WO2013044491A1 - 视频接口系统的驱动方法 - Google Patents

视频接口系统的驱动方法 Download PDF

Info

Publication number
WO2013044491A1
WO2013044491A1 PCT/CN2011/080394 CN2011080394W WO2013044491A1 WO 2013044491 A1 WO2013044491 A1 WO 2013044491A1 CN 2011080394 W CN2011080394 W CN 2011080394W WO 2013044491 A1 WO2013044491 A1 WO 2013044491A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
signal
driving method
encoded signal
display
Prior art date
Application number
PCT/CN2011/080394
Other languages
English (en)
French (fr)
Inventor
蔡熊光
Original Assignee
Tsai Hsiung-Kuang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai Hsiung-Kuang filed Critical Tsai Hsiung-Kuang
Priority to US14/348,592 priority Critical patent/US10438558B2/en
Priority to JP2014532210A priority patent/JP6033310B2/ja
Priority to CN201180073599.6A priority patent/CN103890644B/zh
Priority to EP11873338.5A priority patent/EP2762954A4/en
Priority to PCT/CN2011/080394 priority patent/WO2013044491A1/zh
Priority to KR1020147010751A priority patent/KR101641805B1/ko
Publication of WO2013044491A1 publication Critical patent/WO2013044491A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present invention relates to a driving method, and more particularly to a driving method of a video interface system. Background technique
  • touch panels have been widely used in general consumer electronic products, such as mobile communication devices, digital cameras, digital music players (MP3), personal digital assistants (PDAs), satellite navigation devices (GPS), A hand-held PC, even a brand new Ultra Mobile PC (UMPC) and a television, etc., all of which are combined into a display screen to become a touch display device.
  • the touch display device of the known book directly sets a touch panel on the display panel in the display module, but this not only increases the weight and size of the product, but also increases the cost of the touch module by additionally adding the touch panel. increase.
  • NFC Near Field Communication
  • NFC Near Field Communication
  • the present invention can be implemented by the following technical solutions.
  • the invention discloses a driving method of a video interface system.
  • the video interface system includes an operating device and a matrix display device.
  • the matrix display device includes a display surface and a matrix substrate.
  • the matrix substrate has a substrate and a matrix.
  • the matrix is disposed on one side of the substrate, and the display surface is located on the substrate. side.
  • Drive The method includes: transmitting, by the matrix display device, a plurality of encoded signals and a plurality of display signals on the matrix substrate; and receiving at least one of the encoded signals by operating the operating device on the display surface.
  • the encoded signal is capacitively coupled from the matrix substrate to the operating device.
  • the encoded signal includes touch information, instruction information, identification information, transaction information, or file information.
  • the encoded signal is encoded in frequency, or amplitude, or phase, or time difference.
  • the encoded signals are transmitted to a plurality of row electrodes or a plurality of column electrodes of the matrix substrate, respectively.
  • the coded signals may be respectively transmitted to the row electrodes or the column electrodes of the matrix substrate sequentially or simultaneously.
  • a portion of the column electrodes simultaneously transmit the same encoded signal.
  • the encoded signal transmitted by the row electrode and the encoded signal transmitted by the column electrode are different encoding systems.
  • the encoded signal is interspersed between the display signals.
  • the encoded signal is transmitted during a neutral time at which the display signal is transmitted.
  • the neutral time is, for example, within an image frame or between the image frames.
  • each encoded signal has a start code or an end code.
  • the encoded signal is transmitted by triggering a transfer mode switch to initiate the active matrix display device into a transfer mode.
  • the driving method further includes: obtaining a touch information according to the encoded signal; and actuating according to the touch information by the matrix display device.
  • the present invention transmits a plurality of encoded signals and a plurality of display signals on a matrix substrate through a matrix display device, wherein the display signals are used to display a picture on the matrix substrate, and the encoded signals can be used to make the matrix substrate reach the touch function and the data. Transmission or other functions (such as user identification).
  • the encoded signal can be coupled from the matrix substrate to the operating device, and then the encoded signal can be processed to obtain touch information, command information, identification information, transaction information or file information.
  • the video interface system of the present invention can be directly applied to a matrix substrate, such as a thin film transistor substrate of a liquid crystal display panel, an organic light emitting diode panel, an LED panel, an electrophoretic display panel or a MEMS display panel, etc., thereby making the product thin and light. And reduce costs to enhance product competitiveness.
  • the present invention couples the encoded signal to the external operating device instead of directly reading the encoded signal from the matrix substrate, so that no change in layout is required on the matrix substrate, for example, it is not necessary to add a capacitive sensing component to the display panel. Detection of changes in external capacitance values, thereby reducing costs and shortening the process.
  • FIG. 1 is a block diagram of a video interface system according to a preferred embodiment of the present invention
  • FIG. 2 is a side view of a matrix display device of a video interface system according to a preferred embodiment of the present invention
  • FIG. 3 is a schematic diagram of a matrix substrate as a thin film transistor substrate according to a preferred embodiment of the present invention
  • FIG. 4 is a flow chart of a driving method of a video interface system according to a preferred embodiment of the present invention
  • FIG. 5A to FIG. Schematic diagram of different aspects of the encoded signal used by the driving method of the preferred embodiment of the invention
  • FIG. 12 is a schematic diagram of the appearance of a matrix display device of a video interface system according to a preferred embodiment of the present invention.
  • Si SM row electrode
  • FIG. 1 is the implementation A block diagram of a video interface system 1 of an example.
  • the video interface system 1 includes an operating device 11 and a matrix display device 12 coupled to each other, for example, by capacitive coupling. Additionally, the output of the operating device 11 can be connected to other units of the system by wire, wireless, electrical or optical means.
  • the matrix display device 12 includes a display surface 121 and a matrix substrate 122.
  • the matrix substrate 122 includes a substrate 123 and a matrix 124.
  • the matrix 124 is disposed on one side of the substrate 123, and the display surface 121 is located on the other side of the substrate 123.
  • the matrix substrate 122 is inverted, that is, the substrate 123 of the matrix substrate 122 can be used as the display surface 121 closer to the user than the filter substrate.
  • the display surface 121 refers to a surface of the matrix display device 12 closest to the user when the user views the image displayed by the matrix display device 12.
  • the matrix display device 12 may further include a protective glass 125 disposed on a side of the substrate 123 relative to the matrix 124, and the display surface 121 is a surface of the protective glass 125 adjacent to the user.
  • other members such as a polarizing plate may be included between the substrate 123 and the cover glass 125.
  • the matrix substrate 122 refers to a substrate or a panel having a pixel matrix for displaying images, such as a thin film transistor substrate of a liquid crystal display panel, an organic light emitting diode panel, an inorganic light emitting diode panel, an electrophoretic display matrix panel, or a MEMS display panel. and many more.
  • the matrix 124 may include a plurality of row electrodes, a plurality of column electrodes, and a plurality of pixel electrodes, the row electrodes being interleaved with the column electrodes.
  • the matrix 124 may be an active matrix or a passive matrix.
  • the matrix 124 takes an active matrix as an example, and may further include a plurality of transistors respectively associated with the row electrodes and the The electrode and the pixel electrode are electrically connected.
  • FIG. 3 is a schematic view showing a matrix substrate of the present embodiment as a thin film transistor substrate.
  • Matrix 124 can include multiple row electrodes The row electrodes Si SM and the column electrodes 0 1 ⁇ are staggered and substantially perpendicular or at an angle to each other.
  • the matrix 124 may further include a plurality of transistors Tn TTM electrically connected to the column electrodes Di to D N and the pixel electrodes En ETM of the row electrodes Si S ⁇ , respectively.
  • the row electrode Si SM is a so-called scanning line
  • the column electrode ⁇ is a so-called data line.
  • a driving module may be disposed on the substrate 123, including a data driving circuit, a scanning driving circuit, a timing control circuit (not shown), and a gamma correction circuit (not shown), and the liquid crystal display panel may be driven by driving the driving module.
  • Display image Since the drive module drives the image as a well-known technology, it will not be described here.
  • the matrix substrate 122 of this aspect is merely illustrative and is not intended to limit the present invention.
  • FIG. 4 is a schematic flowchart of a driving method of a video interface system 1 according to a preferred embodiment of the present invention.
  • the driving method includes steps S01 and S02.
  • steps S01 and S02. please refer to FIG. 1 to FIG. 4 to illustrate the video interface system 1 Drive method.
  • Step S01 transmitting a plurality of encoded signals and a plurality of display signals on the matrix substrate 122 by the matrix display device 12.
  • the display signal is used to cause the matrix display device 12 to display an image.
  • the display signal includes, for example, a scan signal and/or a data signal, which can be transmitted through the row electrode Si SM and the column electrodes ⁇ to D N , respectively .
  • the coded signal can be transmitted to a separate electrode of the matrix substrate 122 (ie, an electrode not related to display), or a plurality of row electrodes or a plurality of column electrodes Di to D N , or a row electrode Si SM and column electrodes D 1 to D N .
  • the encoded signal may be encoded, for example, in frequency, or amplitude, or phase, or code division multiple access (CDMA), or time difference.
  • the encoded signal may include touch information, command information, identification information, transaction information, or archive information, or other information. That is, the function to be established between the operating device 11 and the matrix display device 12 is used to encode the relevant information into the encoded signal in a specific manner for the purpose of the function.
  • the touch information can make the operating device 11 and the matrix display device 12 reach the touch. Control function; the identification information allows the operating device 11 and the matrix display device 12 to reach a user identification function, for example, can be applied to an access card; the transaction information can be used for the transaction behavior between the operating device 11 and the matrix display device 12, and the behavior comes from the respective Both the operating device 11 and the matrix display device 12 are provided; the file information can be used to transfer a file, such as a picture, music, etc., from the matrix display device 12 to the operating device 11, as will be described in the following.
  • the encoded signals may be sequentially transmitted to the row electrodes or the column electrodes of the matrix substrate 122, or may be simultaneously transferred to the row electrodes or the column electrodes of the matrix substrate 122.
  • the coded signal transmitted by the row electrode and the coded signal transmitted by the column electrode may be different coding systems in order to identify the coded signal transmitted by the row electrode and the column electrode. For example, with frequency modulation, amplitude modulation, phase modulation or time modulation or code division multi-task modulation, for example, the time position of the coded signal transmitted by the row electrode and the column electrode is different, or the line electrode is at a frequency. Encoding, while the column electrodes are encoded in amplitude.
  • the column electrode or a part of the row electrode can transmit the same coded signal at the same time, that is, the same coded signal can be transmitted by a plurality of column electrodes or row electrodes, which can be applied to the row electrode or the column electrode. The case where the electrode width is small.
  • the encoded signal may be between the display screens (such as the time occupying a plurality of display frames), or the blanking time of transmitting the display signals, or between each display signal and the display signal. Interspersed with transmission. Among them, the neutral time is between the two image frames.
  • the tolerance for the display screen due to the transmission of the encoded signal depends on its application. For example, when the encoded signal is used for touch purposes, the flickering problem of the screen must be considered. Therefore, it is necessary to use the neutral time or the signal for each display.
  • Inter-transmission while for short-term communication purposes, you can pause the display and only transmit the encoded signal; the encoded signal can also Directly superimposed on the display signal at a higher frequency to form a carrier form. Because the frequency is higher than the display signal, the effect on the display quality can be reduced.
  • the coded signal can also adopt a signal without a DC component to display the pair. The impact of quality is minimized.
  • Step S02 receiving at least one of the encoded signals by operating the device 1 1 on the display surface 121.
  • the encoded signal can be coupled from the matrix substrate 122 to the operating device 1 1 by capacitive coupling, for example.
  • the operation device 1 1 is, for example, a stylus pen, a hand of a human body, or a receiving device such as a card reader or the like.
  • the operating device 11 When the operating device 11 is operated on the display surface 121 (the operating device 11 may or may not touch the display surface 121 as long as the distance is close enough), it is closer to the row electrode or the column electrode of the operating device 1 1
  • the transmitted encoded signal can be capacitively coupled from the matrix substrate 122 to the operating device 11.
  • the encoded signal can be processed by the operating device 1 to obtain the final information, and the final information can be transmitted to other system devices by wire or wirelessly for reaction.
  • the encoded signal can be directly transmitted back to the matrix display device 12, and the final information is obtained by the processing of the matrix display device 12, and then reacted to the final information by the matrix display device 12 or transmitted to other system devices.
  • the encoded signal can be processed by the relay processing of the operating device 1, such as amplification processing, filtering processing, etc., and then transmitted to other system devices or matrix display device 12 for processing to obtain final information.
  • At least another unit may be added to the video interface system 1 (for example, the unit is interposed between the operating device 11 and the matrix display device 12) for processing the output of the operating device 11 and The results are transmitted to other system devices or matrix display devices 12, and the units can also participate in the processing of the encoded signals.
  • the driving method further includes: obtaining a message according to the encoded signal, including touch information, instruction information, identification information, transaction information, or file information, or other information. If the encoded signal contains the touch information, after the encoded signal is processed, the touch information can be obtained, for example, so that the matrix display device 12 can be activated according to the touch information.
  • 5A is a schematic view in a sequential manner transmitting the encoded signals, wherein two lines showing electrodes (S m) and the adjacent neighboring two electrodes ( ⁇ ,) signal.
  • the row electrodes Si SM respectively transmit the scanning signals SS to sequentially turn on the transistors of each column, and when each column of transistors is turned on, the column electrodes ⁇ respectively transmit the encoded signal MS and the display signal DS.
  • FIG. 5A when one row of electrodes transmits their scanning signals, only one column of electrodes transmits an encoded signal MS having a different level from the display signal DS.
  • the row electrode S M - * Incoming scan signal SS which time, only the column electrodes and the transmitting display signals to the display signal DS DS different level of encoded signal MS N - 1; S M row electrode transfer Its During the time range of the scanning signal SS, only the column electrodes transmit the display signal DS and the encoded signal MS N which is different from the display signal DS.
  • FIG. 5A shows an example of a row of electrodes corresponding to a column of electrodes.
  • the width of the signal is not limited by the method, and the signal width can be appropriately defined.
  • the coded signal (MS N - MS N ) in FIG. 5A can be regarded as transmitting (1, 1) or (0, 1) or (1, 0) or (0, 0) in the order in which the row electrodes are turned on. ) signal. If the effect of reducing the quality of the display is considered, the signal shown in FIG.
  • this sequential scanning is a time-division multi-tasking multi-tasking (TDM) communication architecture, which means that at a certain time, the communication channel (communication channel)
  • the matrix display device) and the receiving end (operating device) are assigned to a certain source (such as column electrodes), and are designated for different time sources for different sources.
  • the receiving end can identify which source the signal is from, such as encoding with time, it can be applied to touch applications. The following is an example in which the touch control is applied to FIG. 5A.
  • the pulse is represented by '1' and no pulse is represented by '0'.
  • the column electrodes 0 1 ⁇ are transmitted with the encoded signals.
  • the timing chart can be as shown in FIG. 6 (the display signal DS for display is omitted), and the column electrode Di Dw transmits the encoded signal MS ⁇ MS respectively when the row electrode Si SM transmits the high-level scanning signal. Dw sequentially transmits the encoded signal in time. Therefore, by using the above-mentioned capacitively coupled encoded signal (which is one of MS ⁇ MSN), it can be known which column of electrodes is touched, that is, the X coordinate of the touch coordinate is known.
  • the Y coordinate of the touch coordinates can be known from the row electrode Si SM . Since the scanning signals SS transmitted by the row electrodes Si SM are sequentially generated, the essence is the encoded signals, so that the scanning signals SS can be regarded as the encoded signals of the present invention, and are coupled to the operating device for decoding by the matrix substrate. And with the time when the row electrode Si SM is turned on in turn, it can be known which row of electrodes is touched. In addition, in order to avoid interference with the display screen during the touch application, the working time (duty cyc le ) of each of the encoded signals 3 ⁇ 4 ⁇ 3 ⁇ 4 of the embodiment is smaller than the working time of each display signal DS, thereby maintaining the display quality.
  • FIG. 7A is a schematic diagram of an encoded signal (the display signal DS for omitting display) in which information encoding is performed in a time-division time difference manner (this is a touch, for example, the information can be, for example, an electrode number).
  • the coded signals 3 ⁇ 4 ⁇ 3 ⁇ 4 ⁇ 3 each have a start code SC, and the start code SC has the same time position as the starting reference point, and each of the coded signals 3 ⁇ 4 ⁇ 3 ⁇ 43 ⁇ 3 3 can pass the time difference from the start code SC. coding. Using the detected time difference, it is possible to infer which electrode the signal comes from, so that it can be known which electrode is touched.
  • the above starting code is used as the starting reference point of time, and in other examples, the starting code can also be used as data transmission.
  • the starting point of the input; the encoded signal may also have an end code as the reference point for the end of the data transmission or the end of the time; or the end code may be the starting code for the beginning of the next period; or the previous signal is the reference point of the time.
  • FIG. 7B is an architecture similar to time division multitasking, but instead of encoding the information as a time difference with respect to a reference point, the number of the electrode is directly encoded.
  • FIG e.g. 3 ⁇ 4 ⁇ ⁇ 3 ⁇ 4 ⁇ 3 points corresponding to the column electrodes ⁇ 3, but using two encoding, are prepared for (oi), do), and (11) to encode signals from different represent column electrodes. Therefore, the coupled signal can be directly judged from which column electrode it is derived from. This method is not based on the time difference, so it is not necessary to change the order of transmitting signals in sequence, or to transmit several signals within one row electrode scanning time to reduce the time for all column electrodes to transmit encoded signals.
  • Figure 8 is a schematic diagram of a coded signal encoded in a grouping manner (the display signal is omitted).
  • the column electrode ⁇ is the first group, the column electrodes D 4 to D 6 are the second group, and the others are the same (three in each group).
  • Each column electrode ⁇ is transmitted at the same time as the first coded signal, and can be used as a start code, and the time interval between the second coded signal transmitted by each column electrode ⁇ and the first coded signal can be distinguished.
  • Which group of encoded signals are coupled to.
  • the coded signals MSi transmitted by the column electrodes ⁇ are the same, and the coded signals MS 2 transmitted by the column electrodes D 4 to D 6 are the same. Accordingly, in the touch application, the actual number of encoded signals obtained by the operating device 11 can be reduced, thereby increasing the speed of the encoded signal processing.
  • FIG. 9 is a schematic diagram of the encoded signal placed on the display signal DS. While the column electrode transmits the display signal DS, the encoded signals MS N ⁇ , 3 ⁇ 4 are loaded as high frequency signals on the display signal DS.
  • the coded signal may use frequency-divi sion mult iplexing (FDM), or code-divi sion mult iplexing (CDM) or The phase shift keying technique is applied to the display signal DS.
  • FDM frequency-divi sion mult iplexing
  • CDM code-divi sion mult iplexing
  • the coded signal MS transmits the transmission of the display signal DS.
  • the following describes the aspect in which the coded signal MS is interspersed with the display signal DS by using FIG. 10(a) to FIG. 10(c).
  • the vertical synonym signal V sy ⁇ represents the same signal between the display screens.
  • a period of the vertical synchronizing signal V sy ⁇ represents a frame t ime.
  • Figure 10 (a) represents the coded signal MS can be transmitted by using at least one frame time, and the display signal DS is not transmitted during this period of time, and the display signal DS is transmitted after the transmission of the coded signal MS is completed.
  • Figure 10 (b) represents that the coded signal MS and the display signal DS are respectively transmitted during the same frame time, and the coded signal MS can be transmitted before or after the display signal DS after compressing and transmitting the display signal DS.
  • the transmission of the coded signal MS is performed before and after the display signal DS.
  • the horizontal homograph signal H sy ⁇ in Figure 10 ( c ) represents the same signal of each horizontal line in the display.
  • the period of the horizontal synchronizing signal H sy ⁇ represents the enabling time of a horizontal line in the picture.
  • Figure 10 (c) shows that during a horizontal line enable period, the coded signal MS and the display signal DS are transmitted in turn, for example, without affecting the display picture, the coded signal MS is transmitted first, and then the display signal DS is transmitted.
  • FIG. 10(a) to FIG. 10(c) show that the coded signal MS and the display signal DS can be interspersed.
  • H sy ⁇ represents only the same purpose, and the enabled row electrodes can be in sequential (as in conventional display mode) or in a non-sequential manner.
  • FIG 11 is a schematic diagram of the AC signal.
  • Each of the above encoding modes represents a '0' and a '1' respectively by a signal, for example, represented by a pulse, 1 ', no pulse representative, 0', as shown in (a) of FIG.
  • the signal in Figure 11 (a) will cause a net DC component (average in unit time), which will affect the display, especially the LCD panel. Since the liquid crystal is driven by a fixed positive bias or a negative bias for a long time, the liquid crystal is not easily rotated. Therefore, in this embodiment, the polarization of the liquid crystal can be avoided by making the encoded signal an alternating current signal or AC driving.
  • the average value of the encoded signal transmitted by the same column electrode is zero.
  • the AC signal without DC component it can also be achieved by the AC drive method.
  • the waveform reversed from the encoded signal is sent at intervals, as shown in Figure 11 (d);
  • the reverse waveform can also be assembled at the same time after several electrodes are connected, as shown in Figure 11 (e).
  • Fig. 11 illustrates a few examples, and in principle, the technical characteristics of the coded signal using the AC signal or the AC drive can be applied to any of the above coding modes.
  • FIG. 12 is a schematic diagram of the appearance of a matrix display device 12 of a video interface system according to a preferred embodiment of the present invention.
  • the matrix display device 12 further includes a transfer mode switch 127.
  • the driving method further includes transmitting the encoded signal by triggering a transfer mode switch 127 to activate the matrix display device 12 to enter a transfer mode.
  • the transfer mode switch 127 can be a mechanical switch that the user or operating device can trigger to transmit the mode switch 127 to initiate the matrix display device 12 into a transfer mode. Since the column electrodes of the matrix display device 12 need to simultaneously transmit the display signal and the encoded signal in the transmission mode, when the user does not use the touch function, the transmission mode can be turned off to save power, and can also be used as a screen protection.
  • the trigger switch 127 When the user needs to utilize the touch function, the trigger switch 127 is turned on to start the matrix display device 12 to enter the transfer mode. At this time, the row electrode or the column electrode transmits the coded signal, so that power waste can be avoided.
  • the switch 127 can also be disposed on the operating device. In this case, after the switch is triggered, the operating device transmits a trigger signal to the matrix display device 12 to enter the transfer mode.
  • the function of the trigger transmission mode switch 127 referred to herein may be a single-trigger switch to switch the touch function, or the user must maintain contact to switch the touch function.
  • the present invention transmits a plurality of encoded signals and a plurality of display signals on a matrix substrate through a matrix display device, wherein the display signals are used to display a picture on the matrix substrate, and the encoded signals can be used to make the matrix substrate reach the touch function and the data. Transfer wheel or other functions (such as user identification).
  • the encoded signal can be coupled from the matrix substrate to the operating device, and then the encoded signal can be processed to obtain touch information, command information, identification information, transaction information or file information.
  • the video interface system of the present invention can be directly applied to a matrix substrate, such as a thin film transistor substrate of a liquid crystal display panel, an organic light emitting diode panel, an LED panel, an electrophoretic display panel or a MEMS display panel, etc., thereby making the product thin and light. And reduce costs to enhance product competitiveness.
  • the present invention couples the encoded signal to the external operating device instead of directly reading the encoded signal from the matrix substrate, so that no change in layout is required on the matrix substrate, for example, it is not necessary to add a capacitive sensing component to the display panel. Detection of changes in external capacitance values, thereby reducing costs and shortening the process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明揭露一种视频接口系统的驱动方法。视频接口系统包括一操作装置以及一矩阵显示装置,矩阵显示装置包括一显示面及一矩阵基板,矩阵基板具有一基板以及一矩阵,矩阵设置在基板的一侧,显示面位在基板的另一侧。驱动方法包括:通过矩阵显示装置在矩阵基板上传送复数编码讯号以及复数显示讯号;以及通过操作装置在显示面上操作而接收所述编码讯号的至少其中之一。因此,本发明不需使用另一个触控面板,而可以使得视频接口系统同时具有显示以及通讯的功能,进而使产品轻薄化,并降低成本。

Description

视频接口系统的驱动方法 技术领域
本发明关于一种驱动方法, 特别关于一种视频接口系统的驱动方法。 背景技术
近年来, 触控面板已经逐渐广泛应用在一般的消费性电子商品上, 例如行 动通讯装置、 数字相机、 数字音乐播放器 (MP3)、 个人数字助理器 (PDA)、 卫 星导航器 (GPS)、 掌上型计算机说(hand-held PC), 甚至崭新的超级行动计算机 (Ultra Mobile PC, UMPC) 和电视等, 上述的触控面板皆结合在一显示屏幕而 成为一触控显示装置。 换句话说, 公知书的触控显示装置直接将一触控面板设置 在一显示模块中的显示面板上, 然而这不仅增加产品重量及尺寸, 且额外增加 触控面板还造成触控模块的成本增加。
另一方面, 为增加消费性电子产品的应用层面, 也开始在这些产品中加入 近场通讯 (Near Field Communication, NFC, 或近距离无线通讯) 的功能。 它 能提供, 举凡取代大量使用 IC卡的场合如门禁管制、车票、 门票、信用卡付费, 两个电子装置之间的数据交换, 如音乐、 图片、 名片等等。 在增加诸多功能下, 如何能持续维持一个简洁的架构而以非迭床架屋的方式得到一个产品, 也吸引 众多人的投入。
因此, 如何提供一种视频接口系统的驱动方法, 能不需使用另一触控面板 的视频接口系统达成显示以及触控的功能, 进而使产品轻薄化, 并降低成本, 并且能结合短距离无线通讯的应用而扩大应用层面, 实为当前重要课题之一。 发明内容
本发明的目的为提供一种能够让不需使用另一个触控面板的视频接口系统 的驱动方法, 以达成此视频接口系统同时具有显示以及通讯的功能, 进而使产 品轻薄化, 并降低成本。
本发明可采用以下技术方案来实现的。
本发明揭露一种视频接口系统的驱动方法。 视频接口系统包括一操作装置 以及一矩阵显示装置, 矩阵显示装置包括一显示面及一矩阵基板, 矩阵基板具 有一基板以及一矩阵, 矩阵设置在基板的一侧, 显示面位在基板的另一侧。 驱 动方法包括: 通过矩阵显示装置在矩阵基板上传送多个编码讯号以及多个显示 讯号; 以及通过操作装置在显示面上操作而接收所述编码讯号的至少其中之一。
在一实施例中, 编码讯号从所述矩阵基板通过电容耦合至操作装置。
在一实施例中, 所述编码讯号包括触控信息、 指令信息、 识别信息、 交易 信息、 或档案信息。
在一实施例中, 所述编码讯号为以频率、 或振幅、 或相位、 或时间差编码。 在一实施例中, 所述编码讯号分别传送在矩阵基板的多个行电极或多个列 电极。 所述编码讯号可依序或同时分别传送在所述矩阵基板的所述行电极或所 述列电极。
在一实施例中, 所述列电极的一部分同时传送相同所述编码讯号。
在一实施例中, 所述行电极所传送的所述编码讯号与所述列电极所传送的 所述编码讯号为不同编码系统。
在一实施例中, 所述编码讯号穿插在所述显示讯号之间传送。
在一实施例中, 所述编码讯号在传送所述显示讯号的空档时间传送。 空档 时间例如在一影像画面内或所述影像画面之间。
在一实施例中, 各编码讯号具有一起始码或一结束码。
在一实施例中, 通过触发一传送模式开关以启动主动矩阵显示装置进入一 传送模式而传送所述编码讯号。
在一实施例中, 驱动方法还包括: 依据编码讯号得到一触控信息; 以及通 过矩阵显示装置依据触控信息作动。
承上所述, 本发明通过矩阵显示装置在矩阵基板上传送多个编码讯号以及 多个显示讯号, 其中显示讯号用以让矩阵基板显示画面, 编码讯号可用以让矩 阵基板达到触控功能、 数据传输或其它功能 (例如使用者辨识)。 当操作装置在 显示面上操作时, 编码讯号可从矩阵基板耦合至操作装置, 然后编码讯号经过 处理后可得到触控信息, 指令信息、 识别信息、 交易信息或档案信息。 由上可 知, 本发明的视频接口系统可直接应用在矩阵基板, 例如液晶显示面板的薄膜 晶体管基板、 有机发光二极管面板、 发光二极管面板、 电泳显示面板或 MEMS显 示面板等等, 进而使产品轻薄化, 并降低成本以提升产品竞争力。 另外, 本发 明将编码讯号耦合至外部的操作装置, 而非由矩阵基板直接读取编码讯号, 因 而在矩阵基板上不需作布局上的改变, 例如不需要在显示面板内增加电容感应 组件以侦测外界电容值的改变, 因而降低成本并缩短制程。
附图说明 图 1为本发明优选实施例的一种视频接口系统的方块示意图; 图 2为本发明优选实施例的一种视频接口系统的矩阵显示装置的侧视示意 图;
图 3为本发明优选实施例的矩阵基板以薄膜晶体管基板为例的示意图; 图 4为本发明优选实施例的一种视频接口系统的驱动方法的歩骤流程图; 图 5A至图 11为本发明优选实施例的驱动方法所使用的编码讯号的不同态 样的示意图; 以及
图 12为本发明优选实施例的视频接口系统的矩阵显示装置的外观示意图。 主要元件符号说明:
1: 视频接口系统
11: 操作装置
12: 矩阵显示装置
121: 显示面
122: 矩阵基板
123: 基板
124: 矩阵
125: 保护玻璃
127: 传送模式开关
Di-D,: 列电极
DS: 显示讯号
画素电极
MS、 MS!-MSN: 编码讯号
SOU S02: 驱动方法的歩骤
Si SM: 行电极
SC: 起始码
SS: 扫描讯号
^〜!^: 晶体管 具体实施方式
以下将参照相关图式, 说明依本发明优选实施例的一种视频接口系统的驱 动方法, 其中相同的元件将以相同的元件符号加以说明。
本发明优选实施例的一种驱动方法应用在一视频接口系统。 图 1 为本实施 例的一种视频接口系统 1的方块示意图。 视频接口系统 1包括一操作装置 11以 及一矩阵显示装置 12, 互相耦接, 例如通过电容耦接传送讯号。 另外, 操作装 置 11的输出可通过有线、 无线、 电性或光学等方式连接至系统的其它单元。
图 2为矩阵显示装置 12的侧视示意图。 如图 2所示, 矩阵显示装置 12包 括一显示面 121 以及一矩阵基板 122。 矩阵基板 122包括一基板 123及一矩阵 124, 矩阵 124设置在基板 123的一侧, 显示面 121则位在基板 123的另一侧, 跟一般公知液晶显示装置中的矩阵基板比起来, 本发明的矩阵基板 122为反置, 也就是比起滤光基板, 矩阵基板 122的基板 123可作为较靠近使用者的显示面 121。 在本实施例中, 显示面 121是指使用者观看矩阵显示装置 12显示影像时, 矩阵显示装置 12最靠近使用者的一表面。 在此, 矩阵显示装置 12还可包括一 保护玻璃 125设置在基板 123相对于矩阵 124的一侧, 而显示面 121即为保护 玻璃 125靠近使用者的一表面。 另外, 基板 123与保护玻璃 125之间还可包括 其它构件, 例如偏光板。
在本实施例中, 矩阵基板 122 指具有画素矩阵, 用以显示影像的基板或面 板, 例如液晶显示面板的薄膜晶体管基板、 有机发光二极管面板、 无机发光二 极管面板、 电泳显示矩阵面板或 MEMS显示面板等等。 矩阵 124可包括多个行电 极、 多个列电极、 以及多个画素电极, 所述行电极与所述列电极交错设置。 另 外, 矩阵 124 可为主动式矩阵 (active matrix ) 或为被动式矩阵 (passive matrix) , 在此, 矩阵 124以主动式矩阵为例, 其还可包括多个晶体管, 分别与 所述行电极、 所述列电极、 以及所述画素电极电性连接。
图 3为本实施例的矩阵基板以薄膜晶体管基板为例的示意图。 矩阵 124可 包括多个行电极
Figure imgf000006_0001
所述行 电极 Si SM与所述列电极 01〜 交错设置,且实质上相互垂直或夹一角度。另外, 矩阵 124可还包括多个晶体管 Tn T™, 分别与所述行电极 Si S^ 所述列电极 Di〜DN、 以及所述画素电极 En E™电性连接。在此, 行电极 Si SM即所谓的扫描 线, 列电极 〜 即所谓的数据线。 另外, 基板 123上还可设置驱动模块, 其中 包括数据驱动电路、 扫描驱动电路、 时序控制电路 (图未显示) 以及珈玛校正 电路 (图未显示), 通过驱动模块的驱动可使液晶显示面板显示影像; 由于驱动 模块对于影像的驱动为公知技术, 在此不再说明。 另外, 此态样的矩阵基板 122 仅为举例说明, 并非用以限制本发明。
图 4为本发明优选实施例的一种视频接口系统 1的驱动方法的歩骤流程图。 驱动方法包括歩骤 S01与 S02。 以下, 请参照图 1至图 4以说明视频接口系统 1 的驱动方法。
歩骤 S01 : 通过矩阵显示装置 12在矩阵基板 122上传送多个编码讯号以及 多个显示讯号。 其中, 显示讯号用以让矩阵显示装置 12显示影像, 显示讯号例 如包括扫描讯号及 /或数据讯号, 其可分别通过行电极 Si SM与所述列电极 ^〜 DN传送。
编码讯号可传送在矩阵基板 122的独立电极(即与显示无关的电极)、 或多 个行电极 或多个列电极 Di〜DN、 或行电极 Si SM与列电极D1〜DN均有。 编码讯号可例如以频率、 或振幅、 或相位、 或分码多任务 (code division multiple access, CDMA ) , 或时间差的不同来进行编码。 编码讯号可包括触控 信息、 指令信息、 识别信息、 交易信息、 或档案信息、 或其它信息。 亦即视操 作装置 11与矩阵显示装置 12之间所要建立的功能, 以此功能为目的将相关信 息以特定方式编码成编码讯号, 例如触控信息可让操作装置 11与矩阵显示装置 12达到触控功能; 识别信息可让操作装置 11与矩阵显示装置 12达到使用者识 别功能, 例如可应用于门禁卡; 交易信息可用于操作装置 11与矩阵显示装置 12 之间的交易行为, 此行为来自各自拥有操作装置 11与矩阵显示装置 12的双方; 档案信息可用于将一档案, 如图片、 音乐等, 自矩阵显示装置 12传送至操作装 置 11, 后续将有进一歩的实施例叙述。
编码讯号可依序传送于矩阵基板 122 的所述行电极或所述列电极、 或者可 同时传送在矩阵基板 122 的所述行电极或所述列电极。 其中, 为了识别行电极 与列电极所传送的编码讯号, 所述行电极所传送的编码讯号与所述列电极所传 送的编码讯号可为不同编码系统。 例如, 以频率调变、 振幅调变、 相位调变或 时间调变或分码多任务调变, 举例来说行电极与列电极所传的编码讯号的时间 位置不同、 或是行电极以频率编码, 而列电极以振幅编码。 另外, 所述列电极 或所述行电极的一部分可同时传送相同的编码讯号, 亦即可以几个列电极或行 电极为一组传送相同的编码讯号, 这可应用于行电极或列电极的电极宽度较小 的情况。
另外, 编码讯号可以在显示画面之间 (如占据数个显示图框的时间)、 或在 传送所述显示讯号的空档时间 (blanking time ) , 或在每一条显示讯号之间而 与显示讯号穿插传送。 其中, 空档时间在两两影像图框之间。 注意因为传送编 码讯号而对显示画面造成影响的容忍度端视其应用而定, 例如编码讯号用于触 控用途时须考虑画面的闪烁问题因此须利用空档时间或是在每一条显示讯号之 间传送, 而在短暂通讯用途时则可以暂停显示只传送编码讯号; 编码讯号亦可 以较高频率直接迭加在显示讯号之上, 形成一载波形式, 因其频率高于显示讯 号, 故可降低对显示质量的影响; 编码讯号亦可以采无直流成分的讯号, 以将 对显示质量的影响降至最小。
歩骤 S02 : 通过操作装置 1 1在显示面 121上操作而接收所述编码讯号的至 少其中之一。 编码讯号可例如通过电容耦合的方式, 从矩阵基板 122 耦合至操 作装置 1 1。 操作装置 1 1例如为一触控笔、 人体的一手部、 或一接收装置, 如一 卡片阅读机等。 当操作装置 1 1在显示面 121上操作时 (操作装置 1 1可碰到也 可以不用碰到显示面 121, 只要距离够近即可), 较靠近操作装置 1 1的行电极或 列电极所传送的编码讯号即可从矩阵基板 122电容耦合至操作装置 1 1上。
当操作装置 1 1接收到编码讯号后, 可有多种方式来处理编码讯号而得到编 码讯号内所包括的信息, 例如触控信息或使用者辨识信息。 编码讯号可通过操 作装置 1 1的处理而得到最终信息, 最终信息可用有线或无线方式再传送至其它 系统装置来进行反应。 或者, 编码讯号可直接再回传送矩阵显示装置 12, 并通 过矩阵显示装置 12的处理而得到最终信息, 再通过矩阵显示装置 12对最终信 息作出反应或传送至其它系统装置。 另外, 编码讯号也可通过操作装置 1 1的中 继处理, 例如放大处理、 滤波处理等, 再传送至其它系统装置或矩阵显示装置 12进行处理而得到最终信息。 或者, 上述所有情况皆可在视频接口系统 1中加 入至少另一单元 (例如此单元介于操作装置 1 1与矩阵显示装置 12之间), 此单 元用以处理操作装置 1 1的输出, 并将结果传送至其它系统装置或矩阵显示装置 12, 且所述单元亦可参与编码讯号的处理作业。
驱动方法还包括: 依据编码讯号得到一信息, 包括触控信息、 指令信息、 识别信息、 交易信息、 或档案信息、 或其它信息。 若编码讯号内含触控信息, 则在编码讯号处理完之后, 可例如得到触控信息, 使得矩阵显示装置 12可依据 触控信息作动。
以下举例说明编码讯号一些实施的态样。
图 5A 为以循序的方式传送编码讯号的示意图, 其显示其中相邻二行电极 ( Sm)与相邻二列电极( 、 ) 的讯号。 行电极 Si SM分别传送扫描讯号 SS依序使每一列的晶体管开启, 而在每一列晶体管被开启时, 各列电极 〜 分别传送编码讯号 MS与显示讯号 DS。 在本实施例中, 如图 5A所示, 在一行电 极传送其扫描讯号时,仅有一列电极传送与显示讯号 DS不同位准的编码讯号 MS。 换句话说, 在行电极 SM- *送其扫描讯号 SS的时间范围内, 只有列电极 传送 显示讯号 DS以及与显示讯号 DS不同位准的编码讯号 MSN1 ; 在行电极 SM传送其 扫描讯号 SS的时间范围内, 只有列电极 传送显示讯号 DS以及与显示讯号 DS 不同位准的编码讯号 MS N
图 5A以一行电极对应一列电极为例, 唯此非本方法的限制, 适当定义讯号 宽度, 亦可以一对多或多对一方式实现, 例如一行电极导通时, 所有列电极均 发出编码讯号。 另外, 图 5A 中的编码讯号 (MSN- MSN), 依行电极导通的顺序 而可视为传送 (1、 1 ) 或 (0、 1 ) 或 (1、 0 ) 或 (0、 0 ) 的讯号。 如考虑降低 对显示质量的影响, 亦可如图 5B所示的讯号, 即单位时间内输出的编码讯号的 平均无直流成份, 以避免液晶显示器内的液晶分子被极化。 如以通讯的观点而 言, 此循序扫描实为一分时多任务 (t ime divi sion mult iplexing, TDM) 通讯 架构, 其指在某一个时段, 将通讯信道(communicat ion channel , 指发射端(矩 阵显示装置) 与接收端 (操作装置) 之间) 归给某一个发射源使用 (如列电极 ), 并指定不同时段给不同的发射源使用。 相反的, 如接收端可以辨别讯号来 自哪一个发射源, 例如用时间来编码, 则可应用在触控用途。 以下以图 5A应用 于触控为例, 为说明方便均以有脉冲代表' 1 ' 、 无脉冲代表' 0 ' 的方式来表 依据图 5A, 如此, 各列电极01〜 所传送的编码讯号的时序图可如图 6所 示(省略显示用的显示讯号 DS ) , 列电极 Di Dw随着行电极 Si SM传送高准位的 扫描讯号时, 分别传送编码讯号 MS^MS 由于列电极 D^Dw在时间上依序传送 编码讯号 因此通过上述电容耦合而得的编码讯号(为 MS^MSN其中之 一), 即可得知是哪一列电极被触控, 即知道触控坐标的 X坐标。 而触控坐标的 Y坐标可由行电极 Si SM得知。 由于行电极 Si SM所传送的扫描讯号 SS依序产 生, 故其本质即为编码讯号, 因此可将扫描讯号 SS视为本发明的编码讯号, 并 由矩阵基板耦合至操作装置来进行译码,并配合行电极 Si SM轮流开启的时间即 可得知哪一行电极被触控。 另外为避免在触控应用时对显示画面的干扰, 本实 施例的各编码讯号 ¾^〜¾ 的工作时间 (duty cyc le ) 小于各显示讯号 DS的工 作时间, 藉此以维持显示质量。
图 7A为以分时的时间差方式来进行信息编码 (此以触控为例, 因此信息可 例如为电极编号) 的编码讯号的示意图 (省略显示用的显示讯号 DS)。 编码讯号 ¾^〜¾^3各具有一起始码 SC, 起始码 SC的时间位置相同, 以作为起始参考点, 而各编码讯号 ¾^〜¾¾3可通过与起始码 SC的时间差而编码。 利用侦测到的时间 差即可推知讯号来自哪一电极, 如此就可得知哪一电极的位置被触控。 上述以 起始码作为时间的起始参考点, 另外在其它实例中, 此起始码亦可作为数据传 输的起始点; 编码讯号亦可具有一结束码作为数据传输的结束或时间结束的参 考点; 或者结束码可作为下一周期开始的起始码; 或者以前一讯号为时间的参 考点。
图 7B为同样以分时多任务的架构, 但不是以相对一参考点的时间差做为信 息编码, 而是直接以电极的编号作为编码。 例如图中 ¾^〜¾^3分对应于列电极 ϋΛϋ3, 而利用二位的编码, 分别编为 (oi)、 do) 及 (11 ), 以表示编码讯号来 自不同的列电极。 因此由耦合到的编码讯号即可直接判读出其来自于哪一条列 电极。 此方式非以时间差为基础, 故不须依序而可以改变发射讯号的次序, 或 是将数个讯号在一个行电极扫描时间内传送, 以减少所有列电极传送编码讯号 的时间。
图 8以分组的方式来进行编码的编码讯号的示意图 (省略显示讯号)。 其中 以列电极 〜 为第一组, 列电极 D4〜D6为第二组, 其余依此类推(每三条为一 组)。 各列电极 〜 所传送的第一个编码讯号的时间相同, 可作为起始码, 而 利用各列电极 〜^所传送的第二个编码讯号与第一个编码讯号的时间间隔,可 分辨出耦合到的编码讯号来自于哪一组别。其中,列电极 〜 所传的编码讯号 MSi相同, 列电极 D4〜D6所传的编码讯号 MS2相同。据此, 在触控应用时, 可减少 操作装置 11所得到的编码讯号实际的数量, 进而提升编码讯号处理的速度。
图 9为编码讯号载置在显示讯号 DS的示意图。在列电极 传送显示讯 号 DS的同时, 将编码讯号 MSN→、 ¾ 作为高频讯号加载在显示讯号 DS上。 本实 施例中, 以分时多任务为例, 当然编码讯号可利用分频多任务 ( frequency-divi sion mult iplexing, FDM)、 或分石马多任务 ( code-divi sion mult iplexing, CDM) 或相移编码 (phase shift keying ) 技术加载于显示讯号 DS。
所述编码讯号 MS在传送所述显示讯号 DS的传送, 以下以图 10 ( a) 至图 10 ( c ) 举例说明所述编码讯号 MS穿插在所述显示讯号 DS的态样。 其中, 垂直 同歩讯号 Vsy∞代表显示画面之间的同歩讯号。垂直同歩讯号 Vsy∞的一周期代表一 图框时间 (frame t ime)。 图 10 ( a) 代表编码讯号 MS可利用至少一图框时间来 进行传输, 且此段时间内不传送显示讯号 DS, 当编码讯号 MS传输完成后再开始 传送显示讯号 DS。 图 10 ( b ) 代表在同一图框时间内分别传送编码讯号 MS与显 示讯号 DS, 可在压缩传送显示讯号 DS的时间后, 然后在显示讯号 DS的前面或 后面传送编码讯号 MS , 在此以显示讯号 DS的前后均进行编码讯号 MS的传送为 例。图 10 ( c )中的水平同歩讯号 Hsy∞代表显示画面中每一条水平线的同歩讯号, 水平同歩讯号 Hsy∞的一周期代表画面中的一条水平线的致能时间。 图 10 ( c )显 示在一水平线致能期间内, 编码讯号 MS与显示讯号 DS轮流传送, 例如为不影 响显示画面, 编码讯号 MS先传送, 再传送显示讯号 DS。 由以上可知, 图 10 ( a) 至图 10 ( c ) 显示所述编码讯号 MS与所述显示讯号 DS可穿插传送。 注意, Hsy∞ 仅代表同歩用途, 所致能的行电极可以是依序 (如传统的显示方式) 或是非依 序方式进行。
图 11为交流讯号的示意图。上述的任一种编码方式分别以一讯号代表' 0' 与, 1 ' , 例如用一脉冲代表, 1 ' , 无脉冲代表, 0' , 如图 11中 (a) 所示。 当讯号施加于一矩阵显示装置时, 图 11 ( a) 的讯号会造成一净直流成份(单位 时间内的平均值), 此成份会影响显示画面, 特别是液晶显示面板。 由于液晶在 固定正偏压或负偏压长时间的驱动下会产生极化现象而造成液晶不易转动。 故 本实施例通过使编码讯号为交流讯号或用交流驱动可避免液晶产生极化, 较佳 者同一条列电极所传的编码讯号的平均值为零。 为避免影响显示质量, 可以用 无直流成份的交流讯号代表' 0 ' 与' , 如图 11 (b)、 ( c ) 所示。 除用无直 流成份的交流讯号外, 亦可以用交流驱动方法达成, 例如传送一编码讯号后, 间隔一段时间再送一次与这段编码讯号反向的波形, 如图 11 ( d)所示; 此反向 波形亦可以集合数条电极后在同一时间传送, 如图 11 ( e)。 在此, 图 11举数例 作说明用, 而原则上, 编码讯号采交流讯号或交流驱动的技术特征可应用于上 述任一种编码方式。
图 12为本发明优选实施例的视频接口系统的矩阵显示装置 12的外观示意 图。 如图 12所示, 矩阵显示装置 12还包括一传送模式开关 127。 驱动方法还包 括通过触发一传送模式开关 127以启动矩阵显示装置 12进入一传送模式而传送 所述编码讯号。 传送模式开关 127 可为一机械开关, 使用者或操作装置可触发 传送模式开关 127, 以启动矩阵显示装置 12进入一传送模式。 由于矩阵显示装 置 12的列电极在传送模式时需同时传送显示讯号与编码讯号, 故当使用者用不 到触控功能时, 则可关闭传送模式, 以节省电力, 同时亦可以当作屏幕保护功 能以防止误触。 当使用者需要利用触控功能时, 才触发开关 127 开启, 以启动 矩阵显示装置 12进入传送模式。 此时行电极或列电极才传送编码讯号, 如此可 避免电力浪费。 另外需注意者, 开关 127亦可设置在操作装置上, 在此状况下, 当开关被触发之后, 操作装置传送一触发讯号至矩阵显示装置 12以使其进入传 送模式。 须注意在此所称的触发传送模式开关 127其功能可以是单次触发的开 关以切换触控功能, 亦可以是使用者必须保持接触以切换触控功能。 综上所述, 本发明通过矩阵显示装置在矩阵基板上传送多个编码讯号以及 多个显示讯号, 其中显示讯号用以让矩阵基板显示画面, 编码讯号可用以让矩 阵基板达到触控功能、 数据传轮或其它功能 (例如使用者辨识)。 当操作装置在 显示面上操作时, 编码讯号可从矩阵基板耦合至操作装置, 然后编码讯号经过 处理后可得到触控信息、 指令信息、 识别信息、 交易信息或档案信息。 由上可 知, 本发明的视频接口系统可直接应用于矩阵基板, 例如液晶显示面板的薄膜 晶体管基板、 有机发光二极管面板、 发光二极管面板、 电泳显示面板或 MEMS显 示面板等等, 进而使产品轻薄化, 并降低成本以提升产品竞争力。 另外, 本发 明将编码讯号耦合至外部的操作装置, 而非由矩阵基板直接读取编码讯号, 因 而在矩阵基板上不需作布局上的改变, 例如不需要在显示面板内增加电容感应 组件以侦测外界电容值的改变, 因而降低成本并缩短制程。
以上所述仅是举例性, 而非限制性。 任何未脱离本发明的精神与范畴, 而 对其进行的等效修改或变更, 均应包括在权利要求所限定的范围内。

Claims

权 利 要 求 书
1、 一种视频接口系统的驱动方法, 所述视频接口系统包括一操作装置以及 一矩阵显示装置, 所述矩阵显示装置包括一显示面及一矩阵基板, 所述矩阵基 板具有一基板以及一矩阵, 所述矩阵设置在所述基板的一侧, 所述显示面位在 所述基板的另一侧, 其特征在于, 所述驱动方法包括:
通过所述矩阵显示装置在所述矩阵基板上传送多个编码讯号以及多个显示 讯号; 以及
通过所述操作装置在所述显示面上操作而接收所述编码讯号的至少其中之
2、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号从所述矩 阵基板通过电容耦合至所述操作装置。
3、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号包括触控 信息、 指令信息、 识别信息、 交易信息、 或档案信息。
4、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号为以频率 调变、 或振幅调变、 或相位调变、 或时间调变、 或分码多任务调变。
5、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号分别传送 于所述矩阵基板的多个行电极或多个列电极。
6、 根据权利要求 5所述的驱动方法, 其特征在于, 所述列电极的一部分传 送相同所述编码讯号。
7、 根据权利要求 5所述的驱动方法, 其特征在于, 所述行电极所传送的所 述编码讯号与所述列电极所传送的所述编码讯号为不同编码系统。
8、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号与所述显 示讯号穿插传送。
9、 根据权利要求 8所述的驱动方法, 其特征在于, 所述编码讯号在传送所 述显示讯号的空档时间传送。
10、 根据权利要求 8所述的驱动方法, 其特征在于, 所述编码讯号在一影 像画面内传送。
11、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号具有一 起始码。
12、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号具有一 结束码。
13、 根据权利要求 1所述的驱动方法, 其特征在于, 所述编码讯号的波形 为一交流讯号。
14、 根据权利要求 1所述的驱动方法, 其特征在于, 还包括: 通过触发一传送模式开关以启动所述主动矩阵显示装置进入一传送模式而 传送所述编码讯号。
15、 根据权利要求 1所述的驱动方法, 其特征在于, 还包括:
依据所述编码讯号得到一触控信息; 以及
通过所述矩阵显示装置依据所述触控信息作动。
16、 根据权利要求 1所述的驱动方法, 其特征在于, 还包括:
按压一传送模式开关, 所述矩阵显示装置进入一传送模式。
PCT/CN2011/080394 2011-09-30 2011-09-30 视频接口系统的驱动方法 WO2013044491A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/348,592 US10438558B2 (en) 2011-09-30 2011-09-30 Driving method of visual interface system
JP2014532210A JP6033310B2 (ja) 2011-09-30 2011-09-30 ビジョンインタフェースシステムの駆動方法
CN201180073599.6A CN103890644B (zh) 2011-09-30 2011-09-30 视频接口系统的驱动方法
EP11873338.5A EP2762954A4 (en) 2011-09-30 2011-09-30 CONTROL METHOD FOR VIDEO INTERFACE SYSTEM
PCT/CN2011/080394 WO2013044491A1 (zh) 2011-09-30 2011-09-30 视频接口系统的驱动方法
KR1020147010751A KR101641805B1 (ko) 2011-09-30 2011-09-30 시각적 인터페이스 시스템의 구동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/080394 WO2013044491A1 (zh) 2011-09-30 2011-09-30 视频接口系统的驱动方法

Publications (1)

Publication Number Publication Date
WO2013044491A1 true WO2013044491A1 (zh) 2013-04-04

Family

ID=47994157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080394 WO2013044491A1 (zh) 2011-09-30 2011-09-30 视频接口系统的驱动方法

Country Status (6)

Country Link
US (1) US10438558B2 (zh)
EP (1) EP2762954A4 (zh)
JP (1) JP6033310B2 (zh)
KR (1) KR101641805B1 (zh)
CN (1) CN103890644B (zh)
WO (1) WO2013044491A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389742B2 (en) * 2014-12-10 2016-07-12 Pixart Imaging Inc. Capacitive touch device, capacitive communication device and communication system
KR102276911B1 (ko) * 2015-01-14 2021-07-13 삼성전자주식회사 터치 컨트롤러, 터치 센싱 장치 및 터치 센싱 방법
US11182020B2 (en) * 2017-06-21 2021-11-23 Sharp Kabushiki Kaisha Position detection device, electronic device equipped with same, and position detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101738772A (zh) * 2009-12-16 2010-06-16 深超光电(深圳)有限公司 触控显示装置
WO2010138485A1 (en) * 2009-05-29 2010-12-02 3M Innovative Properties Company High speed multi-touch touch device and controller therefor
CN101930320A (zh) * 2010-09-06 2010-12-29 友达光电股份有限公司 触控面板
CN201725303U (zh) * 2010-03-05 2011-01-26 敏理投资股份有限公司 矩阵型触控面板

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204272A (ja) 1991-03-12 1997-08-05 Sharp Corp 表示一体型タブレット装置
JP3421078B2 (ja) 1993-05-07 2003-06-30 シャープ株式会社 情報入出力装置
JP3212855B2 (ja) * 1995-12-14 2001-09-25 シャープ株式会社 液晶画像表示/読取装置
JP4939682B2 (ja) * 1999-04-27 2012-05-30 エーユー オプトロニクス コーポレイション 表示装置
JP2001075074A (ja) 1999-08-18 2001-03-23 Internatl Business Mach Corp <Ibm> タッチセンサ一体型液晶表示素子
JP4006925B2 (ja) * 2000-05-30 2007-11-14 セイコーエプソン株式会社 電気泳動表示装置の製造方法
JP2004005415A (ja) * 2002-04-19 2004-01-08 Sharp Corp 入力装置および入出力一体型表示装置
GB0215721D0 (en) 2002-07-06 2002-08-14 Koninkl Philips Electronics Nv Matrix display and method of driving a matrix display
EP2079008A1 (en) 2007-12-26 2009-07-15 TPO Displays Corp. Position sensing display
US8482545B2 (en) 2008-10-02 2013-07-09 Wacom Co., Ltd. Combination touch and transducer input system and method
JP4893759B2 (ja) * 2009-01-27 2012-03-07 ソニー株式会社 液晶表示装置
US8217913B2 (en) * 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
US8278571B2 (en) * 2009-04-03 2012-10-02 Pixart Imaging Inc. Capacitive touchscreen or touchpad for finger and active stylus
JP2010286895A (ja) 2009-06-09 2010-12-24 Toshiba Tec Corp 情報入力装置及び情報処理装置
US20110059692A1 (en) 2009-09-08 2011-03-10 Electronics And Telecommunications Research Institute Communications device using near field
TWI410833B (zh) 2009-10-13 2013-10-01 Silicon Integrated Sys Corp 具有攜帶相位資訊的電容感應電路的電子裝置和其方法
KR101107171B1 (ko) * 2010-02-11 2012-01-25 삼성모바일디스플레이주식회사 접촉 감지 장치, 이를 포함하는 표시 장치 및 그 구동 방법
WO2011119552A2 (en) 2010-03-22 2011-09-29 Mattel, Inc. Electronic device and the input and output of data
CN102906679B (zh) * 2010-05-25 2015-11-25 3M创新有限公司 高速低功率多点触摸装置及其控制器
KR101735386B1 (ko) * 2010-06-25 2017-05-30 엘지디스플레이 주식회사 터치 센서가 내장된 액정 표시 장치 및 그 구동 방법과 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138485A1 (en) * 2009-05-29 2010-12-02 3M Innovative Properties Company High speed multi-touch touch device and controller therefor
CN101738772A (zh) * 2009-12-16 2010-06-16 深超光电(深圳)有限公司 触控显示装置
CN201725303U (zh) * 2010-03-05 2011-01-26 敏理投资股份有限公司 矩阵型触控面板
CN101930320A (zh) * 2010-09-06 2010-12-29 友达光电股份有限公司 触控面板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762954A4 *

Also Published As

Publication number Publication date
EP2762954A4 (en) 2015-07-22
EP2762954A1 (en) 2014-08-06
KR101641805B1 (ko) 2016-07-21
US20140306917A1 (en) 2014-10-16
CN103890644A (zh) 2014-06-25
KR20140081830A (ko) 2014-07-01
CN103890644B (zh) 2017-06-13
JP2014535088A (ja) 2014-12-25
JP6033310B2 (ja) 2016-11-30
US10438558B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
TWI592841B (zh) 視覺介面系統
WO2013044491A1 (zh) 视频接口系统的驱动方法
TW201314566A (zh) 視覺介面系統之驅動方法
US9792850B2 (en) Data transmission system
KR101668937B1 (ko) 시각적 인터페이스 장치 및 데이터 전송 시스템
TWI492110B (zh) 視覺介面系統
TWI463454B (zh) 資料傳輸系統
TWI572154B (zh) 非顯示訊號編碼方法及矩陣基板
CN104365027A (zh) 非显示讯号编码方法及矩阵基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011873338

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014532210

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14348592

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147010751

Country of ref document: KR

Kind code of ref document: A