WO2013046582A1 - 高温動作型燃料電池モジュール、および高温動作型燃料電池システム - Google Patents

高温動作型燃料電池モジュール、および高温動作型燃料電池システム Download PDF

Info

Publication number
WO2013046582A1
WO2013046582A1 PCT/JP2012/005844 JP2012005844W WO2013046582A1 WO 2013046582 A1 WO2013046582 A1 WO 2013046582A1 JP 2012005844 W JP2012005844 W JP 2012005844W WO 2013046582 A1 WO2013046582 A1 WO 2013046582A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
air
heat
heat exchange
sofc
Prior art date
Application number
PCT/JP2012/005844
Other languages
English (en)
French (fr)
Inventor
小林 晋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12836292.8A priority Critical patent/EP2763228A4/en
Priority to US13/989,715 priority patent/US20130244126A1/en
Publication of WO2013046582A1 publication Critical patent/WO2013046582A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • C01B2203/067Integration with other chemical processes with fuel cells the reforming process taking place in the fuel cell
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04708Temperature of fuel cell reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a cooling structure for a solid oxide fuel cell (SOFC).
  • SOFC solid oxide fuel cell
  • SOFC solid oxide fuel cells
  • the SOFC generates electric power and heat simultaneously by causing an electrochemical reaction (power generation reaction) between a fuel gas containing hydrogen and an oxidant gas such as air containing oxygen.
  • the SOFC generates a fuel gas (reformed gas) mainly composed of hydrogen by a steam reforming method in which a reforming reaction is performed using a raw material gas and water.
  • this SOFC has high power generation efficiency, but instead has a high operating temperature (for example, 750 ° C. to 1000 ° C.), so that the SOFC can be maintained by a method suitable for high-temperature SOFC in order to maintain power generation. It is required to cool.
  • a high operating temperature for example, 750 ° C. to 1000 ° C.
  • Patent Document 2 discloses a method of increasing the oxygen utilization rate (Uo) by increasing the cooling efficiency including the following steps. More specifically, in the method of Patent Document 2, a stage in which the temperature balancing member receives heat generated during the conversion of chemical energy and electrical energy from the fuel cell, and the heat of the temperature balancing member is transferred to the air via the heat exchange element. Dissipating into the stream and preheating; dissipating heat of the temperature balancing member directly into the air stream to heat the air to near the reaction temperature; and passing the heated air stream through the positive electrode.
  • Uo oxygen utilization rate
  • Patent Documents 1 and 5 There has also been proposed a fuel cell that utilizes the thermal energy of air that has taken heat from the SOFC by cooling the SOFC as energy for preheating the fuel gas or oxidant gas.
  • Patent Documents 1 and 5 a solid oxide fuel cell that reduces the temperature distribution between cells by reducing the influence on heat from a preheating section for preheating fuel gas or an oxidant gas or a reforming section for performing a reforming reaction. Modules have also been proposed (Patent Document 4).
  • JP 2004-139960 A Japanese Patent No. 3098813 JP 2006-85982 A JP 2009-93923 A JP 2002-280023 A
  • the conventional technology as described above has a problem that the oxygen utilization rate of the air supplied to the SOFC hot module cannot be improved efficiently.
  • the oxygen utilization rate of air cannot be improved to such an extent that the water balance can be easily made independent in the SOFC system.
  • Patent Documents 1 to 5 of the above-described prior art have a problem that the oxygen utilization rate of the air is not improved considering that the water balance can be easily self-supported particularly in the SOFC system. is there.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a high-temperature operating fuel cell module capable of improving the utilization efficiency of supplied air.
  • an object of the present invention is to provide a high-temperature operation type fuel cell module and a high-temperature operation type fuel cell system capable of improving the air utilization efficiency to such an extent that the water balance can be easily made independent in the system. .
  • a high temperature operation type fuel cell module includes a high temperature operation type fuel cell including a power generation unit that generates power by a power generation reaction using fuel gas and air, and a fluid for generating reformed gas. And a reformer that generates a reformed gas as the fuel gas from the fluid, and the fluid heated by the heat of the high-temperature operating fuel cell is supplied to the reformer.
  • the high-temperature operating fuel cell module according to the present invention has an effect of improving the utilization efficiency of supplied air.
  • the water balance can be easily realized in a high temperature operation type fuel cell system including the high temperature operation type fuel cell module according to the present invention.
  • FIG. 24 is a diagram showing an example of a cross-sectional shape cut out along AA in the external shape of the SOFC hot module shown in FIG.
  • sectional drawing shows an example of the cylindrical horizontal stripe
  • FIG. 19 and FIG. 20 are diagrams showing an example of a material balance in reforming efficiency and fuel / oxygen utilization rate in a cell reaction that generates 1 mol of hydrogen and 0.5 mol of oxygen to 1 mol of water.
  • the independence of the water balance in the SOFC system is closely related to the air utilization of the fuel cell and the cooling method.
  • the material balance is shown.
  • the fuel utilization rate is a value that satisfies the relationship shown in the following mathematical formula (1)
  • the oxygen utilization rate is a value that satisfies the relationship shown in the following mathematical formula (2).
  • Fuel utilization rate (Uf) (hydrogen consumed) / (hydrogen input) (1)
  • Oxygen utilization rate (Uo) (Oxygen consumed) / (Oxygen charged) (2)
  • the amount of water vapor in the combustion gas discharged from the SOFC hot module is 1.48 mol and the dew point is 55 ° C.
  • the combustion gas is cooled to 35 ° C. of the outside temperature, 1.02 mol of condensed water can be recovered, and the recovered condensed water is allocated to 0.98 mol of reformed water necessary for the reforming reaction. can do.
  • a high-temperature operating fuel cell module includes a high-temperature operating fuel cell including a power generation unit that generates power by a power generation reaction using fuel gas and air, and the fuel from the supplied fluid.
  • a reformer that generates a reformed gas as a gas, and a fluid heated by the heat of the high-temperature operating fuel cell is supplied to the reformer.
  • the high-temperature operation type fuel cell is a fuel cell having an operation temperature of about 400 ° C. or more, and examples thereof include SOFC (solid oxide fuel cell) or MCFC (molten carbonate fuel cell).
  • SOFC solid oxide fuel cell
  • MCFC molten carbonate fuel cell
  • the fluid for generating the reformed gas is, for example, water and raw material in the case of steam reforming, oxygen and raw material in the case of the partial combustion method (partial oxidation method), and oxygen in the case of autothermal reforming. Water and raw materials.
  • the fluid supplied to the reformer takes the heat of the high-temperature operating fuel cell and is heated and supplied to the reformer. That is, the heat obtained from the high-temperature operating fuel cell can be converted into vaporization energy necessary for generating a humidified raw material, for example.
  • the high temperature operation type fuel cell can be efficiently cooled by the supplied fluid, and the air for cooling the high temperature operation type fuel cell can be reduced. For this reason, the utilization efficiency of air can be raised. That is, the high temperature operation type fuel cell module according to the present invention has an effect of improving the utilization efficiency of the supplied air.
  • the high temperature operation type fuel cell before the air is used for the power generation reaction, the high temperature operation type fuel cell is cooled, A first heat exchanging section for exchanging heat between the high-temperature operating fuel cell and the air so as to heat itself by heat of the high-temperature operating fuel cell; and the fluid supplied to the reformer A second heat exchanging part that exchanges heat between the air heated by heat exchange in the first heat exchanging part and the fluid, so that the second heat exchanging part A fluid heated by heat exchange is supplied to the reformer, and air deprived of heat by heat exchange in the second heat exchange unit is supplied to the power generation unit of the high temperature operation type fuel cell. May be.
  • the first heat exchanging unit since the first heat exchanging unit is provided, heat can be taken from the high-temperature operation type fuel cell by the supplied air, the fuel cell can be cooled, and the air itself can be heated. Furthermore, since the 2nd heat exchange part is provided, while removing the heat from the heated air and heating the fluid supplied to a reformer, air can be cooled. And this cooled air can be supplied to the electric power generation part of a high temperature operation type fuel cell.
  • the high-temperature operating fuel cell can be efficiently cooled a plurality of times by the supplied air, and the utilization efficiency of air can be increased. That is, the high temperature operation type fuel cell module has an effect of improving the utilization efficiency of the supplied air.
  • the amount of air supply can be reduced compared to the conventional configuration in which excessive air is supplied as an oxidizing agent for power generation reaction that also serves to cool the SOFC. be able to.
  • the dew point temperature for obtaining the required amount of condensed water as the reformed water from the exhaust gas can be increased as compared with the conventional configuration. This can facilitate the realization of a self-supporting water balance in the high temperature operation type fuel cell system including the high temperature operation type fuel cell according to the present invention.
  • the reformed gas generated by the reformer is used as fuel in the power generation unit of the high temperature operation type fuel cell. While being used as gas, it may be configured to be used as a cooling medium for cooling the high-temperature operating fuel cell.
  • the reformed gas used as the fuel gas can also be used as a cooling medium for the high temperature operation type fuel cell, so that the high temperature operation type fuel cell can be efficiently cooled.
  • the dew point temperature for obtaining the necessary amount of condensed water as the reformed water from the exhaust gas can be increased as compared with the conventional configuration. This can facilitate the realization of a self-supporting water balance in the high temperature operation type fuel cell system including the high temperature operation type fuel cell according to the present invention.
  • heat is taken away by heat exchange in the second heat exchange section.
  • Air supplied to the reformer and deprived of heat by heat exchange in the fourth heat exchange unit is supplied to the power generation unit of the high temperature operation type fuel cell and used as an oxidant. It is configured to be used as a cooling medium for cooling the fuel cell. It may be.
  • the second heat exchange unit and the fourth heat exchanger are heated by heat exchange.
  • a fifth heat is exchanged between the fluid and the high temperature operation type fuel cell so as to further heat the fluid and cool the high temperature operation type fuel cell. You may comprise so that an exchange part may be further provided.
  • the fifth heat exchange unit since the fifth heat exchange unit is provided, heat exchange can be performed between the fluid and the high-temperature operating fuel cell in the fifth heat exchange unit.
  • the fluid that exchanges heat with the high-temperature operation fuel cell is already heated by heat exchange with the air in the second heat exchange section and the fourth heat exchange section, but the temperature of the fluid is high-temperature operation type. Compared to the heat generation temperature in the fuel cell, it is sufficiently small. For this reason, the fluid can take heat from the high-temperature operating fuel cell and cool it by heat exchange in the fifth heat exchange section. On the other hand, the fluid is further heated by the heat taken from the high temperature operation type fuel cell and supplied to the reformer.
  • giving heat to the fluid by heat generated in the high-temperature operating fuel cell is the same as giving heat to the reformer to which the fluid is supplied.
  • heat generated by the high-temperature operation fuel cell can be converted into reforming energy.
  • the high temperature operation type fuel cell module can cool the high temperature operation type fuel cell by converting the heat of the high temperature operation type fuel cell into reforming energy. Therefore, the supply amount of air can be reduced, and as a result, the utilization efficiency of air can be increased.
  • a plurality of the high temperature operation type fuel cells and a plurality of interconnectors are alternately stacked.
  • a reformer connection layer arranged between the laminated flat plate cell stack and the reformer and connecting them, and the raw material supply layer includes the second heat exchange section and the fourth heat exchange
  • a humidifying raw material is generated by heat exchange between air and fluid in the second heat exchange part and the fourth heat exchange part
  • the reformer connection layer is a laminated plate type While supplying air to the cell stack, the raw material It may be configured to supply the humidified raw material produced in the sheet layer in the reformer.
  • the laminated flat plate cell stack includes the supplied air and the high-temperature operation type fuel cell.
  • a first heat exchange part that exchanges heat between the first air flow paths a first air flow path for circulating the air may be formed on the outer periphery.
  • the stacked flat plate cell stack is formed by the second heat exchange unit.
  • a third heat exchanging section for exchanging heat between the air deprived of heat by the heat exchange and the high temperature operation type fuel cell a second air flow path for circulating the air is formed on the outer periphery. Also good.
  • the stacked flat plate cell stack includes the second heat As a fifth heat exchanging part for exchanging heat between the fluid heated by the heat exchange in the exchanging part and the fourth heat exchanging part and the high temperature operation type fuel cell, a raw material flow path for circulating the fluid It may be formed.
  • the stacked flat plate cell stack includes the power generation unit.
  • An exhaust pipe that guides the combustion exhaust gas discharged by the power generation reaction toward the reformer is used, and the reformer uses the combustion heat that burns the combustion exhaust gas guided through the exhaust pipe for the reforming reaction. May be.
  • the high temperature operation type fuel cell module performs the reforming reaction by using the combustion heat generated by the reformer combusting the combustion exhaust gas discharged by the power generation reaction in the power generation unit of the high temperature operation type fuel cell. It is configured as follows.
  • the combustion exhaust gas discharged by the power generation reaction includes a fuel and air (oxidant) that are not used in the high-temperature operation type fuel cell, and has a heat generated by the power generation reaction. It is.
  • the reforming reaction of the reformer is performed using the combustion heat obtained by burning the combustion exhaust gas. Moreover, a part of this combustion heat can be covered with the heat generated by the power generation reaction of the combustion exhaust gas. As a result, the heat generated by the power generation reaction in the high temperature operation type fuel cell can be given to the reformer using the combustion exhaust gas as a medium.
  • the heat generated in the high-temperature operation type fuel cell can be used for the reforming reaction in the reformer, the utilization efficiency of air can be improved as a result.
  • the high temperature operation type fuel cell has a metal substrate as a support.
  • Each through-hole for forming a part of each of the path and the raw material flow path may be formed.
  • the heat tradition rate is improved as compared with the case where the substrate is made of ceramic as in the conventional SOFC. For this reason, the heat of the air and the raw material (humidified raw material) flowing through the first air flow path, the second air flow path, and the raw material flow path in the laminated flat plate cell stack and the heat generated in the high temperature operation type fuel cell are efficiently heated. Can be exchanged.
  • a through hole that forms a part of each of the first air flow path, the second air flow path, and the raw material flow path is formed in the metal substrate.
  • the metal substrate is easy to be finely processed as compared with the ceramic substrate.
  • the opening shape of this through-hole can also be made into complicated shapes, such as a comb shape in which a plurality of protrusions are formed.
  • the opening shape is a comb shape, it is possible to increase the contact area between the first air flow path, the second air flow path, the air and the raw material flowing in the raw material flow path, and the laminated flat plate cell stack. . Therefore, the efficiency of heat exchange can be further improved.
  • the reformer connection layer is generated in the raw material supply layer.
  • a humidified raw material supply hole as a through hole for introducing the humidified raw material to the reformer, and a reformed gas as a through hole for supplying the reformed gas generated by the reformer to the power generation unit of the stacked flat plate cell stack
  • a supply hole, and a combustion exhaust gas supply hole as a through hole for supplying the combustion exhaust gas guided from the power generation unit of the laminated flat plate cell stack to the reformer, the reformer,
  • a humidified material receiving hole as a through hole for receiving the humidified material supplied through the humidified material supply hole, and a reformed gas discharge hole as a through hole for discharging the generated reformed gas to the reformer connection layer
  • a combustion portion for burning the combustion exhaust gas supplied through the combustion exhaust gas supply holes may be provided with a
  • the gas (humidified raw material, reformed gas, combustion exhaust gas) is received by laminating and integrating them, and through the joint surface between them. To collect heat.
  • a high temperature operation type fuel cell module includes a high temperature operation type fuel cell including a power generation unit that generates electric power by a power generation reaction using fuel gas and air, and a supplied fluid. And a reformer that generates a reformed gas that becomes the fuel gas, before the air is used for the power generation reaction, the high temperature operation type fuel cell is cooled, and the high temperature operation type fuel cell The high temperature operation type fuel cell is passed so as to heat itself by heat, and heat exchange is performed between air and fluid heated at the time of passing, thereby heating the fluid supplied to the reformer. The air heated by this heat exchange may be folded back toward the high temperature operation type fuel cell and used for cooling the high temperature operation type fuel cell.
  • a high temperature operation type fuel cell system is discharged from the high temperature operation type fuel cell module according to the first aspect or the thirteenth aspect and the high temperature operation type fuel cell module.
  • a heat exchange unit that exchanges heat between the exhaust gas and outside air and condenses moisture contained in the exhaust gas to generate condensed water, and the condensed water generated by the condensation heat exchange unit
  • the fuel cell module is supplied as reformed water.
  • the high temperature operation type fuel cell module is configured such that the fluid supplied to the reformer takes the heat of the high temperature operation type fuel cell and is heated and supplied to the reformer. That is, the heat obtained from the high-temperature operating fuel cell can be converted into vaporization energy necessary for generating a humidified raw material, for example.
  • the high temperature operation type fuel cell can be efficiently cooled by the supplied fluid, and the utilization efficiency of air can be increased. That is, the high temperature operation type fuel cell module according to the present invention has an effect of improving the utilization efficiency of the supplied air.
  • the high temperature operation type fuel cell system includes the condensation heat exchanger, so that the exhaust gas discharged from the high temperature operation type fuel cell module is exchanged with the outside air. By cooling, moisture contained in the exhaust gas can be obtained. And the reformed water required for the power generation reaction in the solid oxide root material battery can be covered by the obtained moisture.
  • the high-temperature operation type fuel cell system has an effect of improving the utilization efficiency of the supplied air.
  • the efficiency of use of the supplied air can be increased, for example, a configuration in which excess air is supplied to cool the SOFC using air that is an oxidant for the power generation reaction as in a conventional SOFC. Compared with, the supply amount of air can be reduced. For this reason, the dew point temperature for obtaining the necessary amount of condensed water from the exhaust gas as reformed water can be increased as compared with the conventional configuration, and the moisture contained in the exhaust gas at the ambient temperature without preparing cold water or the like. Can be condensed.
  • the high-temperature operation type fuel cell system according to the present invention has an effect of facilitating the realization of the water balance independence.
  • a solid oxide fuel cell SOFC
  • the high temperature operation fuel cell is not limited to this SOFC.
  • Any fuel cell may be used as long as the operating temperature is 400 ° C. or more.
  • a molten carbonate fuel cell MCFC
  • FIG. 22 is a block diagram schematically illustrating an example of a schematic configuration of a SOFC hot module 1000 according to a comparative example of the present invention.
  • the SOFC hot module 1000 includes an SOFC stack (high temperature operation type fuel cell stack, laminated plate type) in which an SOFC (high temperature operation type fuel cell) 20 having a cathode 21 and an anode (power generation unit) 22 is laminated. Cell stack) 50.
  • SOFC high temperature operation type fuel cell
  • Cell stack Cell stack
  • a portion including the cathode 21 and the anode 22 and generating power by a power generation reaction using fuel and air is defined as a power generation unit of the present invention.
  • the SOFC hot module 1000 includes a reformer 40 for steam reforming a raw material such as city gas, and a vaporizer 41 that vaporizes reformed water used for steam reforming and supplies the reformed water to the reformer 40.
  • a combustion unit 30 is provided between the SOFC 20 and the reformer 40 and the vaporizer 41 in order to cover the reforming reaction heat necessary for the reformer 40 and the vaporization heat necessary for the vaporizer 41. .
  • exhaust air (cathode offgas) exhausted from the cathode 21 and exhaust hydrogen (anode offgas) exhausted from the anode 22 are combusted, and water evaporation energy of the vaporizer 41 and reforming of the reformer 40 are improved. It is used as energy for quality reaction.
  • unreformed raw materials are also combusted in the combustion section 30 and the inside of the SOFC hot module 1000 is preheated.
  • the cathode off gas discharged from the cathode 21 of the SOFC 20 and the anode off gas discharged from the anode 22 are burned by the burner 31 (not shown in FIG. 22), and the reformer 40 and the vaporizer 41 are driven by this combustion heat. .
  • the temperature of heat required for the reforming reaction is about 650 ° C., and the amount of added water necessary for the reforming reaction is S / C (steam carbon ratio; molar ratio of water to carbon in the raw material) is the lowest. It is 2.0 or more and approximately 2.5 to 3.0, and is controlled so that these conditions are maintained, and a hydrogen-rich reformed gas is generated from the raw material and the reformed water.
  • S / C steam carbon ratio; molar ratio of water to carbon in the raw material
  • the reformed gas generated by the reformer 40 is supplied to the anode 22 of the power generation unit in the SOFC 20, and the air supplied from the blower (not shown) is supplied to the cathode 21.
  • the reaction shown in 3) is performed.
  • the exhaust gas heat including the removed heat is secondarily used as energy for vaporization, reforming, air preheating and the like.
  • the carburetor 41 and the reformer 40 are driven by the waste heat generated during SOFC power generation and the combustion heat of the surplus reformed gas, and the driven carburetor 41 and the reformer 40 drive the carburetor 41 and the reformer 40.
  • An assembly that realizes the power regeneration mechanism is referred to as an SOFC hot module 1000.
  • the exhaust gas discharged from the SOFC hot module 1000 contains fuel cell generated water and combustion generated water in the form of water vapor.
  • the SOFC 20 is further provided with a current collecting member. Electric power is drawn to the outside through the current collecting member, and the user can use this power.
  • the above-described electrochemical reaction performed in the SOFC 20 is performed in a high-temperature oxidizing atmosphere around 1000 ° C. In order to activate this electrochemical reaction, it is necessary to heat (preheat) air or the like as a reaction gas to a required temperature (several hundred degrees Celsius).
  • the SOFC hot module 1000 includes an air preheating unit 10 that heats the air sent from a blower (not shown) to the cathode 21 of the SOFC 20 by the exhaust gas heat in the SOFC hot module 1000. .
  • the external shape of the SOFC hot module 1000 is, for example, as shown in FIG.
  • FIG. 23 is a diagram showing an example of the external shape of the SOFC hot module 1000 shown in FIG.
  • the SOFC hot module 1000 includes the air preheating unit 10, the SOFC stack 50, the combustion unit 30, the reformer 40, and the vaporizer 41 described above, and these members are covered with a substantially rectangular parallelepiped exterior part. Yes.
  • This exterior part is provided with a heat insulating material, and is configured so that heat inside the exterior does not escape to the outside.
  • FIG. 24 shows, for example, the cross-sectional shape of the SOFC hot module 1000 shown in FIG. 23 cut out along the AA plane.
  • FIG. 24 is a diagram showing an example of a cross-sectional shape cut out at AA in the external shape of the SOFC hot module 1000 shown in FIG.
  • the vaporizer 41 and the reformer 40 are arranged on the center line in the cross section from above.
  • the combustion unit 30, the SOFC 20, and the air preheating unit 10 are provided so as to be symmetrical with respect to this axis.
  • a supply header 13 that receives supply of fuel gas (reformed gas) and air is provided on the bottom side of the SOFC hot module 1000 in the SOFC 20, and a discharge header 14 that discharges cathode off-gas and anode off-gas is provided on the top side.
  • the raw material and the reformed water are supplied to the vaporizer 41 through the raw material inlet 61.
  • the reformed water is vaporized, and a mixed gas of water vapor and raw material is generated and supplied to the reformer 40.
  • Hydrogen is generated by steam reforming in the reformer 40 and supplied as fuel gas (reformed gas) from the reformed gas supply port 45 to the supply header 13 of the SOFC 20.
  • air is supplied to the air preheating unit 10 through the air inlet 62.
  • the air preheated by the air preheating unit 10 is discharged from the air discharge port 9 toward the SOFC 20 and supplied to the SOFC 20 through the supply header 13.
  • combustion sections 30 are provided on both side surfaces of the reformer 40, and the anode off-gas and cathode off-gas are burned by the burner 31 here.
  • FIG. 25 is a sectional view showing an example of a cylindrical horizontal stripe type SOFC structure provided in the SOFC hot module 1000 shown in FIG.
  • the SOFC 20 When the SOFC 20 is realized as a cylindrical horizontal stripe type as shown in FIG. 25, the cells stacked in the order of the anode 22, the electrolyte 23, and the cathode 21 are configured outside the base tube body 25 that is a porous support tube, The cells are arranged with the interconnector 24 interposed therebetween.
  • the fuel gas (reformed gas) flows inside the base tube body 25, and the air flows outside the base tube body 25.
  • FIG. 1 is a conceptual diagram showing an example of a mechanism for applying heat to the fluid (raw material and reformed water) supplied to the reformer 40 of the SOFC hot module 100 according to the embodiment of the present invention to preheat the SOFC 20.
  • FIG. 1 for convenience of explanation, only the flow of the fluid (raw material, water) supplied to the reformer 40 is shown, and the flow of air supplied to the SOFC 20 constituting the SOFC stack 50 is omitted. .
  • a reformer 40 generates a reformed gas from a fluid supplied from the outside such as a raw material and water (reformed water). Is sent to the SOFC stack 50 as fuel gas. As shown in FIG. 1, the fluid (raw material, water) is preheated by the heat generated in the SOFC 20 (SOFC stack 50) before being supplied to the reformer 40.
  • the fluid supplied from the outside takes heat from the SOFC 20 (SOFC stack 50) and cools the SOFC 20 while being heated. Yes.
  • the raw material can be preheated or the reforming water can be vaporized using the heat obtained from the SOFC 20 (SOFC stack 50). That is, the heat obtained from the SOFC 20 can be converted into, for example, vaporization energy necessary for generating a humidified raw material.
  • the amount of air supplied to the SOFC 20 can be reduced.
  • FIG. 2 is a schematic diagram illustrating an example of a path through which air, raw material, and reformed water flow in the SOFC hot module 100 according to the present embodiment.
  • FIG. 3 is a schematic diagram showing an example of a schematic configuration of the SOFC hot module 100 according to the present embodiment.
  • the SOFC hot module 100 according to the present embodiment is different from the SOFC hot module 1000 according to the comparative example described above in that it has the following characteristic configuration.
  • the same members as those of the SOFC hot module 1000 according to the comparative example are denoted by the same reference numerals, and the description thereof is omitted.
  • the air supplied to the SOFC hot module 1000 is heated by the exhaust gas heat in the air preheating unit 10 and supplied to the cathode 21 of the SOFC 20. It was.
  • air is supplied to the cathode 21 through the following path.
  • the air supplied to the SOFC hot module 100 is heat-exchanged with the SOFC 20 by the first heat exchange unit 11 in the SOFC stack 50.
  • the air is heated (preheated) by the heat of the SOFC 20.
  • the SOFC 20 is cooled and the temperature of the air is increased (pre-cooling).
  • the air that has obtained heat by this heating is sent to the second heat exchange unit 12.
  • At least one of the raw material and the reformed water is supplied to the second heat exchange unit 12, and heat exchange is performed between at least one of the raw material and the reformed water and the heated air.
  • the air that has obtained heat from the SOFC 20 obtains a room for temperature by which heat is discarded by the heat exchange in the second heat exchange unit 12 and the substance is cooled. In this state, the air is supplied to the SOFC 20 and consumed as a oxidant gas in the battery reaction, and the SOFC 20 is cooled again (main cooling). That is, the air whose heat amount has been reduced by heat exchange with at least one of the raw material and the reformed water exchanges heat with the SOFC 20 while undergoing an electrochemical reaction in the power generation section of the SOFC 20.
  • At least one of the raw material and reformed water heated by heat exchange with air is supplied to the reformer 40, and steam reforming is performed by the reformer 40.
  • the reformed gas (fuel gas) generated by the steam reforming is supplied to the anode 22 in the power generation unit of the SOFC 20, and is consumed as a fuel gas by a cell reaction and the SOFC 20 is cooled.
  • the SOFC hot module 100 cools the SOFC 20 once with the air supplied from the outside. Further, the air heated by the heat of the SOFC 20 is cooled by exchanging heat with at least one of the reforming water and the raw material. The air from which part of the heat has been removed by this heat exchange is supplied as an oxidant to the cathode 21 in the power generation unit, and the SOFC 20 is cooled again as a cooling medium (main cooling). Further, the reformed gas generated by the reformer 40 is supplied as fuel gas to the anode 22 in the power generation unit and cools the SOFC 20 as a cooling medium.
  • the combustion exhaust gas (cathode off-gas and anode off-gas) discharged after the electrochemical reaction in the SOFC 20 is heated by the power generation heat generated in the power generation unit of the SOFC 20, and the combustion unit 30 Led to.
  • the combustion exhaust gas is burned in the combustion section 30 and the reforming reaction in the reformer 40 is performed by the combustion heat.
  • the combustion exhaust gas discharged from the SOFC 20 includes unused fuel gas and air (oxygen), and the unused fuel gas and air can be burned in the combustion unit 30.
  • a part of waste heat generated by power generation in the SOFC 20 can be transferred to vaporization energy and reforming energy, and the amount of air necessary for cooling the cell can be reduced accordingly.
  • the SOFC hot module 100 includes an outer end header (raw material supply layer) 15 provided with a vaporizer 41 and a reformer 40. It arrange
  • FIG. 4 is a schematic diagram illustrating an example of a path through which air and fluid (raw material and reformed water) flow in the SOFC hot module 100 according to the present embodiment.
  • the air that has obtained heat from the SOFC 20 in each of the first heat exchange unit 11 and the third heat exchange unit 17 discards heat by the heat exchange in each of the second heat exchange unit 12 and the fourth heat exchange unit 18 and removes the substance. Get room for cooling. Then, the air is finally supplied to the SOFC 20 in a state where the temperature for cooling the SOFC 20 is obtained, and is consumed in the battery reaction as an oxidant gas, and the SOFC 20 is cooled again (main cooling). .
  • the SOFC hot module 100 once cools the SOFC 20 in the SOFC stack 50 with the air supplied from the outside. Further, the air heated by the heat of the SOFC 20 in the SOFC stack 50 is cooled by exchanging heat with the fluid (at least one of the reforming water and the raw material) in the second heat exchange unit 12. The air from which part of the heat has been removed by the heat exchange in the second heat exchange unit 12 is led to the SOFC stack 50 again, and the SOFC 20 in the SOFC stack 50 is further increased by the heat exchange performed in the third heat exchange unit 17. Cooling. At this time, the air heated by the heat of the SOFC 20 in the SOFC stack 50 is guided to the fourth heat exchange unit 18. The air exchanges heat with the fluid (at least one of the reforming water and the raw material) in the fourth heat exchange unit 18 and is cooled again.
  • the air from which part of the heat has been removed is supplied as an oxidant to the cathode 21 in the power generation unit, and the SOFC 20 is cooled again as a cooling medium (main cooling).
  • the fluid that has exchanged heat with air in the fourth heat exchanging unit 18 uses the heat of the air to vaporize the reforming water to become a humidified raw material (humidified raw material). Supplied.
  • a reformed gas is generated from the humidified raw material, and the reformed gas is supplied as a fuel gas to the anode 22 in the power generation unit, and the SOFC 20 is cooled as a cooling medium.
  • a part of the waste heat generated by the power generation in the SOFC 20 can be transferred to the energy for preheating the fluid, so that the amount of air necessary for cooling the SOFC 20 can be reduced by that amount. it can.
  • heat exchange between the SOFC 20 and the air is performed by the first heat exchange unit 11 and the second heat exchange unit 17, and the air heated by these heat exchanges is transferred to the third heat exchange unit 12 and the fourth heat exchange unit 12.
  • the heat obtained from the SOFC 20 is transferred to the fluid by heat exchange with the fluid in the heat exchange unit 18. That is, part of the waste heat generated by the power generation in the SOFC 20 can be efficiently transferred to the energy for preheating the fluid.
  • FIG. 5 is a schematic diagram illustrating an example of a path through which air and fluid (raw material and reformed water) flow in the SOFC hot module 100 according to the present embodiment.
  • the SOFC hot module 100 performs heat exchange with air in the second heat exchange unit 12, and the heated fluid is guided to the SOFC stack 50.
  • the fifth heat exchange unit 19 in the SOFC stack 50 exchanges heat between the fluid guided to the SOFC stack 50 and the SOFC 20 in the SOFC stack 50, and then is supplied to the reformer 40. It is different in point.
  • the raw material (humidified raw material) is obtained by evaporating the reforming water using the heat of the heated air that is deprived of heat from the SOFC 20. ) Is generated.
  • the SOFC hot module 100 according to the modified example 2 has a configuration in which the generated humidified material further deprives the heat of the SOFC 20 in the SOFC stack 50 and preheats the humidified material.
  • a humidified raw material can be used in addition to the air described above as a fluid for directly cooling the SOFC 20.
  • the SOFC hot module 100 is configured to be able to use the air supplied to the power generation unit of the SOFC 20 and the humidified raw material as a fluid for directly cooling the SOFC 20. Further, the combustion exhaust gas (anode off gas and cathode off gas) discharged from the SOFC 20 is combusted in the combustion unit 30 and the reformer 40 can be driven by the heat. Therefore, the SOFC hot module 100 means that the power generation waste heat of the SOFC 20 can be operated while being converted into vaporization energy and reforming energy. Therefore, the amount of air supplied from the outside excessively for cooling the SOFC 20 can be reduced, and the partial pressure of water vapor (dew point) in the exhaust can be increased, and as a result, the water balance can be made independent easily.
  • FIG. 6 is a schematic diagram illustrating an example of a path through which air and fluid (raw material and reformed water) flow in the SOFC hot module 100 according to the present embodiment.
  • the SOFC hot module 100 according to Modification 3 is a combination of the configuration of Modification 1 and the configuration of Modification 2 described above. That is, in the configuration according to the SOFC hot module 100 of the first modification, the fluid that has exchanged heat with air in the fourth heat exchange unit 18 is supplied to the reformer 40 as a humidified raw material, but the SOFC hot module according to the third modification.
  • the module 100 is different in that it is led to the SOFC stack 50.
  • the SOFC stack 50 is also different in that the fifth heat exchange unit 19 performs heat exchange between the humidified raw material and the SOFC 20, and further supplies the heated humidified raw material to the reformer 40.
  • FIG. 7 is a front view showing an example of a specific configuration of the SOFC hot module 100 according to the present embodiment.
  • FIG. 8 is a side view showing an example of a specific configuration of the SOFC hot module 100 according to the present embodiment.
  • the front side of the sheet is the front surface of the SOFC hot module 100, and the opposite surface is the back surface of the SOFC hot module 100.
  • FIG. 7 is a front view of the SOFC hot module 100
  • FIG. 8 is a side view thereof.
  • illustration is abbreviate
  • a part of the left-hand side of the SOFC hot module 100 is shown as being partially separated, but actually, the laminated members are fixed by the fastening member 60 so as to contact each other.
  • the SOFC stack 50 according to this embodiment will be described as a flat plate type cell stack formed by stacking rectangular SOFCs 20. Therefore, as shown in FIG.
  • the SOFC hot module 100 including the flat plate-type SOFC stack 50 has a rectangular parallelepiped shape in which the side surface shape is substantially square and the front shape is substantially rectangular.
  • the shape of the SOFC stack 50 is not limited to this flat plate stack type, but may be another type such as a cylindrical type.
  • the SOFC stack 50 includes a plurality of SOFCs 20 and a plurality of interconnectors 24, a cathode end interconnector 241, and an anode end interconnector 242.
  • the plurality of SOFCs 20 and the plurality of interconnectors 24 are alternately arranged, the cathode end interconnector 241 is disposed at the cathode end portion, and the anode end interconnector 242 is disposed at the anode end portion.
  • the cathode end interconnector 241, SOFC 20, interconnector 24, SOFC 20, interconnector 24... SOFC 20 and anode end interconnector 242 are stacked in this order from the cathode side (left side in FIG. 7) in FIG.
  • the cathode end interconnector 241, SOFC 20, interconnector 24, SOFC 20, interconnector 24... SOFC 20 and anode end interconnector 242 are stacked in this order from the cathode side (left side in FIG. 7) in FIG.
  • the outer end header 15, the cathode end interconnector 241, the SOFC 20, the interconnector 24, and the anode end interconnector 242 are vertically oriented so as to be symmetrical with respect to the reformer 40 disposed in the center. Has been placed.
  • the left and right end portions (outer end portions) of the SOFC hot module 100 are the positive electrode, that is, the cathode side.
  • FIG. 9 is a diagram illustrating an example of a flow of air flowing through the SOFC hot module according to the present embodiment.
  • illustration is abbreviate
  • a part of the left-hand side of the SOFC hot module 100 is shown as being partially separated, but actually, the laminated members are fixed by the fastening member 60 so as to contact each other.
  • the reformer connection header 16 is connected to the reformer connection header 16 via an air inlet 62 (not shown in FIG. 9; see FIG. 16 described later) provided on the back side of the reformer connection header (reformer connection layer) 16.
  • Air is supplied to the air preheating first manifold 151.
  • the air passes through the air preheating first manifold 151 at a common position provided in each of the anode end interconnector 242, the SOFC 20..., The interconnector 24.
  • the formed first folded portion 154 is reached.
  • the air passing through the air preheating first manifold 151 deprives the heat of the SOFC 20 and cools the SOFC 20, while the air is heated by the deprived heat. Then, the first folded portion 154 of the outer end header 15 is folded so as to be guided from the air preheating first manifold 151 to the air preheating second manifold 152.
  • the folded air passes through the air preheating second manifold 152 at a common position provided in each of the cathode end interconnector 241, SOFC 20..., Interconnector 24.
  • the second turn-up portion 155 of the device connection header 16 is reached.
  • the air that has reached the second folded portion 155 is folded so as to be guided to the air preheating third manifold 153. Then, it again passes through the air preheating third manifold 153 at the common position provided in each of the anode end interconnector 242, the SOFC 20..., The interconnector 24.
  • the third folded portion 156 is reached. Then, the third folded portion 156 is folded so as to be guided to the cathode insertion manifold 211.
  • the air introduced into the cathode inlet manifold 211 is supplied to the cathode end interconnector 241 and the interconnector 24 (cathode channels 213a and 213b described later), and the cathode 21 of the SOFC 20 (not shown in FIG. 9, see FIG. 13 described later). ) Oxygen is consumed. At the same time, the SOFC 20 is cooled by the air introduced into the cathode inlet manifold 211 and exhausted to the cathode outlet manifold 212. All the oxygen consumed air finally passes through the anode end interconnector 242, and is connected to the reformer. It is discarded in the off gas mixing section 260 (not shown in FIG. 9, refer to FIG. 16 described later) of the header 16.
  • the air is heated while cooling the SOFC stack 50 in each preheating manifold of the SOFC stack 50 and reaches the outer end header 15 each time. Then, the air throws away heat to the outer end header 15 through heat exchange fins or the like provided in the folded portion (the first folded portion 154 and the third folded portion 156) of the outer end header 15, and is cooled by itself. After the cooling capacity is recovered, the SOFC stack 50 is again cooled.
  • FIG. 10 is a diagram illustrating an example of the flow of the raw material and the reforming water flowing through the SOFC hot module 100 according to the present embodiment.
  • illustration is abbreviate
  • a part of the left-hand side of the SOFC hot module 100 is shown as being partially separated, but actually, the laminated members are fixed by the fastening member 60 so as to contact each other.
  • the raw material and the reformed water are supplied to the outer end header 15 through the raw material inlet 61.
  • the raw material and the reforming water are supplied to a raw material preheating manifold 157 described later.
  • the reformed water is dropped onto a vaporizer 41 (see FIG. 11 described later) provided in the outer end header 15 and is vaporized by heat taken from the air supplied to the outer end header 15 here. That is, the heat for vaporizing the reforming water is the heat obtained from the SOFC 20 as air flows through each of the above-described preheating manifolds.
  • the heat removed from the SOFC 20 by the air is obtained through the heat exchange fins provided in the first folded portion 154 and the third folded portion 156, and the reformed water is vaporized.
  • the vaporized reforming water and the raw material are mixed to obtain a humidified raw material.
  • the humidified material is circulated through a common material preheating manifold (raw material flow path) 157 provided in each of the cathode end interconnector 241, SOFC 20..., Interconnector 24. It reaches a raw material preheating manifold 157 (humidified raw material receiving hole) f (not shown in FIG. 10), which will be described later, of the mass connection header 16.
  • the humidified raw material is steam-reformed to be a reformed gas containing about 80% hydrogen, which is circulated through the anode inlet manifold 221 via the reformer connection header 16, and the SOFC. Introduced into the stack 50.
  • the reformed gas (fuel) introduced into the SOFC stack 50 is supplied to each of the anode end interconnector 242 and the interconnector 24 where hydrogen is consumed at the anode 22 of the SOFC 20.
  • the reformed gas cools the SOFC 20 and is discharged to the anode outlet manifold (discharge pipe) 222.
  • the reformed gas that has consumed hydrogen finally passes through the anode outlet manifold 222 of the anode end interconnector 242, and reforms. Discarded in the off-gas mixing section 260 (see FIG. 16 described later) of the container connection header 16 described later.
  • anode off-gas and the cathode off-gas are mixed in the off-gas mixing unit 260 to become a reformed mixture, and are supplied to the combustion unit 30 of the reformer 40 from the off-gas manifold (combustion exhaust gas supply hole) 270.
  • the SOFC hot module 100 is characterized in that the reformed water is vaporized by the preheated air that has cooled the SOFC 20.
  • the first heat exchange unit 11 described above is realized as an air preheating first manifold (first air flow path) 151.
  • the third heat exchanging portion 17 described above is realized as an air preheating second manifold (second air flow path) 152 and an air preheating third manifold (second air flow path) 153.
  • the second heat exchanging unit 12 described above is realized by the first folding unit 154 that performs heat exchange with air
  • the fourth heat exchanging unit 18 is implemented by the third folding unit 156. Heat exchanged with air in the second heat exchange unit 12 and the fourth heat exchange unit 18 heats the vaporizer 41 and, as a result, heats the fluid (raw material and reforming water). Generate humidified raw material.
  • heat exchange with the SOFC 20 is performed when the air passes through the air preheating first manifold 151, the air preheating second manifold 152, and the air preheating third manifold 153. .
  • the SOFC 20 is cooled by this heat exchange, and the air itself is heated (preheated).
  • heat obtained by heat exchange with the heated air is given to the vaporizer 41 via the first folded portion 154 and the third folded portion 156.
  • the vaporizer 41 vaporizes the reforming water supplied from the outside, and generates a mixed gas (humidified raw material) of water vapor and the raw material.
  • heat is exchanged between the air and the vaporizer 41 via the first folding unit 154 (second heat exchange unit 12) and the third folding unit 156 (fourth heat exchange unit 18). And the vaporizer 41 was heated.
  • the carburetor 41 itself that exchanges heat with air through the first turn-up section 154 (second heat exchange section 12) and the third turn-up section 156 (fourth heat exchange section 18). It is not limited. For example, it may be a manifold for circulating a raw material provided for the purpose of preheating the raw material.
  • the raw material and reforming From the viewpoint of water, a part of the reformed vaporization energy is supplied from heated air to vaporize the reformed water.
  • the raw material and the reforming water are further preheated before being supplied to the reformer 40, and a part of the reforming energy can be covered. Good.
  • the outer end header 15, the cathode end interconnector 241, the SOFC 20, the interconnector 24, and the anode end interconnector 242 each have a surface disposed on the left end side in FIG.
  • the surface arranged on the right end side is the back surface.
  • the surface forming the front or back surface of the SOFC hot module 100 is defined as a side surface.
  • FIG. 11 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the outer end header 15 configuring the SOFC hot module 100 according to the present embodiment.
  • the outer end header 15 has a plate-like shape having a square surface as shown in the front or back view of FIG. On the upper surface of the outer end header 15, a raw material inlet 61 for receiving the reforming water and the raw material is provided.
  • the raw material preheating manifold 157a is disposed on the upper surface side
  • the air preheating first manifold 151a is disposed on the side portion disposed on the rear surface side of the SOFC hot module 100
  • the air preheating is disposed on the bottom surface side.
  • Air preheating third manifolds 153a are formed on the side portions where the second manifolds 152a are disposed on the front side of the SOFC hot module 100, respectively.
  • these preheating manifolds are simply referred to as a raw material preheating manifold 157, an air preheating first manifold 151, an air preheating second manifold 152, and an air preheating third manifold 153. Shall.
  • the shape of these preheating manifolds is made into an opening shape (comb shape) in which a plurality of protrusions are formed, such as a cathode end interconnector 241 shown in FIG. It is preferable to have a structure that increases the contact area with the raw material. That is, such a structure that increases the contact area as a comb shape is a preferable shape as long as it does not cause a significant increase in pressure loss.
  • These four preheating manifolds are provided at common positions of the respective members, and these members are stacked to form a through hole extending in the stacking direction.
  • a vaporizer 41 made of, for example, steel wool or foam metal is provided at the lower portion of the raw material preheating manifold 157a.
  • the humidified raw material containing the reforming water vaporized by the vaporizer 41 passes from the outer end header 15 toward the reformer 40 and passes through the raw material preheating manifold 157 of other members stacked.
  • the air preheating first manifold 151, the air preheating second manifold 152, and the air preheating third manifold 153 are also extended in the stacking direction by stacking other members from the outer end header 15 toward the reformer 40. A through hole is formed. Before being supplied to the cathode 21, air is introduced into these through holes, and the air is preheated by the heat of the SOFC 20, and at the same time, the heat is taken from the SOFC 20 to perform cooling.
  • the upper surface of the air preheating second manifold 152a extends in the same direction as the air preheating second manifold 152a, and one end thereof is connected to the end of the air preheating first manifold 151a.
  • a first folded portion 154 is formed. As described above, the first folded portion 154 is connected to the air preheating first manifold 151a at one end and is connected to the air preheating second manifold 152a at the bottom side. The first folded portion 154 can guide the air that has passed through the air preheating first manifold 151 to the air preheating second manifold 152.
  • the first folded portion 154 is provided with a plurality of heat exchange fins in the horizontal direction.
  • a third folded portion 156 is formed in a region surrounded by the four manifolds and in a region at a substantially central portion of the outer end header 15.
  • the third folded portion 156 is formed so as to connect between the air preheating third manifold 153a and the cathode inlet manifold 211a, and guides the air flowing through the air preheating third manifold 153a to the cathode inlet manifold 211a. be able to.
  • the third folded portion 156 is provided with a plurality of heat exchange fins extending in the horizontal direction.
  • FIG. 12 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the cathode end interconnector 241 constituting the SOFC hot module 100 according to the present embodiment.
  • the cathode end interconnector 241 also serves as a current collecting member, and a positive electrode is provided on the upper surface thereof. Since the cathode end interconnector 241 also serves as a current collecting member in this way, the cathode end interconnector 241 is designed to have a larger side surface thickness than a normal interconnector 24 (see, for example, FIG. 7).
  • various manifolds air preheating first manifold 151b, air preheating second manifold 152b, air preheating third manifold 153b, and raw material preheating manifold 157b are provided, as with the outer end header 15.
  • these are formed as through holes of the same shape penetrating to the back surface at positions corresponding to the various manifolds provided on the outer end header 15 at the time of lamination.
  • a cathode-injection manifold 211b is formed which is arranged inside four manifolds surrounding the outer periphery and extends in the vicinity of the air preheating first manifold 151b and substantially in parallel therewith.
  • the cathode insertion manifold 211b penetrates from the front surface to the back surface of the cathode end interconnector 241.
  • the back surface of the cathode end interconnector 241 is formed with an air preheating first manifold 151b, an air preheating second manifold 152b, an air preheating third manifold 153b, and a raw material preheating manifold 157b on the outer periphery thereof in the same manner as the front surface.
  • a cathode-in manifold 211b is also formed in the same manner as the surface.
  • a cathode outlet manifold 212a extending in the vicinity of the air preheating third manifold 153b and extending substantially parallel thereto is formed on the rear surface. As shown in FIG. 12, the cathode outlet manifold 212a is provided at a position facing the cathode inlet manifold 211b, and a cathode channel 213a formed by a large number of pores is formed therebetween.
  • FIG. 13 is a diagram illustrating an example of a front surface, a side surface, and a back surface of the SOFC 20 constituting the SOFC hot module 100 according to the present embodiment.
  • the SOFC 20 has a cathode 21 on the front surface and an anode 22 on the back surface with an electrolyte interposed therebetween.
  • the cathode 21 and the anode 22 realize the heat generating portion of the present invention.
  • the air preheating first manifold 151c, the air preheating second manifold 152c, the air preheating third manifold 153c, and the raw material preheating manifold 157c are arranged on the outer periphery in the same manner as the adjacent cathode end interconnector 241 (see FIG. 12). Is provided. These are formed as through-holes of the same shape penetrating to the back surface at positions corresponding to various manifolds provided in the adjacent cathode end interconnector 241 when stacked.
  • the SOFC 20 penetrates to the back surface at a position corresponding to each of the cathode inlet manifold 211b and the cathode outlet manifold 212a formed on the back surface of the cathode end interconnector 241 (see FIG. 12).
  • a cathode inlet manifold 211c and a cathode outlet manifold 212b are formed as through holes having the same shape.
  • an anode inlet manifold 221a is formed in the vicinity of the air preheating second manifold 152c and extending substantially in parallel therewith, and this anode inlet manifold 221a penetrates from the front surface to the back surface.
  • an anode outlet manifold 222a is formed in the vicinity of the raw material preheating manifold 157c and extending substantially in parallel therewith, and this anode outlet manifold 222a penetrates from the front surface to the back surface.
  • the cathode inlet manifold 211c and the cathode outlet manifold 212b are arranged so as to face each other so as to sandwich the cathode 21 in the horizontal direction on the surface of the SOFC 20. Further, the anode inlet manifold 221a and the anode outlet manifold 222a are arranged at positions facing each other so as to sandwich the cathode 21 in the vertical direction on the surface of the SOFC 20.
  • the flow of the supplied air flows on the surface of the SOFC 20 (cathode 21) from the cathode inlet manifold 211c toward the cathode outlet manifold 212b.
  • the flow of the reformed gas (hydrogen) obtained by reforming the raw material flows from the anode inlet manifold 221a toward the anode outlet manifold 222a on the back surface of the SOFC 20.
  • the reformed gas is supplied to the anode 22 through the pores of the substrate 250.
  • the SOFC 20 is a metal support cell (MSC) in which the substrate 250 is formed of a porous metal (a porous ferritic stainless steel plate).
  • MSC metal support cell
  • the SOFC 20 can be a general ESC (Electrolyte-Support Cell) or ASC (Anode-Support Cell: anode support type).
  • the SOFC 20 employs the MSC as described above.
  • a substrate 250 is formed of a porous ferritic stainless steel plate (for example, Crofer22APU, a powder sintered body manufactured by Thyssenkrupp), and a catalyst and an electrolyte are laminated between the cathode 21 and the anode 22 shown in FIG. And aggregate.
  • the above-described various manifolds can form a structure of an arbitrary shape provided on the substrate 250 with good workability.
  • MDC is formed by depositing a catalyst or an electrolyte in a thickness of several tens of microns in a base material thickness of 1 mm, for example.
  • the thermal properties are metals with extremely high thermal conductivity. For this reason, even if the heat generating part is inside the SOFC 20, heat can be efficiently transmitted to the entire SOFC 20. Moreover, even if there is a cooling structure (heat exchange structure) only at the outer periphery of the SOFC 20, it has a suitable characteristic that the entire SOFC 20 can be cooled.
  • FIG. 14 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the interconnector 24 constituting the SOFC hot module 100 according to the present embodiment.
  • the interconnector 24 includes an air preheating first manifold 151d, an air preheating second manifold 152d, an air preheating third manifold 153d, and a raw material preheating manifold 157d as in the adjacent SOFC 20 (see FIG. 13). Is provided. These are formed as through holes of the same shape penetrating to the back surface at positions corresponding to the various manifolds provided on the outer periphery of the adjacent SOFC 20 during lamination.
  • a cathode inlet manifold 211d a cathode outlet manifold 212c, an anode inlet manifold 221b, and an anode outlet manifold 222b are formed.
  • An anode channel 223a composed of a plurality of pores is formed in a region surrounded by the cathode inlet manifold 211d, cathode outlet manifold 212c, anode inlet manifold 221b, and anode outlet manifold 222b on the surface of the interconnector 24.
  • the anode flow path 223a is formed so that pores continue from the anode inlet manifold 221b to the anode outlet manifold 222b.
  • a cathode channel 213b composed of a plurality of pores is formed in a region surrounded by the cathode inlet manifold 211d, the cathode outlet manifold 212c, the anode inlet manifold 221b, and the anode outlet manifold 222b. Is formed.
  • the cathode channel 213b is formed so that pores are continuous from the cathode inlet manifold 211c to the cathode outlet manifold 212c.
  • FIG. 15 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the anode end interconnector 242 constituting the SOFC hot module 100 according to the present embodiment.
  • the upper surface of the anode end interconnector 242 is illustrated. Is provided with a negative terminal terminal member.
  • the anode end interconnector 242 is designed to be thicker than the interconnector 24 since it also serves as a current collecting member (see, for example, FIG. 7).
  • an air preheating first manifold 151e, an air preheating second manifold 152e, an air preheating third manifold 153e, and a raw material preheating manifold 157e are provided so as to penetrate to the back surface of the outer periphery of the anode end interconnector 242.
  • Each of these manifolds has the same air preheating first manifold 151c, air preheating second manifold 152c, air preheating third manifold 153c, and raw material preheating manifold 157c of the adjacent SOFC 20 (see FIG. 13) at the positions corresponding to each other when stacked. It is provided as a through hole having a shape.
  • an anode inlet manifold 221c and an anode outlet manifold 222c are formed at positions corresponding to the anode inlet manifold 221a and anode outlet manifold 222a of the adjacent SOFC 20 when stacked.
  • These manifolds have the same shape as the anode inlet manifold 221a and the anode outlet manifold 222a, and are formed so as to penetrate from the front surface to the back surface of the anode end interconnector 242.
  • a cathode outlet manifold 212d having the same shape as these manifolds is formed at a position corresponding to the cathode outlet manifold 212b of the adjacent SOFC 20 when stacked.
  • the cathode outlet manifold 212d has a substantially upper half range extending from the front surface to the rear surface, but a substantially lower half portion does not penetrate from the front surface to the rear surface, forming a groove. (Counterbore).
  • an off-gas manifold 270 see FIG. 16 described later
  • the cathode off-gas is supplied to the combustion unit 30 only from the through portion of the cathode outlet manifold 212d.
  • FIG. 16 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the reformer connection header 16 configuring the SOFC hot module 100 according to the present embodiment.
  • the reformer connection header 16 is a laminated member that connects the SOFC stack 50 and the reformer 40 as shown in FIG. 7 described above, for example. As shown in FIG. 16, the reformer connection header 16 is provided with an air inlet 62 on the side surface on the back side. The air supplied from the air inlet 62 flows through the air preheating first manifold 151 penetrating toward the outer end header 15 and is preheated by the heat of the SOFC 20 during this circulation.
  • the reformer connection header 16 is formed with an air preheating first manifold 151f, an air preheating second manifold 152f, a second folded portion 155, and a raw material preheating manifold (humidified raw material supply hole) 157f on the outer periphery of the surface thereof.
  • An air preheating first manifold 151f having the same shape is formed at a position corresponding to the air preheating first manifold 151e of the adjacent anode end interconnector 242 (see FIG. 15) when stacked.
  • An air preheating second manifold 152f having substantially the same shape is formed at a position corresponding to the air preheating second manifold 152e of the anode end interconnector 242 when stacked.
  • a second folded portion 155 having substantially the same shape is formed at a position corresponding to the air preheating third manifold 153e of the anode end interconnector 242 when stacked.
  • the end portion of the second folded portion 155 and the end portion of the air preheating second manifold 152f are connected. For this reason, the air flowing through the air preheating second manifold 152f is guided to the air preheating third manifold 153e of the adjacent anode end interconnector 242 by the second folded portion 155.
  • a raw material preheating manifold 157 f having the same shape is formed at a position corresponding to the raw material preheating manifold 157 e of the anode end interconnector 242 when stacked.
  • the anode input manifold (reformed gas supply hole) 221d and the anode output at the positions corresponding to the anode input manifold 221c and the anode output manifold 222c of the anode end interconnector 242 are stacked.
  • a manifold 222d is formed. Only the anode inlet manifold 221d penetrates to the back surface in order to receive the fuel gas generated by the reforming reaction from the reformer 40.
  • a cathode outlet manifold 212e having the same shape as this penetrating part shape is formed at a position corresponding to the through part in the cathode outlet manifold 212d of the anode end interconnector 242 when stacked.
  • the off-gas manifold 270 is formed so as to penetrate to the back surface at a position corresponding to the non-penetrating portion in the cathode outlet manifold 212d of the anode end interconnector 242 when stacked.
  • Each of the anode outlet manifold 222d, the cathode outlet manifold 212e, and the offgas manifold 270 is connected via an offgas mixing section 260 provided in the central portion of the reformer connection header 16.
  • the anode off-gas discharged from the anode outlet manifold 222d and the cathode off-gas discharged from the cathode outlet manifold 212d are mixed in the off-gas mixing unit 260 and discharged toward the combustion unit 30 via the off-gas manifold 270. .
  • the anode outlet manifold 222d and the off-gas mixing unit 260 are provided between the offgas manifold 270 and the offgas mixing unit 260.
  • the backfire prevention member 261 can be realized by a backfire prevention net such as a metal net or a punching metal.
  • FIG. 17 is a diagram illustrating an example of the front surface, the side surface, and the back surface of the reformer 40 configuring the SOFC hot module 100 according to the present embodiment.
  • an igniter 34 which is an electronically controlled ignition device, is provided in place of the burner 31 on the cathode side on the front side of the reformer 40. Further, an exhaust port 63 for sending the exhaust gas in the SOFC hot module 100 to the outside is provided on the cathode side of the rear side surface.
  • the combustion unit 30 is formed on the front surface side of the reformer 40, and the reforming reaction is performed on the back surface side of the reformer 40 by the combustion heat.
  • FIG. 17 on the surface of the reformer 40, an outer peripheral portion on the upper surface side, that is, a position corresponding to the raw material preheating manifold 157f (see FIG. 16) of the adjacent reformer connection header 16 at the time of stacking.
  • the raw material preheating manifold 157g is formed to penetrate to the back surface.
  • anode-side manifold (reformed gas discharge hole) 221e penetrates to the back surface at the lower outer peripheral portion on the surface of the reformer 40, that is, at the position corresponding to the anode-filled manifold 221d of the reformer connection header 16 during lamination. It is formed as follows.
  • the raw material preheating manifold 157g and the anode inlet manifold (reformed gas discharge hole) 221e are horizontally extended between the front side and the back side of the reformer 40 so as to be parallel to each other. Between these, a plurality of combustion catalysts 33 are arranged in an inverted S shape when viewed from the surface. And the combustion catalyst holding member 32 for fixing these combustion catalysts 33 is provided in the right end part (front side) in FIG. 17 of the part in which these combustion catalysts 33 are arrange
  • the reformed mixture (anode offgas and cathode offgas) discharged from the offgas manifold 270 (see FIG. 16) of the adjacent reformer connection header 16 is ignited by the igniter 34 to heat the combustion catalyst 33. It is configured as follows.
  • the reforming catalyst 43 is disposed in a substantially S shape from the raw material preheating manifold 157g to the anode inlet manifold 221e, thereby forming a reforming portion 44.
  • a reforming catalyst holding member 42 is provided at the boundary between the reforming portion 44 and the anode inlet manifold 221e to prevent the reforming catalyst 43 from moving and closing the anode inlet manifold 221e.
  • the reforming catalyst holding member 42 can be realized by punching metal or the like, for example.
  • the raw material supplied through the raw material preheating manifold 157g generates hydrogen by the reforming reaction in the heated reforming section 44, and is introduced as reformed gas to the anode 22 of the SOFC 20 of the SOFC stack 50 via the anode inlet manifold 221e. It is burned.
  • reaction gas flow paths such as the cathode inlet manifold 211, the cathode outlet manifold 212, the anode inlet manifold 221 and the anode outlet manifold 222 are provided in the SOFC stack 50 as these manifolds.
  • a plurality of air preheating manifolds (the air preheating first manifold 151, the air preheating second manifold 152, the air preheating second, and the like are provided on the outer periphery of these manifolds. 3 manifold 153) and a raw material preheating manifold 157 are provided.
  • These further formed preheating manifolds can take heat away from the SOFC stack 50 as air or raw material passes through them. On the other hand, the air or the raw material is heated by the heat of the SOFC stack 50.
  • Adjacent reformer connection header 16 and reformer 40 are mechanically connected by fastening fastening member 60.
  • the reformed mixture (cathode offgas and anode offgas) discharged from the offgas manifold 270 of the reformer connection header 16 is supplied to the combustion unit 30 of the reformer 40.
  • the humidified raw material discharged from the raw material preheating manifold 157f of the reformer connection header 16 is supplied to the reforming unit 44 via the raw material preheating manifold 157g of the reformer 40 (see FIG. 17).
  • the reformer 40 is a kind of heat exchanger in which the combustion unit 30 and the reforming unit 44 as a whole are interposed through thin partition walls, and the combustion energy of the reformed mixture burned in the combustion unit 30.
  • the reforming is performed by the facing reforming unit 44.
  • the reformed air-fuel mixture introduced from the lower end of the combustion section 30 is ignited by the igniter 34 at the start of SOFC operation and is introduced into the combustion catalyst 33 in the combustion section.
  • this ignition operation becomes unnecessary when the reformer temperature is stabilized and catalytic combustion automatically occurs.
  • the humidified raw material introduced to the upper end side of the reforming unit 44 through the raw material preheating manifold 157g is sequentially steam reformed on the reforming catalyst 43 to generate hydrogen.
  • the generated hydrogen is supplied as reformed gas from the anode inlet manifold 221e to the reformer connection header 16, and the subsequent flow is as described above.
  • the reformer connection header 16 and the reformer 40 shown in FIGS. 16 and 17 can be easily manufactured by grinding a metal block. Alternatively, it can be easily manufactured by powder metallurgy technology in which metal powder is pressed and sintered. In the case of mass production in consideration of the manufacturing cost, the latter production method is preferable. Production of the outer end header 15, the cathode end interconnector 241, the interconnector 24, and the anode end interconnector 242, which are other laminated members, is the same as that of the reformer connection header 16 and the reformer 40.
  • the reformer connection header 16 and the reformer 40 shown in FIG. 16 and FIG. 17 have a relatively wide contact surface, whereby a direct connection from the reformer connection header 16 to the reformer 40 is achieved. Heat transfer is possible. This leads to the conversion of the waste heat generated in the SOFC 20 into reformed energy, which leads to further reduction of excess air and helps facilitate water independence.
  • FIG. 18 is a diagram schematically illustrating an example of a schematic configuration of the SOFC system 200 according to the present embodiment.
  • the SOFC system 200 is configured to further include a condensing heat exchanger 70 and a drain tank 71 in addition to the SOFC hot module 100 described above.
  • the SOFC system 200 is configured such that the exhaust gas discharged from the SOFC hot module 100 is heat-exchanged with air by the condensation heat exchanger 70, and the exhaust gas is cooled to generate condensed water and stored in the drain tank 71.
  • the condensed water stored in the drain tank 71 is used as reforming water for the SOFC hot module 100.
  • a necessary amount of condensed water can be obtained as reformed water from the exhaust gas cooled by heat exchange by the condensation heat exchanger 70 according to the principle described below.
  • FIGS. FIG. 19 to FIG. 21 are diagrams showing examples of material balance in reforming efficiency and fuel / oxygen utilization rate in a cell reaction that generates 1 mol of hydrogen and 0.5 mol of oxygen to 1 mol of water.
  • the fuel cell device according to the present embodiment can cool the exhaust gas with air within the normally assumed outside air temperature range to obtain the necessary amount of condensed water as reforming water. That is, the fuel cell device according to the present embodiment can make the water balance independent.
  • the high-temperature operating fuel cell module and the high-temperature operating fuel cell system of the present invention are useful as a high-temperature operating fuel cell module that can improve the utilization efficiency of supplied air.
  • Air discharge port 10 Air preheating part 11 1st heat exchange part 12 2nd heat exchange part 13 Supply header 14 Discharge header 15 Outer end header 16 Reformer connection header 17 3rd heat exchange part 18 4th heat exchange part 19 1st 5 Heat exchange section 20 SOFC 21 Cathode 22 Anode 23 Electrolyte 24 Interconnector 25 Base Tube 30 Combustion Unit 31 Burner 32 Combustion Catalyst Holding Member 33 Combustion Catalyst 34 Igniter 40 Reformer 41 Vaporizer 42 Reforming Catalyst Holding Member 43 Reforming Catalyst 44 Reforming Unit 45 Reformed gas supply port 50 SOFC stack 60 Fastening member 61 Raw material input port 62 Air input port 63 Exhaust port 70 Condensate heat exchanger 71 Drain tank 100 SOFC hot module 151 Air preheating first manifold 151a Air preheating first manifold 151b Air preheating First manifold 151c Air preheating first manifold 151d

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

SOFCモジュール(100)は、燃料ガスと空気とを利用して発電反応により発電する発電部を備えたSOFC(20)と、供給された流体から燃料ガスとして改質ガスを生成する改質器(40)とを備え、SOFC(20)の有する熱により加熱された流体が、改質器(40)に供給される。

Description

高温動作型燃料電池モジュール、および高温動作型燃料電池システム
 本発明は固体酸化物型燃料電池(SOFC)の冷却構造に関する。
 近年、高効率でクリーンなエネルギー源の開発が求められており、それに対する一つの候補として燃料電池が注目を浴びている。特に燃料電池の中でも固体酸化物型燃料電池(SOFC)は、固体高分子型燃料電池またはリン酸型燃料電池等の他の種類の燃料電池と比較して発電効率が高いことにより、次世代の燃料電池として注目されている。
 SOFCは、水素を含有する燃料ガスと、酸素を含有する空気等の酸化剤ガスとを電気化学反応(発電反応)させることにより、電力と熱とを同時に発生させる。SOFCは、原料ガスと水とを用いて改質反応を行なう水蒸気改質法によって水素を主成分とする燃料ガス(改質ガス)を生成する。
 このSOFCは、上述したように高い発電効率を有するが、その代わり作動動作の温度が高い(例えば750℃~1000℃)ため、発電を維持するためには高温のSOFCに適した方式により当該SOFCを冷却することが必要とされる。
 そこで、従来では、酸化剤ガスとしてSOFCホットモジュール内に導いた空気を、SOFCを冷却するための冷却媒体として利用している(例えば、特許文献2、3)。特に特許文献2に開示された方法では、以下の段階を含み冷却効率を上げることによって酸素利用率(Uo)を高める方法が開示されている。より具体的には、特許文献2の方法では、燃料電池から化学エネルギーと電気エネルギーの変換時に発生した熱を温度平衡部材が受け取る段階と、温度平衡部材の熱を、熱交換要素を介して空気流へ放散させて予熱する段階と、温度平衡部材の熱を空気流へ直接放散させて空気を反応温度近くまで熱する段階と、熱した空気流を正極へ通す段階とを含む。
 また、SOFCを冷却することで該SOFCから熱を奪った空気が有する熱エネルギーを、燃料ガスまたは酸化剤ガスを予熱するためのエネルギーに活用する燃料電池も提案されている(特許文献1、5)。また、燃料ガスまたは酸化剤ガスを予熱するための予熱部や改質反応を行なうための改質部などからの熱に対する影響を低減させてセル間の温度分布を小さく抑える固体酸化物型燃料電池モジュールも提案されている(特許文献4)。
特開2004-139960号公報 特許第3098813号公報 特開2006-85982号公報 特開2009-93923号公報 特開2002-280023号公報
 しかしながら、上述のような従来技術では、SOFCホットモジュールに供給する空気の酸素利用率を効率よく向上させることができないという問題がある。特にSOFCシステム内において水収支を容易に自立させることができる程度まで、空気の酸素利用率を向上させることができないという問題がある。
 したがって、システムにおいて外気温の空気によって水自立ができる程度まで、Uoの値を上げるようにする必要がある。
 しかしながら上記した従来技術の特許文献1から5は、特にSOFCシステム内において水収支を容易に自立させることができるように考慮して、空気の酸素利用率を向上させる構成となっていないという問題がある。
 本発明は、以上の問題を鑑みてなされたものであり、供給される空気の利用効率を向上させることができる高温動作型燃料電池モジュールを提供することを目的とする。特に、システム内において水収支を容易に自立させることができる程度まで、空気の利用効率を向上させることができる高温動作型燃料電池モジュール、および高温動作型燃料電池システムを提供することを目的とする。
 本発明のある態様に係る高温動作型燃料電池モジュールは、燃料ガスと空気とを利用して発電反応により発電する発電部を備えた高温動作型燃料電池と、改質ガスを生成するための流体が供給され、当該流体から前記燃料ガスとして改質ガスを生成する改質器と、を備え、前記高温動作型燃料電池の有する熱により加熱された流体が、前記改質器に供給される。
 本発明に係る高温動作型燃料電池モジュールは、供給される空気の利用効率を向上させることができる効果を奏する。また、本発明に係る高温動作型燃料電池モジュールを備えた高温動作型燃料電池システム内において水収支の自立の実現を容易とすることができる。
本発明の実施の形態に係るSOFCホットモジュールの改質器に供給される流体(原料および改質水)にSOFCの熱を与え予熱する仕組みの一例を示す概念図である。 本発明の実施の形態に係るSOFCホットモジュールにおいて空気ならびに原料および改質水が流れる経路の一例を示す模式図である。 本発明の実施の形態に係るSOFCホットモジュールの概略構成の一例を示す模式図である。 本実施の形態に係るSOFCホットモジュールにおいて空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。 本発明の実施の形態に係るSOFCホットモジュールにおいて空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。 本発明の実施の形態に係るSOFCホットモジュールにおいて空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。 本発明の実施の形態に係るSOFCホットモジュールの具体的な構成の一例を示す正面図である。 本発明の実施の形態に係るSOFCホットモジュールの具体的な構成の一例を示す側面図である。 本発明の実施の形態に係るSOFCホットモジュールを流通する空気の流れの一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを流通する原料の流れの一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを構成する外端ヘッダーの表面、側面、ならびに裏面の一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを構成するカソード端インターコネクタの表面、側面、ならびに裏面の一例を示す図である 本発明の実施の形態に係るSOFCホットモジュールを構成するSOFCの表面、側面、ならびに裏面の一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを構成するインターコネクタの表面、側面、ならびに裏面の一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを構成するアノード端インターコネクタの表面、側面、ならびに裏面の一例を示す図である 本発明の実施の形態に係るSOFCホットモジュールを構成する改質器接続ヘッダーの表面、側面、ならびに裏面の一例を示す図である。 本発明の実施の形態に係るSOFCホットモジュールを構成する改質器の表面、側面、ならびに裏面の一例を示す図である。 本発明の実施の形態に係るSOFCシステムの概略構成の一例を模式的に示す図である。 水素1mol、酸素0.5molから1molの水を生成する電池反応における、改質効率、燃料/酸素利用率における物質収支の一例を示す図である。 水素1mol、酸素0.5molから1molの水を生成する電池反応における、改質効率、燃料/酸素利用率における物質収支の一例を示す図である。 水素1mol、酸素0.5molから1molの水を生成する電池反応における、改質効率、燃料/酸素利用率における物質収支の一例を示す図である。 本発明の前提となる構成に係るSOFCホットモジュールの概略構成の一例を模式的に示すブロック図である。 図22に示すSOFCホットモジュールの外観形状の一例を示す図である。 図23に示すSOFCホットモジュールの外観形状においてA-Aで切り出した断面形状の一例を示す図である。 図22に示すSOFCホットモジュールが備える円筒横縞型SOFC構造の一例を示す断面図である。
 (本発明の基礎となった知見)
 本発明の基礎となった知見として、SOFCホットモジュールに供給される空気(酸化剤ガス)の酸素利用率とSOFCシステム内での水収支の自立との関係について図19および図20を参照して説明する。図19および図20は、水素1mol、酸素0.5molから1molの水を生成する電池反応における、改質効率、燃料/酸素利用率における物質収支の一例を示す図である。
 SOFCシステム内での水収支の自立には燃料電池の空気利用率および冷却方法が密接に関係する。図19に示す表では、改質効率80%、燃料利用率(Uf)80%、S/C=2.5、酸素利用率(Uo)=0.2としたとき、消費水素1molあたりの物質収支を示す。また、図20に示す表では、改質効率80%、燃料利用率(Uf)80%、S/C=2.5、酸素利用率(Uo)=0.3としたとき、消費水素1molあたりの物質収支を示す。なお、燃料利用率は以下の数式(1)に示す関係を満たす値であり、酸素利用率は以下の数式(2)に示す関係を満たす値である。
 燃料利用率(Uf)=(消費される水素)/(投入される水素)   ・・・(1)
 酸素利用率(Uo)=(消費される酸素)/(投入される酸素)   ・・・(2)
 図19および図20に示す表より明らかなように、メタン(CH)を原料とし、S/C=2.5の場合には、消費水素1molあたり改質水が0.98mol必要となる。この改質水を電池生成水および燃焼生成水から回収して再び改質水に充当することが出来ればこのシステム内にて水収支は自立しているといえる。
 ところで、これら生成水は燃料に含まれる水素が燃焼して生成されるものであり生成水の絶対量は燃料量に依存するが、これを効率的に回収できるかどうかは酸素利用率(Uo)に大きく依存する。
 例えば、図20の表に示すとおり、Uoが0.3のときにSOFCホットモジュールから排出される燃焼ガス中の水蒸気量は1.48molで露点は55℃となる。ここで、燃焼ガスを外気温の35℃まで冷却した場合には1.02mol分の凝縮水を回収することができ、回収した凝縮水を改質反応に必要な改質水0.98molに充当することができる。
 一方、図19の表に示すUo=0.2の場合、燃焼ガスの空気による希薄化が起こるため、燃焼ガス中の水蒸気量は1.48molと変わらないが露点はUoが0.3のときと比べると48℃まで低下してしまう。このため、これを外気温の35℃まで冷却して凝縮しても0.78molの凝縮水しか得られず、改質反応に必要な改質水0.98molを賄うことができなくなる。
 ここで、SOFCを空冷するためには、空気の熱容量等を勘案して通常SOFCの発電で必要な空気の5倍量(酸素利用率に換算するとUo=0.2)程度の空気が必要である。しかしながら、Uoが0.2のとき外気温35℃により冷却する凝縮法では上述したように改質反応で必要な水量だけ凝縮水を生成することができない。つまり、水収支の自立を行うことができない。以上の知見はSOFC以外の高温動作型の燃料電池にも当てはまる。上記した知見に基づき、本発明では以下に示す態様を提供する。
 本発明の第1の態様は、高温動作型燃料電池モジュールは、燃料ガスと空気とを利用して発電反応により発電する発電部を備えた高温動作型燃料電池と、供給された流体から前記燃料ガスとして改質ガスを生成する改質器と、を備え、前記高温動作型燃料電池の有する熱により加熱された流体が、前記改質器に供給される。
 ここで高温動作型燃料電池とは、動作温度が約400度以上となる燃料電池であって、例えば、SOFC(固体酸化物型燃料電池)またはMCFC(溶融炭酸塩型燃料電池)などが挙げられる。また、改質ガスを生成するための流体とは、例えば、水蒸気改質の場合は水と原料、部分燃焼法(部分酸化法)の場合は酸素と原料、オートサーマル改質の場合は酸素と水と原料となる。
 上記した構成によると、改質器に供給される流体が高温動作型燃料電池の有する熱を奪い、自身が加熱され改質器に供給される構成である。すなわち、高温動作型燃料電池から得た熱を、例えば加湿原料を生成するために必要な気化エネルギーに変換させることができる。
 したがって、供給された流体によって高温動作型燃料電池の冷却を効率的に行なうことができ、高温動作型燃料電池を冷却するための空気を減らすことができる。このため、空気の利用効率を上げることができる。つまり本発明に係る高温動作型燃料電池モジュールは、供給される空気の利用効率を向上させることができる効果を奏する。
 また、本発明の第2の態様は、第1の態様に係る高温動作型燃料電池モジュールの構成において、前記空気を前記発電反応に利用する前に、前記高温動作型燃料電池を冷却するとともに、該高温動作型燃料電池の熱により自身を加熱するように、該高温動作型燃料電池と該空気との間で熱交換を行なう第1熱交換部と、前記改質器に供給される前記流体を加熱するように、前記第1熱交換部での熱交換により加熱された空気と該流体との間で熱交換を行なう第2熱交換部と、を備え、前記第2熱交換部での熱交換により加熱された流体を前記改質器に供給する一方、該第2熱交換部での熱交換により熱が奪われた空気を前記高温動作型燃料電池の発電部に供給するように構成されていてもよい。
 上記した構成によると、第1熱交換部を備えているため、供給された空気により高温動作型燃料電池から熱を奪って、この燃料電池を冷却させるとともに、空気自身を加熱させることができる。さらに第2熱交換部を備えているので、加熱された空気から熱を奪って改質器に供給する流体を加熱させるとともに、空気を冷却することができる。そして、この冷却された空気を高温動作型燃料電池の発電部に供給することができる。
 したがって、供給された空気によって高温動作型燃料電池の冷却を効率的に複数回行なうことができ、空気の利用効率を上げることができる。つまり、高温動作型燃料電池モジュールは、供給される空気の利用効率を向上させることができる効果を奏する。
 また、供給される空気の利用効率を上げることができるため、従来のようにSOFCの冷却を兼ね発電反応の酸化剤として過剰に空気を供給する構成と比較して、空気の供給量を低減させることができる。このため、従来の構成よりも排ガスから改質水として必要な量の凝縮水を得るための露点温度を高めることができる。このことは、本発明に係る高温動作型燃料電池を備えた高温動作型燃料電池システム内において水収支の自立の実現を容易とすることができる。
 また、本発明の第3の態様は、第2の態様に係る高温動作型燃料電池モジュールの構成において、前記改質器により生成された改質ガスが、高温動作型燃料電池の発電部において燃料ガスとして利用されるとともに、該高温動作型燃料電池を冷却する冷却媒体として利用されるように構成されてもよい。
 上記した構成によると、燃料ガスとして利用する改質ガスを、高温動作型燃料電池の冷却媒体としても利用できるため、高温動作型燃料電池の冷却を効率的に行なうことができる。これにより、空気の供給量を低減させることができるため、従来の構成よりも排ガスから改質水として必要な量の凝縮水を得るための露点温度を高めることができる。このことは、本発明に係る高温動作型燃料電池を備えた高温動作型燃料電池システム内において水収支の自立の実現を容易とすることができる。
 また、本発明の第4の態様によれば、第2の態様または第3の態様に係る高温動作型燃料電池モジュールの構成において、前記第2熱交換部での熱交換により熱が奪われた空気によって前記高温動作型燃料電池を冷却するように、該空気と該高温動作型燃料電池との間で熱交換を行なう第3熱交換部と、前記第3熱交換部での熱交換により加熱された空気と前記流体との間で再度熱交換を行なう第4熱交換部と、をさらに備え、前記第2熱交換部および前記第4熱交換部での熱交換により加熱された前記流体を前記改質器に供給し、該第4熱交換部での熱交換により熱が奪われた空気を前記高温動作型燃料電池の発電部に供給して酸化剤として利用するとともに、この高温動作型燃料電池を冷却する冷却媒体として利用するように構成されてもよい。
 また、本発明の第5の態様によれば、第4の態様に係る高温動作型燃料電池モジュールの構成において、前記第2熱交換部および前記第4熱交換器での熱交換により加熱された流体を前記改質器に供給する前に、該流体をさらに加熱するとともに前記高温動作型燃料電池を冷却するように、この流体と高温動作型燃料電池との間で熱交換を行なう第5熱交換部をさらに備えるように構成されてもよい。
 上記した構成によると、第5熱交換部を備えているため、該第5熱交換部で流体と高温動作型燃料電池との間で熱交換を行なうことができる。なお、高温動作型燃料電池と熱交換を行なう流体は、既に第2熱交換部および第4熱交換部での空気との熱交換により加熱されているとはいえ、流体の温度は高温動作型燃料電池での発熱温度と比較すると十分に小さい。このため、第5熱交換部での熱交換により、流体は高温動作型燃料電池から熱を奪って冷却することができる。その一方で、流体は、高温動作型燃料電池から奪った熱によりさらに加熱され、改質器に供給される。
 ここで、高温動作型燃料電池での発熱による熱を流体に与えることは、結果的には流体が供給される改質器に熱を与えることと同じである。すなわち、高温動作型燃料電池での発熱による熱を流体に与えることで、高温動作型燃料電池での発熱による熱を改質エネルギーに転換させることができる。
 このように、本発明の第5の態様に係る高温動作型燃料電池モジュールは、高温動作型燃料電池が有する熱を改質エネルギーに転換させることでこの高温動作型燃料電池の冷却を行うことができるため、空気の供給量を低減させることができ、その結果、空気の利用効率を高めることができる。
 また、本発明の第6の態様によれば、第5の態様に係る高温動作型燃料電池モジュールの構成において、複数の前記高温動作型燃料電池と複数のインターコネクタとが交互に積層された積層平板型セルスタックと、前記積層平板型セルスタックの一方の端部に配され、前記流体を該積層平板型セルスタックに供給する原料供給層と、前記積層平板型セルスタックの他方の端部でかつ、該積層平板型セルスタックと前記改質器との間に配され、これらを接続する改質器接続層と、を備え、前記原料供給層が前記第2熱交換部および第4熱交換部を有し、該第2熱交換部および該第4熱交換部での空気と流体との間での熱交換により加湿原料を生成しており、前記改質器接続層は、積層平板型セルスタックに空気を供給するとともに、前記原料供給層において生成された加湿原料を改質器に供給するように構成されていてもよい。
 また、本発明の第7の態様によれば、第6の態様に係る高温動作型燃料電池モジュールの構成において、前記積層平板型セルスタックは、供給された空気と前記高温動作型燃料電池との間で熱交換を行なう第1熱交換部として、該空気を流通させるための第1空気流路が外周に形成されていてもよい。
 また、本発明の第8の態様によれば、第6の態様または第7の態様に係る高温動作型燃料電池モジュールの構成において、前記積層平板型セルスタックは、前記第2熱交換部での熱交換により熱が奪われた空気と前記高温動作型燃料電池との間で熱交換を行なう第3熱交換部として、該空気を流通させるための第2空気流路が外周に形成されていてもよい。
 また、本発明の第9の態様によれば、第6~第8の態様のいずれか1つの態様に係る高温動作型燃料電池モジュールの構成において、前記積層平板型セルスタックは、前記第2熱交換部および前記第4熱交換部での熱交換により加熱された流体と前記高温動作型燃料電池との間で熱交換を行なう第5熱交換部として、該流体を流通させる原料流路が外周に形成されていてもよい。
 また、本発明の第10の態様によれば、第6~第9の態様のいずれか1つの態様に係る高温動作型燃料電池モジュールの構成において、前記積層平板型セルスタックは、前記発電部における発電反応により排出される燃焼排ガスを前記改質器の方へと導く排出管を備え、前記改質器は、前記排出管を通じて導かれた燃焼排ガスを燃焼した燃焼熱を改質反応に利用してもよい。
 上記した構成によると、高温動作型燃料電池モジュールは、改質器が、高温動作型燃料電池の発電部における発電反応により排出される燃焼排ガスを燃焼した燃焼熱を利用して改質反応を行なうように構成されている。
 ここで、発電反応により排出される燃焼排ガスとは、高温動作型燃料電池で未利用の燃料および空気(酸化剤)を含むものであって、該発電反応で発生した熱を有しているガスである。
 上記した構成によると、この燃焼排ガスを燃焼させた燃焼熱を利用して改質器の改質反応を行なう。また、この燃焼熱の一部を燃焼排ガスが有する発電反応で発生した熱で賄うことができる。このため、結果的には、高温動作型燃料電池における発電反応により生じた熱を、燃焼排ガスを媒体として改質器に与えることができる。
 このように、高温動作型燃料電池での発熱を改質器における改質反応に利用することができるため、結果的に空気の利用効率を向上させることができる。
 また、本発明の第11の態様によれば、第6~10の態様のいずれか1つの態様に係る高温動作型燃料電池モジュールの構成において、前記高温動作型燃料電池は、金属基板を支持体としてアノード、電解質、およびカソードが形成されたメタルサポート形セルであって、前記高温動作型燃料電池の前記金属基板には、前記積層平板型セルスタックにおける前記第1空気流路、第2空気流路、および原料流路それぞれの一部分を形成するための各貫通孔が形成されてもよい。
 上記した構成によると、高温動作型燃料電池は金属基板を支持体としているため、例えば、従来のSOFCのように基板をセラミックとする場合と比較して、熱伝統率が良くなる。このため、積層平板型セルスタックにおける第1空気流路、第2空気流路、および原料流路を流れる空気および原料(加湿原料)の熱と高温動作型燃料電池で生じる熱とを効率よく熱交換することができる。
 さらに、第1空気流路、第2空気流路、および原料流路それぞれの一部分を形成する貫通孔が金属基板に形成されている。ここで金属基板はセラミック製の基板と比較して微細加工等が容易である。このため、この貫通孔の開口形状を例えば、突起が複数形成されてなる櫛型形状など複雑な形状とすることもできる。例えば、この開口形状を櫛形形状とした場合、第1空気流路、第2空気流路、および原料流路を流れる空気および原料と、積層平板型セルスタックとの接触面積を大きくすることができる。よって、熱交換の効率をさらに向上させることができる。
 また、本発明の第12の態様によれば、第10の態様または第11の態様に係る高温動作型燃料電池モジュールの構成において、前記改質器接続層は、前記原料供給層において生成された加湿原料を前記改質器に導く貫通孔として加湿原料供給孔と、前記改質器により生成された改質ガスを前記積層平板型セルスタックの発電部に供給するための貫通孔として改質ガス供給孔と、前記積層平板型セルスタックの発電部から前記排出管を通じて導かれた燃焼排ガスを前記改質器へと供給する貫通孔として燃焼排ガス供給孔と、を備え、前記改質器は、前記加湿原料供給孔を介して供給された加湿原料を受け入れる貫通孔として加湿原料受容孔と、生成した前記改質ガスを前記改質器接続層に排出するための貫通孔として改質ガス排出孔と、改質反応に必要な熱を得るために、前記燃焼排ガス供給孔を介して供給された燃焼排ガスを燃焼させる燃焼部と、を備えていてもよい。
 上記構成によると、改質器接続層と改質器とにおいて、両者が積層一体化することによってガス(加湿原料、改質ガス、燃焼排ガス)の収受を行い、あわせて両者の接合面を介して熱の収受を行うことができる。
 また、本発明の第13の態様によれば、高温動作型燃料電池モジュールは、燃料ガスと空気とを利用して発電反応により発電する発電部を備える高温動作型燃料電池と、供給された流体から前記燃料ガスとなる改質ガスを生成する改質器とを備え、前記空気を前記発電反応に利用する前に、前記高温動作型燃料電池を冷却するとともに、該高温動作物型燃料電池の熱により自身を加熱するように、該高温動作型燃料電池を通過させ、この通過時に加熱された空気と流体との間で熱交換を行なって、前記改質器に供給される流体を加熱させ、この熱交換により加熱された空気を再度、高温動作型燃料電池に向かって折り返し、該高温動作型燃料電池の冷却に利用するように構成されてもよい。
 また、本発明の第14の態様によれば、高温動作型燃料電池システムは、第1の態様または第13の態様に係る高温動作型燃料電池モジュールと、前記高温動作型燃料電池モジュールから排出された排ガスと外気とを熱交換させ、該排ガス中に含まれる水分を凝縮して凝縮水を生成させる凝縮熱交換部と、を備え、前記凝縮熱交換部によって生成した凝縮水を前記高温動作型燃料電池モジュールに改質水として供給する。
 上記構成によると、高温動作型燃料電池モジュールは、改質器に供給される流体が高温動作型燃料電池の有する熱を奪い、自身が加熱され改質器に供給される構成である。すなわち、高温動作型燃料電池から得た熱を、例えば加湿原料を生成するために必要な気化エネルギーに変換させることができる。
 したがって、供給された流体によって高温動作型燃料電池の冷却を効率的に行なうことができ、空気の利用効率を上げることができる。つまり本発明に係る高温動作型燃料電池モジュールは、供給される空気の利用効率を向上させることができる効果を奏する。
 また、高温動作型燃料電池システムは、上記した高温動作型燃料電池モジュールに加え、前記凝縮熱交換器を備えているため、高温動作型燃料電池モジュールから排出された排ガスを外気との熱交換により冷却させ、排ガス中に含まれる水分を得ることができる。そして、得た水分によって固体酸化物型根料電池での発電反応に必要な改質水を賄うことができる。
 つまり高温動作型燃料電池システムでは、供給される空気の利用効率を向上させることができる効果を奏する。
 また、供給される空気の利用効率を上げることができるため、例えば従来のSOFCのように、発電反応の酸化剤となる空気を使って、SOFCの冷却を行なうために過剰に空気を供給する構成と比較して、空気の供給量を低減させることができる。このため、従来の構成よりも排ガスから改質水として必要な量の凝縮水を得るための露点温度を高めることができ、特に冷水などを準備しなくても外気温で排ガス中に含まれる水分を凝縮させることができる。
 したがって、本発明に係る高温動作型燃料電池システムは、水収支の自立の実現を容易とすることができるという効果を奏する。
 次に本発明の実施形態に係る燃料電池システムが備える高温動作型燃料電池のホットモジュールの構成について説明する。本実施形態では、高温動作型燃料電池として、特に、固体酸化物形燃料電池(SOFC)を例に挙げて説明するが、高温動作型燃料電池はこのSOFCに限定されるものではない。動作温度が400度以上となる燃料電池であればよく、例えば、溶融炭酸塩形燃料電池(MCFC)であってもよい。
 まず、本発明の実施の形態に係るSOFCホットモジュール100の構成について説明する前に、前提となるSOFCホットモジュール1000の構成(比較例に係る構成)について図22を参照して説明する。
 (本発明の前提となる構成例について)
 図22は、本発明の比較例に係るSOFCホットモジュール1000の概略構成の一例を模式的に示すブロック図である。
 図22に示すように、SOFCホットモジュール1000は、カソード21およびアノード(発電部)22を有するSOFC(高温動作型燃料電池)20が積層されたSOFCスタック(高温動作型燃料電池スタック、積層平板型セルスタック)50を備える。なお、本発明では、カソード21およびアノード22を備え、燃料と空気とを利用して発電反応により発電する部分を本発明の発電部とする。さらに、SOFCホットモジュール1000は都市ガスなどの原料を水蒸気改質するための改質器40および水蒸気改質に用いる改質水を気化して改質器40に供給する気化器41を備える。
 SOFC20と改質器40および気化器41との間には、改質器40で必要となる改質反応熱および気化器41で必要になる気化熱を賄うために燃焼部30が設けられている。この燃焼部30において、カソード21から排出された排空気(カソードオフガス)とアノード22から排出された排水素(アノードオフガス)とが燃焼され、気化器41の水蒸発エネルギーおよび改質器40の改質反応のエネルギーとして利用されている。さらにまたSOFCの起動時には未改質の原料も燃焼部30内で燃焼させ、SOFCホットモジュール1000内を予備加熱する。すなわち、SOFC20のカソード21から排出されるカソードオフガスおよびアノード22から排出されるアノードオフガスがバーナー31(図22では不図示)により燃焼され、この燃焼熱によって改質器40および気化器41を駆動する。
 なお、改質反応で必要な熱の温度は650℃程度であり、また改質反応に必要な添加水量はS/C(スチームカーボン比;水と原料中の炭素とのモル比率)が、最低2.0以上、概ね2.5~3.0程度であり、これらの条件が保たれるように制御されて、原料と改質水とから水素リッチな改質ガスを生成する。
 SOFC20における発電部のアノード22には改質器40で生成した改質ガスが供給され、またカソード21にはブロワー(不図示)から供給される空気が供給され、電気化学的に以下の式(3)に示す反応を行う。
 H + 1/2O → HO   ・・・(3)
 この反応は水素の燃焼反応と同様であるが、この燃焼エネルギーに相当するエネルギーを電気化学的に取り出すのが燃料電池の基本原理である。この反応によって発電を行うと同時に発熱するが、この発熱に伴う廃熱は、従来ではカソード21に供給される大過剰(Uo=0.2程度)の空気によって除去されるように構成されている。そして除去された熱を含む排ガス熱が気化、改質、空気予熱等のエネルギーとして二次的に使われる。
 結果的に、SOFCの発電時に生じる廃熱と余剰改質ガスの燃焼熱とを以って気化器41と改質器40とが駆動され、また駆動された気化器41および改質器40によって生成された燃料ガス(改質ガス)によってSOFCが駆動されるという、一種の動力回生機構を構成する。なお、動力回生機構を実現する集合体をSOFCホットモジュール1000と称する。なお、SOFCホットモジュール1000より排出される排ガスは、燃料電池生成水および燃焼生成水を水蒸気の形で含んでいる。
 また、図示しないが、SOFC20にはさらに集電部材が設けられており、この集電部材を介して外部に電力が引き出されて、利用者はこの電力を利用することができる。
 また、SOFC20において行なわれる上記した電気化学反応は1000℃前後の高温の酸化性雰囲気中で行なわれる。この電気化学反応を活性させるためには、反応用のガスとなる空気などは必要温度(数百℃程度)まで加熱(予熱)しておく必要がある。
 そこで、SOFCホットモジュール1000は、ブロワー(不図示)から送出されてきた空気を、SOFC20のカソード21に供給する前に、SOFCホットモジュール1000内の排ガス熱によって加熱する空気予熱部10を備えている。
 次に比較例に係るSOFCホットにジュール1000の具体的な構造について説明する。
 SOFCホットモジュール1000の外観形状は例えば、図23に示すような形状となる。図23は図22に示すSOFCホットモジュール1000の外観形状の一例を示す図である。SOFCホットモジュール1000は、上述した空気予熱部10、SOFCスタック50、燃焼部30、改質器40、および気化器41をその内部に備え、これら各部材が略直方体形状の外装部で覆われている。この外装部は断熱材を備えており、外装内部の熱が外部に逃げないように構成されている。
 図23に示す外観形状の例では、SOFCホットモジュール1000の右側面にブロワー(不図示)から送出された空気を受け入れる空気投入口62が設けられている。また、上面の右側には改質水と原料とを受け入れる原料投入口61が設けられている。また、左側面の上面近傍には排ガスを排出するための排気口63が設けられている。この図23に示すSOFCホットモジュール1000をA-A面で切り出したその断面形状は、例えば、図24に示すようになる。図24は図23に示すSOFCホットモジュール1000の外観形状においてA-Aで切り出した断面形状の一例を示す図である。
 図24に示すように、SOFCホットモジュール1000は、その断面における中心線上に、上から気化器41および改質器40が配されている。そして、気化器41および改質器40を一つの直線とみなした場合、これを軸に、左右対称となるように燃焼部30、SOFC20、および空気予熱部10が備えられている。
 また、SOFC20におけるSOFCホットモジュール1000の底面側に、燃料ガス(改質ガス)および空気の供給を受ける供給ヘッダー13を、上面側にカソードオフガスおよびアノードオフガスが排出される排出ヘッダー14が設けられている。
 すなわち、原料投入口61を介して原料と改質水とが気化器41に供給される。気化器41において、改質水を気化させ、水蒸気と原料との混合ガスが生成され改質器40に供給される。改質器40において水蒸気改質により水素が生成され、燃料ガス(改質ガス)として改質ガス供給口45からSOFC20の供給ヘッダー13に供給される。
 一方、空気は空気投入口62を介して空気予熱部10に供給される。空気予熱部10で予熱された空気は空気吐出口9からSOFC20に向かって吐出され、供給ヘッダー13を通じてSOFC20に供給される。
 図24に示すように改質器40の両側面には燃焼部30が設けられ、ここでバーナー31によってアノードオフガスおよびカソードオフガスなどが燃焼されるようになっている。
 上記したSOFC20の形状は、例えば、図25に示すように所謂、円筒横縞型として実現してもよい。図25は、図22に示すSOFCホットモジュール1000が備える円筒横縞型SOFC構造の一例を示す断面図である。
 SOFC20を図25に示すような円筒横縞型として実現する場合、多孔質の支持管である基管体25の外側に、アノード22、電解質23、カソード21の順に積み重ねられたセルを構成し、それぞれのセル同士はインターコネクタ24を挟んで配置されている。この円筒(横縞)型の場合、燃料ガス(改質ガス)は基管体25の内側を流れ、空気が基管体25の外側を流れる。
 (SOFCホットモジュール)
 次に、本実施の形態に係るSOFCホットモジュール100の特徴的な構成について図1を参照して説明する。図1は本発明の実施の形態に係るSOFCホットモジュール100の改質器40に供給される流体(原料および改質水)にSOFC20の熱を与え予熱する仕組みの一例を示す概念図である。なお、図1では、説明の便宜上、改質器40に供給する流体(原料、水)の流れのみを図示し、SOFCスタック50を構成するSOFC20に供給される空気の流れについては省略している。
 図1に示すように本実施の形態に係るSOFCホットモジュール100は、原料および水(改質水)など外部から供給された流体から改質器40が改質ガスを生成し、この改質ガスを燃料ガスとしてSOFCスタック50へと送出する構成である。図1に示すように、流体(原料、水)は、改質器40へ供給される前にSOFC20(SOFCスタック50)で発生している熱により予熱されている。
 すなわち、本実施の形態に係るSOFCホットモジュール100では、外部から供給された流体は、SOFC20(SOFCスタック50)から熱を奪い、SOFC20を冷却させる一方で、自身は加熱されるように構成されている。このためSOFC20(SOFCスタック50)から得た熱を利用して原料を予熱したり改質水を気化させたりすることができる。すなわち、SOFC20から得た熱を、例えば加湿原料を生成するために必要な気化エネルギーに変換させることができる。
 したがって、SOFC20(SOFCスタック50)を冷却させるために、該SOFC20に供給させる空気の量を低減させることができる。
 次に、図1に示したSOFCホットモジュール100を実現させるための具体的な構成について図2および図3を参照して説明する。図2は本実施の形態に係るSOFCホットモジュール100において空気ならびに原料および改質水が流れる経路の一例を示す模式図である。図3は本実施の形態に係るSOFCホットモジュール100の概略構成の一例を示す模式図である。
 本実施の形態に係るSOFCホットモジュール100は、上述した比較例に係るSOFCホットモジュール1000の構成において、以下の特徴的な構成を有する点で異なる。なお、本実施の形態に係るSOFCホットモジュール100において、比較例に係るSOFCホットモジュール1000が備える部材と同一部材には同じ符号を付しその説明は省略するものとする。
 比較例に係るSOFCホットモジュール1000の場合、上述したように当該SOFCホットモジュール1000に供給された空気は、空気予熱部10で排ガス熱などにより加熱されSOFC20のカソード21に供給されるように構成されていた。これに対して、本実施の形態に係るSOFCホットモジュール100では、空気は以下の経路によりカソード21に供給される。
 すなわち、SOFCホットモジュール100に供給された空気は、SOFCスタック50における第1熱交換部11によりSOFC20との間で熱交換される。この熱交換により、SOFC20が有する熱によって空気は加熱(予熱)される。換言すればSOFC20を冷却して空気は昇温される(予冷却)。そして、この加熱により熱を得た空気は、第2熱交換部12へと送出される。この第2熱交換部12には、原料および改質水のうちの少なくとも1つが供給されており、この原料および改質水のうちの少なくとも1つと熱を得た空気との間で熱交換される。
 SOFC20から熱を得た空気は、この第2熱交換部12での熱交換により熱を捨て物質を冷却する温度余地を得る。空気はその状態でSOFC20に供給され、酸化剤ガスとして電池反応で消費されるとともにSOFC20を再度冷却(本冷却)するという流れとなる。すなわち、原料および改質水のうちの少なくとも1つと熱交換により熱量が低下した空気は、SOFC20の発電部において電気化学反応を伴いながらこのSOFC20と熱交換を行なう。
 一方、空気との熱交換により加熱された原料および改質水のうちの少なくとも1つは改質器40に供給され、この改質器40により水蒸気改質される。そして、この水蒸気改質により生成された改質ガス(燃料ガス)はSOFC20の発電部におけるアノード22に供給され、燃料ガスとして電池反応で消費されるとともにSOFC20を冷却する。
 以上のように、本実施の形態に係るSOFCホットモジュール100は、外部から供給された空気により一旦、SOFC20を冷却する。さらにSOFC20の有する熱により加熱された空気は、改質水および原料のうちの少なくとも1つと熱交換をして、冷却される。この熱交換により熱の一部が奪われた空気は酸化剤として発電部におけるカソード21に供給されるとともに冷却媒体としてSOFC20を再度冷却する(本冷却)。さらに、改質器40により生成された改質ガスは、燃料ガスとして発電部におけるアノード22に供給されるとともに冷却媒体としてSOFC20を冷却する。
 また、本実施の形態に係るSOFCホットモジュール100では、SOFC20における電気化学反応後に排出される燃焼排ガス(カソードオフガスおよびアノードオフガス)は、SOFC20の発電部における発電発熱により加熱された状態で燃焼部30に導かれる。そして、燃焼部30にてこれら燃焼排ガスが燃焼され、この燃焼熱により改質器40における改質反応を行なうように構成されている。なお、SOFC20から排出される燃焼排ガスには未利用の燃料ガスおよび空気(酸素)が含まれており、燃焼部30にてこの未利用の燃料ガスおよび空気を燃焼させることができる。
 エネルギー的に言えば、SOFC20における発電による廃熱の一部を気化エネルギーおよび改質エネルギーに移転し、その分だけセルの冷却に必要な空気量を削減することができる。
 また、図19に示した比較例に係るSOFCホットモジュール1000の構成と本実施の形態に係るSOFCホットモジュール100の構成とを対比してみると、気化器41が備えられる位置が異なっている。すなわち、図3および図19を参照して両者を対比すると、改質器40の前段に気化器41が配置されておりこれら両者の配置は系統的には同じとなる。しかしながら図19に示す比較例の構成では、改質器40と気化器41とは隣接して配置されている。これに対して、本実施の形態に係るSOFCホットモジュール100では、図3に示すように改質器40と気化器41とは離れた位置に配置されている点で異なる。より具体的には本実施の形態に係るSOFCホットモジュール100では、図3に示すように、気化器41を内部に備えた外端ヘッダー(原料供給層)15と改質器40とによって、SOFCスタック50を挟持するように配置されている。
 (変形例1)
 次に、図2に示したSOFCホットモジュール100の変形例1について図4を参照して説明する。図4は、本実施の形態に係るSOFCホットモジュール100において空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。
 変形例1は、図2に示すSOFCホットモジュール100の構成において、第2熱交換部12で流体と熱交換を行なうことで冷却された空気がSOFCスタック50に再び導かれる。そして、第3熱交換部17で、このSOFCスタック50と空気との間で再度、熱交換される点で異なる。さらに、第3熱交換部17でSOFCスタック50との熱交換により加熱された空気が第4熱交換部18へと送出され、この第4熱交換部18で流体(原料および改質水のうちの少なくとも1つ)と空気との間で熱交換される点でも異なる。
 すなわち、第1熱交換部11および第3熱交換部17それぞれでSOFC20から熱を得た空気は、第2熱交換部12および第4熱交換部18それぞれでの熱交換により熱を捨て物質を冷却する温度余地を得る。そして、空気は、SOFC20を冷却する温度余地を得た状態で、最終的にはSOFC20に供給され、酸化剤ガスとして電池反応で消費されるとともにSOFC20を再度冷却(本冷却)するという流れとなる。
 以上のように、本実施形態の変形例1に係るSOFCホットモジュール100は、外部から供給された空気により一旦、SOFCスタック50におけるSOFC20を冷却する。さらにSOFCスタック50におけるSOFC20の有する熱により加熱された空気は、第2熱交換部12において流体(改質水および原料のうちの少なくとも1つ)と熱交換をして、冷却される。この第2熱交換部12での熱交換により熱の一部が奪われた空気は、再度SOFCスタック50に導かれ、第3熱交換部17で行なわれる熱交換によりSOFCスタック50におけるSOFC20をさらに冷却する。このとき、SOFCスタック50におけるSOFC20の有する熱により加熱された空気は、第4熱交換部18に導かれる。そして、空気は、第4熱交換部18において流体(改質水および原料のうちの少なくとも1つ)と熱交換して、再び冷却される。
 これにより熱の一部が奪われた空気は、酸化剤として発電部におけるカソード21に供給されるとともに冷却媒体としてSOFC20を再度冷却する(本冷却)。
 一方、第4熱交換部18で空気との間で熱交換を行なった流体は、空気が有する熱を利用して改質水を気化させ加湿された原料(加湿原料)となり改質器40に供給される。改質器40では、この加湿原料から改質ガスが生成され、この改質ガスが燃料ガスとして発電部におけるアノード22に供給されるとともに冷却媒体としてSOFC20を冷却する。
 このように、エネルギー的に言えば、SOFC20における発電による廃熱の一部を、流体を予熱するエネルギーに移転させることができるため、その分だけSOFC20の冷却に必要な空気量を削減することができる。特に、SOFC20と空気との間での熱交換は第1熱交換部11および第2熱交換部17で行なわれ、これらの熱交換で加熱された空気は、第3熱交換部12および第4熱交換部18での流体との熱交換によりSOFC20から得た熱を流体に移転させている。つまり、効率よくSOFC20における発電による廃熱の一部を、流体を予熱するエネルギーに移転させることができる。
 (変形例2)
 次に、図2に示したSOFCホットモジュール100の変形例2について図5を参照して説明する。図5は本実施の形態に係るSOFCホットモジュール100において空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。
 変形例2に係るSOFCホットモジュール100は、図2に示すSOFCホットモジュール100の構成において、第2熱交換部12で空気と熱交換を行ない、加熱された流体がSOFCスタック50に導かれる点で異なる。さらにまた、このSOFCスタック50における第5熱交換部19で、このSOFCスタック50に導かれた流体とSOFCスタック50におけるSOFC20との間で熱交換を行なった後、改質器40に供給される点でも異なる。
 すなわち、図5に示すように、変形例2に係るSOFCホットモジュール100では、SOFC20から熱を奪って加熱された空気が有する熱を利用して改質水を気化させ加湿された原料(加湿原料)を生成する。そして、変形例2に係るSOFCホットモジュール100では、この生成した加湿原料によってさらにSOFCスタック50におけるSOFC20の熱を奪うとともに、この加湿原料を予熱させる構成となる。
 このようにSOFCホットモジュール100を構成することで、SOFC20を直接的に冷却する流体として上述した空気に加え、加湿原料も用いることができる。
 以上のように、本実施の形態に係るSOFCホットモジュール100は、SOFC20を直接的に冷却する流体としてSOFC20の発電部に供給する空気と加湿原料とを利用できる構成である。また、SOFC20から排出される燃焼排ガス(アノードオフガスおよびカソードオフガス)を燃焼部30で燃焼させその熱によって改質器40を駆動させることができる構成である。したがって、SOFCホットモジュール100は、SOFC20の発電廃熱を気化エネルギー、改質エネルギーに転化しながら運転できるということを意味している。したがって、SOFC20の冷却用に過剰に外部から供給されている空気量を削減することができ、排気中の水蒸気分圧(露点)を高め、結果として水収支の自立を容易ならしめることができる。
 (変形例3)
 次に、図2に示したSOFCホットモジュール100の変形例3について図6を参照して説明する。図6は、本実施の形態に係るSOFCホットモジュール100において、空気ならびに流体(原料および改質水)が流れる経路の一例を示す模式図である。
 変形例3に係るSOFCホットモジュール100は、上述した変形例1の構成と変形例2の構成とを組み合わせたものである。すなわち、変形例1のSOFCホットモジュール100に係る構成では、第4熱交換部18で空気と熱交換をした流体が加湿原料となり改質器40に供給されるが、変形例3に係るSOFCホットモジュール100ではSOFCスタック50に導かれる点で異なる。そして、SOFCスタック50では、第5熱交換部19により、加湿原料とSOFC20との間で熱交換を行ない、さらに加熱された加湿原料が改質器40に供給される点でも異なる。
 それ以外の点については、上述した変形例1、2と同様であるため説明は省略する。
 (SOFCホットモジュールの構成例)
 次に上記したSOFCホットモジュール100の具体的な構成例について図7、図8を参照して説明する。特に、変形例3に係るSOFCホットモジュール100を例に挙げ、SOFCホットモジュール100の具体的な構成例について説明する。図7は、本実施の形態に係るSOFCホットモジュール100の具体的な構成の一例を示す正面図である。図8は、本実施の形態に係るSOFCホットモジュール100の具体的な構成の一例を示す側面図である。
 なお、図7に示すSOFCホットモジュール100において紙面手前側をSOFCホットモジュール100の正面、その反対側の面をSOFCホットモジュール100の背面とする。
 まず、本実施の形態に係るSOFCホットモジュール100の具体的な外観形状について図7および図8を参照して説明する。図7は、SOFCホットモジュール100の正面図であり、図8はその側面図である。なお、図7では、説明を簡便にするため隣接する部材同士をシールするガスケットについては図示を省略している。また、構成部材を明確に示すため、SOFCホットモジュール100の左半分において一部、部材をばらして記載しているが、実際は、締結部材60によって各積層部材が相互に接するように固定される。なお、本実施形態に係るSOFCスタック50は、方形のSOFC20を積層してなる平板積層型セルスタックとして説明する。したがって、平板積層型のSOFCスタック50を備えるSOFCホットモジュール100は、図8に示すようにその側面形状が略正方形であり、正面形状が略長方形となる直方体形状となる。なお、SOFCスタック50の形状はこの平板積層型に限定されるものではなく、円筒型などほかのタイプであってもよい。
 なお、SOFCスタック50は、複数のSOFC20および複数のインターコネクタ24と、カソード端インターコネクタ241と、アノード端インターコネクタ242とから構成されている。すなわち、複数のSOFC20と複数のインターコネクタ24とは交互に配置されカソード側の終端部にはカソード端インターコネクタ241が、アノード側の終端部には、アノード端インターコネクタ242がそれぞれ配置される。より具体的には、図7におけるカソード側(図7の左側)から、カソード端インターコネクタ241、SOFC20、インターコネクタ24、SOFC20、インターコネクタ24・・・SOFC20、アノード端インターコネクタ242の順に積層される。
 また、外端ヘッダー15、カソード端インターコネクタ241、SOFC20、インターコネクタ24、アノード端インターコネクタ242それぞれは、中央に配されている改質器40を中心にして左右対称となるように垂直姿勢で配置されている。図7では、SOFCホットモジュール100の左右の終端部(外端部)が正極、すなわちカソード側となる。
 (SOFCホットモジュールを流通する空気の流れ)
 次に、図9を参照して、SOFCホットモジュール100を流通する空気の流れについて説明する。図9は、本実施の形態に係るSOFCホットモジュールを流通する空気の流れの一例を示す図である。なお、図9では、説明を簡便にするため隣接する部材同士をシールするガスケットについては図示を省略している。また、構成部材を明確に示すため、SOFCホットモジュール100の左半分において一部、部材をばらして記載しているが、実際は、締結部材60によって各積層部材が相互に接するように固定される。
 まず、改質器接続ヘッダー(改質器接続層)16の背面側に設けられた空気投入口62(図9では不図示、後述の図16参照)を介して、改質器接続ヘッダー16の空気予熱第1マニホールド151に空気が供給される。この空気はアノード端インターコネクタ242、SOFC20・・・、インターコネクタ24・・・、カソード端インターコネクタ241にそれぞれ設けられた共通位置の空気予熱第1マニホールド151を通過して、外端ヘッダー15に形成された第1折り返し部154に達する。
 このとき、空気予熱第1マニホールド151を通過する空気によって、SOFC20が有する熱を奪い、SOFC20を冷却させる一方で、この空気は奪った熱により加熱される。そして、外端ヘッダー15の第1折り返し部154において、空気予熱第1マニホールド151から空気予熱第2マニホールド152に導かれるように折り返される。
 この折り返された空気はカソード端インターコネクタ241、SOFC20・・・、インターコネクタ24・・・、アノード端インターコネクタ242それぞれに設けられた共通位置の空気予熱第2マニホールド152を通過して、改質器接続ヘッダー16の第2折り返し部155に達する。
 第2折り返し部155に達した空気は、今度は空気予熱第3マニホールド153に導かれるように折り返される。そして、再びアノード端インターコネクタ242、SOFC20・・・、インターコネクタ24・・・、カソード端インターコネクタ241それぞれに設けられた共通位置の空気予熱第3マニホールド153を通過して、外端ヘッダー15の第3折り返し部156に達する。そして、この第3折り返し部156でカソード入マニホールド211に導かれるように折り返される。
 カソード入マニホールド211に導入された空気はカソード端インターコネクタ241およびインターコネクタ24(後述するカソード流路213a、213b)それぞれに供給され、SOFC20のカソード21(図9では不図示、後述の図13参照)において酸素が消費される。同時にこのカソード入マニホールド211に導入された空気によってSOFC20を冷却してカソード出マニホールド212に排出され、酸素を消費された全ての空気は最終的にアノード端インターコネクタ242を通過し、改質器接続ヘッダー16のオフガス混合部260(図9では不図示、後述の図16参照)に廃棄される。
 この一連の空気の流れにおいて、空気はSOFCスタック50の各予熱マニホールドにおいて、当該SOFCスタック50を冷却しながら自らは加熱されて、その都度、外端ヘッダー15に達する。そして、空気は、外端ヘッダー15の折り返し部(第1折り返し部154、第3折り返し部156)に設けられた熱交換フィン等を介して外端ヘッダー15に熱を捨て、自らは冷却されて冷却能力を回復した後に再度SOFCスタック50の冷却に向かうこととなる。
 (SOFCホットモジュールを流通する原料および改質水の流れ)
 一方、SOFCホットモジュール100に供給される流体(原料および改質水)は次のように流通する。以下、図10を参照して、SOFCホットモジュール100を流通する流体(原料および改質水)の流れについて説明する。図10は、本実施の形態に係るSOFCホットモジュール100を流通する原料および改質水の流れの一例を示す図である。なお、図10では、説明を簡便にするため隣接する部材同士をシールするガスケットについては図示を省略している。また、構成部材を明確に示すため、SOFCホットモジュール100の左半分において一部、部材をばらして記載しているが、実際は、締結部材60によって各積層部材が相互に接するように固定される。
 まず、原料および改質水は原料投入口61を介して外端ヘッダー15に供給される。外端ヘッダー15では、原料および改質水は後述する原料予熱マニホールド157に供給される。このうち改質水は、外端ヘッダー15が備える気化器41(後述の図11参照)に滴下され、ここで外端ヘッダー15に供給された空気から奪った熱により気化する。つまり、この改質水を気化させるための熱は、上述した各予熱マニホールドを空気が流通することでSOFC20から得た熱である。すなわち、第1折り返し部154および第3折り返し部156それぞれに設けられた熱交換用フィンを介して、空気によってSOFC20から奪った熱を得て改質水が気化される。そして、気化した改質水と原料とが混合され加湿原料となる。加湿原料は、カソード端インターコネクタ241、SOFC20・・・、インターコネクタ24・・・、アノード端インターコネクタ242にそれぞれ設けられた共通位置の原料予熱マニホールド(原料流路)157を流通して、改質器接続ヘッダー16の後述する原料予熱マニホールド157(加湿原料受容孔)f(図10において不図示)に達する。
 改質器40の後述する動作により、この加湿原料は水蒸気改質されて80%程度の水素を含む改質ガスとなり、これは改質器接続ヘッダー16を介してアノード入マニホールド221を流通しSOFCスタック50に導入される。
 SOFCスタック50に導入された改質ガス(燃料)は、アノード端インターコネクタ242およびインターコネクタ24それぞれに供給され、そこでSOFC20のアノード22において水素が消費される。同時に改質ガスはSOFC20を冷却してアノード出マニホールド(排出管)222に排出され、水素を消費された改質ガスは最終的にアノード端インターコネクタ242のアノード出マニホールド222を通過して改質器接続ヘッダー16の後述するオフガス混合部260(後述の図16参照)に廃棄される。
 最終的にアノードオフガスとカソードオフガスはこのオフガス混合部260で混合されて改質混合気となり、オフガスマニホールド(燃焼排ガス供給孔)270より改質器40の燃焼部30に供給される。
 以上一連の流体の流れの説明から自明であるが、本実施の形態に係るSOFCホットモジュール100はSOFC20を冷却した予熱空気によって改質水の気化を行う点が特徴的な構成となる。
 図9および図10に示すSOFCホットモジュール100では、上記した第1熱交換部11を、空気予熱第1マニホールド(第1空気流路)151として実現する。また、上記した第3熱交換部17を空気予熱第2マニホールド(第2空気流路)152および空気予熱第3マニホールド(第2空気流路)153として実現する。また、上記した第2熱交換部12を、空気との熱交換を行なう第1折り返し部154によって実現し、ならびに第4熱交換部18を第3折り返し部156によって実現する。第2熱交換部12および第4熱交換部18における空気との熱交換により、該空気から伝えられた熱は気化器41を加熱し、その結果、流体(原料と改質水)を加熱し加湿原料を生成する。
 すなわち、SOFCホットモジュール100に空気が供給されると、該空気が空気予熱第1マニホールド151、空気予熱第2マニホールド152、および空気予熱第3マニホールド153を通過する際に、SOFC20と熱交換を行なう。この熱交換によりSOFC20を冷却するとともに、空気自身は加熱(予熱)される。
 また、この加熱された空気との熱交換により得た熱が第1折り返し部154及び第3折り返し部156を介して気化器41に与えられる。この与えられた熱を利用して気化器41は外部から供給された改質水を気化させ、水蒸気と原料との混合ガス(加湿原料)を生成する。なお、SOFCホットモジュール100では、第1折り返し部154(第2熱交換部12)及び第3折り返し部156(第4熱交換部18)を介して空気と気化器41との間で熱交換を行い、気化器41を加熱させる構成とした。しかしながら、第1折り返し部154(第2熱交換部12)及び第3折り返し部156(第4熱交換部18)それぞれを介して空気との間で熱交換を行なうのはこの気化器41そのものに限定されるものではない。例えば原料を予熱することを目的として設けられた原料を流通させるためのマニホールドであってもよい。
 本実施形態のように第1折り返し部154(第2熱交換部12)及び第3折り返し部156(第4熱交換部18)を介して気化器41を加熱させる構成の場合、原料および改質水の立場から見れば改質気化エネルギーの一部を加熱された空気から供給されて改質水を気化させる。また、空気から供給される熱エネルギーによりさらに温度上昇する余地がある場合、改質器40に供される前に原料および改質水をさらに予熱し改質エネルギーの一部が賄われる構成としてもよい。
 次に、上記したSOFCホットモジュール100を構成する各部(外端ヘッダー15、カソード端インターコネクタ241、SOFC20、インターコネクタ24、アノード端インターコネクタ242、改質器接続ヘッダー16、および改質器40)の詳細な構造について説明する。
 つまり、図7に示すSOFCホットモジュール100のうち、中心に位置する改質器40から左半分の構造に焦点を当てて説明する。なお、外端ヘッダー15、カソード端インターコネクタ241、SOFC20、インターコネクタ24、およびアノード端インターコネクタ242それぞれについて、これらの積層方向における両端部のうち図7における左端部側に配される面を表面とし、右端部側に配される面を裏面とする。また、外端ヘッダー15、カソード端インターコネクタ241、SOFC20、インターコネクタ24、およびアノード端インターコネクタ242それぞれについて、SOFCホットモジュール100の正面または背面を形成する面を側面とする。
 (外端ヘッダーの構造)
 まず、図7において左端に位置する外端ヘッダー15の構造について図11を参照して説明する。図11は、本実施の形態に係るSOFCホットモジュール100を構成する外端ヘッダー15の表面、側面、ならびに裏面の一例を示す図である。
 外端ヘッダー15は、図11の表面または裏面の図に示すように正方形の面を有する板状形状をしている。外端ヘッダー15の上面には、改質水と原料とを受け付ける原料投入口61が備えられている。
 外端ヘッダー15の裏面では、その外周を囲むように4つの予熱マニホールドが形成されている。すなわち、外端ヘッダー15の裏面における外周の近傍において、上面側に原料予熱マニホールド157aが、SOFCホットモジュール100の背面側に配置された側部に空気予熱第1マニホールド151aが、底面側に空気予熱第2マニホールド152aが、SOFCホットモジュール100の正面側に配置された側部に空気予熱第3マニホールド153aがそれぞれ形成されている。なお、積層部材ごとに特に区別してこれら予熱マニホールドを説明する必要がない場合、単に原料予熱マニホールド157、空気予熱第1マニホールド151、空気予熱第2マニホールド152、空気予熱第3マニホールド153というように称するものとする。
 上述したように、これらの予熱マニホールドを空気または流体(原料および改質水)が通過することによりSOFCスタック50の熱を奪い、SOFCスタック50を冷却する。その一方、SOFCスタック50から空気または原料は熱を得ることになる。このため、これら予熱マニホールドの形状を例えば、次に配置される、図12に示すカソード端インターコネクタ241のように、突起が複数形成されてなる開口形状(櫛型形状)とし、流体(空気または原料)との接触面積を増大させる構造とすることが好適である。つまり、このような櫛型形状として接触面積を増大させる構造は、圧力損失の著しい上昇を惹起しない限りにおいて好ましい形状である。
 ここで外端ヘッダー15から改質器40に向かって、カソード端インターコネクタ241、複数のSOFC20・・・、複数のインターコネクタ24・・・、アノード端インターコネクタ242、改質器接続ヘッダー16の順に積層される。これら4つの予熱マニホールドはそれぞれの部材の共通位置に設けられており、これらの部材が積層されることで積層方向に延伸した貫通孔を形成する。
 図11に示すように、原料予熱マニホールド157aの下部には、例えばスチールウールまたは発泡メタル等により構成された気化器41が備えられている。この気化器41により気化された改質水を含む加湿原料が、この外端ヘッダー15から改質器40に向かって、積層されている他の部材の原料予熱マニホールド157を通過する。
 同様に空気予熱第1マニホールド151、空気予熱第2マニホールド152、および空気予熱第3マニホールド153も外端ヘッダー15から改質器40に向かって他の部材が積層されることで積層方向に延伸した貫通孔を形成する。カソード21に供給される前にこれらの貫通孔に空気が導かれ、SOFC20の有する熱により空気が予熱されると同時に、SOFC20から熱を奪って、冷却を行なう。
 また、図11に示すように、空気予熱第2マニホールド152aの上面側には、この空気予熱第2マニホールド152aと同方向に延伸し、その一端が空気予熱第1マニホールド151aの端部と連結した第1折り返し部154が形成されている。この第1折り返し部154は上述したように一端で空気予熱第1マニホールド151aと連結し、底面側の側部で空気予熱第2マニホールド152aと連結している。そして、第1折り返し部154は、空気予熱第1マニホールド151を流通した空気を空気予熱第2マニホールド152に導くことができる。この第1折り返し部154には、水平方向に複数の熱交換用フィンが設けられている。
 また、4つのマニホールドによって囲まれた領域であって外端ヘッダー15の略中央部分の領域には第3折り返し部156が形成されている。第3折り返し部156は、空気予熱第3マニホールド153aとカソード入マニホールド211aとの間を連結するように形成されており、空気予熱第3マニホールド153aを流通した空気を、カソード入マニホールド211aへと導くことができる。また、第3折り返し部156には、水平方向延伸した複数の熱交換フィンが設けられている。
 (カソード端インターコネクタの構造)
 次に外端ヘッダー15の次に積層されるカソード端インターコネクタ241の構造について図12を参照して説明する。図12は、本実施の形態に係るSOFCホットモジュール100を構成するカソード端インターコネクタ241の表面、側面、ならびに裏面の一例を示す図である。
 図12に示すようにカソード端インターコネクタ241は集電部材を兼ねており、その上面には正極の電極が設けられている。カソード端インターコネクタ241は、このように集電部材を兼ねるため、通常のインターコネクタ24(例えば、図7参照)よりも側面の厚みが大きくなるように設計されている。
 また、カソード端インターコネクタ241の表面ではその外周に、外端ヘッダー15と同様に各種マニホールド(空気予熱第1マニホールド151b、空気予熱第2マニホールド152b、空気予熱第3マニホールド153b、および原料予熱マニホールド157b)が設けられている。これらは、上述したように、外端ヘッダー15に設けられた各種マニホールドそれぞれと積層時に対応する位置に、裏面まで貫通する同形状の貫通孔として形成されている。
 また、外周を取り囲む4つのマニホールドの内側に配され、空気予熱第1マニホールド151bの近傍であってそれと略平行に延伸したカソード入マニホールド211bが形成されている。このカソード入マニホールド211bはカソード端インターコネクタ241の表面から裏面まで貫通している。
 カソード端インターコネクタ241の裏面は表面と同様に、その外周に空気予熱第1マニホールド151b、空気予熱第2マニホールド152b、空気予熱第3マニホールド153b、および原料予熱マニホールド157bが形成されている。また表面と同様にカソード入マニホールド211bも形成されている。さらに裏面では、空気予熱第3マニホールド153bの近傍であってそれと略平行に延伸したカソード出マニホールド212aが形成されている。図12に示すようにカソード出マニホールド212aは、カソード入マニホールド211bと対向する位置に設けられており、これらの間に多数の細孔で形成されたカソード流路213aが形成されている。
 (SOFCの構造)
 次に、カソード端インターコネクタ241の次に積層されるSOFC20の構造について図13を参照して説明する。図13は、本実施の形態に係るSOFCホットモジュール100を構成するSOFC20の表面、側面、ならびに裏面の一例を示す図である。
 図13に示すようにSOFC20は、表面にカソード21が、その裏面に電解質を挟んでアノード22がそれぞれ形成される。そして、このカソード21とアノード22とによって本発明の発熱部を実現する。SOFC20の表面では、その外周に、隣接するカソード端インターコネクタ241(図12参照)と同様に空気予熱第1マニホールド151c、空気予熱第2マニホールド152c、空気予熱第3マニホールド153c、および原料予熱マニホールド157cが設けられている。これらは、隣接するカソード端インターコネクタ241に設けられた各種マニホールドそれぞれと積層時に対応する位置に、裏面まで貫通する同形状の貫通孔として形成されている。
 また、図13に示すように、SOFC20は、カソード端インターコネクタ241(図12参照)の裏面に形成されたカソード入マニホールド211bおよびカソード出マニホールド212aそれぞれと積層時に対応する位置に、裏面まで貫通する同形状の貫通孔としてカソード入マニホールド211cおよびカソード出マニホールド212bが形成されている。
 さらに、空気予熱第2マニホールド152cの近傍であって、それと略平行に延伸したアノード入マニホールド221aが形成されており、このアノード入マニホールド221aは表面から裏面まで貫通している。また、原料予熱マニホールド157cの近傍であって、それと略平行に延伸したアノード出マニホールド222aが形成されており、このアノード出マニホールド222aは表面から裏面まで貫通している。
 図13に示すように、SOFC20の表面において水平方向にカソード21を挟むようにカソード入マニホールド211cおよびカソード出マニホールド212bが対向する位置に配置される。さらに、SOFC20の表面において垂直方向にカソード21を挟むようにアノード入マニホールド221aとアノード出マニホールド222aとが対向する位置に配置される。
 したがって、供給された空気の流れは、SOFC20の表面(カソード21)上をカソード入マニホールド211cからカソード出マニホールド212bに向かって流れる。一方、原料を改質した改質ガス(水素)の流れは、SOFC20の裏面においてアノード入マニホールド221aからアノード出マニホールド222aに向かって流れる。この時、アノード22には、基板250の細孔を通じて改質ガスが供給される。
 すなわち、本実施形態に係るSOFC20は、基板250をポーラス金属(多孔質のフェライト系ステンレス板)によって形成したメタルサポートセル(MSC;Metal-Support-Cell)である。例えば、SOFC20を一般的なESC(Electrolyte-Support Cell:電解質支持型)あるいは、ASC(Anode-Support Cell:アノード支持型)とすることもできる。
 しかしながらこれらのタイプでは、周縁部まで非常に薄いセラミックスで構成されることになり、SOFC20の外周に形成された、図13に示すような波型形状のマニホールドを加工することは困難である。また電池運転温度までの昇温段階で周縁部が破損することが懸念される。
 そこで、本実施の形態に係るSOFC20は、上述したようにMSCを採用している。MSCは、基板250を多孔質のフェライト系ステンレス板(例えば、Crofer22APU、Thyssenkrupp社製の粉末焼結体)で形成し、触媒、電解質を図7に示したカソード21とアノード22との間に積層させて集約する。上述した各種マニホールド類は基板250部分に設けられる、任意の形状の構造を加工性良く形成することができる。さらには、MDCは例えば基材厚み1mmの中に数十ミクロンの厚みで触媒や電解質を成膜したものである。そして、全体としての熱的性質は熱伝導率のきわめて高い金属である。このため、発熱部分がSOFC20内部であってもSOFC20全体に熱が効率よく伝えることができる。またSOFC20の外周部のみに冷却構造(熱交換構造)があった場合であってもSOFC20全体を冷却することができると言う好適な特性を有している。
 (インターコネクタの構造)
 次に、SOFC20と隣接して積層されるインターコネクタ24の構造について図14を参照して説明する。図14は、本実施の形態に係るSOFCホットモジュール100を構成するインターコネクタ24の表面、側面、ならびに裏面の一例を示す図である。
 図14に示すように、インターコネクタ24は、隣接するSOFC20(図13参照)と同様に空気予熱第1マニホールド151d、空気予熱第2マニホールド152d、空気予熱第3マニホールド153d、および原料予熱マニホールド157dが設けられている。これらは、隣接するSOFC20の外周に設けられた各種マニホールドと積層時に対応する位置に、裏面まで貫通する同形状の貫通孔として形成されている。
 さらにまた、SOFC20と同様にカソード入マニホールド211dおよびカソード出マニホールド212c、アノード入マニホールド221b、アノード出マニホールド222bが形成されている。
 また、インターコネクタ24の表面において、これらカソード入マニホールド211d、カソード出マニホールド212c、アノード入マニホールド221b、およびアノード出マニホールド222bによって囲まれた領域には、複数の細孔からなるアノード流路223aが形成されている。このアノード流路223aはアノード入マニホールド221bからアノード出マニホールド222bまでの間を細孔が連続するように形成されている。
 一方、インターコネクタ24の裏面においては、これらカソード入マニホールド211d、カソード出マニホールド212c、アノード入マニホールド221b、およびアノード出マニホールド222bによって囲まれた領域には、複数の細孔からなるカソード流路213bが形成されている。このカソード流路213bはカソード入マニホールド211cからカソード出マニホールド212cまでの間を細孔が連続するように形成されている。
 (アノード端インターコネクタの構造)
 SOFCスタック50のアノード側の終端部に配置されるアノード端インターコネクタ242の構造について図15を参照して説明する。図15は、本実施の形態に係るSOFCホットモジュール100を構成するアノード端インターコネクタ242の表面、側面、ならびに裏面の一例を示す図である
 図15に示すように、アノード端インターコネクタ242の上面には負極の終電端子部材が設けられている。アノード端インターコネクタ242は、カソード端インターコネクタ241と同様に集電部材を兼ねるためインターコネクタ24よりも厚くなるように設計されている(例えば、図7参照)。
 また、アノード端インターコネクタ242の外周において裏面まで貫通するように、空気予熱第1マニホールド151e、空気予熱第2マニホールド152e、空気予熱第3マニホールド153e、原料予熱マニホールド157eが設けられている。これら各種マニホールドそれぞれは、隣接するSOFC20(図13参照)の空気予熱第1マニホールド151c、空気予熱第2マニホールド152c、空気予熱第3マニホールド153c、原料予熱マニホールド157cそれぞれと積層時に対応する位置に、同形状の貫通孔として設けられている。
 また、隣接するSOFC20のアノード入マニホールド221aおよびアノード出マニホールド222aそれぞれと積層時に対応する位置にアノード入マニホールド221cおよびアノード出マニホールド222cが形成されている。これらのマニホールドは、アノード入マニホールド221aおよびアノード出マニホールド222aと同形状であって、アノード端インターコネクタ242の表面から裏面まで貫通するように形成されている。
 さらに、隣接するSOFC20のカソード出マニホールド212bと積層時に対応する位置に、これらのマニホールドと同形状のカソード出マニホールド212dが形成されている。ただし、このカソード出マニホールド212dは図15に示すようにその略上半分の範囲は表面から裏面まで貫通しているが、略下半分は、表面から裏面まで貫通しておらず、溝を形成している(ザグリ)。これは、続いて配置される改質器接続ヘッダー16において、この略下半分の位置と積層時に対応する位置に後述するオフガスマニホールド270(後述する図16参照)が形成されるからである。したがってアノード端インターコネクタ242では、カソード出マニホールド212dの貫通部分のみからカソードオフガスが燃焼部30に供給されることとなる。
 (改質器接続ヘッダーの構造)
 次に、アノード端インターコネクタ242に隣接して配置される改質器接続ヘッダー16の構造について図16を参照して説明する。図16は、本実施の形態に係るSOFCホットモジュール100を構成する改質器接続ヘッダー16の表面、側面、ならびに裏面の一例を示す図である。
 改質器接続ヘッダー16は、例えば、上述した図7に示すように、SOFCスタック50と改質器40とを接続する積層部材である。改質器接続ヘッダー16は、図16に示すように、その背面側の側面には、空気投入口62が設けられている。空気投入口62から供給された空気は、外端ヘッダー15に向かって貫通している空気予熱第1マニホールド151を流通し、この流通している間にSOFC20の熱により予熱される。
 改質器接続ヘッダー16は、その表面の外周において空気予熱第1マニホールド151f、空気予熱第2マニホールド152f、第2折り返し部155、原料予熱マニホールド(加湿原料供給孔)157fが形成されている。
 隣接するアノード端インターコネクタ242(図15参照)の空気予熱第1マニホールド151eと積層時に対応する位置に、同形状の空気予熱第1マニホールド151fが形成されている。また、このアノード端インターコネクタ242の空気予熱第2マニホールド152eと積層時に対応する位置に、略同形状の空気予熱第2マニホールド152fが形成されている。さらに、このアノード端インターコネクタ242の空気予熱第3マニホールド153eと積層時に対応する位置に、略同形状の第2折り返し部155が形成されている。なお、第2折り返し部155の端部と空気予熱第2マニホールド152fとの端部とは連結されている。このため、空気予熱第2マニホールド152fを流通した空気は、この第2折り返し部155により、隣接するアノード端インターコネクタ242の空気予熱第3マニホールド153eへと導かれる。
 また、アノード端インターコネクタ242の原料予熱マニホールド157eと積層時に対応する位置に同形状の原料予熱マニホールド157fが形成されている。
 改質器接続ヘッダー16では、外周に設けられた各種マニホールドと第2折り返し部155のうち、原料予熱マニホールド157fのみが、表面から裏面まで貫通している。
 また、改質器接続ヘッダー16では、アノード端インターコネクタ242のアノード入マニホールド221cおよびアノード出マニホールド222cと積層時に対応する位置に、同形状のアノード入マニホールド(改質ガス供給孔)221dおよびアノード出マニホールド222dがそれぞれ形成されている。そして、アノード入マニホールド221dのみが改質器40から改質反応により生成された燃料ガスを受け入れるために裏面まで貫通している。
 また、アノード端インターコネクタ242のカソード出マニホールド212dにおける貫通部分と積層時に対応する位置に、この貫通部分形状と同形状のカソード出マニホールド212eが形成されている。また、アノード端インターコネクタ242のカソード出マニホールド212dにおける非貫通部分と積層時に対応する位置にオフガスマニホールド270が裏面まで貫通するように形成されている。
 アノード出マニホールド222d、カソード出マニホールド212e、およびオフガスマニホールド270それぞれは、改質器接続ヘッダー16の中央部分に設けられたオフガス混合部260を介して、つながっている。そして、アノード出マニホールド222dから排出されたアノードオフガスと、カソード出マニホールド212dから排出されたカソードオフガスは、このオフガス混合部260で混合され、オフガスマニホールド270を介して燃焼部30の方へ排出される。
 なお、詳細は後述するが、図17に示す改質器40内のイグナイタ34で着火した火炎がSOFCスタック50内に類焼することを防止するために、アノード出マニホールド222dとオフガス混合部260との間、およびオフガスマニホールド270とオフガス混合部260との間それぞれに逆火防止部材261、262が設けられている。逆火防止部材261は、例えば金属網、パンチングメタル等の逆火防止網によって実現することができる。
 (改質器の構造)
 次に、改質器接続ヘッダー16に隣接して配置される改質器40の構造について図17を参照して説明する。図17は、本実施の形態に係るSOFCホットモジュール100を構成する改質器40の表面、側面、ならびに裏面の一例を示す図である。
 図17に示すように改質器40の正面側の側面のカソード側に、バーナー31の代わりに電子制御式点火装置であるイグナイタ34が備えられている。また、背面側の側面のカソード側にはSOFCホットモジュール100内の排ガスを外部に送出するための排気口63が備えられている。
 改質器40の表面側には、燃焼部30が形成され、ここの燃焼熱により改質器40の裏面側で改質反応が行なわれるように構成されている。図17に示すように改質器40の表面には、その上面側の外周部分、すなわち、隣接する改質器接続ヘッダー16の原料予熱マニホールド157f(図16参照)と積層時において対応する位置に、原料予熱マニホールド157gが裏面まで貫通するように形成されている。また、改質器40の表面における下部側外周部分、すなわち改質器接続ヘッダー16のアノード入マニホールド221dと積層時に対応する位置に、アノード入マニホールド(改質ガス排出孔)221eが裏面まで貫通するように形成されている。
 図17に示すように原料予熱マニホールド157gとアノード入マニホールド(改質ガス排出孔)221eとは、互いに平行するように改質器40の正面側と背面側との間で水平方向に延伸しており、これらの間に複数の燃焼触媒33が表面から見て逆Sの字の形状に配列されている。そして、これら燃焼触媒33が配置されている部分の図17における右端部(正面側)には、これら燃焼触媒33を固定するための燃焼触媒保持部材32が設けられている。
 燃焼部30では、隣接する改質器接続ヘッダー16のオフガスマニホールド270(図16参照)から排出された改質混合気(アノードオフガスおよびカソードオフガス)をイグナイタ34で点火し、燃焼触媒33を加熱するように構成されている。
 一方、改質器40の裏面には、原料予熱マニホールド157gからアノード入マニホールド221eまでの間を略Sの字形状に改質触媒43が配置され、改質部44を形成している。また、改質部44とアノード入マニホールド221eとの境界部分には、改質触媒43が移動してアノード入マニホールド221eを閉塞するのを防止するために改質触媒保持部材42が設けられている。改質触媒保持部材42は、例えば、パンチングメタル等により実現できる。
 つまり、原料予熱マニホールド157gを通じて供給された原料は加熱された改質部44における改質反応により水素が生成され、改質ガスとしてアノード入マニホールド221eを介してSOFCスタック50のSOFC20のアノード22に導かれる。
 ここで、通常は、これらマニホールドとしてカソード入マニホールド211、カソード出マニホールド212、アノード入マニホールド221、およびアノード出マニホールド222などの反応ガスの流路(マニホールド)のみがSOFCスタック50内部に設けられる。しかしながら、本実施の形態に係るSOFCホットモジュール100では、上記したように、これらマニホールドのさらに外周に、複数の空気予熱用マニホールド(空気予熱第1マニホールド151、空気予熱第2マニホールド152、空気予熱第3マニホールド153)、および原料予熱マニホールド157が設けられている。これらさらに形成された予熱マニホールドはこれらの中を空気もしくは原料が通過することにより、SOFCスタック50から熱を奪うことができる。一方、空気もしくは原料は、SOFCスタック50が有する熱により加熱される。
 (改質反応に係る動作)
 次いで、改質器40における改質反応に係る動作についてより詳細に説明する。隣接し合う改質器接続ヘッダー16と改質器40とは、締結部材60の締め付けにより機械的に接続されている。そして、上述したように、改質器接続ヘッダー16のオフガスマニホールド270から排出された改質混合気(カソードオフガスおよびアノードオフガス)は改質器40の燃焼部30に供給される。また、改質器接続ヘッダー16の原料予熱マニホールド157fから排出された加湿原料は改質器40の原料予熱マニホールド157gを介して改質部44に供される(図17参照)。
 図17に示すように、改質器40は全体として燃焼部30と改質部44とが薄い隔壁を介した一種の熱交換器であり、燃焼部30で燃焼した改質混合気の燃焼エネルギーを以って対面の改質部44で改質を行う構成となっている。
 燃焼部30の下端から導入された改質混合気は、SOFCの運転開始時にはイグナイタ34により着火されて燃焼部内の燃焼触媒33に導入される。ただし、この着火動作は改質器温度が安定し自動的に触媒燃焼が起こるようになったら不要となる。
 改質混合気は燃焼部30において逐次燃焼されながら、この燃焼熱を対面(裏面)の改質部44に供給し、改質混合気の排ガスは燃焼部30上端部分と対応する位置であり、SOFCホットモジュール100の背面側に設けられた排気口63から廃棄される。
 一方、原料予熱マニホールド157gを介して改質部44の上端側に導入された加湿原料は、改質触媒43上で逐次、水蒸気改質され水素が生成される。生成された水素は改質ガスとしてアノード入マニホールド221eから改質器接続ヘッダー16に供給され、その後の流れは既に記載した通りである。
 なお、図16および図17に示した改質器接続ヘッダー16および改質器40は金属ブロックを研削加工することで容易に製作することができる。あるいは、金属粉末を加圧および焼結する粉末冶金技術によっても容易に製作することができる。なお、製造コストを考慮し量産する場合、後者の製作方法の方が好ましい。その他の積層部材である外端ヘッダー15、カソード端インターコネクタ241、インターコネクタ24、およびアノード端インターコネクタ242の製作についても改質器接続ヘッダー16および改質器40と同様である。
 また、図16および図17示した改質器接続ヘッダー16および改質器40は比較的広い接触面を有しており、これによって改質器接続ヘッダー16から改質器40への直接的な伝熱が可能となっている。これはSOFC20における発電廃熱を改質エネルギーに転化することにつながり、より一層の過剰空気の削減に繋がり、水自立の容易化の一助となる。
 以下において、本実施の形態に係るSOFCホットモジュール100により水収支の自立が実現できる原理を説明する。
 (水収支の自立)
 まず、水の収支の自立ができる原理について説明する前に、SOFCホットモジュール100を備え、排ガスから生成した凝縮水を改質水として利用できるSOFCシステム200の構成について図18を参照して説明する。図18は、本実施の形態に係るSOFCシステム200の概略構成の一例を模式的に示す図である。
 図18に示すように、本実施の形態に係るSOFCシステム200は、上記したSOFCホットモジュール100に加えて、凝縮熱交換器70およびドレインタンク71をさらに備えてなる構成である。SOFCシステム200は、SOFCホットモジュール100から排出された排ガスを凝縮熱交換器70によって空気と熱交換し、この排ガスを冷やして凝縮水を生成しドレインタンク71に貯留できるように構成されている。そして、ドレインタンク71に貯留された凝縮水を、SOFCホットモジュール100に改質水として利用するように構成されている。
 本実施の形態に係るSOFCシステム200では、下記に説明する原理によりこの凝縮熱交換器70による熱交換で冷やされた排ガスから改質水として必要な量の凝縮水を得ることができる。
 以下において、図19~図21に示す物質収支を参照して水の収支が自立できる原理について説明する。図19~図21は、水素1mol、酸素0.5molから1molの水を生成する電池反応における、改質効率、燃料/酸素利用率における物質収支の一例を示す図である。なお、図19では酸素利用率がUo=0.2の場合、図20では酸素利用率がUo=0.3の場合、図21では酸素利用率がUo=0.33の場合についてそれぞれ物質収支の関係を示している。
 まず、流量1.0mol/minの水素の燃焼エネルギーを仕事量換算すると4129Wとなる。したがって流量が1.0mol/minの水素と流量が0.5mol/minの酸素とを消費して、発電効率60%で運転される燃料電池の発電量は4129×0.6=2477Wであり、このときの発熱量は4129×0.4=1651Wである。つまり、電池温度を一定に保つために1651Wの熱を除去しながら運転しなければならない。
 ここで図19より明らかなように、メタン(CH)を原料とし、S/C=2.5の場合には、消費水素1molあたり改質水が0.98mol必要である。ここで、この0.98mol/minの水の気化熱を仕事量換算すると664Wとなる。
 上述の通り、この1651Wの熱を除去するために従来の構成では量論の5倍(Uo=0.2)の空気でSOFCを空冷しながら燃料電池装置の運転が行なわれていた。この従来の構成の場合、排ガスを、通常想定される夏季の外気温度35℃で放冷しても得られる凝縮水は0.78mol/minである。このため、必要な改質水0.98mol/minを賄うことができない。
 これに対して本実施の形態に係る燃料電池では、この1651Wのうち664W(40%)を、水の気化熱に消費することができ、空気によって冷却が必要な熱量は上記の60%、量論の3倍(Uo=0.33)となる。このときの物質収支は図21に示すとおりとなり、通常想定される夏季の外気温度35℃で放冷すれば凝縮水1.07mol/minを生成することができる。つまり、生成した凝縮水により、改質水として必要な量である0.98mol/minを賄うことができる。結果として、本実施の形態に係る燃料電池装置は、通常想定される外気温の範囲内の空気で排ガスを冷却して、改質水として必要な量の凝縮水を得ることができる。すなわち、本実施の形態に係る燃料電池装置は水の収支を自立させることができる。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 本発明の高温動作型燃料電池モジュールおよび高温動作型燃料電池システムは、供給される空気の利用効率を向上させることができる高温動作型燃料電池モジュール等として有用である。
  9  空気吐出口
 10  空気予熱部
 11  第1熱交換部
 12  第2熱交換部
 13  供給ヘッダー
 14  排出ヘッダー
 15  外端ヘッダー
 16  改質器接続ヘッダー
 17  第3熱交換部
 18  第4熱交換部
 19  第5熱交換部
 20  SOFC
 21  カソード
 22  アノード
 23  電解質
 24  インターコネクタ
 25  基管体
 30  燃焼部
 31  バーナー
 32  燃焼触媒保持部材
 33  燃焼触媒
 34  イグナイタ
 40  改質器
 41  気化器
 42  改質触媒保持部材
 43  改質触媒
 44  改質部
 45  改質ガス供給口
 50  SOFCスタック
 60  締結部材
 61  原料投入口
 62  空気投入口
 63  排気口
 70  凝縮水熱交換器
 71  ドレインタンク
 100 SOFCホットモジュール
 151 空気予熱第1マニホールド
 151a 空気予熱第1マニホールド
 151b 空気予熱第1マニホールド
 151c 空気予熱第1マニホールド
 151d 空気予熱第1マニホールド
 151e 空気予熱第1マニホールド
 151f 空気予熱第1マニホールド
 152 空気予熱第2マニホールド
 152a 空気予熱第2マニホールド
 152b 空気予熱第2マニホールド
 152c 空気予熱第2マニホールド
 152d 空気予熱第2マニホールド
 152e 空気予熱第2マニホールド
 152f 空気予熱第2マニホールド
 153 空気予熱第3マニホールド
 153a 空気予熱第3マニホールド
 153b 空気予熱第3マニホールド
 153c 空気予熱第3マニホールド
 153d 空気予熱第3マニホールド
 153e 空気予熱第3マニホールド
 154 第1折り返し部
 155 第2折り返し部
 156 第3折り返し部
 157 原料予熱マニホールド
 157a 原料予熱マニホールド
 157b 原料予熱マニホールド
 157c 原料予熱マニホールド
 157d 原料予熱マニホールド
 157e 原料予熱マニホールド
 157f 原料予熱マニホールド
 157g 原料予熱マニホールド
 200 SOFCシステム
 211 カソード入マニホールド
 211a カソード入マニホールド
 211b カソード入マニホールド
 211c カソード入マニホールド
 212 カソード出マニホールド
 212a カソード出マニホールド
 212b カソード出マニホールド
 212c カソード出マニホールド
 212d カソード出マニホールド
 212e カソード出マニホールド
 213a カソード流路
 213b カソード流路
 221 アノード入マニホールド
 221a アノード入マニホールド
 221b アノード入マニホールド
 221c アノード入マニホールド
 221d アノード入マニホールド
 221e アノード入マニホールド
 222 アノード出マニホールド
 222a アノード出マニホールド
 222b アノード出マニホールド
 222c アノード出マニホールド
 222d アノード出マニホールド
 223a アノード流路
 223b アノード流路
 241 カソード端インターコネクタ
 242 アノード端インターコネクタ
 250 基板
 260 オフガス混合部
 261 逆火防止部材
 270 オフガスマニホールド
 1000 SOFCホットモジュール

Claims (14)

  1.  燃料ガスと空気とを利用して発電反応により発電する発電部を備えた高温動作型燃料電池と、
     改質ガスを生成するための流体が供給され、当該流体から前記燃料ガスとして改質ガスを生成する改質器と、を備え、
     前記高温動作型燃料電池の有する熱により加熱された前記流体が、前記改質器に供給される高温動作型燃料電池モジュール。
  2.  前記空気を前記発電反応に利用する前に、前記高温動作型燃料電池を冷却するとともに、該高温動作型燃料電池の熱により自身を加熱するように、該高温動作型燃料電池と該空気との間で熱交換を行なう第1熱交換部と、
     前記改質器に供給される前記流体を加熱するように、前記第1熱交換部での熱交換により加熱された空気と該流体との間で熱交換を行なう第2熱交換部と、を備え、
     前記第2熱交換部での熱交換により加熱された流体を前記改質器に供給する一方、該第2熱交換部での熱交換により熱が奪われた空気を前記高温動作型燃料電池の発電部に供給する請求項1に記載の高温動作型燃料電池モジュール。
  3.  前記改質器により生成された改質ガスが、高温動作型燃料電池の発電部において燃料ガスとして利用されるとともに、該高温動作型燃料電池を冷却する冷却媒体として利用されるように構成された請求項2に記載の高温動作型燃料電池モジュール。
  4.  前記第2熱交換部での熱交換により熱が奪われた空気によって前記高温動作型燃料電池を冷却するように、該空気と該高温動作型燃料電池との間で熱交換を行なう第3熱交換部と、
     前記第3熱交換部での熱交換により加熱された空気と前記流体との間で再度熱交換を行なう第4熱交換部と、をさらに備え、
     前記第2熱交換部および前記第4熱交換部での熱交換により加熱された前記流体を前記改質器に供給し、該第4熱交換部での熱交換により熱が奪われた空気を前記高温動作型燃料電池の発電部に供給して酸化剤として利用するとともに、この高温動作型燃料電池を冷却する冷却媒体として利用するように構成された請求項2または3に記載の高温動作型燃料電池モジュール。
  5.  前記第2熱交換部および前記第4熱交換器での空気との熱交換により加熱された流体を前記改質器に供給する前に、該流体をさらに加熱するとともに前記高温動作型燃料電池を冷却するように、この流体と高温動作型燃料電池との間で熱交換を行なう第5熱交換部をさらに備える請求項4に記載の高温動作型燃料電池モジュール。
  6.  複数の前記高温動作型燃料電池と複数のインターコネクタとが交互に積層された積層平板型セルスタックと、
     前記積層平板型セルスタックの一方の端部に配され、前記流体を該積層平板型セルスタックに供給する原料供給層と、
     前記積層平板型セルスタックの他方の端部でかつ、該積層平板型セルスタックと前記改質器との間に配され、これらを接続する改質器接続層と、を備え、
     前記原料供給層が前記第2熱交換部および第4熱交換部を有し、該第2熱交換部および該第4熱交換部での空気と流体との間での熱交換により加湿原料を生成しており、
     前記改質器接続層は、積層平板型セルスタックに空気を供給するとともに、前記原料供給層において生成された加湿原料を改質器に供給するように構成されている請求項5に記載の高温動作型燃料電池モジュール。
  7.  前記積層平板型セルスタックは、供給された空気と前記高温動作型燃料電池との間で熱交換を行なう第1熱交換部として、該空気を流通させるための第1空気流路が外周に形成されている請求項6に記載の高温動作型燃料電池モジュール。
  8.  前記積層平板型セルスタックは、前記第2熱交換部での熱交換により熱が奪われた空気と前記高温動作型燃料電池との間で熱交換を行なう第3熱交換部として、該空気を流通させるための第2空気流路が外周に形成されている請求項6または7に記載の高温動作型燃料電池モジュール。
  9.  前記積層平板型セルスタックは、前記第2熱交換部および前記第4熱交換部での熱交換により加熱された流体と前記高温動作型燃料電池との間で熱交換を行なう第5熱交換部として、該流体を流通させる原料流路が外周に形成されている請求項6から8のいずれか1項に記載の高温動作型燃料電池モジュール。
  10.  前記積層平板型セルスタックは、前記発電部における発電反応により排出される燃焼排ガスを前記改質器の方へと導く排出管を備え、
     前記改質器は、前記排出管を通じて導かれた燃焼排ガスを燃焼した燃焼熱を改質反応に利用する請求項6から9のいずれか1項に記載の高温動作型燃料電池モジュール。
  11.  前記高温動作型燃料電池は、金属基板を支持体としてアノード、電解質、およびカソードが形成されたメタルサポート形であって、
     前記高温動作型燃料電池の前記金属基板には、前記積層平板型セルスタックにおける前記第1空気流路、第2空気流路、および原料流路それぞれの一部分を形成するための各貫通孔が形成される請求項10に記載の高温動作型燃料電池モジュール。
  12.  前記改質器接続層は、
     前記原料供給層において生成された加湿原料を前記改質器に導く貫通孔として加湿原料供給孔と、
     前記改質器により生成された改質ガスを前記積層平板型セルスタックの発電部に供給するための貫通孔として改質ガス供給孔と、
     前記積層平板型セルスタックの発電部から前記排出管を通じて導かれた燃焼排ガスを前記改質器へと供給する貫通孔として燃焼排ガス供給孔と、を備え、
     前記改質器は、
     前記加湿原料供給孔を介して供給された加湿原料を受け入れる貫通孔として加湿原料受容孔と、
     生成した前記改質ガスを前記改質器接続層に排出するための貫通孔として改質ガス排出孔と、
     改質反応に必要な熱を得るために、前記燃焼排ガス供給孔を介して供給された燃焼排ガスを燃焼させる燃焼部と、を備えている請求項10または11に記載の高温動作型燃料電池モジュール。
  13.  燃料ガスと空気とを利用して発電反応により発電する発電部を備える高温動作型燃料電池と、
     供給された流体から前記燃料ガスとなる改質ガスを生成する改質器とを備え、
     前記空気を前記発電反応に利用する前に、前記高温動作型燃料電池を冷却するとともに、該高温動作物型燃料電池の熱により自身を加熱するように、該高温動作型燃料電池を通過させ、この通過時に加熱された空気と流体との間で熱交換を行なって、前記改質器に供給される流体を加熱させ、この熱交換により加熱された空気を再度、高温動作型燃料電池に向かって折り返し、該高温動作型燃料電池の冷却に利用するように構成された高温動作型燃料電池モジュール。
  14.  請求項1または13に記載の高温動作型燃料電池モジュールと、
     前記高温動作型燃料電池モジュールから排出された排ガスと外気とを熱交換させ、該排ガス中に含まれる水分を凝縮して凝縮水を生成させる凝縮熱交換部と、を備え、
     前記凝縮熱交換部によって生成した凝縮水を前記高温動作型燃料電池モジュールに改質水として供給する高温動作型燃料電池システム。
PCT/JP2012/005844 2011-09-27 2012-09-13 高温動作型燃料電池モジュール、および高温動作型燃料電池システム WO2013046582A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12836292.8A EP2763228A4 (en) 2011-09-27 2012-09-13 FUEL CELL MODULE OPERATING AT HIGH TEMPERATURES AND FUEL CELL SYSTEM OPERATING AT HIGH TEMPERATURES
US13/989,715 US20130244126A1 (en) 2011-09-27 2012-09-13 High-temperature operating fuel cell module, and high-temperature operating fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011211254 2011-09-27
JP2011-211254 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013046582A1 true WO2013046582A1 (ja) 2013-04-04

Family

ID=47994671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005844 WO2013046582A1 (ja) 2011-09-27 2012-09-13 高温動作型燃料電池モジュール、および高温動作型燃料電池システム

Country Status (4)

Country Link
US (1) US20130244126A1 (ja)
EP (1) EP2763228A4 (ja)
JP (1) JPWO2013046582A1 (ja)
WO (1) WO2013046582A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004419A1 (en) * 2013-07-09 2015-01-15 Ceres Intellectual Property Company Limited Improved fuel cell systems and methods
KR20160041703A (ko) * 2014-10-08 2016-04-18 한국에너지기술연구원 열회수형 연료전지 모듈

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014100702B4 (de) * 2014-01-22 2017-06-29 Siqens Gmbh Brennstoffzellensystem zur thermisch gekoppelten Reformierung mit Reformataufbereitung und Verfahren dazu
WO2015199333A1 (ko) * 2014-06-26 2015-12-30 주식회사 경동나비엔 열효율이 증가된 연료전지모듈, 이를 이용한 난방시스템 및 그 제어방법
DE102014213102A1 (de) * 2014-07-07 2016-01-07 Robert Bosch Gmbh Brennstoffzellenvorrichtung
JP6846711B2 (ja) 2016-05-19 2021-03-24 パナソニックIpマネジメント株式会社 高温動作型燃料電池システム
FR3088773B1 (fr) * 2018-11-16 2020-12-25 Commissariat Energie Atomique Dispositif electrochimique a oxydes solides pourvu d'un moyen de surchauffe integre compact
CN114765266A (zh) * 2021-01-14 2022-07-19 清华大学 一种提高热效率并优化水管理的sofc热电联供系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098813B2 (ja) 1990-08-27 2000-10-16 ゲブリユーダー ズルツアー アクチエンゲゼルシヤフト 燃料電池からの熱の放散方法および温度平衡部材
JP2002280023A (ja) 2001-03-16 2002-09-27 Mitsubishi Materials Corp 燃料電池のガス予熱構造
JP2004139960A (ja) 2002-08-19 2004-05-13 Mitsubishi Materials Corp 燃料電池
JP2005078859A (ja) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd 燃料電池システム
JP2006085982A (ja) 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池の冷却構造
JP2006525631A (ja) * 2003-05-06 2006-11-09 ヴァーサ パワー システムズ リミテッド 熱的に統合された燃料電池システム
JP2007157479A (ja) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp 燃料電池
JP2007234374A (ja) * 2006-02-28 2007-09-13 Kyocera Corp 固体酸化物形燃料電池における排熱回収システム
WO2009028169A1 (ja) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation 燃料電池
JP2009093923A (ja) 2007-10-09 2009-04-30 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池モジュール

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995010126A1 (en) * 1993-10-06 1995-04-13 Ceramatec, Inc. Integrated reformer/cpn sofc stack module design
DE4438555C1 (de) * 1994-10-28 1996-03-07 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung mit Reformierungseinrichtung

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3098813B2 (ja) 1990-08-27 2000-10-16 ゲブリユーダー ズルツアー アクチエンゲゼルシヤフト 燃料電池からの熱の放散方法および温度平衡部材
JP2002280023A (ja) 2001-03-16 2002-09-27 Mitsubishi Materials Corp 燃料電池のガス予熱構造
JP2004139960A (ja) 2002-08-19 2004-05-13 Mitsubishi Materials Corp 燃料電池
JP2006525631A (ja) * 2003-05-06 2006-11-09 ヴァーサ パワー システムズ リミテッド 熱的に統合された燃料電池システム
JP2005078859A (ja) * 2003-08-28 2005-03-24 Mitsubishi Heavy Ind Ltd 燃料電池システム
JP2006085982A (ja) 2004-09-15 2006-03-30 Yanmar Co Ltd 固体酸化物型燃料電池の冷却構造
JP2007157479A (ja) * 2005-12-05 2007-06-21 Mitsubishi Materials Corp 燃料電池
JP2007234374A (ja) * 2006-02-28 2007-09-13 Kyocera Corp 固体酸化物形燃料電池における排熱回収システム
WO2009028169A1 (ja) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation 燃料電池
JP2009093923A (ja) 2007-10-09 2009-04-30 Ngk Spark Plug Co Ltd 固体酸化物形燃料電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763228A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004419A1 (en) * 2013-07-09 2015-01-15 Ceres Intellectual Property Company Limited Improved fuel cell systems and methods
KR20160030281A (ko) * 2013-07-09 2016-03-16 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 개량된 연료 전지 시스템 및 방법
US20160141692A1 (en) * 2013-07-09 2016-05-19 Ceres Intellectual Property Company Limited Improved fuel cell systems and methods
JP2016524303A (ja) * 2013-07-09 2016-08-12 セレス インテレクチュアル プロパティー カンパニー リミテッド 向上した燃料電池システムおよび方法
RU2650184C2 (ru) * 2013-07-09 2018-04-11 Серес Интеллекчуал Проперти Компани Лимитед Усовершенствованные системы и способы, относящиеся к топливным элементам
US10615439B2 (en) * 2013-07-09 2020-04-07 Ceres Intellectual Property Company Limited Fuel cell stack and steam reformer systems and methods
KR102171743B1 (ko) * 2013-07-09 2020-10-29 케레스 인텔렉츄얼 프로퍼티 컴퍼니 리미티드 개량된 연료 전지 시스템 및 방법
KR20160041703A (ko) * 2014-10-08 2016-04-18 한국에너지기술연구원 열회수형 연료전지 모듈
KR101683579B1 (ko) * 2014-10-08 2016-12-08 한국에너지기술연구원 열회수형 연료전지 모듈

Also Published As

Publication number Publication date
US20130244126A1 (en) 2013-09-19
EP2763228A4 (en) 2015-07-29
JPWO2013046582A1 (ja) 2015-03-26
EP2763228A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
WO2013046582A1 (ja) 高温動作型燃料電池モジュール、および高温動作型燃料電池システム
US7169495B2 (en) Thermally integrated SOFC system
CN1862862B (zh) 具有一体化热交换器网络的高温燃料电池系统
CN1862864B (zh) 具有一体化热交换器网络的高温燃料电池系统
US8021794B2 (en) Fuel cell with cross-shaped reformer
JP2006318907A (ja) 一体型熱交換網を有する高温燃料電池システム
JP2004531022A (ja) 燃料電池、改質装置又は熱プラントとして動作可能な多機能エネルギシステム
JP2006309982A (ja) 固体酸化物形燃料電池システム
WO2008121189A1 (en) Sofc system producing reduced atmospheric carbon dioxide using a molten carbonate carbon dioxide pump
JP7364831B2 (ja) 縦続接続された燃料電池を用いる発電システムおよびそれに関連する方法
JP2011113743A (ja) 発電装置
JP5753733B2 (ja) 燃料電池モジュール及び燃料電池システム
JP2017033630A (ja) 固体酸化物形燃料電池スタック、固体酸化物形燃料電池モジュールおよび固体酸化物形燃料電池システム
JP2003017097A (ja) ガス加湿装置及び燃料電池システム
JP5435191B2 (ja) 燃料電池モジュール、及びそれを備える燃料電池
JP5307376B2 (ja) 燃料改質形燃料電池
WO2018008354A1 (ja) 燃料電池システム
JP5484401B2 (ja) 燃料電池モジュール
JP2011065786A (ja) 燃焼装置及びこれを備えたコージェネレーションシステム
JP2007073358A (ja) 燃料熱交換器および燃料電池
JP7397631B2 (ja) 燃料電池モジュール
JP5491079B2 (ja) 燃料電池システム
JP2003017108A (ja) 改質装置及び燃料電池システム
WO2012132635A1 (ja) 燃料電池モジュール
JP6187209B2 (ja) 燃料電池装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535867

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836292

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13989715

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012836292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE