WO2013046325A1 - 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置 - Google Patents

多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置 Download PDF

Info

Publication number
WO2013046325A1
WO2013046325A1 PCT/JP2011/072024 JP2011072024W WO2013046325A1 WO 2013046325 A1 WO2013046325 A1 WO 2013046325A1 JP 2011072024 W JP2011072024 W JP 2011072024W WO 2013046325 A1 WO2013046325 A1 WO 2013046325A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
interval
thin plate
corrugated material
corrugating
Prior art date
Application number
PCT/JP2011/072024
Other languages
English (en)
French (fr)
Inventor
秋本 一世
Original Assignee
三和パッキング工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三和パッキング工業株式会社 filed Critical 三和パッキング工業株式会社
Priority to PCT/JP2011/072024 priority Critical patent/WO2013046325A1/ja
Priority to JP2011550765A priority patent/JP4970626B1/ja
Publication of WO2013046325A1 publication Critical patent/WO2013046325A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D13/00Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
    • B21D13/04Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling

Definitions

  • the present invention relates to a multi-directional corrugated material subjected to, for example, multi-directional corrugation, a manufacturing method thereof, and a corrugated material manufacturing apparatus.
  • corrugated materials with various corrugated shapes have been proposed as performance has increased and diversified.
  • the manufacturing method of the corrugated material described in Patent Document 1 performs the corrugation process twice on the metal sheet, and the direction of the second corrugation process is the direction of the first corrugation process. It is said that a corrugated material having an inner bent side wall in one direction can be formed by inclining at an angle of at least 10 ° with respect to the angle.
  • the manufacturing method of the corrugated material of patent document 2 performs a corrugation process twice with respect to a metal sheet
  • the tooth profile and the roll gap are the same
  • the cross-sectional shapes in the direction of the first corrugation and the direction of the second corrugation are both sinusoidal.
  • the corrugated material in which the ridge line of the first wavy protrusion along the first direction and the ridge line of the second wavy protrusion along the second direction are perpendicular to each other can be manufactured. ing.
  • the multidirectional corrugating material manufacturing method proposed in Patent Documents 1 and 2 can manufacture corrugated multidirectional corrugating materials, but each corrugated material has a set shape. However, it was not possible to easily produce multidirectional corrugated materials having various corrugated shapes.
  • the present invention provides a corrugation process in a direction intersecting the corrugation direction at the time of the previous corrugation process on the corrugated thin sheet sandwiched between a pair of corrugated gears and corrugated into the thin plate material.
  • An object of the present invention is to provide a manufacturing method, a corrugating material manufacturing apparatus, and a manufactured multidirectional corrugating material that are applied a plurality of times to manufacture multidirectional corrugating materials of various corrugated shapes.
  • the present invention includes a pair of corrugated gears that sandwich and corrugate a thin plate material, rotational driving means that rotationally drives the pair of corrugated gears, and meshing portions that mesh with each other in the pair of corrugated gears.
  • a corrugated material manufacturing apparatus provided with an interval adjusting means for adjusting an interval, with respect to a corrugated thin plate sandwiched between the pair of corrugated gears and corrugated to the thin plate material, at the time of the previous corrugating process
  • the corrugation processing is corrugation, embossing, corrugation processing such as corrugations, and the like.
  • the corrugated gear not only has meshing gears that mesh with each other, but may also be a gear having an uneven shape that meshes with each other or a roller.
  • a corrugated thin plate sandwiched between a pair of corrugated gears and corrugated into a thin plate material is subjected to a plurality of corrugations in a direction intersecting the corrugating direction at the time of the previous corrugating process. It is possible to manufacture multi-directional corrugated materials having various corrugated shapes.
  • a corrugated thin plate is formed by sandwiching a thin plate material with a pair of corrugated gears that are rotationally driven by a rotational drive means, and further corrugated in the previous corrugating process.
  • a multi-directional corrugated material can be manufactured by corrugating in the intersecting directions.
  • the corrugation pattern processed by a corrugation process can be adjusted by adjusting the space
  • the corrugated shape is continuous even in the case of one continuous thin plate material.
  • the interval adjusting means may be configured such that the interval between the meshing portions is a standard interval H corresponding to at least one of the thickness and rigidity of a thin plate material to be corrugated, a narrow interval narrower than the standard interval H, and It can be set as the structure adjusted to the wide space
  • a multidirectional corrugated material having a shape of at least 6 patterns can be manufactured.
  • storage means for storing the standard interval, the narrow interval, and the wide interval according to at least one of the thickness and rigidity of a thin plate material to be corrugated, Control means for controlling the interval adjusting means based on the intervals stored in the storage means can be provided.
  • control means adjusts the intervals to suitable intervals according to the thickness and rigidity of the thin plate material, and multi-directional corrugated materials with at least six patterns can be easily and rated. Can be manufactured.
  • the corrugated material manufacturing apparatus includes a torque detecting means for detecting the detected rotational torque of each of the rotational drive means as a detected rotational torque, and a wave applied to the thin plate material sandwiched between the corrugated gears.
  • a detection torque output means for outputting the detected rotational torque at the time of staking processing, and measuring a waveform shape by the corrugation processing based on a change with time of the detected rotational torque output by the detected torque output means can do.
  • the measurement of the waveform shape described above includes measurement of the waveform shape obtained by converting the waveform shape dimension from the temporal change data of the rotational torque.
  • the present invention it is possible to measure a corrugated shape of a multi-directional corrugated material formed by corrugating and processing a thin plate material between a pair of corrugated gears. Specifically, when a thin plate material is bent in the corrugating process by detecting the rotational torque of the rotational drive means that rotationally drives a pair of corrugated gears sandwiching the thin plate material as a detected rotational torque by the torque detection means Can be detected.
  • the rotational torque varies depending on the bending angle in the V-bending. Specifically, when the bending angle in the V-bending is large under the constant thickness condition, the rotational torque Conversely, when the bending angle in V-bending is small, the rotational torque is low.
  • the thin plate material is bent at the convex portion of one corrugated gear of the pair of corrugated gears, and the thin plate material bent at the convex portion of the other corrugated gear is received at the concave portion. Therefore, only the portion bent by the corrugated gear, that is, the waveform bent in the convex direction with respect to the corrugated gear, is measured from the detected rotational torque in the rotational driving means that rotationally drives a pair of corrugated gears. can do.
  • a waveform bent in a convex direction with respect to one of the corrugated gears by outputting the detected rotational torque of each of the pair of corrugated gears in the rotational driving means that rotationally drives each of the corrugated gears
  • the present invention is characterized in that it is a multidirectional corrugated material manufactured by the above-described manufacturing method. According to the present invention, multi-directional corrugated materials having various corrugated shapes can be easily manufactured.
  • a corrugated thin plate sandwiched between a pair of corrugated gears and corrugated into a thin plate material is subjected to a plurality of corrugations in a direction intersecting the corrugating direction at the time of the previous corrugating process. It is possible to provide a manufacturing method, a corrugated material manufacturing apparatus, and a manufactured multidirectional corrugating material for manufacturing multi-directional corrugating materials having various corrugated shapes.
  • the block diagram of a corrugated material manufacturing apparatus The perspective view of a corrugating apparatus. Explanatory drawing about the 1st corrugating. Explanatory drawing about the 2nd corrugating process. Explanatory drawing about the space
  • FIG. 1 shows a block diagram of the corrugated material manufacturing apparatus 1
  • FIG. 2 shows a perspective view of the corrugated portion 10
  • FIG. 3 shows an explanatory view of the first corrugated portion
  • FIG. 4 shows the second corrugated portion.
  • An explanatory view is shown
  • FIG. 5 is an explanatory view for adjusting the interval of the processing gear roller 11.
  • FIG. 3 is a perspective view illustrating a situation in which the corrugated material 130 is manufactured by performing the first corrugating process on the aluminum sheet material 120, and FIG. Explanatory drawing by the perspective view of the condition which gives corrugating and manufactures the bi-directional corrugated material 100 is shown.
  • FIG. 5 is an enlarged front view of a portion surrounded by a square in FIG. 1, and FIG. 5 (a) is a corrugating process when the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is a standard interval H.
  • FIG. 5 (b) shows an enlarged front view of corrugating when the clearance K has a wide interval H1
  • FIG. 5 (c) shows the clearance K with a narrow interval H2. The enlarged front view about corrugating in the case is shown.
  • FIG. 6 shows a perspective view of the first pattern bi-directional corrugated material 100a
  • FIG. 7 shows an enlarged end surface explanatory view of the first pattern bi-directional corrugated material 100a.
  • FIG. 7A shows an end view of the AA cut portion in FIG. 6
  • FIG. 7B shows an end view of the BB cut portion
  • FIG. 7C shows an end face of the CC cut portion. The figure is shown.
  • FIG. 8 shows a perspective view of the second pattern two-way corrugated material 100b
  • FIG. 9 shows a perspective view of the third pattern two-way corrugated material 100c
  • FIG. 10 shows a perspective view of the fourth pattern two-way corrugated material 100d
  • 11 shows a perspective view of the fifth pattern bi-directional corrugated material 100e
  • FIG. 12 shows a perspective view of the sixth pattern bi-directional corrugated material 100f
  • FIG. 13 shows a perspective view of the seventh pattern bi-directional corrugated material 100g. Show.
  • the corrugated material manufacturing apparatus 1 includes a corrugated processing unit 10 that manufactures a corrugated corrugated material 130 (two-way corrugated material 100) by performing corrugation processing on an aluminum thin plate material 120 (corrugated corrugated material 130), and the corrugated processing unit 10.
  • the corrugated corrugated material 130 (two-way corrugated material 100) is used to measure the corrugated shape of the corrugated material 130 based on the rotational torque during corrugating.
  • the corrugating unit 10 includes processing gear rollers 11 (11a, 11b) for corrugating, and servo motors 12 (12a, 12b) for rotating and driving the processing gear rollers 11, respectively.
  • a space adjusting servo motor 13 for adjusting the interval (clearance K (see FIG. 5)) between the upper processing gear roller 11a and the lower processing gear roller 11b, and a processing gear roller 11, the servo motor 12, and the interval adjusting servo motor 13 are included. It is comprised with the body 14, and the insertion port 15 which throws in the aluminum sheet material 120 (corrugated corrugated material 130) which performs corrugation processing on the front surface of the box 14 is provided.
  • the processing gear roller 11 has a gear tooth 11c in a direction orthogonal to the corrugating direction L (FIG. 3) according to the corrugated shape applied to the aluminum sheet material 120 and the like. Is a long gear roller.
  • the processed gear roller 11 according to the present embodiment in which the corrugated shape is applied to the thin aluminum plate material 120 of about 0.04 mm, for example, has a gear diameter of about 20 mm, a gear tooth 11c height of about 0.5 mm, and an apex angle of about 32 degrees.
  • the pitch is about 1 mm and R is about 0.25 mm.
  • the upper processing gear roller 11a and the lower processing gear roller 11b of the processing gear roller 11 are separated from each other by a clearance K corresponding to the thickness of the aluminum thin plate member 120 or the like on which the convex portions and the concave portions of the gear teeth 11c are corrugated.
  • the clearance K can be adjusted to any one of the standard interval H, the wide interval H1, and the narrow interval H2 by the above-described interval adjusting servo motor 13.
  • the standard interval H is the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b, and the thickness of the aluminum sheet 120 and the height of the gear teeth 11c of the processing gear roller 11. It is the interval set according to.
  • the wide interval H1 is an interval wider than the standard interval H, and is set to an interval that engages with the aluminum sheet 120 between the gear teeth 11c of the processing gear roller 11.
  • the narrow space H2 is narrower than the standard space H, and is set to be slightly thicker than the thickness of the aluminum sheet 120.
  • the standard interval H, the wide interval H1, and the narrow interval H2 are stored in the storage device 23 of the finished shape measuring unit 20 described later.
  • the corrugated material manufacturing apparatus 1 of this embodiment that applies a corrugated shape to an aluminum thin plate material 120 of about 0.04 mm, for example, has a standard interval H of about 0.32 mm, a wide interval H1 of about 0.45 mm, and a narrow width.
  • the interval H2 is about 0.28 mm.
  • the servo motor 12 is a servo motor that independently drives the pair of machining gear rollers 11 to rotate.
  • the upper servo motor 12a that rotates the upper machining gear roller 11a and the lower servo motor that rotates the lower machining gear roller 11b.
  • the servo motor 12b is connected to a control device 21 in a finished shape measuring unit 20 described later.
  • the upper servomotor 12a and the lower servomotor 12b which independently rotate the machining gear roller 11, rotate the upper machining gear roller 11a and the lower machining gear roller 11b in synchronism with each other.
  • the rotation is controlled by the control device 21 of the unit 20.
  • the interval adjusting servo motor 13 converts the rotational drive of the interval adjusting servo motor 13 into a drive in the vertical movement direction by the elevating mechanism 13a and causes it to act on the upper processing gear roller 11a.
  • the clearance K can be adjusted by moving the servo motor 12a up and down with respect to the lower processing gear roller 11b.
  • the interval adjusting servo motor 13 is connected to a control device 21 in a finished shape measuring unit 20 to be described later, and a clearance K corresponding to the standard interval H, the wide interval H1, and the narrow interval H2 stored in the storage device 23.
  • the drive is controlled to adjust.
  • the finished shape measuring unit 20 includes a control device 21, a display device 22, a storage device 23, a torque detection sensor 24, an operation device that is an input device such as a mouse and a keyboard, and a storage medium reading device that reads various storage media such as a DVD-RAM. Or a storage medium read / write device and a transmission / reception device configured by a communication device such as a LAN board connectable to a network.
  • the control device 21 includes a CPU, a ROM, and a RAM, and executes various control processes according to a program stored in the storage device 23.
  • the display device 22 is a device configured by a liquid crystal monitor, a CRT display, or the like to display various information.
  • the storage device 23 is composed of a hard disk or the like, and in addition to the standard interval H, the wide interval H1, and the narrow interval H2 described above, the detected rotational torque data detected by the torque detection sensor 24 and the reference rotational torque temporal change data BL (FIG. 15 ( a), various programs including a time variation data calculation program for calculating the time-dependent change data of the detected rotational torque, and various programs including a control program or a determination program for controlling various devices. Storing.
  • the torque detection sensor 24 (24a, 24b) is connected to the control device 21, and is a sensor that detects the rotational torque of the servo motor 12 during corrugating, and is connected to the control device 21.
  • the upper torque detection sensor 24a is connected to the upper servo motor 12a
  • the lower torque detection sensor 24b is connected to the lower servo motor 12b to detect the respective rotational torques and detect detected rotational torque data. Is transmitted to the control device 21.
  • the rotation angle of the servo motor 12 is detected by an encoder (not shown), and the rotation torque detected by the torque detection sensor 24 and the rotation angle are associated with each other and transmitted to the control device 21.
  • the manufacturing method of the two-way corrugated material 100 using the corrugated material manufacturing apparatus 1 having such a configuration and the measurement of the corrugated shape can be described.
  • the two-way corrugated material 100 performs the first corrugating process on the aluminum sheet material 120 to produce the corrugated corrugated material 130.
  • it is manufactured by applying a second corrugating process.
  • the measurement of the corrugated shape is performed based on the detected rotational torque of the servo motor 12 during each corrugating process.
  • the corrugated shape of the corrugated corrugated material 130 applied by the processing gear roller 11 is an upward convex shape and a downward convex shape corresponding to the shape of the gear teeth 11c of the processing gear roller 11, as shown in FIG.
  • the position of the upper machining gear roller 11a relative to the lower machining gear roller 11b, that is, the clearance K between the upper machining gear roller 11a and the lower machining gear roller 11b is adjusted by the interval adjusting servo motor 13.
  • the two-way corrugated material 100 manufactured by the above-described manufacturing method can be formed into corrugated shapes having various shapes.
  • the two-way corrugated material 100 is processed from the clearance K between the upper processed gear roller 11a and the lower processed gear roller 11b during the first corrugated processing of processing the corrugated corrugated material 130 from the aluminum sheet material 120, and the corrugated corrugated material 130.
  • the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b at the time of the second corrugation processing is a standard interval H corresponding to the thickness of the aluminum sheet material 120, a wide interval H1 slightly wider than the standard interval H, and a standard interval.
  • the first pattern 2 when the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b during the first corrugation processing and the second corrugation processing is set to a standard interval H corresponding to the thickness of the aluminum sheet material 120, respectively.
  • the direction corrugated material 100a will be described.
  • the corrugated bi-directional corrugated material 100 having various patterns shown in FIGS. 6 and 8 to 13 has a width direction W (from the lower right to the upper left in the drawing) in the perspective view as a processing direction during the first corrugating process.
  • the processing direction at the time of the second corrugating process orthogonal to the processing direction at the time of the first corrugating process is defined as the depth direction V (lower left to upper right in the figure), and further the thickness direction D of the two-way corrugated material 100 is illustrated in the figure. It is shown in the vertical direction.
  • the first pattern bi-directional corrugated material 100a has a wavy shape having ridges 101 protruding in a mountain shape when seen from the side in the width direction W at regular intervals.
  • the raised portion 101 has a narrow first convex portion 102 and a narrower first concave portion 103 in the width direction W repeatedly (see FIG. 7B).
  • the low part between the said protruding parts 101 it is the shape which repeats the wide 2nd convex part 107 and the narrower 2nd recessed part 108 to the width direction W (refer FIG.7 (c)).
  • the first convex portion 102 has a shape in which the top surface 104 is slightly curved downward and both sides 105 are inverted, and the first concave portion 103 has a flat bottom portion 106.
  • the second convex portion 107 has a flat top surface 109
  • the second concave portion 108 has a shape in which the bottom surface 110 is slightly curved upward and both sides 111 have a square shape.
  • the raised portion 101, the first convex portion 102, the first concave portion 103, the second convex portion 107, and the second concave portion 108 constitute a corrugated shape of the first pattern bi-directional corrugated material 100a.
  • the first corrugating process and the second corrugating process are performed on the first pattern bi-directional corrugated material 100a formed when the clearance K is set to the standard interval H in both the first corrugating process and the second corrugating process.
  • the second pattern bi-directional corrugated material 100b shown in FIG. 8 can be formed.
  • the second pattern bi-directional corrugated material 100b is a corrugated material having a low height of the corrugated corrugated material 130 formed by the upper processing gear roller 11a and the lower processing gear roller 11b having a clearance K set to a wide interval H1 during the first corrugation processing.
  • a substantially domed convex portion 112a is formed.
  • the concave portions 112b are alternately arranged in a lattice shape in plan view, that is, a corrugated shape in which the width direction W and the depth direction V are arranged in a sine wave shape.
  • the low waveform formed when the clearance K is set to the wide interval H1 is a waveform formed by the upper processing gear roller 11a and the lower processing gear roller 11b having the clearance K set to the standard interval H. It shows that the waveform is lower than that of the waveform.
  • the third pattern bi-directional corrugated material 100c shown in FIG. 9 is formed. be able to.
  • the third pattern bi-directional corrugated material 100c is a corrugated material having a low height of the corrugated corrugated material 130 formed by the upper processing gear roller 11a and the lower processing gear roller 11b whose clearance K is set to a wide interval H1 during the first corrugation processing.
  • the upper processing gear roller 11a and the lower processing gear roller 11b having the clearance K set to the narrow interval H2 form a high waveform, so that the concave portion 113a with a predetermined interval is formed on the top.
  • the corrugated shape in which the transverse waves 113 having high height are arranged at predetermined intervals in the depth direction V is formed.
  • the high waveform formed when the clearance K is set to the wide interval H1 is a waveform formed by the upper processing gear roller 11a and the lower processing gear roller 11b having the clearance K set to the standard interval H. It shows that the waveform is taller than that.
  • a third pattern bi-directional corrugated material 100c can be formed.
  • a fourth pattern bi-directional corrugated material 100d can be formed.
  • the fourth pattern bi-directional corrugated material 100d has a high corrugated corrugated material 130 formed by the upper processing gear roller 11a and the lower processing gear roller 11b having a clearance K set to a narrow interval H2 during the first corrugation processing.
  • the upper processing gear roller 11a and the lower processing gear roller 11b with the clearance K set to a wide interval H1 are crushed into a wave shape with a low height, so that a concave portion with a predetermined interval is formed at the top.
  • a longitudinal wave 114 having a height 114a has a corrugated shape in which a predetermined interval is arranged in the width direction W.
  • the clearance K at the time of the first corrugation is set to the standard interval H and the clearance K at the time of the second corrugation is set to the wide interval H1
  • the height of the longitudinal wave 114 is reduced, but the same shape
  • the fourth pattern bi-directional corrugated material 100d can be formed.
  • the clearance K at the time of the first corrugation is set to the narrow interval H2
  • the clearance K at the time of the second corrugation is set to the standard interval H, as shown in FIG.
  • the depth direction V is the same as that of the material 100a
  • a sixth pattern bi-directional corrugated material 100f having a corrugated shape in which the width direction W and the thickness direction D are large can be formed.
  • the clearance K at the time of the first corrugation is set to the standard interval H and the clearance K at the time of the second corrugation is set to the narrow interval H2, as shown in FIG.
  • the width direction W is the same as that of the corrugated material 100a, a seventh pattern bi-directional corrugated material 100g having a corrugated shape in the depth direction V and the thickness direction D can be formed.
  • the clearance K between the upper processing gear roller 11a and the lower processing gear roller 11b is set by the interval adjusting servo motor 13 during the first corrugating process and the second corrugating process.
  • various corrugated bi-directional corrugated materials 100 are formed as shown in Table 1 below. Can do.
  • the bi-directional corrugated material 100 configured as described above has improved workability according to the corrugated shape, in particular, an LDR (Limiting Drawing Ratio) or a limit drawing ratio is high, drawing property is good, and complicated. Even fine processing is possible.
  • LDR Liting Drawing Ratio
  • the airflow flowing along the surface of the two-way corrugated material 100 can be adjusted according to the corrugated shape of the two-way corrugated material 100 and the depth in the thickness direction D, as described above, By adjusting the clearance K, the two-way corrugated material 100 having a desired heat shielding effect can be manufactured.
  • the two-way corrugated material 100 is composed of the aluminum thin plate material 120, but may be composed of a paper plate or a resin plate.
  • FIGS. 14 to 16 shows a manufacturing flow chart of the bi-directional corrugated material 100
  • FIG. 15 shows an explanatory diagram of the measurement result of the first corrugation
  • FIG. 16 explains the measurement result of the second corrugation. The figure is shown.
  • FIGS. 15 (a) and 16 (a) show graphs of measurement results of the corrugation during each corrugation
  • FIG. 15 (b) shows the results of the corrugated corrugated material 130 from the perspective direction in the first corrugation.
  • An image is shown and FIG.16 (b) has shown the completed image from the perspective direction of the two-way corrugated material 100 in a 2nd corrugating process.
  • Data is stored in the storage device 23 (step s1).
  • the storage device 23 stores reference rotational torque temporal change data (comparison reference information BL1, BL2) in the first corrugating process and the second corrugating process corresponding to the standard interval H, the wide interval H1, and the narrow interval H2. To do.
  • the reference rotational torque temporal change data BL in step s1 is not stored every time the bi-directional corrugated material 100 is manufactured, and the reference rotational torque temporal change data BL already stored in the storage device 23 is called. Good.
  • a plurality of reference rotational torque temporal change data BL is stored in the storage device 23 in accordance with the corrugated shape, the number of corrugating processes, or the material strength and thickness of the aluminum sheet 120, and is selected before processing. May be.
  • the clearance K at the time of the first corrugating process corresponding to the corrugated shape is suitable among the standard interval H, the wide interval H1, and the narrow interval H2.
  • the interval adjusting servo motor 13 is controlled and driven so as to be the interval (step s2).
  • the aluminum sheet 120 is introduced from the insertion port 15 (FIG. 2) of the corrugating part 10 and the aluminum sheet 120 is subjected to the first corrugation. Then, the rotational torque of the servo motor 12 at the time of the first corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s3).
  • the aluminum sheet material 120 introduced from the insertion port 15 passes between the upper processing gear roller 11 a and the lower processing gear roller 11 b, thereby forming the gear teeth 11 c of the processing gear roller 11. It is carried out from the back side of the box 14 as the corrugated corrugated material 130 that has been bent according to the shape.
  • the control device 21 that has received the rotational torque of the servo motor 12 at the time of the first corrugating process detected by the torque detection sensor 24 in step s3 as the detected rotational torque is obtained by the temporal change data calculation program stored in the storage device 23. Calculation of the detected rotational torque is performed, and the graph is displayed on the display device 22 as shown in FIG. 15 (step s4).
  • the calculated time-varying data includes both the upper servo motor 12a that rotationally drives the upper processing gear roller 11a and the lower servo motor 12b that rotationally drives the lower processing gear roller 11b.
  • the graph is displayed as the time-dependent change data of the detected rotational torque.
  • the upward convex portion of the calculated temporal change data in the upper servomotor 12a indicates the corrugated shape on the upper surface side of the corrugated corrugated material 130, and conversely, the downward convex portion of the calculated temporal change data in the lower servomotor 12b. Shows the corrugated shape on the lower surface side of the corrugated corrugated material 130.
  • the control device 21 compares the calculated temporal change data with the first corrugating reference rotational torque temporal change data BL1 stored in the storage device 23 (step s5), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the first corrugating reference rotational torque temporal change data BL1 (step s6: No, including the defect determination area shown in FIG. 15A), this wavy The corrugated material 130 is determined to be unacceptable (step s12), and the process ends. Conversely, when the calculated temporal change data is within the range of the first corrugating reference rotational torque temporal change data BL1 (step s6: Yes, only in the good judgment region shown in FIG. 15A), this wavy corrugate The material 130 is determined to be acceptable.
  • the clearance K at the time of the 2nd corrugation process according to the corrugate shape to manufacture is the standard space
  • the corrugated corrugate is oriented so that the continuous direction of the waveform formed by the first corrugating process is perpendicular to the corrugating process direction L.
  • the material 130 is charged from the charging port 15.
  • the corrugated corrugated material 130 introduced from the insertion port 15 passes between the upper processing gear roller 11 a and the lower processing gear roller 11 b, and thus corresponds to the shape of the gear teeth 11 c of the processing gear roller 11.
  • the two-way corrugated material 100 that has been subjected to bending is carried out from the back side of the box 14.
  • the rotational torque of the servo motor 12 at the time of the second corrugating process is detected by the torque detection sensor 24 of the finished shape measuring unit 20 and stored in the storage device 23 (step s8).
  • the control device 21 that has received the rotational torque of the servo motor 12 at the time of the second corrugation processing detected by the torque detection sensor 24 in step s8 as the detected rotational torque is detected by the time-dependent change data calculation program stored in the storage device 23.
  • Torque calculation time-varying data is calculated and displayed on the display device 22 as a graph as shown in FIG. 16 (step s9).
  • the calculated temporal change data is similar to the calculated temporal change data at the time of the first corrugating process, and the upward convex portion of the calculated temporal change data in the upper servo motor 12a is the two-way corrugated material 100.
  • 4 shows the corrugated shape on the upper surface side, and conversely, the downward convex portion of the calculated temporal change data in the lower servo motor 12b shows the corrugated shape on the lower surface side of the two-way corrugated material 100. That is, the two-way corrugation shown in FIG.
  • the data may be uniform with time as shown in FIG. 16A. I understand.
  • the control device 21 compares the calculated temporal change data with the second corrugating reference rotational torque temporal change data BL2 stored in the storage device 23 (step s10), and makes a pass / fail determination by the determination program. At this time, when the calculated temporal change data exceeds the range of the second corrugated reference rotational torque temporal change data BL2 (step s11: No), the corrugated corrugated material 130 is determined to be rejected (step s12). finish. Conversely, when the calculated temporal change data is within the range of the second corrugation reference rotational torque temporal change data BL2 (step s11: Yes, only in the good judgment region shown in FIG. 16A), this corrugated corrugate The material 130 is determined to be acceptable.
  • the processing gear roller 11 that sandwiches the aluminum thin plate material 120 (the corrugated corrugated material 130), and the servo motor 12 that rotationally drives the processing gear roller 11, respectively.
  • the corrugated material manufacturing apparatus 1 provided with an interval adjusting servo motor 13 that adjusts the clearance K that meshes with each other in the processing gear roller 11, the corrugating process is performed on the aluminum sheet 120 (corrugated corrugated material 130) sandwiched between the processing gear rollers 11.
  • the corrugated material 130 is subjected to the second corrugation process in a direction intersecting the corrugation process direction during the first corrugation process, and a clearance K is provided by the interval adjusting servo motor 13 for each corrugation process.
  • the corrugated material is formed by sandwiching an aluminum thin plate material 120 (the corrugated corrugated material 130) with the processing gear roller 11 that is rotationally driven by the servo motor 12, and the corrugated material 130 is formed.
  • the two-way corrugated material 100 can be manufactured by performing a second corrugating process in a direction intersecting the processing direction.
  • the corrugated pattern processed by corrugating can be adjusted by adjusting the clearance K with the interval adjusting servo motor 13 for each corrugating. Therefore, various corrugated two-way corrugated materials 100 can be manufactured.
  • the servo motor 13 for adjusting the spacing has a clearance K that is a standard interval H corresponding to at least one of the thickness and rigidity of the aluminum sheet 120 (corrugated corrugated material 130) to be corrugated, and a narrow interval H2 that is narrower than the standard interval H.
  • the corrugated bi-directional corrugated material 100 having at least 7 patterns can be manufactured.
  • the corrugated material manufacturing apparatus 1 stores a standard interval H, a narrow interval H2, and a wide interval H1 corresponding to at least one of the thickness and rigidity of the aluminum sheet 120 (corrugated corrugated material 130) to be corrugated. 23 and a control device 21 that controls the servo motor 13 for adjusting the interval based on each interval stored in the storage device 23, so that various aluminum thin plate materials 120 (the corrugated corrugated material 130) can be made of aluminum. It is possible to easily and ratedly manufacture the bi-directional corrugated material 100 having at least 7 patterns by adjusting the intervals to suitable intervals according to the thickness and rigidity of the thin plate material 120 (the corrugated corrugated material 130). it can.
  • the corrugated material manufacturing apparatus 1 includes a torque detection sensor 24 (24a, 24b) that detects the detected rotational torque of each servo motor 12 as a detected rotational torque, and an aluminum thin plate material 120 (wave corrugated corrugated corrugated material 11). And a display device 22 that outputs a detected rotational torque when corrugating the material 130), and measuring a waveform shape by corrugating based on a change over time of the detected rotational torque output by the display device 22.
  • the overall shape of the corrugated shape of the two-way corrugated material 100 formed by sandwiching the aluminum sheet material 120 (the corrugated corrugated material 130) between the processing gear rollers 11 and corrugating can be measured while corrugating.
  • the torque detection sensor 24 detects the rotational torque of the servo motor 12 that rotationally drives the processing gear roller 11 that sandwiches the aluminum sheet material 120 (the corrugated corrugated material 130) and rotates the processed gear roller 11 as a detected rotational torque.
  • the torque detection sensor 24 detects the rotational torque of the servo motor 12 that rotationally drives the processing gear roller 11 that sandwiches the aluminum sheet material 120 (the corrugated corrugated material 130) and rotates the processed gear roller 11 as a detected rotational torque.
  • the rotational torque varies depending on the bending angle in V bending. Specifically, if the bending angle in V bending is large under the condition of constant thickness and clearance K, the rotational torque Conversely, when the bending angle in V-bending is small, the rotational torque is low.
  • the corrugated aluminum sheet 120 (corrugated corrugated material) is obtained by grasping the change over time of the detected rotational torque in which the bending angle increases when the rotational torque is high and the bending angle decreases when the rotational torque is low. 130) of the entire corrugated shape can be measured.
  • the aluminum thin plate material 120 (the corrugated corrugated material 130) is bent at the convex portions of the gear teeth 11c in the upper processing gear roller 11a (lower processing gear roller 11b), and the lower processing gear roller 11b (upper side) is formed in the concave portion of the gear teeth 11c.
  • the aluminum thin plate material 120 (the corrugated corrugated material 130) bent by the convex portion of the processing gear roller 11a) is received. Therefore, only the portion bent by the processing gear roller 11, that is, the waveform bent in the convex direction with respect to the processing gear roller 11, is measured from the detected rotational torque in the servo motor 12 that rotationally drives the processing gear roller 11. Can do.
  • the upper processing gear roller 11a (lower processing gear roller 11b) is bent in a convex direction. It is possible to measure not only the waveform but also the shape bent by the lower processing gear roller 11b (upper processing gear roller 11a), that is, the shape of the waveform bent in the concave direction with respect to one processing gear roller 11.
  • corrugated shape of the entire corrugated shape in both directions with respect to the surface of the aluminum sheet 120 (corrugated corrugated material 130) while corrugating, and the corrugated shape is formed simultaneously with the corrugated processing.
  • the whole measurement of can be completed. Therefore, a corrugated material in which an inappropriate waveform is formed can be found early.
  • a storage device 23 is provided for storing reference rotational torque temporal change data BL, standard interval H, and the like, and detected rotational torque, which are temporal changes of rotational torque when corrugating a finished shape of a desired corrugated shape, and a reference rotational speed. Since the control device 21 determines whether the corrugated corrugated shape is acceptable or not by comparing the torque temporal change data BL with the calculated temporal change data, the corrugation is based on the detected rotational torque detected by the torque detection sensor 24. The pass / fail of the processed corrugated shape can be determined.
  • the corrugated corrugated material 130 sandwiched between the processing gear rollers 11 and corrugated into the aluminum thin plate material 120 is subjected to the second corrugating process in the direction orthogonal to the corrugating process direction during the first corrugating process, and thus the two directions.
  • the complicated rotational shape formed on the two-way corrugated material 100 can be accurately measured by outputting the detected rotational torque at the time of the second corrugated processing by the display device 22.
  • the second corrugate in the direction orthogonal to the corrugating direction L during the first corrugating process is applied to the corrugated corrugated material 130 sandwiched between the processing gear rollers 11 and subjected to the first corrugating process on the aluminum sheet material 120.
  • the bi-directional corrugated material 100 having a complicated corrugated shape can be formed.
  • the display device 22 by outputting the detected rotational torque at the time of the second corrugating process with the display device 22, it is possible to accurately measure the corrugated shape formed in a complicated shape. Furthermore, by detecting the detected rotational torque in the first corrugating process, it is possible to manufacture the two-way corrugated material 100 in which the corrugated shape of the portion that is not corrugated by the second corrugating process is also accurately measured.
  • corrugated material manufacturing apparatus 1 is an apparatus in which the corrugated processing unit 10 and the finished shape measuring unit 20 are integrated, the corrugated processing unit 10 and the finished shape measuring unit 20 are configured independently. Alternatively, the finished shape measuring unit 20 may be attached to the existing corrugated processing unit 10.
  • the corrugating process is performed twice on the aluminum sheet material 120.
  • the corrugated corrugated material 130 obtained by performing the corrugating process once on the aluminum sheet material 120 may be used as a product. And you may give corrugation processing 3 times or more.
  • the machining direction of the multiple corrugating operations may be not only the direction orthogonal to the immediately preceding corrugating machining direction, but also the direction intersecting at other angles. Corrugating may be applied in the same direction.
  • the clearance K is adjusted in advance by the interval adjusting servo motor 13 and then the first corrugating process and the second corrugating process are performed.
  • the interval of the clearance K may be adjusted by driving the servo motor 13 to be controlled.
  • the two-way corrugated material 100 whose corrugated shape changes in the width direction W and the depth direction V of the two-way corrugated material 100 can be manufactured. Accordingly, when the corrugated bi-directional corrugated material 100 is three-dimensionally deformed, a corrugated shape capable of exhibiting desired performance for each part can be set, and a corrugated material having a desired shape can be manufactured.
  • the thin plate material of the present invention corresponds to the aluminum thin plate material 120 and the corrugated corrugated material 130
  • the pair of corrugated gears correspond to the processing gear roller 11, the upper processing gear roller 11a, and the lower processing gear roller 11b
  • the rotation driving means corresponds to the servo motor 12, the upper servo motor 12a, and the lower servo motor 12b.
  • the meshing part corresponds to the gear tooth 11c
  • the interval between the meshing parts corresponds to the clearance K
  • the interval adjusting means corresponds to the interval adjusting servo motor 13
  • the corrugated material manufacturing apparatus corresponds to the corrugated material manufacturing apparatus 1
  • the corrugated thin plate corresponds to the corrugated corrugated material 130
  • Corrugation processing corresponds to corrugation processing
  • Corrugation processing direction corresponds to corrugation processing direction L
  • At the time of the last corrugation processing it corresponds to the first corrugation processing shown in step s3,
  • the multi-directional corrugating material includes a bi-directional corrugated material 100, a first patterned bi-directional corrugated material 100a, a second patterned bi-directional corrugated material 100b, a third patterned bi-directional corrugated material 100c, a fourth patterned bi-directional corrugated material 100d, Corresponding to 5 pattern bi-directional corrugated material 100e, 6th pattern bi-directional corrugated material 100f,
  • control device 21, the storage device 23, and the corrugated processing unit 10 constitute the corrugated material manufacturing apparatus 1, that is, without the torque detection sensor 24 and without detecting the rotational torque of the servo motor 12, the interval adjustment.
  • the servo motor 13 may adjust the clearance K to manufacture the desired corrugated bi-directional corrugated material 100.
  • the clearance K is adjusted by moving the upper machining gear roller 11a and the upper servo motor 12a with the interval adjusting servo motor 13 with respect to the lower machining gear roller 11b.
  • the lower servo motor 12b may be moved by the interval adjusting servo motor 13 to adjust the clearance K.
  • the corrugation may be performed by changing the clearance K in the width direction W of the processing gear roller 11, and in this case, the two-way corrugated material 100 having various shapes of corrugations can be formed on one surface. it can.
  • the processing gear roller 11 having the shape of the gear teeth 11c in the direction orthogonal to the corrugating processing direction L (FIG. 3) is used in accordance with the corrugated shape applied to the aluminum sheet material 120 or the like.
  • a gear roller having the shape of the gear teeth 11c in the same direction as the corrugating direction L (FIG. 3) may be used in accordance with the corrugated shape applied to the aluminum sheet 120 or the like.
  • step s5 and s9 only the corrugated corrugated material 130 (two-way corrugated material 100) is determined to be rejected, but it is determined to be rejected in comparison with the reference rotational torque temporal change data BL.
  • the log data for identifying the part may be accumulated, or marking may be performed, and the part that has passed the other pass determination may be used as the product.
  • the detected rotational torque detected by the torque detection sensor 24 is stored in the storage device 23, but may be stored in the RAM of the control device 21 that temporarily stores it.
  • the change with time of the detected rotational torque when corrugated is displayed on the display device 22, not only the display device 22 but also a print output or a numerical value may be displayed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

 この発明は、一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、交差する方向の波付け加工を施し、様々な波付け形状の多方向波付け材、それを製造する製造方法、及び波付け材製造装置を提供することを目的とする。 アルミニウム製薄板材120を挟み込んで波付け加工する一対の加工ギアローラ11と、加工ギアローラ11をそれぞれ回転駆動するサーボモータ12と、加工ギアローラ11において互いに噛合する噛合部同士のクリアランスKを調整する間隔調整用サーボモータ13とを備えたコルゲート材製造装置1を用い、加工ギアローラ11で挟み込んで波付け加工した波状コルゲート材130に対して、第二コルゲート加工の波付け加工方向を交差させて二方向コルゲート材100を製造し、波付け加工ごとに、間隔調整用サーボモータ13で噛合部同士のクリアランスKを調整した。

Description

多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
 この発明は、例えば複数方向のコルゲート加工が施された多方向波付け材、その製造方法、及び波付け材製造装置に関する。
 薄板材に波付け加工された波付け材について、高性能化や多様化に伴って、様々な波付け形状の波付け材が提案されている。 
 例えば、特許文献1に記載の波付け材の製造方法は、金属シートに対して二回の波付け加工を施すが、第2回目の波付け加工の方向を第1回目の波付け加工の方向に対して少なくとも10°の角度で傾斜させることにより、一方向に内曲げ側壁を有する波付け材を形成することができるとされている。
 また、特許文献2に記載の波付け材の製造方法は、金属シートに対して二回の波付け加工を施すが、第1回目の波付け加工及び第2回目の波付け加工の波形付けロールを、歯形及びロール隙間(ロールとロールとの隙間)が同一のものとし、第1回目の波付け加工の方向及び第2回目の波付け加工の方向における断面形状が共に正弦波状に連続するとともに、平面形状が第1の方向に沿う第1の波形突起の稜線と第2の方向に沿う第2の波形突起の稜線とが直交した凹凸面である波付け材を製造することができるとされている。
 しかしながら、上記特許文献1及び2で提案された多方向波付け材の製造方法では、複雑な形状の波付け加工された多方向波付け材を製造できるものの、それぞれ設定された形状の波付け加工しか施すことができず、容易に様々な波付け形状の多方向波付け材を製造することはできなかった。
特表2001-504393号公報 特開2009-184001号公報
 そこで、この発明は、一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造する製造方法、波付け材製造装置及び製造された多方向波付け材を提供することを目的とする。
 この発明は、薄板材を挟み込んで波付け加工する一対の波付け歯車と、該一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、前記一対の波付け歯車において互いに噛合する噛合部同士の間隔を調整する間隔調整手段とを備えた波付け材製造装置を用い、前記一対の波付け歯車で挟み込んで前記薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施すとともに、前記波付け加工ごとに、前記間隔調整手段で前記噛合部同士の間隔を調整する多方向波付け材の製造方法及び波付け材製造装置であることを特徴とする。
 上記波付け加工は、コルゲート、エンボス、凹凸などの様々な波付け形状の波付けの加工とする。 
 上記波付け歯車は、互いに噛合する噛合ギアを有するのみならず、互いに噛合する凹凸形状を有する歯車であってもよいし、ローラであってもよい。
 この発明により、一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造することができる。
 詳しくは、回転駆動手段によって回転駆動される一対の波付け歯車で薄板材を挟み込んで波付け加工を施して波付け薄板を構成し、さらに直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工して多方向波付け材を製造することができる。また、波付け加工ごとに、前記間隔調整手段で前記噛合部同士の間隔を調整することにより、波付け加工で加工される波付けパターンを調整することができる。したがって、様々な波付け形状の多方向波付け材を製造することができる。
 また、例えば、一回の連続する波付け加工の途中で、前記間隔調整手段により前記噛合部同士の間隔を調整した場合、一枚の連続する薄板材であっても、波付け形状が連続方向に変化する多方向波付け材を製造することができる。
 この発明の態様として、前記間隔調整手段を、前記噛合部同士の間隔を、波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた標準間隔H、該標準間隔Hより狭い狭間隔、並びに前記標準間隔Hより広い広間隔に調整する構成とすることができる。 
 この発明により、少なくとも6パターンの形状の多方向波付け材を製造することができる。
 またこの発明の態様として、前記波付け材製造装置に、波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた前記標準間隔、前記狭間隔、及び前記広間隔を記憶する記憶手段と、該記憶手段に記憶した各間隔に基づいて前記間隔調整手段を制御する制御手段を備えることができる。
 これにより、様々な薄板材であっても、薄板材の厚みや剛性に応じて適した各間隔に制御手段で調整し、少なくとも6パターンの形状の多方向波付け材を容易、かつ定格的に製造することができる。
 またこの発明の態様として、前記波付け材製造装置に、それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測することができる。 
 上述の波形の出来形を計測するは、波形の出来形寸法を回転トルクの経時変化データから換算して求める出来形計測を含むものとする。
 この発明により、薄板材を一対の波付け歯車で挟み込んで波付け加工して形成する多方向波付け材の波形全体の出来形を波付け加工しながら計測することができる。 
 詳しくは、薄板材を挟み込んで波付け加工する一対の波付け歯車を回転駆動する回転駆動手段の回転トルクを検出回転トルクとしてトルク検出手段で検出することにより、波付け加工において薄板材を曲げるときの負荷を検出することができる。
 なお、厚み及び噛合部同士の間隔が一定であれば、V曲げにおける曲げ角度に応じて回転トルクが変動する、詳しくは、厚み一定の条件下において、V曲げにおける曲げ角度が大きい場合、回転トルクが高くなり、逆に、V曲げにおける曲げ角度が小さい場合、回転トルクが低くなる。
 このため、回転トルクが高い場合は曲げ角度が大きくなり、回転トルクが低い場合は曲げ角度が小さくなるという検出回転トルクの経時変化を捉えることにより、波付け加工した薄板材の波形全体の出来形を計測することができる。
 また、一対の波付け歯車のうち一方の波付け歯車の凸部分で薄板材を曲げ、凹部分では、他方の波付け歯車の凸部分で曲げられた薄板材を受けることとなる。したがって、一対の波付け歯車を回転駆動する回転駆動手段における検出回転トルクからはその波付け歯車によって曲げられた部分、つまり、その波付け歯車に対して凸方向に曲げ加工された波形だけを計測することができる。
 しかしながら、前記一対の波付け歯車の両方のそれぞれに対して回転駆動する回転駆動手段におけるそれぞれの前記検出回転トルクを出力することにより、一方の波付け歯車に対して凸方向に曲げ加工された波形だけでなく、他方の波付け歯車によって曲げられた部分、つまり一方の波付け歯車に対して凹方向に曲げ加工された波形の形状も計測することができる。
 したがって、薄板材の表面に対して両方向に波付けされた波形全体の出来形を波付け加工しながら計測することができ、波付け加工完了と同時に形成された波形の全体の計測を完了することができる。よって、不適正な波形が形成された波付け材を早期に発見することができる。
 またこの発明は、上述の製造方法で製造した多方向波付け材であることを特徴とする。 
 この発明により、様々な波付け形状の多方向波付け材を容易に製造することができる。
 この発明により、一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施し、様々な波付け形状の多方向波付け材を製造する製造方法、波付け材製造装置及び製造された多方向波付け材を提供することができる。
コルゲート材製造装置のブロック図。 コルゲート加工装置の斜視図。 第一コルゲート加工についての説明図。 第二コルゲート加工についての説明図。 加工ギアローラの間隔調整についての説明図。 第1パターン二方向コルゲート材の斜視図。 第1パターン二方向コルゲート材の拡大断面説明図。 第2パターン二方向コルゲート材の斜視図。 第3パターン二方向コルゲート材の斜視図。 第4パターン二方向コルゲート材の斜視図。 第5パターン二方向コルゲート材の斜視図。 第6パターン二方向コルゲート材の斜視図。 第7パターン二方向コルゲート材の斜視図。 二方向コルゲート材の製造フローチャート。 第一コルゲート加工における出来形計測結果についての説明図。 第二コルゲート加工における出来形計測結果についての説明図。
 この発明を実施するための一形態を、以下図面を用いて説明する。 
 図1はコルゲート材製造装置1のブロック図を示し、図2はコルゲート加工部10の斜視図を示し、図3は第一コルゲート加工についての説明図を示し、図4は第二コルゲート加工についての説明図を示し、図5は加工ギアローラ11の間隔調整についての説明図を示している。
 詳しくは、図3はアルミニウム製薄板材120に対して第一コルゲート加工を施して波状コルゲート材130を製造する状況の斜視図による説明図を示し、図4は波状コルゲート材130に対して第二コルゲート加工を施して二方向コルゲート材100を製造する状況の斜視図による説明図を示している。
 また、図5は図1において四角で囲むa部の拡大正面図であり、図5(a)は上側加工ギアローラ11aと下側加工ギアローラ11bとのクリアランスKが標準間隔Hである場合のコルゲート加工についての拡大正面図を示し、図5(b)は上記クリアランスKが広間隔H1である場合のコルゲート加工についての拡大正面図を示し、図5(c)は上記クリアランスKが狭間隔H2である場合のコルゲート加工についての拡大正面図を示している。
 図6は第1パターン二方向コルゲート材100aの斜視図を示し、図7は第1パターン二方向コルゲート材100aの拡大端面説明図を示している。詳しくは、図7(a)は図6におけるA-A切断部端面図を示し、図7(b)はB-B切断部端面図を示し、図7(c)はC-C切断部端面図を示している。
 図8は第2パターン二方向コルゲート材100bの斜視図を示し、図9は第3パターン二方向コルゲート材100cの斜視図を示し、図10は第4パターン二方向コルゲート材100dの斜視図を示し、図11は第5パターン二方向コルゲート材100eの斜視図を示し、図12は第6パターン二方向コルゲート材100fの斜視図を示し、図13は第7パターン二方向コルゲート材100gの斜視図を示している。
 コルゲート材製造装置1は、アルミニウム製薄板材120(波状コルゲート材130)に対してコルゲート加工を施して波状コルゲート材130(二方向コルゲート材100)を製造するコルゲート加工部10と、コルゲート加工部10におけるコルゲート加工時の回転トルクに基づいて波状コルゲート材130(二方向コルゲート材100)のコルゲート形状の出来形を計測する出来形計測部20とで構成している。
 コルゲート加工部10は、図1及び図2に示すように、コルゲート加工するための加工ギアローラ11(11a,11b)と、各加工ギアローラ11をそれぞれ回転駆動するサーボモータ12(12a,12b)と、上側加工ギアローラ11a及び下側加工ギアローラ11bの間隔(クリアランスK(図5参照))を調整する間隔調整用サーボモータ13と、加工ギアローラ11、サーボモータ12及び間隔調整用サーボモータ13を内在する函体14とで構成し、函体14の前面に、コルゲート加工を施すアルミニウム製薄板材120(波状コルゲート材130)を投入する投入口15を備えている。
 加工ギアローラ11は、アルミニウム製薄板材120等に施すコルゲート形状に応じるとともに、コルゲート加工方向L(図3)に対して直交する方向のギア歯11cを有し、アルミニウム製薄板材120等の幅よりもひと回り長いギアローラである。
 なお、約0.04mmのアルミニウム製薄板材120にコルゲート形状を施す本実施例の加工ギアローラ11は、一例として、ギア径約20mm、ギア歯11cの高さ約0.5mm、頂角約32度、ピッチ約1mm、R約0.25mmとしている。
 また、加工ギアローラ11の上側加工ギアローラ11aと下側加工ギアローラ11bとは、ギア歯11cの凸状部と凹状部とがコルゲート加工を施すアルミニウム製薄板材120等の厚みに応じたクリアランスKを隔てて噛合するよう配置されるとともに、上述の間隔調整用サーボモータ13によって、上記クリアランスKを標準間隔H、広間隔H1及び狭間隔H2のうちいずれかに調整可能に構成している。
 なお、標準間隔Hは、図5(a)に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bとのクリアランスKをアルミニウム製薄板材120の厚み及び加工ギアローラ11のギア歯11cの高さに応じて設定された間隔である。広間隔H1は、標準間隔Hより広い間隔であるとともに、加工ギアローラ11のギア歯11c同士の間にアルミニウム製薄板材120が介在する状態で噛合する間隔に設定している。狭間隔H2は、標準間隔Hより狭い間隔であり、アルミニウム製薄板材120の厚みよりわずかに厚い間隔に設定している。
 また、標準間隔H、広間隔H1、及び狭間隔H2は、後述する出来形計測部20の記憶装置23に記憶されている。また、約0.04mmのアルミニウム製薄板材120にコルゲート形状を施す本実施例のコルゲート材製造装置1は、一例として、標準間隔Hを約0.32mm、広間隔H1を約0.45mm、狭間隔H2を約0.28mmとしている。
 サーボモータ12は、一対の加工ギアローラ11をそれぞれ独立して回転駆動するサーボモータであり、上側加工ギアローラ11aを回転駆動する上側用サーボモータ12aと、下側加工ギアローラ11bを回転駆動する下側用サーボモータ12bとは後述する出来形計測部20における制御装置21に接続している。
 そのため、それぞれ独立して加工ギアローラ11を回転駆動する上側用サーボモータ12aと下側用サーボモータ12bは、上側加工ギアローラ11aと下側加工ギアローラ11bの回転が同期するように、後述する出来形計測部20の制御装置21によって回転制御されている。
 間隔調整用サーボモータ13は、上述したように、間隔調整用サーボモータ13の回転駆動を昇降機構13aで上下移動方向の駆動に変換して上側加工ギアローラ11aに作用させ、上側加工ギアローラ11a及び上側用サーボモータ12aを下側加工ギアローラ11bに対して上下移動させて、上記クリアランスKを調整可能に構成している。
 なお、間隔調整用サーボモータ13は、後述する出来形計測部20における制御装置21に接続されており、記憶装置23に記憶された標準間隔H、広間隔H1及び狭間隔H2に応じてクリアランスKを調整するように駆動制御されている。
 出来形計測部20は、制御装置21、表示装置22、記憶装置23、トルク検出センサ24及びマウスやキーボード等の入力装置である操作装置、DVD-RAM等の各種記憶媒体を読取る記憶媒体読取装置、または記憶媒体読書き装置、及びネットワーク接続可能なLANボード等の通信装置で構成する送受信装置等を備えている。
 制御装置21は、CPU、ROM、及びRAMで構成し、記憶装置23に格納したプログラムに従って各種制御処理を実行する装置である。 
 表示装置22は、液晶モニタ又はCRTディスプレイ等で構成して各種情報を表示する装置である。
 記憶装置23は、ハードディスク等で構成し、上述の標準間隔H、広間隔H1及び狭間隔H2の他、トルク検出センサ24で検出した検出回転トルクデータや基準回転トルク経時変化データBL(図15(a)、図16(a)参照)等を含む各種データ、並びに、検出回転トルクの経時変化データを算出する経時変化データ算出プログラム、各種装置を制御する制御プログラムあるいは判定プログラム、を含む各種プログラムを格納している。
 トルク検出センサ24(24a,24b)は、制御装置21に接続され、コルゲート加工時におけるサーボモータ12の回転トルクを検出するセンサであり、制御装置21に接続されている。なお、上側用トルク検出センサ24aは上側用サーボモータ12aに接続され、下側用トルク検出センサ24bは下側用サーボモータ12bに接続され、それぞれの回転トルクを検出し、検出した検出回転トルクデータを制御装置21に送信する構成である。また、図示省略するエンコーダにより、サーボモータ12の回転角度を検出しており、トルク検出センサ24によって検出された回転トルクと回転角度を関連付けて制御装置21に送信している。
 続いて、このような構成のコルゲート材製造装置1を用いた二方向コルゲート材100の製造方法及びコルゲート形状の出来形計測について説明する。 
 概略的に説明すると、二方向コルゲート材100は、図3に示すように、アルミニウム製薄板材120に対して第一コルゲート加工を施して波状コルゲート材130を製造し、波状コルゲート材130に対して、図4に示すように、第二コルゲート加工を施して製造される。そして、コルゲートの出来形計測は、各コルゲート加工時におけるサーボモータ12の検出回転トルクに基づいて行われる。
 なお、加工ギアローラ11によって施された波状コルゲート材130のコルゲート形状は、図3に示すように、加工ギアローラ11のギア歯11cの形状に応じた上向き凸形状と下向き凸形状とがコルゲート加工方向Lに交互に連続した波形形状であるが、下側加工ギアローラ11bに対する上側加工ギアローラ11aの位置、すなわち上側加工ギアローラ11aと下側加工ギアローラ11bとのクリアランスKを間隔調整用サーボモータ13で調整することにより、上述の製造方法で製造する二方向コルゲート材100を、様々な形状のコルゲートに形成することができる。
 詳しくは、アルミニウム製薄板材120から波状コルゲート材130を加工する第一コルゲート加工時における上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKと、波状コルゲート材130から二方向コルゲート材100を加工する第二コルゲート加工時における上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKとを、アルミニウム製薄板材120の厚みに応じた標準間隔H、標準間隔Hよりわずかに広い広間隔H1、及び標準間隔Hよりわずかに狭い狭間隔H2のうち適宜の間隔を選択することにより、図6、図8乃至図13に示す様々なパターンのコルゲート形状を形成することができる。
 第一コルゲート加工時及び第二コルゲート加工時における上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKを、それぞれアルミニウム製薄板材120の厚みに応じた標準間隔Hに設定した場合の第1パターン二方向コルゲート材100aについて説明する。
 なお、図6、図8乃至図13に示す様々なパターンのコルゲート形状の二方向コルゲート材100は、斜視図における幅方向W(図中右下から左上)を第一コルゲート加工時の加工方向とし、第一コルゲート加工時の加工方向に対して直交する第二コルゲート加工時の加工方向を奥行き方向V(図中左下から右上)として、さらには二方向コルゲート材100の厚み方向Dを図中の上下方向に図示している。
 第1パターン二方向コルゲート材100aは、図7(a)の断面図に示したように、幅方向Wの側方から見て山形に隆起する隆起部101を一定間隔おきに有する波状であり、前記隆起部101において、幅狭の第一凸部102と、それよりも幅狭の第一凹部103を幅方向Wに繰り返し有している(図7(b)参照)。一方、前記隆起部101間の低い部位において、幅広の第二凸部107と、それより幅狭の第二凹部108を幅方向Wに繰り返す(図7(c)参照)形状である。
 前記第一凸部102は、頂面104が下へ若干湾曲し両側105が逆ハの字になる形状であり、第一凹部103は、平坦な底部106を有している。これとは逆に、前記第二凸部107は、頂面109が平坦で、第二凹部108は、底面110が上へ若干湾曲し両側111がハの字になる形状である。これら隆起部101、第一凸部102、第一凹部103、第二凸部107及び第二凹部108により第1パターン二方向コルゲート材100aのコルゲート形状を構成している。
 これは、第一コルゲート加工時に、クリアランスKを標準間隔Hに設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波状コルゲート材130の波形を、第二コルゲート加工時に、クリアランスKを標準間隔Hに設定した上側加工ギアローラ11aと下側加工ギアローラ11bとが、波形を形成する際に押しつぶすことにより、頂面104が下へ若干湾曲し両側105が逆ハの字になる形状である第一凸部102を有するコルゲート形状を形成している。
 このように、第一コルゲート加工時及び第二コルゲート加工時ともにクリアランスKを標準間隔Hに設定した場合に形成される第1パターン二方向コルゲート材100aに対し、第一コルゲート加工時及び第二コルゲート加工時ともにクリアランスKを広間隔H1に設定した場合、図8に示す第2パターン二方向コルゲート材100bを形成することができる。
 第2パターン二方向コルゲート材100bは、第一コルゲート加工時に、クリアランスKを広間隔H1に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波状コルゲート材130の高さの低い波形を、第二コルゲート加工時に、クリアランスKを広間隔H1に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとが高さの低い波形を形成する際に押しつぶすことにより、略ドーム状の凸部112aと凹部112bとが平面視格子状に交互に並んだコルゲート形状、つまり、幅方向Wと奥行き方向Vに正弦波状に並んだコルゲート形状となる。
 なお、クリアランスKを広間隔H1に設定した場合に形成される高さの低い波形とは、クリアランスKを標準間隔Hに設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波形に比べて高さの低い波形であることを示している。
 第一コルゲート加工時におけるクリアランスKを広間隔H1に設定し、第二コルゲート加工時におけるクリアランスKを狭間隔H2に設定した場合には、図9に示す第3パターン二方向コルゲート材100cを形成することができる。
 第3パターン二方向コルゲート材100cは、第一コルゲート加工時に、クリアランスKを広間隔H1に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波状コルゲート材130の高さの低い波形を押しつぶして、第二コルゲート加工時に、クリアランスKを狭間隔H2に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとが高さの高い波形を形成するため、頂部に所定間隔を隔てた凹部113aを有する高さの高い横波113が奥行き方向Vに所定間隔を隔てて並んだコルゲート形状となる。
 なお、クリアランスKを広間隔H1に設定した場合に形成される高さの高い波形とは、クリアランスKを標準間隔Hに設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波形に比べて高さの高い波形であることを示している。
 また、第一コルゲート加工時におけるクリアランスKを広間隔H1に設定し、第二コルゲート加工時におけるクリアランスKを標準間隔Hに設定した場合には、横波113の高さが低くなるが同様の形状の第3パターン二方向コルゲート材100cを形成することができる。
 第3パターン二方向コルゲート材100cに対し、第一コルゲート加工時におけるクリアランスKを狭間隔H2に設定し、第二コルゲート加工時におけるクリアランスKを広間隔H1に設定した場合には、図10に示す第4パターン二方向コルゲート材100dを形成することができる。
 第4パターン二方向コルゲート材100dは、第一コルゲート加工時に、クリアランスKを狭間隔H2に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとによって形成された波状コルゲート材130の高さの高い波形の頂部を、第二コルゲート加工時において、クリアランスKを広間隔H1に設定した上側加工ギアローラ11aと下側加工ギアローラ11bとが高さの低い波形状に押しつぶすため、頂部に所定間隔を隔てた凹部114aを有する高さの高い縦波114が幅方向Wに所定間隔を隔てて並んだコルゲート形状となる。
 なお、第一コルゲート加工時におけるクリアランスKを標準間隔Hに設定し、第二コルゲート加工時におけるクリアランスKを広間隔H1に設定した場合には、縦波114の高さが低くなるが同様の形状の第4パターン二方向コルゲート材100dを形成することができる。
 また、第一コルゲート加工時及び第二コルゲート加工時における上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKを、それぞれ標準間隔Hに設定した場合の第1パターン二方向コルゲート材100aに対し、第一コルゲート加工時及び第二コルゲート加工時におけるクリアランスKを狭間隔H2に設定した場合には、図11に示すように、第1パターン二方向コルゲート材100aに比べて幅方向W、奥行き方向V及び厚み方向Dが大きなコルゲート形状を有する第5パターン二方向コルゲート材100eを形成することができる。
 さらに、第一コルゲート加工時におけるクリアランスKを狭間隔H2に設定し、第二コルゲート加工時におけるクリアランスKを標準間隔Hに設定した場合には、図12に示すように、第1パターン二方向コルゲート材100aに比べて奥行き方向Vは同じであるが、幅方向W及び厚み方向Dが大きなコルゲート形状を有する第6パターン二方向コルゲート材100fを形成することができる。
 逆に、第一コルゲート加工時におけるクリアランスKを標準間隔Hに設定し、第二コルゲート加工時におけるクリアランスKを狭間隔H2に設定した場合には、図13に示すように、第1パターン二方向コルゲート材100aに比べて幅方向Wは同じであるが、奥行き方向V及び厚み方向Dが大きなコルゲート形状を有する第7パターン二方向コルゲート材100gを形成することができる。
 このように、コルゲート材製造装置1のコルゲート加工部10では、間隔調整用サーボモータ13で上側加工ギアローラ11aと下側加工ギアローラ11bのクリアランスKを、第一コルゲート加工時及び第二コルゲート加工時において、アルミニウム製薄板材120の厚みに応じた標準間隔H、広間隔H1及び狭間隔H2に調整することにより、下記表1に示すように、様々なコルゲート形状の二方向コルゲート材100を構成することができる。
Figure JPOXMLDOC01-appb-T000001
 また、このような構成された二方向コルゲート材100は、コルゲート形状に応じて加工性が向上し、特にLDR(Limiting Drawing Ratio)あるいは限界絞り比が高くなり、絞り性が良好であって、複雑で微細な加工でも可能となる。
 さらには、二方向コルゲート材100のコルゲート形状の形状や厚み方向Dの深さに応じて、二方向コルゲート材100の表面に沿って流れる気流が調整できるため、上述のように、コルゲート加工時におけるクリアランスKを調整することによって、所望の遮熱効果を備えた二方向コルゲート材100を製造することができる。
 さらにまた、二方向コルゲート材100のコルゲート形状の形状や厚み方向Dの深さに応じて、二方向コルゲート材100の表面における電磁波による反射作用が調整できるため、上述のように、コルゲート加工時におけるクリアランスKを調整することによって、所望のシールド効果を備えた二方向コルゲート材100を製造することができる。 
 なお、上述の説明では、二方向コルゲート材100をアルミニウム製薄板材120で構成したが、紙製板や樹脂板で構成してもよい。
 続いて、上述のようなコルゲート材製造装置1における二方向コルゲート材100の製造工程において、出来形計測部20を用いたコルゲートの出来形計測について、図14乃至図16とともに説明する。 
 なお、図14は二方向コルゲート材100の製造フローチャートを示し、図15は第一コルゲート加工における出来形計測結果についての説明図を示し、図16は第二コルゲート加工における出来形計測結果についての説明図を示している。
 詳しくは、図15(a)、図16(a)は各コルゲート加工時における出来形計測結果グラフを示し、図15(b)は第一コルゲート加工における波状コルゲート材130の斜視方向からの出来形画像を示し、図16(b)は第二コルゲート加工における二方向コルゲート材100の斜視方向からの出来形画像を示している。
 二方向コルゲート材100を製造するに当たり、標準間隔H、広間隔H1及び狭間隔H2並びに合否判定の基準となる基準回転トルク経時変化データBLとして所定のコルゲート形状を加工した際の回転トルクの経時変化データを記憶装置23に記憶する(ステップs1)。
 この際、記憶装置23には、標準間隔H、広間隔H1及び狭間隔H2に応じた第一コルゲート加工及び第二コルゲート加工における基準回転トルク経時変化データ(比較基準情報 BL1,BL2)をそれぞれ記憶する。
 なお、このステップs1における基準回転トルク経時変化データBLの記憶は、二方向コルゲート材100を製造する度に行うことなく、既に記憶装置23に格納された基準回転トルク経時変化データBLを呼び出してもよい。また、コルゲート形状、コルゲート加工回数、あるいはアルミニウム製薄板材120の素材強度や厚みに応じて複数の基準回転トルク経時変化データBLを記憶装置23に格納しておき、加工前に選択する構成であってもよい。
 ステップs1完了後、所望のコルゲート形状を有する二方向コルゲート材100を製造するため、コルゲート形状に応じた第一コルゲート加工時におけるクリアランスKが標準間隔H、広間隔H1及び狭間隔H2のうち適した間隔となるように間隔調整用サーボモータ13を制御駆動させる(ステップs2)。
 間隔調整用サーボモータ13によるクリアランスKの調整が完了後、コルゲート加工部10の投入口15(図2)よりアルミニウム製薄板材120を投入し、アルミニウム製薄板材120に第一コルゲート加工を施すとともに、第一コルゲート加工時におけるサーボモータ12の回転トルクを出来形計測部20のトルク検出センサ24で検出し、記憶装置23に記憶する(ステップs3)。
 詳しくは、投入口15より投入されたアルミニウム製薄板材120は、図3に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bの間を通過することによって、加工ギアローラ11のギア歯11cの形状に応じた曲げ加工が施された波状コルゲート材130として函体14の背面側から搬出される。
 なお、このステップs3においてトルク検出センサ24で検出した第一コルゲート加工時におけるサーボモータ12の回転トルクを検出回転トルクとして受け取った制御装置21は、記憶装置23に格納した経時変化データ算出プログラムによって、検出回転トルクの算出経時変化データを算出するとともに、図15に示すように、表示装置22にグラフ表示する(ステップs4)。
 図15(a)に示すように、算出経時変化データは、上側加工ギアローラ11aを回転駆動する上側用サーボモータ12aと、下側加工ギアローラ11bを回転駆動する下側用サーボモータ12bとの両方の検出回転トルクの経時変化データとしてグラフ表示している。そして、上側用サーボモータ12aにおける算出経時変化データの上向き凸部が波状コルゲート材130の上面側のコルゲート形状を示しており、逆に、下側用サーボモータ12bにおける算出経時変化データの下向き凸部が波状コルゲート材130の下面側のコルゲート形状を示している。
 その結果、図15(b)に示す波状コルゲート材130のコルゲート加工方向Lにおける手前側のように十分なコルゲートが形成されていない場合、図15(a)の左側に示すように、右側の良判定の場合における経時変化データに比べ、検出トルクが小さくなることがわかる。
 制御装置21は、算出経時変化データと、記憶装置23に格納した第一コルゲート加工用基準回転トルク経時変化データBL1とを比較し(ステップs5)、判定プログラムによって合否判定する。このとき、算出経時変化データが第一コルゲート加工用基準回転トルク経時変化データBL1の範囲を超えている場合(ステップs6:No,図15(a)に示す不良判定領域を含む場合)、この波状コルゲート材130を不合格と判定し(ステップs12)、終了する。逆に、算出経時変化データが第一コルゲート加工用基準回転トルク経時変化データBL1の範囲内である場合(ステップs6:Yes,図15(a)に示す良判定領域のみの場合)、この波状コルゲート材130を合格と判定する。
 そして、ステップs6で合格と判定された波状コルゲート材130に対して、第二コルゲート加工を施すために、製造するコルゲート形状に応じた第二コルゲート加工時におけるクリアランスKが標準間隔H、広間隔H1及び狭間隔H2のうち適した間隔となるように間隔調整用サーボモータ13を制御駆動させる(ステップs7)。
 間隔調整用サーボモータ13によるクリアランスKの調整完了後、図4に示すように、第一コルゲート加工によって形成された波形の連続方向がコルゲート加工方向Lに対して直交する方向となる向きで波状コルゲート材130を投入口15から投入する。
 投入口15より投入された波状コルゲート材130は、図4に示すように、上側加工ギアローラ11aと下側加工ギアローラ11bの間を通過することによって、加工ギアローラ11のギア歯11cの形状に応じた曲げ加工が施された二方向コルゲート材100として函体14の背面側から搬出される。
 なお、この第二コルゲート加工時におけるサーボモータ12の回転トルクを出来形計測部20のトルク検出センサ24で検出し、記憶装置23に記憶する(ステップs8)。このステップs8においてトルク検出センサ24で検出した第二コルゲート加工時におけるサーボモータ12の回転トルクを検出回転トルクとして受け取った制御装置21は、記憶装置23に格納した経時変化データ算出プログラムによって、検出回転トルクの算出経時変化データを算出するとともに、図16に示すように、表示装置22にグラフ表示する(ステップs9)。
 図16(a)に示すように、算出経時変化データは、第一コルゲート加工時の算出経時変化データと同様に、上側用サーボモータ12aにおける算出経時変化データの上向き凸部が二方向コルゲート材100の上面側のコルゲート形状を示しており、逆に、下側用サーボモータ12bにおける算出経時変化データの下向き凸部が二方向コルゲート材100の下面側のコルゲート形状を示している。つまり、上側用サーボモータ12aにおける算出経時変化データの上向き凸部と、下側用サーボモータ12bにおける算出経時変化データの下向き凸部とを合成することにより、図7(a)に示す二方向コルゲート材100のA-A切断部端面図に示す二方向コルゲート材100のコルゲート形状を示している。
 その結果、図16(b)に示す二方向コルゲート材100の全体が所望のコルゲートが形成されている場合、図16(a)に示すように、全体的に均一した経時変化データとなることが分かる。
 制御装置21は、算出経時変化データと、記憶装置23に格納した第二コルゲート加工用基準回転トルク経時変化データBL2とを比較し(ステップs10)、判定プログラムによって合否判定する。このとき、算出経時変化データが第二コルゲート加工用基準回転トルク経時変化データBL2の範囲を超えている場合(ステップs11:No)、この波状コルゲート材130を不合格と判定し(ステップs12)、終了する。逆に、算出経時変化データが第二コルゲート加工用基準回転トルク経時変化データBL2の範囲内である場合(ステップs11:Yes,図16(a)に示す良判定領域のみの場合)、この波状コルゲート材130を合格と判定する。
 このように、二方向コルゲート材100を製造するために、アルミニウム製薄板材120(波状コルゲート材130)を挟み込んでコルゲート加工する加工ギアローラ11と、加工ギアローラ11をそれぞれ回転駆動するサーボモータ12と、加工ギアローラ11において互いに噛合するクリアランスKを調整する間隔調整用サーボモータ13とを備えたコルゲート材製造装置1を用い、加工ギアローラ11で挟み込んでアルミニウム製薄板材120(波状コルゲート材130)にコルゲート加工した波状コルゲート材130に対して、第二コルゲート加工時を、第一コルゲート加工時のコルゲート加工方向に対して交差する方向に施すとともに、コルゲート加工ごとに、間隔調整用サーボモータ13でクリアランスKを調整することにより、様々なコルゲート形状の二方向コルゲート材100を製造することができる。
 詳しくは、サーボモータ12によって回転駆動される加工ギアローラ11でアルミニウム製薄板材120(波状コルゲート材130)を挟み込んでコルゲート加工を施して波状コルゲート材130を構成し、さらに第一コルゲート加工時におけるコルゲート加工方向に対して交差する方向の第二コルゲート加工を施して二方向コルゲート材100を製造することができる。
 また、コルゲート加工ごとに、間隔調整用サーボモータ13でクリアランスKを調整することにより、コルゲート加工で加工されるコルゲートパターンを調整することができる。したがって、様々なコルゲート形状の二方向コルゲート材100を製造することができる。
 また、間隔調整用サーボモータ13が、クリアランスKを、コルゲート加工するアルミニウム製薄板材120(波状コルゲート材130)の厚み及び剛性の少なくとも一方に応じた標準間隔H、標準間隔Hより狭い狭間隔H2、並びに標準間隔Hより広い広間隔H1に調整する構成であるため、少なくとも7パターンのコルゲート形状の二方向コルゲート材100を製造することができる。
 また、コルゲート材製造装置1に、コルゲート加工するアルミニウム製薄板材120(波状コルゲート材130)の厚み及び剛性の少なくとも一方に応じた標準間隔H、狭間隔H2、及び広間隔H1を記憶する記憶装置23と、記憶装置23に記憶した各間隔に基づいて間隔調整用サーボモータ13を制御する制御装置21を備えることにより、様々なアルミニウム製薄板材120(波状コルゲート材130)であっても、アルミニウム製薄板材120(波状コルゲート材130)の厚みや剛性に応じて適した各間隔に制御装置21で調整し、少なくとも7パターンの形状の二方向コルゲート材100を容易かつ定格的に製造することができる。
 また、コルゲート材製造装置1に、それぞれのサーボモータ12における検出回転トルクを検出回転トルクとして検出するトルク検出センサ24(24a,24b)と、加工ギアローラ11で挟み込んだアルミニウム製薄板材120(波状コルゲート材130)にコルゲート加工する際における検出回転トルクを出力する表示装置22とを備え、表示装置22によって出力された検出回転トルクの経時変化に基づいてコルゲート加工による波形の出来形を計測することにより、アルミニウム製薄板材120(波状コルゲート材130)を加工ギアローラ11で挟み込んでコルゲート加工して形成する二方向コルゲート材100のコルゲート形状全体の出来形をコルゲート加工しながら計測することができる。
 詳しくは、アルミニウム製薄板材120(波状コルゲート材130)を挟み込んでコルゲート加工する加工ギアローラ11を回転駆動するサーボモータ12の回転トルクを検出回転トルクとしてトルク検出センサ24(24a,24b)で検出することにより、コルゲート加工においてアルミニウム製薄板材120(波状コルゲート材130)を曲げるときの負荷を検出することができる。
 なお、厚み及びクリアランスKが一定であれば、V曲げにおける曲げ角度に応じて回転トルクが変動する、詳しくは、厚み及びクリアランスK一定の条件下において、V曲げにおける曲げ角度が大きい場合、回転トルクが高くなり、逆に、V曲げにおける曲げ角度が小さい場合、回転トルクが低くなる。
 このため、回転トルクが高い場合は曲げ角度が大きくなり、回転トルクが低い場合は曲げ角度が小さくなるという検出回転トルクの経時変化を捉えることにより、コルゲート加工したアルミニウム製薄板材120(波状コルゲート材130)のコルゲート形状全体の出来形を計測することができる。
 また、上側加工ギアローラ11a(下側加工ギアローラ11b)におけるギア歯11cの凸部分でアルミニウム製薄板材120(波状コルゲート材130)を曲げ、ギア歯11cの凹部分では、下側加工ギアローラ11b(上側加工ギアローラ11a)の凸部分で曲げられたアルミニウム製薄板材120(波状コルゲート材130)を受けることとなる。したがって、加工ギアローラ11を回転駆動するサーボモータ12における検出回転トルクからはその加工ギアローラ11によって曲げられた部分、つまり、その加工ギアローラ11に対して凸方向に曲げ加工された波形だけを計測することができる。
 しかしながら、加工ギアローラ11の両方のそれぞれに対して回転駆動するサーボモータ12におけるそれぞれの検出回転トルクを出力することにより、上側加工ギアローラ11a(下側加工ギアローラ11b)に対して凸方向に曲げ加工された波形だけでなく、下側加工ギアローラ11b(上側加工ギアローラ11a)によって曲げられた部分、つまり一方の加工ギアローラ11に対して凹方向に曲げ加工された波形の形状も計測することができる。
 したがって、アルミニウム製薄板材120(波状コルゲート材130)の表面に対して両方向にコルゲート加工されたコルゲート形状全体の出来形をコルゲート加工しながら計測することができ、コルゲート加工完了と同時に形成された波形の全体の計測を完了することができる。よって、不適正な波形が形成されたコルゲート材を早期に発見することができる。
 また、所望のコルゲート形状の出来形をコルゲート加工した際における回転トルクの経時変化である基準回転トルク経時変化データBL、標準間隔H等及び検出回転トルクを記憶する記憶装置23を備えるとともに、基準回転トルク経時変化データBLと、算出経時変化データとを比較し、コルゲート加工したコルゲート形状の出来形の合否を制御装置21が判定するため、トルク検出センサ24で検出した検出回転トルクに基づいて、コルゲート加工されたコルゲート形状の合否を判定することができる。
 また、加工ギアローラ11で挟み込んでアルミニウム製薄板材120にコルゲート加工した波状コルゲート材130に対して、第一コルゲート加工時におけるコルゲート加工方向に対して直交する方向の第二コルゲート加工を施して二方向コルゲート材100を加工する際において、第二コルゲート加工時における検出回転トルクを表示装置22で出力することにより、二方向コルゲート材100に形成された複雑なコルゲート形状を正確に計測することができる。
 詳しくは、加工ギアローラ11で挟み込んでアルミニウム製薄板材120に第一コルゲート加工を施した波状コルゲート材130に対して、第一コルゲート加工時におけるコルゲート加工方向Lに対して直交する方向の第二コルゲート加工を施すことにより、複雑なコルゲート形状を有する二方向コルゲート材100を形成することができる。
 また、第二コルゲート加工時における検出回転トルクを表示装置22で出力することにより、複雑な形状に形成されたコルゲート形状を正確に計測することができる。さらに、第一コルゲート加工における検出回転トルクを検出することにより、第二コルゲート加工でコルゲート加工しない箇所のコルゲート形状についても正確に計測した二方向コルゲート材100を製造することができる。
 なお、上述のコルゲート材製造装置1は、コルゲート加工部10と出来形計測部20とを一体化した装置であったが、コルゲート加工部10と出来形計測部20とが独立した構成であってもよく、既存のコルゲート加工部10に対して出来形計測部20を装着してもよい。
 また、上述の説明では、アルミニウム製薄板材120に対して二回のコルゲート加工を施したが、アルミニウム製薄板材120に対して一回のコルゲート加工を施した波状コルゲート材130を製品としても良いし、三回以上のコルゲート加工を施してもよい。さらにまた、複数回のコルゲート加工の加工方向は、直前のコルゲート加工の加工方向に対して直交する方向のみならず、その他の角度で交差する方向でもよく、さらには、複数回のコルゲート加工のうち、同じ方向にコルゲート加工を施してもよい。
 また、間隔調整用サーボモータ13であらかじめクリアランスKを調整してから第一コルゲート加工時及び第二コルゲート加工時を行ったが、第一コルゲート加工時及び第二コルゲート加工時の途中で間隔調整用サーボモータ13を制御駆動させてクリアランスKの間隔を調整してもよい。
 このようにコルゲート加工途中に、クリアランスKを調整することによって、二方向コルゲート材100の幅方向Wや奥行き方向Vにおいて途中でコルゲート形状が変化する二方向コルゲート材100を製造することができる。したがって、コルゲート加工された二方向コルゲート材100を立体変形させる場合などにおいて、部位ごとの所望の性能を奏することのできるコルゲート形状を設定し、所望の形状のコルゲート材を製造することができる。
 この発明の構成と、上述の実施例との対応において、この発明の薄板材は、アルミニウム製薄板材120や波状コルゲート材130に対応し、
一対の波付け歯車は、加工ギアローラ11、上側加工ギアローラ11a、下側加工ギアローラ11bに対応し、
回転駆動手段は、サーボモータ12、上側用サーボモータ12a、下側用サーボモータ12bに対応し、
噛合部は、ギア歯11cに対応し、
噛合部同士の間隔は、クリアランスKに対応し、
間隔調整手段は、間隔調整用サーボモータ13に対応し、
波付け材製造装置は、コルゲート材製造装置1に対応し、
波付け薄板は、波状コルゲート材130に対応し、
波付け加工は、コルゲート加工に対応し、
波付け加工方向は、コルゲート加工方向Lに対応し、
直前の波付け加工時は、ステップs3に示す第一コルゲート加工に対応し、
多方向波付け材は、二方向コルゲート材100、第1パターン二方向コルゲート材100a、第2パターン二方向コルゲート材100b、第3パターン二方向コルゲート材100c、第4パターン二方向コルゲート材100d、第5パターン二方向コルゲート材100e、第6パターン二方向コルゲート材100f、第7パターン二方向コルゲート材100gに対応し、
記憶手段は、記憶装置23に対応し、
制御手段は、制御装置21に対応し、
トルク検出手段は、トルク検出センサ24、上側用トルク検出センサ24a、下側用トルク検出センサ24bに対応し、
検出トルク出力手段は、表示装置22に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
 例えば、制御装置21及び記憶装置23と、コルゲート加工部10とでコルゲート材製造装置1を構成し、つまりトルク検出センサ24を備えずに、サーボモータ12の回転トルクを検出せずに、間隔調整用サーボモータ13でクリアランスKを調整し、所望のコルゲート形状の二方向コルゲート材100を製造してもよい。
 また、上述の説明では、下側加工ギアローラ11bに対して、上側加工ギアローラ11a及び上側用サーボモータ12aを間隔調整用サーボモータ13で移動させてクリアランスKを調整したが、下側加工ギアローラ11b及び下側用サーボモータ12bも間隔調整用サーボモータ13で移動させてクリアランスKを調整する構成であってもよい。
 さらには、加工ギアローラ11の幅方向WにおいてクリアランスKを変化させてコルゲート加工してもよく、この場合、一枚の面上により様々な形状のコルゲートを有する二方向コルゲート材100を構成することができる。
 また、上述の説明では、アルミニウム製薄板材120等に施すコルゲート形状に応じるとともに、コルゲート加工方向L(図3)に対して直交する方向のギア歯11cの形状を有する加工ギアローラ11を用いたが、アルミニウム製薄板材120等に施すコルゲート形状に応じるとともに、コルゲート加工方向L(図3)と同方向のギア歯11cの形状を有するギアローラを用いてもよい。
 また、上述の説明ではステップs5やs9において、波状コルゲート材130(二方向コルゲート材100)を不合格判定としただけであったが、基準回転トルク経時変化データBLとの比較において不合格判定された部分を特定するログデータを蓄積したり、マーキングを施し、その他の合格判定となった部分を製品として用いてもよい。これにより、不合格と判断されたコルゲート形状部分を排除できるため、製品の精度を向上できるとともに、製品のロスを低減することができる。
 また、上述の説明において、トルク検出センサ24で検出した検出回転トルクを記憶装置23に記憶したが、一時的に記憶する制御装置21のRAMに記憶してもよい。
 また、コルゲート加工した際の検出回転トルクの経時変化を表示装置22にグラフ表示したが、表示装置22のみならず、プリント出力としても良いし、数値を表示してもよい。
1…コルゲート材製造装置
11…加工ギアローラ
11a…上側加工ギアローラ
11b…下側加工ギアローラ
11c…ギア歯
12…サーボモータ
12a…上側用サーボモータ
12b…下側用サーボモータ
13…間隔調整用サーボモータ
21…制御装置
22…表示装置
23…記憶装置
24…トルク検出センサ
24a…上側用トルク検出センサ
24b…下側用トルク検出センサ
100…二方向コルゲート材
100a…第1パターン二方向コルゲート材
100b…第2パターン二方向コルゲート材
100c…第3パターン二方向コルゲート材
100d…第4パターン二方向コルゲート材
100e…第5パターン二方向コルゲート材
100f…第6パターン二方向コルゲート材
100g…第7パターン二方向コルゲート材
120…アルミニウム製薄板材
130…波状コルゲート材
H…標準間隔
H1…広間隔
H2…狭間隔
K…クリアランス

Claims (9)

  1.  薄板材を挟み込んで波付け加工する一対の波付け歯車と、
    該一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、
    前記一対の波付け歯車において互いに噛合する噛合部同士の間隔を調整する間隔調整手段とを備えた波付け材製造装置を用い、
    前記一対の波付け歯車で挟み込んで前記薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施すとともに、
    前記波付け加工ごとに、前記間隔調整手段で前記噛合部同士の間隔を調整する
    多方向波付け材を製造する多方向波付け材の製造方法。
  2.  前記間隔調整手段を、
    前記噛合部同士の間隔を、波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた標準間隔、該標準間隔より狭い狭間隔、並びに前記標準間隔より広い広間隔に調整する構成とした
    請求項1に記載の多方向波付け材の製造方法。
  3.  前記波付け材製造装置に、
    波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた前記標準間隔、前記狭間隔、及び前記広間隔を記憶する記憶手段と、
    該記憶手段に記憶した各間隔に基づいて前記間隔調整手段を制御する制御手段を備えた
    請求項2に記載の多方向波付け材の製造方法。
  4.  前記波付け材製造装置に、
    それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、
    前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、
    該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測する
    請求項1乃至3のうちいずれかに記載の多方向波付け材の製造方法。
  5.  請求項1乃至4のうちいずれかの製造方法で製造した
    多方向波付け材。
  6.  一対の波付け歯車で挟み込んで薄板材に波付け加工した波付け薄板に対して、直前の波付け加工時における波付け加工方向に対して交差する方向の波付け加工を複数回施して多方向波付け材を製造する波付け材製造装置であって、
    前記薄板材を挟み込んで波付け加工する前記一対の波付け歯車と、
    該一対の波付け歯車をそれぞれ回転駆動する回転駆動手段と、
    前記一対の波付け歯車において互いに噛合する噛合部同士の間隔を、前記波付け加工ごとに調整する間隔調整手段とを備えた
    波付け材製造装置。
  7.  前記間隔調整手段を、
    前記噛合部同士の間隔を、波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた標準間隔、該標準間隔より狭い狭間隔、並びに前記標準間隔より広い広間隔に調整する構成とした
    請求項6に記載の波付け材製造装置。
  8.  波付け加工する薄板材の厚み及び剛性の少なくとも一方に応じた前記標準間隔、前記狭間隔、及び前記広間隔を記憶する記憶手段と、
    該記憶手段に記憶した各間隔に基づいて前記間隔調整手段を制御する制御手段を備えた
    請求項7に記載の波付け材製造装置。
  9.  それぞれの前記回転駆動手段における前記検出回転トルクを検出回転トルクとして検出するトルク検出手段と、
    前記波付け歯車で挟み込んだ前記薄板材に波付け加工する際における前記検出回転トルクを出力する検出トルク出力手段とを備え、
    該検出トルク出力手段によって出力された前記検出回転トルクの経時変化に基づいて前記波付け加工による波形の出来形を計測する
    請求項6乃至8のうちいずれかに記載の波付け材製造装置。
PCT/JP2011/072024 2011-09-27 2011-09-27 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置 WO2013046325A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/072024 WO2013046325A1 (ja) 2011-09-27 2011-09-27 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
JP2011550765A JP4970626B1 (ja) 2011-09-27 2011-09-27 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/072024 WO2013046325A1 (ja) 2011-09-27 2011-09-27 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置

Publications (1)

Publication Number Publication Date
WO2013046325A1 true WO2013046325A1 (ja) 2013-04-04

Family

ID=46650156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072024 WO2013046325A1 (ja) 2011-09-27 2011-09-27 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置

Country Status (2)

Country Link
JP (1) JP4970626B1 (ja)
WO (1) WO2013046325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291106B1 (ja) * 2017-03-29 2018-03-14 三和パッキング工業株式会社 成形材及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106734452B (zh) * 2016-12-27 2018-05-18 吉林大学 板材表面微结构耕犁式成形装置及成形方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775836A (ja) * 1993-09-03 1995-03-20 Toyota Motor Corp メタル担体用波板の製造方法
JPH0857549A (ja) * 1994-08-26 1996-03-05 Calsonic Corp 波板の製造方法およびその装置
JP2001504393A (ja) * 1996-08-10 2001-04-03 フェデラル−モウガル テクノロジー リミテッド 金属シート成形方法およびそのようなシートから成るパネル
JP2009184001A (ja) * 2008-02-08 2009-08-20 Nichias Corp 金属成形板及び遮熱カバー
JP2010033736A (ja) * 2008-07-25 2010-02-12 Ihi Corp 固体高分子型燃料電池用セパレータ製造方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775836A (ja) * 1993-09-03 1995-03-20 Toyota Motor Corp メタル担体用波板の製造方法
JPH0857549A (ja) * 1994-08-26 1996-03-05 Calsonic Corp 波板の製造方法およびその装置
JP2001504393A (ja) * 1996-08-10 2001-04-03 フェデラル−モウガル テクノロジー リミテッド 金属シート成形方法およびそのようなシートから成るパネル
JP2009184001A (ja) * 2008-02-08 2009-08-20 Nichias Corp 金属成形板及び遮熱カバー
JP2010033736A (ja) * 2008-07-25 2010-02-12 Ihi Corp 固体高分子型燃料電池用セパレータ製造方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291106B1 (ja) * 2017-03-29 2018-03-14 三和パッキング工業株式会社 成形材及びその製造方法

Also Published As

Publication number Publication date
JP4970626B1 (ja) 2012-07-11
JPWO2013046325A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
Sharon et al. Geometrically driven wrinkling observed in free plastic sheets and leaves
TWI326621B (en) Method of designing fold lines in sheet material
KR20010099993A (ko) 불규칙 결합 패턴으로 엠보싱 및 라미네이팅하는 방법
JP4970626B1 (ja) 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
CN102716915B (zh) 用于条带的平整度控制的方法以及控制系统
CN103287895B (zh) 网卷制造方法、网卷卷绕方法以及内部应力计算方法
Behrens et al. Development of an analytical 3D-simulation model of the levelling process
JP5039233B1 (ja) 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
Salem et al. Experimental analysis of an asymmetrical three-roll bending process
Wang et al. Spiral bevel gear dynamic contact and tooth impact analysis
Tran et al. Analysis of the asymmetrical roll bending process through dynamic FE simulations and experimental study
CN108548729B (zh) 一种测量材料最大弯曲应力的方法和装置
JP5299895B2 (ja) 一対の非円形歯車の輪郭形状を生成する方法、プログラム及び装置
JP2013071130A (ja) 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
KR20150119123A (ko) 밀에서의 평탄성 제어를 조정하는 방법 및 제어 시스템
Simon Micro tooth surface topography of face-milled hypoid gears
JP4896528B2 (ja) ハイポイドギヤの加工機設定装置
CN105223813A (zh) 基于球面渐开线的弧齿锥齿轮三维几何模型建模方法
Liu et al. Tooth undercutting of beveloid gears
JP2013071126A (ja) 多方向波付け材の製造方法、多方向波付け材、及び波付け材製造装置
Liu et al. Mathematical models and contact simulations of concave beveloid gears
Peng et al. Transition surface design for blank holder in multi-point forming
JP2013071127A (ja) 波形計測装置、波形計測方法、及び波付け材製造装置
CN115186493A (zh) 一种小模数渐开线圆柱齿轮精确建模方法
CN104157974B (zh) 用于天线罩的蜂窝芯层的曲率确定方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011550765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872976

Country of ref document: EP

Kind code of ref document: A1