WO2013042533A1 - Organic electroluminescent panel and method for producing organic electroluminescent panel - Google Patents

Organic electroluminescent panel and method for producing organic electroluminescent panel Download PDF

Info

Publication number
WO2013042533A1
WO2013042533A1 PCT/JP2012/072408 JP2012072408W WO2013042533A1 WO 2013042533 A1 WO2013042533 A1 WO 2013042533A1 JP 2012072408 W JP2012072408 W JP 2012072408W WO 2013042533 A1 WO2013042533 A1 WO 2013042533A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive sealing
layer
sealing members
organic
Prior art date
Application number
PCT/JP2012/072408
Other languages
French (fr)
Japanese (ja)
Inventor
真昭 村山
大谷 浩
夏樹 山本
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2013534657A priority Critical patent/JP6102741B2/en
Publication of WO2013042533A1 publication Critical patent/WO2013042533A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/82Interconnections, e.g. terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8721Metallic sealing arrangements

Definitions

  • the present invention relates to an organic electroluminescence panel and a method for producing an organic electroluminescence panel.
  • an organic electroluminescence element (hereinafter also referred to as an organic EL element) is known as a planar light emitting element which is a planar light source body.
  • the organic EL element has a configuration including an organic functional layer sandwiched between a pair of electrodes on a support substrate, and the organic functional layer includes a plurality of layers having different functions, for example, a hole injection layer, A hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are provided. Since such an organic EL element emits light when a DC voltage is supplied, a connection part (feeding part) for applying a DC voltage from the outside to the electrode part of the organic EL element is required.
  • FIG. 4 Various systems are disclosed as the structure of such a power feeding unit.
  • the organic EL element 20 shown in FIG. 4 the organic functional layer 23 is sandwiched between the pair of electrodes 22 and 24 on the support substrate 21, and the organic functional layer 23 is covered in such an organic EL element 20.
  • a sealing member 27 is provided via an adhesive layer 25 so that side end portions of the anode 22 and the cathode 24 are exposed.
  • positioned on the anode 22 and the cathode 24 exposed from the side edge part of the sealing member 27 is disclosed.
  • a technique is known in which an anode power supply unit and a cathode power supply unit are arranged on the transparent substrate along two parallel sides of a rectangular light emitting unit formed on the transparent substrate. (See Patent Document 1).
  • non-light emitting area E (see FIG. 4)
  • a region where the emitted light cannot be extracted (non-light emitting area E (see FIG. 4)) becomes large.
  • a non-light emitting area between the organic EL elements as a whole becomes conspicuous, and the organic EL elements arranged in this way
  • This invention is made
  • an organic electroluminescence element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a supporting substrate is provided on the second electrode.
  • an organic electroluminescent element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a support substrate is provided on the second electrode.
  • the non-light emitting area in plan view can be reduced.
  • FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A. It is for demonstrating the modification of the organic electroluminescent panel of FIG. 1C, and is sectional drawing of an organic electroluminescent panel. Sectional drawing of an organic electroluminescent panel for showing 2nd Embodiment. Sectional drawing of an organic EL element for showing a prior art example.
  • FIGS. 1A and 1C are cross-sectional views taken along the line II of FIG. 1A.
  • the organic EL panel 100 includes a first electrode (anode 2), an organic functional layer 3 including a light emitting layer, and a second electrode (cathode 4) on a support substrate 1.
  • Insulating adhesive layers 5 and 6 (hereinafter simply referred to as adhesive layers) and a plurality of conductive sealing members 7 to 9 (hereinafter simply referred to as sealing members) laminated on the second electrode 4 in this order. , Is provided.
  • the first electrode is described as the anode 2 and the second electrode is described as the cathode 4.
  • the anode 2 is provided on the upper surface of the support substrate 1 so as to cover the support substrate 1 except for one side end portion (hereinafter referred to as a right end portion) of the support substrate 1. It extends to the side end (hereinafter referred to as the left end).
  • the organic functional layer 3 is provided so as to cover the anode 2 except for the left end portion of the anode 2 from a part of the exposed upper surface of the support substrate 1 that is not covered with the anode 2.
  • the cathode 4 is provided so as to cover the organic functional layer 3 except for the left end portion of the organic functional layer 3 from the exposed upper surface of the support substrate 1 that is not covered with the anode 2 and the organic functional layer 3. , Extending to the right end of the support substrate 1.
  • the support substrate 1, the anode 2, the organic functional layer 3 and the cathode 4 are sealed by the first and second insulating adhesive layers 5 and 6 and a plurality of sealing members 7 to 9. It has a stop structure.
  • the state in which the cathode 4 is sealed (covered) by the plurality of sealing members 7 to 9 is called an organic EL panel 100, and the state in which the support substrate 1 to the cathode 4 are formed is organic. This is referred to as EL element 10.
  • the first sealing member 7 and the second sealing member 8 are disposed on the organic EL element 10 via the first adhesive layer 5. That is, the first adhesive layer 5 is formed on the exposed upper surface of the anode 2, the organic functional layer 3, and the cathode 4. And the 1st sealing member 7 and the 2nd sealing member 8 are provided in the said 1st contact bonding layer 5 at predetermined intervals on the same plane. Further, in the gap S formed between the right end portion of the first sealing member 7 and the left end portion of the second sealing member 8, the first sealing member 7 and the second sealing member 8. A second adhesive layer 6 is formed at the center of the upper surface of the substrate. A third sealing member 9 is provided on the second adhesive layer 6.
  • the third sealing member 9 covers the gap S between the first and second sealing members 7 and 8.
  • the first to third sealing members 7 to 9 are arranged so as not to be in electrical contact with each other via the first and second adhesive layers 5 and 6.
  • the organic EL panel 100 has a sealing structure in which the organic EL element 10 is sealed by the first to third sealing members 7 to 9.
  • the first and second sealing members 7 and 8 have substantially the same size.
  • the third sealing member 9 is slightly smaller than the first and second sealing members 7 and 8 in FIGS. 1A to 1C, but is the same as the first and second sealing members 7 and 8. It may be a size or may be larger than the first and second sealing members 7 and 8.
  • the size of the third sealing member 9 is increased, the distance from the left and right end portions of the third sealing member 9 to the gap S between the first and second sealing members 7 and 8 becomes longer. Therefore, it is possible to more reliably block moisture and oxygen from entering, and to improve the sealing function.
  • the support substrate 1 and the entire first to third sealing members 7 to 9 are viewed in plan, the outer shape of the support substrate 1 and the entire first to third sealing members 7 to 9 are displayed. And may be adjusted as appropriate so as to be the same size.
  • the first to third sealing members 7 to 9 have conductivity.
  • a metal plate and metal foil are mentioned, and metal foil is preferable.
  • the metal foil include copper foil, aluminum foil, gold foil, brass foil, nickel foil, titanium foil, copper alloy foil, stainless steel foil, tin foil, and high nickel alloy foil.
  • a particularly preferable metal foil is an aluminum foil.
  • the metal foil refers to a metal foil formed by the rolling, but a metal thin film or a conductive film formed by sputtering or vapor deposition on a polymer film. It may be a conductive film formed from a fluid electrode material such as a paste.
  • polyethylene resin polypropylene resin, polyethylene terephthalate resin
  • examples include polyamide resins, ethylene-vinyl alcohol copolymer resins, ethylene-vinyl acetate copolymer resins, acrylonitrile-butadiene copolymer resins, cellophane resins, vinylon resins, vinylidene chloride resins, and the like.
  • Resins such as polypropylene resin and nylon resin may be stretched and further coated with vinylidene chloride resin.
  • a polyethylene resin having a low density or a high density can be used.
  • a generally used laminating machine can be used as a method for laminating the polymer film on one side of the metal foil.
  • an adhesive such as polyurethane, polyester, epoxy, or acrylic can be used as the adhesive. You may use a hardening
  • a hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
  • the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste, the metal foil may be formed using a polymer film as a base material.
  • a protective film and the protective plate a glass plate, a polymer plate / film, a metal plate / film, and the like can be used.
  • a polymer film because it is lightweight and thin.
  • the adhesive that forms the first and second adhesive layers 5 and 6 is an insulating material, for example, a thermosetting adhesive made of a thermoplastic resin, an epoxy resin, an acrylic resin, a silicone resin, or the like. Resins can be used. More specifically, photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2-cyanoacrylates can be mentioned. . Moreover, heat
  • the adhesive can be cured from room temperature to 80 ° C.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
  • the gap between the first to third sealing members 7 to 9 and the organic EL element 10 has a filling structure filled with the first and second adhesive layers 5 and 6, but in the gas phase and the liquid phase, nitrogen, An inert gas such as argon or an inert liquid such as fluorinated hydrocarbon or silicon oil may be injected. A vacuum can also be used.
  • At least the first sealing member 7 and the organic EL element 10 and the second sealing member 8 and the organic EL element 10 are each locally insulatively bonded. A layer is provided so that a predetermined interval can be maintained. Insulating adhesive layers are also locally provided between the first sealing member 7 and the third sealing member 9 and between the second sealing member 8 and the third sealing member 9. Is provided so that a predetermined interval can be maintained.
  • a hygroscopic compound can be sealed in the gap between the first to third sealing members 7 to 9 and the organic EL element 10.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • the organic EL panel 100 includes an anode power supply unit 11 for supplying power to the anode 2 from an external power source, and a cathode power supply unit 12 for supplying power to the cathode 4 from an external power source. .
  • the anode power supply unit 11 is provided on the upper surface of the first sealing member 7, and the cathode power supply unit 12 is provided on the upper surface of the second sealing member 8.
  • the power feeding unit 12 is provided on a different sealing member.
  • the anode power supply unit 11 and the cathode power supply unit 12 are provided outside the first and second adhesive layers 5 and 6.
  • the left end portion of the first sealing member 7 and the left end portion of the anode 2 are electrically connected.
  • Examples of the electrical connection method include a method capable of connecting in a narrow area. For example, as shown in FIG. 1A to FIG. 1C, it is electrically connected by soldering 13 so as to cover the ends of both members.
  • a method of electrically connecting the ends of both members by dispersing the conductive filler 14 in the first adhesive layer 5 can be mentioned.
  • the conductive filler 14 is dispersed in the first adhesive layer 5 so as to be in contact with the lower surface of the first sealing member 7 and the upper surface of the anode 2.
  • an electrical connection method it is a simple method.
  • the outside of the first adhesive layer 5 is covered with the solder 13 or the conductive paste. Therefore, as compared with the end sealing only by the first adhesive layer 5, it is possible to reliably suppress the intrusion of moisture and oxygen and perform the end sealing.
  • the right end portion of the second sealing member 8 and the right end portion of the cathode 4 are also electrically connected. Examples of the electrical connection method include the same connection methods as described above.
  • the organic functional layer 4 can be configured as long as it includes at least a light emitting layer.
  • the organic functional layer 4 includes, for example, a hole transport layer, an electron transport layer, a cathode buffer layer (electron injection layer) described later, and the like. . And by sending an electric current through such an organic functional layer 4 (light emitting layer), the light emitting material in a light emitting layer light-emits.
  • an adhesive is applied to the exposed upper surfaces of the anode 2, the organic functional layer 3, and the cathode 4 of the organic EL element 10, and the first and second sealing are performed on the first adhesive layer 5 made of the applied adhesive.
  • the members 7 and 8 are provided at a predetermined interval on the same plane.
  • the first and second sealing members 7 and 8 cover the portion excluding the central portion of the organic EL element 10.
  • an adhesive is applied to the gap S between the first and second sealing members 7 and 8 and the central portion on the first and second sealing members 7 and 8, and the first made of the applied adhesive.
  • a third sealing member 9 is provided for the two adhesive layers 6.
  • the first adhesive layer 5 is formed by coating the exposed upper surfaces of the anode 2, the organic functional layer 3, and the cathode 4, and then the first and second sealing members are applied to the first adhesive layer 5. 7 and 8 are provided, but conversely, an adhesive is applied to the first and second sealing members 7 and 8 to form the first adhesive layer 5, and this first adhesive layer 5 is used as the anode 2.
  • the first and second sealing members 7 and 8 may be provided on the exposed upper surfaces of the organic functional layer 3 and the cathode 4. Furthermore, these sealings may be performed in any environment as long as moisture and oxygen can be prevented from entering from the external environment of the organic EL element 10, for example, in a vacuum (low pressure) environment, nitrogen, or the like. An atmospheric pressure environment substituted with an inert gas may be used.
  • the first to third conductive sealing members 7 to 9 are provided, and the anode 2 and the cathode 4 are electrically connected to the first and second sealing members 7 and 8, respectively. Since they are connected, the anode power supply part 11 and the cathode power supply part 12 can be provided on the surfaces of the first and second sealing members 7 and 8 on the side opposite to the support substrate 1. As a result, since it is not necessary to provide the anode and cathode power supply portions on the support substrate 1 as in the prior art, the non-light emitting area in plan view of the organic EL element 10 can be reduced.
  • the anode power supply part 11 and the cathode power supply part 12 can be provided on the surface of the first and second sealing members 7 and 8 on the opposite side of the support substrate 1, the power supply area can be increased compared to the conventional case. A large amount can be secured, and wiring connection such as FPC can be easily performed, and cost can be reduced. Further, when the support substrate 1 and the entire first to third sealing members 7 to 9 are viewed in plan, the outer shape of the support substrate 1, the entire first to third sealing members 7 to 9, and When it is made the same size, it looks good and the overall strength of the panel increases. In addition, when the overall size of the first to third sealing members 7 to 9 is the same as the outer shape of the support substrate 1, the area for sealing the organic EL element 10 increases.
  • a third sealing member 9 is laminated on the gap S between the first and second sealing members 7 and 8 adjacent to each other on the same plane with the second adhesive layer 6 interposed therebetween. Since the EL element 10 has a sealing structure in which the first to third sealing members 7 to 9 are covered, moisture and oxygen permeation can be reliably suppressed also in this respect.
  • the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising
  • the light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.
  • the structure of the light emitting layer according to the present invention is not particularly limited as long as the light emitting material included satisfies the above requirements.
  • the total thickness of the light emitting layers is preferably in the range of 1 nm to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained.
  • the sum total of the film thickness of the light emitting layer said by this invention is a film thickness also including this intermediate
  • each light emitting layer is preferably adjusted to a range of 1 nm to 50 nm, and more preferably adjusted to a range of 1 nm to 20 nm.
  • a light emitting material or a host compound which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
  • a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
  • the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
  • a light emitting material also referred to as a light emitting dopant compound
  • the host compound contained in the light emitting layer of the organic EL device is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
  • known host compounds may be used alone or in combination of two or more.
  • the organic EL element can be made highly efficient.
  • the host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )But it is good.
  • the known host compound a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
  • a phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents.
  • the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
  • the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material.
  • Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained.
  • the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
  • the phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
  • Fluorescent light emitters can also be used in the organic EL device according to the present invention.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • dopants can also be used in the present invention.
  • International Publication No. 00/70655 pamphlet JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, WO 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No.
  • At least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
  • ⁇ Middle layer ⁇ In the present invention, a case where a non-light emitting intermediate layer (also referred to as an undoped region) is provided between the light emitting layers will be described.
  • the non-light emitting intermediate layer is a layer provided between the light emitting layers.
  • the film thickness of the non-light emitting intermediate layer is preferably in the range of 1 nm to 20 nm, and further in the range of 3 nm to 10 nm suppresses interaction such as energy transfer between adjacent light emitting layers, and the device This is preferable because a large load is not applied to the current-voltage characteristics.
  • the material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
  • the non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.)
  • a compound common to each light-emitting layer for example, a host compound
  • each common host material where a common host material is used
  • the host material is responsible for carrier transportation, and therefore a material having carrier transportation ability is preferable.
  • Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
  • the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, depending on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 30 nm or less.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters, 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • it can.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) is not particularly limited in the type of glass, plastic and the like, and may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyester Examples include cycloolefin resins such as terimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel
  • An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor transmission rate (40 ° C., 90%) measured by a method according to JIS-K-7129-1992.
  • RH is preferably a barrier film of 0.01 g / (m 2 ⁇ day ⁇ atm) or less, and moreover, oxygen permeability (20 ° C., measured by a method according to JIS-K-7126-1992) 100% RH) is 10 -3 g / (m 2 ⁇ day) or less, preferably water vapor permeability is 10 -3 g / (m 2 ⁇ day) or less of the high barrier film, wherein the water vapor transmission rate More preferably, the oxygen permeability is 10 ⁇ 5 g / (m 2 ⁇ day) or less.
  • the material for forming the barrier film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • either the anode or the cathode of the organic EL element is configured to be light transmissive.
  • the anode 2 is disposed on the support substrate 1 and the cathode 4 is disposed with the organic functional layer 3 interposed therebetween.
  • the first electrode is the cathode 4 and the second electrode is the anode 2.
  • the arrangement of the anode 2 and the cathode 4 may be reversed.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable support substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm or more and 200 nm or less, and an anode is manufactured.
  • a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm or more and 200 nm or less, and an anode is manufactured.
  • a method for thinning the organic compound thin film there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an inkjet method, and a printing method are particularly preferable. Further, a different film forming method may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 ⁇ 6 to 10 ⁇ 2 Pa and the vapor deposition rate is 0.
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 50 nm or more and 200 nm or less.
  • a desired organic EL element can be obtained.
  • the organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • a DC voltage is applied to the multi-color liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • An organic EL element emits light within a layer having a refractive index higher than that of air (refractive index: 1.6 to 2.1), and only 15% to 20% of light generated in the light emitting layer can be extracted. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435).
  • a method of improving the efficiency by giving the substrate a light condensing property for example, JP-A-63-314795
  • a method of forming a reflective surface on the side surface of the element for example, JP-A-1-220394) Gazette
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter for example, Japanese Patent Application Laid-Open No. 62-172691
  • a method of introducing a flat layer having a lower refractive index than that for example, Japanese Patent Laid-Open No. 2001-202827
  • a diffraction grating is provided between any of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside).
  • Method of forming There is 11-283751 JP), and the like.
  • these methods can be used in combination, but either a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or any of the substrate, the transparent electrode layer, and the light emitting layer.
  • a method of forming a diffraction grating between the layers can be suitably used. In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 or more and 1.7 or less, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction and second-order diffraction. Among them, light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (in a transparent substrate or transparent electrode), and the light is emitted outside. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. In other words, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of the light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention is processed on the light extraction side of the support substrate, for example, so as to provide a structure on a microlens array, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the element light emitting surface.
  • luminance in a specific direction can be raised by condensing in a front direction.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL panel 100 of the first embodiment includes the first to third sealing members 7 to 9, but the first and second sealings as in the organic EL panel 100A described below. It is good also as a structure provided with member 7A, 8A.
  • FIG. 3 is a cross-sectional view of the organic EL panel. As shown in FIG. 3, the first sealing member 7A and the second sealing member 8A are disposed on the organic EL element 10A via the first adhesive layer 5A. That is, the first adhesive layer 5A is formed on the exposed upper surfaces of the anode 2A, the organic functional layer 3A, and the cathode 4A, and the second sealing member 8A that is linear in a side view is formed on the first adhesive layer 5A.
  • the first sealing member 7A includes the anode 2A, the organic functional layer 3A, and the cathode on the portion of the first adhesive layer 5A where the second sealing member 8A is not provided and the second adhesive layer 6A.
  • 4A covers the left end portion of 4A, covers a part of the second sealing member 8A so as not to contact the left end portion of the second sealing member 8A, and the right end portion of the second sealing member 8A It is provided to be exposed.
  • the first and second sealing members 7A and 8A are disposed so as not to be in electrical contact with each other via the first and second adhesive layers 5A and 6A.
  • the organic EL element 10A has a sealing structure sealed with the first and second sealing members 7A and 8A.
  • the first and second sealing members 7A and 8A have substantially the same size, and are supported when the support substrate 1A and the first and second sealing members 7A and 8A are viewed in plan.
  • the outer shape of the substrate 1A and the entire first and second sealing members 7A and 8A have the same dimensions. Further, the size of the first sealing member 7A may be further increased. In this case, since the distance from the right end portion of the first sealing member 7A to the left end portion of the second sealing member 8A can be increased, the sealing function can be enhanced.
  • the left end of the anode 2A and the left end of the first sealing member 7A are electrically connected by the above-described electrical connection method.
  • the right end of the cathode 4A and the right end of the second sealing member 8A are also electrically connected by the above-described electrical connection method.
  • the conductive fillers 14A are dispersed in the first adhesive layer 5A to be electrically connected.
  • the anode power supply portion 11A is formed on the upper surface of the first sealing member 7A
  • the cathode power supply portion 12A is formed on the upper surface of the second sealing member 8A.
  • the anode power supply portion 11A and the cathode power supply portion 11A are formed.
  • the power feeding part 12A is provided outside the first and second adhesive layers 5A and 6A.
  • the anode 2A and the cathode 4A are electrically connected to the first and second sealing members 7A and 8A, respectively. Therefore, the anode power supply part 11A and the cathode power supply part 12A can be provided on the surfaces of the first and second sealing members 7A, 8A opposite to the support substrate 1A.
  • the non-light emitting area in the plan view of the organic EL element 10A can be reduced, and a large power supply area is ensured. Therefore, the wiring can be easily connected and the cost can be reduced.
  • the outer shape of the support substrate 1A and the entire first and second sealing members 7A and 8A are displayed. Is the same size, so it looks good and the overall strength of the panel increases. Further, by making the outer shape of the support substrate 1A and the first and second sealing members 7A, 8A the same size, the area for sealing the organic EL element 10A is increased, so that the organic Moisture and oxygen intrusion into the EL element 10A can be reliably suppressed, and the life of the organic EL element 10A can be improved.
  • the present invention is not limited to the above embodiment, and can be modified as appropriate.
  • the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted.
  • the third sealing member 9 and the second adhesive layer 6 are provided, but these are not necessarily provided.
  • the present invention can be suitably used for an organic electroluminescence panel capable of reducing a non-light emitting area in a plan view and a method for manufacturing the organic electroluminescence panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL panel, which is such that an organic EL element resulting from forming at least a positive electrode, a light-emitting layer, and a negative electrode in the given order on a support substrate is sealed by a conductive sealing member with an insulating adhesion layer provided on the negative electrode therebetween, wherein a plurality of the conductive sealing members are provided, and the positive electrode and negative electrode are each electrically connected to different conductive sealing members among the plurality of conductive sealing members.

Description

有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
 本発明は、有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法に関する。 The present invention relates to an organic electroluminescence panel and a method for producing an organic electroluminescence panel.
 従来より、平面状の光源体である面状発光素子として有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が知られている。有機EL素子は、支持基板上に一対の電極に挟持された有機機能層を含む構成を有しており、当該有機機能層は、機能の異なる複数の層からなり、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等を備えて構成されている。
 このような有機EL素子は、直流電圧が供給されると発光するため、有機EL素子の電極部に外部から直流電圧を印加するための接続部(給電部)が必要となる。
 このような給電部の構造としては、各種方式が開示されておいる。例えば、図4に示す有機EL素子20では、支持基板21上の一対の電極22,24間に有機機能層23が挟持されており、このような有機EL素子20において、有機機能層23を覆い、陽極22及び陰極24の側端部が露出するように封止部材27が接着層25を介して設けられている。そして、封止部材27の側縁部から露出した陽極22及び陰極24上に陽極用給電部28及び陰極用給電部29が配置された技術が開示されている。
 また、例えば、透明基板上に形成された矩形状の発光部の互いに平行な2辺両端部に沿って、前記透明基板上に陽極用給電部及び陰極用給電部が配置された技術が知られている(特許文献1参照)。
Conventionally, an organic electroluminescence element (hereinafter also referred to as an organic EL element) is known as a planar light emitting element which is a planar light source body. The organic EL element has a configuration including an organic functional layer sandwiched between a pair of electrodes on a support substrate, and the organic functional layer includes a plurality of layers having different functions, for example, a hole injection layer, A hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like are provided.
Since such an organic EL element emits light when a DC voltage is supplied, a connection part (feeding part) for applying a DC voltage from the outside to the electrode part of the organic EL element is required.
Various systems are disclosed as the structure of such a power feeding unit. For example, in the organic EL element 20 shown in FIG. 4, the organic functional layer 23 is sandwiched between the pair of electrodes 22 and 24 on the support substrate 21, and the organic functional layer 23 is covered in such an organic EL element 20. A sealing member 27 is provided via an adhesive layer 25 so that side end portions of the anode 22 and the cathode 24 are exposed. And the technique by which the anode power supply part 28 and the cathode power supply part 29 are arrange | positioned on the anode 22 and the cathode 24 exposed from the side edge part of the sealing member 27 is disclosed.
Further, for example, a technique is known in which an anode power supply unit and a cathode power supply unit are arranged on the transparent substrate along two parallel sides of a rectangular light emitting unit formed on the transparent substrate. (See Patent Document 1).
特開2010-198980号公報JP 2010-198980 A
 しかしながら、上記した図4や特許文献1に記載されているように、陽極用給電部及び陰極用給電部の上方には発光部である有機機能層が存在しないため、当該給電部からは光が取り出せない。そのため、給電部分の面積が大きい場合には、有機EL素子の基板面積に対して発光光を取りだせる部分の割合が小さくなることが問題として挙げられる。すなわち、上記特許文献1のように、発光部の2辺両端部に沿って、透明基板上に給電部を設けた場合、給電配線(FPC等)の接続に必要な面積を確保する必要があり、発光光が取り出せない領域(非発光エリアE(図4参照))が大きくなってしまう。
 また、このような有機EL素子を大型の照明器具等に適用し平面上に複数並べて発光させた場合、全体として有機EL素子間の非発光エリアが目立ってしまい、このように並べた有機EL素子群を照明器具に適用した場合、それなりの照明輝度を得るためには当該照明器具のサイズが大きくなってしまうといった問題がある。
 本発明は、上記事情に鑑みてなされたもので、平面視における非発光エリアを小さくすることができる有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法を提供することを目的としている。
However, as described in FIG. 4 and Patent Document 1 described above, since there is no organic functional layer that is a light emitting unit above the anode power supply unit and the cathode power supply unit, light is emitted from the power supply unit. I can't take it out. For this reason, when the area of the power feeding portion is large, the ratio of the portion from which the emitted light can be extracted with respect to the substrate area of the organic EL element becomes a problem. That is, as in Patent Document 1, when a power feeding unit is provided on the transparent substrate along both ends of the two sides of the light emitting unit, it is necessary to secure an area necessary for connecting a power feeding wiring (FPC or the like). Therefore, a region where the emitted light cannot be extracted (non-light emitting area E (see FIG. 4)) becomes large.
Moreover, when such an organic EL element is applied to a large luminaire or the like, and a plurality of organic EL elements are arranged on a plane to emit light, a non-light emitting area between the organic EL elements as a whole becomes conspicuous, and the organic EL elements arranged in this way When a group is applied to a luminaire, there is a problem that the size of the luminaire becomes large in order to obtain appropriate illumination brightness.
This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the organic electroluminescent panel which can make the non-light-emitting area in planar view small, and an organic electroluminescent panel.
 本発明の一態様によれば、支持基板上に、少なくとも第1電極と、発光層と、第2電極とがこの順に形成された有機エレクトロルミネッセンス素子が、前記第2電極上に設けられた絶縁性接着層を介して導電性封止部材により封止された有機エレクトロルミネッセンスパネルであって、
 前記導電性封止部材は複数設けられており、
 前記第1電極と前記第2電極とは、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して電気的に接続されていることを特徴とする有機エレクトロルミネッセンスパネルが提供される。
 本発明の他の態様によれば、支持基板上に、少なくとも第1電極と、発光層と、第2電極とがこの順に形成された有機エレクトロルミネッセンス素子が、前記第2電極上に設けられた絶縁性接着層を介して導電性封止部材により封止された有機エレクトロルミネッセンスパネルを製造する有機エレクトロルミネッセンスパネルの製造方法であって、
 前記導電性封止部材を複数設け、
 前記第1電極と前記第2電極とを、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して電気的に接続することを特徴とする有機エレクトロルミネッセンスパネルの製造方法が提供される。
According to one aspect of the present invention, an organic electroluminescence element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a supporting substrate is provided on the second electrode. An organic electroluminescence panel sealed with a conductive sealing member through a conductive adhesive layer,
A plurality of the conductive sealing members are provided,
The organic electroluminescence panel, wherein the first electrode and the second electrode are electrically connected to different conductive sealing members among the plurality of conductive sealing members. Provided.
According to another aspect of the present invention, an organic electroluminescent element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a support substrate is provided on the second electrode. An organic electroluminescence panel manufacturing method for manufacturing an organic electroluminescence panel sealed with a conductive sealing member via an insulating adhesive layer,
A plurality of the conductive sealing members are provided,
The method for producing an organic electroluminescence panel, wherein the first electrode and the second electrode are electrically connected to different conductive sealing members among the plurality of conductive sealing members. Is provided.
 本発明によれば、平面視における非発光エリアを小さくすることができる。 According to the present invention, the non-light emitting area in plan view can be reduced.
第1の実施形態を示すためのもので、有機ELパネルの平面図。The top view of an organic electroluminescent panel for showing 1st Embodiment. 第1の実施形態を示すためのもので、有機EL素子の平面図。The top view of an organic EL element for showing 1st Embodiment. 図1AのI-I線における断面図。FIG. 1B is a cross-sectional view taken along the line II of FIG. 1A. 図1Cの有機ELパネルの変形例を示すためのもので、有機ELパネルの断面図。It is for demonstrating the modification of the organic electroluminescent panel of FIG. 1C, and is sectional drawing of an organic electroluminescent panel. 第2の実施形態を示すためのもので、有機ELパネルの断面図。Sectional drawing of an organic electroluminescent panel for showing 2nd Embodiment. 従来例を示すためのもので、有機EL素子の断面図。Sectional drawing of an organic EL element for showing a prior art example.
 以下、本発明の実施形態について図面を参照して詳細に説明する。なお、本発明の実施形態はこれらに限定されない。
〔第1の実施形態〕
 《有機ELパネル》
 図1Aは、本発明の有機ELパネルの平面図、図1Bは、有機EL素子の平面図、図1Cは、図1AのI-I線における断面図である。
 図1A及び図1Cに示すように、有機ELパネル100は、支持基板1上に、第1電極(陽極2)と、発光層を含む有機機能層3と、第2電極(陰極4)とがこの順で積層され、第2電極4上に絶縁性接着層5,6(以下、単に接着層という)と、複数の導電性封止部材7~9(以下、単に封止部材と言う)と、が設けられている。本実施形態では、第1電極を陽極2、第2電極を陰極4として説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The embodiments of the present invention are not limited to these.
[First Embodiment]
<< Organic EL panel >>
1A is a plan view of the organic EL panel of the present invention, FIG. 1B is a plan view of the organic EL element, and FIG. 1C is a cross-sectional view taken along the line II of FIG. 1A.
As shown in FIGS. 1A and 1C, the organic EL panel 100 includes a first electrode (anode 2), an organic functional layer 3 including a light emitting layer, and a second electrode (cathode 4) on a support substrate 1. Insulating adhesive layers 5 and 6 (hereinafter simply referred to as adhesive layers) and a plurality of conductive sealing members 7 to 9 (hereinafter simply referred to as sealing members) laminated on the second electrode 4 in this order. , Is provided. In the present embodiment, the first electrode is described as the anode 2 and the second electrode is described as the cathode 4.
 陽極2は、支持基板1の上面に、支持基板1の一方の側端部(以下、右側端部と言う)を除いて支持基板1を覆うようにして設けられており、支持基板1の他方の側端部(以下、左側端部と言う)に延在している。
 有機機能層3は、支持基板1の上面のうち陽極2で覆われていない露出した上面の一部から陽極2の左側端部を除いて陽極2を覆うように設けられている。
 陰極4は、支持基板1の上面のうち陽極2及び有機機能層3で覆われていない露出した上面から有機機能層3の左側端部を除いて有機機能層3を覆うように設けられており、支持基板1の右側端部に延在している。
 そして、このような支持基板1、陽極2、有機機能層3及び陰極4は、第1及び第2絶縁性接着層5、6と複数の封止部材7~9とによって封止された密着封止構造となっている。
 なお、本発明では、陰極4の上を複数の封止部材7~9によって封止(被覆)された状態を有機ELパネル100といい、支持基板1から陰極4までが形成された状態を有機EL素子10と言う。
The anode 2 is provided on the upper surface of the support substrate 1 so as to cover the support substrate 1 except for one side end portion (hereinafter referred to as a right end portion) of the support substrate 1. It extends to the side end (hereinafter referred to as the left end).
The organic functional layer 3 is provided so as to cover the anode 2 except for the left end portion of the anode 2 from a part of the exposed upper surface of the support substrate 1 that is not covered with the anode 2.
The cathode 4 is provided so as to cover the organic functional layer 3 except for the left end portion of the organic functional layer 3 from the exposed upper surface of the support substrate 1 that is not covered with the anode 2 and the organic functional layer 3. , Extending to the right end of the support substrate 1.
The support substrate 1, the anode 2, the organic functional layer 3 and the cathode 4 are sealed by the first and second insulating adhesive layers 5 and 6 and a plurality of sealing members 7 to 9. It has a stop structure.
In the present invention, the state in which the cathode 4 is sealed (covered) by the plurality of sealing members 7 to 9 is called an organic EL panel 100, and the state in which the support substrate 1 to the cathode 4 are formed is organic. This is referred to as EL element 10.
 複数の封止部材7~9のうち、第1の封止部材7及び第2の封止部材8は、第1接着層5を介して有機EL素子10上に配置されている。すなわち、陽極2、有機機能層3及び陰極4の上面のうち露出した上面に、第1接着層5が形成されている。そして、当該第1接着層5に、第1の封止部材7及び第2の封止部材8が、同一平面上において互いに所定間隔を隔てて設けられている。
 さらに、第1の封止部材7の右端部と第2の封止部材8の左端部との間に形成された隙間S内と、第1の封止部材7及び第2の封止部材8の上面のうち中央部分に第2接着層6が形成されている。そして、当該第2接着層6に、第3の封止部材9が設けられている。これによって、第1及び第2の封止部材7,8間の隙間S上が第3の封止部材9に覆われている。
 このように、有機ELパネル100において、第1~第3の封止部材7~9は、第1及び第2接着層5,6を介して互いに電気的に接触しないように配置されている。そして、有機ELパネル100は、有機EL素子10が、第1~第3の封止部材7~9によって封止された封止構造となっている。
Among the plurality of sealing members 7 to 9, the first sealing member 7 and the second sealing member 8 are disposed on the organic EL element 10 via the first adhesive layer 5. That is, the first adhesive layer 5 is formed on the exposed upper surface of the anode 2, the organic functional layer 3, and the cathode 4. And the 1st sealing member 7 and the 2nd sealing member 8 are provided in the said 1st contact bonding layer 5 at predetermined intervals on the same plane.
Further, in the gap S formed between the right end portion of the first sealing member 7 and the left end portion of the second sealing member 8, the first sealing member 7 and the second sealing member 8. A second adhesive layer 6 is formed at the center of the upper surface of the substrate. A third sealing member 9 is provided on the second adhesive layer 6. Thus, the third sealing member 9 covers the gap S between the first and second sealing members 7 and 8.
Thus, in the organic EL panel 100, the first to third sealing members 7 to 9 are arranged so as not to be in electrical contact with each other via the first and second adhesive layers 5 and 6. The organic EL panel 100 has a sealing structure in which the organic EL element 10 is sealed by the first to third sealing members 7 to 9.
 第1及び第2の封止部材7,8は略同じ大きさをなしている。第3の封止部材9は、図1A~図1Cでは第1及び第2の封止部材7,8よりも若干小さくなっているが、第1及び第2の封止部材7,8と同じ大きさとしても良いし、第1及び第2の封止部材7,8よりも大きくしても良い。第3の封止部材9の大きさを大きくした場合、第3の封止部材9の左右両側端部から第1及び第2の封止部材7,8間の隙間Sまでの距離が長くなることから、水分や酸素の浸入をより確実に遮断することができ、封止機能を高めることができる。
 また、支持基板1と、第1~第3の封止部材7~9の全体とを平面視した際に、支持基板1の外形と、第1~第3の封止部材7~9の全体とが同寸になるよう適宜調整してもよい。
The first and second sealing members 7 and 8 have substantially the same size. The third sealing member 9 is slightly smaller than the first and second sealing members 7 and 8 in FIGS. 1A to 1C, but is the same as the first and second sealing members 7 and 8. It may be a size or may be larger than the first and second sealing members 7 and 8. When the size of the third sealing member 9 is increased, the distance from the left and right end portions of the third sealing member 9 to the gap S between the first and second sealing members 7 and 8 becomes longer. Therefore, it is possible to more reliably block moisture and oxygen from entering, and to improve the sealing function.
Further, when the support substrate 1 and the entire first to third sealing members 7 to 9 are viewed in plan, the outer shape of the support substrate 1 and the entire first to third sealing members 7 to 9 are displayed. And may be adjusted as appropriate so as to be the same size.
 第1~第3の封止部材7~9は、導電性を有している。例えば、金属板や金属箔が挙げられ、金属箔が好ましい。金属箔としては、例えば、銅箔、アルミニウム箔、金箔、黄銅箔、ニッケル箔、チタン箔、銅合金箔、ステンレス箔、スズ箔、高ニッケル合金箔等が挙げられる。これらの各種の金属箔の中で特に好ましい金属箔としては、アルミニウム箔である。
 金属箔の作成方法としては、主に圧延等が挙げられ、金属箔とは当該圧延で形成された金属の箔を指すが、ポリマーフィルム上にスパッタや蒸着等で形成された金属薄膜や導電性ペースト等の流動性電極材料から形成された導電膜であっても良い。
 ポリマーフィルムの材料としては、樹脂製包装材料の新展開( 株式会社東レリサーチセンター) に記載の各種材料を使用することが可能であり、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエチレンテレフタレート系樹脂、ポリアミド系樹脂、エチレン-ビニルアルコール共重合体系樹脂、エチレン- 酢酸ビニル共重合体系樹脂、アクリロニトリル- ブタジエン共重合体系樹脂、セロハン系樹脂、ビニロン系樹脂、塩化ビニリデン系樹脂等が挙げられる。ポリプロピレン系樹脂、ナイロン系樹脂等の樹脂は、延伸されていてもよく、さらに塩化ビニリデン系樹脂をコートされていても良い。
 また、ポリエチレン系樹脂は、低密度あるいは高密度のものも用いることができる。
 金属箔の片面にポリマーフィルムを積層する方法としては、一般に使用されているラミネート機を使用することができる。ラミネートを行う際には、接着剤としてはポリウレタン系、ポリエステル系、エポキシ系、アクリル系等の接着剤を用いることができる。必要に応じて硬化剤を併用してもよい。ホットメルトラミネーション法やエクストルージョンラミネート法及び共押出しラミネーション法も使用できるがドライラミネート方式が好ましい。
 また、金属箔をスパッタや蒸着等で形成したり、導電性ペースト等の流動性電極材料から形成したりする場合は、ポリマーフィルムを基材として金属箔を成膜してもよい。
 なお、このようなポリマーフィルムを基材とした金属箔の外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けても良い。保護膜、保護板としては、ガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
The first to third sealing members 7 to 9 have conductivity. For example, a metal plate and metal foil are mentioned, and metal foil is preferable. Examples of the metal foil include copper foil, aluminum foil, gold foil, brass foil, nickel foil, titanium foil, copper alloy foil, stainless steel foil, tin foil, and high nickel alloy foil. Among these various metal foils, a particularly preferable metal foil is an aluminum foil.
As a method for producing the metal foil, rolling or the like is mainly mentioned. The metal foil refers to a metal foil formed by the rolling, but a metal thin film or a conductive film formed by sputtering or vapor deposition on a polymer film. It may be a conductive film formed from a fluid electrode material such as a paste.
As the material for the polymer film, various materials described in New Development of Resin Packaging Materials (Toray Research Center, Inc.) can be used. For example, polyethylene resin, polypropylene resin, polyethylene terephthalate resin, Examples include polyamide resins, ethylene-vinyl alcohol copolymer resins, ethylene-vinyl acetate copolymer resins, acrylonitrile-butadiene copolymer resins, cellophane resins, vinylon resins, vinylidene chloride resins, and the like. Resins such as polypropylene resin and nylon resin may be stretched and further coated with vinylidene chloride resin.
In addition, a polyethylene resin having a low density or a high density can be used.
As a method for laminating the polymer film on one side of the metal foil, a generally used laminating machine can be used. When laminating, an adhesive such as polyurethane, polyester, epoxy, or acrylic can be used as the adhesive. You may use a hardening | curing agent together as needed. A hot melt lamination method, an extrusion lamination method and a coextrusion lamination method can also be used, but a dry lamination method is preferred.
Further, when the metal foil is formed by sputtering or vapor deposition, or is formed from a fluid electrode material such as a conductive paste, the metal foil may be formed using a polymer film as a base material.
In addition, you may provide a protective film or a protective plate in order to raise the mechanical strength of an element on the outer side of the metal foil which made such a polymer film a base material. As the protective film and the protective plate, a glass plate, a polymer plate / film, a metal plate / film, and the like can be used. However, it is preferable to use a polymer film because it is lightweight and thin.
 第1及び第2接着層5,6を形成する接着剤としては、絶縁性を有する材料であり、例えば、熱可塑性樹脂又はエポキシ系樹脂、アクリル系樹脂、シリコーン樹脂などからなる熱硬化型接着性樹脂などを用いることができる。より詳細には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 The adhesive that forms the first and second adhesive layers 5 and 6 is an insulating material, for example, a thermosetting adhesive made of a thermoplastic resin, an epoxy resin, an acrylic resin, a silicone resin, or the like. Resins can be used. More specifically, photo-curing and thermosetting adhesives having a reactive vinyl group of acrylic acid-based oligomers and methacrylic acid-based oligomers, and moisture-curing adhesives such as 2-cyanoacrylates can be mentioned. . Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子10が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since the organic EL element 10 may be deteriorated by heat treatment, it is preferable that the adhesive can be cured from room temperature to 80 ° C. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print it like screen printing.
 上記第1~第3の封止部材7~9と有機EL素子10の間隙は、第1及び第2接着層5,6で充填された充填構造としたが、気相及び液相では窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入しても良い。また、真空とすることも可能である。このように中空構造とした場合、少なくとも第1の封止部材7と有機EL素子10との間及び第2の封止部材8と有機EL素子10との間に、それぞれ局部的に絶縁性接着層を設けて所定間隔を保持することができるようにしておく。また、第1の封止部材7と第3の封止部材9との間及び第2の封止部材8と第3の封止部材9との間にも、それぞれ局部的に絶縁性接着層を設けて所定間隔を保持することができるようにしておく。
 また、第1~第3の封止部材7~9と有機EL素子10との間隙に、吸湿性化合物を封入することもできる。
The gap between the first to third sealing members 7 to 9 and the organic EL element 10 has a filling structure filled with the first and second adhesive layers 5 and 6, but in the gas phase and the liquid phase, nitrogen, An inert gas such as argon or an inert liquid such as fluorinated hydrocarbon or silicon oil may be injected. A vacuum can also be used. In the case of such a hollow structure, at least the first sealing member 7 and the organic EL element 10 and the second sealing member 8 and the organic EL element 10 are each locally insulatively bonded. A layer is provided so that a predetermined interval can be maintained. Insulating adhesive layers are also locally provided between the first sealing member 7 and the third sealing member 9 and between the second sealing member 8 and the third sealing member 9. Is provided so that a predetermined interval can be maintained.
In addition, a hygroscopic compound can be sealed in the gap between the first to third sealing members 7 to 9 and the organic EL element 10.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 また、有機ELパネル100は、陽極2に外部電源から電力を供給するための陽極用給電部11と、陰極4に外部電源から電力を供給するための陰極用給電部12と、を備えている。
 陽極用給電部11は、第1の封止部材7の上面に設けられ、陰極用給電部12は、第2の封止部材8の上面に設けられており、陽極用給電部11と陰極用給電部12とは互いに異なる封止部材に設けられている。また、陽極用給電部11と陰極用給電部12とは、第1及び第2接着層5,6の外側に設けられている。
The organic EL panel 100 includes an anode power supply unit 11 for supplying power to the anode 2 from an external power source, and a cathode power supply unit 12 for supplying power to the cathode 4 from an external power source. .
The anode power supply unit 11 is provided on the upper surface of the first sealing member 7, and the cathode power supply unit 12 is provided on the upper surface of the second sealing member 8. The power feeding unit 12 is provided on a different sealing member. The anode power supply unit 11 and the cathode power supply unit 12 are provided outside the first and second adhesive layers 5 and 6.
 第1の封止部材7の左側端部と、陽極2の左側端部とは、電気的に接続されている。
 電気的な接続方法としては、狭いエリアで接続可能な方法が挙げられ、例えば、図1A~図1Cに示すように、両部材の端部を被覆するようにハンダ13によって接合して電気的に接続する方法や、両部材の端部を被覆するように導電性ペーストを形成することによって接合して電気的に接続する方法、両部材の端部同士をレーザー溶着や超音波溶着、カシメによって接合して電気的に接続する方法が挙げられる。その他、図2に示すように、第1接着層5内に導電性フィラー14を分散させることによって、両部材の端部同士を電気的に接続する方法が挙げられる。この場合、第1の封止部材7の下面と陽極2の上面にそれぞれ接触するように導電性フィラー14を第1接着層5内に分散させる。
 このような電気的な接続方法によれば、簡易な方法であり、特に、ハンダ13や導電性ペーストを形成する場合には、第1接着層5の外側がハンダ13や導電性ペーストで被覆されることから、第1接着層5のみによる端部封止に比べて、水分や酸素の侵入を確実に抑制して、端部封止することができる。
 また、第2の封止部材8の右側端部と陰極4の右側端部においても、電気的に接続されており、電気的な接続方法としては上記と同様の接続方法が挙げられる。
The left end portion of the first sealing member 7 and the left end portion of the anode 2 are electrically connected.
Examples of the electrical connection method include a method capable of connecting in a narrow area. For example, as shown in FIG. 1A to FIG. 1C, it is electrically connected by soldering 13 so as to cover the ends of both members. A method of connecting, a method of connecting and electrically connecting by forming a conductive paste so as to cover the ends of both members, and joining the ends of both members by laser welding, ultrasonic welding, or caulking And a method of electrical connection. In addition, as shown in FIG. 2, a method of electrically connecting the ends of both members by dispersing the conductive filler 14 in the first adhesive layer 5 can be mentioned. In this case, the conductive filler 14 is dispersed in the first adhesive layer 5 so as to be in contact with the lower surface of the first sealing member 7 and the upper surface of the anode 2.
According to such an electrical connection method, it is a simple method. In particular, when forming the solder 13 or the conductive paste, the outside of the first adhesive layer 5 is covered with the solder 13 or the conductive paste. Therefore, as compared with the end sealing only by the first adhesive layer 5, it is possible to reliably suppress the intrusion of moisture and oxygen and perform the end sealing.
Further, the right end portion of the second sealing member 8 and the right end portion of the cathode 4 are also electrically connected. Examples of the electrical connection method include the same connection methods as described above.
 有機機能層4は、少なくとも発光層を含むものであれば構成可能となっており、発光層以外に例えば、後述する正孔輸送層、電子輸送層及び陰極バッファー層(電子注入層)等を含む。そして、このような有機機能層4(発光層)に電流を流すことにより、発光層内の発光材料が発光するようになっている。 The organic functional layer 4 can be configured as long as it includes at least a light emitting layer. In addition to the light emitting layer, the organic functional layer 4 includes, for example, a hole transport layer, an electron transport layer, a cathode buffer layer (electron injection layer) described later, and the like. . And by sending an electric current through such an organic functional layer 4 (light emitting layer), the light emitting material in a light emitting layer light-emits.
 《有機ELパネルの製造方法》
 以下、有機ELパネル100の製造方法について説明する。
 まず、有機EL素子10の陽極2、有機機能層3及び陰極4の露出した上面に接着剤を塗布し、塗布した接着剤からなる第1接着層5に対して第1及び第2の封止部材7,8を同一平面上で互いに所定間隔を隔てて設ける。これによって第1及び第2の封止部材7,8により、有機EL素子10の中央部分を除いた部分が覆われる。
 次いで、第1及び第2の封止部材7,8間の隙間Sと、第1及び第2の封止部材7,8上の中央部分に接着剤を塗布し、塗布した接着剤からなる第2接着層6に対して第3の封止部材9を設ける。これによって、第1及び第2の封止部材7,8間の隙間Sが覆われてた封止構造とされる。
 その後、陽極2の左側端部と第1の封止部材7の左側端部とを上述の電気的接続方法により電気的に接続する。
 同様に、陰極3の右側端部と第2の封止部材8の右側端部とを上述の電気的接続方法により電気的に接続する。
 なお、導電性フィラー14によって電気的に接続する場合には、予め第1接着層5内に導電性フィラー14を分散させておき、その後、第1接着層5に対して第1及び第2の封止部材7,8を設ける。
 最後に、第1の封止部材7上に陽極用給電部11を形成し、第2の封止部材8上に陰極用給電部12を形成して、有機ELパネル100とする。
<< Method for Manufacturing Organic EL Panel >>
Hereinafter, a method for manufacturing the organic EL panel 100 will be described.
First, an adhesive is applied to the exposed upper surfaces of the anode 2, the organic functional layer 3, and the cathode 4 of the organic EL element 10, and the first and second sealing are performed on the first adhesive layer 5 made of the applied adhesive. The members 7 and 8 are provided at a predetermined interval on the same plane. Thus, the first and second sealing members 7 and 8 cover the portion excluding the central portion of the organic EL element 10.
Next, an adhesive is applied to the gap S between the first and second sealing members 7 and 8 and the central portion on the first and second sealing members 7 and 8, and the first made of the applied adhesive. A third sealing member 9 is provided for the two adhesive layers 6. Thus, a sealing structure in which the gap S between the first and second sealing members 7 and 8 is covered is obtained.
Thereafter, the left end of the anode 2 and the left end of the first sealing member 7 are electrically connected by the above-described electrical connection method.
Similarly, the right end of the cathode 3 and the right end of the second sealing member 8 are electrically connected by the above-described electrical connection method.
Note that, when the conductive filler 14 is electrically connected, the conductive filler 14 is dispersed in the first adhesive layer 5 in advance, and then the first and second adhesive layers 5 are connected to the first adhesive layer 5. Sealing members 7 and 8 are provided.
Finally, the anode power supply unit 11 is formed on the first sealing member 7, and the cathode power supply unit 12 is formed on the second sealing member 8, whereby the organic EL panel 100 is obtained.
 なお、第1接着層5は、陽極2、有機機能層3及び陰極4の露出した上面に塗布して形成し、その後、この第1接着層5に対して第1及び第2の封止部材7,8を設けるとしたが、逆に、第1及び第2の封止部材7,8側に接着剤を塗布して第1接着層5を形成し、この第1接着層5を陽極2、有機機能層3及び陰極4の露出した上面に配置させて第1及び第2の封止部材7,8を設けるようにしても良い。
 さらに、これらの封止は、有機EL素子10の外部環境からの水分や酸素の浸入を抑制できれば如何なる環境で行われても良く、例えば、真空(低圧)環境であっても良いし、窒素等の不活性ガスにより置換された大気圧環境であっても良い。
The first adhesive layer 5 is formed by coating the exposed upper surfaces of the anode 2, the organic functional layer 3, and the cathode 4, and then the first and second sealing members are applied to the first adhesive layer 5. 7 and 8 are provided, but conversely, an adhesive is applied to the first and second sealing members 7 and 8 to form the first adhesive layer 5, and this first adhesive layer 5 is used as the anode 2. The first and second sealing members 7 and 8 may be provided on the exposed upper surfaces of the organic functional layer 3 and the cathode 4.
Furthermore, these sealings may be performed in any environment as long as moisture and oxygen can be prevented from entering from the external environment of the organic EL element 10, for example, in a vacuum (low pressure) environment, nitrogen, or the like. An atmospheric pressure environment substituted with an inert gas may be used.
 以上のように、第1~第3の導電性封止部材7~9を有し、陽極2と陰極4とは、それぞれ第1及び第2の封止部材7、8に対して電気的に接続されているので、第1及び第2の封止部材7,8の支持基板1と反対側の面に陽極用給電部11及び陰極用給電部12を設けることができる。その結果、従来のように支持基板1上に陽極用及び陰極用給電部を設ける必要がないので、有機EL素子10の平面視における非発光エリアを小さくすることができる。
 また、第1及び第2の封止部材7,8の支持基板1と反対側の面に陽極用給電部11及び陰極用給電部12を設けることができることから、従来と比較して給電エリアを大きく確保することができ、FPC等の配線接続がし易くコストの低減を図ることができる。
 また、支持基板1と、第1~第3の封止部材7~9の全体を平面視した際に、支持基板1の外形と、第1~第3の封止部材7~9の全体とを同寸にした際には、見栄えが良く、パネル全体としての強度が増す。また、第1~第3の封止部材7~9の全体の平面視の大きさを支持基板1の外形と同寸とした際には、有機EL素子10を封止する面積が大きくなるため、有機EL素子10への水分や酸素侵入を確実に抑制でき、有機EL素子10の寿命を向上させることができる。
 さらに、同一平面上で互いに隣り合う第1及び第2の封止部材7,8間の隙間S上に、第3の封止部材9が第2接着層6を介して積層されており、有機EL素子10が第1~第3の封止部材7~9によって覆われた封止構造となっているので、この点においても、水分や酸素浸入を確実に抑制することができる。
As described above, the first to third conductive sealing members 7 to 9 are provided, and the anode 2 and the cathode 4 are electrically connected to the first and second sealing members 7 and 8, respectively. Since they are connected, the anode power supply part 11 and the cathode power supply part 12 can be provided on the surfaces of the first and second sealing members 7 and 8 on the side opposite to the support substrate 1. As a result, since it is not necessary to provide the anode and cathode power supply portions on the support substrate 1 as in the prior art, the non-light emitting area in plan view of the organic EL element 10 can be reduced.
In addition, since the anode power supply part 11 and the cathode power supply part 12 can be provided on the surface of the first and second sealing members 7 and 8 on the opposite side of the support substrate 1, the power supply area can be increased compared to the conventional case. A large amount can be secured, and wiring connection such as FPC can be easily performed, and cost can be reduced.
Further, when the support substrate 1 and the entire first to third sealing members 7 to 9 are viewed in plan, the outer shape of the support substrate 1, the entire first to third sealing members 7 to 9, and When it is made the same size, it looks good and the overall strength of the panel increases. In addition, when the overall size of the first to third sealing members 7 to 9 is the same as the outer shape of the support substrate 1, the area for sealing the organic EL element 10 increases. In addition, moisture and oxygen intrusion into the organic EL element 10 can be reliably suppressed, and the life of the organic EL element 10 can be improved.
Further, a third sealing member 9 is laminated on the gap S between the first and second sealing members 7 and 8 adjacent to each other on the same plane with the second adhesive layer 6 interposed therebetween. Since the EL element 10 has a sealing structure in which the first to third sealing members 7 to 9 are covered, moisture and oxygen permeation can be reliably suppressed also in this respect.
 《有機EL素子》
 以下、有機EL素子10の層構成の好ましい具体例を示すが、本発明はこれに限定されない。
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 ここで、発光層は、少なくとも発光色の異なる2種以上の発光材料を含有していることが好ましく、単層でも複数の発光層からなる発光層ユニットを形成していてもよい。また、正孔輸送層には正孔注入層、電子阻止層も含まれる。なお、本発明では陽極及び陰極を除く層を有機機能層と言う。
<< Organic EL element >>
Hereinafter, although the preferable specific example of the layer structure of the organic EL element 10 is shown, this invention is not limited to this.
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode Here, the light emitting layer preferably contains at least two kinds of light emitting materials having different emission colors, and a single layer or a light emitting layer comprising a plurality of light emitting layers A unit may be formed. The hole transport layer also includes a hole injection layer and an electron blocking layer. In the present invention, the layer excluding the anode and the cathode is referred to as an organic functional layer.
 《発光層》
 発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light-emitting layer is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light-emitting portion is the light-emitting layer even in the light-emitting layer. It may be an interface with an adjacent layer.
 本発明に係る発光層は、含まれる発光材料が前記要件を満たしていれば、その構成には特に制限はない。 The structure of the light emitting layer according to the present invention is not particularly limited as long as the light emitting material included satisfies the above requirements.
 また、同一の発光スペクトルや発光極大波長を有する層が複数層あってもよい。 Also, there may be a plurality of layers having the same emission spectrum or emission maximum wavelength.
 各発光層間には非発光性の中間層を有していることが好ましい。 It is preferable to have a non-light emitting intermediate layer between each light emitting layer.
 本発明における発光層の膜厚の総和は1nm以上100nm以下の範囲にあることが好ましく、さらに好ましくは、より低い駆動電圧を得ることができることから30nm以下である。なお、本発明でいうところの発光層の膜厚の総和とは、発光層間に非発光性の中間層が存在する場合には、該中間層も含む膜厚である。 In the present invention, the total thickness of the light emitting layers is preferably in the range of 1 nm to 100 nm, and more preferably 30 nm or less because a lower driving voltage can be obtained. In addition, the sum total of the film thickness of the light emitting layer said by this invention is a film thickness also including this intermediate | middle layer, when a nonluminous intermediate | middle layer exists between light emitting layers.
 個々の発光層の膜厚としては1nm以上50nm以下の範囲に調整することが好ましく、さらに好ましくは1nm以上20nm以下の範囲に調整することである。青、緑、赤の各発光層の膜厚の関係については、特に制限はない。 The film thickness of each light emitting layer is preferably adjusted to a range of 1 nm to 50 nm, and more preferably adjusted to a range of 1 nm to 20 nm. There is no particular limitation on the relationship between the film thicknesses of the blue, green and red light emitting layers.
 発光層の作製には、後述する発光材料やホスト化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により製膜して形成することができる。 For the production of the light emitting layer, a light emitting material or a host compound, which will be described later, is formed by forming a film by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, an ink jet method, or the like. it can.
 本発明においては、各発光層には複数の発光材料を混合してもよく、また燐光発光材料と蛍光発光材料を同一発光層中に混合して用いてもよい。 In the present invention, a plurality of light emitting materials may be mixed in each light emitting layer, or a phosphorescent light emitting material and a fluorescent light emitting material may be mixed and used in the same light emitting layer.
 本発明においては、発光層の構成として、ホスト化合物、発光材料(発光ドーパント化合物ともいう)を含有し、発光材料より発光させることが好ましい。 In the present invention, the light emitting layer preferably contains a host compound and a light emitting material (also referred to as a light emitting dopant compound) and emits light from the light emitting material.
 本発明においては、有機EL素子の発光層に含有されるホスト化合物としては、室温(25℃)における燐光発光の燐光量子収率が0.1未満の化合物が好ましい。さらに好ましくは燐光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での体積比が50%以上であることが好ましい。 In the present invention, the host compound contained in the light emitting layer of the organic EL device is preferably a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1. More preferably, the phosphorescence quantum yield is less than 0.01. Moreover, it is preferable that the volume ratio in the layer is 50% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光材料を複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the host compound, known host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of luminescent material mentioned later, and can thereby obtain arbitrary luminescent colors.
 本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位をもつ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。 The host compound used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). )But it is good.
 公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As the known host compound, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable. Here, the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等が挙げられる。 Specific examples of known host compounds include compounds described in the following documents. For example, Japanese Patent Application Laid-Open Nos. 2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860 Gazette, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 No. 2002-105445, No. 2002-343568, No. 2002-141173, No. 2002-352957, No. 2002-203683, No. 2002-363227, No. 2002-231453. No. 2003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-286061, No. 2002-280183, No. 2002-299060. No. 2002-302516, No. 2002-305083, No. 2002-305084, No. 2002-308837, and the like.
 次に、発光材料について説明する。 Next, the light emitting material will be described.
 本発明に係る発光材料としては、蛍光性化合物、燐光発光材料(燐光性化合物、燐光発光性化合物等ともいう)を用いる。 As the light-emitting material according to the present invention, a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) is used.
 本発明において、燐光発光材料とは励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にて燐光発光する化合物であり、燐光量子収率が25℃において0.01以上の化合物であると定義されるが、好ましい燐光量子収率は0.1以上である。 In the present invention, a phosphorescent material is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is 0 at 25 ° C. A preferred phosphorescence quantum yield is 0.1 or more, although it is defined as 0.01 or more compounds.
 上記燐光量子収率は第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明において燐光発光材料を用いる場合、任意の溶媒のいずれかにおいて上記燐光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 version, Maruzen) of Experimental Chemistry Lecture 4 of the 4th edition. The phosphorescence quantum yield in a solution can be measured using various solvents. However, when a phosphorescent material is used in the present invention, the phosphorescence quantum yield (0.01 or more) is achieved in any solvent. Just do it.
 燐光発光材料の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーを燐光発光材料に移動させることで燐光発光材料からの発光を得るというエネルギー移動型、もう一つは燐光発光材料がキャリアトラップとなり、燐光発光材料上でキャリアの再結合が起こり燐光発光材料からの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、燐光発光材料の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of the phosphorescent material. In principle, the carrier recombination occurs on the host compound to which the carrier is transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent material. Energy transfer type to obtain light emission from the phosphorescent light emitting material, and another one is that the phosphorescent light emitting material becomes a carrier trap, and recombination of carriers occurs on the phosphorescent light emitting material, and light emission from the phosphorescent light emitting material is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent material is required to be lower than the excited state energy of the host compound.
 燐光発光材料は、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができるが、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent light-emitting material can be appropriately selected from known materials used for the light-emitting layer of the organic EL element, and is preferably a complex compound containing a group 8-10 metal in the periodic table of elements. More preferably, an iridium compound, an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex, and most preferably an iridium compound.
 以下に燐光発光材料として用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.,40巻、1704~1711に記載の方法等により合成できる。 Specific examples of compounds used as phosphorescent materials are shown below, but the present invention is not limited thereto. These compounds are described, for example, in Inorg. Chem. 40, 1704 to 1711, and the like.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 本発明に係る有機EL素子には、蛍光発光体を用いることもできる。蛍光発光体(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。 Fluorescent light emitters can also be used in the organic EL device according to the present invention. Representative examples of fluorescent emitters (fluorescent dopants) include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, and pyrylium dyes. Examples thereof include dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第00/70655号パンフレット、特開2002-280178号公報、同2001-181616号公報、同2002-280179号公報、同2001-181617号公報、同2002-280180号公報、同2001-247859号公報、同2002-299060号公報、同2001-313178号公報、同2002-302671号公報、同2001-345183号公報、同2002-324679号公報、国際公開第02/15645号パンフレット、特開2002-332291号公報、同2002-50484号公報、同2002-332292号公報、同2002-83684号公報、特表2002-540572号公報、特開2002-117978号公報、同2002-338588号公報、同2002-170684号公報、同2002-352960号公報、国際公開第01/93642号パンフレット、特開2002-50483号公報、同2002-100476号公報、同2002-173674号公報、同2002-359082号公報、同2002-175884号公報、同2002-363552号公報、同2002-184582号公報、同2003-7469号公報、特表2002-525808号公報、特開2003-7471号公報、特表2002-525833号公報、特開2003-31366号公報、同2002-226495号公報、同2002-234894号公報、同2002-235076号公報、同2002-241751号公報、同2001-319779号公報、同2001-319780号公報、同2002-62824号公報、同2002-100474号公報、同2002-203679号公報、同2002-343572号公報、同2002-203678号公報等が挙げられる。 Conventionally known dopants can also be used in the present invention. For example, International Publication No. 00/70655 pamphlet, JP-A Nos. 2002-280178, 2001-181616, 2002-280179, 2001 -181617, 2002-280180, 2001-247859, 2002-299060, 2001-313178, 2002-302671, 2001-345183, 2002 No. 324679, WO 02/15645, JP 2002-332291, 2002-50484, 2002-332292, 2002-83684, JP 2002-540572, JP 002-117978, 2002-338588, 2002-170684, 2002-352960, WO01 / 93642, JP2002-50483, 2002-1000047 No. 2002-173684, No. 2002-359082, No. 2002-175484, No. 2002-363552, No. 2002-184582, No. 2003-7469, No. 2002-525808 JP2003-7471, JP2002-525833A, JP2003-31366A, 2002-226495, 2002-234894, 2002-233506, 2002-2417. No. 1, No. 2001-319779, No. 2001-319780, No. 2002-62824, No. 2002-1000047, No. 2002-203679, No. 2002-343572, No. 2002-203678. Gazettes and the like.
 本発明においては、少なくとも一つの発光層に2種以上の発光材料を含有していてもよく、発光層における発光材料の濃度比が発光層の厚さ方向で変化していてもよい。 In the present invention, at least one light emitting layer may contain two or more kinds of light emitting materials, and the concentration ratio of the light emitting materials in the light emitting layer may vary in the thickness direction of the light emitting layer.
 《中間層》
 本発明において、各発光層間に非発光性の中間層(非ドープ領域等ともいう)を設ける場合について説明する。
《Middle layer》
In the present invention, a case where a non-light emitting intermediate layer (also referred to as an undoped region) is provided between the light emitting layers will be described.
 非発光性の中間層とは、複数の発光層を有する場合、その発光層間に設けられる層である。 In the case of having a plurality of light emitting layers, the non-light emitting intermediate layer is a layer provided between the light emitting layers.
 非発光性の中間層の膜厚としては1nm以上20nm以下の範囲にあるのが好ましく、さらには3nm以上10nm以下の範囲にあることが隣接発光層間のエネルギー移動等相互作用を抑制し、かつ素子の電流電圧特性に大きな負荷を与えないということから好ましい。 The film thickness of the non-light emitting intermediate layer is preferably in the range of 1 nm to 20 nm, and further in the range of 3 nm to 10 nm suppresses interaction such as energy transfer between adjacent light emitting layers, and the device This is preferable because a large load is not applied to the current-voltage characteristics.
 この非発光性の中間層に用いられる材料としては、発光層のホスト化合物と同一でも異なっていてもよいが、隣接する2つの発光層の少なくとも一方の発光層のホスト材料と同一であることが好ましい。 The material used for the non-light emitting intermediate layer may be the same as or different from the host compound of the light emitting layer, but may be the same as the host material of at least one of the adjacent light emitting layers. preferable.
 非発光性の中間層は非発光層、各発光層と共通の化合物(例えば、ホスト化合物等)を含有していてもよく、各々共通ホスト材料(ここで、共通ホスト材料が用いられるとは、燐光発光エネルギー、ガラス転移点等の物理化学的特性が同一である場合やホスト化合物の分子構造が同一である場合等を示す。)を含有することにより、発光層-非発光層間の層間の注入障壁が低減され、電圧(電流)を変化させても正孔と電子の注入バランスが保ちやすいという効果を得ることができる。さらに、非ドープ発光層に各発光層に含まれるホスト化合物と同一の物理的特性または同一の分子構造を有するホスト材料を用いることにより、従来の有機EL素子作製の大きな問題点である素子作製の煩雑さをも併せて解消することができる。 The non-light-emitting intermediate layer may contain a non-light-emitting layer, a compound common to each light-emitting layer (for example, a host compound), and each common host material (where a common host material is used) Including the case where the physicochemical characteristics such as phosphorescence emission energy and glass transition point are the same, and the case where the molecular structure of the host compound is the same, etc.) The barrier is reduced, and the effect of easily maintaining the injection balance of holes and electrons even when the voltage (current) is changed can be obtained. Furthermore, by using a host material having the same physical characteristics or the same molecular structure as that of the host compound contained in each light emitting layer in the undoped light emitting layer, device fabrication, which is a major problem in conventional organic EL device fabrication, is achieved. Complexity can also be eliminated.
 本発明で有機EL素子を用いる場合、ホスト材料はキャリアの輸送を担うため、キャリア輸送能を有する材料が好ましい。キャリア輸送能を表す物性としてキャリア移動度が用いられるが、有機材料のキャリア移動度は一般的に電界強度に依存性が見られる。電界強度依存性の高い材料は正孔と電子注入・輸送バランスを崩しやすいため、中間層材料、ホスト材料は移動度の電界強度依存性の少ない材料を用いることが好ましい。 In the case of using the organic EL element in the present invention, the host material is responsible for carrier transportation, and therefore a material having carrier transportation ability is preferable. Carrier mobility is used as a physical property representing carrier transport ability, but the carrier mobility of an organic material generally depends on the electric field strength. Since a material having a high electric field strength dependency easily breaks the balance between injection and transport of holes and electrons, it is preferable to use a material having a low electric field strength dependency of mobility for the intermediate layer material and the host material.
 また、一方では正孔や電子の注入バランスを最適に調整するためには、非発光性の中間層は後述する阻止層、即ち正孔阻止層、電子阻止層として機能することも好ましい態様として挙げられる。 On the other hand, in order to optimally adjust the injection balance of holes and electrons, it is also preferable that the non-light emitting intermediate layer functions as a blocking layer described later, that is, a hole blocking layer and an electron blocking layer. It is done.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm以上5μm以下の範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, depending on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed. The hole blocking layer is preferably provided adjacent to the light emitting layer.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては好ましくは3nm以上100nm以下であり、さらに好ましくは5nm以上30nm以下である。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm or more and 100 nm or less, and more preferably 5 nm or more and 30 nm or less.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、さらには米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-30 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 688 are linked in a starburst type ( MTDATA) and the like.
 さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters,80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることから、これらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters, 80 (2002), p. 139) can also be used. In the present invention, it is preferable to use these materials because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm以上5μm以下程度、好ましくは5nm以上200nm以下である。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm or more and about 5 micrometers or less, Preferably they are 5 nm or more and 200 nm or less. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. As long as it has a function of transferring electrons to the light-emitting layer, any material can be selected and used from among conventionally known compounds. For example, nitro-substituted fluorene derivatives, diphenylquinone derivatives Thiopyrandioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Further, the distyrylpyrazine derivatives exemplified as the material of the light emitting layer can also be used as the electron transport material, and inorganic semiconductors such as n-type-Si and n-type-SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm以上5μm以下程度、好ましくは5nm以上200nm以下である。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm or more and about 5 micrometers or less are preferable, Preferably they are 5 nm or more and 200 nm or less. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《支持基板》
 支持基板(以下、基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) is not particularly limited in the type of glass, plastic and the like, and may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate and cellulose nitrate or their derivatives, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyester Examples include cycloolefin resins such as terimide, polyether ketone imide, polyamide, fluororesin, nylon, polymethyl methacrylate, acrylic or polyarylate, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals). It is done.
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド皮膜が形成されていてもよく、JIS-K-7129-1992に準拠した方法で測定された水蒸気透過度(40℃、90%RH)が0.01g/(m・day・atm)以下のバリア性フィルムであることが好ましく、さらにはJIS-K-7126-1992に準拠した方法で測定された酸素透過度(20℃、100%RH)が10-3g/(m・day)以下、水蒸気透過度が10-3g/(m・day)以下の高バリア性フィルムであることが好ましく、前記の水蒸気透過度、酸素透過度がいずれも10-5g/(m・day)以下であることがさらに好ましい。 An inorganic or organic film or a hybrid film of both may be formed on the surface of the resin film, and the water vapor transmission rate (40 ° C., 90%) measured by a method according to JIS-K-7129-1992. (RH) is preferably a barrier film of 0.01 g / (m 2 · day · atm) or less, and moreover, oxygen permeability (20 ° C., measured by a method according to JIS-K-7126-1992) 100% RH) is 10 -3 g / (m 2 · day) or less, preferably water vapor permeability is 10 -3 g / (m 2 · day) or less of the high barrier film, wherein the water vapor transmission rate More preferably, the oxygen permeability is 10 −5 g / (m 2 · day) or less.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに該膜の脆弱性を改良するためにこれら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 《バリア膜の形成方法》
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
<Method for forming barrier film>
The method for forming the barrier film is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, and the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板・フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates / films such as aluminum and stainless steel, opaque resin substrates, ceramic substrates, and the like.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性光透過性材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm以上1000nm以下、好ましくは10nm以上200nm以下の範囲で選ばれる。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode substances include metals such as Au, and conductive light-transmitting materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used. For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when the pattern accuracy is not required (about 100 μm or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered. Or when using the substance which can be apply | coated like an organic electroconductivity compound, wet film forming methods, such as a printing system and a coating system, can also be used. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
 《陰極》
 一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
 これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm以上5μm以下、好ましくは50nm以上200nm以下の範囲で選ばれる。 Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as the cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm.
 なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方は、光透過性となるよう構成される。 In addition, in order to transmit the emitted light, either the anode or the cathode of the organic EL element is configured to be light transmissive.
 また、上述の有機ELパネル100では、支持基板1に陽極2を配置し、有機機能層3を挟んで陰極4を配置するとしたが、第1電極を陰極4とし第2電極を陽極2として、陽極2と陰極4の配置を逆にしても良い。 In the organic EL panel 100 described above, the anode 2 is disposed on the support substrate 1 and the cathode 4 is disposed with the organic functional layer 3 interposed therebetween. However, the first electrode is the cathode 4 and the second electrode is the anode 2. The arrangement of the anode 2 and the cathode 4 may be reversed.
 《有機EL素子の製造方法》
 有機EL素子の製造方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の製造法について説明する。
<< Method for Manufacturing Organic EL Element >>
As an example of the method for producing an organic EL device, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode will be described.
 まず適当な支持基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm以上200nm以下の膜厚になるように蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層の有機化合物薄膜を形成させる。 First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable support substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 nm or more and 200 nm or less, and an anode is manufactured. To do. Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer, which are organic EL element materials, is formed thereon.
 この有機化合物薄膜の薄膜化の方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、かつピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50以上450℃以下、真空度10-6以上10-2Pa以下、蒸着速度0.01nm/秒以上50nm/秒以下、基板温度-50℃以上300℃以下、膜厚0.1nm以上5μm以下、好ましくは5nm以上200nm以下の範囲で適宜選ぶことが望ましい。 As a method for thinning the organic compound thin film, there are a vapor deposition method and a wet process (spin coating method, casting method, ink jet method, printing method) as described above, but it is easy to obtain a uniform film and a pinhole. From the point of being difficult to form, a vacuum deposition method, a spin coating method, an inkjet method, and a printing method are particularly preferable. Further, a different film forming method may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 −6 to 10 −2 Pa and the vapor deposition rate is 0. It is desirable to select appropriately within the range of 01 nm / second to 50 nm / second, substrate temperature −50 ° C. to 300 ° C., and film thickness 0.1 nm to 5 μm, preferably 5 nm to 200 nm.
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm以上200nm以下の範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。 After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 50 nm or more and 200 nm or less. By providing, a desired organic EL element can be obtained. The organic EL element is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の液晶表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2V以上40V以下程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order. When a DC voltage is applied to the multi-color liquid crystal display device thus obtained, light emission can be observed by applying a voltage of about 2 V to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 有機EL素子は空気よりも屈折率の高い(屈折率1.6以上2.1以下程度)層の内部で発光し、発光層で発生した光のうち15%以上20%以下程度の光しか取り出せないと一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は全反射を起こし、素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。 An organic EL element emits light within a layer having a refractive index higher than that of air (refractive index: 1.6 to 2.1), and only 15% to 20% of light generated in the light emitting layer can be extracted. It is generally said that there is no. This is because light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be extracted outside the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435). ), A method of improving the efficiency by giving the substrate a light condensing property (for example, JP-A-63-314795), a method of forming a reflective surface on the side surface of the element (for example, JP-A-1-220394) Gazette), a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Application Laid-Open No. 62-172691), a substrate between the substrate and the light emitter. A method of introducing a flat layer having a lower refractive index than that (for example, Japanese Patent Laid-Open No. 2001-202827), a diffraction grating is provided between any of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside). Method of forming There is 11-283751 JP), and the like.
 本発明においては、これらの方法を組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。本発明はこれらの手段を組み合わせることにより、さらに高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, these methods can be used in combination, but either a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or any of the substrate, the transparent electrode layer, and the light emitting layer. A method of forming a diffraction grating between the layers (including between the substrate and the outside) can be suitably used. In the present invention, by combining these means, it is possible to obtain an element having higher luminance or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5以上1.7以下程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 or more and 1.7 or less, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚みが光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low-refractive index layer is reduced when the thickness of the low-refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
 全反射を起こす界面またはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった、所謂ブラッグ回折により光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光をいずれかの層間もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction and second-order diffraction. Among them, light that cannot be emitted due to total reflection between layers, etc. is diffracted by introducing a diffraction grating into any layer or medium (in a transparent substrate or transparent electrode), and the light is emitted outside. I want to take it out.
 導入する回折格子は二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. In other words, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
 回折格子を導入する位置としては、前述のとおりいずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。 As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or in the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
 このとき、回折格子の周期は媒質中の光の波長の約1/2以上3以下倍程度が好ましい。回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of the light in the medium. The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 本発明の有機EL素子は支持基板の光取出し側に、例えば、マイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。 The organic EL element of the present invention is processed on the light extraction side of the support substrate, for example, so as to provide a structure on a microlens array, or combined with a so-called condensing sheet, for example, in a specific direction, for example, the element light emitting surface. On the other hand, the brightness | luminance in a specific direction can be raised by condensing in a front direction.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10以上100μm以下が好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the organic EL element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
〔第2の実施形態〕
 上記第1の実施形態の有機ELパネル100は、第1~第3の封止部材7~9を備えていたが、以下に説明する有機ELパネル100Aのように第1及び第2の封止部材7A,8Aを備えた構成としても良い。
 図3は、有機ELパネルの断面図である。
 図3に示すように、第1の封止部材7A及び第2の封止部材8Aは、第1接着層5Aを介して有機EL素子10A上に配置されている。すなわち、陽極2A、有機機能層3A及び陰極4Aの露出した上面に第1接着層5Aが形成され、当該第1接着層5Aに、側面視直線状の第2の封止部材8Aが、陰極4Aの右側端部を覆うとともに、陰極4A、有機機能層3A及び陽極2Aの左側端部が露出するように設けられている。
 また、第2の封止部材8Aの上面のうち、右側端部を除く上面に第2接着層6Aが形成されている。
 そして、第1接着層5Aのうち第2の封止部材8Aが設けられていない部分と、第2接着層6Aとに、第1の封止部材7Aが、陽極2A、有機機能層3A及び陰極4Aの左側端部を覆うとともに、第2の封止部材8Aの左端部に接触しないように、第2の封止部材8Aの一部を覆い、第2の封止部材8Aの右側端部が露出するように設けられている。
 このように、有機ELパネル100Aにおいて、第1及び第2の封止部材7A,8Aは、第1及び第2接着層5A,6Aを介して互いに電気的に接触しないように配置されている。そして、有機EL素子10Aは、第1及び第2の封止部材7A,8Aによって封止された封止構造となっている。
[Second Embodiment]
The organic EL panel 100 of the first embodiment includes the first to third sealing members 7 to 9, but the first and second sealings as in the organic EL panel 100A described below. It is good also as a structure provided with member 7A, 8A.
FIG. 3 is a cross-sectional view of the organic EL panel.
As shown in FIG. 3, the first sealing member 7A and the second sealing member 8A are disposed on the organic EL element 10A via the first adhesive layer 5A. That is, the first adhesive layer 5A is formed on the exposed upper surfaces of the anode 2A, the organic functional layer 3A, and the cathode 4A, and the second sealing member 8A that is linear in a side view is formed on the first adhesive layer 5A. And the left side ends of the cathode 4A, the organic functional layer 3A, and the anode 2A are exposed.
Further, the second adhesive layer 6A is formed on the upper surface of the second sealing member 8A except the right end portion.
The first sealing member 7A includes the anode 2A, the organic functional layer 3A, and the cathode on the portion of the first adhesive layer 5A where the second sealing member 8A is not provided and the second adhesive layer 6A. 4A covers the left end portion of 4A, covers a part of the second sealing member 8A so as not to contact the left end portion of the second sealing member 8A, and the right end portion of the second sealing member 8A It is provided to be exposed.
Thus, in the organic EL panel 100A, the first and second sealing members 7A and 8A are disposed so as not to be in electrical contact with each other via the first and second adhesive layers 5A and 6A. The organic EL element 10A has a sealing structure sealed with the first and second sealing members 7A and 8A.
 第1及び第2の封止部材7A,8Aは略同じ大きさをなしており、支持基板1Aと、第1及び第2の封止部材7A,8Aの全体とを平面視した際に、支持基板1Aの外形と、第1及び第2の封止部材7A,8Aの全体とが同寸となっている。
 また、第1の封止部材7Aの大きさをさらに大きくしても良い。この場合、第1の封止部材7Aの右端部から第2の封止部材8Aの左端部までの距離を長くすることができることから、封止機能を高めることができる。
The first and second sealing members 7A and 8A have substantially the same size, and are supported when the support substrate 1A and the first and second sealing members 7A and 8A are viewed in plan. The outer shape of the substrate 1A and the entire first and second sealing members 7A and 8A have the same dimensions.
Further, the size of the first sealing member 7A may be further increased. In this case, since the distance from the right end portion of the first sealing member 7A to the left end portion of the second sealing member 8A can be increased, the sealing function can be enhanced.
 また、陽極2Aの左側端部と第1の封止部材7Aの左側端部とは、上述の電気的接続方法により電気的に接続されている。陰極4Aの右側端部と第2の封止部材8Aの右側端部も上述の電気的接続方法により電気的に接続されている。なお、図3では、第1接着層5A内に導電性フィラー14Aを分散させることによって電気的に接続されている。
 そして、第1の封止部材7Aの上面に陽極用給電部11Aが形成され、第2の封止部材8Aの上面に陰極用給電部12Aが形成されており、陽極用給電部11Aと陰極用給電部12Aとは、第1及び第2接着層5A,6Aの外側に設けられている。
The left end of the anode 2A and the left end of the first sealing member 7A are electrically connected by the above-described electrical connection method. The right end of the cathode 4A and the right end of the second sealing member 8A are also electrically connected by the above-described electrical connection method. In FIG. 3, the conductive fillers 14A are dispersed in the first adhesive layer 5A to be electrically connected.
The anode power supply portion 11A is formed on the upper surface of the first sealing member 7A, and the cathode power supply portion 12A is formed on the upper surface of the second sealing member 8A. The anode power supply portion 11A and the cathode power supply portion 11A are formed. The power feeding part 12A is provided outside the first and second adhesive layers 5A and 6A.
 以上のように、第2の実施形態においても、第1の実施形態と同様に、陽極2Aと陰極4Aとは、それぞれ第1及び第2の封止部材7A、8Aに対して電気的に接続されているので、第1及び第2の封止部材7A,8Aの支持基板1Aと反対側の面に陽極用給電部11A及び陰極用給電部12Aを設けることができる。その結果、従来のように支持基板1A上に陽極用及び陰極用給電部を設ける必要がないので、有機EL素子10Aの平面視における非発光エリアを小さくすることができるとともに、給電エリアを大きく確保することができ、配線接続がし易くコストの低減を図ることができる。
 また、支持基板1Aと、第1及び第2の封止部材7A,8Aの全体とを平面視した際に、支持基板1Aの外形と、第1及び第2の封止部材7A,8Aの全体とが同寸であるので、見栄えが良く、パネル全体としての強度が増す。また、支持基板1Aの外形と、第1及び第2の封止部材7A,8Aの全体との大きさを同寸とすることによって、有機EL素子10Aを封止する面積が大きくなるため、有機EL素子10Aへの水分や酸素侵入を確実に抑制でき、有機EL素子10Aの寿命を向上させることができる。
 さらに、第2の実施形態では、第1及び第2の封止部材7A,8Aによって封止した構造であるので、第1の実施形態に比べて、部材点数を減らすことができコスト削減を図ることができる。
 また、有機EL素子10Aが第1及び第2の封止部材7A,8Aによって覆われた封止構造となっているので、この点においても水分や酸素浸入を確実に抑制することができる。
 なお、本発明は上記実施形態に限らず適宜変更可能である。なお、以下の説明において上記実施形態と同一部分においては同一符号を付してその説明を省略する。例えば、上記第1の実施形態では、第3の封止部材9及び第2接着層6を設けたが、これらは必ずしも設けなくともよい。
As described above, also in the second embodiment, similarly to the first embodiment, the anode 2A and the cathode 4A are electrically connected to the first and second sealing members 7A and 8A, respectively. Therefore, the anode power supply part 11A and the cathode power supply part 12A can be provided on the surfaces of the first and second sealing members 7A, 8A opposite to the support substrate 1A. As a result, since it is not necessary to provide the anode and cathode power supply portions on the support substrate 1A as in the prior art, the non-light emitting area in the plan view of the organic EL element 10A can be reduced, and a large power supply area is ensured. Therefore, the wiring can be easily connected and the cost can be reduced.
Further, when the support substrate 1A and the entire first and second sealing members 7A and 8A are viewed in plan, the outer shape of the support substrate 1A and the entire first and second sealing members 7A and 8A are displayed. Is the same size, so it looks good and the overall strength of the panel increases. Further, by making the outer shape of the support substrate 1A and the first and second sealing members 7A, 8A the same size, the area for sealing the organic EL element 10A is increased, so that the organic Moisture and oxygen intrusion into the EL element 10A can be reliably suppressed, and the life of the organic EL element 10A can be improved.
Furthermore, in the second embodiment, since the structure is sealed by the first and second sealing members 7A and 8A, the number of members can be reduced and the cost can be reduced as compared with the first embodiment. be able to.
In addition, since the organic EL element 10A has a sealing structure covered with the first and second sealing members 7A and 8A, moisture and oxygen ingress can be reliably suppressed in this respect as well.
Note that the present invention is not limited to the above embodiment, and can be modified as appropriate. In the following description, the same parts as those in the above embodiment are denoted by the same reference numerals and the description thereof is omitted. For example, in the first embodiment, the third sealing member 9 and the second adhesive layer 6 are provided, but these are not necessarily provided.
 本発明は、平面視における非発光エリアを小さくすることができる有機エレクトロルミネッセンスパネル及び有機エレクトロルミネッセンスパネルの製造方法に好適に利用することができる。 The present invention can be suitably used for an organic electroluminescence panel capable of reducing a non-light emitting area in a plan view and a method for manufacturing the organic electroluminescence panel.
1,1A,21 支持基板
2,2A,22 陽極
3,3A,23 有機機能層
4,4A,24 陰極
5,5A 第1接着層
6,6A 第2接着層
7,7A 第1の封止部材
8,8A 第2の封止部材
9 第3封止部材
10,10A,20 有機EL素子
11,11A 陽極用給電部
12,12A 陰極用給電部
13 ハンダ
14,14A 導電性フィラー
25 接着層
27 封止部材
28 陽極用給電部
29 陰極用給電部
100,100A 有機ELパネル
S 隙間
1, 1A, 21 Support substrate 2, 2A, 22 Anode 3, 3A, 23 Organic functional layer 4, 4A, 24 Cathode 5, 5A First adhesive layer 6, 6A Second adhesive layer 7, 7A First sealing member 8, 8A Second sealing member 9 Third sealing member 10, 10A, 20 Organic EL element 11, 11A Anode feeding portion 12, 12A Cathode feeding portion 13 Solder 14, 14A Conductive filler 25 Adhesive layer 27 Sealing Stopping member 28 Anode feeding portion 29 Cathode feeding portion 100, 100A Organic EL panel S Gap

Claims (10)

  1.  支持基板上に、少なくとも第1電極と、発光層と、第2電極とがこの順に形成された有機エレクトロルミネッセンス素子が、前記第2電極上に設けられた絶縁性接着層を介して導電性封止部材により封止された有機エレクトロルミネッセンスパネルであって、
     前記導電性封止部材は複数設けられており、
     前記第1電極と前記第2電極とは、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して電気的に接続されていることを特徴とする有機エレクトロルミネッセンスパネル。
    An organic electroluminescent element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a support substrate is provided with a conductive sealing layer via an insulating adhesive layer provided on the second electrode. An organic electroluminescence panel sealed with a stop member,
    A plurality of the conductive sealing members are provided,
    The organic electroluminescence panel, wherein the first electrode and the second electrode are electrically connected to different conductive sealing members among the plurality of conductive sealing members.
  2.  前記第1電極と電気的に接続された前記導電性封止部材の前記支持基板と反対側の面に、前記第1電極用の給電部が設けられ、
     前記第2電極と電気的に接続された前記導電性封止部材の前記支持基板と反対側の面に、前記第2電極用の給電部が設けられていることを特徴とする請求項1に記載の有機エレクトロルミネッセンスパネル。
    On the surface opposite to the support substrate of the conductive sealing member electrically connected to the first electrode, a power feeding portion for the first electrode is provided,
    2. The power feeding portion for the second electrode is provided on a surface opposite to the support substrate of the conductive sealing member electrically connected to the second electrode. The organic electroluminescence panel described.
  3.  複数の前記導電性封止部材は、互いに当該導電性封止部材間に絶縁性接着層を介して設けられ、
     前記第1電極用の給電部及び前記第2電極用の給電部は、前記絶縁性接着層の外側に設けられていることを特徴とする請求項2に記載の有機エレクトロルミネッセンスパネル。
    The plurality of conductive sealing members are provided with an insulating adhesive layer between the conductive sealing members,
    The organic electroluminescence panel according to claim 2, wherein the first electrode power supply unit and the second electrode power supply unit are provided outside the insulating adhesive layer.
  4.  前記第1電極用の給電部が設けられた前記導電性封止部材と、前記第2電極用の給電部が設けられた前記導電性封止部材とは、同一平面上で互いに所定間隔を隔てて配置され、
     同一平面上で互いに隣り合う前記導電性封止部材間の隙間上に、他の導電性封止部材が前記絶縁性接着層を介して積層されていることを特徴とする請求項3に記載の有機エレクトロルミネッセンスパネル。
    The conductive sealing member provided with the power feeding portion for the first electrode and the conductive sealing member provided with the power feeding portion for the second electrode are spaced apart from each other on the same plane. Arranged,
    The other conductive sealing member is laminated | stacked through the said insulating contact bonding layer on the clearance gap between the said conductive sealing members mutually adjacent on the same plane. Organic electroluminescence panel.
  5.  前記第1電極と前記第2電極とは、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して、前記第2電極上に設けられた前記絶縁性接着層内に分散させた導電性フィラーを介して、電気的に接続されていることを特徴とする請求項1~4のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 The first electrode and the second electrode are in the insulating adhesive layer provided on the second electrode with respect to the different conductive sealing members among the plurality of conductive sealing members. The organic electroluminescence panel according to any one of claims 1 to 4, wherein the organic electroluminescence panel is electrically connected via a dispersed conductive filler.
  6.  前記支持基板と、複数の前記導電性封止部材の全体とを平面視した際に、前記支持基板の外形と、複数の前記導電性封止部材の全体とが同寸であることを特徴とする請求項1~5のいずれか一項に記載の有機エレクトロルミネッセンスパネル。 When the support substrate and the plurality of conductive sealing members are viewed in plan, the outer shape of the support substrate and the plurality of conductive sealing members are the same size. The organic electroluminescence panel according to any one of claims 1 to 5.
  7.  支持基板上に、少なくとも第1電極と、発光層と、第2電極とがこの順に形成された有機エレクトロルミネッセンス素子が、前記第2電極上に設けられた絶縁性接着層を介して導電性封止部材により封止された有機エレクトロルミネッセンスパネルを製造する有機エレクトロルミネッセンスパネルの製造方法であって、
     前記導電性封止部材を複数設け、
     前記第1電極と前記第2電極とを、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して電気的に接続することを特徴とする有機エレクトロルミネッセンスパネルの製造方法。
    An organic electroluminescent element in which at least a first electrode, a light emitting layer, and a second electrode are formed in this order on a support substrate is provided with a conductive sealing layer via an insulating adhesive layer provided on the second electrode. An organic electroluminescence panel manufacturing method for manufacturing an organic electroluminescence panel sealed by a stop member,
    A plurality of the conductive sealing members are provided,
    The method for producing an organic electroluminescence panel, wherein the first electrode and the second electrode are electrically connected to different conductive sealing members among the plurality of conductive sealing members. .
  8.  前記第1電極と前記第2電極とを、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して、レーザー溶着によって接合して電気的に接続することを特徴とする請求項7に記載の有機エレクトロルミネッセンスパネルの製造方法。 The first electrode and the second electrode are joined and electrically connected by laser welding to different conductive sealing members among the plurality of conductive sealing members. The manufacturing method of the organic electroluminescent panel of Claim 7.
  9.  前記第1電極と前記第2電極とを、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して、超音波溶着によって接合して電気的に接続することを特徴とする請求項7に記載の有機エレクトロルミネッセンスパネルの製造方法。 The first electrode and the second electrode are joined and electrically connected by ultrasonic welding to different conductive sealing members among the plurality of conductive sealing members. The manufacturing method of the organic electroluminescent panel of Claim 7.
  10.  前記第1電極と前記第2電極とを、複数の前記導電性封止部材のうちそれぞれ異なる前記導電性封止部材に対して、カシメによって接合して電気的に接続することを特徴とする請求項7に記載の有機エレクトロルミネッセンスパネルの製造方法。 The first electrode and the second electrode are joined by caulking and electrically connected to different conductive sealing members among the plurality of conductive sealing members. Item 8. A method for producing an organic electroluminescence panel according to Item 7.
PCT/JP2012/072408 2011-09-21 2012-09-04 Organic electroluminescent panel and method for producing organic electroluminescent panel WO2013042533A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013534657A JP6102741B2 (en) 2011-09-21 2012-09-04 Organic electroluminescence panel and method for manufacturing organic electroluminescence panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-206204 2011-09-21
JP2011206204 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042533A1 true WO2013042533A1 (en) 2013-03-28

Family

ID=47914310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072408 WO2013042533A1 (en) 2011-09-21 2012-09-04 Organic electroluminescent panel and method for producing organic electroluminescent panel

Country Status (2)

Country Link
JP (1) JP6102741B2 (en)
WO (1) WO2013042533A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153581A (en) * 2014-02-13 2015-08-24 パイオニア株式会社 Light emitting element
JP2016514895A (en) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
WO2017050630A1 (en) * 2015-09-23 2017-03-30 Osram Oled Gmbh Flat light-emitting component and method for producing a flat light-emitting component
JPWO2015173851A1 (en) * 2014-05-14 2017-04-20 シンクロア株式会社 Surgical light
WO2017198661A1 (en) * 2016-05-18 2017-11-23 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component
JP2021061051A (en) * 2013-11-27 2021-04-15 株式会社半導体エネルギー研究所 Touch panel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260563A (en) * 1999-03-10 2000-09-22 Kawaguchiko Seimitsu Co Ltd Terminal part structure for electroluminescence
JP2001236025A (en) * 1999-12-15 2001-08-31 Semiconductor Energy Lab Co Ltd Light emitting device
JP2001264800A (en) * 2000-03-15 2001-09-26 Seiko Epson Corp Method for manufacturing liquid crystal
JP2003086362A (en) * 2001-09-12 2003-03-20 Sony Corp Display device and its manufacturing method, and electronic equipment
JP2008530752A (en) * 2005-02-16 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED device
JP2009538498A (en) * 2006-05-22 2009-11-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interconnect structure and method for interconnecting high current carrying cables with metal thin films

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052858A (en) * 1999-08-05 2001-02-23 Futaba Corp Organic el display device
WO2003092332A1 (en) * 2002-04-25 2003-11-06 Harison Toshiba Lighting Corporation Organic electroluminescence light-emitting device
JP2004111321A (en) * 2002-09-20 2004-04-08 Kansho Ho Organic el device suitable for carrying out assembling in parallel arrangement
US7538488B2 (en) * 2004-02-14 2009-05-26 Samsung Mobile Display Co., Ltd. Flat panel display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000260563A (en) * 1999-03-10 2000-09-22 Kawaguchiko Seimitsu Co Ltd Terminal part structure for electroluminescence
JP2001236025A (en) * 1999-12-15 2001-08-31 Semiconductor Energy Lab Co Ltd Light emitting device
JP2001264800A (en) * 2000-03-15 2001-09-26 Seiko Epson Corp Method for manufacturing liquid crystal
JP2003086362A (en) * 2001-09-12 2003-03-20 Sony Corp Display device and its manufacturing method, and electronic equipment
JP2008530752A (en) * 2005-02-16 2008-08-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED device
JP2009538498A (en) * 2006-05-22 2009-11-05 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interconnect structure and method for interconnecting high current carrying cables with metal thin films

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016514895A (en) * 2013-08-21 2016-05-23 エルジー・ケム・リミテッド ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
US9876190B2 (en) 2013-08-21 2018-01-23 Lg Display Co., Ltd. Organic light-emitting diode and method for manufacturing same
JP2021061051A (en) * 2013-11-27 2021-04-15 株式会社半導体エネルギー研究所 Touch panel
JP7084510B2 (en) 2013-11-27 2022-06-14 株式会社半導体エネルギー研究所 Touch panel
US11785826B2 (en) 2013-11-27 2023-10-10 Semiconductor Energy Laboratory Co., Ltd. Touch panel
JP2015153581A (en) * 2014-02-13 2015-08-24 パイオニア株式会社 Light emitting element
JPWO2015173851A1 (en) * 2014-05-14 2017-04-20 シンクロア株式会社 Surgical light
WO2017050630A1 (en) * 2015-09-23 2017-03-30 Osram Oled Gmbh Flat light-emitting component and method for producing a flat light-emitting component
WO2017198661A1 (en) * 2016-05-18 2017-11-23 Osram Oled Gmbh Optoelectronic component and method for producing an optoelectronic component

Also Published As

Publication number Publication date
JPWO2013042533A1 (en) 2015-03-26
JP6102741B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP5098645B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP4830374B2 (en) Organic electroluminescence element, liquid crystal display device and lighting device
JP6102741B2 (en) Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
JP2007027620A (en) Organic electroluminescence element, liquid crystal display and lighting system
JP6337883B2 (en) Electronic devices
JP2007180277A (en) Organic electroluminescent device, display and illuminator
JP5664715B2 (en) Organic electroluminescence device
JP2007059118A (en) Organic electroluminescent element, liquid crystal display, and lighting device
JP6119606B2 (en) Organic electroluminescence panel and method for manufacturing organic electroluminescence panel
JP5862665B2 (en) Method for manufacturing organic electroluminescence element
JP4962452B2 (en) Surface light emitting device and light emitting panel
JP5660125B2 (en) ORGANIC ELECTROLUMINESCENT MEMBER AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP4978034B2 (en) Organic electroluminescence device
JP5217844B2 (en) Surface emitting panel for lighting
JP2012048934A (en) Aging method of organic electroluminescence device
JP5273148B2 (en) Luminescent panel
JPWO2006092964A1 (en) Organic electroluminescence display device and organic electroluminescence illumination device
JP2007059311A (en) Organic electroluminescent panel and its manufacturing method
JP2007221028A (en) Organic electroluminescence element, display, and illumination device
JP6252590B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
JP5895699B2 (en) Organic electroluminescence device
JP5594291B2 (en) Organic electroluminescence device and method for manufacturing the same
JP2012234972A (en) Organic electroluminescent element and method for manufacturing the same
JP2010199021A (en) Method of manufacturing organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833970

Country of ref document: EP

Kind code of ref document: A1