative voltage equal to or lower than the threshold voltage is applied to the gate electrode.
  • the energy difference of the conduction band of the conduction band and the GaN layer of the AlGaN layer, a predetermined conduction band discontinuity Delta] E c between the conduction band of the conduction band and the GaN layer of the AlGaN layer is formed.
  • FIG. 33 is a diagram showing a band structure when the voltage of 0 V is applied to the gate electrode and the HEMT is turned on.
  • the left side of FIG. 33 shows the band structure of the metal constituting the gate electrode, and the middle part of FIG. 33 shows the band structure of the AlGaN layer.
  • the band structure of the GaN layer is shown on the right side of FIG.
  • the Fermi level ⁇ FM of the metal constituting the gate electrode and the Fermi level ⁇ FS2 of the GaN layer become equal.
  • the HEMT in the third embodiment is turned on when a voltage of 0 V is applied to the gate electrode.
  • the on / off operation of the HEMT can be realized by controlling the voltage applied to the gate electrode.
  • a substrate 1S is prepared.
  • the substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, or a silicon (Si) substrate.
  • a buffer layer BUF which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition).
  • MOCVD method Metal Organic Chemical Vapor Deposition
  • the buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
  • the resist film FR2 is patterned by subjecting the resist film FR2 to exposure and development processing.
  • the patterning of the resist film FR2 is performed such that an opening OP2 is formed in the source electrode formation region and the drain electrode formation region.
  • a laminated film is formed on the substrate 1S on which the patterned resist film FR2 is formed by using, for example, an electron beam evaporation method.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF.
  • a second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed.
  • FIG. 1 the laminated film is formed on the substrate 1S on which the patterned resist film FR2 is formed by using, for example, an electron beam evaporation method.
  • the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF.
  • the laminated film is formed in the opening OP2 formed in the resist film FR2 and on the resist film FR2.
  • the film thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film ALF and the AlGaN layer AGNL is X nm.
  • the first molybdenum (Mo) film MF1 is formed to satisfy the relationship of ⁇ 10 nm.
  • the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (nm)
  • the respective relationships satisfy Y ⁇ Z ⁇ 2Y. The film thickness is adjusted.
  • the resist film FR2 is removed.
  • the laminated film formed on the resist film FR2 is also removed by lift-off. Therefore, after removing the resist film FR2, only the laminated film formed in the opening OP2 of the resist film FR2 remains, thereby forming the laminated body LAB1 made of the laminated film in the drain electrode formation region. As a result, the stacked body LAB2 made of a stacked film can be formed in the source electrode formation region.
  • heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on the substrate 1S on which the laminate LAB is formed.
  • This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace.
  • the heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C.
  • the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease.
  • the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
  • the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (A) at the interface between the ohmic electrode OE and the AlGaN layer AGNL. In the case of nm), the relationship of Y ⁇ Z ⁇ 2Y is satisfied.
  • the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is more than the atomic percent of gold atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL It is thought that there will be many cases of becoming larger. At this time, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced. That is, in the third embodiment, the Au / Al film thickness ratio is configured to be in the range of 1 to 2.
  • the stacked body LAB configured as described above is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., thereby achieving a source electrode having both improvement in surface morphology and reduction in contact resistance.
  • SE organic electrode OE
  • drain electrode DE organic electrode OE
  • the stacked body LAB is configured to satisfy the relationship of 2 nm ⁇ X ⁇ 10 nm.
  • the surface morphology of the source electrode SE and the drain electrode DE is further improved and the contact resistance is reduced by the synergistic effect of the features of the first embodiment and the features of the second embodiment.
  • atomic% of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is It is considered that the atomic ratio of gold atoms diffused to the interface between the ohmic electrode OE and the AlGaN layer AGNL increases in many cases, and the atomic ratio of molybdenum atoms increases in many cases. That is, it is considered that, at the interface between the semiconductor layer and the ohmic electrode OE, the atomic% of aluminum among aluminum, molybdenum, and gold is most often increased.
  • a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the AlGaN layer AGNL.
  • a resist film FR3 is coated on the substrate 1S, and the resist film FR3 is exposed and developed to be patterned.
  • the patterning of the resist film FR3 is performed so as to cover the element formation region with the resist film FR3 and to open the insulation formation region between the element formation regions.
  • boron (boron), nitrogen, or helium is introduced by an ion implantation method using the patterned resist film FR3 as a mask to form an insulating region.
  • a new resist film FR4 is coated on the substrate 1S. Then, the resist film FR4 is exposed and developed to perform patterning. The patterning of the resist film FR4 is performed to form an opening OP3 in the gate electrode formation region. Thereafter, the surface protective film PRF exposed from the opening OP3 is removed by etching using the patterned resist film FR4 as a mask. As a result, the AlGaN layer AGNL is exposed at the bottom of the opening OP3.
  • a laminated film is formed on the substrate 1S on which the patterned resist film FR4 is formed by using an electron beam evaporation method or the like.
  • the laminated film is composed of a nickel film NIF and a gold film AUF2.
  • the laminated film is formed in the opening OP3 formed in the resist film FR4 and on the resist film FR4.
  • the resist film FR4 is removed.
  • the laminated film formed on the resist film FR4 is also removed by lift-off. Therefore, after the resist film FR4 is removed, only the laminated film formed in the opening OP3 of the resist film FR4 remains, whereby the gate electrode GE formed of the nickel film NIF and the gold film AUF shown in FIG. It can be formed.
  • the HEMT according to the third embodiment can be manufactured.
  • Embodiment 4 ⁇ Configuration of Field Effect Transistor>
  • MISFET Metal Insulator Semiconductor Field Effect Transistor
  • FIG. 43 is a cross-sectional view showing the device structure of the MISFET in the fourth embodiment.
  • a buffer layer BUF consisting of a GaN layer is formed on a substrate 1S composed of a sapphire substrate, a SiC (silicon carbide) substrate, a GaN substrate, or a silicon (Si) substrate.
  • a substrate 1S composed of a sapphire substrate, a SiC (silicon carbide) substrate, a GaN substrate, or a silicon (Si) substrate.
  • Si silicon
  • the source electrode SE and the drain electrode DE which are disposed apart from each other are formed.
  • the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE, and the ohmic electrode OE has the features described in the first embodiment and the second embodiment. Therefore, according to the MISFET in the fourth embodiment, since the ohmic electrode OE to which the technical idea of the present invention is applied is used for the source electrode SE or the drain electrode DE, the surface of the source electrode SE or the drain electrode DE It is possible to improve the morphology and reduce the contact resistance.
  • the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between the ohmic electrode OE and the n-type GaN layer nGNL, aluminum
  • the atomic% of atoms is considered to be larger than the atomic% of molybdenum atoms or the atomic% of gold atoms in many cases.
  • the gate electrode GE is formed via the gate insulating film GOX.
  • the gate insulating film GOX is formed of, for example, an aluminum oxide film or a silicon oxide film.
  • the gate electrode GE is formed of a polysilicon film or a metal film.
  • a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the n-type GaN layer nGNL.
  • the MISFET in the fourth embodiment is configured as described above, and the operation thereof will be described below.
  • the operation of the normally-on type MISFET will be described as an example.
  • FIG. 44 is a schematic view showing a state in which the MISFET is turned off when a negative voltage lower than the threshold voltage is applied to the gate electrode GE.
  • the depletion layer DPL formed in the n-type GaN layer nGNL immediately below the gate electrode GE extends.
  • depletion layer DPL reaches the bottom of n-type GaN layer nGNL. Since this depletion layer DPL functions as an insulating region, the electrical connection between the source electrode SE and the drain electrode DE is interrupted by the depletion layer DPL. Therefore, when a negative voltage lower than the threshold voltage is applied to the gate electrode GE, the MISFET turns off.
  • FIG. 45 is a schematic view showing a state in which a voltage of 0 V is applied to the gate electrode and the MISFET is turned on.
  • the depletion layer DPL does not extend more than when a negative voltage is applied to the gate electrode GE, as shown in FIG. A channel consisting of the n-type GaN layer nGNL is formed in Thereby, the source electrode SE and the drain electrode DE are electrically connected. That is, electrons flow from the source electrode SE toward the drain electrode DE. In other words, a current flows from the drain electrode DE toward the source electrode SE. Therefore, when 0 V is applied to the gate electrode GE, the MISFET is turned on. As described above, in the MISFET according to the fourth embodiment, it is understood that the on / off operation of the MISFET can be realized by controlling the voltage applied to the gate electrode GE.
  • FIG. 46 is a cross sectional view showing a device structure of a blue light emitting diode in the fifth embodiment.
  • a buffer layer BUF made of a GaN layer is formed on a sapphire substrate SS, and an n-type GaN layer nGNL is formed on the buffer layer BUF.
  • An n-type ohmic electrode OE (n) is formed on the n-type GaN layer nGNL in ohmic contact with the n-type GaN layer nGNL.
  • an n-type AlGaN layer nAGNL is formed in another region on the n-type GaN layer nGNL, and an InGaN layer IGNL doped with zinc (Zn) is formed on the n-type AlGaN layer nAGNL.
  • a p-type AlGaN layer pAGNL is formed on the InGaN layer IGNL
  • a p-type GaN layer pGNL is formed on the p-type AlGaN layer pAGNL.
  • a p-type ohmic electrode OE (p) is formed in ohmic contact with the p-type GaN layer pGNL.
  • the blue light emitting diode having the above-described configuration has a configuration in which a double hetero structure including the p-type GaN layer pGNL and the n-type GaN layer nGNL and the p-type AlGaN layer pAGNL / InGaN layer IGNL / n-type AlGaN layer nAGNL is sandwiched. It is a blue light emitting diode with extremely high brightness.
  • the n-type ohmic electrode OE (n) has the features described in the first embodiment and the second embodiment. Therefore, according to the blue light emitting diode in the fifth embodiment, since the n-type ohmic electrode OE (n) to which the technical idea of the present invention is applied is used, the surface of the n-type ohmic electrode OE (n) It is possible to improve the morphology and reduce the contact resistance.
  • n-type ohmic electrode OE (n) is formed of an electrode in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between ohmic electrode OE (n) and n-type GaN layer nGNL
  • the atomic percent of the aluminum atom is considered to be larger than the atomic percent of the molybdenum atom or the atomic percent of the gold atom in many cases.
  • the blue light emitting diode in the fifth embodiment is configured as described above, and the operation thereof will be described below.
  • FIG. 47 is a diagram showing a band structure of the double hetero structure when the blue light emitting diode is off.
  • the structure in which the InGaN layer is sandwiched between the p-type AlGaN layer and the n-type AlGaN layer from both sides is a double hetero structure.
  • the Fermi levels of the respective layers coincide with each other.
  • FIG. 48 is a diagram showing a band structure of the double hetero structure when the blue light emitting diode is on.
  • forward voltage a positive voltage is applied to the p-type AlGaN layer and a negative voltage is applied to the n-type AlGaN layer
  • electrons are injected at high density from the large band gap n-type AlGaN layer to the small band gap InGaN layer.
  • holes are injected at high density from the large band gap p-type AlGaN layer to the small band gap InGaN layer.
  • the density of electrons and holes is much higher than the density in the thermal equilibrium state, and the probability of recombination is increased.
  • the electrons present in the conduction band and the holes present in the valence band recombine to emit light (hv) having energy corresponding to the band gap.
  • the blue light emitting diode in the fifth embodiment operates.
  • nitride semiconductor containing gallium is described as an example of the nitride semiconductor.
  • AlGaN and GaN were mentioned as an example and explained as a concrete example of a nitride semiconductor containing gallium, a technical idea of the present invention is not limited to this, for example, nitride semiconductors such as InGaN and AlInGaN. It can be widely applied to ohmic electrodes in ohmic contact with
  • the present invention can be widely used in the manufacturing industry that manufactures semiconductor devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Led Devices (AREA)

Abstract

Provided is a technology for improving semiconductor device performance by providing an ohmic electrode wherein contact resistance is reduced and deterioration of surface morphology (surface roughness) is suppressed at the same time, said ohmic electrode being in ohmic contact with a nitride semiconductor layer. In the case where a thickness of a first molybdenum (Mo) film (MF1) inserted into between an AlGaN layer (AGNL) and an aluminum (Al) film (ALF) is X nm, the relationship of 2 nm≤X≤10 nm is satisfied. The ohmic electrode wherein surface morphology is improved and contact resistance is reduced at the same time can be formed on the AlGaN layer (AGNL) by, for instance, heat treating at a high temperature of 650-850°C a laminated body (LAB) thus configured.

Description

半導体装置およびその製造方法Semiconductor device and method of manufacturing the same
 本発明は、半導体装置およびその製造技術に関し、特に、窒化物半導体層とオーミック接触するオーミック電極を有する半導体装置およびその製造技術に適用して有効な技術に関する。 The present invention relates to a semiconductor device and its manufacturing technology, and more particularly to a semiconductor device having an ohmic electrode in ohmic contact with a nitride semiconductor layer and a technology effectively applicable to its manufacturing technology.
 特許第3154364号(特許文献1)には、n型GaN層上に、下から順に、チタン(Ti)、アルミニウム(Al)、高融点金属(ニッケル(Ni)またはチタン(Ti))、金(Au)を積層したオーミック電極が記載されている。そして、このオーミック電極を800℃以上の高温で熱処理することにより、コンタクト抵抗の低い良好なオーミック電極が得られるとしている。 In Japanese Patent No. 3154364 (Patent Document 1), titanium (Ti), aluminum (Al), refractory metal (nickel (Ni) or titanium (Ti)), gold (gold (Ni) or titanium (Ti)) are sequentially deposited on an n-type GaN layer from the bottom. The ohmic electrode which laminated | stacked Au) is described. By heat-treating this ohmic electrode at a high temperature of 800 ° C. or higher, a good ohmic electrode with low contact resistance can be obtained.
 特開2009-200290号公報(特許文献2)には、アルミニウム(Al)膜とプラチナ(Pt)膜(あるいはモリブデン(Mo)膜)との間に、ニオブ(Nb)膜を挿入する構造をしたオーミック電極が記載されている。このオーミック電極に導入されているニオブ(Nb)膜は、アルミニウム(Al)膜が他の金属膜との間で共晶を形成することを抑制して、コンタクト抵抗の増加を防止する機能を有しているとしている。 JP 2009-200290 A (patent document 2) has a structure in which a niobium (Nb) film is inserted between an aluminum (Al) film and a platinum (Pt) film (or a molybdenum (Mo) film). Ohmic electrodes are described. The niobium (Nb) film introduced into this ohmic electrode has a function to prevent the aluminum (Al) film from forming a eutectic with other metal films and to prevent an increase in contact resistance. It is supposed to be.
 非特許文献1には、AlGaN層上に、下から順に、モリブデン(Mo)(15nm)、アルミニウム(Al)(60nm)、モリブデン(Mo)(35nm)、金(Au)(50nm)を積層し、650℃以上の高温で熱処理することにより、良好なオーミック電極を形成することが記載されている。 In Non-Patent Document 1, molybdenum (Mo) (15 nm), aluminum (Al) (60 nm), molybdenum (Mo) (35 nm) and gold (Au) (50 nm) are sequentially stacked from the bottom on the AlGaN layer. It is described that a good ohmic electrode is formed by heat treatment at a high temperature of 650 ° C. or higher.
特許第3154364号Patent No. 3154364 特開2009-200290号公報JP, 2009-200290, A
 GaN層やAlGaN層に代表される窒化物半導体層を有する半導体装置においては、通常、この窒化物半導体層とオーミック接触を取るためのオーミック電極が形成されている。例えば、n型の窒化物半導体層とオーミック接触を取るオーミック電極には、チタン(Ti)とアルミニウム(Al)の積層構造や、モリブデン(Mo)とアルミニウム(Al)の積層構造が使用されている。このようなオーミック電極には、半導体装置の性能向上(信頼性向上を含む)の観点から、オーミック電極と窒化物半導体層とのコンタクト抵抗(接触抵抗)を低減するだけでなく、オーミック電極と窒化物半導体層との界面における表面モホロジー(表面粗さ)の悪化を抑制することが要求される。 In a semiconductor device having a nitride semiconductor layer typified by a GaN layer or an AlGaN layer, an ohmic electrode is generally formed to have an ohmic contact with the nitride semiconductor layer. For example, a layered structure of titanium (Ti) and aluminum (Al) or a layered structure of molybdenum (Mo) and aluminum (Al) is used as an ohmic electrode in ohmic contact with an n-type nitride semiconductor layer. . Such an ohmic electrode not only reduces the contact resistance (contact resistance) between the ohmic electrode and the nitride semiconductor layer from the viewpoint of the performance improvement (including the reliability improvement) of the semiconductor device, but also the ohmic electrode and the nitriding It is required to suppress deterioration of surface morphology (surface roughness) at the interface with the object semiconductor layer.
 ところが、本発明者がこれらの積層構造をしたオーミック電極について検討した結果、オーミック電極と窒化物半導体層との間のコンタクト抵抗(接触抵抗)の低減と、オーミック電極と窒化物半導体層との界面における表面モホロジー(表面粗さ)の悪化の抑制とを両立させることが、現状のオーミック電極の構造では困難であることが明らかになった。 However, as a result of examining the ohmic electrode having the laminated structure of the present invention, as a result, the contact resistance (contact resistance) between the ohmic electrode and the nitride semiconductor layer is reduced, and the interface between the ohmic electrode and the nitride semiconductor layer It has become clear that it is difficult in the current ohmic electrode structure to simultaneously achieve the suppression of the deterioration of the surface morphology (surface roughness) in the above.
 本願において開示される課題を解決するための手段のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Among the means for solving the problems disclosed in the present application, the outline of typical ones will be briefly described as follows.
 (1)一実施の形態における半導体装置及びその製造方法は、積層体に熱処理を施すことにより形成された電極を有する。積層体は、窒化物半導体層上に形成された第1モリブデン膜と、第1モリブデン膜上に形成されたアルミニウム膜と、アルミニウム膜上に形成された第2モリブデン膜と、第2モリブデン膜上に形成された金膜と、を有し、かつ、第1モリブデン膜の膜厚をXとした場合、2nm≦X≦10nmの関係を満たす。 (1) A semiconductor device and a method of manufacturing the same according to one embodiment include an electrode formed by performing heat treatment on a stacked body. The laminated body includes a first molybdenum film formed on a nitride semiconductor layer, an aluminum film formed on the first molybdenum film, a second molybdenum film formed on the aluminum film, and a second molybdenum film. If the film thickness of the first molybdenum film is X, the relationship of 2 nm ≦ X ≦ 10 nm is satisfied.
 (2)一実施の形態における半導体装置及びその製造方法は、積層体に熱処理を施すことにより形成された電極を有する。積層体は、窒化物半導体層上に形成された第1モリブデン膜と、第1モリブデン膜上に形成されたアルミニウム膜と、アルミニウム膜上に形成された第2モリブデン膜と、第2モリブデン膜上に形成された金膜と、を有し、かつ、アルミニウム膜の膜厚をYとし、前記金膜の膜厚をZとした場合、Y≦Z≦2Yの関係を満たす。 (2) The semiconductor device and the method of manufacturing the same according to one embodiment include an electrode formed by performing heat treatment on the stacked body. The laminated body includes a first molybdenum film formed on a nitride semiconductor layer, an aluminum film formed on the first molybdenum film, a second molybdenum film formed on the aluminum film, and a second molybdenum film. If the film thickness of the aluminum film is Y and the film thickness of the gold film is Z, the relationship of Y ≦ Z ≦ 2Y is satisfied.
 (3)一実施の形態における半導体装置は、窒化物半導体層上に形成され、アルミニウム、モリブデン、および、金が相互拡散した構造を有し、かつ、窒化物半導体層との間でオーミック接触をしているオーミック電極を備える。このとき、窒化物半導体層とオーミック電極との界面において、アルミニウム、モリブデン、および、金のうち、アルミニウムの原子%が最も大きい。 (3) The semiconductor device in one embodiment is formed on a nitride semiconductor layer, has a structure in which aluminum, molybdenum, and gold interdiffuse, and an ohmic contact with the nitride semiconductor layer. And an ohmic electrode. At this time, at the interface between the nitride semiconductor layer and the ohmic electrode, the atomic percent of aluminum is the largest among aluminum, molybdenum, and gold.
 一実施の形態によれば、窒化物半導体層とオーミック接触するオーミック電極において、コンタクト抵抗(接触抵抗)の低減と、表面モホロジー(表面粗さ)の悪化の抑制とを両立できる。これにより、半導体装置の性能向上を図ることができる。 According to one embodiment, in the ohmic electrode in ohmic contact with the nitride semiconductor layer, the reduction of the contact resistance (contact resistance) and the suppression of the deterioration of the surface morphology (surface roughness) can be compatible. Thereby, the performance of the semiconductor device can be improved.
ショットキー接触を構成する金属とn型半導体とを接触させる前のそれぞれのバンド構造を示す図である。It is a figure which shows each band structure before making the metal and n-type semiconductor which comprise a Schottky contact contact. ショットキー接触において、平衡状態のバンド構造を示す図である。FIG. 5 shows the band structure in equilibrium in Schottky contact. ショットキー接触において、順方向状態のバンド構造を示す図である。In Schottky contact, it is a figure which shows the band structure of a forward state. ショットキー接触において、逆方向状態のバンド構造を示す図である。FIG. 5 shows a band structure in the reverse direction in Schottky contact. ショットキー接触における電流-電圧特性を示したグラフである。It is the graph which showed the current-voltage characteristic in Schottky contact. オーミック接触を構成する金属とn型半導体とを接触させる前のそれぞれのバンド構造を示す図である。It is a figure which shows each band structure before making the metal and n-type semiconductor which comprise ohmic contact contact. オーミック接触において、平衡状態のバンド構造を示す図である。It is a figure which shows the band structure of an equilibrium state in ohmic contact. オーミック接触において、順方向状態のバンド構造を示す図である。FIG. 5 is a diagram showing a band structure in a forward direction in ohmic contact. オーミック接触において、逆方向状態のバンド構造を示す図である。It is a figure which shows the band structure of a reverse state in ohmic contact. オーミック接触における電流-電圧特性を示したグラフである。It is the graph which showed the current-voltage characteristic in ohmic contact. 検討技術1に記載されているオーミック電極の構造を示す模式図である。It is a schematic diagram which shows the structure of the ohmic electrode described in the examination technique 1. FIG. 検討技術2に記載されているオーミック電極の構造を示す模式図である。FIG. 6 is a schematic view showing a structure of an ohmic electrode described in Study Technique 2. 実施の形態1における積層体の構成を示す模式図である。FIG. 2 is a schematic view showing a configuration of a laminate in Embodiment 1; 実施の形態1における積層体の構成を示す模式図である。FIG. 2 is a schematic view showing a configuration of a laminate in Embodiment 1; 第1モリブデン(Mo)膜の膜厚と、オーミック電極と半導体層とのコンタクト抵抗との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a 1st molybdenum (Mo) film | membrane, and the contact resistance of an ohmic electrode and a semiconductor layer. 第1モリブデン(Mo)膜の膜厚と、オーミック電極と半導体層との界面における表面粗さ(RMS)との関係を示すグラフである。It is a graph which shows the relationship between the film thickness of a 1st molybdenum (Mo) film | membrane, and the surface roughness (RMS) in the interface of an ohmic electrode and a semiconductor layer. 実施の形態1におけるオーミック電極の製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing the manufacturing process of the ohmic electrode in the first embodiment. 図17に続くオーミック電極の製造工程を示す断面図である。FIG. 18 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 17; 図18に続くオーミック電極の製造工程を示す断面図である。FIG. 19 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 18; 図19に続くオーミック電極の製造工程を示す断面図である。FIG. 20 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 19; 図20に続くオーミック電極の製造工程を示す断面図である。FIG. 21 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 20; 図21に続くオーミック電極の製造工程を示す断面図である。FIG. 22 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 21; 実施の形態2における積層体の構成を示す模式図である。FIG. 10 is a schematic view showing a configuration of a laminate in Embodiment 2; 実施の形態2における積層体の構成を示す模式図である。FIG. 10 is a schematic view showing a configuration of a laminate in Embodiment 2; Au/Al膜厚比と、オーミック電極と半導体層とのコンタクト抵抗との関係を示すグラフである。It is a graph which shows the relationship between Au / Al film thickness ratio, and the contact resistance of an ohmic electrode and a semiconductor layer. Au/Al膜厚比と、オーミック電極と半導体層との界面における表面粗さ(RMS)との関係を示すグラフである。It is a graph which shows the relationship between Au / Al film thickness ratio, and the surface roughness (RMS) in the interface of an ohmic electrode and a semiconductor layer. 実施の形態2におけるオーミック電極の製造工程を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the ohmic electrode in the second embodiment. 図27に続くオーミック電極の製造工程を示す断面図である。FIG. 28 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 27; 図28に続くオーミック電極の製造工程を示す断面図である。FIG. 29 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 28; 図29に続くオーミック電極の製造工程を示す断面図である。FIG. 30 is a cross-sectional view showing the manufacturing process of the ohmic electrode continued from FIG. 29; 実施の形態3におけるHEMTの構成を示す断面図である。FIG. 18 is a cross-sectional view showing the configuration of the HEMT in Embodiment 3; HEMTのオフ動作を説明するためのバンド図である。FIG. 7 is a band diagram for illustrating the off operation of the HEMT. HEMTのオン動作を説明するためのバンド図である。FIG. 7 is a band diagram for explaining the on operation of the HEMT. 実施の形態3におけるHEMTの製造工程を示す断面図である。FIG. 18 is a cross-sectional view showing the manufacturing process of the HEMT in the third embodiment. 図34に続くHEMTの製造工程を示す断面図である。FIG. 35 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 34; 図35に続くHEMTの製造工程を示す断面図である。FIG. 36 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 35; 図36に続くHEMTの製造工程を示す断面図である。FIG. 37 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 36; 図37に続くHEMTの製造工程を示す断面図である。FIG. 38 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 37; 図38に続くHEMTの製造工程を示す断面図である。FIG. 39 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 38; 図39に続くHEMTの製造工程を示す断面図である。FIG. 40 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 39; 図40に続くHEMTの製造工程を示す断面図である。FIG. 41 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 40; 図41に続くHEMTの製造工程を示す断面図である。FIG. 42 is a cross-sectional view showing the manufacturing process of the HEMT, following FIG. 41; 実施の形態4におけるMISFETの構成を示す断面図である。FIG. 21 is a cross-sectional view showing the configuration of the MISFET in the fourth embodiment. MISFETのオフ動作を説明するための模式図である。It is a schematic diagram for demonstrating the off operation | movement of MISFET. MISFETのオン動作を説明するための模式図である。It is a schematic diagram for demonstrating ON operation | movement of MISFET. 実施の形態5における青色発光ダイオードの構成を示す断面図である。FIG. 21 is a cross-sectional view showing a configuration of a blue light-emitting diode in Embodiment 5; 青色発光ダイオードのオフ動作を説明するためのバンド図である。It is a band figure for demonstrating the OFF operation | movement of a blue light emitting diode. 青色発光ダイオードのオン動作を説明するためのバンド図である。FIG. 6 is a band diagram for illustrating the on operation of the blue light emitting diode.
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。 In the following embodiments, when it is necessary for the sake of convenience, it will be described by dividing into a plurality of sections or embodiments, but they are not unrelated to each other unless specifically stated otherwise, one is the other And some or all of the variations, details, and supplementary explanations.
 また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。 Further, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), it is particularly pronounced and clearly limited to a specific number in principle. It is not limited to the specific number except for the number, and may be more or less than the specific number.
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Furthermore, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily essential unless explicitly stated or considered to be obviously essential in principle. Needless to say.
 同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。 Similarly, in the following embodiments, when referring to the shape, positional relationship, etc. of components etc., unless specifically stated otherwise and in principle not considered otherwise in principle, etc., It includes those that are similar or similar to the shape etc. The same applies to the above numerical values and ranges.
 また、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。なお、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 Further, in all the drawings for describing the embodiments, the same reference numeral is attached to the same member in principle, and the repetitive description thereof will be omitted. In order to make the drawings easy to understand, hatching may be attached even to a plan view.
 (実施の形態1)
 <ショットキー接触>
 半導体装置では、例えば、半導体デバイスには半導体層が形成され、かつ、配線(電極も含む)には金属膜が使用されることから、半導体デバイスと配線とを電気的に接続して回路を構成するために、半導体層と金属膜とを接触させる必要あるが、一般的に、半導体層と金属膜とを接触させる場合、ショットキー接触になる場合とオーミック接触になる場合がある。半導体層と金属膜とを単に電気的に接続する場合には、ショットキー接触ではなく、オーミック接触にする必要がある。以下では、まず、ショットキー接触とオーミック接触について説明し、単に、半導体層と金属膜とを電気的に接続する場合には、オーミック接触にする必要がある点について説明する。
Embodiment 1
<Shotkey contact>
In a semiconductor device, for example, a semiconductor layer is formed on a semiconductor device, and a metal film is used for a wire (including an electrode). Therefore, a circuit is configured by electrically connecting the semiconductor device and the wire. In order to achieve this, it is necessary to bring the semiconductor layer and the metal film into contact with each other. Generally, when the semiconductor layer and the metal film are brought into contact, they may be in Schottky contact or in ohmic contact. In the case of merely electrically connecting the semiconductor layer and the metal film, it is necessary to make ohmic contact instead of Schottky contact. In the following, first, Schottky contact and ohmic contact will be described, and in the case of merely electrically connecting the semiconductor layer and the metal film, it will be described that it is necessary to make ohmic contact.
 図1は、金属とn型半導体とを接触させる前のそれぞれのバンド構造を示す図である。図1の左側に金属のバンド構造が示されており、図1の右側にn型半導体のバンド構造が示されている。図1の破線で示されているものは真空準位であり、この真空準位は、真空のエネルギー準位を示している。図1の左側に示す金属のバンド構造においては、金属のフェルミ準位εFMが示されており、金属のフェルミ準位εFMと真空準位の差が仕事関数Φとなる。この仕事関数Φは、金属中でフェルミエネルギーを持つ電子を金属中から真空中に取り出すために必要なエネルギーという意味を有している。一方、図1の右側に示されるn型半導体のバンド構造において、価電子帯Eと伝導帯Eが示されており、n型半導体のフェルミ準位εFSは、伝導帯Eの近傍に存在する。そして、n型半導体のフェルミ準位εFSと真空準位の差が仕事関数Φとなる。この仕事関数Φは、n型半導体中でフェルミエネルギーを持つ電子を真空中に取り出すために必要なエネルギーという意味を有している。 FIG. 1 is a view showing respective band structures before contacting a metal and an n-type semiconductor. The metal band structure is shown on the left side of FIG. 1, and the band structure of the n-type semiconductor is shown on the right side of FIG. What is indicated by a broken line in FIG. 1 is a vacuum level, which indicates the energy level of vacuum. In the metal band structure shown on the left side of FIG. 1, the Fermi level ε FM of the metal is shown, and the difference between the Fermi level ε FM of the metal and the vacuum level is the work function m m . The work function m m has the meaning of energy required to extract an electron having Fermi energy in the metal from the metal into a vacuum. On the other hand, in the band structure of the n-type semiconductor shown on the right side of FIG. 1, the valence band E v and the conduction band E c are shown, and the Fermi level ε FS of the n-type semiconductor is near the conduction band E c To be present. The difference between the Fermi level ε FS of the n-type semiconductor and the vacuum level is the work function s s . This work function s s has the meaning of the energy required to extract an electron having Fermi energy in an n-type semiconductor into a vacuum.
 ここで、図1では、金属の仕事関数Φの大きさがn型半導体の仕事関数Φよりも大きくなっており、この場合、金属とn型半導体を接触させると、金属とn型半導体の接触がショットキー接触となる。言い換えれば、電子のエネルギーから見て、金属とn型半導体とを接触させる前の金属のフェルミ準位εFMの位置がn型半導体のフェルミ準位εFSよりも低い場合、金属とn型半導体の接触がショットキー接触となる。 Here, in FIG. 1, the magnitude of the work function m m of the metal is larger than the work function Φ s of the n-type semiconductor. In this case, when the metal and the n-type semiconductor are in contact, the metal and the n-type semiconductor Contact is a Schottky contact. In other words, when the position of the Fermi level ε FM of the metal before contacting the metal and the n-type semiconductor is lower than the Fermi level ε FS of the n-type semiconductor, the metal and the n-type semiconductor Contact is a Schottky contact.
 以下に、ショットキー接触が形成されるメカニズムついて説明する。例えば、図1に示す状態から、金属とn型半導体とを接触させると、金属のフェルミ準位εFMの位置がn型半導体のフェルミ準位εFSよりも低いため、n型半導体の伝導帯Eの底部近傍に多数存在する電子は、n型半導体中にいるよりも金属中に存在した方が、エネルギーが低くなる。このことから、金属とn型半導体とを接触させると、n型半導体の伝導帯Eの底部近傍に多数存在する電子は、n型半導体から金属に向って流れ込む。この結果、金属に接触するn型半導体の表面領域に正に帯電したドナーイオンが取り残され、これと同量の負の電荷(電子)が金属側に誘起される。すると、n型半導体から金属に向った方向に電界が発生し、この電界により、n型半導体の伝導帯Eの底部近傍に多数存在する電子のn型半導体から金属への流入が抑制される。すなわち、ある程度の電子がn型半導体から金属へ流れ込んだ後、電子はそれ以上金属へ流入しなくなり、平衡状態が実現する。 Below, the mechanism in which a Schottky contact is formed is demonstrated. For example, when the metal and the n-type semiconductor are brought into contact from the state shown in FIG. 1, the position of the Fermi level ε FM of the metal is lower than the Fermi level ε FS of the n-type semiconductor. A large number of electrons near the bottom of E c have lower energy when they are present in the metal than in the n-type semiconductor. From this, when the metal and the n-type semiconductor are brought into contact, electrons present in the vicinity of the bottom of the conduction band E c of the n-type semiconductor flow from the n-type semiconductor toward the metal. As a result, positively charged donor ions are left on the surface region of the n-type semiconductor in contact with the metal, and the same amount of negative charge (electrons) is induced on the metal side. Then, an electric field is generated in a direction from the n-type semiconductor toward the metal, and the electric field suppresses the influx of electrons present in the vicinity of the bottom of the conduction band E c of the n-type semiconductor from the n-type semiconductor into the metal. . That is, after a certain amount of electrons flow into the metal from the n-type semiconductor, the electrons no longer flow into the metal, and an equilibrium state is realized.
 図2は、この平衡状態のバンド構造を示す図である。すなわち、図2に示すように、平衡状態では、金属のフェルミ準位εFMとn型半導体のフェルミ準位εFSとが一致する。このとき、n型半導体の充分な内部において、電子密度は接触前の状態から変化しないので、n型半導体のフェルミ準位εFSと伝導帯Eの底のエネルギー差は変化せず、n型半導体のバンドは、図2に示すように、上側へ曲がることになる。この結果、n型半導体の金属との接触領域においては、伝導帯Eの底のエネルギーが、n型半導体内部の伝導帯Eの底のエネルギーよりも高くなるため、このn型半導体の金属との接触領域には電子が存在せず、空乏層が形成されることになる。このようにして、金属の仕事関数Φの大きさがn型半導体の仕事関数Φよりも大きい場合、金属とn型半導体を接触させると、金属とn型半導体の接触がショットキー接触となる。このとき、ショットキー障壁の高さΦは、n型半導体の金属との接触領域における伝導帯Eの底部のエネルギーと、金属のフェルミ準位εFMとの差として定義される。 FIG. 2 shows the band structure in this equilibrium state. That is, as shown in FIG. 2, in the equilibrium state, the Fermi level ε FM of the metal and the Fermi level ε FS of the n-type semiconductor coincide with each other. At this time, since the electron density does not change from the state before contact in the sufficient interior of the n-type semiconductor, the energy difference between the Fermi level ε FS of the n-type semiconductor and the bottom of the conduction band E c does not change. The band of the semiconductor will bend upward, as shown in FIG. As a result, in the contact area with the n-type semiconductor of metal, the bottom energy of the conduction band E c is, to become higher than the bottom energy of the n-type semiconductor inside the conduction band E c, a metal of the n-type semiconductor Electrons do not exist in the contact region with and a depletion layer is formed. Thus, when the magnitude of the work function m m of the metal is larger than the work function Φ s of the n-type semiconductor, when the metal and the n-type semiconductor are brought into contact with each other, the contact of the metal and the n-type semiconductor becomes Schottky contact Become. At this time, the height Φ B of the Schottky barrier is defined as the difference between the energy at the bottom of the conduction band E c in the contact region of the n-type semiconductor with the metal and the Fermi level ε FM of the metal.
 ここで、ショットキー接触を形成している金属とn型半導体との間に順方向電圧を印加した場合を考える。すなわち、金属側がn型半導体側に対して正電位となるように電圧を印加した場合を考える。この場合、順方向電圧は、そのほとんどが抵抗の高い空乏層に加わるため、この順方向電圧による外部電界が、電子のn型半導体から金属への流入を抑制している空乏層内の電界を弱めることになる。この結果、電子がn型半導体から金属に流入し、電流が金属からn型半導体へ流れる。これが順方向である。 Here, it is assumed that a forward voltage is applied between a metal forming a Schottky contact and an n-type semiconductor. That is, a case is considered in which a voltage is applied such that the metal side has a positive potential with respect to the n-type semiconductor side. In this case, most of the forward voltage is applied to the high resistance depletion layer, so the external electric field due to this forward voltage suppresses the inflow of electrons from the n-type semiconductor to the metal in the depletion layer. It will weaken. As a result, electrons flow from the n-type semiconductor into the metal, and current flows from the metal to the n-type semiconductor. This is the forward direction.
 図3は、順方向状態のバンド構造を示す図である。図3に示すように、金属とn型半導体との間に順方向電圧Vを加えた場合、電子に対しては、n型半導体の方が金属よりもエネルギー的に高くなるため、n型半導体のフェルミ準位εFSは、金属のフェルミ準位εFMよりもqVだけ高くなる。すると、n型半導体中の電子から見たエネルギー障壁は、電圧を印加しない平衡状態のエネルギー障壁(ショットキー障壁の高さΦ)よりもqVだけ低くなる。この結果、n型半導体から金属へ電子が流入して、金属からn型半導体に向って電流(順方向電流)が流れるのである。 FIG. 3 is a diagram showing a band structure in the forward direction. As shown in FIG. 3, when a forward voltage V is applied between the metal and the n-type semiconductor, the n-type semiconductor is energetically higher than the metal for electrons, so the n-type semiconductor is The Fermi level ε FS of is higher by qV than the Fermi level ε FM of the metal. Then, the energy barrier seen from the electrons in the n-type semiconductor is qV lower than the energy barrier in an equilibrium state (voltage Φ B of the Schottky barrier) in which no voltage is applied. As a result, electrons flow from the n-type semiconductor to the metal, and a current (forward current) flows from the metal to the n-type semiconductor.
 一方、ショットキー接触を形成している金属とn型半導体との間に逆方向電圧を印加した場合を考える。すなわち、金属側がn型半導体側に対して負電位となるように電圧を印加した場合を考える。この場合、逆方向電圧は、そのほとんどが抵抗の高い空乏層に加わり、この逆方向電圧による外部電界は、空乏層内の電界を強める方向に発生する。この結果、電子のn型半導体から金属への流入は起こらず、電流はほとんど流れない。これが逆方向である。 On the other hand, consider the case where a reverse voltage is applied between the metal forming the Schottky contact and the n-type semiconductor. That is, a case is considered in which a voltage is applied such that the metal side has a negative potential with respect to the n-type semiconductor side. In this case, most of the reverse voltage is applied to the high resistance depletion layer, and an external electric field due to this reverse voltage is generated to strengthen the electric field in the depletion layer. As a result, the flow of electrons from the n-type semiconductor into the metal does not occur, and almost no current flows. This is the opposite direction.
 図4は、逆方向状態のバンド構造を示す図である。図4に示すように、金属とn型半導体との間に逆方向電圧Vを加えた場合、電子に対しては、n型半導体の方が金属よりもエネルギー的に低くなるため、n型半導体のフェルミ準位εFSは、金属のフェルミ準位εFMよりもqVだけ低くなる。すると、n型半導体中の電子から見たエネルギー障壁は、電圧を印加しない平衡状態のエネルギー障壁(ショットキー障壁の高さΦ)よりもqVだけ高くなる。この結果、n型半導体から金属へ電子が流入しにくくなり、金属からn型半導体に向って電流がほとんど流れなくなることがわかる。ここで、電流がほとんど流れないと言っているのは、逆方向状態の場合、金属からn型半導体へわずかに電子が流れる結果、n型半導体から金属に向って、わずかに逆方向電流が流れる。すなわち、逆方向電圧Vを加えた場合には、図4に示すように、金属のフェルミ準位εFMがn型半導体のフェルミ準位εFSよりもqVだけ高くなるため、電子は、むしろ、金属からn型半導体へ流れる。つまり、逆方向状態では、金属のフェルミ準位εFMがn型半導体のフェルミ準位εFSよりもqVだけ高くなるため、金属中でフェルミ準位εFMからショットキー障壁の高さΦよりも大きなエネルギーを有する電子が、n型半導体中でフェルミ準位εFSから(Φ-qV)よりも大きなエネルギーを有する電子よりも多くなる。このことから、電子の濃度差に起因した拡散現象により、金属からn型半導体に電子が流れ込む。これにより、わずかであるがn型半導体から金属へ逆方向電流が流れるのである。 FIG. 4 is a diagram showing a band structure in the reverse direction. As shown in FIG. 4, when a reverse voltage V is applied between a metal and an n-type semiconductor, the n-type semiconductor is lower in energy than the metal for electrons, so the n-type semiconductor The Fermi level ε FS of is lower by qV than the Fermi level ε FM of the metal. Then, the energy barrier seen from electrons in the n-type semiconductor becomes qV higher than the energy barrier in an equilibrium state (the height Φ B of the Schottky barrier) in which no voltage is applied. As a result, it is understood that electrons are less likely to flow from the n-type semiconductor to the metal, and almost no current flows from the metal to the n-type semiconductor. Here, the reason that almost no current flows is that in the reverse state, as a result of the slight flow of electrons from the metal to the n-type semiconductor, a slight reverse current flows from the n-type semiconductor to the metal . That is, when the reverse voltage V is applied, as shown in FIG. 4, the Fermi level ε FM of the metal becomes qV higher than the Fermi level ε FS of the n-type semiconductor, so the electrons are rather It flows from metal to n-type semiconductor. That is, in the reverse state, since the Fermi level ε FM of the metal is qV higher than the Fermi level ε FS of the n-type semiconductor, the Fermi level ε FM in the metal is higher than the height φ B of the Schottky barrier There are more electrons having larger energy than electrons having energy larger than (Φ B -qV) from the Fermi level ε FS in the n-type semiconductor. From this, the electrons flow from the metal into the n-type semiconductor due to the diffusion phenomenon caused by the difference in concentration of the electrons. As a result, a small amount of reverse current flows from the n-type semiconductor to the metal.
 以上がショットキー接触の特性である。図5は、ショットキー接触における電流-電圧特性を示したグラフである。図5において、横軸がショットキー接触間に印加される電圧を示しており、縦軸がショットキー接触間を流れる電流を示している。図5に示すように、ショットキー接触に順方向電圧が印加される場合、順方向電圧の増加に伴って順方向電流が指数関数的に上昇する。一方、ショットキー接触に逆方向電圧が印加される場合、逆方向電圧が増加しても逆方向電流はほとんど小さな値で一定している。このことから、ショットキー接触の電流-電圧特性は、順方向における電流-電圧特性と、逆方向における電流-電圧特性がまったく相違していることがわかる。つまり、ショットキー接触は、順方向には充分に電流が流れる一方、逆方向にはほとんど電流が流れないという整流特性を有していることがわかる。 The above is the characteristic of the Schottky contact. FIG. 5 is a graph showing current-voltage characteristics at Schottky contact. In FIG. 5, the horizontal axis shows the voltage applied between the Schottky contacts, and the vertical axis shows the current flowing between the Schottky contacts. As shown in FIG. 5, when a forward voltage is applied to the Schottky contact, the forward current rises exponentially as the forward voltage increases. On the other hand, when a reverse voltage is applied to the Schottky contact, the reverse current is constant at a substantially small value even if the reverse voltage increases. From this, it can be seen that the current-voltage characteristics of the Schottky contact are completely different from the current-voltage characteristics in the forward direction and the current-voltage characteristics in the reverse direction. That is, it can be seen that the Schottky contact has a rectifying characteristic that a current flows sufficiently in the forward direction, and a current hardly flows in the reverse direction.
 ここで、半導体層を有する半導体デバイスと、金属膜から形成される配線とを電気的に接続して回路を構成することを考える場合、半導体層と金属膜の接触がショットキー接触になると不都合が生じる。なぜなら、単に、半導体層と金属膜とを電気的に接続させる場合であっても、この半導体層と金属膜の接触がショットキー接触になると、このショットキー接触には、ダイオードのような整流特性があるため、あたかも、半導体層と金属膜との間にダイオードが付加接続された構成となってしまい、目的とする回路構成とは異なってしまうからである。このことから、半導体層と金属膜の接触には、整流特性のない抵抗性のオーミック接触が必要となるのである。 Here, when it is considered that a semiconductor device having a semiconductor layer and a wiring formed of a metal film are electrically connected to form a circuit, there is a disadvantage that the contact between the semiconductor layer and the metal film is a Schottky contact. It occurs. This is because even if the semiconductor layer and the metal film are electrically connected, if the contact between the semiconductor layer and the metal film is a Schottky contact, the Schottky contact has a rectifying characteristic like a diode. As a result, a diode is additionally connected between the semiconductor layer and the metal film, which is different from the intended circuit configuration. From this, the contact of the semiconductor layer and the metal film requires a resistive ohmic contact having no rectifying characteristic.
 <オーミック接触>
 以下に、このオーミック接触について説明する。図6は、金属とn型半導体とを接触させる前のそれぞれのバンド構造を示す図である。図6の左側に金属のバンド構造が示されており、図6の右側にn型半導体のバンド構造が示されている。図6では、金属の仕事関数Φの大きさがn型半導体の仕事関数Φよりも小さくなっており、この場合、金属とn型半導体を接触させると、金属とn型半導体の接触がオーミック接触となる。言い換えれば、電子のエネルギーから見て、金属とn型半導体とを接触させる前の金属のフェルミ準位εFMの位置がn型半導体のフェルミ準位εFSよりも高い場合、金属とn型半導体の接触がオーミック接触となる。
<Ohmic contact>
Below, this ohmic contact is demonstrated. FIG. 6 is a view showing respective band structures before contacting a metal and an n-type semiconductor. The metal band structure is shown on the left side of FIG. 6, and the band structure of the n-type semiconductor is shown on the right side of FIG. In FIG. 6, the magnitude of the work function m m of the metal is smaller than the work function Φ s of the n-type semiconductor. In this case, when the metal and the n-type semiconductor are in contact, the contact of the metal and the n-type semiconductor is Ohmic contact. In other words, when the position of the Fermi level ε FM of the metal before bringing the metal and the n-type semiconductor into contact with each other is higher than the Fermi level ε FS of the n-type semiconductor, the metal and the n-type semiconductor Contact is an ohmic contact.
 次に、オーミック接触が形成されるメカニズムついて説明する。例えば、図6に示す状態から、金属とn型半導体とを接触させると、金属のフェルミ準位εFMの位置がn型半導体のフェルミ準位εFSよりも高いため、金属中に存在する電子は、金属中にいるよりもn型半導体中に存在した方が、エネルギーが低くなる。このことから、金属とn型半導体とを接触させると、金属中に存在する電子は、金属からn型半導体に向って流れ込む。この結果、金属に接触するn型半導体の表面領域の電子濃度が高くなり、これと同量の正の電荷が金属側に誘起される。すると、金属からn型半導体に向った方向に電界が発生し、この電界により、金属中に存在する電子の金属からn型半導体への流入が抑制される。すなわち、ある程度の電子が金属からn型半導体へ流れ込んだ後、電子はそれ以上n型半導体へ流入しなくなり、平衡状態が実現する。 Next, the mechanism by which the ohmic contact is formed will be described. For example, when the metal and the n-type semiconductor are brought into contact from the state shown in FIG. 6, the position of the Fermi level ε FM of the metal is higher than the Fermi level ε FS of the n-type semiconductor. The energy is lower in the n-type semiconductor than in the metal. From this, when the metal and the n-type semiconductor are brought into contact, electrons present in the metal flow from the metal toward the n-type semiconductor. As a result, the electron concentration of the surface region of the n-type semiconductor in contact with the metal becomes high, and the same amount of positive charge is induced on the metal side. Then, an electric field is generated in a direction from the metal to the n-type semiconductor, and the electric field suppresses the inflow of electrons present in the metal from the metal to the n-type semiconductor. That is, after a certain amount of electrons flow from the metal into the n-type semiconductor, the electrons no longer flow into the n-type semiconductor, and an equilibrium state is realized.
 図7は、この平衡状態のバンド構造を示す図である。すなわち、図7に示すように、平衡状態では、金属のフェルミ準位εFMとn型半導体のフェルミ準位εFSとが一致する。このとき、n型半導体の充分な内部において、電子密度は接触前の状態から変化しないので、n型半導体のフェルミ準位εFSと伝導帯Eの底のエネルギー差は変化せず、n型半導体のバンドは、図7に示すように、下側へ曲がることになる。この結果、n型半導体の金属との接触領域においては、伝導帯Eの底のエネルギーが、n型半導体内部の伝導帯Eの底のエネルギーよりも低くなるため、このn型半導体の金属との接触領域には電子が多く存在することになる。このようにして、金属の仕事関数Φの大きさがn型半導体の仕事関数Φよりも小さい場合、金属とn型半導体を接触させると、金属とn型半導体の接触がオーミック接触となる。このとき、オーミック接触においては、ショットキー接触と異なる、ショットキー障壁は形成されないことがわかる。 FIG. 7 shows the band structure in this equilibrium state. That is, as shown in FIG. 7, in the equilibrium state, the Fermi level ε FM of the metal and the Fermi level ε FS of the n-type semiconductor coincide with each other. At this time, since the electron density does not change from the state before contact in the sufficient interior of the n-type semiconductor, the energy difference between the Fermi level ε FS of the n-type semiconductor and the bottom of the conduction band E c does not change. The band of the semiconductor bends downward as shown in FIG. As a result, in the contact area with the n-type semiconductor of metal, the bottom energy of the conduction band E c is, becomes lower than the bottom energy of the n-type semiconductor inside the conduction band E c, a metal of the n-type semiconductor Many electrons will be present in the contact area with. Thus, when the size of the work function m m of the metal is smaller than the work function Φ s of the n-type semiconductor, when the metal and the n-type semiconductor are brought into contact, the contact between the metal and the n-type semiconductor becomes an ohmic contact . At this time, it is understood that in the ohmic contact, a Schottky barrier different from the Schottky contact is not formed.
 ここで、オーミック接触を形成している金属とn型半導体との間に、金属側がn型半導体側に対して正電位となるような第1電圧を印加した場合を考える。図8は、金属側がn型半導体側に対して正電位となるように第1電圧を印加した場合のバンド構造を示す図である。図8に示すように、金属とn型半導体との間に上述した第1電圧Vを加えた場合、電子に対しては、金属の方がn型半導体よりもエネルギー的に低くなるため、金属のフェルミ準位εFMは、n型半導体のフェルミ準位εFSよりもqVだけ低くなる。すると、n型半導体中の伝導帯近傍に存在する多数の電子が、n型半導体から金属へ流入して、金属からn型半導体に向って電流が流れるのである。 Here, it is assumed that a first voltage is applied between the metal forming the ohmic contact and the n-type semiconductor such that the metal side has a positive potential with respect to the n-type semiconductor side. FIG. 8 is a diagram showing a band structure when the first voltage is applied so that the metal side has a positive potential with respect to the n-type semiconductor side. As shown in FIG. 8, when the above-described first voltage V is applied between the metal and the n-type semiconductor, the metal is lower in energy than the n-type semiconductor for electrons, so the metal The Fermi level ε FM of is lower by qV than the Fermi level ε FS of the n-type semiconductor. Then, a large number of electrons present in the vicinity of the conduction band in the n-type semiconductor flow from the n-type semiconductor into the metal, and a current flows from the metal toward the n-type semiconductor.
 一方、オーミック接触を形成している金属とn型半導体との間に、金属側がn型半導体側に対して負電位となるような第2電圧を印加した場合を考える。図9は、金属側がn型半導体側に対して負電位となるように第2電圧を印加した場合のバンド構造を示す図である。図9に示すように、金属とn型半導体との間に上述した第2電圧Vを加えた場合、電子に対しては、金属の方がn型半導体よりもエネルギー的に高くなるため、金属のフェルミ準位εFMは、n型半導体のフェルミ準位εFSよりもqVだけ高くなる。すると、金属中に存在する電子が、金属からn型半導体へ流入して、n型半導体から金属に向って電流が流れるのである。 On the other hand, a case is considered where a second voltage is applied between the metal forming the ohmic contact and the n-type semiconductor such that the metal side has a negative potential with respect to the n-type semiconductor side. FIG. 9 is a diagram showing a band structure when the second voltage is applied so that the metal side has a negative potential with respect to the n-type semiconductor side. As shown in FIG. 9, when the above-described second voltage V is applied between the metal and the n-type semiconductor, the metal is higher in energy than the n-type semiconductor for electrons, so the metal The Fermi level ε FM of is higher by qV than the Fermi level ε FS of the n-type semiconductor. Then, electrons present in the metal flow from the metal to the n-type semiconductor, and a current flows from the n-type semiconductor to the metal.
 以上がオーミック接触の特性である。図10は、オーミック接触における電流-電圧特性を示したグラフである。図10において、横軸がオーミック接触間に印加される電圧を示しており、縦軸がオーミック接触間を流れる電流を示している。図10に示すように、オーミック接触に第1電圧が印加される場合、第1電圧の増加に伴ってプラス方向の電流が一次直線状に上昇する。一方、オーミック接触に第2電圧が印加される場合、第2電圧の増加に伴ってマイナス方向の電流が一次直線状に上昇する。このことから、オーミック接触の電流-電圧特性は、第1電圧極性における電流-電圧特性と、第2電圧極性における電流-電圧特性がまったく同等であることがわかる。つまり、オーミック接触は、抵抗性接触であり、ショットキー接触のように整流特性を有していないことがわかる。 The above is the characteristic of the ohmic contact. FIG. 10 is a graph showing current-voltage characteristics in ohmic contact. In FIG. 10, the horizontal axis indicates the voltage applied between the ohmic contacts, and the vertical axis indicates the current flowing between the ohmic contacts. As shown in FIG. 10, when the first voltage is applied to the ohmic contact, the current in the positive direction rises linearly in a linear manner as the first voltage increases. On the other hand, when the second voltage is applied to the ohmic contact, the current in the negative direction rises linearly in a linear manner as the second voltage increases. From this, it is understood that the current-voltage characteristic of the ohmic contact is completely equal to the current-voltage characteristic at the first voltage polarity and the current-voltage characteristic at the second voltage polarity. That is, it can be understood that the ohmic contact is a resistive contact and does not have rectifying characteristics like a Schottky contact.
 したがって、半導体層を有する半導体デバイスと、金属膜から形成される配線とを電気的に接続して回路を構成することを考える場合、半導体層と金属膜の接触がオーミック接触であると、ショットキー接触のように整流特性がないため、好都合であることがわかる。つまり、半導体層と金属膜がオーミック接触する場合、半導体層と金属膜とは、整流特性のない抵抗性接触となり、目的とする回路構成を実現できることがわかる。 Therefore, considering that a semiconductor device having a semiconductor layer and a wiring formed of a metal film are electrically connected to form a circuit, it is considered that the contact between the semiconductor layer and the metal film is an ohmic contact. It proves to be advantageous because it has no rectifying properties like contacts. That is, when the semiconductor layer and the metal film make ohmic contact, it can be seen that the semiconductor layer and the metal film become resistive contact having no rectifying characteristic, and the target circuit configuration can be realized.
 <オーミック電極の特性向上の必要性>
 上述したように、半導体層を有するデバイスでは、多くの場合、集積回路を構成するために、半導体層と金属膜とを電気的に接続する必要性が生じる。このとき、半導体層と金属膜とをオーミック接触させることにより、半導体層を有するデバイスを使用した集積回路が実現される。オーミック電極は、例えば、トランジスタにおけるソース電極やドレイン電極、半導体層を抵抗素子として用いた場合の電極などに使用される。したがって、半導体層を有するデバイスを使用した集積回路を実現するためには、半導体層とオーミック接触するオーミック電極を形成する必要がある。そして、集積回路の性能向上(信頼性向上を含む)の観点から、オーミック電極と半導体層とのコンタクト抵抗(接触抵抗)をできるだけ低減するだけでなく、オーミック電極と半導体層との界面における表面モホロジー(表面粗さ)の悪化を抑制することが要求される。なぜなら、オーミック電極のコンタクト抵抗を低減することは、集積回路の特性向上を図る観点から必要であることは言うまでもないが、表面モホロジーの悪化は、オーミック電極と半導体層の密着性の低下を招き、オーミック電極の剥がれによるデバイス破壊や、不要なリーク電流の発生などを引き起こし、半導体装置の信頼性向上の観点から問題となると考えられるからである。
<Need to improve the characteristics of ohmic electrode>
As described above, in a device having a semiconductor layer, in many cases, it is necessary to electrically connect the semiconductor layer and the metal film to constitute an integrated circuit. At this time, an integrated circuit using a device having a semiconductor layer is realized by bringing the semiconductor layer and the metal film into ohmic contact with each other. The ohmic electrode is used, for example, as a source electrode or a drain electrode in a transistor, an electrode when a semiconductor layer is used as a resistance element, or the like. Therefore, in order to realize an integrated circuit using a device having a semiconductor layer, it is necessary to form an ohmic electrode in ohmic contact with the semiconductor layer. Then, from the viewpoint of improving the performance of the integrated circuit (including improving the reliability), not only the contact resistance (contact resistance) between the ohmic electrode and the semiconductor layer is reduced as much as possible, but also the surface morphology at the interface between the ohmic electrode and the semiconductor layer It is required to suppress the deterioration of (surface roughness). It is needless to say that it is necessary to reduce the contact resistance of the ohmic electrode from the viewpoint of improving the characteristics of the integrated circuit, but the deterioration of the surface morphology leads to the deterioration of the adhesion between the ohmic electrode and the semiconductor layer. This is because it is considered that this causes a device breakdown due to the peeling of the ohmic electrode and the occurrence of an unnecessary leak current and the like, which becomes a problem from the viewpoint of improving the reliability of the semiconductor device.
 ここで、化合物半導体の一種である窒化物半導体を有するデバイスも例外ではなく、窒化物半導体層を有するデバイスを使用した集積回路を実現するためには、窒化物半導体層とオーミック接触するオーミック電極を形成する必要がある。そして、集積回路の性能向上(信頼性向上を含む)の観点から、オーミック電極と窒化物半導体層とのコンタクト抵抗(接触抵抗)を低減するだけでなく、オーミック電極と窒化物半導体層との界面における表面モホロジー(表面粗さ)の悪化も抑制する必要がある。特に、本願発明では、真性窒化物半導体層(ノンドープ窒化物半導体層)やn型窒化物半導体層とオーミック接触するオーミック電極において、コンタクト抵抗(接触抵抗)の低減と、表面モホロジー(表面粗さ)の悪化の抑制とを両立できるオーミック電極を提供することを目的とするものである。本願発明は、特に、窒化物半導体におけるオーミック電極の特性向上を目指す技術的思想である。このとき、本願発明で窒化物半導体に着目しているのは、化合物半導体の中でも、窒化物半導体の特性が優れている点が多数存在するからである。以下に、まず、化合物半導体の一種である窒化物半導体が、GaAsに代表される化合物半導体と比較した場合の利点について説明する。 Here, a device having a nitride semiconductor which is a type of compound semiconductor is no exception, and in order to realize an integrated circuit using a device having a nitride semiconductor layer, an ohmic electrode in ohmic contact with the nitride semiconductor layer is used. It needs to be formed. Then, from the viewpoint of improving the performance of the integrated circuit (including improving the reliability), not only the contact resistance (contact resistance) between the ohmic electrode and the nitride semiconductor layer is reduced, but also the interface between the ohmic electrode and the nitride semiconductor layer It is also necessary to suppress the deterioration of surface morphology (surface roughness) in In particular, in the present invention, in the ohmic electrode in ohmic contact with the intrinsic nitride semiconductor layer (non-doped nitride semiconductor layer) and the n-type nitride semiconductor layer, reduction of contact resistance (contact resistance) and surface morphology (surface roughness) It is an object of the present invention to provide an ohmic electrode compatible with the suppression of the deterioration of The present invention is, in particular, a technical idea aiming to improve the characteristics of the ohmic electrode in the nitride semiconductor. At this time, the reason for focusing on the nitride semiconductor in the present invention is that among the compound semiconductors, there are many points where the characteristics of the nitride semiconductor are excellent. First, advantages of the nitride semiconductor, which is a type of compound semiconductor, in comparison with a compound semiconductor represented by GaAs will be described.
 <窒化物半導体を使用することによる利点>
 例えば、GaAsやAlGaAsに代表される化合物半導体においては、一般に、シリコン(Si)よりも電子の移動度が高いものが多い一方、正孔の移動度は、シリコン(Si)と同程度かあるいはシリコン(Si)よりも小さい。このため、例えば、デバイス(半導体素子)の構成要素として化合物半導体を使用する場合には、多数キャリアとして電子を用いたデバイスの方が化合物半導体の特徴を生かすことができる。
<Advantages of using nitride semiconductors>
For example, in compound semiconductors typified by GaAs and AlGaAs, in general, the mobility of electrons is higher than that of silicon (Si), while the mobility of holes is equivalent to that of silicon (Si) or silicon Less than (Si). Therefore, for example, when a compound semiconductor is used as a component of a device (semiconductor element), a device using electrons as a majority carrier can utilize the characteristics of the compound semiconductor.
 このような特性がある化合物半導体であるが、近年では、化合物半導体の中でも、GaNやAlGaNに代表される窒化物半導体が注目されている。なぜなら、GaNやAlGaNに代表される窒化物半導体(化合物半導体の一例)は、GaAsやAlGaAsに代表される化合物半導体よりも、バンドギャップが大きく、この結果、絶縁耐圧が大きくなる特徴を有しているからである。したがって、近年では、GaNやAlGaNに代表される窒化物半導体が、例えば、高周波デバイスや電力用デバイスの分野で使用されている。 Among compound semiconductors, nitride semiconductors typified by GaN and AlGaN have attracted attention in recent years, although they are compound semiconductors having such characteristics. This is because a nitride semiconductor (an example of a compound semiconductor) represented by GaN or AlGaN has a larger band gap than a compound semiconductor represented by GaAs or AlGaAs, and as a result, the dielectric breakdown voltage is increased. It is because Therefore, in recent years, nitride semiconductors represented by GaN and AlGaN are used, for example, in the field of high frequency devices and power devices.
 さらに、AlGaN層とGaN層のヘテロ接合を形成すると、そのバンド構造の相違から、両方の界面近傍に三角形状の井戸型ポテンシャルが形成され、この井戸型ポテンシャル内に電子が集中することが知られている(2次元電子ガス)。この2次元電子ガスの移動度は非常に高くなるため、両方の界面近傍に形成される井戸型ポテンシャルに発生した2次元電子ガスをキャリアに利用した電界効果トランジスタによれば、高速で動作する電界効果トランジスタが実現される。この2次元電子ガスを利用した電界効果トランジスタは、高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)と呼ばれる。このHEMTとしては、AlGaAs層とGaAs層のヘテロ接合を使用したものも存在するが、AlGaN層とGaN層のヘテロ接合に基づく2次元電子ガスの面電荷(例えば、1×1013/cm)は、AlGaAs層とGaAs層のヘテロ接合に基づく2次元電子ガスの面電荷(例えば、1×1012/cm)よりも充分に大きくなる(例えば、10倍)。これは、AlGaN層とGaN層との伝導帯不連続ΔEが、AlGaAs層とGaAs層の伝導帯不連続ΔEよりも大きいとともに、AlGaN層とGaN層のヘテロ接合では、自発分極によるピエゾ効果によって、井戸型ポテンシャルの底部が下側(価電子帯側)に引き下げられるからである。この結果、AlGaN層とGaN層のヘテロ接合に形成される井戸型ポテンシャルの大きさが、AlGaAs層とGaAs層のヘテロ接合に形成される井戸型ポテンシャルの大きさよりも大きくなることに起因して、AlGaN層とGaN層のヘテロ接合に基づく2次元電子ガスの面電荷が、AlGaAs層とGaAs層のヘテロ接合に基づく2次元電子ガスの面電荷よりも充分に大きくなるのである。このため、AlGaN層とGaN層のヘテロ接合を使用したHEMTによれば、AlGaAs層とGaAs層のヘテロ接合を使用したHEMTに比べて、大きな電流を得ることが容易になる利点がある。 Furthermore, when a heterojunction of an AlGaN layer and a GaN layer is formed, it is known from the difference in the band structure that a triangular well potential is formed near both interfaces and electrons are concentrated in this well potential. (Two-dimensional electron gas). Since the mobility of this two-dimensional electron gas becomes very high, according to the field effect transistor using the two-dimensional electron gas generated in the well type potential formed in the vicinity of both interfaces as a carrier, the electric field operates at high speed An effect transistor is realized. A field effect transistor using this two-dimensional electron gas is called a high electron mobility transistor (HEMT). As this HEMT, there is also one using a heterojunction of an AlGaAs layer and a GaAs layer, but the surface charge of the two-dimensional electron gas based on the heterojunction of an AlGaN layer and a GaN layer (for example, 1 × 10 13 / cm 2 ) Is sufficiently larger (for example, 10 times) than the surface charge (for example, 1 × 10 12 / cm 2 ) of the two-dimensional electron gas based on the heterojunction of the AlGaAs layer and the GaAs layer. This conduction band discontinuity Delta] E c of the AlGaN layer and the GaN layer is, with greater than the conduction band discontinuity Delta] E c of the AlGaAs layer and the GaAs layer, a heterojunction AlGaN layer and the GaN layer, the piezoelectric effect due to spontaneous polarization By this, the bottom of the well potential is lowered to the lower side (the valence band side). As a result, the magnitude of the well potential formed at the heterojunction of the AlGaN layer and the GaN layer is larger than the magnitude of the well potential formed at the heterojunction of the AlGaAs layer and the GaAs layer. The surface charge of the two-dimensional electron gas based on the heterojunction of the AlGaN layer and the GaN layer becomes sufficiently larger than the surface charge of the two-dimensional electron gas based on the heterojunction of the AlGaAs layer and the GaAs layer. Therefore, according to the HEMT using the heterojunction of the AlGaN layer and the GaN layer, there is an advantage that it is easy to obtain a large current as compared with the HEMT using the heterojunction of the AlGaAs layer and the GaAs layer.
 以上のように、GaNやAlGaNに代表される窒化物半導体が高周波デバイスや電力用デバイスの分野で使用されており、特に、窒化物半導体を使用したHEMTによれば、上述した利点を得ることができる。さらに、近年では、窒化物半導体の利用分野が光デバイスの分野にも広がっている。例えば、InGaNに代表される窒化物半導体は、青色発光ダイオードの発光層として利用されている。このように本願発明では、窒化物半導体の利点に着目し、窒化物半導体を使用した半導体装置の性能向上を図ることを目的としている。特に、本願発明では、窒化物半導体層とオーミック接触するオーミック電極の特性向上を図ることに着目している。以下では、まず、窒化物半導体層とオーミック接触するオーミック電極についての検討技術およびその問題点を説明し、その後、本願発明の技術的思想について説明する。 As described above, nitride semiconductors typified by GaN and AlGaN are used in the fields of high frequency devices and power devices, and in particular, according to HEMTs using nitride semiconductors, the above-mentioned advantages can be obtained. it can. Furthermore, in recent years, the application field of nitride semiconductors has also spread to the field of optical devices. For example, a nitride semiconductor represented by InGaN is used as a light emitting layer of a blue light emitting diode. As described above, the present invention focuses on the advantages of the nitride semiconductor and aims to improve the performance of the semiconductor device using the nitride semiconductor. In particular, the present invention focuses on improving the characteristics of the ohmic electrode in ohmic contact with the nitride semiconductor layer. In the following, first, a study technique for the ohmic electrode in ohmic contact with the nitride semiconductor layer and its problems will be described, and then the technical concept of the present invention will be described.
 <検討技術1>
 図11は、検討技術1(特許第3154364号)に記載されているオーミック電極を参考に本発明者が作成した模式図である。図11に示すように、検討技術1におけるオーミック電極OEは、n型GaN層nGNLに形成されている。そして、このオーミック電極OEは、n型GaN層nGNL上に形成されたチタン(Ti)とアルミニウム(Al)からなる合金膜(または多層膜)TAFと、合金膜TAF上に形成された高融点金属膜HMFと、この高融点金属膜HMF上に形成された金膜AUFから構成されている。検討技術1では、この積層構造を800℃以上の高温で熱処理することにより、コンタクト抵抗の低い良好なオーミック電極OEが得られるとしている。
<Examination technology 1>
FIG. 11 is a schematic view prepared by the present inventor with reference to the ohmic electrode described in Study Technique 1 (Japanese Patent No. 3154364). As shown in FIG. 11, the ohmic electrode OE in Study Technique 1 is formed on the n-type GaN layer nGNL. The ohmic electrode OE is formed of an alloy film (or multilayer film) TAF formed of titanium (Ti) and aluminum (Al) formed on the n-type GaN layer nGNL, and a high melting point metal formed on the alloy film TAF. It comprises a film HMF and a gold film AUF formed on the refractory metal film HMF. In Study Technique 1, it is supposed that a good ohmic electrode OE with low contact resistance can be obtained by heat-treating this laminated structure at a high temperature of 800 ° C. or higher.
 本発明者の検討の結果、この検討技術1には次のような課題のあることが分かった。検討技術1の第1の課題は、オーミック電極OEの表面モホロジー(表面粗さ)が悪いことである。これは、アルミニウム(Al)と、ニッケル(Ni)などの高融点金属が低温で合金を形成しやすく、この合金が平面的に不均一に形成されることに起因するものである。表面モホロジーの悪化は、オーミック電極OEのn型GaN層nGNLからの剥離を助長し、オーミック電極OEの剥離によるデバイス破壊(素子破壊)を引き起こす。あるいは電極エッジが不均一になる部分で局所的に電界が集中することによるデバイス破壊や、不要なリーク電流の発生などを引き起こす。この結果、半導体装置の信頼性低下を招くことになる。 As a result of examination by the present inventor, it was found that the examination technique 1 had the following problems. The first problem of the examination technique 1 is that the surface morphology (surface roughness) of the ohmic electrode OE is poor. This is due to the fact that aluminum (Al) and a high melting point metal such as nickel (Ni) easily form an alloy at a low temperature, and this alloy is formed uneven in plan view. The deterioration of the surface morphology promotes the exfoliation of the ohmic electrode OE from the n-type GaN layer nGNL and causes the device breakdown (element breakdown) due to the exfoliation of the ohmic electrode OE. Alternatively, device breakdown due to local concentration of the electric field at a portion where the electrode edge becomes uneven may cause generation of unnecessary leak current and the like. As a result, the reliability of the semiconductor device is reduced.
 また、本発明者の検討により新たに判明した第2の課題としては、n型GaN層nGNLと直接接触するようにチタン(Ti)を使用した場合、通常、基板とn型GaN層nGNLの間に設けられる高抵抗バッファ層において不要なリーク電流が発生する問題点がある。これは、チタン(Ti)を高温で熱処理すると、n型GaN層nGNLの表面に存在する結晶転移を介して、チタン(Ti)がn型GaN層nGNLの内部にまで侵入し、さらには、高抵抗バッファ層にまで拡散するためと考えられている。つまり、高抵抗バッファ層にまで、チタン(Ti)が拡散すると、この高抵抗バッファ層に拡散したチタンによって、不要なリーク電流が増加してしまうのである。このように検討技術1に記載されているオーミック電極OEでは、オーミック電極OEの特性向上を充分に図ることができない問題点が存在する。 In addition, as a second problem newly found by the inventors of the present invention, when titanium (Ti) is used so as to be in direct contact with the n-type GaN layer nGNL, usually between the substrate and the n-type GaN layer nGNL There is a problem that an unnecessary leak current occurs in the high resistance buffer layer provided in This is because when titanium (Ti) is heat-treated at high temperature, titanium (Ti) penetrates into the inside of the n-type GaN layer nGNL through crystal transition existing on the surface of the n-type GaN layer nGNL, and further, It is considered to be diffused to the resistive buffer layer. That is, when titanium (Ti) is diffused to the high resistance buffer layer, unnecessary leak current is increased by the titanium diffused to the high resistance buffer layer. Thus, in the ohmic electrode OE described in Study Technique 1, there is a problem that the characteristics of the ohmic electrode OE can not be sufficiently improved.
 <検討技術2>
 続いて、検討技術2について説明する。図12は、検討技術2(非特許文献1)に記載されているオーミック電極を参考に本発明者が作成した模式図である。図12に示すように、検討技術2におけるオーミック電極OEは、GaN層GNL上にAlGaN層AGNLが形成されており、このAlGaN層AGNL上に形成されている。具体的に、検討技術2におけるオーミック電極OEは、AlGaN層AGNL上に形成された第1モリブデン(Mo)膜MF1と、この第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、このアルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、この第2モリブデン(Mo)膜MF2上に形成された金膜AUFから構成されている。検討技術2では、この積層構造を650℃以上の高温で熱処理することにより、良好なオーミック電極OEが得られるとしている。
<Examination technology 2>
Subsequently, the examination technique 2 will be described. FIG. 12 is a schematic view created by the present inventor with reference to the ohmic electrode described in Study Technique 2 (Non-Patent Document 1). As shown in FIG. 12, the ohmic electrode OE in Study Technique 2 has the AlGaN layer AGNL formed on the GaN layer GNL, and is formed on the AlGaN layer AGNL. Specifically, the ohmic electrode OE in Study Technique 2 includes the first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL and the aluminum (Al) film formed on the first molybdenum (Mo) film MF1. It is composed of ALF, a second molybdenum (Mo) film MF2 formed on the aluminum (Al) film ALF, and a gold film AUF formed on the second molybdenum (Mo) film MF2. In the examination technique 2, it is supposed that a good ohmic electrode OE can be obtained by heat-treating this laminated structure at a high temperature of 650 ° C. or higher.
 このように構成されている検討技術2では、オーミック電極OEの最下層に第1モリブデン(Mo)膜が形成されているが、モリブデン(Mo)は、チタン(Ti)に比べて高融点であるため、結晶転移を介して、モリブデン(Mo)が、例えば、高抵抗バッファ層に拡散する問題点は回避されている。しかし、本発明者による検討の結果、検討技術2におけるオーミック電極OEでは、コンタクト抵抗および表面モホロジーが必ずしも良くないという点で問題のあることが分かった。例えば、検討技術2では、第1モリブデン(Mo)膜MF1の膜厚が15nm、アルミニウム(Al)膜ALFの膜厚が60nm、第2モリブデン(Mo)膜MF2の膜厚が35nm、金膜AUFの膜厚が50nmとなっているが、これらの膜厚では、コンタクト抵抗と表面モホロジーが必ずしも両立できないのである。つまり、コンタクト抵抗と表面モホロジーを両立させるためには、オーミック電極OEを構成する各層の膜厚をうまく調整する必要があり、膜厚条件によっては、コンタクト抵抗の増加や表面モホロジーの悪化が生じるおそれがあるのである。 In Study Technique 2 configured in this way, the first molybdenum (Mo) film is formed in the lowermost layer of the ohmic electrode OE, but molybdenum (Mo) has a higher melting point than titanium (Ti) Therefore, the problem of diffusion of molybdenum (Mo) into, for example, a high resistance buffer layer through crystal transition is avoided. However, as a result of examination by the inventor, it was found that the ohmic electrode OE in the examination technique 2 has a problem in that the contact resistance and the surface morphology are not necessarily good. For example, in Study Technique 2, the thickness of the first molybdenum (Mo) film MF1 is 15 nm, the thickness of the aluminum (Al) film ALF is 60 nm, the thickness of the second molybdenum (Mo) film MF2 is 35 nm, and the gold film AUF The film thickness is 50 nm, but with these film thicknesses, the contact resistance and the surface morphology can not always be compatible. That is, in order to make the contact resistance and the surface morphology compatible, it is necessary to adjust the film thickness of each layer constituting the ohmic electrode OE well, and depending on the film thickness condition, there is a possibility that the contact resistance increases and the surface morphology deteriorates. There is
 以上のように、検討技術1や検討技術2では、窒化物半導体層とオーミック接触するオーミック電極において、コンタクト抵抗(接触抵抗)の低減と、表面モホロジー(表面粗さ)の悪化の抑制とを両立できていない現状にある。そこで、本願発明では、窒化物半導体層とオーミック接触するオーミック電極において、コンタクト抵抗(接触抵抗)の低減と、表面モホロジー(表面粗さ)の悪化の抑制とを両立できる工夫を施している。以下に、この工夫を施した本願発明の技術的思想について説明する。 As described above, in Study Technology 1 and Study Technology 2, in the ohmic electrode in ohmic contact with the nitride semiconductor layer, both reduction in contact resistance (contact resistance) and suppression of deterioration in surface morphology (surface roughness) are both achieved. It is in the present condition that can not be done. Therefore, in the invention of the present application, in the ohmic electrode in ohmic contact with the nitride semiconductor layer, measures are taken to achieve both reduction in contact resistance (contact resistance) and suppression of deterioration in surface morphology (surface roughness). The technical idea of the present invention to which this device is applied will be described below.
 <本願発明における積層体の構成>
 図13は、本実施の形態1における積層体LABの構成を示す模式図である。本実施の形態1では、図13に示す積層体LABに加熱処理を施すことにより、本実施の形態1におけるオーミック電極が形成される。つまり、図13に示す積層体LABは、加熱処理を施してオーミック電極を形成する前の構造である。図13に示すように、本実施の形態1における積層体LABは、GaN層GNL上に形成されたAlGaN層AGNL上に形成されている。この積層体LABは、まず、AlGaN層AGNL上に形成された第1モリブデン(Mo)膜MF1と、第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、アルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成されている。
<Configuration of Laminate in Present Invention>
FIG. 13 is a schematic view showing the configuration of the stacked body LAB in the first embodiment. In the first embodiment, the laminated body LAB shown in FIG. 13 is subjected to a heat treatment, whereby the ohmic electrode in the first embodiment is formed. That is, the stacked body LAB shown in FIG. 13 has a structure before heat treatment to form an ohmic electrode. As shown in FIG. 13, the stacked body LAB in the first embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL. The stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
 ここで、AlGaN層AGNLとオーミック接触する金属膜としてアルミニウム(Al)膜が挙げられる。つまり、図13に示す積層体LABで使用されているアルミニウム(Al)膜ALFは、AlGaN層AGNLとのオーミック接触を確保する機能を有する膜である。このとき、AlGaN層AGNLとのオーミック接触を確保する観点からは、AlGaN層AGNL上に、直接アルミニウム(Al)膜ALFを形成することが考えられる。ところが、アルミニウム(Al)膜ALFとAlGaN層AGNLとは密着性が悪い。このため、AlGaN層AGNL上に直接アルミニウム(Al)膜ALFを接触させる構造では、加熱処理を施してオーミック電極を形成する際、アルミニウム(Al)膜ALFが表面張力で盛り上がる現象(ボールアップ現象と呼ばれる)が生じ、AlGaN層AGNLとアルミニウム(Al)膜ALFとの界面における表面モホロジーが悪化してしまう。表面モホロジーの悪化は、オーミック電極と半導体層の密着性の低下を招き、オーミック電極の剥がれによるデバイス破壊や、不要なリーク電流の発生などを引き起こし、半導体装置の信頼性向上の観点から問題となる。 Here, an aluminum (Al) film can be mentioned as a metal film in ohmic contact with the AlGaN layer AGNL. That is, the aluminum (Al) film ALF used in the stacked body LAB shown in FIG. 13 is a film having a function of ensuring ohmic contact with the AlGaN layer AGNL. At this time, it is conceivable to form an aluminum (Al) film ALF directly on the AlGaN layer AGNL from the viewpoint of securing an ohmic contact with the AlGaN layer AGNL. However, the adhesion between the aluminum (Al) film ALF and the AlGaN layer AGNL is poor. Therefore, in the structure in which the aluminum (Al) film ALF is in direct contact with the AlGaN layer AGNL, the phenomenon that the aluminum (Al) film ALF bulges due to surface tension when the heat treatment is performed to form the ohmic electrode (ball-up phenomenon and ), And the surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF is degraded. Deterioration of the surface morphology leads to a decrease in adhesion between the ohmic electrode and the semiconductor layer, causing device breakdown due to peeling of the ohmic electrode and generation of unnecessary leak current, which becomes a problem from the viewpoint of improving the reliability of the semiconductor device. .
 そこで、本実施の形態1では、AlGaN層AGNLと、アルミニウム(Al)膜ALFとの間に、第1モリブデン(Mo)膜MF1を挿入している。つまり、第1モリブデン(Mo)膜MF1は、AlGaN層AGNLと、アルミニウム(Al)膜ALFとの密着性を向上させる機能を有し、この第1モリブデン(Mo)膜MF1を形成することによって、AlGaN層AGNLとアルミニウム(Al)膜ALFとの界面における表面モホロジーを改善することができる。 Therefore, in the first embodiment, the first molybdenum (Mo) film MF1 is inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF. That is, the first molybdenum (Mo) film MF1 has a function of improving the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF, and by forming the first molybdenum (Mo) film MF1, The surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved.
 続いて、積層体LABに形成されている金(Au)膜AUFは、積層体LABに加熱処理を施すことにより、オーミック電極を形成する際、アルミニウム(Al)膜ALFの表面が酸化されることを防止する機能を有している。すなわち、アルミニウム(Al)膜ALFに対して、加熱処理を実施する場合、アルミニウム(Al)膜ALFの表面は酸化されやすい。アルミニウム(Al)膜ALFが酸化されてしまうと、酸化アルミニウムは絶縁体であるため、オーミック電極の抵抗が上昇してしまい、オーミック電極の電気的特性の劣化が生じてしまう。このことから、加熱処理時におけるアルミニウム膜(Al)ALFの酸化を防止するため、アルミニウム(Al)膜ALF上に金(Au)膜AUFを形成しているのである。ただし、アルミニウム(Al)膜ALF上に、直接接触するように金(Au)膜AUFを形成すると、加熱処理を施した際、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間で急速な合金反応が生じてしまう。この合金反応も、表面モホロジーを悪化させる要因となるため、できるだけ合金反応を抑制する必要がある。この観点から、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間に中間層として高融点金属である第2モリブデン(Mo)膜MF2を形成している。つまり、第2モリブデン(Mo)膜MF2は、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間の急速な合金反応を抑制する機能を有していることになる。 Subsequently, the gold (Au) film AUF formed on the laminate LAB is subjected to a heat treatment on the laminate LAB to oxidize the surface of the aluminum (Al) film ALF when forming the ohmic electrode. Have a function to prevent That is, when the heat treatment is performed on the aluminum (Al) film ALF, the surface of the aluminum (Al) film ALF is easily oxidized. When the aluminum (Al) film ALF is oxidized, since the aluminum oxide is an insulator, the resistance of the ohmic electrode is increased, and the electrical characteristics of the ohmic electrode are deteriorated. From this, in order to prevent the oxidation of the aluminum film (Al) ALF during the heat treatment, the gold (Au) film AUF is formed on the aluminum (Al) film ALF. However, when the gold (Au) film AUF is formed on the aluminum (Al) film ALF so as to be in direct contact, when heat treatment is performed, the aluminum (Al) film ALF and the gold (Au) film AUF are formed. A rapid alloy reaction will occur. Since this alloy reaction also causes deterioration of the surface morphology, it is necessary to suppress the alloy reaction as much as possible. From this viewpoint, the second molybdenum (Mo) film MF2 which is a high melting point metal is formed as an intermediate layer between the aluminum (Al) film ALF and the gold (Au) film AUF. That is, the second molybdenum (Mo) film MF2 has a function of suppressing a rapid alloy reaction between the aluminum (Al) film ALF and the gold (Au) film AUF.
 以上のことから、本実施の形態1における積層体LABは、第1モリブデン(Mo)膜と、アルミニウム(Al)膜ALFと、第2モリブデン(Mo)膜MF2と、金(Au)膜AUFの積層膜から構成されていることになる。そして、本実施の形態1における積層体LABを構成する各膜の機能をまとめると以下のようになる。 From the above, the laminated body LAB in the first embodiment includes the first molybdenum (Mo) film, the aluminum (Al) film ALF, the second molybdenum (Mo) film MF2, and the gold (Au) film AUF. It will be comprised from laminated film. Then, the functions of the respective films constituting laminated body LAB in the first embodiment are summarized as follows.
 (1)まず、最下層の第1モリブデン(Mo)膜MF1は、密着膜として機能する膜であり、AlGaN層AGNLと、アルミニウム(Al)膜ALFとの間に、第1モリブデン(Mo)膜MF1を挿入することにより、AlGaN層AGNLと、アルミニウム(Al)膜ALFとの密着性を向上させることができる。これにより、AlGaN層AGNLとアルミニウム(Al)膜ALFとの界面における表面モホロジーを改善することができる。 (1) First, the lowermost first molybdenum (Mo) film MF1 is a film that functions as an adhesion film, and the first molybdenum (Mo) film is formed between the AlGaN layer AGNL and the aluminum (Al) film ALF. By inserting the MF 1, the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved. Thereby, the surface morphology at the interface between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved.
 (2)アルミニウム(Al)膜ALFは、AlGaN層AGNLとの間でオーミック接触を実現するためのオーミック金属として機能する膜であり、このアルミニウム(Al)膜ALFによって、AlGaN層AGNLとの間でオーミック接触するオーミック電極を形成することができる。そして、アルミニウム(Al)膜ALFの抵抗は比較的小さいため、オーミック電極とAlGaN層AGNLとの接触抵抗(コンタクト抵抗)を低減することができる。 (2) The aluminum (Al) film ALF is a film that functions as an ohmic metal for achieving an ohmic contact with the AlGaN layer AGNL, and the aluminum (Al) film ALF is made between the aluminum (Al) film and the AlGaN layer AGNL. An ohmic electrode in ohmic contact can be formed. Further, since the resistance of the aluminum (Al) film ALF is relatively small, the contact resistance (contact resistance) between the ohmic electrode and the AlGaN layer AGNL can be reduced.
 (3)第2モリブデン(Mo)膜MF2は、積層体LABに加熱処理を施した際、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間で急速な合金反応が生じることを抑制する機能を有する膜である。このように、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間に、高融点金属である第2モリブデン(Mo)膜MF2を挿入することにより、アルミニウム(Al)膜ALFと金(Au)膜AUFとの間で生じる急速な合金反応を抑制することができる。 (3) The second molybdenum (Mo) film MF2 suppresses rapid alloy reaction between the aluminum (Al) film ALF and the gold (Au) film AUF when the laminate LAB is subjected to heat treatment The membrane has the function of Thus, by inserting the second molybdenum (Mo) film MF2 which is a high melting point metal between the aluminum (Al) film ALF and the gold (Au) film AUF, the aluminum (Al) film ALF and the gold (gold) Au) The rapid alloying reaction that occurs with the film AUF can be suppressed.
 (4)金(Au)膜AUFは、積層体LABに加熱処理を施した際、アルミニウム(Al)膜ALFの表面が酸化されることを防止する機能を有している。このようにアルミニウム(Al)膜ALF上に金(Au)膜AUFを形成することにより、アルミニウム(Al)膜の酸化を防止することができ、オーミック電極の抵抗上昇を抑制することができる。 (4) The gold (Au) film AUF has a function of preventing the surface of the aluminum (Al) film ALF from being oxidized when the laminate LAB is subjected to heat treatment. By thus forming the gold (Au) film AUF on the aluminum (Al) film ALF, the oxidation of the aluminum (Al) film can be prevented, and the resistance increase of the ohmic electrode can be suppressed.
 以上のように構成されている本実施の形態1における積層体LABによれば、まず、AlGaN層AGNLと、アルミニウム(Al)膜ALFとの密着性を向上させる密着膜として、チタン(Ti)膜ではなく、第1モリブデン(Mo)膜MF1を使用している。このとき、モリブデン(Mo)は、チタン(Ti)に比べて高融点であるため、結晶転移を介して、金属が半導体層(例えば、高抵抗バッファ層)に拡散することを抑制できる。つまり、本実施の形態1における積層体LABに加熱処理を実施することにより、オーミック電極が形成されるが、この際、モリブデン(Mo)は、チタン(Ti)に比べて高融点であるため、結晶転移を介して、モリブデンが半導体層(例えば、高抵抗バッファ層)に拡散することを抑制できる。この結果、半導体層(例えば、高抵抗バッファ層)における不要なリーク電流の発生を抑制することができる。 According to the laminated body LAB of Embodiment 1 configured as described above, first, a titanium (Ti) film is used as an adhesive film for improving the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF. Instead, the first molybdenum (Mo) film MF1 is used. At this time, since molybdenum (Mo) has a melting point higher than that of titanium (Ti), diffusion of a metal into a semiconductor layer (for example, a high resistance buffer layer) can be suppressed through crystal transition. That is, the ohmic electrode is formed by performing the heat treatment on the laminate LAB in the first embodiment, but at this time, since molybdenum (Mo) has a higher melting point than titanium (Ti), Diffusion of molybdenum into the semiconductor layer (eg, high-resistance buffer layer) can be suppressed through crystal transition. As a result, it is possible to suppress the generation of unnecessary leak current in the semiconductor layer (for example, the high resistance buffer layer).
 また、本実施の形態1における積層体LABでは、アルミニウム(Al)膜ALFと、金(Au)膜AUFの間に挿入される中間層として、最下層に形成される第1モリブデン(Mo)膜MF1と同種類の膜である第2モリブデン(Mo)膜MF2を使用している。このため、積層体LABに加熱処理を実施することにより、オーミック電極を形成する際、不要な合金膜が形成されにくいという利点も有している。 Further, in the laminated body LAB in the first embodiment, the first molybdenum (Mo) film formed in the lowermost layer as an intermediate layer inserted between the aluminum (Al) film ALF and the gold (Au) film AUF A second molybdenum (Mo) film MF2 which is a film of the same type as MF1 is used. For this reason, there is also an advantage that when the ohmic electrode is formed, the unnecessary alloy film is not easily formed by performing the heat treatment on the laminate LAB.
 <本発明者が見出した新たな課題>
 上述したように、本実施の形態1における積層体LABでは、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間に、密着膜として機能する第1モリブデン(Mo)膜MF1を挿入している。これにより、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間の密着性が向上して、表面モホロジーを改善することができる。このように、表面モホロジーを改善する観点からは、第1モリブデン(Mo)膜MF1を、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間に挿入することが望ましい。ところが、本発明者は、第1モリブデン(Mo)膜MF1の膜厚が厚すぎると、コンタクト抵抗が増加することを見出した。つまり、コンタクト抵抗(接触抵抗)の低減の観点からは、第1モリブデン(Mo)膜MF1の膜厚が厚すぎることが問題となることを見出したのである。ここで、積層体LABに加熱処理を施してオーミック電極を形成する場合、積層体LABを構成する各層から原子が相互拡散する。このとき、オーミック電極とAlGaN層AGNLとの界面において、例えば、アルミニウム原子の原子%が、モリブデン原子の原子%よりも多くなる場合には、アルミニウム原子との接触の影響が大きくなる結果、AlGaN層AGNLとオーミック電極との接触がオーミック接触となり、コンタクト抵抗を低減することができると考えられる。ところが、第1モリブデン(Mo)膜MF1の膜厚が厚くなりすぎると、積層体LABを構成する各層から原子が相互拡散した場合であっても、オーミック電極とAlGaN層AGNLとの界面において、アルミニウム原子の原子%が、モリブデン原子の原子%よりも少なくなってしまう場合が多いものと考えられる。この場合には、AlGaN層AGNLとオーミック電極との接触が、ショットキー接触を構成するモリブデンとの接触の影響を大きく受けることとなり、コンタクト抵抗の増加が起こると考えられるのである。
<New Challenges Found by the Inventor>
As described above, in the stacked body LAB in the first embodiment, the first molybdenum (Mo) film MF1 functioning as an adhesion film is inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF. Thereby, the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF can be improved, and the surface morphology can be improved. Thus, from the viewpoint of improving the surface morphology, it is desirable to insert the first molybdenum (Mo) film MF1 between the AlGaN layer AGNL and the aluminum (Al) film ALF. However, the inventor found that the contact resistance increases when the thickness of the first molybdenum (Mo) film MF1 is too large. That is, it has been found that it is a problem that the film thickness of the first molybdenum (Mo) film MF1 is too thick from the viewpoint of reducing the contact resistance (contact resistance). Here, in the case where the stacked body LAB is subjected to a heat treatment to form an ohmic electrode, atoms are mutually diffused from each layer constituting the stacked body LAB. At this time, for example, when the atomic percent of aluminum atoms is larger than the atomic percent of molybdenum atoms at the interface between the ohmic electrode and the AlGaN layer AGNL, the effect of the contact with the aluminum atoms becomes large. It is considered that the contact between AGNL and the ohmic electrode is an ohmic contact, and the contact resistance can be reduced. However, if the film thickness of the first molybdenum (Mo) film MF1 is too large, aluminum is formed at the interface between the ohmic electrode and the AlGaN layer AGNL, even when atoms interdiffuse from each layer constituting the stacked body LAB. It is considered that the atomic percent of atoms is often less than the atomic percent of molybdenum atoms. In this case, it is considered that the contact between the AlGaN layer AGNL and the ohmic electrode is greatly affected by the contact with the molybdenum forming the Schottky contact, and an increase in contact resistance occurs.
 以上のように、AlGaN層AGNLとアルミニウム(Al)膜ALFとの密着性が悪いことから、密着性を向上させるために、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間に第1モリブデン(Mo)膜MF1を挿入する必要がある。だからといって、第1モリブデン(Mo)膜MF1の膜厚を厚くしすぎると、AlGaN層AGNLとオーミック電極との間のコンタクト抵抗(接触抵抗)が増加してしまうという知見を本発明者は見出したのである。つまり、表面モホロジーの改善とコンタクト抵抗の低減を両立させる観点からは、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間に挿入される第1モリブデン(Mo)膜MF1の膜厚に工夫を施す必要があるのである。そこで、本実施の形態1では、AlGaN層AGNLとアルミニウム(Al)膜ALFとの間に挿入される第1モリブデン(Mo)膜MF1の膜厚に工夫を施している。以下に、この工夫を施した本実施の形態1における技術的思想について説明する。 As described above, since the adhesion between the AlGaN layer AGNL and the aluminum (Al) film ALF is poor, the first molybdenum (between the AlGaN layer AGNL and the aluminum (Al) film ALF is used to improve the adhesion. Mo) It is necessary to insert the membrane MF1. However, the inventor found that the contact resistance (contact resistance) between the AlGaN layer AGNL and the ohmic electrode increases if the film thickness of the first molybdenum (Mo) film MF1 is too large. is there. That is, from the viewpoint of achieving both improvement in surface morphology and reduction in contact resistance, the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is devised It is necessary. Therefore, in the first embodiment, the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is devised. The technical idea in the first embodiment to which this device is applied will be described below.
 <本実施の形態1における特徴>
 図13に示すように、本実施の形態1における積層体LABは、GaN層GNL上に形成されたAlGaN層AGNL上に形成されている。この積層体LABは、まず、AlGaN層AGNL上に形成された第1モリブデン(Mo)膜MF1と、第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、アルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成されている。
<Features of First Embodiment>
As shown in FIG. 13, the stacked body LAB in the first embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL. The stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
 ここで、本実施の形態1の特徴は、AlGaN層AGNLとアルミニウム(Al)膜ALFの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係が満たされている点に特徴がある。本実施の形態1では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極をAlGaN層AGNL上に形成することができる。 Here, the feature of the first embodiment is that 2 nm ≦ X ≦ where the film thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL and the aluminum (Al) film ALF is X nm. It is characterized in that the 10 nm relationship is satisfied. In the first embodiment, the laminated electrode LAB configured in this way is heat-treated at a high temperature of 650 ° C. to 850 ° C., for example, to form an ohmic electrode that achieves both improvement of surface morphology and reduction of contact resistance. It can be formed on layer AGNL.
 ここで、例えば、本実施の形態1では、第1モリブデン(Mo)膜MF1以外の膜(アルミニウム(Al)膜ALF、第2モリブデン(Mo)膜MF2、金(Au)膜AUF)の膜厚は、特に、それぞれの膜の有する機能が発揮される範囲内であれば、特に限定されるものではない。例えば、一例として、アルミニウム(Al)膜ALFの膜厚が70nmであり、第2モリブデン(Mo)膜MF2の膜厚が30nmであり、さらに、金(Au)膜AUFの膜厚が50nmとなっている。 Here, for example, in the first embodiment, the film thickness of the film other than the first molybdenum (Mo) film MF1 (aluminum (Al) film ALF, second molybdenum (Mo) film MF2, gold (Au) film AUF) Is not particularly limited as long as the function of each film is exhibited. For example, as an example, the thickness of the aluminum (Al) film ALF is 70 nm, the thickness of the second molybdenum (Mo) film MF2 is 30 nm, and the thickness of the gold (Au) film AUF is 50 nm. ing.
 なお、図13では、AlGaN層AGNL上に積層体LABを形成する例について説明しているが、例えば、図14に示すように、n型GaN層nGNL上に積層体LABを形成する場合にも、本実施の形態1における技術的思想を適用することができる。具体的には、n型GaN層nGNLとアルミニウム(Al)膜ALFの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係が満たされるように積層体LABを構成する。そして、この積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極をn型GaN層nGNL上に形成することができる。 Although FIG. 13 illustrates an example in which the stacked body LAB is formed on the AlGaN layer AGNL, for example, as shown in FIG. 14, the stacked body LAB is also formed on the n-type GaN layer nGNL. The technical idea in the first embodiment can be applied. Specifically, assuming that the thickness of the first molybdenum (Mo) film MF1 inserted between the n-type GaN layer nGNL and the aluminum (Al) film ALF is X nm, the relationship of 2 nm ≦ X ≦ 10 nm is satisfied. To form a stack LAB. Then, the laminated body LAB is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode on the n-type GaN layer nGNL in which the improvement of the surface morphology and the reduction of the contact resistance are compatible. it can.
 上述したように、AlGaN層AGNLやn型GaN層nGNL上に、直接、アルミニウム(Al)膜ALFを接触させる構造では、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの密着性が悪くなる。この場合、積層体LABに熱処理を施して、オーミック電極を形成すると、アルミニウム(Al)膜ALFが表面張力で盛り上がる現象(ボールアップ現象と呼ばれる)が生じ、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの界面における表面モホロジーが悪化するという問題点が発生する。この対策として、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの間に、密着膜として機能する第1モリブデン(Mo)膜MF1を挿入することが有効である。ところが、第1モリブデン(Mo)膜MF1の膜厚を厚くしすぎると、コンタクト抵抗(接触抵抗)が増加することになる。したがって、表面モホロジーの改善とコンタクト抵抗の低減を両立させる観点からは、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの間に挿入される第1モリブデン(Mo)膜MF1の膜厚に工夫を施す必要があるのである。 As described above, in the structure in which the aluminum (Al) film ALF is in direct contact with the AlGaN layer AGNL or the n-type GaN layer nGNL, the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF Adhesion is bad. In this case, when the laminated body LAB is subjected to heat treatment to form an ohmic electrode, a phenomenon (called a ball-up phenomenon) in which the aluminum (Al) film ALF swells due to surface tension occurs, and the AlGaN layer AGNL or the n-type GaN layer nGNL The problem is that the surface morphology at the interface with the aluminum (Al) film ALF is deteriorated. As a countermeasure, it is effective to insert a first molybdenum (Mo) film MF1 functioning as an adhesion film between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF. However, if the film thickness of the first molybdenum (Mo) film MF1 is too thick, the contact resistance (contact resistance) will increase. Therefore, from the viewpoint of achieving both the improvement of the surface morphology and the reduction of the contact resistance, the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF. It is necessary to devise the film thickness of
 そこで、本実施の形態1では、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの間に挿入される第1モリブデン(Mo)膜MF1の膜厚に工夫を施している。具体的に、本実施の形態1では、AlGaN層AGNLやn型GaN層nGNLと、アルミニウム(Al)膜ALFとの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層体LABを構成している。本実施の形態1では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極を、AlGaN層AGNL上やn型GaN層nGNL上に形成することができる。 Therefore, in the first embodiment, the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF is devised . Specifically, in the first embodiment, the thickness of the first molybdenum (Mo) film MF1 inserted between the AlGaN layer AGNL or the n-type GaN layer nGNL and the aluminum (Al) film ALF is set to X nm. In this case, the stacked body LAB is configured to satisfy the relationship of 2 nm ≦ X ≦ 10 nm. In the first embodiment, the laminated electrode LAB configured in this way is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., to thereby form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on the AlGaN layer AGNL or on the n-type GaN layer nGNL.
 図15は、第1モリブデン(Mo)膜の膜厚と、オーミック電極と半導体層(以下、AlGaN層やn型GaN層を半導体層と総称して言うことにする)とのコンタクト抵抗との関係を示すグラフである。図15において、横軸は、第1モリブデン(Mo)膜の膜厚(nm)を示しており、縦軸は、オーミック電極と半導体層との間のコンタクト抵抗(Ωmm)を示している。 FIG. 15 shows the relationship between the film thickness of the first molybdenum (Mo) film and the contact resistance between the ohmic electrode and the semiconductor layer (hereinafter, the AlGaN layer and the n-type GaN layer are collectively referred to as the semiconductor layer). Is a graph showing In FIG. 15, the horizontal axis indicates the film thickness (nm) of the first molybdenum (Mo) film, and the vertical axis indicates the contact resistance (Ω mm) between the ohmic electrode and the semiconductor layer.
 ここで、第1モリブデン(Mo)膜の膜厚は、オーミック電極を形成する前の積層体を構成している際の膜厚を示している。そして、この積層体に熱処理を施すことにより、積層体を構成する各膜の原子が相互拡散し、これによって、オーミック電極が形成される。このとき、図15に示すコンタクト抵抗は、このオーミック電極と半導体層との間のコンタクト抵抗を示している。このコンタクト抵抗は、通常のTLM法(Transmission Line Method)を使用して測定したものである。 Here, the film thickness of the first molybdenum (Mo) film indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the contact resistance shown in FIG. 15 indicates the contact resistance between the ohmic electrode and the semiconductor layer. This contact resistance is measured using the usual TLM method (Transmission Line Method).
 図15に示すように、第1モリブデン(Mo)膜の膜厚が0nmから2nmの間では、オーミック電極と半導体層との間のコンタクト抵抗が0.3Ωmmから0.2Ωmmに低減していることがわかる。第1モリブデン(Mo)膜厚が2nm以上7nm以下では、コンタクト抵抗が低い領域となっている。その後は、第1モリブデン(Mo)膜の膜厚の増加とともに、オーミック電極と半導体層との間のコンタクト抵抗が増加していることがわかる。特に、第1モリブデン(Mo)膜の膜厚が10nmを超えると、オーミック電極と半導体層との間のコンタクト抵抗が大幅に増加することがわかる。 As shown in FIG. 15, when the thickness of the first molybdenum (Mo) film is between 0 nm and 2 nm, the contact resistance between the ohmic electrode and the semiconductor layer is reduced from 0.3 Ωmm to 0.2 Ωmm. I understand. When the thickness of the first molybdenum (Mo) film is 2 nm or more and 7 nm or less, the contact resistance is low. After that, it can be seen that the contact resistance between the ohmic electrode and the semiconductor layer increases as the thickness of the first molybdenum (Mo) film increases. In particular, when the thickness of the first molybdenum (Mo) film exceeds 10 nm, it can be seen that the contact resistance between the ohmic electrode and the semiconductor layer is significantly increased.
 このような挙動を示すメカニズムは、以下に示すようなものと考えることができる。すなわち、まず、第1モリブデン(Mo)膜が形成されていない場合、アルミニウム(Al)膜と半導体層との間の密着性が悪いことから、オーミック電極と半導体層との間のコンタクト抵抗は大きくなってしまうと考えられる。そして、第1モリブデン(Mo)膜が形成されると、アルミニウム(Al)膜と半導体層との間の密着性が改善して、オーミック電極と半導体層との間のコンタクト抵抗が小さくなる。この現象が、第1モリブデン(Mo)膜の膜厚が0nmから2nmの間で生じているものと考えられる。その後、第1モリブデン(Mo)膜の膜厚の増加とともに、オーミック電極と半導体層との間のコンタクト抵抗が増加している。この現象は、以下のように考えることができる。すなわち、積層体に加熱処理を施してオーミック電極を形成する場合、積層体を構成する各層から原子が相互拡散する。このとき、例えば、第1モリブデン(Mo)膜の膜厚が小さい場合、アルミニウム(Al)膜から、オーミック電極と半導体層との界面に拡散するアルミニウム原子の原子%が、オーミック電極と半導体層との界面に存在するモリブデン原子の原子%よりも大きくなる場合が多いと考えられる。この場合、アルミニウム原子との接触の影響が大きくなる結果、半導体層とオーミック電極との接触がオーミック接触となり、コンタクト抵抗を低減することができると考えられる。 The mechanism showing such behavior can be considered as shown below. That is, first, when the first molybdenum (Mo) film is not formed, the contact resistance between the ohmic electrode and the semiconductor layer is large because the adhesion between the aluminum (Al) film and the semiconductor layer is bad. It is thought that it will become. Then, when the first molybdenum (Mo) film is formed, the adhesion between the aluminum (Al) film and the semiconductor layer is improved, and the contact resistance between the ohmic electrode and the semiconductor layer is reduced. It is considered that this phenomenon occurs when the film thickness of the first molybdenum (Mo) film is between 0 nm and 2 nm. Thereafter, as the thickness of the first molybdenum (Mo) film increases, the contact resistance between the ohmic electrode and the semiconductor layer increases. This phenomenon can be considered as follows. That is, when the stack is subjected to heat treatment to form an ohmic electrode, atoms are mutually diffused from each layer constituting the stack. At this time, for example, when the film thickness of the first molybdenum (Mo) film is small, the atomic percentage of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode and the semiconductor layer is the ohmic electrode and the semiconductor layer In most cases, it is considered to be larger than the atomic percent of the molybdenum atom present at the interface of In this case, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the semiconductor layer and the ohmic electrode becomes an ohmic contact, and it is considered that the contact resistance can be reduced.
 一方、第1モリブデン(Mo)膜の膜厚が厚くなりすぎると、積層体を構成する各層から原子が相互拡散した場合であっても、オーミック電極と半導体層との界面において、アルミニウム原子の原子%が、モリブデン原子の原子%よりも少なくなってしまう場合が多くなるものと考えられる。この場合には、半導体層とオーミック電極との接触が、ショットキー接触を構成するモリブデンとの接触の影響を大きく受けることとなり、コンタクト抵抗の増加が起こると考えられるのである。 On the other hand, when the film thickness of the first molybdenum (Mo) film is too large, atoms of aluminum atoms are formed at the interface between the ohmic electrode and the semiconductor layer, even when atoms interdiffuse from each layer constituting the laminate. It is considered that in many cases the% will be less than the atomic% of the molybdenum atom. In this case, the contact between the semiconductor layer and the ohmic electrode is largely affected by the contact with the molybdenum that constitutes the Schottky contact, and it is considered that an increase in contact resistance occurs.
 特に、図15からは、第1モリブデン(Mo)膜の膜厚が0nm以上10nm以下であれば、オーミック電極と半導体層との間のコンタクト抵抗を小さくできると考えられる。具体的に、第1モリブデン(Mo)膜の膜厚が0nm以上10nm以下であれば、オーミック電極と半導体層との間のコンタクト抵抗を0.4Ωmm以下にすることができる。この場合、アルミニウム(Al)膜から、オーミック電極と半導体層との界面に拡散するアルミニウム原子の原子%が、半導体層の表面に存在するモリブデン原子の原子%よりも大きくなっている場合が多いものと推察される。 In particular, it is considered from FIG. 15 that the contact resistance between the ohmic electrode and the semiconductor layer can be reduced if the thickness of the first molybdenum (Mo) film is 0 nm or more and 10 nm or less. Specifically, when the film thickness of the first molybdenum (Mo) film is 0 nm or more and 10 nm or less, the contact resistance between the ohmic electrode and the semiconductor layer can be 0.4 Ωmm or less. In this case, the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode and the semiconductor layer is often larger than the atomic percent of molybdenum atoms present on the surface of the semiconductor layer It is guessed.
 次に、図16は、第1モリブデン(Mo)膜の膜厚と、オーミック電極と半導体層との界面における表面粗さ(RMS)との関係を示すグラフである。図16において、横軸は、第1モリブデン(Mo)膜の膜厚(nm)を示しており、縦軸は、オーミック電極と半導体層との界面における表面粗さ(μm)を示している。 Next, FIG. 16 is a graph showing the relationship between the film thickness of the first molybdenum (Mo) film and the surface roughness (RMS) at the interface between the ohmic electrode and the semiconductor layer. In FIG. 16, the horizontal axis indicates the film thickness (nm) of the first molybdenum (Mo) film, and the vertical axis indicates the surface roughness (μm) at the interface between the ohmic electrode and the semiconductor layer.
 ここで、第1モリブデン(Mo)膜の膜厚は、オーミック電極を形成する前の積層体を構成している際の膜厚を示している。そして、この積層体に熱処理を施すことにより、積層体を構成する各膜の原子が相互拡散し、これによって、オーミック電極が形成される。このとき、図16に示す表面粗さは、このオーミック電極と半導体層との界面における表面粗さを示している。つまり、本実施の形態1では、表面モホロジーの指標として、表面粗さを使用している。この表面粗さは、例えば、表面粗さ計、レーザ顕微鏡、あるいは、原子間力顕微鏡などを使用することにより評価される。図16では、レーザ顕微鏡を使用して表面粗さを評価した結果が示されている。 Here, the film thickness of the first molybdenum (Mo) film indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the surface roughness shown in FIG. 16 indicates the surface roughness at the interface between the ohmic electrode and the semiconductor layer. That is, in the first embodiment, surface roughness is used as an index of surface morphology. This surface roughness is evaluated by using, for example, a surface roughness meter, a laser microscope, or an atomic force microscope. In FIG. 16, the result of having evaluated surface roughness using the laser microscope is shown.
 図16に示すように、第1モリブデン(Mo)膜の膜厚が0nmの場合(半導体層にアルミニウム(Al)膜が直接接触している場合)、表面粗さは0.3μmである。これに対し、第1モリブデン(Mo)膜の膜厚が2nm以上の場合、表面粗さは0.1μmよりも小さくなる。したがって、図16から明らかなように、第1モリブデン(Mo)膜の膜厚が0nmの場合(半導体層にアルミニウム(Al)膜が直接接触している場合)は、表面粗さが極端に悪化するが、第1モリブデン(Mo)膜の膜厚が2nm以上あれば、表面粗さを充分に改善できることを示している。これは、第1モリブデン(Mo)膜が、アルミニウム(Al)膜と半導体層との間の密着性改善に寄与しており、加熱処理によるアルミニウム(Al)膜のボールアップ現象を抑制する方向に作用していると考えられるからである。言い換えれば、第1モリブデン(Mo)膜が形成されていない場合には、アルミニウム(Al)膜と半導体層との密着性が悪化することから、加熱処理によるアルミニウム(Al)膜のボールアップ現象が顕著に発生し、これによって、表面粗さの大幅な悪化が引き起こされるためであると考えられる。 As shown in FIG. 16, when the film thickness of the first molybdenum (Mo) film is 0 nm (when the aluminum (Al) film is in direct contact with the semiconductor layer), the surface roughness is 0.3 μm. On the other hand, when the film thickness of the first molybdenum (Mo) film is 2 nm or more, the surface roughness is smaller than 0.1 μm. Therefore, as apparent from FIG. 16, when the film thickness of the first molybdenum (Mo) film is 0 nm (when the aluminum (Al) film is in direct contact with the semiconductor layer), the surface roughness is extremely deteriorated. However, it has been shown that if the film thickness of the first molybdenum (Mo) film is 2 nm or more, the surface roughness can be sufficiently improved. This is because the first molybdenum (Mo) film contributes to the improvement of the adhesion between the aluminum (Al) film and the semiconductor layer, and suppresses the ball-up phenomenon of the aluminum (Al) film due to the heat treatment. It is because it is thought that it is acting. In other words, when the first molybdenum (Mo) film is not formed, the adhesion between the aluminum (Al) film and the semiconductor layer is degraded, so the ball-up phenomenon of the aluminum (Al) film due to the heat treatment is It is considered to be remarkable because it causes a significant deterioration of the surface roughness.
 以上のことから、オーミック電極と半導体層との間のコンタクト抵抗を小さくする観点からは、図15に示すように、第1モリブデン(Mo)膜の膜厚が0nm以上10nm以下であることが望ましい。一方、オーミック電極と半導体層との界面における表面モホロジー(表面粗さ)を改善する観点からは、図16に示すように、第1モリブデン(Mo)膜の膜厚が2nm以上であれば問題ない。したがって、図15および図16を考慮して、本実施の形態1では、アルミニウム(Al)膜と半導体層との間に挿入されている第1モリブデン(Mo)膜の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層体を構成している。本実施の形態1では、このように構成された積層体を、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極を、半導体層上に形成することができる。 From the above, from the viewpoint of reducing the contact resistance between the ohmic electrode and the semiconductor layer, as shown in FIG. 15, it is desirable that the film thickness of the first molybdenum (Mo) film is 0 nm or more and 10 nm or less . On the other hand, from the viewpoint of improving the surface morphology (surface roughness) at the interface between the ohmic electrode and the semiconductor layer, there is no problem if the thickness of the first molybdenum (Mo) film is 2 nm or more, as shown in FIG. . Therefore, in consideration of FIGS. 15 and 16, in the first embodiment, the thickness of the first molybdenum (Mo) film inserted between the aluminum (Al) film and the semiconductor layer is X nm. The laminate is configured to satisfy the relationship of 2 nm ≦ X ≦ 10 nm. In the first embodiment, the laminated body configured in this manner is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., to thereby form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on a layer.
 なお、図15から分かるように、2nm≦X≦7nmとすれば、コンタクト抵抗は0.2Ωmm程度となり、非常にコンタクト抵抗の低いオーミック電極を形成することができる。 As can be seen from FIG. 15, when 2 nm ≦ X ≦ 7 nm, the contact resistance is about 0.2 Ωmm, and an ohmic electrode with a very low contact resistance can be formed.
 <本実施の形態1におけるオーミック電極の製造方法>
 続いて、本実施の形態1におけるオーミック電極の製造方法について、図面を参照しながら説明する。まず、図17に示すように、基板1Sを用意する。この基板1Sは、例えば、サファイア基板、SiC(炭化シリコン)基板、あるいは、シリコン(Si)基板から構成される。そして、この基板1S上に、例えば、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を使用することにより、エピタキシャル層であるバッファ層BUFを形成する。バッファ層BUFは、例えば、基板を構成する結晶格子と、バッファ層BUF上に形成されるGaN層を構成する結晶格子との不整合を緩和する目的で形成される。その後、バッファ層BUF上に、例えば、MOCVD法を使用することにより、導電型不純物を添加していないノンドープのエピタキシャル層であるGaN層GNLを形成し、このGaN層GNL上に、導電型不純物を添加していないノンドープのエピタキシャル層であるAlGaN層AGNLを形成する。
<Method of Manufacturing Ohmic Electrode in First Embodiment>
Subsequently, a method of manufacturing the ohmic electrode in the first embodiment will be described with reference to the drawings. First, as shown in FIG. 17, a substrate 1S is prepared. The substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, or a silicon (Si) substrate. Then, a buffer layer BUF, which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition). The buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
 なお、以上の説明では、基板1Sを窒化物半導体基板から構成する例を示さなかったが、基板1SはGaNやAlGaN等の窒化物半導体基板でもかまわない。この場合、基板1SはGaNと格子整合しているため、バッファ層BUFを薄く、または、無くすこともできる。 In the above description, the example in which the substrate 1S is formed of a nitride semiconductor substrate is not shown, but the substrate 1S may be a nitride semiconductor substrate such as GaN or AlGaN. In this case, since the substrate 1S is lattice-matched with GaN, the buffer layer BUF can be thin or eliminated.
 次に、図18に示すように、AlGaN層AGNL上にレジスト膜FR1を形成した後、このレジスト膜FR1に対して、露光・現像処理を施すことにより、レジスト膜FR1をパターニングする。レジスト膜FR1のパターニングは、オーミック電極形成領域に開口部OP1が形成されるように行なわれる。 Next, as shown in FIG. 18, after forming a resist film FR1 on the AlGaN layer AGNL, the resist film FR1 is patterned by subjecting the resist film FR1 to exposure and development processing. The patterning of the resist film FR1 is performed such that the opening OP1 is formed in the ohmic electrode formation region.
 そして、図19に示すように、例えば、電子線蒸着法などを使用することにより、パターニングしたレジスト膜FR1を形成した基板1S(AlGaN層AGNL)上に積層膜を形成する。具体的に、積層膜は、第1モリブデン(Mo)膜MF1と、この第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、このアルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、この第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成される。具体的に、図19に示すように、この積層膜がレジスト膜FR1に形成された開口部OP1内およびレジスト膜FR1上に形成される。このとき、本実施の形態1では、アルミニウム(Al)膜ALFとAlGaN層AGNLとの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層膜を構成している。そして、例えば、第1モリブデン(Mo)膜MF1以外の膜(アルミニウム(Al)膜ALF、第2モリブデン(Mo)膜MF2、金(Au)膜AUF)の膜厚は、特に、それぞれの膜の有する機能が発揮される範囲内であれば、特に限定されるものではない。例えば、一例として、アルミニウム(Al)膜ALFの膜厚が70nmであり、第2モリブデン(Mo)膜MF2の膜厚が30nmであり、さらに、金(Au)膜AUFの膜厚が50nmとなっている。 Then, as shown in FIG. 19, a laminated film is formed on the substrate 1S (AlGaN layer AGNL) on which the patterned resist film FR1 is formed by using, for example, an electron beam evaporation method. Specifically, the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF. A second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed. Specifically, as shown in FIG. 19, the laminated film is formed in the opening OP1 formed in the resist film FR1 and on the resist film FR1. At this time, in the first embodiment, assuming that the film thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film ALF and the AlGaN layer AGNL is X nm, 2 nm ≦ X ≦ 10 nm The laminated film is configured to satisfy the following relationship. Then, for example, the film thicknesses of the films (the aluminum (Al) film ALF, the second molybdenum (Mo) film MF2, the gold (Au) film AUF) other than the first molybdenum (Mo) film MF1 are, in particular, the respective films It is not particularly limited as long as the function possessed is exhibited. For example, as an example, the thickness of the aluminum (Al) film ALF is 70 nm, the thickness of the second molybdenum (Mo) film MF2 is 30 nm, and the thickness of the gold (Au) film AUF is 50 nm. ing.
 続いて、図20に示すように、レジスト膜FR1を除去する。レジスト膜FR1を除去する際、レジスト膜FR1上に形成されている積層膜もリフトオフによって除去される。したがって、レジスト膜FR1を除去した後は、レジスト膜FR1の開口部OP1に形成されていた積層膜だけが残存し、これによって、オーミック電極形成領域に、積層膜からなる積層体LABを形成することができる。 Subsequently, as shown in FIG. 20, the resist film FR1 is removed. When the resist film FR1 is removed, the laminated film formed on the resist film FR1 is also removed by lift-off. Therefore, after removing the resist film FR1, only the laminated film formed in the opening OP1 of the resist film FR1 remains, thereby forming the laminated body LAB made of the laminated film in the ohmic electrode formation region. Can.
 その後、図21に示すように、例えば、窒素雰囲気中で、かつ、650℃~850℃の温度で、1分~10分間の加熱処理を、積層体LABを形成した基板1Sに対して実施する。この加熱処理は、例えば、RTA(Rapid Thermal Anneal)や熱処理炉によるファーネスアニールによって実施することができる。なお、上述した熱処理は、650℃~850℃の温度範囲で実施されるが、望ましくは、700℃~800℃の温度範囲で実施する。低い温度では、表面モホロジーは良くなるのに対し、コンタクト抵抗は増加する傾向にある一方、高い温度では、表面モホロジーは悪化するのに対し、コンタクト抵抗は低下する傾向がある。このため、上述した加熱処理の温度は、表面モホロジーの改善とコンタクト抵抗の低減のバランスを考慮して決定される。例えば、表面モホロジーの改善を優先させる場合には、上述した温度範囲のうち比較的低温領域で実施されるのに対し、コンタクト抵抗の低減を優先させる場合には、上述した温度範囲のうち比較的高温領域で実施することが考えられる。 Thereafter, as shown in FIG. 21, for example, heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on substrate 1S on which laminate LAB is formed. . This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace. The heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C. At lower temperatures, the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease. For this reason, the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
 以上のような加熱処理を施すことにより、積層体LABを構成する各膜を構成するアルミニウム(Al)、モリブデン(Mo)および金(Au)が相互拡散して、図22に示すオーミック電極OEが形成される。このとき、オーミック電極OEとAlGaN層AGNLとの界面において、本実施の形態1では、第1モリブデン(Mo)膜の膜厚が小さいため、アルミニウム(Al)膜から、オーミック電極OEとAlGaN層AGNLとの界面に拡散するアルミニウム原子の原子%が、オーミック電極OEとAlGaN層AGNLとの界面に存在するモリブデン原子の原子%よりも大きくなる場合が多くなると考えられる。つまり、オーミック電極OEとAlGaN層AGNLとの界面での平均のアルミニウム原子の量(原子%)は、平均のモリブデン原子の量(原子%)よりも大きくなっている。このとき、アルミニウム原子との接触の影響が大きくなる結果、AlGaN層AGNLとオーミック電極OEとの接触がオーミック接触となり、コンタクト抵抗を低減することができる。すなわち、本実施の形態1では、アルミニウム(Al)膜とAlGaN層AGNLとの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層体LABを構成している。そして、本実施の形態1では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極OEを、AlGaN層AGNL上に形成することができる。 By performing the heat treatment as described above, aluminum (Al), molybdenum (Mo) and gold (Au) constituting the respective films constituting the stacked body LAB mutually diffuse, and the ohmic electrode OE shown in FIG. It is formed. At this time, since the film thickness of the first molybdenum (Mo) film is small in the first embodiment at the interface between the ohmic electrode OE and the AlGaN layer AGNL, the ohmic electrode OE and the AlGaN layer AGNL are formed of an aluminum (Al) film. It is considered that the atomic percent of the aluminum atoms diffused to the interface with is larger than the atomic percent of the molybdenum atoms present at the interface between the ohmic electrode OE and the AlGaN layer AGNL in many cases. That is, the average amount (atomic%) of aluminum atoms at the interface between the ohmic electrode OE and the AlGaN layer AGNL is larger than the average amount (atomic%) of molybdenum atoms. At this time, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced. That is, in the first embodiment, assuming that the thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film and the AlGaN layer AGNL is X nm, the relationship of 2 nm ≦ X ≦ 10 nm. The laminated body LAB is configured to satisfy Then, in the first embodiment, an ohmic electrode in which the improvement of surface morphology and the reduction of contact resistance are compatible by heat treating laminated body LAB configured in this manner at a high temperature of 650 ° C. to 850 ° C., for example. OE can be formed on the AlGaN layer AGNL.
 (実施の形態2)
 前記実施の形態1では、半導体層とアルミニウム(Al)膜との間に挿入された第1モリブデン(Mo)膜の膜厚に着目して、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極OEを半導体層上に形成する技術的思想について説明した。本実施の形態2では、積層体を構成するアルミニウム(Al)膜の膜厚と、金(Au)膜の膜厚との関係に着目して、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極OEを半導体層上に形成する技術的思想について説明する。
Second Embodiment
In the first embodiment, attention is paid to the film thickness of the first molybdenum (Mo) film inserted between the semiconductor layer and the aluminum (Al) film to achieve both improvement in surface morphology and reduction in contact resistance. The technical idea of forming the ohmic electrode OE on the semiconductor layer has been described. In the second embodiment, attention is paid to the relationship between the film thickness of the aluminum (Al) film constituting the laminate and the film thickness of the gold (Au) film, to achieve both improvement in surface morphology and reduction in contact resistance. The technical idea of forming the ohmic electrode OE on the semiconductor layer will be described.
 <本実施の形態2における特徴>
 図23に示すように、本実施の形態2における積層体LABは、GaN層GNL上に形成されたAlGaN層AGNL上に形成されている。この積層体LABは、まず、AlGaN層AGNL上に形成された第1モリブデン(Mo)膜MF1と、第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、アルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成されている。
<Features of Embodiment 2>
As shown in FIG. 23, the stacked body LAB in the second embodiment is formed on the AlGaN layer AGNL formed on the GaN layer GNL. The stacked body LAB includes a first molybdenum (Mo) film MF1 formed on the AlGaN layer AGNL, an aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and an aluminum (Al) film. 2.) A second molybdenum (Mo) film MF2 formed on the film ALF, and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2.
 ここで、本実施の形態2の特徴は、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされている点にある。つまり、本実施の形態2では、表面モホロジーの改善とコンタクト抵抗の低減とを両立するためには、アルミニウム(Al)膜ALFの膜厚と金(Au)膜AUFの膜厚との間に一定の相関関係を満たす必要があるという知見を見出し、この知見を具現化したものが本実施の形態2における技術的思想である。本実施の形態2では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極をAlGaN層AGNL上に形成することができる。 Here, when the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (nm), the feature of the second embodiment is Y ≦ Z ≦ The point is that the 2Y relationship is satisfied. That is, in the second embodiment, in order to achieve both of the improvement of the surface morphology and the reduction of the contact resistance, the film thickness of the aluminum (Al) film ALF is constant between the film thickness of the gold (Au) film AUF. It is found out that it is necessary to satisfy the correlation of (1), and the realization of this finding is the technical idea in the second embodiment. In the second embodiment, the laminated electrode LAB configured in this way is heat-treated at a high temperature of 650 ° C. to 850 ° C., for example, to form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on layer AGNL.
 ここで、例えば、本実施の形態2では、アルミニウム(Al)膜ALFの膜厚と金(Au)膜AUFの膜厚は、上述した相関関係の範囲内であればよく、さらに、第1モリブデン(Mo)膜MF1の膜厚や第2モリブデン(Mo)膜MF2の膜厚も、特に、それぞれの膜の有する機能が発揮される範囲内であれば、特に限定されるものではない。例えば、一例として、第1モリブデン(Mo)膜MF1の膜厚を7nm、アルミニウム(Al)膜ALFの膜厚を50nm~75nm、第2モリブデン(Mo)膜MF2の膜厚を30nm~50nm、金(Au)膜AUFの膜厚を75nm~150nmとすることができる。 Here, for example, in the second embodiment, the film thickness of the aluminum (Al) film ALF and the film thickness of the gold (Au) film AUF may be within the range of the aforementioned correlation, and further, the first molybdenum The thickness of the (Mo) film MF1 and the thickness of the second molybdenum (Mo) film MF2 are not particularly limited as long as the functions of the respective films are exhibited. For example, as an example, the film thickness of the first molybdenum (Mo) film MF1 is 7 nm, the film thickness of the aluminum (Al) film ALF is 50 nm to 75 nm, the film thickness of the second molybdenum (Mo) film MF2 is 30 nm to 50 nm, and gold The film thickness of the (Au) film AUF can be set to 75 nm to 150 nm.
 なお、図23では、AlGaN層AGNL上に積層体LABを形成する例について説明しているが、例えば、図24に示すように、n型GaN層nGNL上に積層体LABを形成する場合にも、本実施の形態2における技術的思想を適用することができる。具体的には、n型GaN層nGNL上に形成された積層体LABにおいて、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされているように構成する。そして、この積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極をn型GaN層nGNL上に形成することができる。 Although FIG. 23 illustrates an example in which the stacked body LAB is formed on the AlGaN layer AGNL, for example, as shown in FIG. 24, the stacked body LAB is also formed on the n-type GaN layer nGNL. The technical idea in the second embodiment can be applied. Specifically, in the stacked body LAB formed on the n-type GaN layer nGNL, the film thickness of the aluminum (Al) film ALF is Y (nm), and the film thickness of the gold (Au) film AUF is Z (nm) In this case, the relationship of Y ≦ Z ≦ 2Y is satisfied. Then, the laminated body LAB is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode on the n-type GaN layer nGNL in which the improvement of the surface morphology and the reduction of the contact resistance are compatible. it can.
 このように本実施の形態2では、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされている点に特徴があるが、アルミニウム(Al)膜ALFの膜厚と、金(Au)膜AUFの膜厚との間に上述した相関関係を導入した定性的な理由について説明する。 Thus, in the second embodiment, assuming that the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (nm), then Y ≦ Z ≦ 2Y. Although it is characterized in that the relationship is satisfied, it explains the qualitative reason for introducing the aforementioned correlation between the film thickness of the aluminum (Al) film ALF and the film thickness of the gold (Au) film AUF. Do.
 例えば、金(Au)膜AUFの膜厚に対して、アルミニウム(Al)膜ALFの膜厚が充分大きくなる場合、アルミニウム(Al)が金(Au)に対して過剰に存在することになる。この場合、積層体を加熱処理する際、過剰に存在するアルミニウム(Al)がモリブデン(Mo)や金(Au)と局所的な合金反応を起こす。この結果、局所的に表面モホロジーが悪化してしまうのである。つまり、アルミニウム(Ai)が金(Au)に対して過剰に存在する場合、過剰に存在するアルミニウム(Al)が、モリブデン(Mo)や金(Au)との間で余計な合金反応を起こして、表面モホロジーが悪化するのである。このため、表面モホロジーの改善を図る観点から、アルミニウム(Al)の量は、金(Au)よりも過剰に存在しないことが望ましく、この観点から、アルミニウム(Al)膜ALFの膜厚を金(Au)膜AUFの膜厚以下にする必要があるのである。 For example, when the film thickness of the aluminum (Al) film ALF is sufficiently large relative to the film thickness of the gold (Au) film AUF, aluminum (Al) will be present in excess with respect to gold (Au). In this case, when heat treatment is performed on the laminate, aluminum (Al) present in excess causes local alloy reaction with molybdenum (Mo) or gold (Au). As a result, the surface morphology is locally deteriorated. That is, when aluminum (Ai) is present in excess relative to gold (Au), excess aluminum (Al) causes an extra alloy reaction with molybdenum (Mo) or gold (Au). And the surface morphology gets worse. Therefore, it is desirable that the amount of aluminum (Al) does not exist in excess from gold (Au) from the viewpoint of improving the surface morphology, and from this viewpoint, the thickness of the aluminum (Al) film ALF is Au) It is necessary to make the film thickness of the film AUF or less.
 一方、例えば、アルミニウム(Al)膜ALFの膜厚に対して、金(Au)膜AUFの膜厚が充分に大きくなる場合、金(Au)がアルミニウム(Al)に対して過剰に存在することになる。この場合、積層体を加熱処理する際、過剰に存在する金(Au)が拡散し、積層体と半導体層との界面にまで達する。このとき、積層体と半導体層との界面にまで達する金(Au)が多くなると、積層体と半導体層との界面に拡散するアルミニウム(Al)の原子%よりも、積層体と半導体層との界面にまで達する金(Au)の原子%が多くなる場合が発生すると考えられる。このとき、積層体と半導体層との界面に拡散するアルミニウム(Al)は、半導体層との間でオーミック接触を形成するのに対し、積層体と半導体層との界面に拡散する金(Au)は、半導体層との間でショットキー接触を形成する。このため、積層体と半導体層との界面にまで達する金(Au)の原子%が多くなると、半導体層とオーミック電極との接触が、ショットキー接触を構成する金(Au)との接触の影響を大きく受けることとなり、コンタクト抵抗の増加が起こると考えられるのである。したがって、オーミック電極のコンタクト抵抗の低減を図る観点からは、金(Au)がアルミニウム(Al)に対して過剰に存在することは望ましくなく、アルミニウム(Al)膜ALFの膜厚に対して、金(Au)膜AUFの膜厚があまり大きくならないようにする必要がある。このことから、本実施の形態2では、金(Au)膜AUFの膜厚をアルミニウム(Al)膜ALFの膜厚よりも充分に厚くすることは避けるべき知見が得られる。 On the other hand, for example, when the film thickness of the gold (Au) film AUF is sufficiently larger than the film thickness of the aluminum (Al) film ALF, gold (Au) is present in excess to aluminum (Al). become. In this case, when the stack is heat-treated, excess gold (Au) is diffused to reach the interface between the stack and the semiconductor layer. At this time, when the amount of gold (Au) reaching the interface between the stack and the semiconductor layer increases, the ratio between the stack and the semiconductor layer is more than atomic% of aluminum (Al) diffused to the interface between the stack and the semiconductor layer. It is considered that the atomic percent of gold (Au) reaching the interface may increase. At this time, aluminum (Al) diffused to the interface between the stacked body and the semiconductor layer forms ohmic contact with the semiconductor layer, while gold (Au) diffused to the interface between the stacked body and the semiconductor layer Form a Schottky contact with the semiconductor layer. For this reason, when the atomic percent of gold (Au) reaching the interface between the stacked body and the semiconductor layer increases, the contact between the semiconductor layer and the ohmic electrode is affected by the contact with gold (Au) constituting the Schottky contact. The contact resistance is considered to increase. Therefore, from the viewpoint of reducing the contact resistance of the ohmic electrode, it is not desirable that gold (Au) be present in excess to aluminum (Al), and the thickness of the aluminum (Al) film ALF is It is necessary to prevent the film thickness of the (Au) film AUF from becoming too large. From this, in the second embodiment, it is obtained that it should be avoided to make the film thickness of the gold (Au) film AUF sufficiently larger than the film thickness of the aluminum (Al) film ALF.
 以上のことから、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極を得るためには、アルミニウム(Al)膜ALFの膜厚と金(Au)膜AUFの膜厚とを適切な比率に設定する必要があることがわかる。 From the above, in order to obtain an ohmic electrode in which the improvement of the surface morphology and the reduction of the contact resistance are compatible, an appropriate ratio of the film thickness of the aluminum (Al) film ALF to the film thickness of the gold (Au) film AUF It turns out that it is necessary to set to.
 続いて、アルミニウム(Al)膜ALFの膜厚と、金(Au)膜AUFの膜厚との間に上述した相関関係を導入した理由を定量的な観点から説明する。 Subsequently, the reason why the above-described correlation is introduced between the film thickness of the aluminum (Al) film ALF and the film thickness of the gold (Au) film AUF will be described from a quantitative viewpoint.
 図25は、アルミニウム(Al)膜と金(Au)膜との膜厚比(以下、Au/Al膜厚比という)(Auの膜厚/Alの膜厚)と、オーミック電極と半導体層(以下、AlGaN層やn型GaN層を半導体層と総称して言うことにする)とのコンタクト抵抗との関係を示すグラフである。図25において、横軸は、Au/Al膜厚比を示しており、縦軸は、オーミック電極と半導体層との間のコンタクト抵抗(Ωmm)を示している。 FIG. 25 shows the film thickness ratio between the aluminum (Al) film and the gold (Au) film (hereinafter referred to as Au / Al film thickness ratio) (Au film thickness / Al film thickness), the ohmic electrode and the semiconductor layer Hereinafter, it is a graph which shows a relationship with a contact resistance with an AlGaN layer and an n-type GaN layer collectively called a semiconductor layer. In FIG. 25, the horizontal axis indicates the Au / Al film thickness ratio, and the vertical axis indicates the contact resistance (Ω mm) between the ohmic electrode and the semiconductor layer.
 ここで、Au/Al膜厚比は、オーミック電極を形成する前の積層体を構成している際の膜厚比を示している。そして、この積層体に熱処理を施すことにより、積層体を構成する各膜の原子が相互拡散し、これによって、オーミック電極が形成される。このとき、図25に示すコンタクト抵抗は、このオーミック電極と半導体層との間のコンタクト抵抗を示している。このコンタクト抵抗は、通常のTLM法(Transmission Line Method)を使用して測定したものである。 Here, the Au / Al film thickness ratio indicates the film thickness ratio when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the contact resistance shown in FIG. 25 indicates the contact resistance between the ohmic electrode and the semiconductor layer. This contact resistance is measured using the usual TLM method (Transmission Line Method).
 図25に示すように、Au/Al膜厚比が0.5~2.0の範囲においては、コンタクト抵抗が0.3Ωmm以下となっており、充分にコンタクト抵抗を低減できることがわかる。ところが、Au/Al膜厚比が2.0を超えると、急激にコンタクト抵抗が上昇していることがわかる。これは、以下に示す理由が考えられる。すなわち、Au/Al膜厚比が2.0を超えるということは、アルミニウム(Al)膜ALFの膜厚に対して、金(Au)膜AUFの膜厚が充分に大きくなることを意味し、これにより、金(Au)がアルミニウム(Al)に対して過剰に存在することになる。この場合、積層体を加熱処理する際、過剰に存在する金(Au)が拡散し、積層体と半導体層との界面にまで達する。このとき、積層体と半導体層との界面にまで達する金(Au)が多くなると、積層体と半導体層との界面に拡散するアルミニウム(Al)の原子%よりも、積層体と半導体層との界面にまで達する金(Au)の原子%が多くなる場合が発生すると考えられる。このため、積層体と半導体層との界面にまで達する金(Au)の原子%が多くなると、半導体層とオーミック電極との接触が、ショットキー接触を構成する金(Au)との接触の影響を大きく受けることとなり、コンタクト抵抗の急激な増加が起こると考えられるのである。このことから、オーミック電極のコンタクト抵抗を低減する観点から、Au/Al膜厚比は、0.5~2.0の範囲内にあることが望ましいことがわかる。 As shown in FIG. 25, when the Au / Al film thickness ratio is in the range of 0.5 to 2.0, the contact resistance is 0.3 Ωmm or less, and it can be seen that the contact resistance can be sufficiently reduced. However, when the Au / Al film thickness ratio exceeds 2.0, it can be seen that the contact resistance rises sharply. This may be due to the following reasons. That is, that the Au / Al film thickness ratio exceeds 2.0 means that the film thickness of the gold (Au) film AUF becomes sufficiently larger than the film thickness of the aluminum (Al) film ALF, As a result, gold (Au) is present in excess to aluminum (Al). In this case, when the stack is heat-treated, excess gold (Au) is diffused to reach the interface between the stack and the semiconductor layer. At this time, when the amount of gold (Au) reaching the interface between the stack and the semiconductor layer increases, the ratio between the stack and the semiconductor layer is more than atomic% of aluminum (Al) diffused to the interface between the stack and the semiconductor layer. It is considered that the atomic percent of gold (Au) reaching the interface may increase. For this reason, when the atomic percent of gold (Au) reaching the interface between the stacked body and the semiconductor layer increases, the contact between the semiconductor layer and the ohmic electrode is affected by the contact with gold (Au) constituting the Schottky contact. It is believed that a sharp increase in contact resistance will occur. From this, it is understood that the Au / Al film thickness ratio is preferably in the range of 0.5 to 2.0 from the viewpoint of reducing the contact resistance of the ohmic electrode.
 次に、図26は、Au/Al膜厚比と、オーミック電極と半導体層との界面における表面粗さ(RMS)との関係を示すグラフである。図26において、横軸は、Au/Al膜厚比を示しており、縦軸は、オーミック電極と半導体層との界面における表面粗さ(μm)を示している。 Next, FIG. 26 is a graph showing the relationship between the Au / Al film thickness ratio and the surface roughness (RMS) at the interface between the ohmic electrode and the semiconductor layer. In FIG. 26, the horizontal axis indicates the Au / Al film thickness ratio, and the vertical axis indicates the surface roughness (μm) at the interface between the ohmic electrode and the semiconductor layer.
 ここで、Au/Al膜厚比は、オーミック電極を形成する前の積層体を構成している際の膜厚を示している。そして、この積層体に熱処理を施すことにより、積層体を構成する各膜の原子が相互拡散し、これによって、オーミック電極が形成される。このとき、図26に示す表面粗さは、このオーミック電極と半導体層との界面における表面粗さを示している。つまり、本実施の形態2では、表面モホロジーの指標として、表面粗さを使用している。この表面粗さは、例えば、表面粗さ計、レーザ顕微鏡、あるいは、原子間力顕微鏡などを使用することにより評価される。図26では、レーザ顕微鏡を使用して表面粗さを評価した結果が示されている。 Here, the Au / Al film thickness ratio indicates the film thickness when forming the laminate before forming the ohmic electrode. Then, heat treatment is performed on this laminated body, whereby the atoms of the respective films constituting the laminated body mutually diffuse, whereby an ohmic electrode is formed. At this time, the surface roughness shown in FIG. 26 indicates the surface roughness at the interface between the ohmic electrode and the semiconductor layer. That is, in the second embodiment, surface roughness is used as an index of surface morphology. This surface roughness is evaluated by using, for example, a surface roughness meter, a laser microscope, or an atomic force microscope. In FIG. 26, the result of having evaluated surface roughness using the laser microscope is shown.
 図26に示すように、Au/Al膜厚比が1以上の範囲内においては、表面粗さが0.1μm以下となっており、充分に表面モホロジーを改善できることがわかる。ところが、Au/Al膜厚比が1よりも小さくなると、急激に表面粗さが大きくなることがわかる。つまり、図26には、Au/Al膜厚比が1よりも小さくなると、表面モホロジーが急激に悪化することが示されている。これは、以下に示す理由が考えられる。すなわち、Au/Al膜厚比が1よりも小さくなるということは、アルミニウム(Al)膜の膜厚が金(Au)膜の膜厚よりも充分大きくなることを意味し、これにより、アルミニウム(Al)が金(Au)に対して過剰に存在することになる。この場合、積層体を加熱処理する際、過剰に存在するアルミニウム(Al)がモリブデン(Mo)や金(Au)と局所的な合金反応を起こすと考えられ、これによって、局所的に表面モホロジーが悪化してしまうと考えられるのである。このことから、オーミック電極と半導体層の界面における表面モホロジーを改善する観点から、Au/Al膜厚比は、1以上の範囲内にあることが望ましいことがわかる。さらに好ましくは、Au/Al膜厚比は、1.3以上であることが望ましい。 As shown in FIG. 26, in the range where the Au / Al film thickness ratio is 1 or more, the surface roughness is 0.1 μm or less, and it can be seen that the surface morphology can be sufficiently improved. However, it can be seen that when the Au / Al film thickness ratio becomes smaller than 1, the surface roughness rapidly increases. That is, FIG. 26 shows that the surface morphology is rapidly deteriorated when the Au / Al film thickness ratio is smaller than 1. This may be due to the following reasons. That is, the fact that the Au / Al film thickness ratio is smaller than 1 means that the film thickness of the aluminum (Al) film becomes sufficiently larger than the film thickness of the gold (Au) film. Al) will be present in excess to gold (Au). In this case, it is considered that, when the laminate is subjected to heat treatment, aluminum (Al) present in excess causes local alloy reaction with molybdenum (Mo) or gold (Au), whereby surface morphology is locally It is thought that it gets worse. From this, it is understood that the Au / Al film thickness ratio is desirably in the range of 1 or more from the viewpoint of improving the surface morphology at the interface between the ohmic electrode and the semiconductor layer. More preferably, the Au / Al film thickness ratio is preferably 1.3 or more.
 以上のことから、オーミック電極と半導体層との間のコンタクト抵抗を小さくする観点からは、図25に示すように、Au/Al膜厚比が0.5~2の範囲内にあることが望ましい。一方、オーミック電極と半導体層との界面における表面モホロジー(表面粗さ)を改善する観点からは、図26に示すように、Au/Al膜厚比が1以上の範囲内にあることが望ましい。したがって、図25および図26を考慮して、本実施の形態2では、Au/Al膜厚比が1~2の範囲内にあるように構成している。言い換えれば、アルミニウム(Al)膜の膜厚をY(nm)とし、金(Au)膜の膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係を満たすように構成している。本実施の形態2では、このように構成された積層体を、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極を、半導体層上に形成することができる。図26からはAu/Al膜厚比が1.3以上であればさらに表面粗さを小さくできることから、金(Au)の膜厚Zは、1.3Y≦Z≦2Yであればさらに、表面を平坦にすることができ、好適である。 From the above, from the viewpoint of reducing the contact resistance between the ohmic electrode and the semiconductor layer, as shown in FIG. 25, it is desirable that the Au / Al film thickness ratio be in the range of 0.5 to 2 . On the other hand, from the viewpoint of improving the surface morphology (surface roughness) at the interface between the ohmic electrode and the semiconductor layer, as shown in FIG. 26, it is desirable that the Au / Al film thickness ratio be in the range of 1 or more. Therefore, in consideration of FIGS. 25 and 26, in the second embodiment, the Au / Al film thickness ratio is configured to be in the range of 1 to 2. In other words, assuming that the film thickness of the aluminum (Al) film is Y (nm) and the film thickness of the gold (Au) film is Z (nm), the relationship of Y ≦ Z ≦ 2Y is satisfied. . In the second embodiment, the laminated body thus configured is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C. to form an ohmic electrode that achieves both improvement in surface morphology and reduction in contact resistance. It can be formed on a layer. From FIG. 26, since the surface roughness can be further reduced if the Au / Al film thickness ratio is 1.3 or more, the film thickness Z of gold (Au) further satisfies 1.3 Y ≦ Z ≦ 2Y. Can be flat, which is preferable.
 <本実施の形態2におけるオーミック電極の製造方法>
 続いて、本実施の形態2におけるオーミック電極の製造方法について、図面を参照しながら説明する。まず、図17に示す前記実施の形態1と同様に、基板1Sを用意する。この基板1Sは、例えば、サファイア基板、SiC(炭化シリコン)基板、シリコン(Si)基板、あるいは、GaN基板から構成される。そして、この基板1S上に、例えば、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を使用することにより、エピタキシャル層であるバッファ層BUFを形成する。バッファ層BUFは、例えば、基板を構成する結晶格子と、バッファ層BUF上に形成されるGaN層を構成する結晶格子との不整合を緩和する目的で形成される。その後、バッファ層BUF上に、例えば、MOCVD法を使用することにより、導電型不純物を添加していないノンドープのエピタキシャル層であるGaN層GNLを形成し、このGaN層GNL上に、導電型不純物を添加していないノンドープのエピタキシャル層であるAlGaN層AGNLを形成する。
<Method of Manufacturing Ohmic Electrode in Second Embodiment>
Subsequently, a method of manufacturing the ohmic electrode in the second embodiment will be described with reference to the drawings. First, as in the first embodiment shown in FIG. 17, the substrate 1S is prepared. The substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, a silicon (Si) substrate, or a GaN substrate. Then, a buffer layer BUF, which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition). The buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
 次に、図18に示す前記実施の形態1と同様に、AlGaN層AGNL上にレジスト膜FR1を形成した後、このレジスト膜FR1に対して、露光・現像処理を施すことにより、レジスト膜FR1をパターニングする。レジスト膜FR1のパターニングは、オーミック電極形成領域に開口部OP1が形成されるように行なわれる。 Next, as in the first embodiment shown in FIG. 18, after forming a resist film FR1 on the AlGaN layer AGNL, the resist film FR1 is exposed and developed to form a resist film FR1. Pattern it. The patterning of the resist film FR1 is performed such that the opening OP1 is formed in the ohmic electrode formation region.
 そして、図27に示すように、例えば、電子線蒸着法などを使用することにより、パターニングしたレジスト膜FR1を形成した基板1S上に積層膜を形成する。具体的に、積層膜は、第1モリブデン(Mo)膜MF1と、この第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、このアルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、この第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成される。具体的に、図27に示すように、この積層膜がレジスト膜FR1に形成された開口部OP1内およびレジスト膜FR1上に形成される。このとき、本実施の形態2では、例えば、第1モリブデン(Mo)膜MF1の膜厚は7nmである。また、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係を満たすように、それぞれの膜厚が調整される。例えば、アルミニウム(Al)膜ALFの膜厚は75nmに設定され、金(Au)膜AUFの膜厚は120nmに設定される。さらに、第2モリブデン(Mo)膜MF2の膜厚については、特に範囲を設けないが、例えば、30nm~50nmの範囲内で形成される。 Then, as shown in FIG. 27, a laminated film is formed on the substrate 1S on which the patterned resist film FR1 is formed, for example, by using an electron beam evaporation method or the like. Specifically, the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF. A second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed. Specifically, as shown in FIG. 27, the laminated film is formed in the opening OP1 formed in the resist film FR1 and on the resist film FR1. At this time, in the second embodiment, for example, the film thickness of the first molybdenum (Mo) film MF1 is 7 nm. In addition, when the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (nm), the respective relationships satisfy Y ≦ Z ≦ 2Y. The film thickness is adjusted. For example, the film thickness of the aluminum (Al) film ALF is set to 75 nm, and the film thickness of the gold (Au) film AUF is set to 120 nm. Further, the thickness of the second molybdenum (Mo) film MF2 is not particularly limited, but is, for example, in the range of 30 nm to 50 nm.
 続いて、図28に示すように、レジスト膜FR1を除去する。レジスト膜FR1を除去する際、レジスト膜FR1上に形成されている積層膜もリフトオフによって除去される。したがって、レジスト膜FR1を除去した後は、レジスト膜FR1の開口部OP1に形成されていた積層膜だけが残存し、これによって、オーミック電極形成領域に、積層膜からなる積層体LABを形成することができる。 Subsequently, as shown in FIG. 28, the resist film FR1 is removed. When the resist film FR1 is removed, the laminated film formed on the resist film FR1 is also removed by lift-off. Therefore, after removing the resist film FR1, only the laminated film formed in the opening OP1 of the resist film FR1 remains, thereby forming the laminated body LAB made of the laminated film in the ohmic electrode formation region. Can.
 その後、図29に示すように、例えば、窒素雰囲気中で、かつ、650℃~850℃の温度で、1分~10分間の加熱処理を、積層体LABを形成した基板1Sに対して実施する。この加熱処理は、例えば、RTA(Rapid Thermal Anneal)や熱処理炉によるファーネスアニールによって実施することができる。なお、上述した熱処理は、650℃~850℃の温度範囲で実施されるが、望ましくは、700℃~800℃の温度範囲で実施する。低い温度では、表面モホロジーは良くなるのに対し、コンタクト抵抗は増加する傾向にある一方、高い温度では、表面モホロジーは悪化するのに対し、コンタクト抵抗は低下する傾向がある。このため、上述した加熱処理の温度は、表面モホロジーの改善とコンタクト抵抗の低減のバランスを考慮して決定される。例えば、表面モホロジーの改善を優先させる場合には、上述した温度範囲のうち比較的低温領域で実施されるのに対し、コンタクト抵抗の低減を優先させる場合には、上述した温度範囲のうち比較的高温領域で実施することが考えられる。 Thereafter, as shown in FIG. 29, for example, heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on substrate 1S on which laminated body LAB is formed. . This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace. The heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C. At lower temperatures, the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease. For this reason, the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
 以上のような加熱処理を施すことにより、積層体LABを構成する各膜を構成するアルミニウム(Al)、モリブデン(Mo)および金(Au)が相互拡散して、図30に示すオーミック電極OEが形成される。このとき、オーミック電極OEとAlGaN層AGNLとの界面において、本実施の形態2では、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされている。このため、アルミニウム(Al)膜から、オーミック電極OEとAlGaN層AGNLとの界面に拡散するアルミニウム原子の原子%が、オーミック電極OEとAlGaN層AGNLとの界面に拡散する金原子の原子%よりも大きくなる場合が多くなると考えられる。このとき、アルミニウム原子との接触の影響が大きくなる結果、AlGaN層AGNLとオーミック電極OEとの接触がオーミック接触となり、コンタクト抵抗を低減することができる。すなわち、本実施の形態2では、Au/Al膜厚比が1~2の範囲内にあるように構成している。そして、本実施の形態2では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極OEを、AlGaN層AGNL上に形成することができる。 By performing the heat treatment as described above, aluminum (Al), molybdenum (Mo) and gold (Au) constituting the respective films constituting the stacked body LAB mutually diffuse, and the ohmic electrode OE shown in FIG. It is formed. At this time, in the second embodiment, the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (A) at the interface between the ohmic electrode OE and the AlGaN layer AGNL. In the case of nm), the relationship of Y ≦ Z ≦ 2Y is satisfied. Therefore, the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is more than the atomic percent of gold atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL It is thought that there will be many cases of becoming larger. At this time, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced. That is, in the second embodiment, the Au / Al film thickness ratio is configured to be in the range of 1 to 2. Then, in the second embodiment, ohmic electrode in which improvement of surface morphology and reduction of contact resistance are compatible by heat treating laminated body LAB configured in this way at a high temperature of, for example, 650 ° C. to 850 ° C. OE can be formed on the AlGaN layer AGNL.
 なお、本実施の形態2では、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされるように積層体LABを構成する点に特徴がある。そして、この特徴点により、表面モホロジーの改善とコンタクト抵抗の低減とを両立したオーミック電極OEを提供することができる。このため、本実施の形態2では、積層体LABの最下層に形成される第1モリブデン(Mo)膜MF1の膜厚については、特に限定されない。ただし、本実施の形態2においても、前記実施の形態1と同様に、第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層体LABを構成することにより、前記実施の形態1の特徴と、本実施の形態2の特徴の相乗効果によって、さらなるオーミック電極OEの表面モホロジーの改善とコンタクト抵抗の低減とを図ることができる。この場合、オーミック電極OEとAlGaN層AGNLとの界面において、アルミニウム(Al)膜から、オーミック電極OEとAlGaN層AGNLとの界面に拡散するアルミニウム原子の原子%が、オーミック電極OEとAlGaN層AGNLとの界面に拡散する金原子の原子%よりも大きくなる場合が多くなり、かつ、モリブデン原子の原子%よりも大きくなる場合が多くなると考えられる。すなわち、半導体層とオーミック電極OEとの界面において、アルミニウム、モリブデン、および、金のうち、アルミニウムの原子%が最も大きくなる場合が多くなるものと考えられる。 In the second embodiment, assuming that the film thickness of aluminum (Al) film ALF is Y (nm) and the film thickness of gold (Au) film AUF is Z (nm), the relationship of Y ≦ Z ≦ 2Y is satisfied. Is characterized in that the laminate LAB is configured such that And, with this feature point, it is possible to provide the ohmic electrode OE in which the improvement of the surface morphology and the reduction of the contact resistance are compatible. Therefore, in the second embodiment, the thickness of the first molybdenum (Mo) film MF1 formed in the lowermost layer of the stacked body LAB is not particularly limited. However, also in the second embodiment, similarly to the first embodiment, when the film thickness of the first molybdenum (Mo) film MF1 is X nm, the stacked body LAB is satisfied so as to satisfy the relationship of 2 nm ≦ X ≦ 10 nm. Due to the synergetic effect of the features of the first embodiment and the features of the second embodiment, the surface morphology of the ohmic electrode OE can be further improved and the contact resistance can be reduced. In this case, at the interface between the ohmic electrode OE and the AlGaN layer AGNL, the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL corresponds to the ohmic electrode OE and the AlGaN layer AGNL It is considered that the atomic ratio of the gold atom diffused to the interface of Si is often larger than the atomic percentage of the gold atom, and the atomic ratio of the gold atom larger than the atomic percentage of the molybdenum atom is large. That is, it is considered that, at the interface between the semiconductor layer and the ohmic electrode OE, the atomic% of aluminum among aluminum, molybdenum, and gold is most often increased.
 (実施の形態3)
 <高電子移動度トランジスタの構成>
 本実施の形態3では、前記実施の形態1や前記実施の形態2で説明したオーミック電極OEを高電子移動度トランジスタ(HEMT)に利用する例について説明する。
Third Embodiment
<Configuration of High Electron Mobility Transistor>
In the third embodiment, an example in which the ohmic electrode OE described in the first embodiment or the second embodiment is used for a high electron mobility transistor (HEMT) will be described.
 図31は、本実施の形態3におけるHEMTのデバイス構造を示す断面図である。図31に示すように、例えば、サファイア基板、SiC(炭化シリコン)基板、シリコン(Si)基板、あるいは、GaN基板から構成される基板1S上に、GaN層からなるバッファ層BUFが形成されている。そして、このバッファ層BUF上に、導電型不純物が導入されていないノンドープのGaN層GNLが形成されており、このGaN層GNL上に、導電型不純物が導入されていないノンドープのAlGaN層AGNLが形成されている。つまり、本実施の形態3におけるHEMTにおいては、基板1S上に、GaN層GNLとAlGaN層AGNLからなるヘテロ接合が形成されていることになる。 FIG. 31 is a cross-sectional view showing the device structure of the HEMT in the third embodiment. As shown in FIG. 31, for example, a buffer layer BUF consisting of a GaN layer is formed on a substrate 1S composed of a sapphire substrate, a SiC (silicon carbide) substrate, a silicon (Si) substrate, or a GaN substrate. . Then, the non-doped GaN layer GNL in which the conductive impurity is not introduced is formed on the buffer layer BUF, and the non-doped AlGaN layer AGNL in which the conductive impurity is not introduced is formed on the GaN layer GNL. It is done. That is, in the HEMT according to the third embodiment, a heterojunction composed of the GaN layer GNL and the AlGaN layer AGNL is formed on the substrate 1S.
 次に、AlGaN層AGNL上には、互いに離間して配置されたソース電極SEとドレイン電極DEが形成されている。このソース電極SEおよびドレイン電極DEは、オーミック電極OEから構成されており、このオーミック電極OEは、前記実施の形態1や前記実施の形態2で説明した特徴を有している。したがって、本実施の形態3におけるHEMTによれば、本願発明の技術的思想が適用されたオーミック電極OEをソース電極SEやドレイン電極DEに使用しているので、ソース電極SEやドレイン電極DEにおける表面モホロジーの改善とコンタクト抵抗の低減とを図ることができる。具体的に、ソース電極SEおよびドレイン電極DEは、アルミニウム、モリブデン、および、金が相互拡散したオーミック電極OEから形成されており、特に、オーミック電極OEとAlGaN層AGNLとの界面において、アルミニウム原子の原子%は、モリブデン原子の原子%や金原子の原子%よりも大きくなっている場合が多いと考えられる。 Next, on the AlGaN layer AGNL, the source electrode SE and the drain electrode DE which are disposed apart from each other are formed. The source electrode SE and the drain electrode DE are formed of an ohmic electrode OE, and the ohmic electrode OE has the features described in the first embodiment and the second embodiment. Therefore, according to the HEMT in the third embodiment, since the ohmic electrode OE to which the technical idea of the present invention is applied is used for the source electrode SE or the drain electrode DE, the surface of the source electrode SE or the drain electrode DE It is possible to improve the morphology and reduce the contact resistance. Specifically, the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between the ohmic electrode OE and the AlGaN layer AGNL, The atomic% is considered to be larger than the atomic% of the molybdenum atom or the atomic% of the gold atom in many cases.
 そして、ソース電極SEとドレイン電極DEとの間のAlGaN層AGNL上には、ゲート電極GEが形成されている。このゲート電極GEは、ニッケル膜NIFと金膜AUF2の積層膜から形成されており、ゲート電極GEとAlGaN層AGNLとの接触はショットキー接触となっている。また、本実施の形態3におけるHEMTでは、AlGaN層AGNLの表面に、例えば、窒化シリコン膜からなる表面保護膜PRFが形成されている。 The gate electrode GE is formed on the AlGaN layer AGNL between the source electrode SE and the drain electrode DE. The gate electrode GE is formed of a laminated film of a nickel film NIF and a gold film AUF2, and the contact between the gate electrode GE and the AlGaN layer AGNL is a Schottky contact. Further, in the HEMT according to the third embodiment, a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the AlGaN layer AGNL.
 <高電子移動度トランジスタの動作>
 本実施の形態3におけるHEMTは上記のように構成されており、以下に、その動作について説明する。特に、本実施の形態3では、ノーマリオン型のHEMTを例に挙げて、その動作について説明する。
<Operation of High Electron Mobility Transistor>
The HEMT in the third embodiment is configured as described above, and the operation thereof will be described below. In particular, in the third embodiment, the operation will be described by taking a normally-on type HEMT as an example.
 図32は、ゲート電極にしきい値電圧以下の負電圧が印加されてHEMTがオフしている場合のバンド構造を示す図である。図32の左側にゲート電極を構成する金属のバンド構造が示されており、図32の中央部にAlGaN層のバンド構造が示されている。そして、図32の右側にGaN層のバンド構造が示されている。ここで、ゲート電極には、GaN層に対して負電圧が印加されているため、ゲート電極(金属)のフェルミ準位εFMは、GaN層のフェルミ準位εFS2よりも印加した電圧分だけ高くなる。ゲート電極との界面でのAlGaN層の伝導帯は所定のショットキー障壁高さΦだけ高くなり、また、AlGaN層とGaN層との界面では所定の伝導帯不連続ΔEがあるため、ゲート電極のフェルミ準位εFMが高くなったのに伴い、伝導帯が引きずられて上昇する。その結果、AlGaN層とGaN層との界面には2次元電子ガスが形成されないため、ソース電極SEとドレイン電極DEを電気的に接続するチャネルが形成されない。この結果、本実施の形態3におけるHEMTは、ゲート電極にしきい値電圧以下の負電圧が印加されている場合、オフする。なお、AlGaN層の伝導帯とGaN層の伝導帯のエネルギー差から、AlGaN層の伝導帯とGaN層の伝導帯との間には所定の伝導帯不連続ΔEが形成されている。 FIG. 32 is a diagram showing a band structure in the case where the negative voltage lower than the threshold voltage is applied to the gate electrode and the HEMT is turned off. The band structure of the metal constituting the gate electrode is shown on the left side of FIG. 32, and the band structure of the AlGaN layer is shown in the center of FIG. The band structure of the GaN layer is shown on the right side of FIG. Here, since a negative voltage is applied to the gate electrode with respect to the GaN layer, the Fermi level ε FM of the gate electrode (metal) corresponds to the voltage applied from the Fermi level ε FS2 of the GaN layer. Get higher. The conduction band of the AlGaN layer at the interface with the gate electrode is increased by a predetermined Schottky barrier height B B , and there is a predetermined conduction band discontinuity ΔE c at the interface between the AlGaN layer and the GaN layer. As the Fermi level ε FM of the electrode increases, the conduction band is pulled and raised. As a result, since a two-dimensional electron gas is not formed at the interface between the AlGaN layer and the GaN layer, a channel for electrically connecting the source electrode SE and the drain electrode DE is not formed. As a result, the HEMT according to the third embodiment is turned off when a negative voltage equal to or lower than the threshold voltage is applied to the gate electrode. Incidentally, the energy difference of the conduction band of the conduction band and the GaN layer of the AlGaN layer, a predetermined conduction band discontinuity Delta] E c between the conduction band of the conduction band and the GaN layer of the AlGaN layer is formed.
 続いて、図33は、ゲート電極に0Vの電圧が印加されてHEMTがオンしている場合のバンド構造を示す図である。図33の左側にゲート電極を構成する金属のバンド構造が示されており、図33の中央部にAlGaN層のバンド構造が示されている。そして、図33の右側にGaN層のバンド構造が示されている。ここで、ゲート電極には0Vが印加されていることから、ゲート電極を構成する金属のフェルミ準位εFMと、GaN層のフェルミ準位εFS2は等しくなる。このとき、AlGaN層の伝導帯とGaN層の伝導帯との間に形成されている伝導帯不連続ΔEに起因して、AlGaN層とGaN層との界面にフェルミ準位よりも低い位置に井戸型ポテンシャルが形成される。この結果、この井戸型ポテンシャルに電子が蓄積され、2次元電子ガスが形成される。これにより、ゲート電極に0Vの電圧が印加されている場合、AlGaN層とGaN層との界面に2次元電子ガスが形成され、ソース電極SEとドレイン電極DEを電気的に接続するチャネルが形成されることになる。この結果、本実施の形態3におけるHEMTは、ゲート電極に0Vの電圧が印加されている場合、オンする。以上のようにして、本実施の形態3におけるHEMTでは、ゲート電極に印加する電圧を制御することにより、HEMTのオン/オフ動作を実現できることがわかる。 Subsequently, FIG. 33 is a diagram showing a band structure when the voltage of 0 V is applied to the gate electrode and the HEMT is turned on. The left side of FIG. 33 shows the band structure of the metal constituting the gate electrode, and the middle part of FIG. 33 shows the band structure of the AlGaN layer. The band structure of the GaN layer is shown on the right side of FIG. Here, since 0 V is applied to the gate electrode, the Fermi level ε FM of the metal constituting the gate electrode and the Fermi level ε FS2 of the GaN layer become equal. At this time, at a position lower than the Fermi level at the interface between the AlGaN layer and the GaN layer due to the conduction band discontinuity ΔE c formed between the conduction band of the AlGaN layer and the conduction band of the GaN layer. A well potential is formed. As a result, electrons are accumulated in the well potential and a two-dimensional electron gas is formed. Thereby, when a voltage of 0 V is applied to the gate electrode, a two-dimensional electron gas is formed at the interface between the AlGaN layer and the GaN layer, and a channel for electrically connecting the source electrode SE and the drain electrode DE is formed. It will be As a result, the HEMT in the third embodiment is turned on when a voltage of 0 V is applied to the gate electrode. As described above, in the HEMT according to the third embodiment, it is understood that the on / off operation of the HEMT can be realized by controlling the voltage applied to the gate electrode.
 <高移動度トランジスタの製造方法>
 次に、本実施の形態3におけるHEMTの製造方法について説明する。まず、図34に示すように、基板1Sを用意する。この基板1Sは、例えば、サファイア基板、SiC(炭化シリコン)基板、あるいは、シリコン(Si)基板から構成される。そして、この基板1S上に、例えば、有機金属気相成長法(MOCVD法:Metal Organic Chemical Vapor Deposition)を使用することにより、エピタキシャル層であるバッファ層BUFを形成する。バッファ層BUFは、例えば、基板を構成する結晶格子と、バッファ層BUF上に形成されるGaN層を構成する結晶格子との不整合を緩和する目的で形成される。その後、バッファ層BUF上に、例えば、MOCVD法を使用することにより、導電型不純物を添加していないノンドープのエピタキシャル層であるGaN層GNLを形成し、このGaN層GNL上に、導電型不純物を添加していないノンドープのエピタキシャル層であるAlGaN層AGNLを形成する。
<Method of Manufacturing High Mobility Transistor>
Next, a method of manufacturing the HEMT according to the third embodiment will be described. First, as shown in FIG. 34, a substrate 1S is prepared. The substrate 1S is made of, for example, a sapphire substrate, a SiC (silicon carbide) substrate, or a silicon (Si) substrate. Then, a buffer layer BUF, which is an epitaxial layer, is formed on the substrate 1S by using, for example, metal organic chemical vapor deposition (MOCVD method: Metal Organic Chemical Vapor Deposition). The buffer layer BUF is formed, for example, for the purpose of relaxing a mismatch between the crystal lattice forming the substrate and the crystal lattice forming the GaN layer formed on the buffer layer BUF. Thereafter, a GaN layer GNL which is a non-doped epitaxial layer to which a conductive impurity is not added is formed on the buffer layer BUF, for example, by using the MOCVD method, and a conductive impurity is formed on the GaN layer GNL. An AlGaN layer AGNL which is a non-doped epitaxial layer not doped is formed.
 次に、図35に示すように、AlGaN層AGNL上にレジスト膜FR2を形成した後、このレジスト膜FR2に対して、露光・現像処理を施すことにより、レジスト膜FR2をパターニングする。レジスト膜FR2のパターニングは、ソース電極形成領域およびドレイン電極形成領域に開口部OP2が形成されるように行なわれる。 Next, as shown in FIG. 35, after forming a resist film FR2 over the AlGaN layer AGNL, the resist film FR2 is patterned by subjecting the resist film FR2 to exposure and development processing. The patterning of the resist film FR2 is performed such that an opening OP2 is formed in the source electrode formation region and the drain electrode formation region.
 そして、図36に示すように、例えば、電子線蒸着法などを使用することにより、パターニングしたレジスト膜FR2を形成した基板1S上に積層膜を形成する。具体的に、積層膜は、第1モリブデン(Mo)膜MF1と、この第1モリブデン(Mo)膜MF1上に形成されたアルミニウム(Al)膜ALFと、このアルミニウム(Al)膜ALF上に形成された第2モリブデン(Mo)膜MF2と、この第2モリブデン(Mo)膜MF2上に形成された金(Au)膜AUFから構成される。具体的に、図36に示すように、この積層膜がレジスト膜FR2に形成された開口部OP2内およびレジスト膜FR2上に形成される。このとき、本実施の形態3では、例えば、アルミニウム(Al)膜ALFとAlGaN層AGNLとの間に挿入されている第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように第1モリブデン(Mo)膜MF1を形成する。また、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係を満たすように、それぞれの膜厚が調整される。 Then, as shown in FIG. 36, a laminated film is formed on the substrate 1S on which the patterned resist film FR2 is formed by using, for example, an electron beam evaporation method. Specifically, the laminated film is formed on the first molybdenum (Mo) film MF1, the aluminum (Al) film ALF formed on the first molybdenum (Mo) film MF1, and the aluminum (Al) film ALF. A second molybdenum (Mo) film MF2 and a gold (Au) film AUF formed on the second molybdenum (Mo) film MF2 are formed. Specifically, as shown in FIG. 36, the laminated film is formed in the opening OP2 formed in the resist film FR2 and on the resist film FR2. At this time, in the third embodiment, for example, 2 nm ≦ X where the film thickness of the first molybdenum (Mo) film MF1 inserted between the aluminum (Al) film ALF and the AlGaN layer AGNL is X nm. The first molybdenum (Mo) film MF1 is formed to satisfy the relationship of ≦ 10 nm. In addition, when the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (nm), the respective relationships satisfy Y ≦ Z ≦ 2Y. The film thickness is adjusted.
 続いて、図37に示すように、レジスト膜FR2を除去する。レジスト膜FR2を除去する際、レジスト膜FR2上に形成されている積層膜もリフトオフによって除去される。したがって、レジスト膜FR2を除去した後は、レジスト膜FR2の開口部OP2に形成されていた積層膜だけが残存し、これによって、ドレイン電極形成領域に、積層膜からなる積層体LAB1を形成することができるとともに、ソース電極形成領域に、積層膜からなる積層体LAB2を形成することができる。 Subsequently, as shown in FIG. 37, the resist film FR2 is removed. When the resist film FR2 is removed, the laminated film formed on the resist film FR2 is also removed by lift-off. Therefore, after removing the resist film FR2, only the laminated film formed in the opening OP2 of the resist film FR2 remains, thereby forming the laminated body LAB1 made of the laminated film in the drain electrode formation region. As a result, the stacked body LAB2 made of a stacked film can be formed in the source electrode formation region.
 その後、例えば、窒素雰囲気中で、かつ、650℃~850℃の温度で、1分~10分間の加熱処理を、積層体LABを形成した基板1Sに対して実施する。この加熱処理は、例えば、RTA(Rapid Thermal Anneal)や熱処理炉によるファーネスアニールによって実施することができる。なお、上述した熱処理は、650℃~850℃の温度範囲で実施されるが、望ましくは、700℃~800℃の温度範囲で実施する。低い温度では、表面モホロジーは良くなるのに対し、コンタクト抵抗は増加する傾向にある一方、高い温度では、表面モホロジーは悪化するのに対し、コンタクト抵抗は低下する傾向がある。このため、上述した加熱処理の温度は、表面モホロジーの改善とコンタクト抵抗の低減のバランスを考慮して決定される。例えば、表面モホロジーの改善を優先させる場合には、上述した温度範囲のうち比較的低温領域で実施されるのに対し、コンタクト抵抗の低減を優先させる場合には、上述した温度範囲のうち比較的高温領域で実施することが考えられる。 Thereafter, for example, heat treatment is performed for 1 minute to 10 minutes at a temperature of 650 ° C. to 850 ° C. in a nitrogen atmosphere on the substrate 1S on which the laminate LAB is formed. This heat treatment can be performed by, for example, furnace annealing using RTA (Rapid Thermal Anneal) or a heat treatment furnace. The heat treatment described above is performed in a temperature range of 650 ° C. to 850 ° C., preferably in a temperature range of 700 ° C. to 800 ° C. At lower temperatures, the surface morphology tends to be better, while the contact resistance tends to increase, while at higher temperatures, the surface morphology tends to deteriorate while the contact resistance tends to decrease. For this reason, the temperature of the heat treatment described above is determined in consideration of the balance between the improvement of the surface morphology and the reduction of the contact resistance. For example, in the case where priority is given to improvement in surface morphology, it is carried out in a relatively low temperature region of the above-mentioned temperature range, while in the case where priority is given to reducing contact resistance, the above-mentioned temperature range is relatively relatively It is conceivable to carry out in a high temperature region.
 以上のような加熱処理を施すことにより、積層体LABを構成する各膜を構成するアルミニウム(Al)、モリブデン(Mo)および金(Au)が相互拡散して、図38に示すオーミック電極OEが形成される。つまり、オーミック電極OEから構成されるソース電極SEおよびドレイン電極DEを形成することができる。このとき、オーミック電極OEとAlGaN層AGNLとの界面において、本実施の形態3では、アルミニウム(Al)膜ALFの膜厚をY(nm)とし、金(Au)膜AUFの膜厚をZ(nm)とした場合、Y≦Z≦2Yの関係が満たされている。このため、アルミニウム(Al)膜から、オーミック電極OEとAlGaN層AGNLとの界面に拡散するアルミニウム原子の原子%が、オーミック電極OEとAlGaN層AGNLとの界面に拡散する金原子の原子%よりも大きくなる場合が多くなると考えられる。このとき、アルミニウム原子との接触の影響が大きくなる結果、AlGaN層AGNLとオーミック電極OEとの接触がオーミック接触となり、コンタクト抵抗を低減することができる。すなわち、本実施の形態3では、Au/Al膜厚比が1~2の範囲内にあるように構成している。そして、本実施の形態3では、このように構成された積層体LABを、例えば、650℃~850℃の高温で熱処理することにより、表面モホロジーの改善とコンタクト抵抗の低減とを両立したソース電極SE(オーミック電極OE)およびドレイン電極DE(オーミック電極OE)を、AlGaN層AGNL上に形成することができる。 By performing the heat treatment as described above, aluminum (Al), molybdenum (Mo) and gold (Au) constituting the respective films constituting the stacked body LAB mutually diffuse, and the ohmic electrode OE shown in FIG. It is formed. That is, the source electrode SE and the drain electrode DE configured of the ohmic electrode OE can be formed. At this time, in the third embodiment, the film thickness of the aluminum (Al) film ALF is Y (nm) and the film thickness of the gold (Au) film AUF is Z (A) at the interface between the ohmic electrode OE and the AlGaN layer AGNL. In the case of nm), the relationship of Y ≦ Z ≦ 2Y is satisfied. Therefore, the atomic percent of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is more than the atomic percent of gold atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL It is thought that there will be many cases of becoming larger. At this time, as a result of the influence of the contact with the aluminum atoms becoming large, the contact between the AlGaN layer AGNL and the ohmic electrode OE becomes an ohmic contact, and the contact resistance can be reduced. That is, in the third embodiment, the Au / Al film thickness ratio is configured to be in the range of 1 to 2. Then, in the third embodiment, the stacked body LAB configured as described above is heat-treated at a high temperature of, for example, 650 ° C. to 850 ° C., thereby achieving a source electrode having both improvement in surface morphology and reduction in contact resistance. SE (ohmic electrode OE) and drain electrode DE (ohmic electrode OE) can be formed on the AlGaN layer AGNL.
 また、本実施の形態3では、第1モリブデン(Mo)膜MF1の膜厚をXnmとした場合、2nm≦X≦10nmの関係を満たすように積層体LABを構成している。これにより、本実施の形態3では、前記実施の形態1の特徴と、前記実施の形態2の特徴の相乗効果によって、さらなるソース電極SEおよびドレイン電極DEの表面モホロジーの改善とコンタクト抵抗の低減とを図ることができる。この場合、オーミック電極OE(ソース電極SEおよびドレイン電極DE)とAlGaN層AGNLとの界面において、アルミニウム(Al)膜から、オーミック電極OEとAlGaN層AGNLとの界面に拡散するアルミニウム原子の原子%が、オーミック電極OEとAlGaN層AGNLとの界面に拡散する金原子の原子%よりも大きくなる場合が多くなり、かつ、モリブデン原子の原子%よりも大きくなる場合が多くなると考えられる。すなわち、半導体層とオーミック電極OEとの界面において、アルミニウム、モリブデン、および、金のうち、アルミニウムの原子%が最も大きくなる場合が多くなるものと考えられる。 In the third embodiment, when the film thickness of the first molybdenum (Mo) film MF1 is X nm, the stacked body LAB is configured to satisfy the relationship of 2 nm ≦ X ≦ 10 nm. Thus, in the third embodiment, the surface morphology of the source electrode SE and the drain electrode DE is further improved and the contact resistance is reduced by the synergistic effect of the features of the first embodiment and the features of the second embodiment. Can be In this case, at the interface between the ohmic electrode OE (the source electrode SE and the drain electrode DE) and the AlGaN layer AGNL, atomic% of aluminum atoms diffused from the aluminum (Al) film to the interface between the ohmic electrode OE and the AlGaN layer AGNL is It is considered that the atomic ratio of gold atoms diffused to the interface between the ohmic electrode OE and the AlGaN layer AGNL increases in many cases, and the atomic ratio of molybdenum atoms increases in many cases. That is, it is considered that, at the interface between the semiconductor layer and the ohmic electrode OE, the atomic% of aluminum among aluminum, molybdenum, and gold is most often increased.
 次に、図39に示すように、AlGaN層AGNLの表面に、例えば、窒化シリコン膜からなる表面保護膜PRFを形成する。その後、図40に示すように、基板1S上にレジスト膜FR3を塗布し、このレジスト膜FR3に対して露光・現像処理を施してパターニングする。レジスト膜FR3のパターニングは、素子形成領域をレジスト膜FR3で覆う一方、素子形成領域間の絶縁形成領域を開口するように行われる。そして、パターニングしたレジスト膜FR3をマスクにしたイオン注入法により、例えば、ボロン(ホウ素)、窒素、または、ヘリウムを導入して絶縁領域を形成する。 Next, as shown in FIG. 39, a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the AlGaN layer AGNL. Thereafter, as shown in FIG. 40, a resist film FR3 is coated on the substrate 1S, and the resist film FR3 is exposed and developed to be patterned. The patterning of the resist film FR3 is performed so as to cover the element formation region with the resist film FR3 and to open the insulation formation region between the element formation regions. Then, for example, boron (boron), nitrogen, or helium is introduced by an ion implantation method using the patterned resist film FR3 as a mask to form an insulating region.
 続いて、図41に示すように、パターニングしたレジスト膜FR3を除去した後、新たなレジスト膜FR4を基板1S上に塗布する。そして、このレジスト膜FR4に対して露光・現像処理を施してパターニングする。レジスト膜FR4のパターニングは、ゲート電極形成領域に開口部OP3を形成するように行なわれる。その後、パターニングしたレジスト膜FR4をマスクにしたエッチングにより、開口部OP3から露出する表面保護膜PRFを除去する。この結果、開口部OP3の底部にAlGaN層AGNLが露出する。 Subsequently, as shown in FIG. 41, after removing the patterned resist film FR3, a new resist film FR4 is coated on the substrate 1S. Then, the resist film FR4 is exposed and developed to perform patterning. The patterning of the resist film FR4 is performed to form an opening OP3 in the gate electrode formation region. Thereafter, the surface protective film PRF exposed from the opening OP3 is removed by etching using the patterned resist film FR4 as a mask. As a result, the AlGaN layer AGNL is exposed at the bottom of the opening OP3.
 次に、図42に示すように、例えば、電子線蒸着法などを使用することにより、パターニングしたレジスト膜FR4を形成した基板1S上に積層膜を形成する。具体的に、積層膜は、ニッケル膜NIFと金膜AUF2から構成される。図42に示すように、この積層膜がレジスト膜FR4に形成された開口部OP3内およびレジスト膜FR4上に形成される。 Next, as shown in FIG. 42, for example, a laminated film is formed on the substrate 1S on which the patterned resist film FR4 is formed by using an electron beam evaporation method or the like. Specifically, the laminated film is composed of a nickel film NIF and a gold film AUF2. As shown in FIG. 42, the laminated film is formed in the opening OP3 formed in the resist film FR4 and on the resist film FR4.
 続いて、レジスト膜FR4を除去する。レジスト膜FR4を除去する際、レジスト膜FR4上に形成されている積層膜もリフトオフによって除去される。したがって、レジスト膜FR4を除去した後は、レジスト膜FR4の開口部OP3に形成されていた積層膜だけが残存し、これによって、図31に示すニッケル膜NIFと金膜AUFからなるゲート電極GEを形成することができる。以上のようにして、本実施の形態3におけるHEMTを製造することができる。 Subsequently, the resist film FR4 is removed. When removing the resist film FR4, the laminated film formed on the resist film FR4 is also removed by lift-off. Therefore, after the resist film FR4 is removed, only the laminated film formed in the opening OP3 of the resist film FR4 remains, whereby the gate electrode GE formed of the nickel film NIF and the gold film AUF shown in FIG. It can be formed. As described above, the HEMT according to the third embodiment can be manufactured.
 (実施の形態4)
 <電界効果トランジスタの構成>
 本実施の形態4では、前記実施の形態1や前記実施の形態2で説明したオーミック電極OEを絶縁ゲート型電界効果トランジスタ(MISFET(Metal Insulator Semiconductor Field Effect Transistor))に利用する例について説明する。
Embodiment 4
<Configuration of Field Effect Transistor>
In the fourth embodiment, an example in which the ohmic electrode OE described in the first embodiment and the second embodiment is used for an insulated gate field effect transistor (MISFET (Metal Insulator Semiconductor Field Effect Transistor)) will be described.
 図43は、本実施の形態4におけるMISFETのデバイス構造を示す断面図である。図43に示すように、例えば、サファイア基板、SiC(炭化シリコン)基板、GaN基板、あるいは、シリコン(Si)基板から構成される基板1S上に、GaN層からなるバッファ層BUFが形成されている。そして、このバッファ層BUF上に、n型不純物が導入されたn型GaN層nGNLが形成されている。 FIG. 43 is a cross-sectional view showing the device structure of the MISFET in the fourth embodiment. As shown in FIG. 43, for example, a buffer layer BUF consisting of a GaN layer is formed on a substrate 1S composed of a sapphire substrate, a SiC (silicon carbide) substrate, a GaN substrate, or a silicon (Si) substrate. . Then, over the buffer layer BUF, an n-type GaN layer nGNL into which an n-type impurity is introduced is formed.
 次に、n型GaN層nGNL上には、互いに離間して配置されたソース電極SEとドレイン電極DEが形成されている。このソース電極SEおよびドレイン電極DEは、オーミック電極OEから構成されており、このオーミック電極OEは、前記実施の形態1や前記実施の形態2で説明した特徴を有している。したがって、本実施の形態4におけるMISFETによれば、本願発明の技術的思想が適用されたオーミック電極OEをソース電極SEやドレイン電極DEに使用しているので、ソース電極SEやドレイン電極DEにおける表面モホロジーの改善とコンタクト抵抗の低減とを図ることができる。具体的に、ソース電極SEおよびドレイン電極DEは、アルミニウム、モリブデン、および、金が相互拡散したオーミック電極OEから形成されており、特に、オーミック電極OEとn型GaN層nGNLとの界面において、アルミニウム原子の原子%は、モリブデン原子の原子%や金原子の原子%よりも大きくなっている場合が多いと考えられる。 Next, on the n-type GaN layer nGNL, the source electrode SE and the drain electrode DE which are disposed apart from each other are formed. The source electrode SE and the drain electrode DE are formed of an ohmic electrode OE, and the ohmic electrode OE has the features described in the first embodiment and the second embodiment. Therefore, according to the MISFET in the fourth embodiment, since the ohmic electrode OE to which the technical idea of the present invention is applied is used for the source electrode SE or the drain electrode DE, the surface of the source electrode SE or the drain electrode DE It is possible to improve the morphology and reduce the contact resistance. Specifically, the source electrode SE and the drain electrode DE are formed of an ohmic electrode OE in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between the ohmic electrode OE and the n-type GaN layer nGNL, aluminum The atomic% of atoms is considered to be larger than the atomic% of molybdenum atoms or the atomic% of gold atoms in many cases.
 そして、ソース電極SEとドレイン電極DEとの間のn型GaN層nGNL上には、ゲート絶縁膜GOXを介して、ゲート電極GEが形成されている。ゲート絶縁膜GOXは、例えば、酸化アルミニウム膜や酸化シリコン膜などから形成されている。また、ゲート電極GEは、ポリシリコン膜や金属膜から構成されている。さらに、本実施の形態4におけるMISFETでは、n型GaN層nGNLの表面に、例えば、窒化シリコン膜からなる表面保護膜PRFが形成されている。 Then, over the n-type GaN layer nGNL between the source electrode SE and the drain electrode DE, the gate electrode GE is formed via the gate insulating film GOX. The gate insulating film GOX is formed of, for example, an aluminum oxide film or a silicon oxide film. The gate electrode GE is formed of a polysilicon film or a metal film. Further, in the MISFET in the fourth embodiment, a surface protection film PRF made of, for example, a silicon nitride film is formed on the surface of the n-type GaN layer nGNL.
 <電界効果トランジスタの動作>
 本実施の形態4におけるMISFETは上記のように構成されており、以下に、その動作について説明する。特に、本実施の形態4では、ノーマリオン型のMISFETを例に挙げて、その動作について説明する。
<Operation of Field Effect Transistor>
The MISFET in the fourth embodiment is configured as described above, and the operation thereof will be described below. In particular, in the fourth embodiment, the operation of the normally-on type MISFET will be described as an example.
 図44は、ゲート電極GEにしきい値電圧以下の負電圧が印加されてMISFETがオフしている状態を示す模式図である。図44に示すように、ゲート電極GEに負電圧を印加した場合、ゲート電極GE直下のn型GaN層nGNLに形成されている空乏層DPLが延びる。この結果、n型GaN層nGNLの底面にまで空乏層DPLが達する。この空乏層DPLは絶縁領域として機能することから、ソース電極SEとドレイン電極DEとの電気的な接続は、空乏層DPLによって遮断される。このため、ゲート電極GEにしきい値電圧以下の負電圧が印加された場合、MISFETはオフする。 FIG. 44 is a schematic view showing a state in which the MISFET is turned off when a negative voltage lower than the threshold voltage is applied to the gate electrode GE. As shown in FIG. 44, when a negative voltage is applied to the gate electrode GE, the depletion layer DPL formed in the n-type GaN layer nGNL immediately below the gate electrode GE extends. As a result, depletion layer DPL reaches the bottom of n-type GaN layer nGNL. Since this depletion layer DPL functions as an insulating region, the electrical connection between the source electrode SE and the drain electrode DE is interrupted by the depletion layer DPL. Therefore, when a negative voltage lower than the threshold voltage is applied to the gate electrode GE, the MISFET turns off.
 続いて、図45は、ゲート電極に0Vの電圧が印加されてMISFETがオンしている状態を示す模式図である。図45に示すように、ゲート電極GEに0Vが印加される場合、ゲート電極GEに負電圧を印加する場合よりも空乏層DPLが延びないため、図45に示すように、空乏層DPLの直下にn型GaN層nGNLからなるチャネルが形成される。これにより、ソース電極SEとドレイン電極DEとの間が電気的に接続される。すなわち、ソース電極SEからドレイン電極DEに向って電子が流れる。言い換えれば、ドレイン電極DEからソース電極SEに向って電流が流れる。このため、ゲート電極GEに0Vが印加された場合、MISFETはオンする。以上のようにして、本実施の形態4におけるMISFETでは、ゲート電極GEに印加する電圧を制御することにより、MISFETのオン/オフ動作を実現できることがわかる。 Subsequently, FIG. 45 is a schematic view showing a state in which a voltage of 0 V is applied to the gate electrode and the MISFET is turned on. As shown in FIG. 45, when 0 V is applied to the gate electrode GE, the depletion layer DPL does not extend more than when a negative voltage is applied to the gate electrode GE, as shown in FIG. A channel consisting of the n-type GaN layer nGNL is formed in Thereby, the source electrode SE and the drain electrode DE are electrically connected. That is, electrons flow from the source electrode SE toward the drain electrode DE. In other words, a current flows from the drain electrode DE toward the source electrode SE. Therefore, when 0 V is applied to the gate electrode GE, the MISFET is turned on. As described above, in the MISFET according to the fourth embodiment, it is understood that the on / off operation of the MISFET can be realized by controlling the voltage applied to the gate electrode GE.
 (実施の形態5)
 <青色発光ダイオードの構成>
 本実施の形態5では、前記実施の形態1や前記実施の形態2で説明したオーミック電極OEを青色発光ダイオードに利用する例について説明する。
Fifth Embodiment
<Configuration of blue light emitting diode>
In the fifth embodiment, an example in which the ohmic electrode OE described in the first embodiment or the second embodiment is used for a blue light emitting diode will be described.
 図46は、本実施の形態5における青色発光ダイオードのデバイス構造を示す断面図である。図46に示すように、サファイア基板SS上に、例えば、GaN層からなるバッファ層BUFが形成されており、このバッファ層BUF上にn型GaN層nGNLが形成されている。そして、このn型GaN層nGNL上には、n型GaN層nGNLとオーミック接触するn型オーミック電極OE(n)が形成されている。また、n型GaN層nGNL上の別領域にはn型AlGaN層nAGNLが形成され、このn型AlGaN層nAGNL上に、亜鉛(Zn)をドープしたInGaN層IGNLが形成されている。そして、InGaN層IGNL上にp型AlGaN層pAGNLが形成されており、このp型AlGaN層pAGNL上にp型GaN層pGNLが形成されている。さらに、p型GaN層pGNL上には、p型GaN層pGNLとオーミック接触するp型オーミック電極OE(p)が形成されている。 FIG. 46 is a cross sectional view showing a device structure of a blue light emitting diode in the fifth embodiment. As shown in FIG. 46, for example, a buffer layer BUF made of a GaN layer is formed on a sapphire substrate SS, and an n-type GaN layer nGNL is formed on the buffer layer BUF. An n-type ohmic electrode OE (n) is formed on the n-type GaN layer nGNL in ohmic contact with the n-type GaN layer nGNL. Further, an n-type AlGaN layer nAGNL is formed in another region on the n-type GaN layer nGNL, and an InGaN layer IGNL doped with zinc (Zn) is formed on the n-type AlGaN layer nAGNL. Then, a p-type AlGaN layer pAGNL is formed on the InGaN layer IGNL, and a p-type GaN layer pGNL is formed on the p-type AlGaN layer pAGNL. Furthermore, on the p-type GaN layer pGNL, a p-type ohmic electrode OE (p) is formed in ohmic contact with the p-type GaN layer pGNL.
 上述した構成を有する青色発光ダイオードは、p型GaN層pGNLとn型GaN層nGNLで、p型AlGaN層pAGNL/InGaN層IGNL/n型AlGaN層nAGNLからなる2重ヘテロ構造を挟んだ構成をしており、極めて高輝度な青色発光ダイオードとなっている。 The blue light emitting diode having the above-described configuration has a configuration in which a double hetero structure including the p-type GaN layer pGNL and the n-type GaN layer nGNL and the p-type AlGaN layer pAGNL / InGaN layer IGNL / n-type AlGaN layer nAGNL is sandwiched. It is a blue light emitting diode with extremely high brightness.
 ここで、n型オーミック電極OE(n)は、前記実施の形態1や前記実施の形態2で説明した特徴を有している。したがって、本実施の形態5における青色発光ダイオードによれば、本願発明の技術的思想が適用されたn型オーミック電極OE(n)を使用しているので、n型オーミック電極OE(n)における表面モホロジーの改善とコンタクト抵抗の低減とを図ることができる。具体的に、n型オーミック電極OE(n)は、アルミニウム、モリブデン、および、金が相互拡散した電極から形成されており、特に、オーミック電極OE(n)とn型GaN層nGNLとの界面において、アルミニウム原子の原子%は、モリブデン原子の原子%や金原子の原子%よりも大きくなっている場合が多いと考えられる。 Here, the n-type ohmic electrode OE (n) has the features described in the first embodiment and the second embodiment. Therefore, according to the blue light emitting diode in the fifth embodiment, since the n-type ohmic electrode OE (n) to which the technical idea of the present invention is applied is used, the surface of the n-type ohmic electrode OE (n) It is possible to improve the morphology and reduce the contact resistance. Specifically, n-type ohmic electrode OE (n) is formed of an electrode in which aluminum, molybdenum and gold interdiffuse, and in particular, at the interface between ohmic electrode OE (n) and n-type GaN layer nGNL The atomic percent of the aluminum atom is considered to be larger than the atomic percent of the molybdenum atom or the atomic percent of the gold atom in many cases.
 <青色発光ダイオードの動作>
 本実施の形態5における青色発光ダイオードは上記のように構成されており、以下に、その動作について説明する。
<Operation of blue light emitting diode>
The blue light emitting diode in the fifth embodiment is configured as described above, and the operation thereof will be described below.
 図47は、青色発光ダイオードがオフしている際のダブル・ヘテロ構造のバンド構造を示す図である。図47において、InGaN層を両側からp型AlGaN層とn型AlGaN層で挟んだ構造がダブル・ヘテロ構造である。図47に示すように、青色発光ダイオードがオフしている際には、それぞれの層のフェルミ準位は一致している。 FIG. 47 is a diagram showing a band structure of the double hetero structure when the blue light emitting diode is off. In FIG. 47, the structure in which the InGaN layer is sandwiched between the p-type AlGaN layer and the n-type AlGaN layer from both sides is a double hetero structure. As shown in FIG. 47, when the blue light emitting diode is off, the Fermi levels of the respective layers coincide with each other.
 次に、図48は、青色発光ダイオードがオンしている際のダブル・ヘテロ構造のバンド構造を示す図である。図48に示すように、青色発光ダイオードに順方向電圧(p型AlGaN層に正電圧を印加し、n型AlGaN層に負電圧を印加する)を印加する。すると、電子は、バンドギャップの大きなn型AlGaN層からバンドギャップの小さなInGaN層に高密度で注入される。同様に、正孔は、バンドギャップの大きなp型AlGaN層からバンドギャップの小さなInGaN層に高密度で注入される。この結果、InGaN層においては、電子および正孔の密度が熱平衡状態の密度よりも極めて高くなり、再結合の確率が大きくなる。そして、InGaN層において、伝導帯に存在する電子と、価電子帯に存在する正孔が再結合して、バンドギャップに相当するエネルギーを有する光(hν)が射出される。以上のようにして、本実施の形態5における青色発光ダイオードが動作することになる。 Next, FIG. 48 is a diagram showing a band structure of the double hetero structure when the blue light emitting diode is on. As shown in FIG. 48, forward voltage (a positive voltage is applied to the p-type AlGaN layer and a negative voltage is applied to the n-type AlGaN layer) is applied to the blue light emitting diode. Then, electrons are injected at high density from the large band gap n-type AlGaN layer to the small band gap InGaN layer. Similarly, holes are injected at high density from the large band gap p-type AlGaN layer to the small band gap InGaN layer. As a result, in the InGaN layer, the density of electrons and holes is much higher than the density in the thermal equilibrium state, and the probability of recombination is increased. Then, in the InGaN layer, the electrons present in the conduction band and the holes present in the valence band recombine to emit light (hv) having energy corresponding to the band gap. As described above, the blue light emitting diode in the fifth embodiment operates.
 以上、本発明者によってなされた発明をその実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 As mentioned above, although the invention made by the present inventor was concretely explained based on the embodiment, the present invention is not limited to the embodiment, and can be variously changed in the range which does not deviate from the summary. Needless to say.
 前記実施の形態では、窒化物半導体とオーミック接触するオーミック電極に本願発明の技術的思想を適用する例について説明し、特に、窒化物半導体の一例として、ガリウムを含む窒化物半導体を挙げて説明している。そして、ガリウムを含む窒化物半導体の具体的な例として、AlGaNやGaNを例に挙げて説明したが、本願発明の技術的思想は、これに限らず、例えば、InGaNやAlInGaNなどの窒化物半導体とオーミック接触するオーミック電極にも幅広く適用することができる。 In the embodiment, an example in which the technical idea of the present invention is applied to an ohmic electrode in ohmic contact with a nitride semiconductor is described, and in particular, a nitride semiconductor containing gallium is described as an example of the nitride semiconductor. ing. And although AlGaN and GaN were mentioned as an example and explained as a concrete example of a nitride semiconductor containing gallium, a technical idea of the present invention is not limited to this, for example, nitride semiconductors such as InGaN and AlInGaN. It can be widely applied to ohmic electrodes in ohmic contact with
 本発明は、半導体装置を製造する製造業に幅広く利用することができる。 The present invention can be widely used in the manufacturing industry that manufactures semiconductor devices.
 1S 基板
 AGNL AlGaN層
 ALF アルミニウム膜
 AUF 金膜
 AUF2 金膜
 BUF バッファ層
 DE ドレイン電極
 DPL 空乏層
 E 伝導帯
 E 価電子帯
 FR1 レジスト膜
 FR2 レジスト膜
 FR3 レジスト膜
 FR4 レジスト膜
 GE ゲート電極
 GNL GaN層
 GOX ゲート絶縁膜
 HMF 高融点金属膜
 IGNL InGaN層
 LAB 積層体
 LAB1 積層体
 LAB2 積層体
 MF1 第1モリブデン膜
 MF2 第2モリブデン膜
 nAGNL n型AlGaN層
 nGNL n型GaN層
 NIF ニッケル膜
 OE オーミック電極
 OE(n) n型オーミック電極
 OE(p) p型オーミック電極
 OP1 開口部
 OP2 開口部
 OP3 開口部
 pAGNL p型AlGaN層
 pGNL p型GaN層
 PRF 表面保護膜
 SE ソース電極
 SS サファイア基板
 TAF 合金膜
 εFM フェルミ準位
 εFS フェルミ準位
 εFS2 フェルミ準位
 Φ 仕事関数
 Φ 仕事関数
1S substrate AGNL AlGaN layer ALF aluminum film AUF gold film AUF2 gold film BUF buffer layer DE drain electrode DPL depletion layer E c conduction band E v valence band FR1 resist film FR2 resist film FR3 resist film FR4 resist film GE gate electrode GNL GaN layer GOX gate insulating film HMF refractory metal film IGNL InGaN layer LAB laminated body LAB1 laminated body LAB2 laminated body MF1 first molybdenum film MF2 second molybdenum film nAGNL n-type AlGaN layer nGNL n-type GaN layer NIF nickel film OE ohmic electrode OE (n ) N-type ohmic electrode OE (p) p-type ohmic electrode OP1 opening OP2 opening OP3 opening pAGNL p-type AlGaN layer pGNL p-type GaN layer PRF surface protection film SE source electrode S sapphire substrate TAF alloy film ε FM Fermi level ε FS Fermi level ε FS2 Fermi level Φ m work function Φ s work function

Claims (23)

  1.  (a)窒化物半導体層上に積層体を形成する工程と、
     (b)前記(a)工程後、前記積層体に対して、熱処理を施すことにより、電極を形成する工程と、を備え、
     前記積層体は、
     前記窒化物半導体層上に形成された第1モリブデン膜と、
     前記第1モリブデン膜上に形成されたアルミニウム膜と、
     前記アルミニウム膜上に形成された第2モリブデン膜と、
     前記第2モリブデン膜上に形成された金膜と、を有し、
     前記第1モリブデン膜の膜厚をXとした場合、2nm≦X≦10nmの関係を満たしている半導体装置の製造方法。
    (A) forming a laminate on the nitride semiconductor layer;
    (B) forming an electrode by performing heat treatment on the laminate after the step (a);
    The laminate is
    A first molybdenum film formed on the nitride semiconductor layer;
    An aluminum film formed on the first molybdenum film;
    A second molybdenum film formed on the aluminum film;
    A gold film formed on the second molybdenum film;
    A method of manufacturing a semiconductor device satisfying the relationship of 2 nm ≦ X ≦ 10 nm, where X is a thickness of the first molybdenum film.
  2.  請求項1に記載の半導体装置の製造方法であって、
     前記アルミニウム膜の膜厚をYとし、前記金膜の膜厚をZとした場合、Y≦Z≦2Yの関係を満たしている半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    A method of manufacturing a semiconductor device satisfying the relationship of Y ≦ Z ≦ 2Y, where Y is a film thickness of the aluminum film and Z is a film thickness of the gold film.
  3.  請求項1に記載の半導体装置の製造方法であって、
     前記(a)工程は、
     (a1)前記窒化物半導体層上に、開口部を有するレジスト膜を形成する工程と、
     (a2)前記開口部内を含む前記レジスト膜上に前記第1モリブデン膜を形成する工程と、
     (a3)前記第1モリブデン膜上に前記アルミニウム膜を形成する工程と、
     (a4)前記アルミニウム膜上に第2モリブデン膜を形成する工程と、
     (a5)前記第2モリブデン膜上に金膜を形成する工程と、
     (a6)前記(a5)工程後、前記レジスト膜を除去することにより、前記レジスト膜上に形成されている前記第1モリブデン膜、前記アルミニウム膜、前記第2モリブデン膜および前記金膜をリフトオフして、前記積層体を形成する工程と、を有する半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    In the step (a),
    (A1) forming a resist film having an opening on the nitride semiconductor layer;
    (A2) forming the first molybdenum film on the resist film including the inside of the opening;
    (A3) forming the aluminum film on the first molybdenum film;
    (A4) forming a second molybdenum film on the aluminum film;
    (A5) forming a gold film on the second molybdenum film;
    (A6) After the step (a5), the resist film is removed to lift off the first molybdenum film, the aluminum film, the second molybdenum film, and the gold film formed on the resist film. And a step of forming the stacked body.
  4.  請求項1に記載の半導体装置の製造方法であって、
     前記(a)工程の前に、基板上に前記窒化物半導体層を形成する工程をさらに有し、
     前記基板は、サファイア基板、炭化シリコン基板、あるいは、シリコン基板のいずれかから形成されている半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    The method further includes the step of forming the nitride semiconductor layer on a substrate before the step (a),
    The method of manufacturing a semiconductor device, wherein the substrate is formed of any of a sapphire substrate, a silicon carbide substrate, or a silicon substrate.
  5.  請求項1に記載の半導体装置の製造方法であって、
     前記窒化物半導体層は、ガリウムを含む窒化物半導体層である半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    The method of manufacturing a semiconductor device, wherein the nitride semiconductor layer is a nitride semiconductor layer containing gallium.
  6.  請求項1に記載の半導体装置の製造方法であって、
     前記窒化物半導体層は、GaN層、あるいは、AlGaN層である半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    The method for manufacturing a semiconductor device, wherein the nitride semiconductor layer is a GaN layer or an AlGaN layer.
  7.  請求項1に記載の半導体装置の製造方法であって、
     前記(b)工程で実施される熱処理の温度は、650℃以上850℃以下である半導体装置の製造方法。
    The method of manufacturing a semiconductor device according to claim 1,
    A method of manufacturing a semiconductor device, wherein the temperature of the heat treatment performed in the step (b) is 650 ° C. or more and 850 ° C. or less.
  8.  請求項7に記載の半導体装置の製造方法であって、
     前記(b)工程で実施される熱処理の温度は、700℃以上800℃以下である半導体装置の製造方法。
    8. A method of manufacturing a semiconductor device according to claim 7, wherein
    A method of manufacturing a semiconductor device, wherein the temperature of the heat treatment performed in the step (b) is 700 ° C. or more and 800 ° C. or less.
  9.  請求項1~8のいずれか1項に記載の半導体装置の製造方法であって、
     前記電極は、前記熱処理を施すことにより、前記窒化物半導体層とオーミック接触する半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to any one of claims 1 to 8, wherein
    A method of manufacturing a semiconductor device, wherein the electrode is in ohmic contact with the nitride semiconductor layer by performing the heat treatment.
  10.  (a)窒化物半導体層上に積層体を形成する工程と、
     (b)前記(a)工程後、前記積層体に対して、熱処理を施すことにより、電極を形成する工程と、を備え、
     前記積層体は、
     前記窒化物半導体層上に形成された第1モリブデン膜と、
     前記第1モリブデン膜上に形成されたアルミニウム膜と、
     前記アルミニウム膜上に形成された第2モリブデン膜と、
     前記第2モリブデン膜上に形成された金膜と、を有し、
     前記アルミニウム膜の膜厚をYとし、前記金膜の膜厚をZとした場合、Y≦Z≦2Yの関係を満たしている半導体装置の製造方法。
    (A) forming a laminate on the nitride semiconductor layer;
    (B) forming an electrode by performing heat treatment on the laminate after the step (a);
    The laminate is
    A first molybdenum film formed on the nitride semiconductor layer;
    An aluminum film formed on the first molybdenum film;
    A second molybdenum film formed on the aluminum film;
    A gold film formed on the second molybdenum film;
    A method of manufacturing a semiconductor device satisfying the relationship of Y ≦ Z ≦ 2Y, where Y is a film thickness of the aluminum film and Z is a film thickness of the gold film.
  11.  請求項10に記載の半導体装置の製造方法であって、
     前記(a)工程は、
     (a1)前記窒化物半導体層上に、開口部を有するレジスト膜を形成する工程と、
     (a2)前記開口部内を含む前記レジスト膜上に前記第1モリブデン膜を形成する工程と、
     (a3)前記第1モリブデン膜上に前記アルミニウム膜を形成する工程と、
     (a4)前記アルミニウム膜上に第2モリブデン膜を形成する工程と、
     (a5)前記第2モリブデン膜上に金膜を形成する工程と、
     (a6)前記(a5)工程後、前記レジスト膜を除去することにより、前記レジスト膜上に形成されている前記第1モリブデン膜、前記アルミニウム膜、前記第2モリブデン膜および前記金膜をリフトオフして、前記積層体を形成する工程と、を有する半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 10, wherein
    In the step (a),
    (A1) forming a resist film having an opening on the nitride semiconductor layer;
    (A2) forming the first molybdenum film on the resist film including the inside of the opening;
    (A3) forming the aluminum film on the first molybdenum film;
    (A4) forming a second molybdenum film on the aluminum film;
    (A5) forming a gold film on the second molybdenum film;
    (A6) After the step (a5), the resist film is removed to lift off the first molybdenum film, the aluminum film, the second molybdenum film, and the gold film formed on the resist film. And a step of forming the stacked body.
  12.  請求項10に記載の半導体装置の製造方法であって、
     前記(c)工程の前に、基板上に窒化物半導体層を形成する工程をさらに有し、
     前記基板は、サファイア基板、炭化シリコン基板、あるいは、シリコン基板のいずれかから形成されている半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 10, wherein
    Before the step (c), the method further includes the step of forming a nitride semiconductor layer on the substrate,
    The method of manufacturing a semiconductor device, wherein the substrate is formed of any of a sapphire substrate, a silicon carbide substrate, or a silicon substrate.
  13.  請求項10に記載の半導体装置の製造方法であって、
     前記窒化物半導体層は、ガリウムを含む窒化物半導体層である半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 10, wherein
    The method of manufacturing a semiconductor device, wherein the nitride semiconductor layer is a nitride semiconductor layer containing gallium.
  14.  請求項10に記載の半導体装置の製造方法であって、
     前記窒化物半導体層は、GaN層、あるいは、AlGaN層である半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 10, wherein
    The method for manufacturing a semiconductor device, wherein the nitride semiconductor layer is a GaN layer or an AlGaN layer.
  15.  請求項10に記載の半導体装置の製造方法であって、
     前記(b)工程で実施される熱処理の温度は、650℃以上850℃以下である半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 10, wherein
    A method of manufacturing a semiconductor device, wherein the temperature of the heat treatment performed in the step (b) is 650 ° C. or more and 850 ° C. or less.
  16.  請求項15に記載の半導体装置の製造方法であって、
     前記(b)工程で実施される熱処理の温度は、700℃以上800℃以下である半導体装置の製造方法。
    16. The method of manufacturing a semiconductor device according to claim 15.
    A method of manufacturing a semiconductor device, wherein the temperature of the heat treatment performed in the step (b) is 700 ° C. or more and 800 ° C. or less.
  17.  (a)窒化物半導体層と、
     (b)前記窒化物半導体層上に形成され、アルミニウム、モリブデン、および、金が相互拡散した構造を有する電極と、を備え、
     前記電極は、前記窒化物半導体層上に形成された積層体に対して熱処理を施すことにより形成され、
     前記積層体は、
     (c1)前記窒化物半導体層上に形成された第1モリブデン膜と、
     (c2)前記第1モリブデン膜上に形成されたアルミニウム膜と、
     (c3)前記アルミニウム膜上に形成された第2モリブデン膜と、
     (c4)前記第2モリブデン膜上に形成された金膜と、を有し、
     前記第1モリブデン膜の膜厚をXとした場合、2nm≦X≦10nmの関係を満たしている半導体装置。
    (A) a nitride semiconductor layer,
    (B) An electrode formed on the nitride semiconductor layer and having a structure in which aluminum, molybdenum and gold interdiffuse.
    The electrode is formed by performing a heat treatment on the laminate formed on the nitride semiconductor layer,
    The laminate is
    (C1) a first molybdenum film formed on the nitride semiconductor layer;
    (C2) an aluminum film formed on the first molybdenum film;
    (C3) a second molybdenum film formed on the aluminum film;
    (C4) a gold film formed on the second molybdenum film,
    A semiconductor device satisfying the relationship of 2 nm ≦ X ≦ 10 nm, where X is a thickness of the first molybdenum film.
  18.  請求項17に記載の半導体装置であって、
     前記アルミニウム膜の膜厚をYとし、前記金膜の膜厚をZとした場合、Y≦Z≦2Yの関係を満たしている半導体装置。
    The semiconductor device according to claim 17, wherein
    A semiconductor device satisfying the relationship of Y ≦ Z ≦ 2Y, where Y is a film thickness of the aluminum film and Z is a film thickness of the gold film.
  19.  (a)窒化物半導体層と、
     (b)前記窒化物半導体層上に形成され、アルミニウム、モリブデン、および、金が相互拡散した構造を有する電極と、を備え、
     前記電極は、前記窒化物半導体層上に形成された積層体に対して熱処理を施すことにより形成され、
     前記積層体は、
     (c1)前記窒化物半導体層上に形成された第1モリブデン膜と、
     (c2)前記第1モリブデン膜上に形成されたアルミニウム膜と、
     (c3)前記アルミニウム膜上に形成された第2モリブデン膜と、
     (c4)前記第2モリブデン膜上に形成された金膜と、を有し、
     前記アルミニウム膜の膜厚をYとし、前記金膜の膜厚をZとした場合、Y≦Z≦2Yの関係を満たしている半導体装置。
    (A) a nitride semiconductor layer,
    (B) An electrode formed on the nitride semiconductor layer and having a structure in which aluminum, molybdenum and gold interdiffuse.
    The electrode is formed by performing a heat treatment on the laminate formed on the nitride semiconductor layer,
    The laminate is
    (C1) a first molybdenum film formed on the nitride semiconductor layer;
    (C2) an aluminum film formed on the first molybdenum film;
    (C3) a second molybdenum film formed on the aluminum film;
    (C4) a gold film formed on the second molybdenum film,
    A semiconductor device satisfying the relationship of Y ≦ Z ≦ 2Y, where Y is a film thickness of the aluminum film and Z is a film thickness of the gold film.
  20.  請求項17~19のいずれか1項に記載の半導体装置であって、
     前記電極は、前記窒化物半導体層との間でオーミック接触している半導体装置。
    The semiconductor device according to any one of claims 17 to 19, wherein
    The semiconductor device in which the electrode is in ohmic contact with the nitride semiconductor layer.
  21.  (a)窒化物半導体層と、
     (b)前記窒化物半導体層上に形成され、アルミニウム、モリブデン、および、金が相互拡散した構造を有し、かつ、前記窒化物半導体層との間でオーミック接触をしているオーミック電極と、を備え、
     前記窒化物半導体層と前記オーミック電極との界面において、前記アルミニウムの原子%は、前記モリブデンの原子%よりも大きい半導体装置。
    (A) a nitride semiconductor layer,
    (B) An ohmic electrode formed on the nitride semiconductor layer, having a structure in which aluminum, molybdenum, and gold are mutually diffused, and in ohmic contact with the nitride semiconductor layer, Equipped with
    The semiconductor device, wherein the atomic percent of the aluminum is larger than the atomic percent of the molybdenum at the interface between the nitride semiconductor layer and the ohmic electrode.
  22.  請求項21に記載の半導体装置であって、
     前記窒化物半導体層と前記オーミック電極との界面において、アルミニウム、モリブデン、および、金のうち、アルミニウムの原子%が最も大きい半導体装置。
    22. The semiconductor device according to claim 21, wherein
    The semiconductor device having the largest atomic% of aluminum among aluminum, molybdenum, and gold at the interface between the nitride semiconductor layer and the ohmic electrode.
  23.  (a)窒化物半導体層と、
     (b)前記窒化物半導体層上に形成され、アルミニウム、モリブデン、および、金が相互拡散した構造を有し、かつ、前記窒化物半導体層との間でオーミック接触をしているオーミック電極と、を備え、
     前記窒化物半導体層と前記オーミック電極との界面において、前記アルミニウムの原子%は、前記金の原子%よりも大きい半導体装置。
    (A) a nitride semiconductor layer,
    (B) An ohmic electrode formed on the nitride semiconductor layer, having a structure in which aluminum, molybdenum, and gold are mutually diffused, and in ohmic contact with the nitride semiconductor layer, Equipped with
    The semiconductor device, wherein the atomic percent of the aluminum is larger than the atomic percent of the gold at the interface between the nitride semiconductor layer and the ohmic electrode.
PCT/JP2012/067801 2011-09-28 2012-07-12 Semiconductor device and method for manufacturing same WO2013046863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-213512 2011-09-28
JP2011213512A JP2014239082A (en) 2011-09-28 2011-09-28 Semiconductor device and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2013046863A1 true WO2013046863A1 (en) 2013-04-04

Family

ID=47994919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067801 WO2013046863A1 (en) 2011-09-28 2012-07-12 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2014239082A (en)
WO (1) WO2013046863A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230064733A1 (en) * 2021-08-31 2023-03-02 Hestia Power Shanghai Technology Inc. Silicon carbide semiconductor device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031895A (en) * 2001-07-13 2003-01-31 Sharp Corp Semiconductor light emitting device and its manufacturing method
JP2005354040A (en) * 2004-05-11 2005-12-22 Rohm Co Ltd Semiconductor light-emitting device and method for fabricating same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031895A (en) * 2001-07-13 2003-01-31 Sharp Corp Semiconductor light emitting device and its manufacturing method
JP2005354040A (en) * 2004-05-11 2005-12-22 Rohm Co Ltd Semiconductor light-emitting device and method for fabricating same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. BASU ET AL.: "Mo/Al/Mo/Au Ohmic contact scheme for AlxGa1-xN/GaN high electron mobility transistors annealed at 500°C", J. VAC. SCI. TECHNOL.B, vol. 24, no. 2, 21 March 2006 (2006-03-21), pages L16 - L18, XP012091444, DOI: doi:10.1116/1.2178365 *
DEEPAK SELVANATHAN ET AL.: "Comparative study of Ti/Al/Mo/Au, Mo/Al/Mo/Au, and V/Al/Mo/Au ohmic contacts to AlGaN/GaN heterostructures", J. VAC. SCI. TECHNOL. B, vol. 22, no. 5, 7 October 2004 (2004-10-07), pages 2409 - 2416, XP012074641, DOI: doi:10.1116/1.1798811 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230064733A1 (en) * 2021-08-31 2023-03-02 Hestia Power Shanghai Technology Inc. Silicon carbide semiconductor device and manufacturing method thereof
US11615959B2 (en) * 2021-08-31 2023-03-28 Hestia Power Shanghai Technology Inc. Silicon carbide semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014239082A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
JP6280796B2 (en) Manufacturing method of semiconductor device having Schottky diode and high electron mobility transistor
JP4755961B2 (en) Nitride semiconductor device and manufacturing method thereof
JP5737948B2 (en) Heterojunction field effect transistor, method of manufacturing heterojunction field transistor, and electronic device
JP4866007B2 (en) Compound semiconductor device
JP5494474B2 (en) Semiconductor device and manufacturing method thereof
JP2019517734A (en) Multi-step surface passivation structure and method for manufacturing the same
KR20080108464A (en) Semiconductor field effect transistor and method for fabricating the same
JP2013235873A (en) Semiconductor device and method of manufacturing the same
JP2008034438A (en) Semiconductor device
WO2021189182A1 (en) Semiconductor device and manufacturing method therefor
US9680001B2 (en) Nitride semiconductor device
JP2011192834A (en) Semiconductor device, and method of manufacturing semiconductor device
JP2010171416A (en) Semiconductor device, manufacturing method therefor, and leakage-current reduction method therefor
JP2016174140A (en) High electron mobility transistor device and method of manufacturing the same
JP2007281453A (en) Semiconductor field effect transistor, and method for manufacturing same
JP2008147294A (en) Electronic device
JP2014187085A (en) Semiconductor device
JP2018157177A (en) Nitride semiconductor device and nitride semiconductor package
JP2011142358A (en) Nitride semiconductor device
JP2014157993A (en) Semiconductor device
JP5549081B2 (en) Semiconductor device and manufacturing method thereof
JP2010278137A (en) Semiconductor device
US9087888B2 (en) Semiconductor device and electronic apparatus
WO2016151704A1 (en) Nitride semiconductor element and power conversion device
WO2013046863A1 (en) Semiconductor device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP