WO2013046820A1 - イメージセンサ及び撮像装置 - Google Patents

イメージセンサ及び撮像装置 Download PDF

Info

Publication number
WO2013046820A1
WO2013046820A1 PCT/JP2012/065363 JP2012065363W WO2013046820A1 WO 2013046820 A1 WO2013046820 A1 WO 2013046820A1 JP 2012065363 W JP2012065363 W JP 2012065363W WO 2013046820 A1 WO2013046820 A1 WO 2013046820A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
incident angle
image sensor
light
light receiving
Prior art date
Application number
PCT/JP2012/065363
Other languages
English (en)
French (fr)
Inventor
智行 河合
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280047918.0A priority Critical patent/CN103843320B/zh
Priority to JP2013535971A priority patent/JP5634613B2/ja
Publication of WO2013046820A1 publication Critical patent/WO2013046820A1/ja
Priority to US14/227,690 priority patent/US9077977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/232Image signal generators using stereoscopic image cameras using a single 2D image sensor using fly-eye lenses, e.g. arrangements of circular lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14605Structural or functional details relating to the position of the pixel elements, e.g. smaller pixel elements in the center of the imager compared to pixel elements at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/218Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/257Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • H04N13/289Switching between monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/702SSIS architectures characterised by non-identical, non-equidistant or non-planar pixel layout

Definitions

  • the present invention relates to an image sensor for imaging a monocular 3D image and an imaging apparatus equipped with the image sensor, and in particular, an image sensor capable of imaging not only a 3D image (stereoscopic image) but also a high-definition 2D image (planar image) and
  • the present invention relates to an imaging apparatus.
  • Patent Documents 1, 2, and 3 Various image sensors capable of capturing a 3D image of a subject with a single eye have been proposed as shown in Patent Documents 1, 2, and 3 below.
  • an image sensor that can capture a 3D image divides a plurality of pixels arranged in a two-dimensional array into paired pixels 2 for every two adjacent pixels, and shields one of the paired pixels.
  • the film opening 2a is decentered, for example, on the right side in the horizontal direction with respect to the pixel center, and the light shielding film opening 2b of the other pixel is decentered on the opposite side in the horizontal direction, that is, on the left side with respect to the pixel center.
  • the captured image by each pixel having the light shielding film opening 2a is used as the right-eye image
  • the captured image by each pixel having the light shielding film opening 2b is used as the left-eye image. Can be played.
  • FIG. 28 is a graph showing the sensitivity and incident angle dependency of the paired pixels in FIG.
  • 0 degrees in the figure indicates an incident angle of 0 degrees, that is, an angle at which incident light is perpendicularly incident on the light receiving surface of the pixel
  • the incident angle + side is a light shielding film that is decentered to the right with respect to the pixel center.
  • the angle incident from the direction of the opening 2a, the incident angle minus side indicates the angle incident from the direction of the light shielding film opening 2b decentered to the left with respect to the pixel center.
  • the sensitivity curves I and II of the respective pixels having the light shielding film openings 2a and 2b have incident angle dependency, and the difference in sensitivity between the paired pixels is the phase difference amount.
  • the light shielding film openings 2a and 2b If is narrowed, the sensitivity decreases and only dark images can be taken. Therefore, the light shielding film openings 2a and 2b are appropriately sized, and the light shielding film opening having an appropriate eccentric amount is determined.
  • an image sensor that can shoot a 3D image may want to shoot a 2D image of a subject.
  • a 2D image is generated using detection signals of individual pixels of the image sensor shown in FIG. 27, the captured image signal of the pixel having the light shielding film opening 2a and the captured image signal of the pixel having the light shielding film opening 2b have a phase difference. The quality of the 2D image is deteriorated.
  • a high-quality 2D image can be obtained by adding the captured image signals of two pairs of pixels in order to eliminate the phase difference amount.
  • the resolution becomes half the number of pixels provided in the image sensor, and there is a problem that a high-definition 2D image cannot be captured.
  • An object of the present invention is to provide an image sensor and an imaging apparatus that are capable of capturing a 3D image and capable of capturing a high-definition 2D image.
  • the image sensor of the present invention has a plurality of pixels arranged in a two-dimensional array, and the adjacent pixels constitute a pair pixel, and each of the first pixel and the second pixel constituting the pair pixel.
  • the incident angle between 40% and 80% of the sensitivity is ⁇ cA
  • the light reception sensitivity of the second pixel is within the range between 0 ° which is the normal direction of the pixel and the incident angle ⁇ maxb which is the maximum light reception sensitivity.
  • the incident angle between% and 80% is - ⁇ cB
  • the light receiving sensitivity characteristic with respect to the incident angle of the first pixel and the second pixel is a flat characteristic in an incident angle range between the ⁇ cA and the ⁇ cB.
  • An image pickup apparatus is an image pickup apparatus including the above-described image sensor and a diaphragm provided at a front stage of the image sensor. When a planar image is captured, the diaphragm is narrowed to the image sensor. Control for limiting the incident angle range of incident light to the required angle range, and opening the diaphragm so that incident light whose incident angle range exceeds the required angle range is incident on the image sensor when a 3D image is captured. Means are provided.
  • the present invention when capturing a good and high-definition 2D image, it is possible to obtain the incident light by limiting the incident angle range of the incident light to the predetermined angle range.
  • FIG. 3 is a schematic cross-sectional view in which X-X ′ and Y-Y ′ cross-sections of FIG. 2 are juxtaposed.
  • FIG. 5 is a diagram illustrating a state where an incident light incident angle is slightly inclined with respect to FIG. 4.
  • FIG. 6 is a diagram illustrating a state where an incident light incident angle is further inclined with respect to FIG. 5.
  • FIG. 7 is a diagram illustrating a state where an incident light incident angle is further inclined with respect to FIG. 6.
  • FIG. 9 is an explanatory diagram of parameters Sc, ⁇ Amax, and ⁇ Bmax in the graph of FIG. 8. It is explanatory drawing of parameter (DELTA) c in the graph shown in FIG. It is explanatory drawing of parameter (theta) c, (DELTA) p, (theta) lr, (theta) rl, (theta) ll, (theta) rr in the graph shown in FIG. It is a functional block diagram of the imaging device concerning one embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of parameters Sc, ⁇ Amax, and ⁇ Bmax in the graph of FIG. 8. It is explanatory drawing of parameter (DELTA) c in the graph shown in FIG. It is explanatory drawing of parameter (theta) c, (DELTA) p, (theta) lr, (theta) rl, (theta) ll, (theta) rr in the graph shown in FIG
  • FIG. 12 is an explanatory diagram for converting parameters ⁇ lr and ⁇ rl in the graph of FIG. 11 into F values.
  • 14 is a chart showing the relationship between the F value converted in the description of FIG. 13 and the parameters ⁇ lr and ⁇ rl. It is explanatory drawing which converts the light reception sensitivity maximum value ((theta) Amax, (theta) Bmax) in the graph of FIG. 9 into F value.
  • FIG. 16 is a chart showing a relationship between an F value converted in the description of FIG. 15 and a parameter (light receiving sensitivity maximum value).
  • FIG. 12 is an explanatory diagram for converting parameters ⁇ ll and ⁇ rr in the graph of FIG. 11 into F values.
  • FIG. 18 is a chart showing the relationship between the F value converted in the description of FIG. 17 and parameters ⁇ ll and ⁇ rr. It is explanatory drawing which converts parameter (theta) c in the graph of FIG. 9 into F value.
  • 20 is a chart showing a relationship between an F value converted in the description of FIG. 19 and a parameter ⁇ c. It is a flowchart which shows the process sequence of the imaging device which concerns on one Embodiment of this invention. It is a graph which shows the specific example of each parameter of an image sensor. It is explanatory drawing of the F value switched by 2D image shooting mode and 3D image shooting mode in the specific example of FIG. It is a functional block diagram of an imaging device concerning another embodiment of the present invention.
  • FIG. 1 is a schematic surface view of an image sensor according to an embodiment of the present invention.
  • the image sensor 10 includes a plurality of pixels (photodiodes: shown as diagonal squares) 11 and 12 arranged in a two-dimensional array. In the example shown in the figure, even-numbered pixel rows are shifted by 1 ⁇ 2 pixel pitch with respect to odd-numbered pixel rows.
  • the pixels 12 are arranged in a square lattice, and the three primary color filters r (red) are arranged on the pixels 12.
  • G (green) b (blue) are arranged in a Bayer array.
  • the pixels are arranged in a square lattice pattern, and the three primary color filters R (red) on each pixel 11.
  • G (green) and B (blue) are arranged in a Bayer array.
  • the A group pixel 12 and the B group pixel 11 of the same color that are diagonally adjacent to each other are paired pixels.
  • each pair of pixels is surrounded by an oblique ellipse.
  • a microlens is mounted on each of the pixels 11 and 12, but is not shown in FIG. 1 (see FIG. 4).
  • FIG. 2 is an enlarged view of one pair of pixels 11 and 12.
  • the first light shielding film 11 a shields the substantially left half of the pixel 11
  • the light shielding film opening 11 b is provided in the substantially right half of the pixel 11. Thereby, the gravity center position of the light shielding film opening 11b is shifted to the right side with respect to the gravity center position of the pixel 11.
  • the first light shielding film 12 a shields the substantially right half of the pixel 12, and the light shielding film opening 12 b is provided in the substantially left half of the pixel 12. Thereby, the gravity center position of the light shielding film opening 12b is shifted to the left side with respect to the gravity center position of the pixel 12.
  • FIG. 3 is a diagram showing incident light from the subject to the image sensor 10.
  • the entrance pupils of the pixels 11 and 12 are limited by providing the light shielding film openings 11b and 12b of the respective pixels 11 and 12 so as to be decentered in the opposite directions.
  • the light incident angle on 12 is limited. Therefore, a large amount of subject light when viewed with the right eye is incident on the pixel 11, and a large amount of subject light when viewed with the left eye is incident on the pixel 12.
  • thin second light-shielding films 11 c and 12 c are provided along the center line connecting the diagonals of the pixels.
  • the light receiving area of the image sensor is formed in a horizontally long rectangle such as 4: 3.
  • the linear second light-shielding films 11c and 12c are provided perpendicular to the lateral direction.
  • FIG. 4 is a schematic cross-sectional view illustrating the X-X ′ line cross-section and the Y-Y ′ line cross-section of FIG. 2 juxtaposed.
  • an n region 21 is formed in a two-dimensional array on the surface p-well layer of the n-type semiconductor substrate 20 to form a photodiode (PD) 21 as a photoelectric conversion element.
  • the left PD in FIG. 4 is the photoelectric conversion unit of the pixel 11 (FIG. 2), and the right PD is the photoelectric conversion unit of the pixel 12 (FIG. 2).
  • first light shielding films 11 a and 12 a are formed via a planarizing film 22, and second light shielding films 11 c and 12 c are formed thereon via a planarizing film 23.
  • a wiring layer 25 (the image sensor in this example is a CMOS type and its wiring layer) 25 is laminated via a planarizing film 24 and the like, and a color filter 27 is arranged thereon via a planarizing film 26.
  • a microlens 29 is formed thereon via a planarization film 28.
  • the formation positions of the first light shielding films 11a and 12a are in the vicinity of the condensing position of the microlens 29, and the second light shielding films 11c and 12c are on the near side (microlens side) from the condensing position of the microlens 29. It is formed to be located.
  • An edge 11d on the pair pixel 12 side of the first light shielding film 11a provided in the pixel 11 is provided so as to be shifted from the center 21a of the photodiode (PD) 11 to the side opposite to the pixel 12, and the second light shielding.
  • the film 11c is provided immediately above the center 21a.
  • An edge 12d on the pair pixel 11 side of the first light shielding film 12a provided in the pixel 12 is provided so as to be shifted from the center 21a of the photodiode (PD) 12 to the side opposite to the pixel 11, and the second light shielding.
  • the film 12c is provided immediately above the center 21a.
  • the incident light is partially blocked by the second light shielding films 11c and 12c
  • the light receiving sensitivity of the pixels 11 and 12 is lower than the maximum light receiving sensitivity.
  • the second light shielding films 11c and 12c are not present, the incident light is not blocked by the first light shielding films 11a and 12a. Therefore, the light receiving sensitivity of each of the pixels 11 and 12 is large up to the maximum light receiving sensitivity. It should be.
  • the second light shielding films 11c and 12c are provided in the optical path of the incident light that is incident vertically, the light receiving sensitivity of each of the pixels 11 and 12 is smaller than the maximum light receiving sensitivity.
  • FIG. 8 is a graph plotting the relationship between the incident light angle to each of the pixels 11 and 12 and the light receiving sensitivity (normalized by the maximum light receiving sensitivity).
  • the characteristic line L is the pixel 12
  • the characteristic line R is the pixel.
  • 11 shows the relationship between the incident light angle 11 and the light receiving sensitivity.
  • the light receiving sensitivity when the incident light angle is 0 degree is 0.6, which is the maximum light receiving sensitivity (this is “1”) in both the pixels 11 and 12. I try to be about double.
  • FIG. 5 shows a state in which the incident light angle is inclined by ⁇ 1 with respect to FIG. Even in this state, the pixels 11 and 12 both have the second light shielding films 11c and 12c in the incident light path, so that there is no change in the light receiving sensitivity, and the state of 0.6 is maintained with respect to the maximum light receiving sensitivity. .
  • FIG. 6 shows a state where the incident light angle is further increased and tilted by ⁇ 2.
  • the second light-shielding films 11c and 12c start to lose their position from the incident optical path, and in the pixel 11, the first light-shielding film 11a starts to receive incident light, and the pixel 12 has an opening without a light-shielding film.
  • Incident light begins to enter only within 12b.
  • the light receiving sensitivity of the pixel 12 starts to increase as indicated by reference numeral 4 in FIG. 8, and the light receiving sensitivity of the pixel 11 starts to decrease as indicated by reference numeral 5.
  • FIG. 7 shows a state where the incident angle is further increased and tilted to - ⁇ 3.
  • the incident light is almost shielded by the first light shielding film 11a, and the light received by the pixel 11 is only stray light or diffracted light.
  • the pixel 12 has the maximum light receiving sensitivity as indicated by reference numeral 6 in FIG. 8, and the pixel 11 has the minimum light receiving sensitivity as indicated by reference numeral 7.
  • incident angle is further increased, incident light starts to be lost from the photodiode 21 (12) in the pixel 12, so that the light receiving sensitivity is lowered.
  • the incident angle of the incident light tilted to the minus side has been made with the incident angle of the incident light tilted to the plus side, but the same is true even if the incident light is tilted to the plus side, and the characteristic line in FIG. 8 is obtained as a whole. That is, in a predetermined angle range with an incident angle of 0 °, the light receiving sensitivity is flat over the range and lower than the maximum light receiving sensitivity, and in the region beyond the range, the light receiving sensitivity curve changes in a mountain shape.
  • FIG. 9 shows the graph of FIG. 8 again.
  • the light receiving sensitivity Sc of the pixels 11 and 12 at the incident angle of 0 degree has been described as the maximum sensitivity of about 0.6.
  • FIG. 10 is a graph showing the characteristic line L of the pixel 11.
  • FIG. 11 shows the graph of FIG. 8 again.
  • An incident angle range in which the flat light receiving sensitivity Sc is obtained is assumed to be ⁇ c to + ⁇ c.
  • the pixels 11 and 12 are formed symmetrically only at the positions of the first light-shielding film openings 11b and 12b, and are manufactured exactly the same thereafter. Therefore, the range where the light-receiving sensitivity Sc is flat and the size of the light-receiving sensitivity Sc are as follows. , Pixel 11 and pixel 12 overlap.
  • the above-mentioned matter can be paraphrased as follows.
  • the characteristic with respect to the incident angle between the absolute value of the change rate of the light receiving sensitivity with respect to the incident angle of the pixel 11 and the absolute value of the change rate of the light receiving sensitivity with respect to the incident angle of the pixel 12 is the inflection point M (incident angle ⁇ cA).
  • an inflection point N (incidence angle ⁇ cB) within the incident angle range is the inflection point M (incident angle ⁇ cA).
  • the dependency of the light reception sensitivity of each pixel on the incident light is a graph like a normal distribution.
  • two inflection points M and N are generated in the normal distribution graph, and a flat portion of the light receiving sensitivity Sc is generated.
  • This incident angle range is defined as “ ⁇ lr to ⁇ ll”.
  • the difference ⁇ p from the light receiving sensitivity of the paired pixel 11 is taken to obtain an incident angle range where ⁇ p ⁇ threshold t, and this is expressed as “ ⁇ rl to ⁇ rr”. To do.
  • the parameters ⁇ lr, ⁇ rl, and ⁇ p can be controlled by the first light shielding film, and the parameters ⁇ c and ⁇ c can be controlled by the second light shielding film.
  • the image sensor (imaging device) 10 of the present embodiment has a difference between the light reception sensitivity of the A group pixel and the light reception sensitivity of the B group pixel within the range of the incident angle ⁇ ⁇ c (for example, 6 degrees) ( A group light receiving sensitivity ⁇ B group light receiving sensitivity) can be suppressed within ⁇ c (for example, 0.05), and in the range of ⁇ ll ⁇ incident angle ⁇ lr, ⁇ rl ⁇ incident angle ⁇ rr, the light receiving sensitivity of the A group pixel and B ⁇ p (for example, 0.8) or more is secured as the sensitivity difference between the light receiving sensitivities of the group pixels.
  • ⁇ c for example, 6 degrees
  • the image sensor 10 of the present embodiment is mounted on a camera, and the incident angle of incident light is controlled (it is possible by selecting the F value) to switch between 3D image shooting and 2D image shooting. be able to.
  • the incident angle of the incident light is within ⁇ 5.1 degrees, and the incident light is incident on the flat portion Sc in FIG.
  • the incident angle of the incident light is ⁇ 12.8 degrees or more. Accordingly, incident light having different phase differences is incident on each of the A group pixel and the B group pixel, and a 3D image can be acquired.
  • FIG. 12 is a functional block diagram of an imaging apparatus (digital camera) equipped with the image sensor 10 according to the above-described embodiment.
  • the imaging device 30 includes a shutter 31 and a photographing optical system 32 in the previous stage of the image sensor 10.
  • a diaphragm (iris) 32b is provided in the photographing optical system 32.
  • the output of the analog subject captured image signal by the image sensor 10 is converted into a digital captured image signal by the AD conversion unit 33 and output to the bus 34.
  • the bus 34 has a CPU 35 for overall control of the entire image pickup apparatus 30, an image processing unit 36 that takes in a digital image signal and performs known image processing, a memory 37, and operations such as a shutter button and a menu selection button.
  • the unit 38, an encoder 39 that performs image compression, and the driver 40 are connected.
  • the driver 40 is connected to a display unit 41 provided on the back of the camera or the like, and the CPU 35 is connected to a photographing optical system 32, a shutter 31, and a device control unit 42 that drives the image sensor (imaging device) 10.
  • the bus 34 is also connected to a memory control unit that controls an external memory such as a memory card that records a subject image.
  • the incident light enters the range of ⁇ c to + ⁇ c in which the light receiving sensitivity characteristic of FIG.
  • a subject image having no phase difference and no sensitivity difference with the group pixels can be captured, and a high-definition 2D image can be obtained.
  • the F value small F value
  • the aperture 32b opened is set.
  • the incident light is incident up to an incident angle having a sensitivity difference ⁇ p between the pixels 11 and 12 (0.8 or more when the maximum light receiving sensitivity is “1”), and a 3D image of the subject can be taken. It becomes.
  • the maximum light receiving sensitivity of the B group pixel is within the range of “ ⁇ ll ⁇ Amax ⁇ lr” sandwiching the incident angle position ⁇ Amax that is the maximum light receiving sensitivity value of the A group pixel.
  • a good 3D image can be obtained by selecting the incident angle (that is, the F value) of the incident light so that it falls within the range of “ ⁇ rl ⁇ Bmax ⁇ rr” sandwiching the incident angle position ⁇ Bmax as a value.
  • the diaphragm 32b having a variable F value has an opening value (minimum value) of F value as Fmin. ⁇ tan ⁇ 1 (1 / (2 * Fmin)) ⁇ lr, ⁇ rl ⁇ tan ⁇ 1 (1 / (2 * Fmin)) To satisfy.
  • FIG. 14 is a chart in which this incident angle is converted into an F value.
  • ⁇ lr is set to a value larger than the angle of FIG. 14 (closer to 0 degree), and ⁇ rl is set to a value smaller than the angle of FIG. Otherwise, a good 3D image cannot be obtained with the aperture fully open.
  • ⁇ lr and ⁇ rl that determine the range in which a 3D image can be obtained are converted into F values.
  • a better quality 3D image has an incident angle position ⁇ Amax at which the light receiving sensitivity is maximized as shown in FIG. , ⁇ Bmax is preferable. Therefore, ⁇ Amax and ⁇ Bmax giving the maximum light receiving sensitivity are converted into F values, and ⁇ tan ⁇ 1 (1 / (2 * Fmin)) ⁇ Amax, ⁇ Bmax ⁇ tan ⁇ 1 (1 / (2 * Fmin)) is satisfied.
  • FIG. 16 shows a chart converted into an F value. By selecting the F value according to FIG. 16, light having an incident angle that maximizes the angle dependency of the light receiving sensitivity of the image sensor 10 enters, so that a higher quality 3D image can be acquired.
  • the F value of the incident angle at which the light receiving sensitivity is maximized is obtained, but a higher quality 3D image can be obtained.
  • the ranges in which the difference in light receiving sensitivity between the pixels 11 and 12 is ⁇ p (a predetermined value, for example, 0.8) or more are ⁇ ll to ⁇ lr and ⁇ rl to ⁇ rr.
  • the incident angles are determined by ⁇ lr and ⁇ rl.
  • the incident angle (F value) is determined by ⁇ ll and ⁇ rr which are the maximum ranges in which the phase difference can be obtained.
  • a high-quality 3D image can be obtained. That is, an F value satisfying ⁇ tan ⁇ 1 (1 / (2 * Fmin)) ⁇ ll, ⁇ rr ⁇ tan ⁇ 1 (1 / (2 * Fmin)) is selected. This F value is shown in FIG.
  • FIGS. 17 and 18 shows the conditions of the imaging aperture that makes the best use of the characteristics of the image sensor 10, and the 3D image with the highest quality can be acquired.
  • FIG. 19 is a diagram for converting the incident angle of ⁇ c that can acquire a 2D image into an F value.
  • the converted F value is shown in FIG.
  • the aperture 32b having a variable F value satisfies tan ⁇ 1 (1 / (2 * Fmax)) ⁇ c, where Fmax is the small aperture value (maximum value) of the F value.
  • Fmax is the small aperture value (maximum value) of the F value.
  • an excellent 2D image can be obtained by setting the F value to a value of 5.6 or more.
  • FIG. 21 is a flowchart showing an imaging procedure in the imaging apparatus.
  • a specific example of the characteristics of the image sensor used in this imaging apparatus is shown in FIG.
  • the incident angle needs to be 4 degrees or less to shoot a 2D image, and the incident angle needs to be 12 degrees or more to shoot a 3D image.
  • the CPU (control means) 35 in FIG. 12 determines the shooting mode designated and input by the user, and determines whether or not the shooting is in the 3D shooting mode (step S1). In the case of shooting in the 3D shooting mode, the process proceeds to step S2 and the aperture is changed to the full aperture. As shown in FIG. 23, since a 3D image having F values of “1.2” and “2.2” can be taken, either F value is set.
  • step S3 If the result of determination in step S1 is not 3D shooting mode, processing proceeds to step S3. Alternatively, the process proceeds to step S3 after step S2. In step S3, it is determined whether or not the 2D shooting mode is set. In the case of the 3D shooting mode, the determination result in step S3 is negative, so this process ends. In the case of the 2D shooting mode, the process proceeds to step S4, where the aperture is changed to a small aperture (F value “7.2” or “11.0” in the example of FIG. 23), and this process ends.
  • the camera side selects an appropriate aperture value only by switching the shooting mode.
  • a fine 2D image can be automatically captured.
  • FIG. 24 is a functional block diagram of an imaging apparatus 50 according to another embodiment of the present invention.
  • an ND filter 32c is additionally provided in the photographing optical system 32, and the only difference is that the ND filter 32c can be inserted into and removed from the optical path. Since the other constituent members are the same as those in FIG. 12, the same reference numerals are given to the same members, and description thereof is omitted.
  • FIG. 25 is a flowchart showing an imaging procedure by the imaging device 50 of the present embodiment.
  • the aperture is too narrow, the incident angle of incident light becomes small, and it becomes difficult to capture a high-quality 3D image.
  • the aperture is not reduced, the amount of incident light may become excessive.
  • the CPU 35 of the image pickup apparatus 50 first determines whether or not the 3D shooting mode is set in step S11, and ends this process if the 3D shooting mode is not set. In the case of the 3D shooting mode, the process proceeds to step S12 where the aperture 32b is changed to the full open, and the exposure is confirmed and calculated in the next step S13. The result of the calculation in step S13 is determined in step S14, and it is determined whether or not it is overexposed. If it is overexposed, the ND filter 32c is inserted in the next step S15, and this process is terminated. If not overexposed, step S15 is skipped and the process is terminated.
  • FIG. 26 is a schematic diagram of an image sensor 60 according to another embodiment that replaces the image sensor 10 of FIG.
  • pixels are arranged in a square lattice pattern, and G (green) color filters are stacked on all pixels in odd rows (or even rows), and even rows (or odd rows) pixels.
  • G (green) color filters are stacked on all pixels in odd rows (or even rows), and even rows (or odd rows) pixels.
  • an R (red) color filter and a B (blue) color filter are alternately stacked for each two pixels.
  • Two pixels of the same color constitute a pair pixel, and the light shielding film opening 11b of one pixel of the pair pixel and the light shielding film opening 12b of the other pixel are decentered in opposite directions with respect to the pixel center.
  • This pixel array and color filter array can also be expressed as follows.
  • a so-called honeycomb pixel arrangement a pixel arrangement in which odd-numbered pixel rows and even-numbered pixel rows are arranged with a 1 ⁇ 2 pixel pitch shifted from each other.
  • the pixel arrangement at the checkered position is a square lattice arrangement, and the remaining pixel arrangement at the checkered position (the other same type of pixels in the checker pattern). Is also a square lattice array.
  • the color filters of the three primary colors are Bayer-arranged in the pixel arrangement of both square lattices, the color filter arrangement of FIG. 26 is obtained.
  • the characteristics shown in FIG. 8 can be realized by appropriately designing the size and mutual relationship between the first light-shielding film and the second light-shielding film. Similarly, good 3D images and high-definition 2D images can be captured.
  • the second light shielding films 11c and 12c are provided in order to form a flat light receiving sensitivity Sc portion having inflection points M and N (see FIG. 9) on the characteristic line of FIG. This is not a limitation.
  • the image sensor according to the embodiment described above has a plurality of pixels arranged in a two-dimensional array, and the adjacent pixels constitute a pair pixel, and the first pixel and the second pixel constituting the pair pixel.
  • Each of the entrance pupils is decentered in opposite directions with respect to the pixel center,
  • the light receiving sensitivity of the first pixel is within the range between 0 ° which is the normal direction of the pixel and the incident angle ⁇ maxa which is the maximum light receiving sensitivity.
  • the incident angle between 40% and 80% of the sensitivity is ⁇ cA
  • the light reception sensitivity of the second pixel is within the range between 0 ° which is the normal direction of the pixel and the incident angle ⁇ maxb which is the maximum light reception sensitivity.
  • the incident angle between% and 80% is - ⁇ cB
  • the light receiving sensitivity characteristic with respect to the incident angle of the first pixel and the second pixel is a flat characteristic in an incident angle range between the ⁇ cA and the ⁇ cB.
  • the image sensor of the embodiment has a plurality of pixels arranged in a two-dimensional array, and the adjacent pixels constitute a pair pixel, and the first pixel and the second pixel constituting the pair pixel
  • Each entrance pupil is an image sensor provided with eccentricity in opposite directions with respect to the pixel center
  • the incident angle of light from the subject is in the range between 0 °, which is the normal direction of the pixel, and the incident angle ⁇ maxa, which is the maximum light receiving sensitivity, and ⁇ cA
  • the incident angle is ⁇ cB
  • a characteristic with respect to the incident angle of an absolute value of a change rate of light reception sensitivity with respect to the incident angle of the first pixel and an absolute value of a change rate of light reception sensitivity with respect to the incident angle of the second pixel is the incident angle ⁇ cA.
  • the flatness of the image sensor of the embodiment means that the difference between the light receiving sensitivity of the first pixel and the light receiving sensitivity of the second pixel is 0 or more and 0.05 or less when the maximum light receiving sensitivity is 1. It is a range.
  • the flatness of the image sensor according to the embodiment is characterized in that the difference in the light receiving sensitivity is in a range from 0 to 0.05.
  • the image sensor according to the embodiment is characterized in that the difference between the light receiving sensitivities and the flat is zero.
  • the plurality of pixels are arranged such that the odd-numbered pixel rows and the even-numbered pixel rows are shifted by a 1 ⁇ 2 pixel pitch, and a color filter of three primary colors is disposed on the odd-numbered pixels.
  • the color filters of the three primary colors are Bayer-arrayed in the pixels of the even-numbered rows and the pixels in the even-numbered rows, and the two pixels in the odd-numbered rows and the even-numbered rows having the color filters of the same color respectively constitute the pair pixels. It is characterized by that.
  • the pixel array of the plurality of pixels is a square lattice array, and the pixel (2) at the checkered position when the square lattice array is inclined at an angle of 45 degrees on the pixel array surface.
  • a color filter of three primary colors is arranged in a Bayer array on one checker pattern in the checker pattern using a pixel ⁇ 2 pixels as a unit matrix, and a color filter of three primary colors on the remaining checkered pixel (the other checker pattern in the checker pattern). And two adjacent pixels having the same color filter constitute the pair pixel.
  • an imaging apparatus is an imaging apparatus including any one of the above-described image sensors and a diaphragm provided in a front stage of the image sensor, and the diaphragm is narrowed when a planar image is captured.
  • the incident angle range of incident light to the image sensor is limited to a required angle range, and when capturing a 3D image, the diaphragm is opened and incident light whose incident angle range exceeds the required angle range is Control means for entering the image sensor is provided.
  • the incident angles giving the maximum light receiving sensitivity of the first pixel and the second pixel are ⁇ Amax and ⁇ Bmax, respectively, and the light receiving sensitivity of the first pixel and the light receiving sensitivity of the second pixel are The incident angle range in which the difference of 80% or more of the maximum light receiving sensitivity is “ ⁇ ll ⁇ incident angle ⁇ lr ⁇ 0”, and the difference between the light receiving sensitivity of the second pixel and the light receiving sensitivity of the first pixel is the maximum.
  • an incident angle range that is 80% or more of the light receiving sensitivity is “0 ⁇ rl ⁇ incident angle ⁇ rr”
  • the incident angle ⁇ Amax is “ ⁇ ll ⁇ Amax ⁇ lr”
  • the incident angle ⁇ Bmax is “ ⁇ rl ⁇ Bmax ⁇ rr”.
  • the image pickup apparatus of the embodiment is characterized in that the incident angle of the incident light is determined by an F value.
  • the aperture is photographed on the open side from Ftan ( ⁇ rl) / 2 when capturing a 3D image, and the aperture is disposed on the aperture side smaller than Ftan ( ⁇ c) / 2 when capturing a 2D image. It is characterized by shooting.
  • the image pickup apparatus is characterized in that when the 3D image is picked up with the aperture opened, an ND filter is inserted in front of the image sensor when overexposure occurs.
  • the image sensor of the embodiment includes a plurality of pixels that are arranged in a two-dimensional array and two adjacent pixels form a pair pixel, a microlens that is stacked on each pixel, and a stack on each pixel.
  • the image sensor and the imaging device according to the present invention can capture not only a good 3D image but also a good and high-definition 2D image, so that it is useful when applied to a digital camera or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

 複数の画素を持ち、隣接する画素が夫々ペア画素を構成し、ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサである。第1画素において、入射角0°と最大受光感度となる入射角θmaxaとの間の範囲内で、第1画素の受光感度が最大受光感度の40%から80%の間にある入射角をθcA、第2画素において、入射角0°と最大受光感度となる入射角θmaxbとの間の範囲内で、第2画素の受光感度が最大受光感度の40%から80%の間にある入射角を-θcBとし、第1画素と第2画素の入射角に対する受光感度特性を、θcAと-θcBとの間の入射角度範囲で平坦とする。

Description

イメージセンサ及び撮像装置
 本発明は、単眼3D画像撮像用のイメージセンサ及びこのイメージセンサを搭載した撮像装置に係り、特に、3D画像(立体画像)だけでなく高精細な2D画像(平面画像)も撮像できるイメージセンサ及び撮像装置に関する。
 単眼で被写体の3D画像を撮像できるイメージセンサが、下記の特許文献1,2,3に示されるように種々提案されている。
 3D画像を撮像できるイメージセンサは、例えば図27に示されるように、二次元アレイ状に配列形成された複数画素を隣接2画素毎のペア画素2に分け、ペア画素のうち一方の画素の遮光膜開口2aを画素中心に対して例えば水平方向の右側に偏心させ、他方の画素の遮光膜開口2bを画素中心に対して水平方向反対側つまり左側に偏心させて設ける。
 遮光膜開口2aは右側に偏心しているため、右眼で被写体を見た入射光が入射し、遮光膜開口2bは左側に偏心しているため、左眼で被写体を見た入射光が入射する。このため、遮光膜開口2aを持つ各画素による撮影画像を右眼用画像とし、遮光膜開口2bを持つ各画素による撮影画像を左眼用画像とすることで、被写体の立体画像(3D画像)を再生することができる。
 図28は、図27のペア画素の感度と入射角度依存性を示すグラフである。ここで、図中の0度は、入射角度0度つまり画素の受光面に対して入射光が垂直に入射する角度を示し、入射角度+側は、画素中心に対し右側に偏心させた遮光膜開口2a方向から入射する角度、入射角度-側は、画素中心に対し左側に偏心させた遮光膜開口2b方向から入射する角度を示している。遮光膜開口2a,2bを持つ夫々の画素の感度曲線I,IIは入射角依存性を持ち、ペア画素の感度の差が位相差量となる。両感度曲線I,IIが重なった範囲(斜線範囲)の全体の面積に占める割合が小さいほど両画素間の位相差量は大きくなるが、この重なり範囲を狭くするために遮光膜開口2a,2bを狭くすると、感度が低下し、暗い画像しか撮影できなくなってしまう。そこで、遮光膜開口2a,2bを適当な大きさとし、適切な偏心量の遮光膜開口を決めることになる。
 3D画像を撮影できるイメージセンサであっても、被写体の2D画像を撮影したい場合もある。図27に示すイメージセンサの個々の画素の検出信号で2D画像を生成すると、遮光膜開口2aを持つ画素の撮像画像信号と遮光膜開口2bを持つ画素の撮像画像信号とは位相差を持つため、2D画像の品質を劣化させてしまう。
 そこで、位相差量を無くすために、ペア画素2画素の撮像画像信号を加算すれば、高品質な2D画像を得ることが可能となる。しかし、画素加算するため、イメージセンサに設けられた画素数の半分の解像度となってしまい、高精細な2D画像を撮影することができなくなってしまうという問題が生じる。
日本国特開2010―263572号公報 日本国特開2003―7994号公報 日本国特開2007―279512号公報
 本発明の目的は、3D画像を撮影できるイメージセンサで、高精細な2D画像も撮影することが可能なイメージセンサと撮像装置を提供することにある。
 本発明のイメージセンサは、二次元アレイ状に配列形成された複数の画素を持ち、隣接する前記画素が夫々ペア画素を構成し、該ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサであって、
 前記第1画素において、被写体からの光の入射角が、画素法線方向である0°と最大受光感度となる入射角θmaxaとの間の範囲内で、前記第1画素の受光感度が最大受光感度の40%から80%の間にある入射角をθcAとし、
 前記第2画素において、前記入射角が、前記画素法線方向である0°と最大受光感度となる入射角θmaxbとの間の範囲内で、前記第2画素の受光感度が最大受光感度の40%から80%の間にある入射角を-θcBとしたとき、
 前記第1画素と前記第2画素の前記入射角に対する受光感度特性が、前記θcAと前記-θcBとの間の入射角度範囲で平坦な特性となることを特徴とする。
 本発明の撮像装置は、上記記載のイメージセンサと、該イメージセンサの前段に設けられた絞りとを備える撮像装置であって、平面画像を撮像するときは前記絞りを絞って前記イメージセンサへの入射光の入射角度範囲を所要の角度範囲内に制限し、3D画像を撮像するときは前記絞りを開放して入射角度範囲が前記所要の角度範囲を超える入射光を前記イメージセンサに入射させる制御手段を備えることを特徴とする。
 本発明によれば、良好かつ高精細な2D画像を撮像するときは入射光の入射角度範囲を上記の所定角度範囲に制限することで得ることが可能となる。
本発明の一実施形態に係るイメージセンサ(撮像素子)の表面模式図である。 図1に示すイメージセンサの1つのペア画素の詳細平面模式図である。 イメージセンサへの入射光を示す図である。 図2のX―X’,Y―Y’断面を並置した断面模式図である。 図4に対して少し入射光入射角が傾いた状態を示す図である。 図5に対して更に入射光入射角が傾いた状態を示す図である。 図6に対して更に入射光入射角が傾いた状態を示す図である。 図2に示すペア画素の受光感度と入射角度との関係を示すグラフである。 図8のグラフにおけるパラメータSc,θAmax,θBmaxの説明図である。 図8に示すグラフにおけるパラメータΔcの説明図である。 図8に示すグラフにおけるパラメータθc,Δp,θlr,θrl,θll,θrrの説明図である。 本発明の一実施形態に係る撮像装置の機能ブロック図である。 図11のグラフにおけるパラメータθlr,θrlをF値に換算する説明図である。 図13の説明で換算したF値とパラメータθlr,θrlの関係を表す図表である。 図9のグラフにおける受光感度最大値(θAmax,θBmax)をF値に換算する説明図である。 図15の説明で換算したF値とパラメータ(受光感度最大値)の関係を表す図表である。 図11のグラフにおけるパラメータθll,θrrをF値に換算する説明図である。 図17の説明で換算したF値とパラメータθll,θrrの関係を表す図表である。 図9のグラフにおけるパラメータθcをF値に換算する説明図である。 図19の説明で換算したF値とパラメータθcの関係を表す図表である。 本発明の一実施形態に係る撮像装置の処理手順を示すフローチャートである。 イメージセンサの各パラメータの具体例を示すグラフである。 図22の具体例で2D画像撮影モードと3D画像撮影モードで切り替えるF値の説明図である。 本発明の別実施形態に係る撮像装置の機能ブロック図である。 図24に示す撮像装置による撮像処理手順を示すフローチャートである。 本発明の別実施形態に係るイメージセンサの表面模式図である。 単眼3D画像を撮像するイメージセンサの一例を示す表面模式図である。 図27に示すイメージセンサの1つのペア画素の感度対入射角度の関係を示すグラフである。
 以下、本発明の一実施形態について、図面を参照して説明する。
 図1は、本発明の一実施形態に係るイメージセンサの表面模式図である。このイメージセンサ10は、複数の画素(フォトダイオード:斜めの正方形で示す。)11,12が二次元アレイ状に配列形成されることで構成されている。図示する例では、奇数行の画素行に対して偶数行の画素行が1/2画素ピッチずつずらして配置されている。
 奇数行(又は偶数行)の画素12で構成される第1群画素(A群画素)だけみると各画素12は正方格子状に配列され、各画素12上に3原色のカラーフィルタr(赤)g(緑)b(青)がベイヤ配列されている。偶数行(又は奇数行)の画素で構成される第2群画素11(B群画素)だけみても各画素は正方格子状に配列され、各画素11上に3原色のカラーフィルタR(赤)G(緑)B(青)がベイヤ配列されている。R=r,G=g,B=bであり、A群画素とB群画素を識別するために大文字と小文字を用いて図示している。
 斜めに隣接する同色のA群画素12とB群画素11とをペア画素とする。図1では、各ペア画素を斜めの楕円で囲っている。各画素11,12上には、夫々マイクロレンズが搭載されているが、図1では図示を省略している(図4参照)。
 図2は、1つのペア画素11,12の拡大図である。画素11にあっては、第1の遮光膜11aが画素11の略左半分を遮光し、遮光膜開口11bは画素11の略右半分に設けられている。これにより、画素11の重心位置に対して遮光膜開口11bの重心位置は右側にズレることになる。
 画素12にあっては、第1の遮光膜12aが画素12の略右半分を遮光し、遮光膜開口12bは画素12の略左半分に設けられている。これにより、画素12の重心位置に対して遮光膜開口12bの重心位置は左側にズレることになる。
 図3は、イメージセンサ10への被写体からの入射光を示す図である。図2で説明したように、各画素11,12の夫々の遮光膜開口11b,12bを反対方向に偏心して設けることで各画素11,12の入射瞳が制限され、これにより、各画素11,12への光入射角度が制限される。このため、画素11には右目で見た場合の被写体光が多く入射し、画素12には左目で見た場合の被写体光が多く入射することになる。
 図2に戻り、本実施形態では更に、各画素11,12において、画素の対角を結ぶ中心線に沿って、細い第2の遮光膜11c,12cが設けられている。イメージセンサの受光領域は、例えば4:3等の横長の矩形に形成される。この横方向に対して、線状の第2の遮光膜11c,12cは垂直に設けられる。
 図4は、図2のX―X’線断面とY―Y’線断面とを並置して図示した断面模式図である。イメージセンサは、例えばn型半導体基板20の表面pウェル層に、二次元アレイ状にn領域21が形成されることで、光電変換素子としてのフォトダイオード(PD)21が形成される。図4の左側のPDが画素11(図2)の光電変換部となり、右側のPDが画素12(図2)の光電変換部となる。
 半導体基板20の表面上には、平坦化膜22を介して第1の遮光膜11a,12aが形成され、その上に、平坦化膜23を介して第2の遮光膜11c,12cが形成される。更にその上に、平坦化膜24等を介して配線層(この例のイメージセンサはCMOS型であり、その配線層)25が積層され、その上に、平坦化膜26を介してカラーフィルタ27が積層され、その上に、平坦化膜28を介してマイクロレンズ29が形成される。
 第1の遮光膜11a,12aの形成位置は、マイクロレンズ29の集光位置付近にあり、第2の遮光膜11c,12cは、マイクロレンズ29の集光位置より手前側(マイクロレンズ側)に位置するように形成されている。
 画素11に設けられる第1の遮光膜11aのペア画素12側となる縁11dは、フォトダイオード(PD)11の中央21aから画素12とは反対側にずらして設けられており、第2の遮光膜11cは、この中央21aの真上に設けられている。
 画素12に設けられる第1の遮光膜12aのペア画素11側となる縁12dは、フォトダイオード(PD)12の中央21aから画素11とは反対側にずらして設けられており、第2の遮光膜12cは、この中央21aの真上に設けられている。
 図4に示す入射光は、イメージセンサの各画素に垂直な方向(画素法線方向)に入射している状態(入射角θ=0度)を示している。この状態では、入射光は第2の遮光膜11c,12cによって一部の光が遮られているため、各画素11,12の受光感度は最大受光感度より低下している。もし、第2の遮光膜11c,12cが存在しなければ、第1の遮光膜11a,12aによっても入射光は遮られることがないため、各画素11,12の受光感度は最大受光感度まで大きくなっているはずである。しかし、本実施形態では、垂直に入射する入射光の光路中に第2の遮光膜11c,12cを設けているため、各画素11,12の受光感度は最大受光感度より小さくなっている。
 図8は、各画素11,12への入射光角度と受光感度との関係をプロットしたグラフ(最大受光感度で正規化してある。)であり、特性線Lが画素12、特性線Rが画素11の入射光角度と受光感度との関係を示している。この図8に示されるように、本実施形態では、入射光角度が0度のときの受光感度が、画素11,12で共に最大受光感度(これを“1”とする。)の0.6倍程度となるようにしている。
 図5は、図4に対し、入射光角度が-θ1だけ傾いた状態を示している。この状態でも、画素11,12共に、入射光路中に第2の遮光膜11c,12cが存在するため、受光感度の変化はなく、最大受光感度に対して0.6の状態を維持している。
 図6は、入射光角度が更に大きくなり、-θ2傾いた状態を示している。この状態では、入射光路から第2の遮光膜11c,12cがハズレ始め、画素11にあっては、第1の遮光膜11aに入射光がかかり始め、画素12にあっては遮光膜のない開口12b内だけに入射光が入り始めている。この結果、画素12の受光感度は、図8に符号4で示す様に上昇を始め、画素11の受光感度は、符号5で示すように低下を始める。
 図7は、入射角度が更に大きくなり、-θ3に傾いた状態を示している。この状態では、画素11にあっては第1の遮光膜11aにより入射光は殆ど遮光されてしまい、画素11で受光される光は、迷光や回折光だけとなる。画素12にあっては、遮光膜に遮られる入射光はなくなる。この結果、画素12では、図8に符号6で示す様に最大受光感度となり、画素11では符号7で示す様に、最低受光感度となる。更に入射角度が大きくなると、画素12では入射光がフォトダイオード21(12)からハズレ始めるため、受光感度が低下することになる。
 以上は、入射光の入射角度がマイナス側に傾いた状態で説明したが、プラス側に入射光が傾いても同じとなり、全体で図8の特性線となる。即ち、入射角度0度を挟む所定角度範囲では該範囲に渡って平坦かつ最大受光感度より低い受光感度となり、該範囲を超えた領域では山形に受光感度曲線が変化する特性となる。
 図9は、図8のグラフを再掲した図である。図8の実施形態では、入射角度0度での画素11,12の受光感度Scを、最大感度の0.6程度と説明した。しかし、「0.6」に限るわけではなく、第2の遮光膜11c,12cの幅等によりこの受光感度Scを制御することができる。好適には、Sc=0.4~0.8の範囲に設計するのが良い。図10は、画素11の特性線Lを示すグラフである。平坦な受光感度Scとして図9で説明したが、この平坦度の誤差Δc、即ち、受光感度の差を、最大受光感度“1”に対して0より大きく、0.05以下にするのが良い。勿論、Δc=0とすることができれば最も良い。
 図11は、図8のグラフを再掲した図である。平坦な受光感度Scとなる入射角度範囲を-θc~+θcとする。画素11,12は、第1の遮光膜開口11b,12bの位置だけが対称に形成され、後は全く同じに製造されるため、受光感度Scで平坦となる範囲や受光感度Scの大きさは、画素11と画素12で重なる。
 なお、上記事項を次のように換言することもできる。即ち、画素11の入射角に対する受光感度の変化率の絶対値と、画素12の入射角に対する受光感度の変化率の絶対値との入射角に対する特性が、変曲点M(入射角-θcA)と変曲点N(入射角θcB)との間の入射角度範囲内で平坦となる。
 本実施形態の第2の遮光膜11c,12cを設けない構成では、図28に示す様に、各画素の受光感度の入射光依存性は、正規分布の様なグラフとなる。しかし、第2の遮光膜11c,12cを設けることで、本実施形態では正規分布のグラフに2つの変曲点M,Nが生じ、受光感度Scの平坦部分が生じることになる。
 また、画素11で最大受光感度付近となる入射角度範囲において、ペア画素12の受光感度との差Δpをとり、Δp≧閾値t(例えばt=0.8)となる入射角度範囲を求める。この入射角度範囲を「θlr~θll」とする。同様に、画素12の最大受光感度付近となる入射角度範囲において、ペア画素11の受光感度との差Δpをとり、Δp≧閾値tとなる入射角度範囲を求め、これを「θrl~θrr」とする。
 つまり、例えば、θll=-20度、θlr=-12度、θrl=+12度、θrr=+20となるように、第1の遮光膜11a,12aや第2の遮光膜11c,12cを設計する。第1の遮光膜によりパラメータθlr、θrl、Δpを制御でき、第2の遮光膜によりパラメータθc、Δcが制御できる。
 以上述べた様に、本実施形態のイメージセンサ(撮像素子)10は、入射角度±θc(例えば6度)の範囲内では、A群画素の受光感度とB群画素の受光感度との差(A群受光感度-B群受光感度)をΔc(例えば0.05)以内に抑えることができ、θll<入射角度<θlr、θrl<入射角度<θrrの範囲では、A群画素の受光感度とB群画素の受光感度の感度差としてΔp(例えば0.8)以上を確保している。
 このため、本実施形態のイメージセンサ10をカメラに搭載し、入射光の入射角度を制御する(F値の値を選択することで可能)ことで、3D画像の撮影と2D画像の撮影を切り替えることができる。
 例えば、F値5.6よりも小絞り側で撮影した時、入射光の入射角度は±5.1度以内となり、入射光は、図8の平坦部分Scに入射する。これにより、A群画素とB群画素の両方すなわち全画素で、位相差の無い2D画像が取得することができる。
 また、F値2.2よりも開放側で撮影した時は、入射光の入射角度は±12.8度以上となる。これらより、A群画素とB群画素の夫々に位相差の異なる入射光が入射し、3D画像を取得することが可能となる。
 図12は、上述した実施形態に係るイメージセンサ10を搭載した撮像装置(デジタルカメラ)の機能ブロック図である。この撮像装置30は、イメージセンサ10の前段に、シャッタ31と、撮影光学系32とを備える。撮影光学系32内には、撮影レンズ32aの他に、絞り(アイリス)32bが設けられている。
 イメージセンサ10によるアナログの被写体撮像画像信号の出力は、AD変換部33によってデジタルの撮像画像信号に変換され、バス34に出力される。バス34には、この撮像装置30の全体を統括制御するCPU35と、デジタルの撮像画像信号を取り込み周知の画像処理を施す画像処理部36と、メモリ37と、シャッタボタンやメニュー選択ボタン等の操作部38と、画像圧縮などを行うエンコーダ39と、ドライバ40とが接続される。
 ドライバ40にはカメラ背面等に設けられた表示部41が接続され、CPU35には、撮影光学系32やシャッタ31、イメージセンサ(撮像素子)10を駆動するデバイス制御部42が接続される。バス34には、図示は省略しているが、被写体画像を記録するメモリカード等の外部メモリを制御するメモリ制御部も接続されている。
 本実施形態の撮像装置30は、図8~図11で説明した特性を持つイメージセンサ10を搭載している。即ち、「θll<-θc<0<θc<θrl」の関係を持つ。また、「-θc<入射角度<+θc」の範囲内では、A群画素,B群画素の受光感度Scは一定の値となることが望ましいが、一定の傾きを有していてもよく、この範囲内ではA画素とB画素の受光感度の差は、Δc(=0.05程度:最大受光感度を1とする。)以内であれば良い。受光感度Scは、最大受光感度を“1”としたとき0.4~0.8の範囲内の所定感度となる。
 このため、絞り32bを絞ったF値(大きなF値)にすることで、入射光は図8の受光感度特性が平坦となった-θc~+θcの範囲内に入射し、A群画素とB群画素とで位相差が無く感度差も無い被写体画像を撮像することができ、高精細な2D画像を得ることができる。Sc=0.2とか0.3とか低い値にすると、暗い2D画像しか撮像できなくなり、Sc=0.9とか0.95とか高い値にすると、3D画像を撮像したとき特性線Lと特性線Rとが重なる面積が広くなり、3D画像の左右画像の分離性能(位相差)が劣化してしまうため、Sc=0.4~0.8が好適である。
 3D画像を撮影したい場合には、絞り32bを開放したF値(小さなF値)にする。これにより、入射光は、画素11,12の感度差Δp(最大受光感度を“1”としたときの0.8以上)のある入射角度まで入射し、被写体の3D画像を撮像することが可能となる。
 即ち、図9の特性図に示す様に、A群画素の最大受光感度値となる入射角度位置θAmaxを挟む「θll<θAmax<θlr」の範囲内となるように、B群画素の最大受光感度値となる入射角度位置θBmaxを挟む「θrl<θBmax<θrr」の範囲内となるように、入射光の入射角度(即ちF値)を選択することで、良好な3D画像を得ることができる。
 図12の撮像装置30で、即ちイメージセンサ10で3D画像を撮像する場合、「入射角<θlr」「θrl<入射角」とする必要があることは上述した。撮像装置(カメラ)の場合、入射角度を直接制御することはせずに、F値を制御することで、間接的に「入射角」を制御するのが普通である。そこで、図13に示す様に、F値に換算する。
 F値が可変な絞り32bは、F値の開放値(最小値)をFminとしたとき、
-tan-1(1/(2*Fmin))<θlr、
θrl<tan-1(1/(2*Fmin))
を満たすようにする。この入射角度をF値に換算した図表を図14に示す。
 図13のような受光感度の入射角度依存性をもつと、図14に示す様に、撮像レンズの開放値(F値)に応じて、θlr,θrlの条件が決定される。θlrは図14の角度よりも大きい値(0度に近い方)になるようにし、θrlは図14の角度よりも小さい値になるようにする。こうしないと、絞り開放で良好な3D画像を得ることができない。
 図13,図14では、3D画像が得られる範囲を決めるθlr,θrlをF値に換算したが、更に良質な3D画像は、図15に示す様に、受光感度が最大となる入射角度位置θAmax,θBmaxで撮影するのが好適である。そこで、この最大受光感度を与えるθAmax,θBmaxをF値に換算し、-tan-1(1/(2*Fmin))<θAmax、θBmax<tan-1(1/(2*Fmin))を満たすようにする。図16にF値に換算した図表を示す。この図16に従ってF値を選択することで、イメージセンサ10の受光感度の角度依存が最大となる入射角度の光が入るため、より良質の3D画像を取得することができる。
 図15,図16では、受光感度が最大となる入射角度のF値を求めたが、更に良質な3D画像を得ることができる。画素11,画素12間の受光感度差がΔp(所定値例えば0.8)以上となる範囲をθll~θlr、θrl~θrrとし、図13ではθlr,θrlで入射角を決めたが、図17では、位相差が得られる最大の範囲であるθll,θrrで入射角(F値)を決める。これにより、良質な3D画像を得ることができる。即ち、-tan-1(1/(2*Fmin))<θll,θrr<tan-1(1/(2*Fmin))を満たすF値を選択する。このF値を図18に示す。
 この図17,図18の実施形態は、イメージセンサ10の特性を最大限活かす撮像絞りの条件を示しており、最も良質な3D画像を取得できる。位相差の得られる領域を最大限使おうとすると、図18のように開放F値が決まっているとき、θllが図表の値よりも大きくなるようにし、θrrが図表の値よりも小さくなるようにする必要がある。
 図19は、2D画像を取得することができるθcの入射角をF値に換算する図である。換算したF値を図20に示す。F値が可変な絞り32bは、F値の小絞り値(最大値)をFmaxとしたとき、tan-1(1/(2*Fmax))<θcを満たす様にする。この例では、F値を5.6以上の値とすることで、良好な2D画像を得ることができる。
 図21は、撮像装置における撮像手順を示すフローチャートである。この撮像装置に使用されているイメージセンサの特性の具体例を図22に示す。この図22の特性によれば、2D画像を撮影するには入射角度を4度以下にする必要があり、3D画像を撮影するには、入射角度を12度以上にする必要がある。
 先ず、図12のCPU(制御手段)35は、使用者が指定入力した撮影モードを判定し、3D撮影モードの撮影であるか否かを判定する(ステップS1)。3D撮影モードによる撮影の場合には、次にステップS2に進み、絞りを開放に変更する。図23に示す様に、F値が「1.2」「2.2」の3D画像を撮影できるため、どちらかのF値にする。
 ステップS1の判定の結果、3D撮影モードでない場合には、ステップS3に進む。あるいは、ステップS2の次にステップS3に進む。このステップS3では、2D撮影モードであるか否かを判定する。3D撮影モードの場合にはステップS3の判定結果は否定となるため、この処理を終了する。2D撮影モードの場合には、次にステップS4に進み、絞りを小絞りに変更し(図23の例ではF値「7.2」又は「11.0」)、この処理を終了する。
 このように制御すれば、使用者は3D撮影モードで撮影したい時、2D撮影モードで撮影したい時、撮影モードを切り替えるだけで、カメラ側が適切な絞り値を選択するため、良好な3D画像,高精細な2D画像を自動的に撮影可能となる。
 図24は、本発明の別実施形態に係る撮像装置50の機能ブロック図である。図12の撮像装置に比べて、撮影光学系32内にNDフィルタ32cを追加して備え、NDフィルタ32cを光路内に入れたり出したりできる点だけが異なる。他の構成部材は図12と同じであるため、同じ部材には同じ符号を付してその説明は省略する。
 図25は、本実施形態の撮像装置50による撮像手順を示すフローチャートである。3Dモード撮影時には、絞りを絞り過ぎると、入射光の入射角度が小さくなり、良質な3D画像の撮影が困難となってしまう。しかし、絞りを絞らないと、入射光量が過大となってしまう場合がある。
 そこで本実施形態の撮像装置50のCPU35は、先ずステップS11で3D撮影モードであるか否かを判定し、3D撮影モードでない場合にはこの処理を終了する。3D撮影モードの場合には、次にステップS12に進んで絞り32bを開放に変更し、次のステップS13で露出の確認と計算を行う。このステップS13の計算の結果をステップS14で判定し、露出過多であるか否かを判定する。露出過多の場合には次のステップS15でNDフィルタ32cを挿入してこの処理を終了する。露出過多でない場合にはステップS15を飛び越してこの処理を終了する。
 この様に、本実施形態では、開口絞りを絞らずにNDフィルタで減光できるため、良好な3D画像を得ることが可能となる。
 図26は、図11のイメージセンサ10に代わる別実施形態のイメージセンサ60の模式図である。本実施形態のイメージセンサ60は、正方格子状に画素が配列されており、奇数行(又は偶数行)の全画素にG(緑)のカラーフィルタが積層され、偶数行(又は奇数行)画素に、2画素ずつR(赤)のカラーフィルタとB(青)のカラーフィルタが交互に積層されている。2画素ずつの同色画素がペア画素を構成し、ペア画素の一方の画素の遮光膜開口11bと他方の画素の遮光膜開口12bを画素中心に対して反対方向に偏心させる。
 この画素配列,カラーフィルタ配列は、次の様に表現することもできる。図26の正方格子配列のイメージセンサ60を斜め45度に傾けてみた場合、所謂ハニカム画素配列(奇数行の画素行と偶数行の画素行が1/2画素ピッチずつずらして配置された画素配列)となる。このうち市松位置の画素配列(2画素×2画素を単位マトリクスとしたチェッカーパターンにおける一方の同種画素の配列)は正方格子配列となり、残りの市松位置の画素配列(上記チェッカーパターンにおける他方の同種画素の配列)も正方格子配列となる。この両正方格子の画素配列に夫々3原色のカラーフィルタをベイヤ配列すると、図26のカラーフィルタ配列となる。
 この様な画素配列,カラーフィルタ配列であっても、第1の遮光膜と第2の遮光膜の大きさや相互関係を適切に設計することで図8の特性を実現でき、上述した実施形態と同様に、良好な3D画像や高精細な2D画像を撮像することができる。
 なお、図8の特性線上で変曲点M,N(図9参照)を持ち平坦な受光感度Sc部分を形成するために、上述した実施形態では第2の遮光膜11c,12cを設けたが、これに限る訳ではない。
 以上述べた実施形態のイメージセンサは、二次元アレイ状に配列形成された複数の画素を持ち、隣接する前記画素が夫々ペア画素を構成し、該ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサであって、
 前記第1画素において、被写体からの光の入射角が、画素法線方向である0°と最大受光感度となる入射角θmaxaとの間の範囲内で、前記第1画素の受光感度が最大受光感度の40%から80%の間にある入射角をθcAとし、
 前記第2画素において、前記入射角が、前記画素法線方向である0°と最大受光感度となる入射角θmaxbとの間の範囲内で、前記第2画素の受光感度が最大受光感度の40%から80%の間にある入射角を-θcBとしたとき、
 前記第1画素と前記第2画素の前記入射角に対する受光感度特性が、前記θcAと前記-θcBとの間の入射角度範囲で平坦な特性となることを特徴とする。
 また、実施形態のイメージセンサは、二次元アレイ状に配列形成された複数の画素を持ち、隣接する前記画素が夫々ペア画素を構成し、該ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサであって、
 前記第1画素において、被写体からの光の入射角が、画素法線方向である0°と最大受光感度となる入射角θmaxaとの間の範囲内のある入射角をθcAとし、
 前記第2画素において、前記入射角が、前記画素法線方向である0°と最大受光感度となる入射角θmaxbとの間の範囲内のある入射角を-θcBとしたとき、
 前記第1画素の前記入射角に対する受光感度の変化率の絶対値と、前記第2画素の前記入射角に対する受光感度の変化率の絶対値との前記入射角に対する特性が、前記入射角-θcAと前記入射角θcBとの間の入射角度範囲内で平坦となることを特徴とする。
 また、実施形態のイメージセンサの前記平坦とは、前記第1画素の受光感度と前記第2画素の受光感度との差が、前記最大受光感度を1としたとき、0以上0.05以下の範囲であることを特徴とする。
 また、実施形態のイメージセンサの前記平坦とは、前記受光感度の差が、0より大きく、0.05以下の範囲であることを特徴とする。
また、実施形態のイメージセンサは、前記平坦とは、前記受光感度の差が0であることを特徴とする。
 また、実施形態のイメージセンサは、前記複数の画素は、奇数行の画素行と偶数行の画素行が1/2画素ピッチずつずらして配置され、前記奇数行の画素に3原色のカラーフィルタがベイヤ配列されると共に前記偶数行の画素に3原色のカラーフィルタがベイヤ配列され、同色の前記カラーフィルタを持つ斜めに隣接する前記奇数行及び前記偶数行の2画素が夫々前記ペア画素を構成することを特徴とする。
 また、実施形態のイメージセンサは、前記複数の画素の画素配列が正方格子配列であり、該正方格子配列を前記画素の配列面上で斜め45度に傾けてみたときの市松位置の画素(2画素×2画素を単位マトリクスとしたチェッカーパターンにおける一方の同種画素)に3原色のカラーフィルタをベイヤ配列すると共に残りの市松位置の画素(前記チェッカーパターンにおける他方の同種画素)に3原色のカラーフィルタをベイヤ配列し、同色の前記カラーフィルタを持つ隣接2画素が夫々前記ペア画素を構成することを特徴とする。
 また、実施形態の撮像装置は、上記のいずれかに記載のイメージセンサと、該イメージセンサの前段に設けられた絞りとを備える撮像装置であって、平面画像を撮像するときは前記絞りを絞って前記イメージセンサへの入射光の入射角度範囲を所要の角度範囲内に制限し、3D画像を撮像するときは前記絞りを開放して入射角度範囲が前記所要の角度範囲を超える入射光を前記イメージセンサに入射させる制御手段を備えることを特徴とする。
 また、実施形態の撮像装置は、前記第1画素,第2画素の夫々の最大受光感度を与える入射角度を夫々θAmax,θBmaxとし、前記第1画素の受光感度と前記第2画素の受光感度との差が前記最大受光感度の80%以上となる入射角度範囲を「θll<入射角度<θlr<0」とし、前記第2画素の受光感度と前記第1画素の受光感度との差が前記最大受光感度の80%以上となる入射角度範囲を「0<θrl<入射角度<θrr」としたとき、前記入射角度θAmaxは「θll<θAmax<θlr」、前記入射角度θBmaxは「θrl<θBmax<θrr」となる特性の前記イメージセンサを使用することを特徴とする。
 また、実施形態の撮像装置は、前記入射光の入射角度をF値で判断することを特徴とする。
 また、実施形態の撮像装置は、3D画像を撮像するとき、F値の開放値をFminとしたとき、
 -tan-1(1/(2*Fmin)<θlr
 θrl<tan-1(1/(2*Fmin))
を満たすことを特徴とする。
 また、実施形態の撮像装置は、F値の開放値をFminとしたとき、
 -tan-1(1/(2*Fmin))<θAmax
 θBmax<tan-1(1/(2*Fmin))
を満たすことを特徴とする。
 また、実施形態の撮像装置は、F値の開放値をFminとしたとき、
 -tan-1(1/(2*Fmin))<θll
 θrr<tan-1(1/(2*Fmin))
を満たすことを特徴とする。
 また、実施形態の撮像装置は、F値の小絞り値である最大値をFmaxとしたとき、
 tan-1(1/(2*Fmax))<θc
を満たすことを特徴とする。
 また、実施形態の撮像装置は、3D画像の撮影時には前記絞りをFtan(θrl)/2より開放側で撮影し、2D画像の撮影時には前記絞りをFtan(θc)/2よりも小絞り側で撮影することを特徴とする。
 また、実施形態の撮像装置は、前記絞りを開放して前記3D画像を撮像する場合に露出過多となるときNDフィルタを前記イメージセンサの前段に挿入することを特徴とする。
 また、実施形態のイメージセンサは、二次元アレイ状に配列形成され隣接2画素がペア画素を構成する複数の画素と、各画素上の夫々に積層されるマイクロレンズと、各画素上に積層され前記マイクロレンズの集光高さに形成された第1遮光膜と、前記ペア画素を構成する第1画素,第2画素の上の前記第1遮光膜に開口され互いに画素中心に対して反対方向に偏心して設けられた遮光膜開口と、前記第1遮光膜の形成位置と異なる高さに形成され前記画素中心に対して開口する前記遮光膜開口に対し該画素中心への垂直入射光の入射を阻止し前記偏心方向の該画素の周辺への斜め入射光の入射を許容する第2遮光膜とを備えることを特徴とする。
 以上述べた実施形態によれば、良好な3D画像が撮影できるばかりでなく、良好かつ高精細な2D画像も撮影することが可能となる。
 本発明に係るイメージセンサ及び撮像装置は、良好な3D画像ばかりでなく良好で高精細な2D画像も撮像できるため、デジタルカメラ等に適用すると有用である。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年9月28出願の日本特許出願(特願2011-213126)に基づくものであり、その内容はここに参照として取り込まれる。
10,60 イメージセンサ
11,12 ペア画素
11a,12a 第1の遮光膜
11b,12b 第1の遮光膜の開口
11c,12c 第2の遮光膜
21 画素の光電変換部(PD)
27 カラーフィルタ
29 マイクロレンズ
31 シャッタ
32 撮影光学系
32b 絞り(アイリス)
32c NDフィルタ
35 CPU
M,N 変曲点

Claims (17)

  1.  二次元アレイ状に配列形成された複数の画素を持ち、隣接する前記画素が夫々ペア画素を構成し、該ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサであって、
     前記第1画素において、被写体からの光の入射角が、画素法線方向である0°と最大受光感度となる入射角θmaxaとの間の範囲内で、前記第1画素の受光感度が最大受光感度の40%から80%の間にある入射角をθcAとし、
     前記第2画素において、前記入射角が、前記画素法線方向である0°と最大受光感度となる入射角θmaxbとの間の範囲内で、前記第2画素の受光感度が最大受光感度の40%から80%の間にある入射角を-θcBとしたとき、
     前記第1画素と前記第2画素の前記入射角に対する受光感度特性が、前記θcAと前記-θcBとの間の入射角度範囲で平坦な特性となるイメージセンサ。
  2.  二次元アレイ状に配列形成された複数の画素を持ち、隣接する前記画素が夫々ペア画素を構成し、該ペア画素を構成する第1画素と第2画素の夫々の入射瞳が画素中心に対して、互いに反対方向に偏心して設けられたイメージセンサであって、
     前記第1画素において、被写体からの光の入射角が、画素法線方向である0°と最大受光感度となる入射角θmaxaとの間の範囲内のある入射角をθcAとし、
     前記第2画素において、前記入射角が、前記画素法線方向である0°と最大受光感度となる入射角θmaxbとの間の範囲内のある入射角を-θcBとしたとき、
     前記第1画素の前記入射角に対する受光感度の変化率の絶対値と、前記第2画素の前記入射角に対する受光感度の変化率の絶対値との前記入射角に対する特性が、前記入射角-θcAと前記入射角θcBとの間の入射角度範囲内で平坦となるイメージセンサ。
  3.  請求項1又は請求項2に記載のイメージセンサであって、前記平坦とは、前記第1画素の受光感度と前記第2画素の受光感度との差が、前記最大受光感度を1としたとき、0以上0.05以下の範囲であるイメージセンサ。
  4.  請求項3に記載のイメージセンサであって、前記平坦とは、前記受光感度の差が、0より大きく、0.05以下の範囲であるイメージセンサ。
  5.  請求項3に記載のイメージセンサであって、前記平坦とは、前記受光感度の差が0であるイメージセンサ。
  6.  請求項1乃至請求項5のいずれか1項に記載のイメージセンサであって、前記複数の画素は、奇数行の画素行と偶数行の画素行が1/2画素ピッチずつずらして配置され、前記奇数行の画素に3原色のカラーフィルタがベイヤ配列されると共に前記偶数行の画素に3原色のカラーフィルタがベイヤ配列され、
     同色の前記カラーフィルタを持つ斜めに隣接する前記奇数行及び前記偶数行の2画素が夫々前記ペア画素を構成するイメージセンサ。
  7.  請求項1乃至請求項5のいずれか1項に記載のイメージセンサであって、前記複数の画素の画素配列が正方格子配列であり、該正方格子配列を前記画素の配列面上で斜め45度に傾けてみたときの市松位置の画素に3原色のカラーフィルタをベイヤ配列すると共に残りの市松位置の画素に3原色のカラーフィルタをベイヤ配列し、同色の前記カラーフィルタを持つ隣接2画素が夫々前記ペア画素を構成するイメージセンサ。
  8.  請求項1乃至請求項7のいずれか1項に記載のイメージセンサと、該イメージセンサの前段に設けられた絞りとを備える撮像装置であって、平面画像を撮像するときは前記絞りを絞って前記イメージセンサへの入射光の入射角度範囲を所要の角度範囲内に制限し、3D画像を撮像するときは前記絞りを開放して入射角度範囲が前記所要の角度範囲を超える入射光を前記イメージセンサに入射させる制御手段を備える撮像装置。
  9.  請求項8に記載の撮像装置であって、前記第1画素,第2画素の夫々の最大受光感度を与える入射角度を夫々θAmax,θBmaxとし、前記第1画素の受光感度と前記第2画素の受光感度との差が前記最大受光感度の80%以上となる入射角度範囲を「θll<入射角度<θlr<0」とし、前記第2画素の受光感度と前記第1画素の受光感度との差が前記最大受光感度の80%以上となる入射角度範囲を「0<θrl<入射角度<θrr」としたとき、前記入射角度θAmaxは「θll<θAmax<θlr」、前記入射角度θBmaxは「θrl<θBmax<θrr」となる特性の前記イメージセンサを使用する撮像装置。
  10.  請求項9に記載の撮像装置であって、前記入射光の入射角度をF値で判断する撮像装置。
  11.  請求項10に記載の撮像装置であって、3D画像を撮像するとき、F値の開放値をFminとしたとき、
     -tan-1(1/(2*Fmin)<θlr
     θrl<tan-1(1/(2*Fmin))
    を満たす撮像装置。
  12.  請求項10又は請求項11に記載の撮像装置であって、F値の開放値をFminとしたとき、
     -tan-1(1/(2*Fmin))<θAmax
     θBmax<tan-1(1/(2*Fmin))
    を満たす撮像装置。
  13.  請求項10乃至請求項12のいずれか1項に記載の撮像装置であって、F値の開放値をFminとしたとき、
     -tan-1(1/(2*Fmin))<θll
     θrr<tan-1(1/(2*Fmin))
    を満たす撮像装置。
  14.  請求項9乃至請求項13のいずれか1項に記載の撮像装置であって、F値の小絞り値である最大値をFmaxとしたとき、
     tan-1(1/(2*Fmax))<θc
    を満たす撮像装置。
  15.  請求項9に記載の撮像装置であって、3D画像の撮影時には前記絞りをFtan(θrl)/2より開放側で撮影し、2D画像の撮影時には前記絞りをFtan(θc)/2よりも小絞り側で撮影する撮像装置。
  16.  請求項15に記載の撮像装置であって、前記絞りを開放して前記3D画像を撮像する場合に露出過多となるときNDフィルタを前記イメージセンサの前段に挿入する撮像装置。
  17.  二次元アレイ状に配列形成され隣接2画素がペア画素を構成する複数の画素と、各画素上の夫々に積層されるマイクロレンズと、各画素上に積層され前記マイクロレンズの集光高さに形成された第1遮光膜と、前記ペア画素を構成する第1画素,第2画素の上の前記第1遮光膜に開口され互いに画素中心に対して反対方向に偏心して設けられた遮光膜開口と、前記第1遮光膜の形成位置と異なる高さに形成され前記画素中心に対して開口する前記遮光膜開口に対し該画素中心への垂直入射光の入射を阻止し前記偏心方向の該画素の周辺への斜め入射光の入射を許容する第2遮光膜とを備えるイメージセンサ。
PCT/JP2012/065363 2011-09-28 2012-06-15 イメージセンサ及び撮像装置 WO2013046820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280047918.0A CN103843320B (zh) 2011-09-28 2012-06-15 图像传感器和成像装置
JP2013535971A JP5634613B2 (ja) 2011-09-28 2012-06-15 イメージセンサ及び撮像装置
US14/227,690 US9077977B2 (en) 2011-09-28 2014-03-27 Image sensor and imaging apparatus with sensitivity versus incident angle ranges for 2D and 3D imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011213126 2011-09-28
JP2011-213126 2011-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/227,690 Continuation US9077977B2 (en) 2011-09-28 2014-03-27 Image sensor and imaging apparatus with sensitivity versus incident angle ranges for 2D and 3D imaging

Publications (1)

Publication Number Publication Date
WO2013046820A1 true WO2013046820A1 (ja) 2013-04-04

Family

ID=47994883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065363 WO2013046820A1 (ja) 2011-09-28 2012-06-15 イメージセンサ及び撮像装置

Country Status (4)

Country Link
US (1) US9077977B2 (ja)
JP (1) JP5634613B2 (ja)
CN (1) CN103843320B (ja)
WO (1) WO2013046820A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014112002A1 (ja) * 2013-01-15 2017-01-19 オリンパス株式会社 撮像素子、及び撮像装置
CN110275606B (zh) * 2015-04-30 2022-11-29 原相科技股份有限公司 感测元件
CN107529046B (zh) * 2017-02-23 2024-03-08 思特威(深圳)电子科技有限公司 一种色彩滤镜阵列及图像传感器
CN111133283A (zh) * 2017-09-20 2020-05-08 浜松光子学株式会社 位置检测传感器和位置测量装置
CN108231811A (zh) * 2018-01-23 2018-06-29 中国电子科技集团公司第四十四研究所 能降低偏振成像器件像元间光串扰的微透镜阵列

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307751A (ja) * 1998-04-21 1999-11-05 Toshiba Corp 固体撮像装置
JP2009145401A (ja) * 2007-12-11 2009-07-02 Sony Corp 撮像素子および撮像装置
JP2009218382A (ja) * 2008-03-11 2009-09-24 Sony Corp 固体撮像装置、その製造方法および撮像装置
JP2010135844A (ja) * 2008-01-24 2010-06-17 Sony Corp 固体撮像装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3724882B2 (ja) * 1996-08-14 2005-12-07 シャープ株式会社 カラー固体撮像装置
JP2003007994A (ja) 2001-06-27 2003-01-10 Konica Corp 固体撮像素子、立体カメラ装置及び測距装置
JP4735964B2 (ja) * 2005-10-26 2011-07-27 ソニー株式会社 撮像装置
JP2007279512A (ja) 2006-04-10 2007-10-25 Fujifilm Corp 立体カメラ及び立体撮像素子
JP4725614B2 (ja) 2008-01-24 2011-07-13 ソニー株式会社 固体撮像装置
CN102099916B (zh) * 2008-07-25 2013-07-31 康奈尔大学 光场图像传感器、方法及应用
JP5246424B2 (ja) 2009-05-11 2013-07-24 ソニー株式会社 撮像装置
JP5528739B2 (ja) * 2009-08-12 2014-06-25 株式会社ジャパンディスプレイ 検出装置、表示装置、および物体の近接距離測定方法
EP2590023B1 (en) * 2010-06-30 2016-07-20 FUJIFILM Corporation Imaging device and imaging method
US10015471B2 (en) * 2011-08-12 2018-07-03 Semiconductor Components Industries, Llc Asymmetric angular response pixels for single sensor stereo
JP2013172292A (ja) * 2012-02-21 2013-09-02 Sony Corp 撮像装置及び撮像素子アレイ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307751A (ja) * 1998-04-21 1999-11-05 Toshiba Corp 固体撮像装置
JP2009145401A (ja) * 2007-12-11 2009-07-02 Sony Corp 撮像素子および撮像装置
JP2010135844A (ja) * 2008-01-24 2010-06-17 Sony Corp 固体撮像装置およびその製造方法
JP2009218382A (ja) * 2008-03-11 2009-09-24 Sony Corp 固体撮像装置、その製造方法および撮像装置

Also Published As

Publication number Publication date
CN103843320A (zh) 2014-06-04
CN103843320B (zh) 2015-11-25
JP5634613B2 (ja) 2014-12-03
JPWO2013046820A1 (ja) 2015-03-26
US9077977B2 (en) 2015-07-07
US20140210952A1 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5538553B2 (ja) 固体撮像素子及び撮像装置
JP5621056B2 (ja) カラー撮像素子
KR102556653B1 (ko) 고체 촬상 소자, 및 전자 장치
CN204697179U (zh) 具有像素阵列的图像传感器
JP5547349B2 (ja) デジタルカメラ
JP5825817B2 (ja) 固体撮像素子及び撮像装置
US9851483B2 (en) Stereoscopic imaging method and system that divides a pixel matrix into subgroups
US8988576B2 (en) Solid-state imaging device and digital camera
WO2012039180A1 (ja) 撮像デバイス及び撮像装置
WO2013046973A1 (ja) 固体撮像素子、撮像装置、及び合焦制御方法
JP5493054B2 (ja) 立体動画像及び平面動画像を撮像する撮像素子及びこの撮像素子を搭載する撮像装置
JP5629832B2 (ja) 撮像装置及び位相差画素の感度比算出方法
WO2012073729A1 (ja) 撮像装置及びその合焦位置検出方法
JP5634613B2 (ja) イメージセンサ及び撮像装置
JP5621059B2 (ja) カラー撮像素子及び撮像装置
WO2012073727A1 (ja) 撮像装置及びその合焦位置検出方法
WO2012169301A1 (ja) 立体動画像及び平面動画像を撮像する撮像素子及びこの撮像素子を搭載する撮像装置
JP2005167356A (ja) 撮像素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835203

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535971

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835203

Country of ref document: EP

Kind code of ref document: A1