WO2013044604A1 - 一种带自动调节气体流量和相位装置的脉管制冷机 - Google Patents

一种带自动调节气体流量和相位装置的脉管制冷机 Download PDF

Info

Publication number
WO2013044604A1
WO2013044604A1 PCT/CN2012/070427 CN2012070427W WO2013044604A1 WO 2013044604 A1 WO2013044604 A1 WO 2013044604A1 CN 2012070427 W CN2012070427 W CN 2012070427W WO 2013044604 A1 WO2013044604 A1 WO 2013044604A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
valves
regenerator
pulse tube
Prior art date
Application number
PCT/CN2012/070427
Other languages
English (en)
French (fr)
Inventor
高金林
李奥
董文庆
巢伟
陈杰
Original Assignee
南京柯德超低温技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京柯德超低温技术有限公司 filed Critical 南京柯德超低温技术有限公司
Priority to JP2013535276A priority Critical patent/JP2013540979A/ja
Priority to US13/979,218 priority patent/US9353977B2/en
Priority to EP12835810.8A priority patent/EP2762799B1/en
Publication of WO2013044604A1 publication Critical patent/WO2013044604A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1425Pulse tubes with basic schematic including several pulse tubes

Definitions

  • Pulse tube refrigerator with automatic adjusting gas flow and phase device Pulse tube refrigerator with automatic adjusting gas flow and phase device
  • the present invention relates to a cryogenic vessel refrigerator with an apparatus for automatically regulating gas flow and phase, and more particularly to a vessel refrigerator having an automatic adjustment of gas flow and phase.
  • the cold section of the pulse tube refrigerator has no moving parts, it is more reliable than the traditional GM refrigerator and Stirling type refrigerator.
  • the cold finger has the characteristics of no wear, low vibration and low noise, and has wide application value in business. .
  • a pulse tube refrigerator can be thought of as a variant of a G-M refrigerator that uses a gas piston instead of a solid piston to achieve a cooling effect by adiabatic deflation expansion of the high pressure gas in the vessel cavity. Its working process can be divided into:
  • the intake valve opens, and the high pressure gas flows through the valve through the regenerator, the cold end regenerator and the deflector, and enters the vessel in a laminar flow, pushing the gas in the tube toward the closed end. After the gas is squeezed, the temperature of the gas at the closed end of the vessel reaches a maximum.
  • a water cooler disposed at the closed end of the vessel carries heat away, reducing the temperature of the gas within the tube to the temperature of the gas initially entering the regenerator.
  • the venting valve opens, in communication with the low pressure origin, the gas in the vessel expands, producing a cooling effect, and the gas is reduced to a minimum temperature.
  • the amount of cooling is determined by the pressure p in the vessel, the flow rate, and the phase relationship between the two.
  • the phase relationship between pressure and flow in a G-M type pulse tube refrigerator can be understood as the length of the gas compression process or the expansion process relative to time.
  • the cold end of the pulse tube refrigerator has no moving parts, and it is impossible to actively adjust the flow rate and phase of the gas entering the vessel. To obtain the ideal flow size and phase relationship at a deep low temperature, it must be completed by the active gas distribution device, as shown in Fig. 2.
  • the six-stage active gas distribution dual-stage pulse tube refrigerator is shown.
  • the refrigeration temperature of the pulse tube refrigerator is susceptible to various factors such as changes in ambient temperature, internal gas impurities, and cold finger direction, instability is likely to occur during operation. Therefore, in the process of refrigerating machine transportation, it is necessary to adjust the flow rate and phase of the regenerator or vessel according to these various factors, thereby adjusting the performance of the refrigerating machine, so that the refrigerating machine is in an optimal working state, and the efficiency of the refrigerating machine is improved.
  • the stability of the refrigeration temperature is possible to adjust the flow rate and phase of the regenerator or vessel according to these various factors, thereby adjusting the performance of the refrigerating machine, so that the refrigerating machine is in an optimal working state, and the efficiency of the refrigerating machine is improved.
  • a pulse tube refrigerator with a self-regulating gas flow and phase device including a helium compressor, a gas distribution valve, a drive controller, a drive lead, a temperature sensor, a temperature measuring lead, a regenerator, a primary vessel, a secondary vessel, a primary gas reservoir and a secondary gas reservoir, the gas distribution valve comprising 8 independent first valves, a second valve, a third valve, a fourth valve, a fifth valve, a sixth valve, a The seven valve and the eighth valve are composed and have no influence on each other.
  • the drive controller transmits the command signal to the above eight independent valves through the drive lead to control the opening and closing size and opening of the eight independent valves in the valve.
  • the fifth valve and the sixth valve are respectively connected to the outlet of the regenerator, and the fifth valve and the sixth valve are respectively connected with the high pressure air pipe and the low pressure air pipe of the helium compressor;
  • the valve, the fourth valve and the eighth valve, the third valve and the fourth valve are respectively connected with the high pressure air pipe and the low pressure air pipe of the helium compressor, and the first valve is respectively connected to the top outlet of the secondary blood vessel,
  • the second valve and the seventh valve, the first valve valve and the second valve are respectively connected with the high pressure air pipe and the low pressure air pipe, and the bottom of the first blood vessel and the bottom of the second blood vessel respectively pass the second connecting pipe and the first connecting pipe and the first connecting pipe respectively
  • the bottom of the heater is connected to the bottom of the secondary regenerator.
  • the opening and closing timing and the opening size of the eight valves in the valve are controlled by the driving controller, and the driving controller transmits the control signals to the eight independent first valves, the second valves, and the first through the driving leads.
  • a second temperature sensor and a first temperature sensor are respectively attached to the bottom of the primary regenerator and the secondary regenerator, and the temperature signal output ends of the second temperature sensor and the first temperature sensor are connected to the drive control through the temperature measuring lead
  • the temperature signal receiving end of the device adjusts the timing and size of the opening and closing of the valve according to the temperature signal.
  • the seventh valve is independently connected between the secondary gas reservoir and the secondary blood vessel.
  • the eighth valve is independently connected between the primary gas reservoir and the primary blood vessel.
  • the valve of the invention consists of 8 independent valves, which do not affect each other.
  • the drive controller can independently adjust the opening and closing amount of each valve and the opening and closing timing according to the change of the tested cooling temperature signal, thereby controlling The size and timing of the inlet and outlet regenerators, the primary and secondary vessels, and the timing and adjustment of the gas phase and gas volume during the operation of the refrigerator, maintaining the stability of the performance of the refrigerator, thus eliminating the traditional The limitation of the planar rotary valve in the active gas distribution function.
  • 1 is a temperature distribution diagram of a basic type of pulse tube refrigerator cycle process in the prior art.
  • FIG. 3 is a schematic illustration of a pulse tube refrigerator with an automatically regulated gas flow and phase device of the present invention.
  • Fig. 4 is a timing chart showing the opening and closing of the refrigerator valve of the present invention.
  • a cryogenic pulse tube refrigerator with an automatic gas flow and phase device comprising a helium compressor 1, a gas distribution valve 11, a drive controller 9, a drive lead 10, a temperature sensor, a temperature measuring lead 8, a regenerator, The primary vessel 5, the secondary vessel 6, the primary gas reservoir 14 and the secondary gas reservoir 15.
  • the gas distribution valve 11 is composed of 8 independent first valves 21, second valves 22, third valves 23, fourth valves 24, fifth valves 25, sixth valves 26, seventh valves 27 and eighth valves 28.
  • the composition without affecting each other, the drive controller 9 transmits a command signal to the eight independent valves through the drive lead 10 for controlling the opening and closing size and the opening and closing timing of the eight independent valves in the valve 11;
  • Regenerator The port is respectively connected with a fifth valve 25 and a sixth valve 26, and the fifth valve 25 and the sixth valve 26 are respectively connected to the high pressure air pipe 3 and the low pressure air pipe 2 of the helium compressor 1;
  • the third valve 23, the fourth valve 24 and the eighth valve 28, the third valve 23 and the fourth valve 24 are respectively connected to the high pressure air pipe 3 and the low pressure air pipe 2 of the helium compressor 1, and the top outlets of the secondary blood pipes 6 are respectively connected
  • the opening and closing timing and the opening size of the eight valves in the gas distribution valve 11 are controlled by the drive controller 9, and the drive controller 9 transmits the control signals to the eight independent first valves 21 and the second valves through the drive leads 10, respectively. 22.
  • the second temperature sensor 7b and the first temperature sensor 7a are respectively attached to the bottom of the primary regenerator 4b and the secondary regenerator 4a, and the temperature signal output ends of the second temperature sensor 7b and the first temperature sensor 7a pass the temperature measuring lead 8 is connected to the temperature signal receiving end of the drive controller 9, and adjusts the timing and size of opening and closing of the valves 21-28 according to the temperature signal.
  • the seventh valve 27 is independently connected between the secondary gas reservoir 15 and the secondary vessel 6.
  • the eighth valve 28 is independently connected between the primary gas reservoir 14 and the primary blood vessel 5.
  • the primary regenerator 4b and the secondary regenerator 4a are coaxially connected to each other in a stepped shape.
  • the primary regenerator 4b, the primary vascular 5, and the secondary vascular 6 can be mounted on the flange 16 at the same time.
  • the gas enters and exits at the top of the primary regenerator 4b through the pipe 33, and the pipe 33 is divided into two parallel circuits, and the fifth valve 25 and the sixth valve 26 are respectively connected in series, and the above two valves are respectively associated with the helium compressor 1
  • the high pressure gas pipe 3 and the low pressure gas pipe 2 are connected to each other to control the gas in the top of the primary regenerator 4b.
  • the bottom of the primary vessel 5 and the bottom of the secondary vessel 6 are connected to the primary regenerator (4a) and the secondary regenerator bottom 4b through the second connecting pipe 19b and the first connecting pipe 19a, respectively, and enter and exit the primary heat recovery.
  • the gas of the device 4b is divided into two parts at the bottom of the primary regenerator 4b, a part of the gas can enter and exit the first-stage vessel 5 through the second connecting pipe 19b, and another part of the gas enters the secondary regenerator 4a, and then passes through the first connection.
  • the tube 19a enters and exits to the secondary vessel 4a.
  • the gas enters and exits at the top of the first-stage vessel 5 through the pipe 32, and the pipe 32 is divided into three parallel circuits, each of which is connected in series with the third valve 23, the fourth valve 24 and the eighth valve 28, and the third valve 23
  • the fourth valve 24 is respectively connected with the high pressure air pipe 3 and the low pressure air pipe 2 of the helium compressor 1;
  • the eighth valve 28 is in communication with the first stage gas reservoir 14;
  • the top outlet of the secondary pulse tube 6 is connected to the pipe 31, and the pipe 31 is divided into parallel 3 channels, each of which is connected in series with a first valve 21, a second valve 22 and a seventh valve 27, respectively, the first valve 21 and the second valve 22 are respectively connected with the high pressure gas pipe 3 and the low pressure gas pipe 4, the secondary gas reservoir 15 and the first Valve 27 is in communication.
  • the automatic regulating gas flow and phase device comprises: 8 independent valves - a first valve 21, a second valve 22, a third valve 23, a fourth valve 24, a fifth valve 25, a sixth valve 26, a seventh valve 27,
  • the eighth valve 28, the drive controller 9, the first temperature measuring sensor 7a, the second temperature measuring sensor 7b and the temperature measuring guide are due to the first valve 21, the second valve 22, the third valve 23, the fourth valve 24, and the fifth
  • the valve 25, the sixth valve 26, the seventh valve 27 and the eighth valve 28 are independent of each other, and the magnitude and phase of the gas flow entering the regenerator can separately adjust the fifth valve 25 and the sixth valve 26; into the secondary vessel 6
  • the first valve 21, the second valve 22 and the seventh valve 27 can be separately adjusted in size and phase of the gas flow;
  • the third valve 23, the fourth valve 24, and the eighth valve 28 can be individually adjusted in magnitude and phase of the gas flow in the stage vessel 5.
  • the temperature sensor 7 transmits a temperature change signal to the drive controller 9, and the drive controller 9 will change according to the change of the temperature signal.
  • 8 independent valves respectively issue commands to adjust the opening amount of the above 8 independent valves to realize the control of the gas volume; in addition, the time of opening or closing the above 8 independent valves can be changed to adjust the gas inlet and outlet relative to each other. Time to achieve gas phase adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种带自动调节气体流量和相位装置的脉管制冷机,包含氦气压缩机(1)、配气阀(11)、驱动控制器(9)、驱动引线(10)、温度传感器(7a,7b)、测温引线(8)、回热器(4a,4b)、一级脉管(5)、二级脉管(6)、一级气库(14)以及二级气库(15)。配气阀(11)由8个独立的第一阀门(21)、第二阀门(22)、第三阀门(23)、第四阀门(24)、第五阀门(25)、第六阀门(26)、第七阀门(27)和第八阀门(28)组成。该脉管制冷机可根据制冷工况的变化,对进入回热器(4a,4b)或脉管(5,6)的气流量的大小和相位进行自动调节,从而调整制冷机的性能,提高制冷机的效率和制冷温度的稳定性。

Description

说明书
一种带自动调节气体流量和相位装置的脉管制冷机 技术领域
本发明涉及一种带自动调节气体流量和相位装置的低温脉管制冷机, 尤其 是一种具有自动调节气体流量和相位的脉管制冷机。
背景技术
由于脉管制冷机冷指部分无运动部件, 比传统的 G-M制冷机和斯特林型制 冷机更加可靠, 冷指具有无磨损、 低振动、 低噪声等特点, 在商业上具有广泛 的应用价值。
脉管制冷机可以看做是用气体活塞代替固体活塞的 G-M制冷机的变体, 通 过高压气体在脉管空腔中的绝热放气膨胀过程获得制冷效应。 其工作过程可分 为:
1 ) 进气过程。 进气阀门开启, 高压气体通过阀门流经回热器、 冷端回热器 和导流器, 以层流形式进入脉管, 把管内的气体推向封闭端。 气体受到挤压后, 使脉管封闭端的气体温度达到最大值。
2) 换热过程。 布置在脉管封闭端的水冷却器将热量带走, 使管内气体的温 度降低到初始进入到回热器的气体温度。
3 ) 排气过程。 排气阀门打开, 与低压起源连通, 脉管内气体膨胀, 产生制 冷效应, 气体降低到最低温度。
4) 回热器过程。 膨胀后的低压气体反向流过回热器, 吸收填料中的热量, 返回压缩机入口, 完成一次循环。 如图 1所示。
气体在脉管内膨胀制冷的制冷量通用表达式可以表示为: Q = ^ pdV
其制冷量的大小由到达脉管中压力 p, 流量 大小以及两者相位关系决定。 在 G-M型脉管制冷机中压力与流量的相位关系则可理解为气体压缩过程或膨胀 过程相对时间的长度。
脉管制冷机冷端无运动部件, 无法主动调整进入脉管内气体的流量大小和 相位, 要在深低温下获得理想的流量大小和相位关系, 必须通过主动配气装置 来完成, 如图 2所示的六阀门主动配气的双级脉管制冷机。
传统的配气阀门一般采用平面旋转阀, 将阀门设计在一个运动装置上。 平 面旋转阀一旦设计加工完成, 气体流通量大小以及阀门开闭时序就无法再改变, 当工况变化引起制冷温度变化时, 制冷机无法通过调节气体流量和相位来达到 最佳运行参数。 另外, 在运行过程中, 如果粉末进入管道内, 如双向进气阀的 孔道内, 将会改变流量系数, 从而改变制冷机内气体流量和相位大小, 偏离原 始设计的最佳运行参数。
由于脉管制冷机制冷温度易受环境温度变化、 内部气体杂质、 冷指方向等 诸多因素影响, 运行过程中易出现不稳定情况。 所以, 在制冷机运过程中需要 根据这些变化因素各自调整进入回热器或脉管气体流量和相位, 从而调整制冷 机的性能, 使得制冷机处于最优化的工作状态, 提高制冷机的效率和制冷温度 的稳定性。
发明内容
本发明的目的是针对现有脉管制冷机制性能易受到环境温度以及运行工况 的影响, 提出一种带自动调节气体流量和相位装置的脉管制冷机, 能够根据制 冷机工况发生变化, 自动调节气体流量和相位, 从而调整制冷机的性能, 使得 制冷机处于最优化的工作状态, 提高制冷机的效率和制冷温度的稳定性。
本发明的技术方案如下:
一种带有自动调节气体流量和相位装置的脉管制冷机, 包含氦气压缩机、 配气阀、 驱动控制器、 驱动引线、 温度传感器、 测温引线、 回热器、 一级脉管、 二级脉管、 一级气库以及二级气库, 所述配气阀由 8个独立的第一阀门、 第二 阀门、 第三阀门、 第四阀门、 第五阀门、 第六阀门、 第七阀门和第八阀门组成, 相互之间无影响, 驱动控制器通过驱动引线将命令信号传递给上述 8个独立的 阀门, 用以控制配气阀中 8个独立的阀门的开闭大小和开闭时序; 回热器出口 分别接有第五阀门和第六阀门, 第五阀门和第六阀门分别与氦气压缩机的高压 气管和低压气管连接; 一级脉管顶部出口分别接有第三阀门、 第四阀门和第八 阀门, 第三阀门和第四阀门分别与氦气压缩机的高压气管和低压气管连接, 二 级脉管顶部出口分别连接有第一阀门、 第二阀门和第七阀门, 第一阀门阀门和 第二阀门分别与高压气管和低压气管连接, 一级脉管底部和二级脉管底部分别 通过第二连管和第一连管与一级回热器底部和二级回热器底部连通。
所述的配气阀中的 8个阀门的开闭时序和开启的大小受驱动控制器控制, 驱动控制器通过驱动引线将控制信号分别传递给 8个独立的第一阀门、 第二阀 门、 第三阀门、 第四阀门、 第五阀门、 第六阀门、 第七阀门和第八阀门。
所述一级回热器和二级回热器底部上分别贴有第二温度传感器和第一温度 传感器, 第二温度传感器和第一温度传感器的温度信号输出端通过测温引线连 接至驱动控制器的温度信号接收端, 并根据温度信号进行调节阀门的开闭的时 序和大小。
所述第七阀门独立连接在二级气库与二级脉管之间。 所述第八阀门独立连接在一级气库与一级脉管之间。
本发明的有益效果:
本发明的配气阀由 8个独立的阀门组成, 相互之间互不影响, 驱动控制器 可根据测试的制冷温度信号的变化独立调整每个阀门的开闭量大小和开闭时 序, 从而控制进、 出回热器、 一级脉管和二级脉管气量的大小和时序, 实现在 制冷机运行过程中气体相位和气量大小的时时调节, 维持制冷机性能的稳定性, 从而消除了传统平面旋转阀在主动配气功能上的局限性。
附图说明
图 1是现有技术中基本型脉管制冷机循环过程温度分布图。
图 2是现有技术中六阀门主动配气双级脉管制冷机。
图 3是本发明的带有自动调节气体流量和相位装置的脉管制冷机示意图。 图 4是本发明的制冷机阀门开闭的时序示意图。
具体实施方式
现结合附图对本发明作进一步的说明
如图 3~4所示。 所述 "底部"、 "顶部"均按视图中方向。
一种带自动调节气体流量和相位装置的低温脉管制冷机, 包含氦气压缩机 1、 配气阀 11、 驱动控制器 9、 驱动引线 10、 温度传感器、 测温引线 8、 回热器、 一级脉管 5、 二级脉管 6、 一级气库 14以及二级气库 15。
所述配气阀 11由 8个独立的第一阀门 21、 第二阀门 22、 第三阀门 23、 第 四阀门 24、 第五阀门 25、 第六阀门 26、 第七阀门 27和第八阀门 28组成, 相互 之间无影响, 驱动控制器 9通过驱动引线 10将命令信号传递给上述 8个独立的 阀门, 用以控制配气阀 11中 8个独立的阀门的开闭大小和开闭时序; 回热器出 口分别接有第五阀门 25和第六阀门 26,第五阀门 25和第六阀门 26分别与氦气 压缩机 1的高压气管 3和低压气管 2连接; 一级脉管 5顶部出口分别接有第三 阀门 23、 第四阀门 24和第八阀门 28, 第三阀门 23和第四阀门 24分别与氦气 压缩机 1的高压气管 3和低压气管 2连接, 二级脉管 6顶部出口分别连接有第 一阀门 21、 第二阀门 22和第七阀门 27, 第一阀门 21和第二阀门 22分别与高 压气管 3和低压气管 4连接, 一级脉管 5底部和二级脉管 6底部分别通过第二 连管 19b和第一连管 19a与一级回热器 4a底部和二级回热器 4b底部连通。
配气阀 11中的 8个阀门的开闭时序和开启的大小受驱动控制器 9控制, 驱 动控制器 9通过驱动引线 10将控制信号分别传递给 8个独立的第一阀门 21、第 二阀门 22、 第三阀门 23、 第四阀门 24、 第五阀门 25、 第六阀门 26、 第七阀门 27和第八阀门 28。
一级回热器 4b和二级回热器 4a底部上分别贴有第二温度传感器 7b和第一 温度传感器 7a, 第二温度传感器 7b和第一温度传感器 7a的温度信号输出端通 过测温引线 8连接至驱动控制器 9的温度信号接收端, 并根据温度信号进行调 节阀门 21~28的开闭的时序和大小。
第七阀门 27独立连接在二级气库 15与二级脉管 6之间。
第八阀门 28独立连接在一级气库 14与一级脉管 5之间。
具体实施时, 一级回热器 4b和二级回热器 4a同轴连接, 做成阶梯状。 可 同时将一级回热器 4b、 一级脉管 5和二级脉管 6顶部安装在法兰盘 16上。
具体实施时, 气体通过管道 33在一级回热器 4b顶部进出, 管道 33分成并 联的两路, 并且分别串联第五阀门 25和第六阀门 26, 上述两个阀门分别与氦气 压缩机 1的高压气管 3和低压气管 2连通,控制着一级回热器 4b顶部气体的进、 出。 一级脉管 5底部和二级脉管 6底部分别通过第二连管 19b和第一连管 19a 与一级回热器 (4a) 和二级回热器底部 4b连接, 进出一级回热器 4b的气体在 一级回热器 4b底部分成两部分, 一部分气体通过第二连管 19b可进出到一级脉 管 5,另外一部分气体进过二级回热器 4a,再通过第一连管 19a进出到二级脉管 4a。
具体实施时, 气体通过管道 32在一级脉管 5顶部进、 出, 管道 32分成并 联的 3路, 每路分别串联第三阀门 23、 第四阀门 24和第八阀门 28, 第三阀门 23、 第四阀门 24分别与氦气压缩机 1的高压气管 3和低压气管 2连通; 第八阀 门 28与一级气库 14连通; 二级脉管 6顶部出口连接管道 31, 管道 31分成并联 的 3路, 每路分别串联第一阀门 21、 第二阀门 22和第七阀门 27, 第一阀门 21 和第二阀门 22分别与高压气管 3和低压气管 4连通, 二级气库 15与第一阀门 27连通。
一级回热器 4b和二级回热器 4a底部分别贴有第二温度传感器 7b和第一温 度传感器 7a可测试出一级制冷温度和二级制冷温度。
自动调节气体流量和相位装置包括: 8个独立阀门——第一阀门 21、 第二 阀门 22、第三阀门 23、第四阀门 24、第五阀门 25、 第六阀门 26、第七阀门 27、 第八阀门 28、 驱动控制器 9、 第一测温传感器 7a、 第二测温传感器 7b和测温引 由于第一阀门 21、 第二阀门 22、 第三阀门 23、 第四阀门 24、 第五阀门 25、 第六阀门 26、 第七阀门 27和第八阀门 28相互独立, 进入回热器的气体流量大 小和相位可以单独调节第五阀门 25和第六阀门 26;进入二级脉管 6中气体流量 的大小和相位可以单独调节第一阀门 21、 第二阀门 22和第七阀门 27; 进入一 级脉管 5中气体流量的大小和相位可以单独调节第三阀门 23、第四阀门 24和第 八阀门 28。
当制冷机工况发生变化时, 制冷温度将发生变化, 根据这一变化信号, 温 度传感器 7将温度变化信号传递给驱动控制器 9,驱动控制器 9将根据该温度信 号的变化情况, 对上述 8个独立的阀门分别发出指令, 调节上述 8个独立阀门 的开启量大小从而实现气量大小的控制; 另外还可以改变上述 8个独立阀门相 对打开或关闭的的时间以调整气体进、 出得相对时间, 从而实现气体相位调节 功能。
在应用中, 驱动控制器 9 的输出命令信号可以根据事情要求设置为手动输 出或者是自动输出。 前者可事先设计出对应的开环控制箱或者面板, 将 8个独 立阀门气量开闭大小和时序编制可调试的程序, 在实验过程中手动调试; 后者 可根据实验所得变化规律将测试信号和控制信号编制成对应的程序输入到驱动 控制器 9 中, 对进入回热器或脉管的气流量的大小和相位进行自动调节, 从而 实现自动控制功能, 使得制冷机始终处于最优化的工作状态, 提高制冷机的效 率和制冷温度的稳定性。
本发明适用于任何形式的需要周期性配气的低温制冷机,包括 G-M制冷机、 G-M型脉管制冷机和索尔文制冷机, 当其用于 G-M型脉管制冷机时, 效果尤为 显著。

Claims

权利要求书
1. 一种带自动调节气体流量和相位装置的低温脉管制冷机, 包含氦气压縮机 (1)、 配气 阀 (11)、 驱动控制器 (9)、 驱动引线 (10)、 温度传感器 (7)、 测温引线 (8)、 回热 器 (4)、 一级脉管 (5)、 二级脉管 (6)、 一级气库 (14) 以及二级气库 (15), 其特征 是所述的配气阀(11) 由 8个独立的第一阀门 (21)、 第二阀门 (22)、 第三阀门 (23)、 第四阀门 (24)、 第五阀门 (25)、 第六阀门 (26)、 第七阀门 (27) 和第八阀门 (28) 组成, 驱动控制器 (9) 通过驱动引线 (10) 将命令信号传递给上述 8个独立的阀门, 用以控制配气阀 (11) 中上述 8个阀门的开闭大小和开闭时序; 回热器 (4) 出口分别 接有第五阀门 (25)和第六阀门 (26), 分别与氦气压縮机 (1) 的高压气管 (3)和低 压气管 (2) 连接; 一级脉管 (5) 顶部出口分别接有第三阀门 (23)、 第四阀门 (24) 和第八阀门 (28), 第三阀门 (23) 和第四阀门 (24) 分别与氦气压縮机 (1) 的高压 气管 (3) 和低压气管 (2) 连接; 二级脉管 (6) 顶部出口分别接有第一阀门 (21)、 第二阀门 (22)和第七阀门 (27), 第一阀门 (21)和第二阀门 (22) 分别与高压气管
(3) 和低压气管 (4) 连接; 一级脉管 (5) 底部和二级脉管 (6) 底部分别通过第二 连管 (19b) 和第一连管 (19a) 与一级回热器 (4a) 底部和二级回热器底部 (4b) 底 部连通。
2. 根据权利要求 1 所述的一种带自动调节气体流量和相位装置的低温脉管制冷机, 其特 征是所述的一级回热器(4b)和二级回热器(4a)底部上分别贴有第二温度传感器(7b) 和第一温度传感器 (7a), 第二温度传感器 (7b) 和第一温度传感器 (7a) 的温度信号 输出端通过测温引线 (8) 连接至驱动控制器 (9) 的温度信号接收端。
3. 根据权利要求 1 所述的一种带自动调节气体流量和相位装置的低温脉管制冷机, 其特 征是所述第七阀门 (27) 独立连接在二级气库 (15) 与二级脉管 (6) 之间。
4. 根据权利要求 1 所述的一种带自动调节气体流量和相位装置的低温脉管制冷机, 其特 征是所述第八阀门 (28) 独立连接在一级气库 (14) 与一级脉管 (5) 之间。
PCT/CN2012/070427 2011-09-29 2012-01-16 一种带自动调节气体流量和相位装置的脉管制冷机 WO2013044604A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013535276A JP2013540979A (ja) 2011-09-29 2012-01-16 気体流量と位相を自動的に調節する装置を有するパルスチューブ冷凍機
US13/979,218 US9353977B2 (en) 2011-09-29 2012-01-16 Pulse tube refrigerator with an automatic gas flow and phase regulating device
EP12835810.8A EP2762799B1 (en) 2011-09-29 2012-01-16 Pulse tube refrigerator with device capable of automatically adjusting gas flow rate and phase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110300559.2 2011-09-29
CN2011103005592A CN102393096A (zh) 2011-09-29 2011-09-29 一种带自动调节气体流量和相位装置的脉管制冷机

Publications (1)

Publication Number Publication Date
WO2013044604A1 true WO2013044604A1 (zh) 2013-04-04

Family

ID=45860455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070427 WO2013044604A1 (zh) 2011-09-29 2012-01-16 一种带自动调节气体流量和相位装置的脉管制冷机

Country Status (5)

Country Link
US (1) US9353977B2 (zh)
EP (1) EP2762799B1 (zh)
JP (1) JP2013540979A (zh)
CN (1) CN102393096A (zh)
WO (1) WO2013044604A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510912A (en) * 2013-02-19 2014-08-20 Hymatic Eng Co Ltd A pulse tube refrigerator/cryocooler apparatus
CN106840728A (zh) * 2017-02-22 2017-06-13 中国科学院上海技术物理研究所 一种用于独立评价脉管冷指性能的装置及评价方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512258B (zh) * 2012-06-19 2015-07-08 中国科学院理化技术研究所 一种液氦温区的v-m型热压缩机驱动的脉冲管制冷机
CN104006564B (zh) * 2013-02-21 2018-08-10 朱绍伟 一种脉管制冷机
JP6087168B2 (ja) * 2013-02-26 2017-03-01 住友重機械工業株式会社 極低温冷凍機
JP7186133B2 (ja) * 2019-05-24 2022-12-08 住友重機械工業株式会社 多段式パルス管冷凍機、および多段式パルス管冷凍機のコールドヘッド
CN113899100B (zh) * 2021-11-11 2023-02-28 上海海洋大学 两级脉管制冷机冷却两波段红外探测器件的电子光学装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254365A (ja) * 1995-03-15 1996-10-01 Ulvac Japan Ltd ダブルインレット型パルス管冷凍機及びその運転方法
JP2000074518A (ja) * 1998-08-27 2000-03-14 Aisin Seiki Co Ltd 冷却装置
CN1918441A (zh) * 2004-02-11 2007-02-21 住友重机械工业株式会社 用于低温致冷器的三通道阀
CN202267264U (zh) * 2011-09-29 2012-06-06 南京柯德超低温技术有限公司 一种带自动调节气体流量和相位装置的脉管制冷机

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2909934B2 (ja) * 1991-07-12 1999-06-23 アイシン精機株式会社 パルス管冷凍機
JPH0933124A (ja) * 1995-05-12 1997-02-07 Aisin Seiki Co Ltd 多段型パルス管冷凍機
JP2001280726A (ja) * 2000-03-31 2001-10-10 Aisin Seiki Co Ltd パルス管冷凍機
US6256998B1 (en) * 2000-04-24 2001-07-10 Igcapd Cryogenics, Inc. Hybrid-two-stage pulse tube refrigerator
WO2006075981A1 (en) * 2005-01-13 2006-07-20 Sumitomo Heavy Industries, Ltd Hybrid spool valve for multi-port pulse tube
DE102006054668B4 (de) * 2006-11-17 2016-01-07 Bruker Biospin Gmbh Durchspülbarer Kaltkopf für einen Kryorefrigerator, der nach dem Pulsrohrprinzip arbeitet
JP4763021B2 (ja) * 2008-03-25 2011-08-31 住友重機械工業株式会社 パルス管冷凍機及び蓄冷型冷凍機
JP5362518B2 (ja) * 2009-10-27 2013-12-11 住友重機械工業株式会社 ロータリーバルブおよびパルスチューブ冷凍機
JP2011094835A (ja) * 2009-10-27 2011-05-12 Sumitomo Heavy Ind Ltd パルスチューブ冷凍機
JP5497404B2 (ja) * 2009-10-27 2014-05-21 住友重機械工業株式会社 ロータリーバルブおよびパルスチューブ冷凍機
US9644867B2 (en) * 2009-10-27 2017-05-09 Sumitomo Heavy Industries, Ltd. Rotary valve and a pulse tube refrigerator using a rotary valve
US8474272B2 (en) * 2009-11-03 2013-07-02 The Aerospace Corporation Multistage pulse tube coolers
JP5606748B2 (ja) * 2010-02-03 2014-10-15 住友重機械工業株式会社 パルスチューブ冷凍機
CN101839356B (zh) * 2010-05-14 2011-08-17 南京柯德超低温技术有限公司 低温制冷机用无磨损配气阀
CN103261816B (zh) * 2010-10-08 2015-11-25 住友美国低温学公司 快速降温的低温制冷机
US9982935B2 (en) * 2010-10-20 2018-05-29 Hypres, Inc Cryogenic system with rapid thermal cycling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08254365A (ja) * 1995-03-15 1996-10-01 Ulvac Japan Ltd ダブルインレット型パルス管冷凍機及びその運転方法
JP2000074518A (ja) * 1998-08-27 2000-03-14 Aisin Seiki Co Ltd 冷却装置
CN1918441A (zh) * 2004-02-11 2007-02-21 住友重机械工业株式会社 用于低温致冷器的三通道阀
CN202267264U (zh) * 2011-09-29 2012-06-06 南京柯德超低温技术有限公司 一种带自动调节气体流量和相位装置的脉管制冷机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2510912A (en) * 2013-02-19 2014-08-20 Hymatic Eng Co Ltd A pulse tube refrigerator/cryocooler apparatus
US9909787B2 (en) 2013-02-19 2018-03-06 The Hymatic Engineering Company Limited Pulse tube refrigerator/cryocooler apparatus
GB2510912B (en) * 2013-02-19 2018-09-26 The Hymatic Engineering Company Ltd A pulse tube refrigerator / cryocooler apparatus
CN106840728A (zh) * 2017-02-22 2017-06-13 中国科学院上海技术物理研究所 一种用于独立评价脉管冷指性能的装置及评价方法
CN106840728B (zh) * 2017-02-22 2023-07-04 中国科学院上海技术物理研究所 一种用于独立评价脉管冷指性能的装置及评价方法

Also Published As

Publication number Publication date
US9353977B2 (en) 2016-05-31
JP2013540979A (ja) 2013-11-07
EP2762799A1 (en) 2014-08-06
US20130291566A1 (en) 2013-11-07
EP2762799B1 (en) 2017-05-31
CN102393096A (zh) 2012-03-28
EP2762799A4 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
WO2013044604A1 (zh) 一种带自动调节气体流量和相位装置的脉管制冷机
US8783045B2 (en) Reduced input power cryogenic refrigerator
CN104034078B (zh) 超低温制冷装置及超低温制冷装置的控制方法
US10006669B2 (en) Cryogenic refrigerator and cooling method
CN106091462B (zh) 一种使用记忆金属合金的自调式节流制冷器
WO2018094844A1 (zh) 一种空调系统及控制方法
US20200278138A1 (en) Mode Switcher, Heat Recovery Multi-Split Air Conditioning System and Control Method
WO2012027918A1 (zh) 带调相机构的g-m制冷机
CN203731731U (zh) 一种船用节能自复叠制冷装置
CN103822392A (zh) 一种船用节能自复叠制冷系统
CN105222386A (zh) 一种气动gm制冷机及其控制过程
CN103930674A (zh) 气体平衡布雷顿循环式冷水蒸气低温泵
CN104764238A (zh) 无油低震动gm型脉管制冷机
US9488391B2 (en) Cryogenic refrigerator
CN202267264U (zh) 一种带自动调节气体流量和相位装置的脉管制冷机
CN102237005A (zh) 回压自动控制装置
CN205844932U (zh) 一种集成型中冷温度控制系统
CN101699194A (zh) 低温单级脉管制冷机
CN1278088C (zh) 内置膜式双向进气结构脉管制冷机
CN100533002C (zh) 一种单屏真空多层绝热的单级脉管制冷机
CN200940967Y (zh) 冷水机
CN102353170B (zh) 以双效或三效为基础的复合吸收式热泵
CN101551182A (zh) 变频空调器冷却液循环方法和循环系统
JP5893510B2 (ja) パルス管冷凍機
CN205956535U (zh) 自力式冷却型温度调节阀

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535276

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012835810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012835810

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13979218

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE