WO2013042666A1 - 静電塗装方法及び静電塗装用ガン - Google Patents

静電塗装方法及び静電塗装用ガン Download PDF

Info

Publication number
WO2013042666A1
WO2013042666A1 PCT/JP2012/073855 JP2012073855W WO2013042666A1 WO 2013042666 A1 WO2013042666 A1 WO 2013042666A1 JP 2012073855 W JP2012073855 W JP 2012073855W WO 2013042666 A1 WO2013042666 A1 WO 2013042666A1
Authority
WO
WIPO (PCT)
Prior art keywords
paint
electrostatic
coating
coated
electrostatic coating
Prior art date
Application number
PCT/JP2012/073855
Other languages
English (en)
French (fr)
Inventor
吉宣 田村
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP12834334.0A priority Critical patent/EP2786805A4/en
Priority to CN201280056981.0A priority patent/CN103945950B/zh
Priority to US14/362,524 priority patent/US10576496B2/en
Publication of WO2013042666A1 publication Critical patent/WO2013042666A1/ja
Priority to US16/667,973 priority patent/US20200061664A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/045Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field on non-conductive substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers

Definitions

  • the present invention relates to a method for electrostatic coating of a conductive surface to be coated and a gun for electrostatic coating.
  • electrostatic coating means that an object to be coated is an earth electrode, an electrode on the coating device side is a cathode, and an electrostatic field (electric lines of force) is formed by applying a high voltage therebetween, and paint particles are
  • an electrostatic field electric lines of force
  • paint particles are
  • Electrostatic coating improves coating efficiency (shortens the coating time by improving the paint throwing power) and improves coating efficiency (improves the amount ratio of paint applied to the object to be used) Effects).
  • the throwing around is that the coating applied from the front side of the object to be coated wraps around to the back side and is applied.
  • the conventional electrostatic coating method is classified into three types according to the paint atomization method: an air atomization method, an airless atomization method, and a rotary atomization method (atomization by a bell or a disk). Furthermore, it can be divided into a direct application method and a corona discharge method according to a high voltage application method that generates electrostatic attraction.
  • the direct application method is applied only to the rotary atomization method, and the corona discharge method is mainly applied to the air atomization method and the airless atomization method.
  • the corona discharge method there is an external charging method in which the corona discharge electrode and the paint discharge portion are arranged apart from each other and the paint is charged with static electricity in the space up to the object to be coated. This is often used for highly conductive paints (such as water-based paints) in which a high voltage leaks from the paint path in a general system in which a corona discharge electrode is disposed in the paint discharge part.
  • the conventional electrostatic coating technology is composed of a combination of these paint atomization methods and high voltage application methods, but the electrostatic coating mechanism is common. That is, in any combination, the paint particles are charged with static electricity, and charged paint particles along the electrostatic field formed between the coating machine (actually corona discharge electrode or rotary atomizing head) and the object to be coated. Is flying, and electrostatic attraction is working.
  • the first is a method in which an electrostatic field is formed between the coating machine and the object to be coated. Therefore, when unevenness is present in the object to be coated, the coating efficiency increases at the convex part where the electric field strength is strong. On the other hand, the coating film thickness tends to be excessive, and conversely, in the concave portion where the electric field is not formed or the electric field strength is weak, the coating is difficult to enter, and the coating cannot be performed or the coating is thin. As countermeasures, the electrostatic coating voltage has been lowered or cut off. However, such countermeasures reduce or reduce the effects required for electrostatic coating. I could't say that.
  • the second problem is that a large amount of ionized air called free ions is generated together with the charged paint particles. Since the free ions have an overwhelmingly smaller mass than the charged paint particles, they fly under the influence of electrostatic force, unlike paint particles that exert a large inertial force. As a result, not only the object to be coated, which is the target of electrostatic coating, but also the conductor existing in the periphery, and when the conductor is not sufficiently grounded, the conductor is charged. This electrification can cause an electrostatic spark and cause a fire. In addition, even when the object to be coated is insufficiently grounded, a fire can be induced by electrostatic spark.
  • the conventional electrostatic coating technology has a problem that it is difficult for the coating material to enter the recess and a problem that free ions that cause electrostatic spark are generated.
  • the present invention has been made in view of the above circumstances, and is an electrostatic coating method for a conductive coated surface capable of improving the penetration of a coating material into a recess and suppressing the occurrence of electrostatic sparks. And to provide a gun for electrostatic coating.
  • the electrostatic coating method according to the present invention is an electrostatic coating method in which a conductor such as a metal or a conductive resin is used as a coating surface, and between the discharge source and the coating surface.
  • a charged paint liquid paint
  • the method of suppressing the generation of electrostatic fields and free ions between the discharge source and the surface to be coated is based on the coating material inside the coating machine without providing a gun external electrode part such as a corona discharge electrode exposed to the outside.
  • a method in which a high voltage is directly applied to the paint inside the coating machine from the high voltage electrode arranged so as to be in contact with the path to charge the paint, and the charged paint is discharged from the discharge source is preferable.
  • the volume resistivity value of the paint is preferably 100 M ⁇ cm or less, more preferably 50 M ⁇ cm or less, and further preferably 20 M ⁇ cm or less.
  • a low resistance paint having a volume resistivity of 100 M ⁇ cm or less has been used for electrostatic coating of an insulator, but has not been intentionally used for electrostatic coating of a conventional conductor. This is because the static electricity applied to the object to be coated by electrostatic coating does not easily flow and accumulate in the case of a conductor.
  • the above-mentioned method in which a high voltage is directly applied to the paint from the high-voltage electrode to charge the paint cannot be sufficiently charged with a paint having a high resistance value. Paint is preferably used.
  • the charged paint particles discharged from the discharge source fly along the electrostatic field. Without flying, it flies along inertia and air flow and approaches the surface to be coated.
  • the paint particles are negatively charged, when the paint particles reach the surface to be coated, the negatively charged electrons move to the inside due to the repulsive force, and the positively charged nuclei are outside.
  • an electrostatic field is generated between the paint particles and the surface to be coated.
  • This electrostatic field is an electrostatic field formed between the paint particles and the coated surface when the negatively charged paint particles approach the conductive coated surface. Or known as the mirror image effect.
  • the paint particles When the paint particles are positively charged, the paint particles attract electrons on the surface to be coated, so that the surface to be coated becomes a negative pole contrary to the above. Due to such a mirror effect, a micro electrostatic field is generated in the vicinity of the coated surface, and the paint particles are applied to the coated surface by the electrostatic attraction.
  • the paint particles that flew along the inertia and air flow and approached the coated surface are applied to the coated surface by the electrostatic attraction of a micro electrostatic field generated in the vicinity of the coated surface.
  • the paint penetration into the recess is improved. Therefore, the concave portion and other portions (including the convex portion) can be coated equally, and the coating quality can be improved (coating film thickness can be made uniform).
  • the paint efficiency is improved (shortening the paint time) and the paint application efficiency is improved (reducing paint usage and reducing non-coating waste paint and discharged paint particles). Can be achieved.
  • the coated surface may include a weakly conductive or insulating region (nonconductive region) made of a nonconductive resin or the like.
  • the amount of ions reaching the surface to be coated is reduced, and charging of the non-conductive region is suppressed. Furthermore, by applying a low-resistance paint, the charge in the non-conductive area can be quickly transferred to the conductive area, and the charge in the non-conductive area can be maintained at a low level, and good electrostatic coating can be continued. Can be done. That is, even when a conductive region and a non-conductive region are mixed on the surface to be coated, the conductive region and the non-conductive region can be coated equally in the same process.
  • the electrostatic coating gun according to the present invention is an electrostatic coating gun used as the discharge source in the electrostatic coating method, and includes a paint supply path, a high voltage electrode, and a discharge port.
  • the paint circulates in the paint supply path.
  • the high voltage electrode is provided in the paint supply path, and charges the paint by directly applying a high voltage to the paint flowing through the paint supply path.
  • the discharge port is provided at or near the tip of the paint supply path and discharges the charged paint to the outside. That is, the electrostatic coating gun does not have a gun outer electrode portion such as a corona discharge electrode exposed to the outside.
  • the present invention it is possible to improve the penetration property of the paint into the concave portion and to suppress the occurrence of electrostatic spark.
  • FIG. It is the photograph which image
  • the up and down directions correspond to the up and down direction in FIG. 1, and the front and back correspond to the left and right in FIG.
  • a spray gun (electrostatic coating gun) 1 as a discharge source of the present embodiment is an automatic spray gun, for example, for electrostatic coating of a surface 21 to be coated including a conductive region. used.
  • the spray gun 1 includes an insulating resin gun body 2, an insulating resin paint nozzle 3 attached to the tip of the gun body 2, and a front end portion of the gun body 2 to cover the outer periphery of the paint nozzle 3. And an insulating resin air cap (for example, a fan pattern spray type) 4.
  • a cascade (high voltage generator) 5 in which a step-up transformer and a high-voltage rectifier circuit constituting a high-voltage generation circuit are integrally molded is housed in the upper part of the gun body 2.
  • the connecting rod 6 having the property is disposed downward.
  • the front end of the cascade 5 is in contact with the connecting rod 6 and both are electrically connected.
  • a hole 10 is formed in the center of the paint nozzle 3, and a metal high voltage direct application electrode (high voltage electrode) 31 is accommodated and supported in the hole 10.
  • the rear end portion of the high-voltage direct application electrode 31 is inserted into the hole 11 formed in the gun body 2 and is electrically connected to the connecting rod 7 via the spring 9.
  • the front end of the hole 10 communicates with the outside through the discharge port 12.
  • the air cap 4 is provided with two types of air injection ports (not shown).
  • One air injection port functions as atomizing air that atomizes the discharged paint (liquid paint), and the other injection port functions as pattern air that forms a spray of a fan pattern.
  • the high-frequency voltage taken from the power connector (not shown) is supplied to the step-up transformer in the cascade 5 via the wiring cable (not shown) in the grip 3.
  • the supplied high-frequency voltage is boosted by a step-up transformer, then further boosted by a high-voltage rectifier circuit and rectified at the same time, and a DC high voltage of minus several tens of thousands of volts is generated.
  • the generated DC high voltage is supplied from the cascade 5 to the high voltage direct application electrode 31 through the connecting rod 6 and the spring 9.
  • the applied high voltage is preferably about 50 kV to 60 kV, for example.
  • the gun body 2 is provided with a paint circulation hole 16 communicating with the hole 11, and the paint is supplied from the paint circulation hole 16 to the hole 11.
  • the coating material flowing through the hole 10 is applied by directly contacting the high voltage direct application electrode 31, and the coating material itself becomes a discharge electrode to carry charges, and becomes negatively charged coating particles, which are discharged from the discharge port 12 to the air. Atomized and discharged.
  • the paint is a low resistance paint having a low volume resistivity.
  • the volume specific resistance value of the paint is preferably 100 M ⁇ cm or less, more preferably 50 M ⁇ cm or less, and further preferably 20 M ⁇ cm or less.
  • the coated surface 21 of the workpiece 20 facing the spray gun 1 has an uneven shape (concave portion 24 and convex portion 25), and the ground portion 23 of the coated surface 21 is connected to a ground wire and grounded. .
  • the coated surface 21 is formed of a conductor such as metal or conductive resin.
  • the to-be-coated object 20 may be either a conductor or an insulator.
  • the coated surface 21 is applied by discharging charged paint from the spray gun 1 while suppressing the generation of an electrostatic field between the spray gun 1 and the coated surface 21 and suppressing the generation of free ions. It is applied to the surface 21 to be coated.
  • the generation of the electrostatic field and the generation of free ions between the spray gun 1 and the surface to be coated 21 are performed from the high voltage direct application electrode 31 by using the spray gun 1 having no corona discharge electrode exposed to the outside. It is suppressed by applying a high voltage directly to charge the paint negatively and applying the charged paint.
  • the present embodiment is implemented in that the charged paint is discharged from the spray gun 1 in a state in which the generation of an electrostatic field between the spray gun 1 and the surface to be coated 21 is suppressed and the generation of free ions is suppressed.
  • the form of electrostatic coating is essentially different from the conventional common electrostatic coating.
  • a spray gun having a corona pin In conventional general electrostatic coating, a spray gun having a corona pin is used. The tip of the corona pin corona discharges to ionize the air and forms an electrostatic field with the conductive coated surface 21. Air ionized by corona discharge flies along the formed electrostatic field. The spray gun discharges the atomized paint particles to an electrostatic field. The discharged paint particles are charged by being charged with ionized air, and are applied to the coated surface 21 while receiving an attractive force along the electrostatic field. At this time, of the ionized air, the air that has not given a charge to the paint particles is called free ions and flies along a trajectory mainly governed by the formed electrostatic field.
  • the formed electrostatic field has a high electric field strength with respect to the convex portion 25 of the coated surface 21 and a low electric field strength with respect to the concave portion 24. For this reason, the coating particles are likely to be excessively applied to the convex portion 25 and are difficult to enter the concave portion 24.
  • the spray gun since the generation of an electrostatic field (macro electrostatic field) between the spray gun 1 and the coated surface 21 is suppressed, the spray gun is charged negatively.
  • the coating particles discharged from the air atomized from 1 do not fly along the electrostatic field, fly along the inertia and the air flow, and approach the coated surface 21.
  • a micro electrostatic field is generated in the vicinity of the surface to be coated 21 due to the mirror effect, and the paint particles are applied to the surface 21 by electrostatic attraction.
  • the paint particles flying along the inertia and air flow and approaching the coated surface 21 are applied to the coated surface 21 by the electrostatic attraction of a micro electrostatic field generated in the vicinity of the coated surface 21.
  • the penetration property of the coating material into the recess 24 is improved. Therefore, the concave portion 24 and other portions (including the convex portion 25) can be coated equally, and the coating quality can be improved (coating film thickness can be made uniform). Further, by improving the penetration into the recess 24, it is possible to improve the painting efficiency (shortening the painting time) and the painting coating efficiency (reduce the amount of paint used).
  • the coating time was 180 seconds
  • the coating film thickness varied in the range of 40 to 80 ⁇ m
  • the coating efficiency was less than 50%.
  • the coating time is shortened to 90 seconds, the coating film thickness is uniformized in the range of 40-50 ⁇ m, and the coating efficiency is 73%, improving the coating efficiency (reducing the coating time) ), Improved coating quality (uniform coating film thickness), and improved coating efficiency (reduced paint usage).
  • a 500 cc PET bottle with irregularities on the surface was used as the object to be coated, and a conductive coated surface with irregularities was formed by covering the entire surface of the PET bottle with aluminum foil and attached to the reciprocator.
  • the automatic spray gun for electrostatic coating was reciprocated three reciprocally in the vertical direction, and the electrostatic coating was performed by discharging the paint only within the range of the PET bottle, and the coating efficiency was measured.
  • the paint six kinds of low-resistance paints (1 M ⁇ cm, 5 M ⁇ cm, 20 M ⁇ cm, 49 M ⁇ cm, 103 M ⁇ cm, 193 M ⁇ cm) having different volume specific resistance values were used.
  • the high voltage applied to the paint was 55 kV (electrostatic), and coating was also performed at 0 kV (non-electrostatic) for comparison.
  • the volume specific resistance value of the paint is preferably 100 M ⁇ cm or less, preferably 50 M ⁇ cm or less, and more preferably 20 M ⁇ cm or less.
  • 4 to 8 show that the injection of air from the air cap 7 which is the paint atomizing part of the gun body is completely stopped, the applied voltage is fixed at 60 kV, and the volume specific resistance value of the paint is changed to change the paint. It is the photograph which image
  • the coating liquid yarn at 200 M ⁇ cm (FIG. 4) is a water gun-like liquid yarn, whereas the coating liquid yarn at 100 M ⁇ cm (FIG. 5) is several cm after discharge. It was confirmed that the liquid yarn was electrostatically repelled and split and atomized. In addition, the spinous fission atomization occurs earlier as the volume resistivity of the paint decreases, the voltage drop in the paint liquid yarn decreases and the effective voltage increases, and the spine becomes prominent. Was confirmed.
  • the air spray type spray gun 1 has been described as an electrostatic coating gun that is negatively charged by directly applying a high voltage to the paint.
  • the electrostatic coating gun of the present invention is not limited thereto.
  • internal structure for directly applying a high voltage to the paint to make it negatively charged and a high-voltage applying conductor that generates free ions may be an airless spray gun or a rotary atomizing gun having an insulating structure.
  • the paint particles are negatively charged using the electrode on the coating apparatus side as the cathode.
  • the paint particles may be charged positively using the electrode on the coating apparatus side as the anode.
  • the coated surface 21 may include a weakly conductive or insulating region (nonconductive region) 26 made of a nonconductive resin or the like, as shown by a two-dot chain line in FIG. In FIG. 1, an example in which the conductive coated surface is partially covered with a non-conductive resin plate and the outer surface of the resin plate is part of the coated surface 21 is illustrated.
  • the electrostatic coating method of the present invention since the formation of a macro electric field and the generation of free ions are suppressed, the amount of ions reaching the surface to be coated 21 is reduced, and charging of the non-conductive region 26 is suppressed. . Furthermore, by applying the low resistance paint, the non-conductive region 26 can be kept at a low level, and good electrostatic coating can be continuously performed. That is, even when the conductive surface 21 and the non-conductive region 26 are mixed on the surface to be coated 21, both can be equally coated in the same process.
  • the present invention can be widely used for electrostatic coating of conductive coated surfaces.
  • Spray gun discharge source, electrostatic coating gun
  • Gun body 3 Paint nozzle 4: Air cap 5: Cascade (high voltage generator) 10: Hole (paint supply path) 12: Discharge port 20: Coating object 21: Coating surface 23: Grounding part 24: Concave part 25: Convex part 26: Non-conductive area 31: High voltage direct application electrode

Landscapes

  • Electrostatic Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

金属や導電性樹脂などの導電体を被塗面21とした静電塗装方法であり、スプレーガン1と被塗面21との間での静電界の発生を抑制し且つフリーイオンの発生を抑制した状態で、帯電した塗料をスプレーガン1から吐出させて被塗面21に塗布する。

Description

静電塗装方法及び静電塗装用ガン
 本発明は、導電性の被塗面の静電塗装方法及び静電塗装用ガンに関する。
 一般に、静電塗装とは、被塗物をアース極とし、塗装装置側の電極を陰極とし、これらの間に高電圧を加えることにより静電界(電気力線)を形成させるとともに、塗料粒子をマイナスに帯電させ、塗料と被塗物との間に静電気引力を働かせることにより、被塗物に塗料を効率良く塗着させる塗装方法である。静電塗装によって、塗装効率の向上(塗装つきまわり性の向上による塗装時間の短縮化)や、塗着効率の向上(被塗物に塗着する塗料の量比率の向上による塗料の使用量の低減化)などの効果を得ることができる。なお、つきまわりとは、被塗物の表面側から塗布された塗料が裏面側へ回り込んで塗着することである。
 従来の静電塗装方法は、塗料霧化の方式によって、エア霧化方式とエアレス霧化方式と回転霧化方式(ベルやデイスクによる霧化)の3種類に分けられる。さらに、静電気引力を発生させる高電圧印加方式によって、直接印加方式とコロナ放電方式に分けられる。直接印加方式は、回転霧化方式にのみ適用され、コロナ放電方式は、主にエア霧化方式とエアレス霧化方式に適用されている。なお、コロナ放電方式の一形態として、コロナ放電極と塗料吐出部とを離間して配置し、被塗物までの空間で塗料に静電気を帯電させる外部帯電方式がある。これはコロナ放電極を塗料吐出部に配置する一般的方式では高電圧が塗料経路から漏出してしまう高導電性塗料(水性塗料など)に多く用いられている。
 これらの塗料霧化方式と高電圧印加方式との組み合わせによって従来の静電塗装技術は構成されているが、その静電塗装メカニズムは共通している。すなわち、何れの組み合わせにおいても、塗料粒子に静電気を帯電させ、塗装機(実際にはコロナ放電極や回転霧化頭)と被塗物との間に形成させた静電界に沿って帯電塗料粒子を飛行させ、静電気引力を働かせている。
特開2010-279931号公報
 しかし、上記従来の静電塗装技術は、以下の2つの問題を抱えていた。
 その第1は、塗装機と被塗物との間に静電界を形成させる方式であるため、被塗物に凹凸が存在する場合、電界強度が強くなる凸部では、塗着効率が高くなって塗装膜厚が過剰となり易く、反対に、電界が形成されないか或いは電界強度が弱くなる凹部では、塗料が入り込み難く、塗装ができないか或いは塗り薄となるという問題である。この対策としては、静電塗装電圧を下げたり切ったりすることが行われてきたが、このような対応は、静電塗装に求められる効果そのものを低減又は減少させるものであり、本質的な対策とは言えなかった。
 その第2は、帯電した塗料粒子とともに、フリーイオンと呼ばれるイオン化した空気を大量に発生させてしまうという問題である。このフリーイオンは、帯電した塗料粒子に比べて圧倒的に質量が小さいため、慣性力が大きく働く塗料粒子とは異なり、静電気力に支配されて飛行する。この結果、静電塗装のターゲットである被塗物のみならず、周辺に存在する導電体にも降り注ぎ、導電体のアースが不十分な場合はこの導電体を帯電させる。そして、この帯電が静電スパークを引き起こし、火災を誘発してしまう可能性がある。なお、被塗物のアースが不十分な場合にも、静電スパークによる火災の誘発が起こり得る。
 このように、従来の静電塗装技術は、塗料が凹部に入り込み難いという問題と、静電スパークを引き起こすフリーイオンを発生させてしまうという問題を抱えていた。
 本発明は、上記実状に鑑みてなされたものであって、凹部への塗料の入り込み性が向上し、且つ静電スパークの発生を抑制することが可能な導電性被塗面の静電塗装方法及び静電塗装用ガンの提供を目的とする。
 上記目的を達成すべく、本発明に係る静電塗装方法は、金属や導電性樹脂などの導電体を被塗面とした静電塗装方法であり、吐出元と被塗面との間での静電界の発生を抑制し且つフリーイオンの発生を抑制した状態で、帯電した塗料(液体塗料)を吐出元から吐出させて被塗面に塗布する。
 吐出元と被塗面との間での静電界の発生とフリーイオンの発生とを抑制する方法は、外部に露出するコロナ放電極等のガン外電極部分を設けずに、塗装機内部の塗料経路に接するように配置した高電圧電極から塗装機内部で塗料に高電圧を直接印加して塗料を帯電させ、帯電した塗料を吐出元から吐出させる方法が好適である。
 また、塗料の体積固有抵抗値は、100MΩcm以下が好ましく、50MΩcm以下が好適であり、20MΩcm以下がさらに好適である。なお、体積固有抵抗値が100MΩcm以下の低抵抗塗料は、絶縁物の静電塗装には用いられてきたが、従来の導電体の静電塗装には意図して用いられることはなかった。なぜなら、静電塗装によって被塗物に与えられる静電気は、導電体の場合には容易にアースに流れて蓄積することがないためである。これに対し、高電圧電極から高電圧を塗料に直接印加して帯電させる上記方法では、抵抗値の高い塗料では塗料を十分に帯電させることができないため、従来の静電塗装とは異なり低抵抗塗料が好適に使用される。
 上記方法では、吐出元と被塗面との間での静電界(マクロな静電界)の発生を抑制しているので、帯電して吐出元から吐出した塗料粒子は、静電界に沿って飛行せず、慣性と空気流に沿って飛行して被塗面に近づく。塗料粒子をマイナス帯電させた場合で説明すると、塗料粒子が被塗面の直近に達すると、被塗面ではマイナス電荷を持つ電子が斥力を受けて内側へ移動し、プラス電位を持つ原子核が外側に残存してプラス極となり、塗料粒子と被塗面との間に静電界が生じる。この静電界は、マイナスに帯電した塗料粒子が導電性の被塗面に接近することによって、塗料粒子と被塗面との間で形成される静電界であり、このような現象は、ミラー効果又は鏡像効果として知られている。なお、塗料粒子をプラスに帯電させた場合には、塗料粒子が被塗面の電子を引き寄せるため、上記とは逆に被塗面がマイナス極となる。このようなミラー効果によって、被塗面の近傍でミクロな静電界が発生し、その静電引力によって塗料粒子が被塗面に塗着する。
 このように、慣性と空気流に沿って飛行して被塗面に近づいた塗料粒子が、被塗面の近傍で発生するミクロな静電界の静電引力によって被塗面に塗着するので、凹部への塗料の入り込み性が向上する。従って、凹部と他の部分(凸部を含む)とを同等に塗装することができ、塗装品質の向上(塗装膜厚の均一化)を図ることができる。また、凹部への入り込み性の向上によって、塗装効率の向上(塗装時間の短縮化)及び塗装塗着効率の向上(塗料使用量の低減化及び非塗着廃棄塗料・排出塗料粒子の低減化)を図ることができる。
 また、フリーイオンの発生が抑制されるので、静電スパークの発生が抑制され、安全性が向上する。
 また、上記被塗面は、非導電性樹脂などからなる弱導電性又は絶縁性の領域(非導電性領域)を含んでいてもよい。
 上記方法では、マクロな電界の形成及びフリーイオンの発生が抑制されているため、被塗面に到達するイオン量が低減し、非導電性領域の帯電が抑制される。更に低抵抗塗料が塗布されることで非導電性領域の電荷は速やかに導電性領域に移行し、非導電性領域の帯電を低レベルに維持することができ、良好な静電塗装を継続して行うことができる。すなわち、被塗面に導電性領域と非導電性領域とが混在している場合であっても、導電性領域と非導電性領域とを同一の工程内で同等に塗装することができる。
 本発明に係る静電塗装用ガンは、上記静電塗装方法において上記吐出元として使用する静電塗装ガンであって、塗料供給路と高電圧電極と吐出口とを備える。塗料供給路には、塗料が流通する。高電圧電極は、塗料供給路に設けられ、塗料供給路を流通する塗料に高電圧を直接印加して塗料を帯電させる。吐出口は、塗料供給路の先端またはその近傍に設けられ、帯電した塗料を外部へ吐出する。すなわち、この静電塗装用ガンは、外部に露出するコロナ放電極等のガン外電極部分を有さない。
 本発明によれば、凹部への塗料の入り込み性を向上させることができ、且つ静電スパークの発生を抑制することができる。
本実施形態の静電塗装用ガンの断面図である。 図1の静電塗装用ガンの分解斜視図である。 効果確認実験2の結果を示すグラフである。 体積固有抵抗値が200MΩcmの塗料に60kボルトの電圧をかけ、スプレーエアを止めて水鉄砲状に吐出させたときの様子を撮影した写真である。 体積固有抵抗値が100MΩcmの塗料に60kボルトの電圧をかけ、スプレーエアを止めて水鉄砲状に吐出させたときの様子を撮影した写真である。 体積固有抵抗値が50MΩcmの塗料に60kボルトの電圧をかけ、スプレーエアを止めて水鉄砲状に吐出させたときの様子を撮影した写真である。 体積固有抵抗値が20MΩcmの塗料に60kボルトの電圧をかけ、スプレーエアを止めて水鉄砲状に吐出させたときの様子を撮影した写真である。 体積固有抵抗値が10MΩcmの塗料に60kボルトの電圧をかけ、スプレーエアを止めて水鉄砲状に吐出させたときの様子を撮影した写真である。
 以下、本発明の一実施形態を図面を参照して説明する。なお、以下の説明における上下は、図1中の上下方向に対応し、前後は、図1中の左右に対応する。
 図1に示すように、本実施形態の吐出元としてのスプレーガン(静電塗装用ガン)1は、例えば自動スプレーガンであり、導電性を有する領域を含む被塗面21の静電塗装に使用される。この実施形態では、被塗面21の全域が導電性を有する場合について説明する。スプレーガン1は、絶縁樹脂製のガン本体2と、ガン本体2の先端部に取り付けられた絶縁樹脂製のペイントノズル3と、ガン本体2の前端部に取り付けられてペイントノズル3の外周を覆う絶縁樹脂製のエアキャップ(例えば扇パターンの噴霧を形成するタイプ)4とを備える。
 ガン本体2内の上部には、高電圧発生回路を構成する昇圧トランス及び高圧整流回路を一体にモールドしたカスケード(高電圧発生装置)5が収納され、ガン本体2内の前上部には、導電性を有する連体棒6が下方に向かって配設されている。カスケード5の前端は、連体棒6と当接し、両者は電気的に接続している。
 ペイントノズル3の中心部には孔10が形成され、この孔10に金属製の高電圧直接印加電極(高電圧電極)31が収容され支持されている。高電圧直接印加電極31の後端部は、ガン本体2に形成された孔11に挿入され、スプリング9を介して連体棒7に電気的に接続されている。孔10の前端は、吐出口12を介して外部と連通する。
 エアキャップ4には、2種類のエア噴射口(図示省略)が設けられている。一方のエア噴射口は、吐出された塗料(液体塗料)を霧化する霧化エアとして機能し、他方の噴射口は、扇パターンの噴霧を形成するパターンエアとして機能する。
 電源コネクタ(図示外)から取り入れられた高周波電圧は、グリップ3内の配線ケーブル(図示外)を介してカスケード5内の昇圧トランスに供給される。供給された高周波電圧は、昇圧トランスで昇圧された後、高電圧整流回路で更に昇圧されると同時に整流され、マイナス数万Vの直流高電圧が発生する。発生した直流高電圧は、カスケード5から連体棒6及びスプリング9を介して高電圧直接印加電極31に供給される。なお、印加する高電圧は、例えば50kV~60kV程度が好適である。
 ガン本体2には、孔11と連通する塗料流通孔16が形成され、塗料は、塗料流通孔16から孔11へ供給される。孔10を流通する塗料は、高電圧直接印加電極31に直接接触することによって印加され、塗料そのものが放電極となって電荷を担持し、マイナスに帯電した塗料粒子となって吐出口12からエア霧化され吐出される。塗料は、その体積固有抵抗値が低い低抵抗塗料である。塗料の体積固有抵抗値は、100MΩcm以下が好ましく、50MΩcm以下が好適であり、20MΩcm以下がさらに好適である。
 スプレーガン1が対向する被塗物20の被塗面21は、凹凸形状(凹部24及び凸部25)を有し、被塗面21の接地部23は、アース線に接続されて接地される。被塗面21は、金属や導電性樹脂などの導電体によって形成されている。なお、被塗面21が導電性を有していれば、被塗物20は導電体又は絶縁体の何れであってもよい。
 被塗面21の塗装は、スプレーガン1と被塗面21との間での静電界の発生を抑制し且つフリーイオンの発生を抑制した状態で、帯電した塗料をスプレーガン1から吐出させて被塗面21に塗布する。
 スプレーガン1と被塗面21との間での静電界の発生とフリーイオンの発生とは、外部に露出するコロナ放電極を有さないスプレーガン1を用いて、高電圧直接印加電極31から高電圧を直接印加して塗料をマイナスに帯電させ、帯電した塗料を塗布することによって抑制される。
 このように、スプレーガン1と被塗面21との間での静電界の発生を抑制し且つフリーイオンの発生を抑制した状態で、帯電した塗料をスプレーガン1から吐出させる点において、本実施形態の静電塗装は、従来の一般的な静電塗装とは本質的に相違する。
 従来の一般的な静電塗装では、コロナピンを有するスプレーガンが使用される。コロナピンの先端は、コロナ放電して空気をイオン化するとともに、導電性の被塗面21との間に静電界を形成する。コロナ放電によってイオン化した空気は、形成された静電界に沿って飛行する。スプレーガンは、エア霧化した塗料粒子を静電界に吐出する。吐出された塗料粒子は、イオン化した空気から電荷が与えられて帯電し、静電界に沿った引力を受けながら被塗面21に塗着する。この際、イオン化した空気のうち、塗料粒子に電荷を与えなかった空気はフリーイオンと呼ばれ、形成された静電界に主に支配された軌道に沿って飛行する。形成される静電界は、被塗面21の凸部25に対する電界強度が強く、凹部24に対する電界強度が弱くなる。このため、塗料粒子は、凸部25には過剰に塗着し易く、凹部24には入り込み難くい。
 これに対し、本実施形態の静電塗装では、スプレーガン1と被塗面21との間での静電界(マクロな静電界)の発生を抑制しているので、マイナスに帯電してスプレーガン1からエア霧化されて吐出した塗料粒子は、静電界に沿って飛行せず、慣性と空気流に沿って飛行して被塗面21に近づく。塗料粒子が被塗面21の直近に達すると、ミラー効果によって、被塗面21の近傍でミクロな静電界が発生し、その静電引力によって塗料粒子が被塗面21に塗着する。すなわち、慣性と空気流に沿って飛行して被塗面21に近づいた塗料粒子が、被塗面21の近傍で発生するミクロな静電界の静電引力によって被塗面21に塗着するので、凹部24への塗料の入り込み性が向上する。従って、凹部24と他の部分(凸部25を含む)とを同等に塗装することができ、塗装品質の向上(塗装膜厚の均一化)を図ることができる。また、凹部24への入り込み性の向上によって、塗装効率の向上(塗装時間の短縮化)及び塗装塗着効率の向上(塗料使用量の低減化)を図ることができる。
 また、フリーイオンの発生が抑制されるので、静電スパークの発生が抑制され、安全性が向上する。
 <効果確認実験1>
 次に、効果確認実験1について説明する。
 本実験では、エアレスマニュアル塗装(非静電塗装)と本発明の静電塗装とを比較した。なお、静電塗装塗において、塗料に印加した高電圧は55kVであり、塗料の体積固有抵抗値は1MΩcmである。
 エアレスマニュアル塗装では、塗装時間が180秒であり、塗装膜厚が40~80μmの範囲でばらつき、塗着効率は50%未満であった。
 これに対し、静電塗装では、塗装時間が90秒に短縮され、塗装膜厚が40~50μmの範囲に均一化され、塗着効率は73%であり、塗装効率の向上(塗装時間の短縮化)、塗装品質の向上(塗装膜厚の均一化)及び塗装塗着効率の向上(塗料使用量の低減化)が確認された。
 <効果確認実験2>
 次に、効果確認実験2について説明する。
 本実験では、被塗物として表面に凹凸を有する500ccのペットボトルを使用し、ペットボトルの表面全域をアルミ箔で覆うことによって凹凸を有する導電性の被塗面を形成し、レシプロケータに取り付けた静電塗装用の自動スプレーガンを、縦方向に3往復レシプロさせ、ペットボトルの範囲でのみ塗料を吐出させて静電塗装を行い、塗着効率を測定した。塗料は、体積固有抵抗値が異なる6種類の低抵抗塗料(1MΩcm、5MΩcm、20MΩcm、49MΩcm、103MΩcm、193MΩcm)を使用した。塗料に印加した高電圧は55kV(静電)であり、比較のため0kV(非静電)での塗装も行った。
 効果確認実験3の結果を、図3に示す。この結果から、塗料の体積固有抵抗値は、100MΩcm以下が好ましく、50MΩcm以下が好適であり、20MΩcm以下がさらに好適であることが判る。
 <効果確認実験3>
 次に、効果確認実験3について、図4~図8を参照して説明する。この実験では、高電圧直接印加電極31との接触によって印加された塗料の状態を観察した。
 図4~図8は、ガン本体の塗料霧化部であるエアキャップ7からのエアの噴射を完全に停止し、印加電圧を60kVに固定し、塗料の体積固有抵抗値を変更して塗料を吐出口12から水鉄砲状に吐出させた様子を撮影した写真である。図4は200MΩcm、図5は100MΩcm、図6は50MΩcm、図7は20MΩcm、図8は10MΩcmである。
 これらの図から明らかなように、200MΩcm(図4)のときの塗料液糸は、水鉄砲状の液糸であるのに対し、100MΩcm(図5)のときの塗料液糸では、吐出後数cm先で液糸が静電反発を起こして棘状に分裂霧化していることが確認された。また、棘状の分裂霧化は、塗料の体積固有抵抗値が低くなるほど、塗料液糸内の電圧降下が小さくなって実効電圧が上昇することにより早期に発生し、棘状も顕著化することが確認された。
 なお、上記実施形態では、塗料に高電圧を直接印加してマイナスに帯電させる静電塗装用ガンとして、エアスプレータイプのスプレーガン1を説明したが、本発明の静電塗用ガンはこれに限定されるものではなく、塗料に高電圧を直接印加してマイナスに帯電させるための内部構造とフリーイオン発生する高電圧印加導電体(コロナ電極ピン、金属ベルカップ、金属スプレーキャップ、金属スプレーノズルなど)を絶縁体化した構造を有するエアレススプレーガンや回転霧化ガンであってもよい。
 また、上記実施形態では、塗装装置側の電極を陰極として塗料粒子をマイナスに帯電させる場合について説明したが、塗装装置側の電極を陽極として塗料粒子をプラスに帯電させてもよい。
 また、被塗面21は、図1に2点鎖線で示すように、非導電性樹脂などからなる弱導電性又は絶縁性の領域(非導電性領域)26を含んでいてもよい。なお、図1では、導電性の被塗面を部分的に非導電性の樹脂板で覆い、樹脂板の外面を被塗面21の一部とした例を図示している。
 本発明の静電塗装方法では、マクロな電界の形成及びフリーイオンの発生が抑制されているため、被塗面21に到達するイオン量が低減し、非導電性領域26の帯電が抑制される。更に低抵抗塗料が塗布されることで非導電性領域26の帯電を低レベルに維持することができ、良好な静電塗装を継続して行うことができる。すなわち、被塗面21に導電性領域と非導電性領域26とが混在している場合であっても、両者を同一の工程内で同等に塗装することができる。
 以上、本発明者によってなされた発明を適用した実施形態について説明したが、上記実施形態による本発明の開示の一部をなす論述及び図面により本発明は限定されることはない。すなわち、この実施形態に基づいて当業者等によりなされる他の実施形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論であることを付け加えておく。
 本発明は、導電性の被塗面の静電塗装に広く用いることができる。
1:スプレーガン(吐出元、静電塗装用ガン)
2:ガン本体
3:ペイントノズル
4:エアキャップ
5:カスケード(高電圧発生装置)
10:孔(塗料供給路)
12:吐出口
20:被塗物
21:被塗面
23:接地部
24:凹部
25:凸部
26:非導電性領域
31:高電圧直接印加電極

Claims (5)

  1.  被塗面を塗装する静電塗装方法であって、
     前記被塗面は、導電性を有する領域を含み、
     吐出元と前記被塗面との間での静電界の発生を抑制し且つフリーイオンの発生を抑制した状態で、帯電した塗料を前記塗料吐出元から吐出させて前記被塗面に塗布する
     ことを特徴とする静電塗装方法。
  2.  請求項1に記載の静電塗装方法であって、
     前記被塗面は、弱導電性又は絶縁性を有する領域を含む
     ことを特徴とする静電塗装方法。
  3.  請求項1又は請求項2に記載の静電塗装方法であって、
     高電圧電極から高電圧を塗料に直接印加して帯電させ、帯電した塗料を前記吐出元から吐出させることによって、前記吐出元と前記被塗面との間での静電界の発生を抑制し且つフリーイオンの発生を抑制する
     ことを特徴とする静電塗装方法。
  4.  請求項1~請求項3の何れか1項に記載の静電塗装方法であって、
     前記塗料の体積固有抵抗値は、100MΩcm以下である
     ことを特徴とする静電塗装方法。
  5.  請求項1~請求項4の何れか1項に記載の静電塗装方法において前記吐出元として使用する静電塗装ガンであって、
     塗料が流通する塗料供給路と、
     前記塗料供給路に設けられ、該塗料供給路を流通する塗料に高電圧を直接印加して塗料を帯電させる高電圧電極と、
     前記塗料供給路の先端に設けられ、帯電した塗料を外部へ吐出する吐出口と、を備えた
     ことを特徴とする静電塗装用ガン。
PCT/JP2012/073855 2011-09-20 2012-09-18 静電塗装方法及び静電塗装用ガン WO2013042666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12834334.0A EP2786805A4 (en) 2011-09-20 2012-09-18 METHOD FOR ELECTROSTATIC PAINT AND GUN FOR ELECTROSTATIC PAINT
CN201280056981.0A CN103945950B (zh) 2011-09-20 2012-09-18 静电涂装方法及静电涂装用枪
US14/362,524 US10576496B2 (en) 2011-09-20 2012-09-18 Electrostatic coating method and gun for electrostatic coating
US16/667,973 US20200061664A1 (en) 2011-09-20 2019-10-30 Electrostatic coating method and gun for electrostatic coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-205203 2011-09-20
JP2011205203A JP5787223B2 (ja) 2011-09-20 2011-09-20 静電塗装方法及び静電塗装用ガン

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/362,524 A-371-Of-International US10576496B2 (en) 2011-09-20 2012-09-18 Electrostatic coating method and gun for electrostatic coating
US16/667,973 Division US20200061664A1 (en) 2011-09-20 2019-10-30 Electrostatic coating method and gun for electrostatic coating

Publications (1)

Publication Number Publication Date
WO2013042666A1 true WO2013042666A1 (ja) 2013-03-28

Family

ID=47914430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073855 WO2013042666A1 (ja) 2011-09-20 2012-09-18 静電塗装方法及び静電塗装用ガン

Country Status (5)

Country Link
US (2) US10576496B2 (ja)
EP (1) EP2786805A4 (ja)
JP (1) JP5787223B2 (ja)
CN (1) CN103945950B (ja)
WO (1) WO2013042666A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636629A (zh) * 2018-05-08 2018-10-12 杭州福路涂装设备有限公司 防反弹的静电涂装装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107940A (en) * 1978-02-14 1979-08-24 Ransburg Japan Ltd Air spray type automatic electrostatic coating gun
JPS6328148U (ja) * 1986-08-06 1988-02-24
JPH1057846A (ja) * 1996-08-21 1998-03-03 Ransburg Ind Kk 粉体塗料用静電塗装機
JP2007038081A (ja) * 2005-08-01 2007-02-15 Toyota Central Res & Dev Lab Inc 電気絶縁性基材の静電塗装方法
JP2010279931A (ja) 2009-06-08 2010-12-16 Asahi Sunac Corp 静電塗装用スプレーガン

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591080A (en) * 1969-09-15 1971-07-06 Champion Spark Plug Co Electrostatic spray gun
US4502629A (en) * 1983-01-18 1985-03-05 Nordson Corporation Nozzle assembly for electrostatic spray guns
US4819879A (en) * 1985-10-25 1989-04-11 Nordson Corporation Particle spray gun
US4824026A (en) 1986-08-06 1989-04-25 Toyota Jidosha Kabushiki Kaisha And Ransburg-Gema K.K. Air atomizing electrostatic coating gun
HUT47050A (en) 1986-11-18 1989-01-30 Gyoergy Benedek Electrostatic paint sprayer for spraying low-resistance paints and metal-effective lacquers
JPH0889853A (ja) * 1994-07-29 1996-04-09 Nissan Motor Co Ltd コロナ放電方法および静電塗装装置
US5585426A (en) 1994-10-05 1996-12-17 Nexus Corporation Process for imparting an electrostatic charge to powders to render them useful for coating application
US20030080220A1 (en) * 1999-09-16 2003-05-01 Mather Brian D. Powder spray gun with inline angle spray nozzle
US7241344B2 (en) * 2004-02-10 2007-07-10 Boston Scientific Scimed, Inc. Apparatus and method for electrostatic spray coating of medical devices
JP2006051427A (ja) 2004-08-11 2006-02-23 Anest Iwata Corp 静電塗装用スプレーガン及び静電塗装方法
US7913938B2 (en) * 2004-11-12 2011-03-29 Mystic Tan, Inc. Electrostatic spray nozzle with adjustable fluid tip and interchangeable components
WO2006126716A1 (ja) * 2005-05-25 2006-11-30 Anest Iwata Corporation 粉体静電塗装用スプレーガン
CN101353876B (zh) * 2007-07-27 2010-11-10 许鸿宪 纸张表面静电喷涂工艺及其专用高压静电喷涂系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107940A (en) * 1978-02-14 1979-08-24 Ransburg Japan Ltd Air spray type automatic electrostatic coating gun
JPS6328148U (ja) * 1986-08-06 1988-02-24
JPH1057846A (ja) * 1996-08-21 1998-03-03 Ransburg Ind Kk 粉体塗料用静電塗装機
JP2007038081A (ja) * 2005-08-01 2007-02-15 Toyota Central Res & Dev Lab Inc 電気絶縁性基材の静電塗装方法
JP2010279931A (ja) 2009-06-08 2010-12-16 Asahi Sunac Corp 静電塗装用スプレーガン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2786805A4

Also Published As

Publication number Publication date
CN103945950A (zh) 2014-07-23
US20150165474A1 (en) 2015-06-18
US10576496B2 (en) 2020-03-03
CN103945950B (zh) 2016-03-16
US20200061664A1 (en) 2020-02-27
EP2786805A1 (en) 2014-10-08
EP2786805A4 (en) 2015-10-21
JP5787223B2 (ja) 2015-09-30
JP2013066817A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
US20060081729A1 (en) Electrostatic spraying apparatus
JPS6013755B2 (ja) 液状塗料を物品に静電気的に被着させる装置
JP5943290B2 (ja) 静電塗装方法及び静電塗装用ガン
US9724728B2 (en) Electrostatic coating method
WO2013132687A1 (ja) 静電塗装用スプレー装置
JP5787223B2 (ja) 静電塗装方法及び静電塗装用ガン
JP2010279931A (ja) 静電塗装用スプレーガン
US20130216725A1 (en) Method for electrostatically coating objects and application device
EP3593906B1 (en) Electrostatic coating machine
JP2008119557A (ja) 外部電極を備えた外部帯電式静電塗装ガン
US20190217316A1 (en) Spray Plume Shaping System and Method
JP5633990B2 (ja) 静電塗装装置
JP2007203158A (ja) 静電塗装用ガン
JP2011255277A (ja) 静電塗装装置
JP7572718B2 (ja) 静電塗装用スプレーガン
WO2020084961A1 (ja) 直接帯電方式の溶剤系塗料使用静電塗装方法及び静電塗装装置
JP7177468B2 (ja) 静電塗装用スプレーガン
JP2024115513A (ja) 静電塗装用スプレーガン
JP2018020275A (ja) 静電塗装用ガン
JPH1034027A (ja) 静電被膜形成用ガン及び静電被膜形成装置
JPS5933489Y2 (ja) 静電式粉体塗装ガン
JPH0924306A (ja) 静電塗装装置
JPH0857364A (ja) 静電粉体塗装装置
JPWO2013132687A1 (ja) 静電塗装用スプレー装置
JP2006095498A (ja) 静電塗装ガン及び静電塗装方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280056981.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362524

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012834334

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012834334

Country of ref document: EP