WO2013044520A1 - 油缸变幅吊臂及其线速度控制方法和装置 - Google Patents

油缸变幅吊臂及其线速度控制方法和装置 Download PDF

Info

Publication number
WO2013044520A1
WO2013044520A1 PCT/CN2011/080500 CN2011080500W WO2013044520A1 WO 2013044520 A1 WO2013044520 A1 WO 2013044520A1 CN 2011080500 W CN2011080500 W CN 2011080500W WO 2013044520 A1 WO2013044520 A1 WO 2013044520A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
boom
output current
proportional valve
elevation angle
Prior art date
Application number
PCT/CN2011/080500
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
郭纪梅
刘永赞
胡奇飞
蒋应龙
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Priority to PCT/CN2011/080500 priority Critical patent/WO2013044520A1/zh
Publication of WO2013044520A1 publication Critical patent/WO2013044520A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/06Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs mounted for jibbing or luffing movements
    • B66C23/08Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes with jibs mounted for jibbing or luffing movements and adapted to move the loads in predetermined paths

Definitions

  • the present invention relates to the field of a cylinder luffing boom, and more particularly to a cylinder luffing boom and a line speed control method and apparatus therefor.
  • the basic working principle of the cylinder luffing boom device is: the cylinder is supported near the pivot point of the boom, and the operator controls the expansion and contraction of the cylinder to realize the up and down luffing movement of the head of the distal boom. Since the length of the boom varies according to the requirements of each actual working condition, the weight of the boom head exhibits different linear velocities under the control of the same amount of expansion and contraction.
  • the linear speed control of the variable amplitude is independent of the length of the boom, and is only linear with the opening of the cylinder luffing handle.
  • the operator judges the variable speed requirement of the current working condition, and then inputs the desired variable speed speed position through the display screen or the operation panel, and the electronic integrated control device according to the variable amplitude position pair
  • the maximum opening of the variable-amplitude proportional valve is limited to achieve a limit on the maximum linear velocity of the variable amplitude.
  • the maximum opening of the variable-amplitude proportional valve cannot simultaneously take into account the long boom and short boom conditions.
  • the current technical solution is that the operator manually inputs the desired variable amplitude gear position to adjust the limit of the maximum linear speed of the variable amplitude.
  • the gear segment is limited in segmentation and is not associated with the arm length, there is a disadvantage that the control is not fine and the manual modification is cumbersome.
  • a primary object of the present invention is to provide a cylinder jib boom and a line speed control method and apparatus thereof for solving the problem that the linear speed of the cylinder jib boom cannot be automatically controlled.
  • a linear speed control method of a cylinder luffing boom is provided.
  • the linear speed control method of the cylinder luffing boom comprises: detecting the elevation angle of the boom, the change trend of the elevation angle, and the length of the boom; obtaining the maximum linear velocity of the boom; and the change trend of the elevation angle and the elevation angle of the boom.
  • the length of the boom and the maximum line speed of the boom calculate the first output current of the cylinder proportional valve; and the first output current is used to control the linear speed of the boom.
  • calculating the first output current of the cylinder proportional valve comprises: calculating a first time according to a change trend of the elevation angle and the elevation angle of the boom, wherein the first time is that the cylinder completes the boom 1° under the rated maximum opening of the proportional valve The required amount of oil change time; the second time is calculated according to the length of the boom and the maximum line speed, wherein the second time is the time required for the boom to complete the 1° amplitude; according to the first time and the second time a first opening degree coefficient, wherein the first opening degree coefficient is a maximum opening degree coefficient of the proportional valve of the oil cylinder; and calculating a first output current of the proportional valve of the oil cylinder according to the first opening degree coefficient.
  • the first time is obtained by the following formula:
  • ⁇ 1 ⁇ +1 -0 ⁇ *60/00
  • ⁇ 1 the first time
  • the unit is seconds
  • Q0 the oil flow under the rated maximum opening of the proportional valve of the cylinder
  • the unit is liter/min
  • Qj the cylinder
  • the unit is liter
  • ( ⁇ +1 the oil filling amount of the cylinder when the cylinder elevation angle is 1 degree before the boom angle is j degrees
  • the unit is liter
  • Q0 is in the cylinder
  • L3 V(L1 2 +H1 2 ) + (L2 2 +H2 2 )-2*VL1 2 +H1 2 * L2 2 +H2 7 *COS « Among them, ( ⁇ is the oil filling amount of the cylinder without the rod cavity when the elevation angle of the boom is j degree, the unit is liter, j is the elevation angle of the boom, the unit is degree, HI is the lower hinge point of the cylinder, the rear hinge of the boom The vertical distance of the point, L1 is the horizontal distance of the lower hinge point of the cylinder from the rear hinge point of the boom, H2 is the vertical distance of the upper hinge point of the cylinder from the boom, L2 is the upper side of the cylinder The distance between the hinge point on the boom and the rear hinge point of the boom, L0 is the full length of the cylinder when it is fully retracted, and R is the cylinder inner diameter of the cylinder.
  • the second time is obtained by the following formula: 0 3 /L
  • ⁇ 2 is the second time
  • the unit is seconds
  • v max is the maximum linear velocity of the boom
  • the unit is meters/second
  • L is the length of the boom
  • the unit is millimeter
  • is the maximum angular velocity corresponding to the maximum linear velocity.
  • the unit is radians/second.
  • the first opening coefficient is obtained by the following formula:
  • K max ATl/AT2
  • K max is the first opening degree coefficient
  • 1 ⁇ ⁇ 1 ⁇ 1 is the first time, the unit is second
  • ⁇ 2 is the second time, the unit is second.
  • the first output current is obtained by the following formula: Among them, I.
  • the linear speed control method of the cylinder luffing boom according to the present invention further includes: acquiring a second opening degree coefficient of the cylinder, wherein the second opening degree coefficient is input by the user through the cylinder luffing handle The opening coefficient of the proportional valve; calculating the second output current of the proportional valve of the cylinder according to the second opening coefficient; comparing the first output current with the second output current; and when the first output current is greater than or equal to the second output current The second output current is used to control the linear velocity of the cylinder luffing arm. Further, the second output current is obtained by the following method: ⁇ _ j — j ⁇ - T
  • the linear velocity control device of the cylinder luffing boom comprises: a detection module , for detecting the change trend of the elevation angle and the elevation angle of the boom and the length of the boom; the first acquisition module, configured to obtain the maximum linear velocity of the boom; and the first calculation module, configured to change according to the elevation angle and the elevation angle of the boom
  • the trend, the length of the boom, and the maximum linear velocity of the boom calculate a first output current of the cylinder proportional valve; and a control module for controlling the linear velocity of the boom using the first output current.
  • the first calculation module includes: a first calculation sub-module, configured to calculate a first time according to a change trend of an elevation angle and an elevation angle of the boom, wherein the first time is a ratio of the cylinder in the ratio The oil change time required to complete the boom 1° amplitude change under the rated maximum opening; the second calculation sub-module, configured to calculate the second time according to the length of the boom and the maximum line speed, wherein the second time is the boom The time required to complete the 1° variable amplitude; the third calculation sub-module, configured to calculate the first opening degree coefficient according to the first time and the second time, wherein the first opening degree coefficient is a maximum opening degree coefficient of the proportional valve of the oil cylinder And a fourth calculation sub-module for calculating a first output current of the proportional valve of the cylinder according to the first opening degree coefficient.
  • a first calculation sub-module configured to calculate a first time according to a change trend of an elevation angle and an elevation angle of the boom, wherein the first time is a ratio
  • the linear speed control device of the cylinder luffing boom further includes: a second acquisition module for acquiring a second opening degree coefficient of the cylinder, the second opening degree coefficient being input by the user through the cylinder luffing handle a second calculation module for calculating a second output current of the proportional valve of the cylinder according to the second opening degree; and a comparison module for comparing the first output current with the second output current, the control module The method is further configured to: when the first output current is greater than or equal to the second output current, use the second output current to control the linear velocity of the cylinder luffing boom.
  • a cylinder luffing boom comprising the above-described linear speed control device of the cylinder luffing boom. Further, the variable speed limit enable switch is further included, wherein the linear speed control device of the cylinder luffing boom is further configured to control the linear velocity of the boom when the variable speed limit enable switch is closed.
  • a linear speed control method for a cylinder luffing boom comprising the following steps: detecting an elevation angle of the boom, a change trend of the elevation angle, and a length of the boom; obtaining a maximum linear velocity of the boom; according to the elevation angle of the boom, The first output current of the cylinder proportional valve is calculated by the change angle of the elevation angle, the length of the boom and the maximum linear speed of the boom; and the linear velocity of the boom is controlled by the first output current, and the boom is detected in real time when controlling the line speed of the boom.
  • the elevation angle, the change angle of the elevation angle and the length of the boom calculate the output current of the cylinder proportional valve according to the detection result, and then use the output current to control the linear speed of the boom, which solves the problem that the linear speed of the cylinder luffing boom cannot be automatically controlled.
  • FIG. 1 is a control flow chart of a cylinder luffing boom according to a first embodiment of the present invention
  • FIG. 2 is a block diagram of a linear speed control device for a cylinder luffing boom according to a first embodiment of the present invention
  • Figure 3 is a block diagram of a linear speed control device for a cylinder luffing boom according to a second embodiment of the present invention
  • Figure 4 is a flow chart of a linear velocity control method for a cylinder luffing boom according to a first embodiment of the present invention
  • 5 is a schematic structural view of a cylinder luffing boom according to the present invention
  • FIG. 6 is a flow chart showing a method of controlling the linear velocity of the cylinder luffing boom according to the second embodiment of the present invention.
  • the present invention provides a cylinder luffing boom, and the cylinder luffing boom is specifically described as follows:
  • the cylinder luffing boom includes a linear speed control device for the cylinder luffing boom.
  • the cylinder luffing boom further comprises a variable speed limit enabling switch, wherein the linear speed control device of the cylinder luffing boom is further configured to control the wire of the boom when the variable speed limit enabling switch is closed speed.
  • a linear speed control device is added to the cylinder luffing boom.
  • a variable speed limit speed enable switch is further added.
  • the linear speed control device is The linear speed of the boom is controlled; when the variable speed limit enable switch is turned off, the linear speed of the boom is controlled by a conventional control method.
  • Step S102 Determine whether the variable speed limit enable switch is valid. When the variable speed limit enable switch is enabled, perform step S104, and set the variable speed limit enable.
  • step S106 is performed.
  • the linear speed control device of the cylinder luffing boom controls the linear velocity of the boom.
  • the user controls the linear velocity of the boom using the variable speed gear.
  • an additional linear velocity control device is added to the deficiencies of the conventional boom linear velocity control method.
  • the line speed of the boom can still be controlled by the variable speed speed gear, and the two control modes are switched by adding the variable speed limit speed enable switch.
  • the switch is set to be normally closed, that is, the cylinder luffing boom defaults to adopting the line speed control device to control the line speed.
  • FIG. 2 is a block diagram of a linear speed control device for a cylinder luffing boom according to a first embodiment of the present invention, as shown in FIG.
  • the linear speed control device of the cylinder luffing boom comprises: a detecting module 10 for detecting the elevation angle of the boom, The change angle of the elevation angle and the length of the boom, optionally, the angle sensor and the length sensor are mounted on the cylinder luffing boom, and the detecting module 10 detects the elevation angle of the boom, the change trend of the elevation angle, and the boom by detecting the output of each sensor
  • the first acquisition module 20 is configured to obtain the maximum linear velocity of the boom, and set a maximum linear velocity for safety reasons. The maximum linear velocity can be set by the operator according to actual working conditions, or can be changed according to the cylinder.
  • the first calculation module 30 is configured to calculate the first output current of the cylinder proportional valve according to the elevation angle of the boom, the change trend of the elevation angle, the length of the boom and the maximum line speed of the boom; and the control module 40, for controlling the linear velocity of the boom by using the first output current.
  • the linear velocity of the boom is associated with its length and angle, which can effectively limit the linear velocity of the weight of the boom during the variable amplitude operation under different arm lengths, and improve the handling and safety of the variable amplitude. .
  • the length of the boom and the elevation angle of the boom and the change trend of the elevation angle are detected in real time by setting the detecting module 10, and then the maximum linear velocity of the cylinder luffing boom is obtained by setting the first acquiring module 20, and further, the detection result of the detecting module 10 is obtained.
  • the result obtained by the first acquisition module 20 is sent to the first calculation module 30 to calculate the first output current of the cylinder proportional valve, and finally the control module 40 uses the output current to control the linear velocity of the boom.
  • the maximum opening of the proportional valve is associated with the length and angle of the boom, and the poleless dynamic adjustment is realized, taking into account the long arm working condition and the short arm working condition of the boom, and simultaneously ensuring the long arm and the short arm changing.
  • the first calculation module 30 includes: a first calculation sub-module, configured to calculate a first time according to a change trend of the elevation angle and the elevation angle of the boom, wherein the first time is that the cylinder completes the boom 1 under the rated maximum opening of the proportional valve The oil quantity change time required for the amplitude change; the second calculation sub-module, configured to calculate the second time according to the length of the boom and the maximum line speed, the second time being the time required for the boom to complete the 1° variable amplitude; a third calculation submodule, configured to calculate a first opening degree coefficient according to the first time and the second time, wherein the first opening degree coefficient is a maximum opening degree coefficient of the proportional valve of the oil cylinder; and a fourth calculating submodule, A first output current for
  • 3 is a block diagram of a linear speed control device for a cylinder luffing boom according to a second embodiment of the present invention.
  • the linear speed control device for the cylinder luffing boom of the present invention includes the embodiment shown in FIG.
  • the module further includes: a second obtaining module 50, configured to acquire a second opening degree coefficient of the cylinder, wherein the second opening degree coefficient is an opening degree coefficient of the proportional valve input by the user through the cylinder luffing handle; the second calculating module 60 a second output current for calculating a proportional valve of the cylinder according to the second opening degree coefficient; and a comparison module 70 for comparing the first output current with the second output current, wherein the control module 40 is further configured to: When the output current is greater than or equal to the second output current, the second output current is used to control the linear velocity of the cylinder luffing boom.
  • the calculation formula adopted by the second calculation module is described in detail in the corresponding calculation method below.
  • the linear speed control device of the cylinder luffing boom is further configured to acquire an opening degree coefficient of a proportional valve input by a user through a cylinder luffing handle, and a proportional valve corresponding to a opening degree coefficient of a proportional valve input by a user.
  • the output current is compared with the calculated proportional valve output current.
  • the former controls the linear velocity of the boom.
  • the cylinder luffing boom adopting the control device not only controls the boom according to the arm length, the boom angle and the maximum linear velocity, but also controls the boom by considering the opening coefficient of the proportional valve input by the user, so that the control of the boom is controlled. More flexible and secure.
  • Fig. 4 is a flow chart showing a method of controlling the linear velocity of the cylinder luffing boom according to the first embodiment of the present invention.
  • the method includes the following steps: Step S201, detecting an elevation angle of the boom, a change trend of the elevation angle, and a length of the boom.
  • Step S201 detecting an elevation angle of the boom, a change trend of the elevation angle, and a length of the boom.
  • the method firstly needs to obtain the current elevation angle and the current length of the boom and the change trend of the elevation angle in real time, the step is through the cylinder.
  • the detection module in the linear speed control device of the luffing boom is obtained.
  • Step S202 obtaining a maximum linear velocity of the boom.
  • the method also needs to obtain the maximum linear speed of the boom, which may be set by the operator according to the actual working conditions, or may be set according to the characteristics of the cylinder swinging boom itself.
  • This step is obtained by the first acquisition module in the linear speed control device of the cylinder luffing boom.
  • Step S203 calculating a first output current of the cylinder proportional valve according to an elevation angle of the boom, a change trend of the elevation angle, a length of the boom, and a maximum line speed of the boom.
  • the linear speed of the boom is controlled by the proportional valve output current.
  • the proportional valve output current is related to the elevation angle of the boom, the change trend of the elevation angle, the length of the boom and the maximum linear speed of the boom, so that the line of the boom
  • the speed control is associated with the real-time operating conditions of the boom, which is obtained by the first calculation module in the linear speed control of the cylinder luffing boom.
  • Step S204 controlling the linear velocity of the boom by using the first output current. This step is obtained by a control module in the linear speed control device of the cylinder luffing boom.
  • the maximum opening of the proportional valve is associated with the length and angle of the boom, and the poleless dynamic adjustment is realized, taking into account the long arm working condition and the short arm working condition of the boom, and simultaneously ensuring the long arm and the short arm changing.
  • Radial boom distal head The movement of the weight is high-speed and stable, and the specific calculation control process is automatically completed by the first calculation module 30, and the control is fine, and the line speed of the cylinder luffing boom can be accurately and automatically controlled.
  • the first time is calculated according to the change trend of the elevation angle and the elevation angle of the boom, wherein the first time is completed under the rated maximum opening of the proportional valve of the cylinder
  • the second time is calculated according to the length of the boom and the maximum line speed, wherein the second time is the time required for the boom to complete the 1° variable
  • Calculating a first opening degree coefficient wherein the first opening degree coefficient is a maximum opening degree coefficient of the proportional valve of the oil cylinder
  • the change in the amount of oil required to complete the 1° sag of the boom under the rated maximum opening, ie the first time can be obtained by the following formula:
  • ⁇ 1 ⁇ +1 -0 ⁇ * 60/00
  • ⁇ 1 the first time
  • the unit is second
  • Q0 the oil flow under the rated maximum opening of the proportional valve of the cylinder
  • the unit is liter/min
  • Qj the cylinder
  • the oil filling amount of the cylinder is in liters.
  • ⁇ +1 is the oil filling amount of the cylinder when the cylinder elevation angle is 1 degree before the boom angle
  • the unit is liter, specifically, when hanging When the elevation angle of the arm is gradually increased, the oil filling amount of the cylinder is j+1 degrees.
  • the oil filling amount of the cylinder is j-1 degrees, wherein the factors causing the change of the elevation angle include two types. One is the change of the oil content of the rodless chamber of the luffing device, and the other is the change of the oil amount of the rod cavity of the luffing device.
  • the factors are different, the corresponding values of the +1 and the Q0 are grouped. Change, specifically, Q0 is different when the cylinder is controlled by the rod cavity control oil and the rodless cavity control, ( ⁇ and Q w are calculated when the cylinder is controlled by the rod cavity and the rodless cavity is controlled. Different methods.
  • the cylinder corresponds to different oil filling amount at different angles of the boom elevation angle, and the oil filling amount can The structural parameters of the cylinder luffing device and the elevation angle of the boom are determined. Therefore, when calculating the oil filling amount of the cylinder, it can be directly calculated according to the current angle during the control process, or the boom can be changed within 0°-90°.
  • the amount of oil required for the variable amplitude cylinder corresponding to each integer angle is calculated to form a corresponding table, and then the oil filling amount of the cylinder at the angle is obtained by looking up the table according to the current angle.
  • the factors causing the change of the elevation angle include two types, one is the change of the rodless oil amount of the luffing device, and the other is the change of the rod chamber oil amount of the luffing device.
  • Fig. 5 is a cylinder luffing crane according to the present invention.
  • j is the elevation angle of the boom, the unit is degree, HI is the vertical distance of the lower hinge point of the cylinder from the hinge point of the boom, L1 is the lower hinge point of the cylinder from the boom The horizontal distance of the rear hinge point, H2 is the vertical distance of the upper hinge point of the cylinder from the boom, and L2 is the distance of the upper hinge point of the cylinder on the boom from the rear hinge point of the boom, L0
  • R is the cylinder inner diameter of the cylinder
  • R0 is the outer diameter of the cylinder rod
  • L4 is the length of the cylinder cylinder
  • L5 is the thickness of the cylinder rod end of the cylinder, the above distance, inner diameter, outer diameter, Both length and thickness are in millimeters.
  • ⁇ 2 1* ⁇ /( ⁇ *180)
  • ⁇ 2 is the second time
  • the unit is seconds
  • v max is the maximum linear velocity of the boom
  • the unit is meters/second
  • L is the length of the boom
  • the unit is millimeter
  • is the maximum angular velocity corresponding to the maximum linear velocity.
  • the unit is radians/second.
  • ⁇ — ⁇ 1/ ⁇ 2
  • K max the first opening factor
  • 1 ⁇ ⁇ 1 ⁇ 1 is the first time in seconds
  • ⁇ 2 the second time in seconds.
  • the maximum opening factor of the cylinder proportional valve is calculated based on the maximum linear velocity of the boom, and the real-time length and angle of the boom are taken as important calculation parameters in the method, so that the boom
  • the line speed is related to the length and angle of the boom.
  • the method includes the following steps: Step S302, Detecting the change trend of the length, elevation angle and elevation angle of the boom, obtaining the maximum linear speed of the boom and the input of the cylinder shift handle. Step S304, determining the validity of the variable speed limit enable switch When the variable speed limit enable switch is enabled, step S308 is performed, otherwise steps S306 and S306 are performed, and the linear speed of the boom is controlled by the prior art solution.
  • the prior art solution is: the user's variable speed of the current working condition.
  • Step S308 calculating the first output power of the cylinder proportional valve by the length, the angle, the change trend of the elevation angle, and the maximum line speed.
  • the specific steps of the calculation are the same as the calculation method of calculating the first output current in the above, and no longer Repeatingly explaining step S310, calculating the second output electric second output current of the proportional valve by the cylinder luffing handle opening degree is obtained by the following method: ⁇ _ j — j ⁇ - T where ⁇ .
  • Step S312 comparing whether the first output current is greater than or equal to the second output current, and when the first output current is greater than or equal to the second output current, performing step S314, Otherwise, step S316 is performed.
  • Step S314 the linear velocity of the cylinder luffing boom is controlled by the second output current.
  • Step S316 the linear velocity of the cylinder luffing boom is controlled by the first output current.
  • the first change is judged.
  • the effectiveness of the speed limit enable switch when the variable speed limit enable switch is invalid, the existing control method is used to control the linear speed of the boom.
  • the purpose of the setting is to target the actual working conditions of the boom.
  • the length is fixed or the safe and accurate boom line speed has been determined.
  • the conventional control method is more straightforward.
  • it is not directly used.
  • the maximum opening degree coefficient of the proportional valve controls the linear speed of the boom, but compares the second output current corresponding to the proportional valve opening coefficient input by the user through the cylinder luffing handle with the calculated first output current. In the hour, the line speed of the former control boom is safer and more concise.
  • the linear speed control of the boom can be controlled by the operator, and can be automatically controlled, and the control method is more flexible.
  • the present invention achieves the following technical effects: It can effectively limit the maximum linear velocity of the weight of the boom during the variable amplitude operation under different arm lengths, and improve the handling and safety of the variable amplitude. Automatic control is possible when controlling the linear speed of the cylinder luffing boom.

Abstract

公开了一种油缸变幅吊臂及其线速度控制方法和装置。该油缸变幅吊臂的线速度控制方法包括:检测吊臂的仰角、仰角的变化趋势和所述吊臂的长度;获取吊臂的最大线速度;根据所述吊臂的仰角、仰角的变化趋势、吊臂的长度和吊臂的最大线速度计算油缸比例阀的第一输出电流;以及采用第一输出电流控制吊臂的线速度。该控制方法能够对油缸吊臂的线速度进行自动控制。

Description

油缸变幅吊臂及其线速度控制方法和装置 技术领域 本发明涉及油缸变幅吊臂领域, 具体而言, 涉及一种油缸变幅吊臂及其线速度控 制方法和装置。 背景技术 油缸变幅吊臂装置的基本工作原理是: 油缸支撑在吊臂转动铰点附近, 操纵者控 制油缸伸缩, 实现远端吊臂头部的上下变幅运动。 因为吊臂长度根据每次实际工况的 需求各不相同, 所以在同样的变幅伸缩量的控制下, 吊臂头部的重物表现出不同的线 速度。 目前, 变幅的线速度控制与吊臂的长度无关, 仅与油缸变幅手柄的开度成线性关 系。 为实施变幅最大线速度的控制, 操纵者对当前工况的变幅速度需求进行判断, 然 后通过显示屏或操作面板输入期望的变幅速度档位, 电子集成控制装置根据变幅档位 对变幅比例阀的最大开口进行限制, 从而实现对变幅的最大线速度的限制。 但是, 在 现有技术情况下, 变幅比例阀的最大开口无法同时兼顾长吊臂与短吊臂工况。 如果比 例阀的最大电流设置的偏大, 这样在长臂进行变幅操作时, 吊臂远端头部重物的运动 速度过快, 操纵性差, 有安全隐患; 设置偏小, 短臂时重物运动过慢, 工作效率低。 为解决以上矛盾, 目前的技术方案是操作人员人为地输入期望的变幅档位, 来调整变 幅最高线速度的限制。 但因为档位分段有限, 且没有和臂长关联, 存在控制不精细, 手动修改较为繁琐的缺点。 针对相关技术中油缸变幅吊臂的线速度无法自动控制的问题, 目前尚未提出有效 的解决方案。 发明内容 本发明的主要目的在于提供一种油缸变幅吊臂及其线速度控制方法和装置, 以解 决油缸变幅吊臂的线速度无法自动控制的问题。 为了实现上述目的, 根据本发明的一个方面, 提供了一种油缸变幅吊臂的线速度 控制方法。 根据本发明的油缸变幅吊臂的线速度控制方法包括: 检测吊臂的仰角、 仰角的变 化趋势和吊臂的长度; 获取吊臂的最大线速度; 根据吊臂的仰角、 仰角的变化趋势、 吊臂的长度和吊臂的最大线速度计算油缸比例阀的第一输出电流; 以及采用第一输出 电流控制吊臂的线速度。 进一步地, 计算油缸比例阀的第一输出电流包括: 根据吊臂的仰角和仰角的变化 趋势计算第一时间, 其中, 第一时间为油缸在比例阀的额定最大开口下完成吊臂 1°变 幅所需要的油量变化时间; 根据吊臂的长度和最大线速度计算第二时间, 其中, 第二 时间为吊臂完成 1°变幅所需的时间; 根据第一时间和第二时间计算第一开度系数, 其 中, 第一开度系数为油缸的比例阀的最大开度系数; 以及根据第一开度系数计算油缸 的比例阀的第一输出电流。 进一步地, 第一时间通过以下公式来得到:
ΔΤ1 =^+1-0^*60/00 其中, ΔΤ1 为第一时间, 单位为秒, Q0为油缸的比例阀的额定最大开口下的通 油量, 单位为升 /分, Qj为油缸在吊臂仰角为 j度时油缸的充油量, 单位为升, (^+1为 油缸在吊臂仰角为 j度前 1度时油缸的充油量, 单位为升, 其中, Q0在油缸为有杆腔 控制通油和无杆腔控制通油时取值不同, (^和 在油缸为有杆腔控制通油和无杆腔 控制通油时计算方法不同。 进一步地, 在油缸为无杆腔控制通油时, 采用以下公式计算油缸的充油量: j/ = arctg(Hl/Ll)
β = arctg(H2/L2)
=]'*π/1^0 + γ-β
L3 = V(L12 +H12) + (L22 +H22)-2*VL12 +H12 * L22 +H27*COS«
Figure imgf000004_0001
其中, (^为油缸无杆腔在吊臂的仰角为 j度时的充油量, 单位为升, j为吊臂的 仰角, 单位为度, HI 为油缸的下铰点距吊臂后铰点的垂直距离, L1 为油缸的下铰点 距吊臂的后铰点的水平距离, H2为油缸的上铰点距吊臂的垂直距离, L2为油缸的上 铰点在吊臂上的垂足距吊臂的后铰点的距离, L0为油缸全缩时的全长度, R为油缸的 缸筒内径, 以上距离、 长度和内径的单位均为毫米。 进一步地, 在油缸为有杆腔控制通油时, 采用以下公式计算油缸的充油量: r = arctg(Hl/Ll) β = arctg(H2/L2)
α = *πΙ\ 0 + γ- β
L3 = 7L12 +H12) + (L22 +H22)-2*VL12 +H12 * L22 +H22 *cos« Q' = 7T*(R2 -R02)*(J4-J5-J3 + J0)/106 其中, (^为油缸有杆腔在吊臂的仰角为 j度时的充油量, 单位均为升, j为吊臂 的仰角, 单位为度, HI 为油缸的下铰点距吊臂的后铰点的垂直距离, L1 为油缸的下 铰点距吊臂的后铰点的水平距离, H2为油缸的上铰点距吊臂的垂直距离, L2为油缸 的上铰点在吊臂上的垂足距吊臂的后铰点的距离, L0为油缸全缩时油缸的全长度, R 为油缸的缸筒内径, R0为油缸活塞杆外径, L4为油缸缸筒的长度, L5为油缸活塞缸 杆端的厚度, 以上距离、 内径、 外径、 长度和厚度的单位均为毫米。 进一步地, 第二时间通过以下公式来得到: 03/L
Figure imgf000005_0001
其中, ΔΤ2为第二时间, 单位为秒, vmax为吊臂的最大线速度, 单位为米 /秒, L 为吊臂的长度, 单位为毫米, β为最大线速度对应的最大角速度, 单位为弧度 /秒。 进一步地, 第一开度系数通过以下公式来得到:
Kmax =ATl/AT2 其中, Kmax为第一开度系数, 且1^ ≤1 ΔΤ1 为第一时间, 单位为秒, ΔΤ2 为第二时间, 单位为秒。 进一步地, 第一输出电流通过以下公式来得到: 其中, I。„fl为油缸的比例阀的第一输出电流, Kmax为第一开度系数, /max为油缸 的比例阀的最大控制电流, /mm为述油缸的比例阀的最小控制电流, 各电流的单位均 为毫安。 进一步地, 根据本发明的油缸变幅吊臂的线速度控制方法还包括: 获取油缸的第 二开度系数,其中,第二开度系数为用户通过油缸变幅手柄输入的比例阀的开度系数; 根据第二开度系数计算油缸的比例阀的第二输出电流; 比较第一输出电流与第二输出 电流; 以及当第一输出电流大于或等于第二输出电流时, 采用第二输出电流控制油缸 变幅吊臂的线速度。 进一步地, 第二输出电流通过以下方法来得到: τ _ j — j Λ - T
joystick V max min , min 其中, Ι。„ί2为油缸的比例阀的第二输出电流, 。ystldc为第二开度系数, /max为油 缸的比例阀的最大控制电流, /mm为油缸的比例阀的最小控制电流, 以上电流的单位 均为毫安。 为了实现上述目的, 根据本发明的一个方面, 提供了一种油缸变幅吊臂的线速度 控制装置。 根据本发明的油缸变幅吊臂的线速度控制装置包括: 检测模块, 用于检测吊臂的 仰角和仰角的变化趋势和吊臂的长度; 第一获取模块, 用于获取吊臂的最大线速度; 第一计算模块, 用于根据吊臂的仰角、 仰角的变化趋势、 吊臂的长度和吊臂的最大线 速度计算油缸比例阀的第一输出电流; 以及控制模块, 用于采用第一输出电流控制吊 臂的线速度。 进一步地, 第一计算模块包括: 第一计算子模块, 用于根据吊臂的仰角和仰角的 变化趋势计算第一时间, 其中, 第一时间为油缸在比例阀的额定最大开口下完成吊臂 1°变幅所需要的油量变化时间; 第二计算子模块, 用于根据吊臂的长度和最大线速度 计算第二时间, 其中, 第二时间为吊臂完成 1°变幅所需的时间; 第三计算子模块, 用 于根据第一时间和第二时间计算第一开度系数, 其中, 第一开度系数为油缸的比例阀 的最大开度系数; 以及第四计算子模块, 用于根据第一开度系数计算油缸的比例阀的 第一输出电流。 进一步地,根据本发明的油缸变幅吊臂的线速度控制装置还包括: 第二获取模块, 用于获取油缸的第二开度系数, 第二开度系数为用户通过油缸变幅手柄输入的比例阀 的开度系数; 第二计算模块, 用于根据第二开度系数计算油缸的比例阀的第二输出电 流; 以及比较模块, 用于比较第一输出电流与第二输出电流, 控制模块还用于: 在第 一输出电流大于或等于第二输出电流时, 采用第二输出电流控制油缸变幅吊臂的线速 度。 根据本发明的另一方面, 还提供了一种油缸变幅吊臂, 包括上文的油缸变幅吊臂 的线速度控制装置。 进一步地, 还包括变幅限速使能开关, 其中, 油缸变幅吊臂的线速度控制装置还 用于当变幅限速使能开关闭合时, 控制吊臂的线速度。 通过本发明, 采用包括以下步骤的油缸变幅吊臂的线速度控制方法: 检测吊臂的 仰角、 仰角的变化趋势和吊臂的长度; 获取吊臂的最大线速度; 根据吊臂的仰角、 仰 角的变化趋势、 吊臂的长度和吊臂的最大线速度计算油缸比例阀的第一输出电流; 以 及采用第一输出电流控制吊臂的线速度, 在控制吊臂线速度时实时检测吊臂的仰角、 仰角的变化趋势和吊臂的长度, 根据检测结果计算油缸比例阀的输出电流, 进而采用 该输出电流控制吊臂的线速度, 解决了油缸变幅吊臂的线速度无法自动控制的问题, 进而在控制油缸变幅吊臂的线速度时, 达到了能够自动控制的效果。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是根据本发明第一实施例的油缸变幅吊臂的控制流程图; 图 2是根据本发明第一实施例的油缸变幅吊臂的线速度控制装置的框图; 图 3是根据本发明第二实施例的油缸变幅吊臂的线速度控制装置的框图; 图 4是根据本发明第一实施例的油缸变幅吊臂的线速度控制方法的流程图; 图 5是根据本发明的油缸变幅吊臂的结构示意图; 以及 图 6是根据本发明第二实施例的油缸变幅吊臂的线速度控制方法的流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相 互组合。 下面将参考附图并结合实施例来详细说明本发明。 本发明提供一种油缸变幅吊臂, 对该油缸变幅吊臂的具体描述如下: 该油缸变幅吊臂包括一种油缸变幅吊臂的线速度控制装置。 优选地, 该油缸变幅吊臂还包括变幅限速使能开关, 其中, 油缸变幅吊臂的线速 度控制装置还用于当变幅限速使能开关闭合时, 控制吊臂的线速度。 在该实施例中, 油缸变幅吊臂增设了一种线速度控制装置, 优选地, 还增设了变 幅限速使能开关, 当变幅限速使能开关闭合时, 线速度控制装置对吊臂的线速度进行 控制; 当变幅限速使能开关断开时, 采用传统的控制方式控制吊臂的线速度。 图 1是根据本发明第一实施例的油缸变幅吊臂的控制流程图。 如图 1所示, 该控 制流程包括以下步骤: 步骤 S102, 判断变幅限速使能开关是否有效, 当变幅限速使能开关有效时, 执行 步骤 S104, 当设置变幅限速使能开关无效时, 执行步骤 S106。 步骤 S104, 油缸变幅吊臂的线速度控制装置控制吊臂的线速度。 步骤 S106, 用户使用变幅速度档位控制吊臂的线速度。 在该实施例中, 通过设置油缸变幅吊臂的线速度控制装置, 针对原有的吊臂线速 度控制方法的不足, 增设了另外的线速度控制装置。 为适用于不同用户的操作习惯, 吊臂的线速度仍可以采用变幅速度档位控制, 通过增设变幅限速使能开关切换两种控 制方式。 可选地, 该开关设置为常闭, 即油缸变幅吊臂默认采用线速度控制装置控制 线速度, 在变幅限速使能开关无效时, 即变幅限速使能开关断开时, 吊臂的线速度仍 然受人工选择控制, 即操纵者对当前工况的变幅速度需求进行判断, 然后通过显示屏 或操作面板输入期望的变幅速度档位, 根据变幅档位对变幅比例阀的最大电流进行限 制, 进而控制油缸变幅吊臂的最大线速度。 有关上文的油缸变幅吊臂的线速度控制装置, 具体阐述如下: 图 2是根据本发明第一实施例的油缸变幅吊臂的线速度控制装置的框图, 如图 2 所示, 该油缸变幅吊臂的线速度控制装置包括: 检测模块 10, 用于检测吊臂的仰角、 仰角的变化趋势和吊臂的长度, 可选地, 在油缸变幅吊臂上安装角度传感器和长度传 感器,检测模块 10通过检测各传感器的输出检测吊臂的仰角、仰角的变化趋势和吊臂 的长度; 第一获取模块 20, 用于获取吊臂的最大线速度, 出于安全考虑设定最大线速 度, 该最大线速度可以由操作人员根据实际工况设定, 也可以根据油缸变幅吊臂本身 特点设定; 第一计算模块 30, 用于根据吊臂的仰角、 仰角的变化趋势、 吊臂的长度和 吊臂的最大线速度计算油缸比例阀的第一输出电流; 以及控制模块 40, 用于采用第一 输出电流控制吊臂的线速度。 在该实施例中, 将吊臂的线速度与其长度和角度相关联, 能有效限制不同臂长情 况下吊臂在变幅作业过程中重物的线速度, 提高变幅的操控性和安全性。 首先通过设 置检测模块 10实时检测吊臂的长度和吊臂的仰角以及仰角变化趋势,然后通过设置第 一获取模块 20获取油缸变幅吊臂的最大线速度, 进一步, 将检测模块 10的检测结果 和第一获取模块 20获取的结果输送至第一计算模块 30, 计算出油缸比例阀的第一输 出电流, 最后控制模块 40采用此输出电流控制吊臂的线速度。 采用该实施例, 比例阀的最大开口与吊臂长度和角度相关联, 实现无极动态可调, 兼顾了吊臂的长臂工况与短臂工况, 同时自动保证了长臂和短臂变幅时吊臂远端头部 重物的运动高速平稳,具体的计算控制过程通过第一计算模块 30自动完成,控制精细, 能够对油缸变幅吊臂的线速度进行准确的自动控制。 其中, 第一计算模块 30包括: 第一计算子模块, 用于根据吊臂的仰角和仰角的变 化趋势计算第一时间, 该第一时间为油缸在比例阀的额定最大开口下完成吊臂 1°变幅 所需要的油量变化时间; 第二计算子模块, 用于根据吊臂的长度和最大线速度计算第 二时间, 该第二时间为吊臂完成 1°变幅所需的时间; 第三计算子模块, 用于根据上述 第一时间和上述第二时间计算第一开度系数, 其中, 第一开度系数为油缸的比例阀的 最大开度系数; 以及第四计算子模块, 用于根据第一开度系数计算油缸的比例阀的第 一输出电流。各计算子模块采用的计算公式在下文对应的计算方法中进行详细的描述。 图 3是根据本发明第二实施例的油缸变幅吊臂的线速度控制装置的框图, 如图 3 所示,本发明的油缸变幅吊臂的线速度控制装置包括图 2所示实施例的模块,还包括: 第二获取模块 50, 用于获取油缸的第二开度系数, 该第二开度系数为用户通过油缸变 幅手柄输入的比例阀的开度系数; 第二计算模块 60, 用于根据第二开度系数计算油缸 的比例阀的第二输出电流;以及比较模块 70,用于比较第一输出电流与第二输出电流, 其中, 控制模块 40还用于: 在第一输出电流大于或等于第二输出电流时, 采用第二 输出电流控制油缸变幅吊臂的线速度。 第二计算模块采用的计算公式在下文对应的计 算方法中进行详细的描述。 在该实施例中, 油缸变幅吊臂的线速度控制装置还用于获取用户通过油缸变幅手 柄输入的比例阀的开度系数, 并且将用户输入的比例阀的开度系数对应的比例阀输出 电流与计算出的比例阀输出电流相比较, 当前者小于后者时, 采用前者控制吊臂的线 速度。 采用该控制装置的油缸变幅吊臂, 不单纯根据臂长、 吊臂角度以及最大线速度 控制吊臂, 而且考虑了用户输入的比例阀的开度系数控制吊臂, 使得对吊臂的控制更 加灵活和安全。 油缸变幅吊臂的线速度控制方法具体阐述如下: 图 4是根据本发明第一实施例的油缸变幅吊臂的线速度控制方法的流程图。 如图 4所示, 该方法包括以下步骤: 步骤 S201 , 检测吊臂的仰角、 仰角的变化趋势和吊臂的长度。 为了将吊臂的线速度与吊臂的仰角、仰角的变化趋势以及吊臂的长度变化相关联, 本方法首先需要实时获取吊臂的当前仰角和当前长度以及仰角的变化趋势, 该步骤通 过油缸变幅吊臂的线速度控制装置中的检测模块得到。 步骤 S202, 获取吊臂的最大线速度。 为了得到油缸比例阀的最大开口系数, 本方法还需要获取吊臂的最大线速度, 该 最大线速度可以由操作人员根据实际工况设定, 也可以根据油缸变幅吊臂本身特点设 定, 该步骤通过油缸变幅吊臂的线速度控制装置中的第一获取模块得到。 步骤 S203 , 根据吊臂的仰角、 仰角的变化趋势、 吊臂的长度和吊臂的最大线速度 计算油缸比例阀的第一输出电流。 吊臂的线速度受比例阀输出电流的控制, 因此,将比例阀输出电流与吊臂的仰角、 仰角的变化趋势、 吊臂的长度和吊臂的最大线速度相关联, 使得吊臂的线速度的控制 与吊臂的实时工况得到关联, 该步骤通过油缸变幅吊臂的线速度控制装置中的第一计 算模块得到。 步骤 S204, 采用第一输出电流控制吊臂的线速度。 该步骤通过油缸变幅吊臂的线速度控制装置中的控制模块得到。 采用该实施例, 比例阀的最大开口与吊臂长度和角度相关联, 实现无极动态可调, 兼顾了吊臂的长臂工况与短臂工况, 同时自动保证了长臂和短臂变幅时吊臂远端头部 重物的运动高速平稳,具体的计算控制过程通过第一计算模块 30自动完成,控制精细, 能够对油缸变幅吊臂的线速度进行准确的自动控制。 在计算油缸比例阀的第一输出电流时, 可以采用如下的计算步骤: 根据吊臂的仰 角和仰角的变化趋势计算第一时间, 其中, 第一时间为油缸在比例阀的额定最大开口 下完成吊臂 1°变幅所需要的油量变化时间; 根据吊臂的长度和最大线速度计算第二时 间, 其中, 第二时间为吊臂完成 1°变幅所需的时间; 根据第一时间和第二时间计算第 一开度系数, 其中, 第一开度系数为油缸的比例阀的最大开度系数; 以及根据第一开 度系数计算油缸的比例阀的第一输出电 油缸在比例阀的额定最大开口下完成吊臂 1°变幅所需要的油量变化时间, 即第一 时间能够通过以下公式来得到:
ΔΤ1 = ^+1 -0^ * 60/00 其中, ΔΤ1 为第一时间, 单位为秒, Q0为油缸的比例阀的额定最大开口下的通 油量, 单位为升 /分, Qj为油缸在吊臂仰角为 j度时油缸的充油量, 单位为升, (^+1为 油缸在吊臂仰角为 j度前 1度时油缸的充油量, 单位为升, 具体地, 当吊臂仰角逐渐 增大时, 为 j+1度时油缸的充油量, 当吊臂仰角逐渐减小时, 为 j-1度时油缸 的充油量, 其中, 引起仰角的变化的因素包括两种, 一种是变幅装置的无杆腔油量变 化, 另一种是变幅装置的有杆腔油量变化, 不同因素时所述 所述 +1、所述 Q0的 对应取值要成组变化, 具体地, Q0在油缸为有杆腔控制通油和无杆腔控制通油时取值 不同, (^和 Q w在油缸为有杆腔控制通油和无杆腔控制通油时计算方法不同。 在计算油缸的充油量时, 油缸在吊臂仰角不同角度时对应不同的充油量, 该充油 量能够通过油缸变幅装置的结构参数以及吊臂的仰角确定, 因此, 在计算油缸的充油 量时,可以在控制过程中根据当前角度直接计算,也可以将吊臂在 0°— 90°内变幅时对 应每个整数角度的变幅油缸所需的充油量计算出来制成相应的表格, 然后根据当前角 度通过查表的方式获得该角度下油缸的充油量。 从实际工况出发, 引起仰角的变化的因素包括两种, 一种是变幅装置的无杆腔油 量变化, 另一种是变幅装置的有杆腔油量变化。 图 5是根据本发明的油缸变幅吊臂的 结构示意图, 如图 5所示, j为吊臂的仰角, 单位为度, HI为油缸的下铰点距吊臂后 铰点的垂直距离, L1 为油缸的下铰点距吊臂的后铰点的水平距离, H2为油缸的上铰 点距吊臂的垂直距离, L2为油缸的上铰点在吊臂上的垂足距吊臂的后铰点的距离, L0 为油缸全缩时的全长度, R为油缸的缸筒内径, R0为油缸活塞杆外径, L4为油缸缸 筒的长度, L5为油缸活塞缸杆端的厚度, 以上距离、 内径、 外径、 长度和厚度的单位 均为毫米。 如果引起仰角的变化的因素是变幅装置的无杆腔油量变化, 采用以下公式计算油 缸的充油量: j/ = arctg(Hl/Ll) β = arctg(H2/L2) =]'*π/1^0 + γ-β
L3 = 7L12 +H12) + (L22 +H22)-2*VL12 +H12 * L22 +H22 *cosa
Figure imgf000012_0001
其中, (^为油缸无杆腔在吊臂的仰角为 j度时的充油量, 单位为升。 同理, 在计 算吊臂仰角为 j度、 j-1度和 j+1度时油缸的充油量均采用以上公式, 相应将 j替换为 j-1和 j+l。 如果引起仰角的变化的因素是变幅装置的有杆腔油量变化, 采用以下公式计算油 缸的充油量:
Q' = 7T*(R2 -R02)*(J4-J5-J3 + J0)/106 其中, (^为油缸有杆腔在吊臂的仰角为 j度时的充油量, 单位均为升。 在本实施例中, 油缸充油量的计算利用了吊臂和油缸的几何关系, 采用不同的几 何关系计算公式相应不同, 此处不做过多列举。 根据吊臂的当前长度和获取的最大线速度, 能够计算得到吊臂处于当前长度时的 最大角速度, 进而计算吊臂完成 1°变幅所需的时间, 即第二时间如下:
ΔΤ2 = 1*^/(β*180) 其中, ΔΤ2为第二时间, 单位为秒, vmax为吊臂的最大线速度, 单位为米 /秒, L 为吊臂的长度, 单位为毫米, β为最大线速度对应的最大角速度, 单位为弧度 /秒。 根据第一时间和第二时间, 进一步计算油缸比例阀的第一开度系数如下:
Κ— = ΔΤ1/ΔΤ2 其中, Kmax为第一开度系数, 且1^ ≤1 ΔΤ1 为第一时间, 单位为秒, ΔΤ2 为第二时间, 单位为秒。 得到油缸比例阀的第一开度系数, 第一输出电流通过以下公式来得到: I = κ * 其中, I。„fl为油缸的比例阀的第一输出电流, Kmax为第一开度系数, /max为油缸 的比例阀的最大控制电流, /mm为述油缸的比例阀的最小控制电流, 各电流的单位均 为毫安。 在该实施例中, 基于吊臂的最大线速度计算油缸比例阀的最大开度系数, 并且在 方法中将吊臂的实时长度和角度作为重要计算参数,使得吊臂的线速度与吊臂的长度、 角度相关联。 在控制吊臂的线速度时, 考虑实际工况中吊臂的长度和角度, 提高了变 幅的操控性和安全性, 能够对油缸变幅吊臂的线速度进行准确的自动控制。 图 6是根据本发明第二实施例的油缸变幅吊臂的线速度控制方法的流程图。 如图 6所示, 该方法包括以下步骤: 步骤 S302, 检测吊臂的长度、 仰角、 仰角的变化趋势, 获取吊臂的最大线速度以 及油缸变幅手柄开度输入。 步骤 S304, 判断变幅限速使能开关的有效性, 当变幅限速使能开关有效时, 执行 步骤 S308, 否则执行步骤 S306 步骤 S306, 通过现有技术方案控制吊臂的线速度。 该现有技术方案为: 用户对当前工况的变幅速度需求进行判断, 然后通过显示屏 或操作面板输入期望的变幅速度档位, 根据变幅档位对变幅比例阀的最大开口进行限 制, 从而实现对变幅的最大线速度的限制。 步骤 S308, 通过吊臂的长度、 角度、 仰角的变化趋势和最大线速度计算油缸比例 阀的第一输出电 该计算的具体步骤与上文中计算第一输出电流的计算方法相同, 此处不再重复说 明 步骤 S310, 通过油缸变幅手柄开度输入计算比例阀的第二输出电 第二输出电流通过以下方法来得到: τ _ j — j Λ - T 其中, Ι。„ί2为利用油 to变幅手柄开度输 Λ计算所得的 ½例阀的输出电流, Κ 为 油缸变幅手柄开度输入, J 为油缸的比例阀的最大控制电流, /mm为油缸的比例阀 的最小控制电流, 以上电流的单位均为毫安。 步骤 S312, 比较第一输出电流是否大于或等于第二输出电流, 在第一输出电流大 于或等于第二输出电流时, 执行步骤 S314, 否则执行步骤 S316。 步骤 S314, 采用第二输出电流控制油缸变幅吊臂的线速度。 步骤 S316, 采用第一输出电流控制油缸变幅吊臂的线速度。 在该实施例中, 首先判断变幅限速使能开关的有效性, 当变幅限速使能开关无效 时,采用现有的控制方法控制吊臂的线速度,这样设置的目的是针对某些实际工况中, 吊臂的长度固定或者已经确定安全准确的吊臂线速度, 在此情况下, 采用传统的控制 方法更直接。 同时, 在该实施例中, 不直接采用比例阀的最大开度系数控制吊臂的线速度, 而 是将用户通过油缸变幅手柄输入的比例阀开度系数对应的第二输出电流与计算所得的 第一输出电流相比较, 当前者较小时, 采用前者控制吊臂的线速度更安全, 更简洁, 因此, 通过增加比较环节, 使得吊臂的线速度控制既能通过操作员来控制, 又能自动 控制, 控制方法更加灵活。 从以上的描述中, 可以看出, 本发明实现了如下技术效果: 能有效限制不同臂长 情况下吊臂在变幅作业过程中重物的最高线速度, 提高变幅的操控性和安全性, 在控 制油缸变幅吊臂的线速度时, 能够进行自动控制。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书 一种油缸变幅吊臂的线速度控制方法, 其特征在于包括:
检测所述吊臂的仰角、 所述仰角的变化趋势和所述吊臂的长度; 获取所述吊臂的最大线速度;
根据所述吊臂的仰角、 所述仰角的变化趋势、 所述吊臂的长度和所述吊臂 的最大线速度计算所述油缸比例阀的第一输出电流; 以及
采用所述第一输出电流控制所述吊臂的线速度。 根据权利要求 1所述的方法, 其特征在于, 计算所述第一输出电流包括:
根据所述吊臂的仰角和所述仰角的变化趋势计算第一时间, 其中, 所述第 一时间为所述油缸在比例阀的额定最大开口下完成所述吊臂 1°变幅所需要的 油量变化时间;
根据所述吊臂的长度和最大线速度计算第二时间, 其中, 所述第二时间为 所述吊臂完成 1°变幅所需的时间;
根据所述第一时间和所述第二时间计算第一开度系数, 其中, 所述第一开 度系数为所述油缸的比例阀的最大开度系数; 以及
根据所述第一开度系数计算所述油缸的比例阀的第一输出电流。 根据权利要求 2所述的方法,其特征在于,所述第一时间通过以下公式来得到: ΔΤ1 = ^+1 - 0^ * 60/00 其中, ΔΤ 为所述第一时间, 单位为秒, Q0为所述油缸的比例阀的额定 最大开口下的通油量, 单位为升 /分, Qj为所述油缸在所述吊臂仰角为 j度时所 述油缸的充油量, 单位为升, 为所述油缸在所述吊臂仰角为 j度前 1度时 所述油缸的充油量, 单位为升, 其中, Q0在所述油缸为有杆腔控制通油和无杆 腔控制通油时取值不同, (^和 在所述油缸为所述有杆腔控制通油和所述无 杆腔控制通油时计算方法不同。
4. 根据权利要求 3所述的方法, 其特征在于, 在所述油缸为所述无杆腔控制通油 时, 采用以下公式计算所述油缸的充油量: j/ = arctg(Hl/Ll) β = arctg(H2/L2)
=]'*π/1^0 + γ-β
L3 = V(L12 +H12) + (L22 +H22)-2*VL12 +H12 * L22 +H22 *cos«
Figure imgf000017_0001
其中, (^为所述油缸无杆腔在所述吊臂的仰角为 j度时的充油量, 单位为 升, j为所述吊臂的仰角, 单位为度, HI为所述油缸的下铰点距所述吊臂的后 铰点的垂直距离, L1 为所述油缸的下铰点距所述吊臂的后铰点的水平距离, H2为所述油缸的上铰点距所述吊臂的垂直距离, L2为所述油缸的上铰点在所 述吊臂上的垂足距所述吊臂的后铰点的距离, L0为所述油缸全缩时所述油缸的 全长度, R为所述油缸的缸筒内径, 所述各距离、 所述长度和所述内径的单位 均为毫米。
5. 根据权利要求 3所述的方法, 其特征在于, 在所述油缸为有杆腔控制通油时, 采用以下公式计算所述油缸的充油量:
r = arctg(Hl/Ll) β = arctg(H2/L2)
L3 = V(L12 +H12) + (L22 +H22)-2*VL12 +H12 * L22 +H22 *cos« Q' = 7T*(R2 -R02)*(J4-J5-J3 + J0)/106 其中, (^为所述油缸有杆腔在所述吊臂的仰角为 j度时的充油量, 单位为 升, j为所述吊臂的仰角, 单位为度, HI为所述油缸的下铰点距所述吊臂的后 铰点的垂直距离, L1 为所述油缸的下铰点距所述吊臂的后铰点的水平距离, H2为所述油缸的上铰点距所述吊臂的垂直距离, L2为所述油缸的上铰点在所 述吊臂上的垂足距所述吊臂的后铰点的距离, L0为所述油缸全缩时所述油缸的 全长度, R为所述油缸的缸筒内径, R0为所述油缸活塞杆外径, L4为所述油 缸缸筒的长度, L5为所述油缸活塞缸杆端的厚度, 所述各距离、 所述内径、 所 述外径、 所述各长度和所述厚度的单位均为毫米。
6. 根据权利要求 2所述的方法,其特征在于,所述第二时间通过以下公式来得到: 03 /L
ΔΤ2 = 1 * ^ (& * 180) 其中, ΔΤ2为所述第二时间, 单位为秒, vmax为所述吊臂的最大线速度, 单位为米 /秒, L为所述吊臂的长度, 单位为毫米, "为所述最大线速度对应的 最大角速度, 单位为弧度 /秒。
7. 根据权利要求 2所述的方法, 其特征在于, 所述第一开度系数通过以下公式来 得到:
Kmax = ATl/AT2 其中, Kmax为所述第一开度系数, 且1^ ≤1 ΔΤ1 为所述第一时间, 单 位为秒, ΔΤ2为所述第二时间, 单位为秒。
8. 根据权利要求 2所述的方法, 其特征在于, 所述第一输出电流通过以下公式来 得到:
I = κ * ( T ― J \ _|_ r
max V max min / min
其中, 为所述油缸的比例阀的第一输出电流, Kmax为所述第一开度系 数, /max为所述油缸的比例阀的最大控制电流, /mm为所述油缸的比例阀的最 小控制电流, 各电流的单位均为毫安。
9. 根据权利要求 1所述的方法, 其特征在于, 还包括:
获取所述油缸的第二开度系数, 其中, 所述第二开度系数为用户通过油缸 变幅手柄输入的比例阀的开度系数;
根据所述第二开度系数计算所述油缸的比例阀的第二输出电流; 比较所述第一输出电流与所述第二输出电流; 以及
当所述第一输出电流大于或等于所述第二输出电流时, 采用所述第二输出 电流控制所述油缸变幅吊臂的线速度。
10. 根据权利要求 9所述的方法, 其特征在于, 所述第二输出电流通过以下方法来 得到:
τ _ j — j Λ - T
joystick V max min , min 其中, 所述 ι。„ί2为所述油缸的比例阀的第二输出电流, 所述 。ystldc为第二 开度系数, 所述 /max为所述油缸的比例阀的最大控制电流, 所述 /mm为所述油 缸的比例阀的最小控制电流, 所述各电流的单位均为毫安。
11. 一种油缸变幅吊臂的线速度控制装置, 其特征在于包括:
检测模块, 用于检测所述吊臂的仰角和所述仰角的变化趋势和所述吊臂的 长度;
第一获取模块, 用于获取所述吊臂的最大线速度;
第一计算模块, 用于根据所述吊臂的仰角、 所述仰角的变化趋势、 所述吊 臂的长度和所述吊臂的最大线速度计算所述油缸比例阀的第一输出电流; 以及 控制模块, 用于采用所述第一输出电流控制所述吊臂的线速度。
12. 根据权利要求 11所述的装置, 其特征在于, 所述第一计算模块包括:
第一计算子模块, 用于根据所述吊臂的仰角和所述仰角的变化趋势计算第 一时间, 其中, 所述第一时间为所述油缸在比例阀的额定最大开口下完成所述 吊臂 1°变幅所需要的油量变化时间;
第二计算子模块, 用于根据所述吊臂的长度和最大线速度计算第二时间, 其中, 所述第二时间为所述吊臂完成 1°变幅所需的时间;
第三计算子模块, 用于根据所述第一时间和所述第二时间计算第一开度系 数, 其中, 所述第一开度系数为所述油缸的比例阀的最大开度系数; 以及 第四计算子模块, 用于根据所述第一开度系数计算所述油缸的比例阀的第 一输出电流。
13. 根据权利要求 11所述的装置, 其特征在于,
所述装置还包括:
第二获取模块, 用于获取所述油缸的第二开度系数, 其中, 所述第二开度 系数为用户通过油缸变幅手柄输入的比例阀的开度系数;
第二计算模块, 用于根据所述第二开度系数计算所述油缸的比例阀的第二 输出电流; 以及
比较模块, 用于比较所述第一输出电流与所述第二输出电流, 所述控制模块还用于在所述第一输出电流大于或等于所述第二输出电流 时, 采用所述第二输出电流控制所述油缸变幅吊臂的线速度。
14. 一种油缸变幅吊臂, 包括权利要求 11至 13任一项所述的油缸变幅吊臂的线速 度控制装置。
15. 根据权利要求 14所述的油缸变幅吊臂, 其特征在于, 还包括: 变幅限速使能开 关, 其中, 所述油缸变幅吊臂的线速度控制装置还用于当所述变幅限速使能开 关闭合时, 控制所述吊臂的线速度。
PCT/CN2011/080500 2011-09-30 2011-09-30 油缸变幅吊臂及其线速度控制方法和装置 WO2013044520A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080500 WO2013044520A1 (zh) 2011-09-30 2011-09-30 油缸变幅吊臂及其线速度控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080500 WO2013044520A1 (zh) 2011-09-30 2011-09-30 油缸变幅吊臂及其线速度控制方法和装置

Publications (1)

Publication Number Publication Date
WO2013044520A1 true WO2013044520A1 (zh) 2013-04-04

Family

ID=47994184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080500 WO2013044520A1 (zh) 2011-09-30 2011-09-30 油缸变幅吊臂及其线速度控制方法和装置

Country Status (1)

Country Link
WO (1) WO2013044520A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105329788A (zh) * 2015-12-10 2016-02-17 青岛海西重机有限责任公司 臂架式起重机匀速变幅控制方法
US11197905B2 (en) * 2016-07-18 2021-12-14 Tissuegen, Inc. Methods and compositions for maintaining the conformation and structural integrity of biomolecules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191394A (ja) * 1986-02-17 1987-08-21 株式会社小松製作所 クレ−ンのブ−ム起伏移動速度制御装置
JPH10101299A (ja) * 1996-09-30 1998-04-21 Tadano Ltd ブーム式作業車のブーム制御装置
JPH10236768A (ja) * 1997-02-25 1998-09-08 Tadano Ltd 作業機の制御装置
US6434437B1 (en) * 1999-12-02 2002-08-13 Caterpillar Inc. Boom extension and boom angle control for a machine
JP2003321199A (ja) * 2002-05-01 2003-11-11 Aichi Corp 高所作業車のブーム作動速度調整装置
CN201358142Y (zh) * 2009-02-25 2009-12-09 中国船舶重工集团公司第七一三研究所 伸缩臂起重机自动控制系统
CN101746679A (zh) * 2009-12-31 2010-06-23 三一集团有限公司 集装箱正面吊臂架控制系统及方法以及集装箱正面吊
CN102001587A (zh) * 2010-11-17 2011-04-06 武汉船用机械有限责任公司 一种船用回转起重机吊臂搁置的自动控制方法及控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191394A (ja) * 1986-02-17 1987-08-21 株式会社小松製作所 クレ−ンのブ−ム起伏移動速度制御装置
JPH10101299A (ja) * 1996-09-30 1998-04-21 Tadano Ltd ブーム式作業車のブーム制御装置
JPH10236768A (ja) * 1997-02-25 1998-09-08 Tadano Ltd 作業機の制御装置
US6434437B1 (en) * 1999-12-02 2002-08-13 Caterpillar Inc. Boom extension and boom angle control for a machine
JP2003321199A (ja) * 2002-05-01 2003-11-11 Aichi Corp 高所作業車のブーム作動速度調整装置
CN201358142Y (zh) * 2009-02-25 2009-12-09 中国船舶重工集团公司第七一三研究所 伸缩臂起重机自动控制系统
CN101746679A (zh) * 2009-12-31 2010-06-23 三一集团有限公司 集装箱正面吊臂架控制系统及方法以及集装箱正面吊
CN102001587A (zh) * 2010-11-17 2011-04-06 武汉船用机械有限责任公司 一种船用回转起重机吊臂搁置的自动控制方法及控制装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105329788A (zh) * 2015-12-10 2016-02-17 青岛海西重机有限责任公司 臂架式起重机匀速变幅控制方法
CN105329788B (zh) * 2015-12-10 2017-05-17 青岛海西重机有限责任公司 臂架式起重机匀速变幅控制方法
US11197905B2 (en) * 2016-07-18 2021-12-14 Tissuegen, Inc. Methods and compositions for maintaining the conformation and structural integrity of biomolecules

Similar Documents

Publication Publication Date Title
CN107084675A (zh) 一种螺旋焊管管径在线自动测量装置及方法
US11382285B2 (en) Wireless interconnection control system and method for improving sprinkler irrigation uniformity of hose reel irrigator with electric drive
CN103334264B (zh) 一种可自动调整控制面板角度的洗衣机及其调整方法
CN102566598B (zh) 一种工程机械及其控制方法、控制系统
US20120038279A1 (en) Light adjustable table lamp and the light auto adjust method thereof
CN106044376B (zh) 一种自动控制滞后角的焊丝层绕机
CN103207665B (zh) 一种屏幕位置调整方法及装置、电子设备
WO2013044520A1 (zh) 油缸变幅吊臂及其线速度控制方法和装置
CN104883560B (zh) 双目立体视觉装置及其调节方法、装置和显示装置
CN110528830A (zh) 墙面处理机器人及其精度对位装置和精度校正方法
CN105626495B (zh) 一种泵送设备控制方法、控制装置及混凝土泵送设备
CN107804760B (zh) 一种绞盘轴线可自动调整角度的控制方法及装置
CN106603933A (zh) 一种曝光方法和装置
EP4238924A1 (en) Method and system for controlling a rotation speed of a turntable and aerial work platform
CN207418222U (zh) 一种臂架式高空作业平台的智能调平系统
CN103938670B (zh) 挖掘机控制装置和方法
US20120287160A1 (en) Display device and rotation method of same
JP6113600B2 (ja) フィラメントワインディング方法及びフィラメントワインディング装置
CN109403327A (zh) 一种定型化滑槽系统及其施工方法
RU2010117394A (ru) Способ, устройство и компьютерная программа для регулировки работы гидравлической стрелы
CN110509292A (zh) 一种公共场所用移动式普法机器人
CN207430964U (zh) 一种用于狭小空间导体弯段矫形的工装
CN211599971U (zh) 一种可多角度调节的监控探头
CN104679019A (zh) 一种球形云台及其控制装置
CN107762940A (zh) 基于角度传感器的风扇头转动角度调整结构及调整方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872911

Country of ref document: EP

Kind code of ref document: A1