WO2013042475A1 - 電池制御システム、電池制御装置、電池制御方法および記録媒体 - Google Patents

電池制御システム、電池制御装置、電池制御方法および記録媒体 Download PDF

Info

Publication number
WO2013042475A1
WO2013042475A1 PCT/JP2012/070136 JP2012070136W WO2013042475A1 WO 2013042475 A1 WO2013042475 A1 WO 2013042475A1 JP 2012070136 W JP2012070136 W JP 2012070136W WO 2013042475 A1 WO2013042475 A1 WO 2013042475A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
adjustment
power
batteries
delay time
Prior art date
Application number
PCT/JP2012/070136
Other languages
English (en)
French (fr)
Inventor
耕治 工藤
寿人 佐久間
仁之 矢野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/346,316 priority Critical patent/US9385540B2/en
Priority to JP2012557319A priority patent/JP5234234B1/ja
Publication of WO2013042475A1 publication Critical patent/WO2013042475A1/ja
Priority to US15/176,531 priority patent/US9843203B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a battery control system, a battery control device, a battery control method, and a recording medium, and in particular, a battery control system, a battery control device, and a battery control method that control discharging or charging of a plurality of batteries connected to a power system. And a recording medium.
  • Non-Patent Documents 1 and 2 “Each ES side monitors the power frequency at the grid connection point, and the discharge is proportional to the frequency shift so that the power frequency falls within a desired range. If the "autonomous" technology is used, a fast battery discharge response in an emergency state is possible.
  • FIG. 1 is a diagram for explaining a technique in which each ES side monitors the frequency of power at a system connection point and autonomously discharges in proportion to the frequency shift so that the frequency of power falls within a desired range.
  • the grid connection point is, for example, the outermost part of the wiring where power is input from the power system through the power meter to the in-house distribution board. It may be a connection point where is wired.
  • the control unit 102 that controls the ES 101 monitors the frequency of power at the system connection point 103.
  • the control unit 102 controls the discharge amount of the ES 101 according to a value obtained by subtracting the monitoring result (measurement frequency) from the nominal frequency (for example, 50 Hz) of power.
  • the unit denoted by ES101 in FIG. 1 includes a storage battery pack unit, a storage battery control unit unit, and a power conditioner unit that converts the DC output of the storage battery into AC, but is omitted for simplicity of explanation. is doing.
  • An object of the present invention is to provide a battery control system, a battery control device, a battery control method, and a recording medium that can solve the above-described problems.
  • the battery control system of the present invention is a battery control system that controls the operation of a plurality of batteries connected to an electric power system, and for each of the batteries, the battery control system charges or discharges the battery.
  • Detecting means for detecting a delay time that is a time from when the execution instruction is output until the battery performs an operation according to the execution instruction, and measuring a frequency change rate of power in the power system Measurement means; and selection means for selecting an adjustment battery for adjusting the power of the power system from the plurality of batteries based on the frequency change rate and the delay time of each of the plurality of batteries.
  • an instruction means for outputting the execution instruction to the adjustment battery.
  • the battery control device of the present invention is a battery control device that controls the operation of a battery connected to an electric power system, and receives inspection information for detecting a communication delay time of a communication path used by the battery. Then, it includes control means for controlling the battery based on the operation instruction when the predetermined information is transmitted to the transmission source of the inspection information and the operation instruction defining the operation of charging or discharging the battery is received.
  • the battery control method of the present invention is a power control method in a battery control system that controls the operation of a plurality of batteries connected to an electric power system, and for each of the batteries, the battery control system controls the battery.
  • a delay time which is a time from when the execution instruction for performing charging or discharging is output to when the battery performs an operation according to the execution instruction, is detected, and the frequency change rate of power in the power system is detected.
  • the execution instruction is output to the battery.
  • the battery control method of the present invention is a battery control method in a battery control device that controls the operation of a battery connected to an electric power system, for detecting a communication delay time of a communication path used by the battery.
  • the predetermined information is transmitted to the transmission source of the inspection information, and when the operation instruction defining the operation of charging or discharging the battery is received, the battery is controlled based on the operation instruction.
  • the recording medium of the present invention for each battery connected to a power system, the recording medium outputs an execution instruction to the computer to charge or discharge the battery, and then the battery instructs the execution.
  • the recording medium of the present invention When the recording medium of the present invention receives inspection information for detecting the communication delay time of the communication path used by the battery connected to the power system, the recording medium of the present invention transmits the predetermined information to the transmission source of the inspection information. And a computer-readable recording medium storing a program for executing a procedure for controlling the battery based on the operation instruction when the operation instruction specifying the operation of charging or discharging the battery is received.
  • FIG. 5 is a block diagram showing an ES 5b used as each of ES 51b to 5mb. It is a figure which shows the correspondence table showing the grouping result which the correspondence table preparation part 2b3a performs.
  • 6 is a flowchart for explaining an operation of creating the correspondence table shown in FIG. It is a flowchart for demonstrating the operation
  • FIG. 10 is a diagram for explaining an example of a situation after the correlation coefficient ⁇ is not optimal and the ESs belonging to the groups vES1 to vES3 are discharged. It is the figure which showed the battery control system which consists of ES information collection part 2b1, system
  • FIG. 2 is a diagram showing a power control system employing the battery control system of one embodiment of the present invention.
  • the power control system includes a power supply unit 1a, a monitoring / control unit 1b, a transformer 2a, a DEMS (Distributed Energy Management System) 2b, a communication NW (network) 3, It includes a relay node 4, communication terminals 51a to 5ma, and ES 51b to 5mb.
  • m is an integer of 2 or more.
  • the power supply unit 1a is a power generator such as thermal power provided in the power plant 1X.
  • the monitoring / control unit 1b is provided in the central power supply command station 1Y.
  • the transformer 2a and the DEMS 2b are provided in the distribution substation 2.
  • the communication terminals 51a to 5ma are connected to the ESs 51b to 5mb, respectively.
  • the ESs 51b to 5mb are included in the battery control devices 51 to 5m owned by electric power consumers, respectively.
  • ES 51b to 5mb are, for example, stationary storage batteries or secondary batteries in electric vehicles.
  • the DEMS 2b is described as being in the distribution substation 2.
  • the DEMS 2b does not necessarily have to be in the distribution substation 2, and there is a sufficient installation space, and the central power supply It is desirable to install information at the place with the least delay from the viewpoint of communication delay because information communication can be performed with the command station 1Y and each ES.
  • FIG. 3 is a block diagram showing the ES 5b used as each of the ESs 51b to 5mb.
  • ES 5b includes a battery main body 5b1 and a control unit 5b2 for controlling operations (charging operation and discharging operation) of the battery main body 5b1.
  • the ES 5b includes a storage battery pack unit, a storage battery control unit (BMU), and a power conditioner (PCS) that converts the DC output of the storage battery into AC, but is omitted for simplification of description.
  • the controller 5b2 may be attached to the BMU, attached to the PCS, or may be installed outside the ES depending on the situation.
  • Control unit 5b2 can be generally referred to as control means.
  • the output control of the generator is performed, and frequency control (frequency stabilization) and power demand tracking control are performed. As a result of this control, the power frequency settles to a certain value.
  • the power control system shown in FIG. 2 follows the load fluctuation of the output of an existing power plant when, for example, an emergency situation occurs when a power plant stops generating power and the power supply capacity in the power system rapidly decreases. Until the new power plant is started up, the ESs distributed in the customers are discharged to balance power supply and demand. As a result, the value of the system frequency deviation ⁇ f can be kept small until the power generation capacity of the power system is restored. That is, the governor-free function (B) can be assisted. Furthermore, when the controllable ES storage battery capacity is large, the LFC function of (C) can be performed for a certain period of time.
  • the power supply unit 1a outputs the power generated by the power plant 1X.
  • the monitoring / control unit 1b communicates with the DEMS 2b.
  • the transformer 2a transforms the voltage of the AC power from the power supply unit 1a to a predetermined voltage, and supplies the AC power having the predetermined voltage to the power line 6.
  • the power supply unit 1a and the transformer 2a originally, for example, in Japan, several transformers for stepping down 500,000V high-voltage power transmission in multiple stages are provided. , 66 kV voltage to 6600 V voltage transformer.
  • power whose voltage is stepped down from 6600V to 200V is transmitted to the ES through the pole transformer, but here, for simplification of explanation, These upper transformers and pole transformers are omitted.
  • the DEMS 2b can be generally called a battery control system.
  • the DEMS 2b includes an ES information collection unit 2b1, a system state measurement unit 2b2, a selection unit 2b3, an instruction control unit 2b4, and a communication unit 2b5.
  • the ES information collection unit 2b1 and the instruction control unit 2b4 are connected to the communication NW3 via the communication unit 2b5.
  • the ES information collection unit 2b1 can be generally called detection means.
  • the ES information collection unit 2b1 outputs an execution instruction (hereinafter, simply referred to as “execution instruction”) to the effect that the DEMS 2b performs charging or discharging on the ES for each of the ESs 51b to 5mb connected to the power line 6. After that, a time (hereinafter referred to as “delay time”) ⁇ t from when the ES executes an operation according to the execution instruction is detected.
  • execution instruction hereinafter, simply referred to as “execution instruction”
  • delay time ⁇ t from when the ES executes an operation according to the execution instruction is detected.
  • the ES information collection unit 2b1 receives the execution instruction from the DEMS 2b until it reaches the ES via the communication NW3, the relay node 4, and the communication terminal (communication delay time). A time obtained by adding the time required to start the operation corresponding to (in-device response time) is calculated as the delay time ⁇ t of the ES.
  • each of the ESs 51b to 5mb stores response time information indicating its own in-device response time in the control unit 5b2.
  • the ES information collection unit 2b1 obtains in advance response time information of each of the ESs 51b to 5mb from each control unit 5b2 of each of the ESs 51b to 5mb via each of the communication terminals 51a to 5ma.
  • each control unit 5b2 of ES 51b to 5mb measures the response time in the device (actually, the battery body 5b1 operates according to the instruction after giving an instruction to charge and discharge the battery body 5b1.
  • ES information collection unit 2b1 causes each control unit 5b2 of ES51b to 5mb to measure the response time in the device and obtain the measurement result May be.
  • the ES information collection unit 2b1 detects each communication delay time of the ES 51b to 5mb at a predetermined time interval (for example, every 2 seconds) using a ping (Packet Internet Groper) or the like.
  • the predetermined time interval is not limited to 2 seconds, and can be changed as appropriate.
  • the ES information collection unit 2b1 transmits a response request (inspection information) requesting a response to each of the ESs 51b to 5mb, receives a response (predetermined information) to the response request, and For each of 5 mb, a time obtained by dividing the time from transmission of a response request to reception of a response by 2 is detected as a communication delay time.
  • the ES information collecting unit 2b1 stores transmission time information indicating the transmission time of the response request for each of the ESs 51b to 5mb, and each of the ES 51b to 5mb responds with reception time information indicating the reception time of the response request.
  • the ES information collection unit 2b1 transmits the response to the request to the ES information collection unit 2b1, and the ES information collection unit 2b1 receives the transmission time indicated by the transmission time information of the response request to the ES and the reception time information from the ES for each ES 51b to 5mb.
  • the time between the times may be detected as the communication delay time of the ES.
  • the ES information collection unit 2b1 detects the communication delay time of each of the ESs 51b to 5mb, the ES response time information obtained by the response time information obtained in advance for each of the ESs 51b to 5mb, the detected communication delay time, Are added to calculate the delay time ⁇ t.
  • the ES information collection unit 2b1 determines the time required for the DEMS 2b to output the execution instruction after determining that the execution instruction is output (hereinafter referred to as “processing delay time in the DEMS 2b”) ⁇ td, A time obtained by adding the response time and the communication delay time may be used as the delay time ⁇ t. Since the processing delay time ⁇ td in the DEMS 2b depends on the processing capability of the DEMS 2b, the processing delay time ⁇ td in the DEMS 2b is set to a constant value specified according to the processing capability of the DEMS 2b. Therefore, also in this case, the delay time ⁇ t varies according to the time obtained by adding the in-device response time and the communication delay time.
  • the ES information collection unit 2b1 detects the communication delay time of each of the ESs 51b to 5mb, the ES information collection unit 2b1 also detects a value for each predetermined item of the ESs 51b to 5mb.
  • the predetermined item is an item different from the delay time.
  • the maximum charge / discharge output amount hereinafter, simply referred to as “maximum charge / discharge output amount” Pmax or SOC (within 3 minutes as an example) is assumed. State of Charge). Note that the SOC includes the remaining capacity L of the battery.
  • each of the ESs 51b to 5mb stores maximum charge / discharge output amount information indicating its own maximum charge / discharge output amount Pmax in the control unit 5b2.
  • the ES information collection unit 2b1 obtains the maximum charge / discharge output amount information for each of the ESs 51b to 5mb from the control unit 5b2 for each of the ESs 51b to 5mb.
  • the system state measurement unit 2b2 can be generally referred to as measurement means.
  • the system state measurement unit 2b2 detects the frequency change rate df / dt of power in the power system, and estimates the adjustment power amount ⁇ P that needs to be adjusted in the power system based on the frequency change rate df / dt.
  • the system state measurement unit 2b2 f is sampled and integrated at a cycle of 100 ms to calculate the f value, and df / dt is calculated from the difference before and after the f value.
  • the system state measurement unit 2b2 calculates the adjustment power amount ⁇ P by multiplying the frequency change rate df / dt by the coefficient X. In calculating the adjustment power amount ⁇ P, a frequency deviation ⁇ f obtained by time-integrating the frequency change rate may be used. Further, since the adjustment power amount ⁇ P is an estimated value, the system state measurement unit 2b2 considers the system configuration (system scale, system constant, etc.) and appropriately adjusts the adjustment power amount ⁇ P to appropriately adjust the adjustment power amount. Although it is possible to increase the accuracy of ⁇ P, description of correction of the adjustment power amount ⁇ P is omitted here.
  • the selection unit 2b3 can be generally called selection means.
  • the selecting unit 2b3 selects the power from the ES 51b to 5mb. Select the adjustment battery used to adjust the grid power.
  • the selection unit 2b3 preferentially selects an ES with a short delay time ⁇ t from ES 51b to 5mb as an adjustment battery, and increases the number of adjustment batteries as the adjustment power amount ⁇ P increases.
  • the selection unit 2b3 determines the ES 51b based on the frequency change rate df / dt and each delay time ⁇ t of ES 51b to 5mb.
  • the adjustment battery is selected from ⁇ 5 mb.
  • the selection unit 2b3 includes a correspondence table creation unit 2b3a and a battery selection unit 2b3b.
  • the correspondence table creation unit 2b3a can be generally called grouping means.
  • the correspondence table creation unit 2b3a divides the ESs 51b to 5mb into a plurality of groups divided by the length of the delay time ⁇ t.
  • FIG. 4 is a diagram showing a correspondence table representing a grouping result performed by the correspondence table creation unit 2b3a.
  • FIG. 4 shows groups vES1 to vESn as a plurality of groups divided by the length of the delay time ⁇ t. Note that n is an integer of 2 or more.
  • a delay time ⁇ t of 0 to 100 msec is used for the group vES1 and a delay time ⁇ t of longer than 100 msec and 200 msec or less is used for the group vES2 as the division of the delay time ⁇ t that respectively defines the groups vES1 to vESn.
  • a section every 100 msec is used.
  • an ES whose delay time ⁇ t is 0 to 100 msec belongs to the group vES1
  • an ES whose delay time ⁇ t is longer than 100 msec and 200 msec or less belongs to the group vES2.
  • the category of the delay time ⁇ t is not limited to every 100 msec and can be changed as appropriate.
  • the correspondence table creation unit 2b3a assigns, for each group, a priority that increases as the maximum charge / discharge output amount increases with respect to the ESs belonging to the group.
  • the highest priority (No. 1) is assigned to the ES identified by ID3, and the second highest priority for the ES identified by ID13. (No. 2) is given.
  • the ID number corresponds to the number indicated by the symbol “m” attached to ES.
  • Battery selection unit 2b3b can be generally referred to as battery selection means.
  • the battery selection unit 2b3b preferentially selects a group with a short delay time ⁇ t from the groups vES1 to vESn as an adjustment group, and selects an ES in the adjustment group as an adjustment battery. Further, the battery selection unit 2b3b increases the number of adjustment groups as the absolute value of the frequency change rate df / dt increases.
  • the instruction control unit 2b4 can be generally called instruction means.
  • the instruction control unit 2b4 outputs an execution instruction (execution instruction to execute charging or discharging) to the adjustment battery.
  • the instruction control unit 2b4 A discharge execution instruction instructing the discharge amount of each adjustment battery is output to each of the adjustment batteries as an execution instruction so that the total amount of discharge from the battery approaches or coincides with the absolute value of the adjustment power amount ⁇ P.
  • the relay node 4 relays communication between the DEMS 2b and the communication terminals 51a to 5ma, that is, communication between the DEMS 2b and the ES 51b to 5mb.
  • the number of relay nodes 4 is not limited to 1 and may pass through a plurality of nodes depending on the state of the information communication path from the DEMS 2b to the customer side ES. In terms of minimizing communication delay, the smaller the number of nodes, the better. On the other hand, when passing through a finite number of nodes, the route and the number of passing nodes are appropriately changed from the viewpoint of minimizing communication delay. Is possible.
  • the communication terminals 51a to 5ma execute communication between the ES 51b to 5mb and the DEMS 2, respectively.
  • FIG. 5 is a flowchart for explaining the operation of creating the correspondence table shown in FIG.
  • the operation shown in FIG. 5 is executed at specific time intervals (for example, every 2 seconds).
  • the specific time interval is not limited to 2 seconds, and can be changed as appropriate.
  • the time interval can be made longer for obtaining the data of the delay time.
  • the ES information collection unit 2b1 has acquired the response time information of each of the ESs 51b to 5mb in advance and previously stores the processing delay time ⁇ td in the DEMS 2b. Further, it is assumed that the ES information collecting unit 2b1 uses a time obtained by adding the processing delay time ⁇ td in the DEMS 2b, the in-device response time, and the communication delay time as the delay time ⁇ t.
  • the ES information collection unit 2b1 detects the communication delay time of each of the ESs 51b to 5mb, and obtains the maximum charge / discharge output amount information of each of the ESs 51b to 5mb from the control unit 5b2 of each of the ESs 51b to 5mb (step) S401).
  • the controller 5b2 may be in the form attached to the BMU, attached to the PCS, etc.
  • it may be obtained from an EMS server outside the ES. A system that does this is also possible.
  • step S401 the ES information collection unit 2b1 first transmits a response request for requesting a response to each of the ESs 51b to 5mb.
  • the control unit 5b2 transmits a response to the response request to the ES information collection unit 2b1 that is the transmission source of the response request.
  • the ES information collection unit 2b1 receives a response to the response request, and for each of the ESs 51b to 5mb, detects a time obtained by dividing the time from when the response request is transmitted until the response is received by 2 as a communication delay time To do.
  • the ES information collection unit 2b1 detects, for each of the ESs 51b to 5mb, the processing delay time ⁇ td stored in the DEMS 2b and the in-device response time represented by the response time information obtained in advance.
  • the communication delay time is added to calculate the delay time ⁇ t (step S402).
  • the ES information collection unit 2b1 outputs the delay time ⁇ t and the maximum charge / discharge output amount information of each of the ESs 51b to 5mb to the correspondence table creation unit 2b3a.
  • the correspondence table creation unit 2b3a When the correspondence table creation unit 2b3a receives the delay time ⁇ t and the maximum charge / discharge output amount information for each of the ESs 51b to 5mb, the correspondence table creation unit 2b3a uses the delay time ⁇ t and the maximum charge / discharge output amount information for each of the ESs 51b to 5mb. Create a correspondence table as shown and hold the correspondence table.
  • the correspondence table creation unit 2b3a first classifies each of the ESs 51b to 5mb into one of the groups vES1 to vESn based on the delay time ⁇ t of each of the ESs 51b to 5mb. After that, in each of the groups vES1 to vESn, the correspondence table creation unit 2b3a gives a priority that increases as the maximum charge / discharge output amount increases to the ES in the group. After that, the correspondence table creation unit 2b3a creates a correspondence table (see FIG. 4) indicating the priority order assignment result in each group and the maximum charge / discharge output amount of each ES.
  • the correspondence table creation unit 2b3a Each time the correspondence table creation unit 2b3a creates the correspondence table, it deletes the correspondence table created before creating the correspondence table. For this reason, the correspondence table is updated (step S403).
  • FIG. 6 is a flowchart for explaining an operation of selecting the adjustment battery and an operation of outputting an execution instruction to the adjustment battery. Note that the operation shown in FIG. 6 is continuously executed.
  • the system state measurement unit 2b2 always detects the frequency change rate df / dt of the power of the system power line, and the absolute value of the frequency change rate df / dt determines whether the DEMS 2b needs to output an execution instruction. It is determined whether or not the threshold value is larger than the threshold value used in step S501. As this threshold value, a frequency deviation ⁇ f within a certain time may be used.
  • the system state measurement unit 2b2 determines that the DEMS 2b needs to output an execution instruction, and adjusts the adjustment power amount ⁇ P based on the frequency change rate df / dt. Is calculated (step S502).
  • the system state measurement unit 2b2 calculates the adjustment power amount ⁇ P by multiplying the frequency change rate df / dt by the coefficient X.
  • the coefficient X is a positive constant.
  • DELTA adjustment electric energy
  • the system state measurement unit 2b2 outputs the adjusted power amount ⁇ P to the battery selection unit 2b3b and the instruction control unit 2b4.
  • the battery selection unit 2b3b outputs the adjustment battery selection result to the instruction control unit 2b4.
  • the instruction control unit 2b4 When the instruction control unit 2b4 receives the selection result of the adjustment battery, the instruction control unit 2b4 outputs an execution instruction (execution instruction to execute charging or discharging) to the adjustment battery (step S504).
  • the instruction control unit 2b4 uses each adjustment so that the total amount of discharge from the adjustment battery approaches or matches the absolute value of the adjustment power amount ⁇ P.
  • a discharge execution instruction instructing the discharge amount of the battery is output to each of the adjustment batteries as an execution instruction.
  • each adjustment battery When each adjustment battery receives a discharge execution instruction via the communication terminal to which it is connected, it starts the discharge instructed by the discharge execution instruction, and sends a reply to the ES information collection unit that the discharge has started. .
  • the instruction control unit 2b4 charges each adjustment battery so that the total amount of charge amount to the adjustment battery approaches or matches the absolute value of the adjustment power amount ⁇ P.
  • the charge execution instruction indicating the amount is output to each of the adjustment batteries as an execution instruction.
  • each adjustment battery When each adjustment battery receives a charge execution instruction via the communication terminal to which it is connected, each adjustment battery starts charging instructed by the charge execution instruction, and sends a reply to the ES information collection unit that charging has started. .
  • FIG. 7 is a diagram showing a change in power frequency after a situation in which the power frequency of the power system suddenly drops occurs.
  • ⁇ tp is a time interval at which the ES information collection unit 2b1 collects the communication delay times of the ESs 51b to 5mb, or an update interval at which the correspondence table creation unit 2b3a updates the correspondence table.
  • the system state measurement unit 2b2 defines the group vES1 having the shortest delay time ⁇ t among the groups vES1 to vESn.
  • the delay time ⁇ t for example, 0 to 100 msec
  • the longer value 100 msec (hereinafter referred to as “ ⁇ tmin”) is multiplied by the frequency change rate df / dt to obtain a target frequency deviation ⁇ f. Is calculated.
  • the frequency deviation ⁇ f indicates a value obtained by subtracting the current power frequency from the power frequency when the time ⁇ tmin (100 msec) has elapsed from the current time.
  • the system state measurement unit 2b2 multiplies the frequency deviation ⁇ f by a preset correlation coefficient ⁇ to calculate the adjustment power amount ⁇ P, and the adjustment power amount ⁇ P is used as the battery selection unit 2b3b and the instruction control unit. 2b4.
  • battery selection unit 2b3b refers to the correspondence table and calculates the sum ⁇ vES1Pmax of the maximum charge / discharge output amount of each ES in group vES1.
  • the battery selection unit 2b3b determines the magnitude relationship between the absolute value of the adjustment power amount ⁇ P and the total ⁇ vES1Pmax.
  • total ⁇ vES1Pmax and the case of
  • the instruction control unit 2b4 outputs a discharge execution instruction that instructs the discharge output P of the adjustment battery to each of the adjustment batteries.
  • Each adjustment battery starts the discharge instructed by the discharge execution instruction, and sends a reply to the ES information collection unit 2b1 that the discharge has started.
  • the adjusted power amount ⁇ P depends on the scale of the power system, the system constant (a constant set for the power system in order to calculate the adjusted power amount), and the scale of the accident, and the correlation coefficient ⁇ is not necessarily optimal. It may not be a value.
  • FIG. 8 is a diagram for explaining an example of a situation after the correlation coefficient ⁇ is appropriate to some extent and only the ESs belonging to the group vES1 are discharged. At this time, it is assumed that the ESs belonging to the group vES1 are discharging power while leaving a surplus.
  • the frequency change rate df / dt measured after ⁇ tmin from the time when the system state measurement unit 2b2 determines that the DEMS 2b needs to output an execution instruction is 0.
  • this state that is, the state in which the frequency change rate df / dt is 0 may continue for a certain period of time with the frequency shifted, but here, as the next step The situation of shifting to LFC control will be described.
  • the instruction control unit 2b4 is, for example, information provided from the monitoring / control unit 1b that represents the output state of the power plant that has been activated or increased in output in order to balance power supply and demand in an emergency situation (such as an LFC signal).
  • the discharge output P of the adjustment battery is decreased by 10% or 5%, for example.
  • the frequency adjusting generator of another power plant in the power system is performing an operation of returning the frequency to the reference value while increasing the output.
  • the ratio of decreasing the discharge output P of the adjustment battery is not limited to 10% or 5%, but is set as appropriate according to the output fluctuation state of the power plant.
  • Battery selection unit 2b3b determines the magnitude relationship between (
  • Battery selection unit 2b3b further selects group vES2 as an adjustment group when (
  • ⁇ total ⁇ vES1Pmax) ⁇ total ⁇ vES2Pmax.
  • Battery selection unit 2b3b selects ES belonging to the adjustment group as the adjustment battery, and outputs the adjustment battery selection result to instruction control unit 2b4.
  • battery selection unit 2b3b determines that the sum of the maximum charge / discharge output amounts of the ESs belonging to the adjustment group is the absolute value of adjustment power amount ⁇ P. Until the value exceeds the value, the group with a short delay time is preferentially selected as the adjustment group.
  • the instruction control unit 2b4 refers to the correspondence table and determines that a plurality of adjustment groups are selected, the instruction control unit 2b4 has the longest delay time among the plurality of adjustment groups (long-time group: hereinafter referred to as “group vESi”).
  • group vESi longest delay time among the plurality of adjustment groups
  • group vESi the longest delay time among the plurality of adjustment groups
  • FIG. 9 is a diagram for explaining an example of a situation after the correlation coefficient ⁇ is not optimal and the ESs belonging to the groups vES1 to vES3 are discharged. At this time, the ES belonging to the group vES1 and the ES belonging to the group vES2 discharge power with the maximum discharge output, and the ES belonging to the group vES3 discharges the power leaving a surplus power.
  • ⁇ tmin2 is the longer value (200 msec) of the delay time ⁇ t that defines the group vES2
  • ⁇ tmin3 is the longer value (300 msec) of the delay time ⁇ t that defines the group vES3.
  • the frequency change rate df / dt (hereinafter referred to as “df / dt (t3)” measured after ⁇ tmin3 from the time point when the system state measuring unit 2b2 determines that the DEMS 2b needs to output an execution instruction. ) ”) Is not 0, and the system state measurement unit 2b2 determines that the correlation coefficient ⁇ is not optimal.
  • the system state measuring unit 2b2 calculates the additional adjustment power amount ⁇ Pa by multiplying the frequency change rate df / dt (t3) by the constant X, and the additional adjustment power amount ⁇ Pa. Is output to the battery selection unit 2b3b and the instruction control unit 2b4.
  • discharge execution instruction is issued with reference to the correspondence table created in accordance with the operation of ES information collection unit 2b1 at timing C shown in FIG.
  • a new adjustment battery is selected with priority given to an ES with a short delay time ⁇ t from among the ESs that are not.
  • the battery selection unit 2b3b continues the operation of selecting a new adjustment battery until the sum of the maximum charge / discharge output amounts of the new adjustment battery exceeds the absolute value of the additional adjustment power amount ⁇ Pa.
  • Battery selection unit 2b3b outputs the result of selecting a new adjustment battery to instruction control unit 2b4.
  • the instruction control unit 2b4 When the instruction control unit 2b4 receives the selection result of the new adjustment battery, the instruction control unit 2b4 instructs each new adjustment battery to specify the maximum charge / discharge output amount Pmax as the discharge output P of the new adjustment battery. Output instructions.
  • the lower part (b) of FIG. 9 is a diagram showing a state in which the frequency change is stopped by the discharge of the new adjustment battery and the power frequency is being recovered by the start of the LFC control of the power system.
  • the instruction control unit 2b4 is activated or output to balance the power supply and demand in an emergency situation, for example, provided from the monitoring / control unit 1b
  • the information LFC signal or the like
  • the discharge output P of the adjustment battery and the new adjustment battery is increased by 10% or 5 Decrease by%.
  • the rate of reducing the discharge output P is not limited to 10% or 5%, but is appropriately set according to the output fluctuation state of the power plant.
  • the ES information collection unit 2b1 detects the delay time ⁇ t of each of the ESs 51b to 5mb.
  • the system state measurement unit 2b2 measures the frequency change rate df / dt of power in the power system.
  • the selection unit 2b3 selects an adjustment battery from the ES 51b to 5mb based on the frequency change rate df / dt and the delay time ⁇ t of each of the ES 51b to 5mb.
  • the instruction control unit 2b4 outputs an execution instruction to the adjustment battery.
  • the battery control system of this embodiment can select the adjustment battery in consideration of each delay time ⁇ t of ES51b to 5mb, and adjust the number of adjustment batteries according to the frequency change rate df / dt. It becomes possible to do. Therefore, the power supply / demand balance can be appropriately controlled by using the adjustment battery.
  • a battery control system including the ES information collection unit 2b1, the system state measurement unit 2b2, the selection unit 2b3, and the instruction control unit 2b4.
  • FIG. 10 is a diagram showing a battery control system including an ES information collection unit 2b1, a system state measurement unit 2b2, a selection unit 2b3, and an instruction control unit 2b4.
  • FIG. 11 is a flowchart for explaining the operation of the battery control system shown in FIG.
  • the ES information collection unit 2b1 operates for each ES 51b to 5mb after the DEMS 2b outputs an execution instruction to the ES.
  • the delay time which is the time until the execution of, is detected (step S1001).
  • the system state measurement unit 2b2 measures the frequency change rate df / dt of power in the power system (step S1002).
  • the battery selection unit 2b3b selects an adjustment battery from ES 51b to 5mb based on the frequency change rate df / dt and each delay time of ES 51b to 5mb (step S1003).
  • the instruction control unit 2b4 outputs an execution instruction to the adjustment battery (step S1004).
  • the selection unit 2b3 preferentially selects an ES with a short delay time ⁇ t from ES 51b to 5mb as an adjustment battery, and further, as the absolute value of the frequency change rate df / dt increases, the adjustment battery Increase the number of
  • an ES having a short delay time ⁇ t is preferentially selected as the adjustment battery, and therefore an ES capable of high-speed response is selected preferentially as the adjustment battery from among ES51b to 5mb.
  • the power adjustment amount increases as the absolute value of the frequency change rate df / dt increases, the number of adjustment batteries can be increased as the power adjustment amount increases. Therefore, it is possible to quickly control the power supply / demand balance appropriately.
  • the correspondence table creation unit 2b3a divides the ESs 51b to 5mb into a plurality of groups vES1 to vESn divided by the length of the delay time ⁇ t.
  • the battery selection unit 2b3b preferentially selects a group with a short delay time ⁇ t from the groups vES1 to vESn as an adjustment group, and selects an ES in the adjustment group as an adjustment battery.
  • the battery selector 2b3b increases the number of adjustment groups as the absolute value of the frequency change rate df / dt increases.
  • the adjustment battery can be selected in units of groups divided by the delay time ⁇ t. If each of the groups vES1 to vESn is regarded as a virtual battery, the adjustment battery can be selected in units of virtual batteries.
  • the system state measurement unit 2b2 calculates the amount of adjustment power that needs to be adjusted in the power system based on the frequency change rate df / dt.
  • the instruction control unit 2b4 sets the discharge amount of the adjustment battery so that the total discharge amount from the adjustment battery approaches or matches the absolute value of the adjustment power amount.
  • the instructed discharge execution instruction is output to each of the adjustment batteries as an execution instruction.
  • the power supply / demand balance can be appropriately controlled when the power supply capacity in the power system is reduced.
  • the system state measurement unit 2b2 adjusts so that the total amount of charge to the adjustment battery approaches or matches the absolute value of the adjustment power amount.
  • a charge execution instruction instructing the charge amount of the battery is output to each of the adjustment batteries as an execution instruction.
  • the power supply / demand balance can be appropriately controlled when the power supply capacity in the power system becomes excessive.
  • the ES information collection unit 2b1 detects a value for a predetermined item (maximum charge / discharge output amount) different from the delay time ⁇ t from each of the ESs 51b to 5mb. For this reason, instead of the selection unit 2b3, a selection for selecting an adjustment battery from ES 51b to 5mb based on the frequency change rate df / dt, each delay time ⁇ t of ES 51b to 5mb, and a value for a predetermined item It is also possible to use parts.
  • FIG. 12 shows the selection of the adjustment battery from ES 51b to 5mb based on the frequency change rate df / dt, the delay time ⁇ t of each of ES 51b to 5mb, and the value for a predetermined item, instead of selection unit 2b3. It is the figure which showed DEMS2bA in which the part 2b3A was used.
  • the same components as those shown in FIG. 12 the same components as those shown in FIG.
  • the selection unit 2b3A can be generally called selection means.
  • the selection unit 2b3A includes a correspondence table creation unit 2b3a and a battery selection unit 2b3bA.
  • Battery selection unit 2b3bA can be generally referred to as battery selection means.
  • the battery selection unit 2b3bA preferentially selects a group with a short delay time ⁇ t from the groups vES1 to vESn as an adjustment group.
  • the battery selection unit 2b3bA selects an adjustment battery based on a value for a predetermined item (maximum charge / discharge output amount) from ES included in the long-time group having the longest delay time ⁇ t among the adjustment groups, If there is a group other than the long-time group among the adjustment groups, the ES included in the group other than the long-time group is selected as the adjustment battery.
  • a predetermined item maximum charge / discharge output amount
  • the battery selection unit 2b3bA has a maximum of the ES included in the long-time group until the total of the maximum charge / discharge output amount of the adjustment battery exceeds the adjustment power amount ⁇ P.
  • the batteries for adjustment are selected in descending order of the charge / discharge output amount.
  • the battery selection unit 2b3bA selects the ES included in the group other than the long-time group as the adjustment battery, and then calculates the maximum charge / discharge output amount of the adjustment battery. Until the absolute value of the adjustment power amount ⁇ P is exceeded, the ESs included in the long-time group are sequentially selected as the adjustment batteries in descending order of the maximum charge / discharge output amount.
  • the instruction control unit 2b4 gives a discharge execution instruction instructing the maximum charge / discharge output amount Pmax as the discharge output P of the adjustment battery to each of the adjustment batteries. Output.
  • an ES having a large maximum charge / discharge output amount can be preferentially selected as the adjustment battery from the long-time group.
  • the number of adjustment batteries can be reduced, and communication with the adjustment battery can be reduced.
  • the predetermined item is not limited to the maximum charge / discharge output amount of the ES, but the remaining charge / discharge capacity of the ES, the voltage at the connection point between the ES and the power system, or the maximum charge / discharge output amount of the ES and the charge of the ES. It may be a discharge rate.
  • the ES information collection unit 2b1 collects values for predetermined items.
  • an ES having a high power amount adjustment capability that is, an ES having a large remaining charge / discharge capacity may be preferentially selected as the adjustment battery. It becomes possible.
  • the ES connected to the device having a high interconnection voltage is preferentially used as the adjustment battery.
  • ES having a large maximum charge / discharge output amount and large charge / discharge rate is preferentially selected as the adjustment battery. It becomes possible.
  • control of the charge / discharge rate of the ES is omitted for the sake of simplification.
  • the charge / discharge amount and time can be specified. Is possible.
  • the control unit 5b2 when the control unit 5b2 receives the response request (inspection information), the control unit 5b2 transmits a response (predetermined information) to the response request to the transmission source of the response request.
  • the control unit 5b2 transmits a response (predetermined information) to the response request to the transmission source of the response request.
  • the battery main body 5b1 is controlled based on the operation instruction. Therefore, it becomes possible to control the operations of the battery control devices 51 to 5m according to the control of the DEMS 2b or 2bA.
  • the control part 5b2 of each ES stores changeability information indicating whether or not the adjustment amount of the charge / discharge amount per unit time of the own ES can be changed.
  • the changeability information is set by a policy of a consumer who owns the ES or a contract between the consumer and a power supply source (for example, a power company).
  • the ES information collecting unit 2b1 detects the communication delay time of each of the ESs 51b to 5mb, the ES information collecting unit 2b1 obtains changeability information from the control unit 5b2 of each ES.
  • the instruction control unit 2b4 When the change possibility information of the ES selected as the adjustment battery indicates change or not, the instruction control unit 2b4 does not change the output of the adjustment battery from the maximum charge / discharge output amount, and the maximum charge / discharge output amount. To do.
  • the correspondence table creation unit 2b3a does not update the ES grouping results shown in the correspondence table every time, for example, updates the top five groups with the shortest delay time ⁇ t each time, and updates the other groups 10 times. It may be updated about once.
  • the instruction control unit 2b4 may hold a history of execution instructions. In this case, it is possible to identify the ES used as the adjustment battery by analyzing the history of the execution instruction. Therefore, if this specific result is used, it is possible to pay a price corresponding to the use of the adjustment battery to a consumer who possesses the ES used as the adjustment battery.
  • the present embodiment it is effective to increase the number of ESs belonging to the group vES1 having the shortest delay time among the plurality of groups constituting the correspondence table shown in FIG. For this reason, it is desirable to arrange the DEMS at a position where the number of ESs belonging to the group vES1 increases. For example, considering communication delay, it is desirable to install a DEMS at a communication node installation location.
  • the ESs 51b to 5mb belong to any one of the plurality of DEMSs.
  • the monitoring / control unit 1b may control the plurality of DEMSs by a centralized control method, or the plurality of DEMSs may operate in an autonomous distributed manner.
  • the power amount ⁇ Pb shared by each DEMS is the sum of the capacities of ESs belonging to the group vES1 in each DEMS. It is desirable to be determined according to the ratio.
  • the power amount ⁇ Pb shared by each DEMS changes with time. To do.
  • the relay node 4 may be omitted.
  • the battery control devices 51 to 5m are connected to the communication NW3.
  • the DEMS 2b or 2bA may be realized by a computer.
  • the computer reads and executes a program recorded on a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and the ES information collecting unit 2b1, the system state measuring unit 2b2, It functions as the selection unit 2b3 or 2b3A and the instruction control unit 2b4.
  • a recording medium such as a CD-ROM (Compact Disk Read Only Memory) that can be read by the computer, and the ES information collecting unit 2b1, the system state measuring unit 2b2, It functions as the selection unit 2b3 or 2b3A and the instruction control unit 2b4.
  • the recording medium is not limited to the CD-ROM and can be changed as appropriate.
  • control unit 5b2 in the battery control devices 51 to 5m may be realized by a computer.
  • the computer reads and executes a program recorded on a computer-readable recording medium, and functions as the control unit 5b2.

Abstract

 電力系統に接続された複数の電池の動作を制御する電池制御システムは、電池の各々について、電池に対して電池制御システムが充電または放電を実行する旨の実行指示を出力してからその電池が実行指示に応じた動作を実行するまでの時間である遅延時間を検出する検出手段と、電力系統での電力の周波数変化率を測定する測定手段と、周波数変化率と複数の電池の各々の遅延時間とに基づいて、複数の電池の中から、電力系統の電力を調整するための調整用電池を選択する選択手段と、調整用電池に実行指示を出力する指示手段と、を含む。

Description

電池制御システム、電池制御装置、電池制御方法および記録媒体
 本発明は、電池制御システム、電池制御装置、電池制御方法および記録媒体に関し、特には、電力系統に接続された複数の電池の放電または充電を制御する電池制御システム、電池制御装置、電池制御方法および記録媒体に関する。
 不慮の事故により発電所が停止したとき、または、多数連系していた風力発電所や太陽光発電所が一斉に解列したとき、電力系統内において電力供給力が急激に低下する緊急状態が発生する。
 この緊急状態が発生した際、既存発電所の出力を変化させる、更には、別の発電所を立ち上げるまでの数分~数十分の間、需要家に分散して設置されたエネルギーストレージ機器(例えば、定置用蓄電池や電気自動車内の二次電池)の放電により、電力需給バランスを取る技術が提案されている(非特許文献1、2および3参照)。以下、需要家に分散して設置されたエネルギーストレージ機器を「ES」(Energy Storage)と称する。
 需要家側に分散するESの放電により電力需給バランスを取る技術では、巷に普及していく多数のESを、電力需給のバランスを取るために活用できる。このため、電力需給バランスを取るために使用される電池(ESにて構成される電池)の大容量化は、ESの普及に伴い可能となる。
 また、例えば、非特許文献1、2で開示されているような、“各ES側が系統接続点の電力の周波数をモニターし、電力の周波数が所望の範囲に収まるよう周波数偏移に比例した放電を自律的に行う”技術が用いられれば、緊急状態における電池放電の高速応答も可能である。
 図1は、各ES側が系統接続点の電力の周波数をモニターし、電力の周波数が所望の範囲に収まるよう周波数偏移に比例した放電を自律的に行う技術を説明するための図である。なお、系統接続点としては、例えば、電力が、電力系統から電力メータを経て、宅内分電盤へ入力される配線の最外部が該当するが、宅内は周波数が同一と考えて、宅内でESが配線されている接続点でもよい。
 図1において、ES101を制御する制御部102は、系統接続点103の電力の周波数をモニターする。制御部102は、電力のノミナル周波数(例えば、50Hz)からモニター結果(測定周波数)を差し引いた値に応じて、ES101の放電量を制御する。
 なお、ここで、図1においてES101と表示しているユニットは、蓄電池パック部、蓄電池制御ユニット部、蓄電池の直流出力を交流に変換するパワーコンディショナー部を含むが、説明の簡略化のために省略している。
Proposal of Smart Storage for Ubiquitous Power Grid, by Yutaka Ota et al., 電学論B、130巻11号、pp.989-994、2010年 Effect of Smart Storage in Ubiquitous Power Grid on Frequency Control, By Yutaka Ota et al. 電学論B、131巻1号、pp.94-100、2011年 NEDOの地域実証Pjにおける横浜(YSCP)実証内容の紹介資料
 図1に示した手法では、電力会社つまり電力系統の管理者の管理下にない需要家側の各ES側が自律的に放電を行う。このため、電力系統の管理者は、事前に需要家のESにて適切な放電量が速やかに得られるかどうかを把握することが困難であり、電力需給バランスを適切に制御することが難しいという課題があった。
 本発明の目的は、上記課題を解決可能な電池制御システム、電池制御装置、電池制御方法および記録媒体を提供することである。
 本発明の電池制御システムは、電力系統に接続された複数の電池の動作を制御する電池制御システムであって、前記電池の各々について、当該電池に対して前記電池制御システムが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出する検出手段と、前記電力系統での電力の周波数変化率を測定する測定手段と、前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択する選択手段と、前記調整用電池に前記実行指示を出力する指示手段と、を含む。
 本発明の電池制御装置は、電力系統に接続された電池の動作を制御する電池制御装置であって、前記電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する制御手段を含む。
 本発明の電池制御方法は、電力系統に接続された複数の電池の動作を制御する電池制御システムでの電力制御方法であって、前記電池の各々について、当該電池に対して前記電池制御システムが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出し、前記電力系統での電力の周波数変化率を測定し、前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択し、前記調整用電池に前記実行指示を出力する。
 本発明の電池制御方法は、電力系統に接続された電池の動作を制御する電池制御装置での電池制御方法であって、前記電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する。
 本発明の記録媒体は、コンピュータに、電力系統に接続された電池の各々について、当該電池に対して前記コンピュータが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出する検出手順と、前記電力系統での電力の周波数変化率を測定する測定手順と、前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択する選択手順と、前記調整用電池に前記実行指示を出力する指示手順と、を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明の記録媒体は、コンピュータに、電力系統に接続された電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する手順を実行させるプログラムを記録したコンピュータ読み取り可能な記録媒体である。
 本発明によれば、ESを用いて電力需給バランスを適切に制御することが可能になる。
関連技術を説明するための図である。 本発明の一実施形態の電池制御システムを採用した電力制御システムを示す図である。 ES51b~5mbの各々として用いられるES5bを示したブロック図である。 対応表作成部2b3aが行うグループ分け結果を表す対応表を示す図である。 図4に示した対応表を作成する動作を説明するためのフローチャートである。 調整用電池を選択する動作と調整用電池への実行指示を出力する動作とを説明するためのフローチャートである。 電力系統の電力の周波数が突然低下する事態が発生した後の電力の周波数変化を示した図である。 相関係数αがある程度適切であり、かつ、グループvES1に属するESのみが放電した後の状況の一例を説明するための図である。 相関係数αが最適でなく、かつ、グループvES1~vES3に属するESが放電した後の状況の一例を説明するための図である。 ES情報収集部2b1と系統状態測定部2b2と選択部2b3と指示制御部2b4とからなる電池制御システムを示した図である。 図10に示した電池制御システムの動作を説明するためのフローチャートである。 選択部2b3の代わりに、選択部2b3Aが用いられたDEMS2bAを示した図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図2は、本発明の一実施形態の電池制御システムを採用した電力制御システムを示す図である。
 図2において、電力制御システムは、電力供給部1aと、監視・制御部1bと、変圧器2aと、DEMS(Distributed Energy Management System:分散エネルギ管理システム)2bと、通信NW(ネットワーク)3と、中継ノード4と、通信端末51a~5maと、ES51b~5mbと、を含む。なお、mは2以上の整数である。
 電力供給部1aは、発電所1Xに設けられている火力等の発電機である。監視・制御部1bは、中央給電指令所1Yに設けられている。変圧器2aとDEMS2bは、配電用変電所2に設けられている。通信端末51a~5maは、それぞれ、ES51b~5mbと接続している。ES51b~5mbは、それぞれ、電力の需要家が所有する電池制御装置51~5mに含まれる。ES51b~5mbは、例えば、定置用蓄電池や電気自動車内の二次電池である。なお、中央給電指令所1Yと発電所1Xの間には、中央給電指令所1Yからの指示を発電所1Xに送るための通信線が存在するが、図2では、説明の簡略化のために省略している。
 なお、本実施形態では、DEMS2bが配電用変電所2の中にある形態で説明しているが、DEMS2bは必ずしも配電用変電所2にある必要は無く、設置スペースに余裕があり、更に中央給電指令所1Y、及び各ESと情報通信でき、通信遅延の観点で最も遅延の少ない場所に設置することが望ましい。
 図3は、ES51b~5mbの各々として用いられるES5bを示したブロック図である。図3において、ES5bは、電池本体5b1と、電池本体5b1の動作(充電動作および放電動作)を制御する制御部5b2と、を含む。なお、ES5bは、蓄電池パック部、蓄電池制御ユニット部(Battery Management Unit:BMU)、蓄電池の直流出力を交流に変換するパワーコンディショナー(PCS)を含むが、説明の簡略化のために省略している。また、制御部5b2は、BMUに付属する形態でも良く、PCSに付属する形態でも良く、状況によっては、ES外に設置してもよい。なお、制御部5b2は、一般的に制御手段と呼ぶことができる。
 ところで、一般的に、電力系統の電力需給調整(=電力の周波数制御)については、応答時間の短い(高速応答が必要な)順に、次のように領域と制御技術を整理することができる。
 (A)発電機(同期機)の慣性力領域
 最も応答時間の短い、発電機(同期機)の慣性力領域では、電力需要の変動に対する発電機の慣性力(=慣性定数(M)と発電機回転子の加速度(df/dt)とから規定されるM×(df/dt))の放出・吸収によって、電力需要変動に追従して、電力需要変動の補償が行われる。この制御では、電力需給のアンバランスを補償するため、電力の周波数が直線的に変化し続ける。
 (B)調速機(ガバナ)領域
 次に時間の短い、調速機(ガバナ)領域では、ガバナフリー運転により、上記(A)の周波数変化を抑制するために、電力の周波数偏位に応じた発電機の出力制御が行われ、周波数制御(周波数安定化)と電力需要追従制御とが行われる。この制御の結果、電力の周波数は、ある値に落ち着く。
 (C)LFC(Load Frequency Control)領域
 そして、LFC領域では、地域要求電力(Area Requirement)量を目標に、発電機におけるスピードチェンジャー制御(発電量制御)が行われ、周波数制御(基準周波数への帰還制御)と電力需要追従制御とが行われる。
 図2に示した電力制御システムは、例えば、ある発電所が発電を停止して電力系統での電力供給力が急激に低下する緊急状況が発生した際、既存発電所の出力を負荷変動に追随させつつ新規の発電所を立ち上げるまでの間、需要家に分散して設置されたESに放電を行わせて、電力需給バランスを取る。その結果、電力系統の発電能力が復帰するまでの間、系統周波数偏差Δfの値を小さく抑えることが可能となる。即ち、上記(B)ガバナフリー機能をアシストすることができる。更には、制御可能なESの蓄電池容量が大きい場合には、上記(C)のLFC機能を一定時間担うことも可能である。
 電力供給部1aは、発電所1Xが発電した電力を出力する。
 監視・制御部1bは、DEMS2bと通信する。
 変圧器2aは、電力供給部1aからの交流電力の電圧を所定電圧に変圧し、所定電圧を有する交流電力を電力線6に供給する。なお、電力供給部1aと変圧器2a間には、本来は、例えば、日本においては50万V高圧送電を、多段階で降圧するための変圧器が幾つか設けられており、変圧器2aは、66kVの電圧を6600Vの電圧へ降圧する部分の変圧器である。更に、ESへ電力を送電する際には、柱上変圧器を経て、電圧が6600Vから200Vへ降圧された電力が、ESに送電されることになるが、ここでは説明の簡略化のため、これら上位の変圧器や、柱上変圧器は省略している。
 DEMS2bは、一般的には、電池制御システムと呼ぶことができる。
 DEMS2bは、ES情報収集部2b1と、系統状態測定部2b2と、選択部2b3と、指示制御部2b4と、通信部2b5と、を含む。ES情報収集部2b1と指示制御部2b4は、通信部2b5を介して通信NW3と接続する。
 ES情報収集部2b1は、一般的には、検出手段と呼ぶことができる。
 ES情報収集部2b1は、電力線6に接続されたES51b~5mbの各々について、DEMS2bがESに対して充電または放電を実行する旨の実行指示(以下、単に「実行指示」と称する)を出力してからそのESがその実行指示に応じた動作を実行するまでの時間(以下「遅延時間」と称する)Δtを検出する。
 ES情報収集部2b1は、実行指示がDEMS2bから通信NW3、中継ノード4および通信端末を介してESに到達するまでに要する時間(通信遅延時間)と、そのESが実行指示を受け付けてから実行指示に応じた動作を開始するまでに要する時間(機器内応答時間)と、を加算した時間を、そのESの遅延時間Δtとして計算する。
 本実施形態では、ES51b~5mbの各々は、自己の機器内応答時間を表す応答時間情報を制御部5b2内に記憶している。
 ES情報収集部2b1は、ES51b~5mbの各々の応答時間情報を、通信端末51a~5maの各々を介して、ES51b~5mbの各々の制御部5b2から、あらかじめ入手しておく。
 なお、ES51b~5mbの各々の制御部5b2が、機器内応答時間を測定する機能(実際に、電池本体5b1に充電および放電を行わせる指示を出してから電池本体5b1がその指示に応じた動作を開始するまでの時間を測定する機能)を有している場合には、ES情報収集部2b1は、ES51b~5mbの各々の制御部5b2に機器内応答時間を測定させ、その測定結果を入手してもよい。
 ES情報収集部2b1は、所定時間間隔(例えば2秒間隔)で、ES51b~5mbの各々の通信遅延時間を、ping(Packet INternet Groper)等を用いて検出する。所定時間間隔は2秒間隔に限らず適宜変更可能である。
 例えば、ES情報収集部2b1は、ES51b~5mbの各々に対して、応答を要求する旨の応答要求(検査用情報)を送信し、その応答要求に対する応答(所定情報)を受信し、ES51b~5mbの各々について、応答要求を送信してから応答を受信するまでの時間を2で割った時間を、通信遅延時間として検出する。
 なお、ES情報収集部2b1が、ES51b~5mbの各々について、応答要求の送信時刻を示す送信時刻情報を記憶し、ES51b~5mbの各々が、応答要求の受信時刻を示す受信時刻情報を、応答要求に対する応答と共にES情報収集部2b1に送信し、ES情報収集部2b1が、ES51b~5mbごとに、ESへの応答要求の送信時刻情報が示す送信時刻とそのESからの受信時刻情報が示す受信時刻との間の時間を、そのESの通信遅延時間として検出してもよい。
 ES情報収集部2b1は、ES51b~5mbの各々の通信遅延時間を検出するごとに、ES51b~5mbの各々について、あらかじめ入手した応答時間情報が表す機器内応答時間と、検出された通信遅延時間と、を加算して遅延時間Δtを算出する。
 なお、ES情報収集部2b1は、DEMS2bが実行指示の出力が必要と判断してから実行指示を出力するまでに要する時間(以下「DEMS2b内での処理遅延時間」と称する)Δtdと、機器内応答時間と、通信遅延時間と、を加算した時間を、遅延時間Δtとして用いてもよい。なお、DEMS2b内での処理遅延時間Δtdは、DEMS2bの処理能力に依存するため、DEMS2b内での処理遅延時間Δtdを、DEMS2bの処理能力に応じて特定される一定値とする。よって、この場合も、遅延時間Δtは、機器内応答時間と通信遅延時間とを加算した時間に応じて変動する。
 ES情報収集部2b1は、ES51b~5mbの各々の通信遅延時間を検出する際に、ES51b~5mbの各々の所定項目についての値も検出する。所定項目は、遅延時間とは異なる項目であり、例えば、想定充放電時間(一例としては3分)に対する最大充放電出力量(以下、単に「最大充放電出力量」と称する)PmaxやSOC(State of Charge)である。なお、SOCは、電池の残存容量Lを含むものとする。
 本実施形態では、ES51b~5mbの各々は、自己の最大充放電出力量Pmaxを表す最大充放電出力量情報を制御部5b2内に記憶している。
 ES情報収集部2b1は、ES51b~5mbの各々の最大充放電出力量情報を、ES51b~5mbの各々の制御部5b2から入手する。
 系統状態測定部2b2は、一般的に測定手段と呼ぶことができる。
 系統状態測定部2b2は、電力系統での電力の周波数変化率df/dtを検出し、周波数変化率df/dtに基づいて、電力系統で調整が必要となる調整電力量ΔPを推定する。
 例えば、周波数fの計測時間は1秒以内で、単位は0.01Hz、変換精度は、49~51Hzで、±0.02Hz以内とするため、系統状態測定部2b2は、0.2ms間隔で周波数fをサンプリングし、100ms周期で積算してf値を演算、そのf値の前後の差分でdf/dtを演算する。
 本実施形態では、系統状態測定部2b2は、周波数変化率df/dtに係数Xを乗算して調整電力量ΔPを算出する。なお、調整電力量ΔPの算出では、周波数変化率を時間積分した周波数偏差Δfを用いてもよい。また、調整電力量ΔPは、推定値であるため、系統状態測定部2b2は、システムの構成(系統規模や系統定数等)を考慮し、適宜、調整電力量ΔPを補正することで調整電力量ΔPの精度を上げることが可能となるが、ここでは調整電力量ΔPの補正については説明を省略する。
 選択部2b3は、一般的には、選択手段と呼ぶことができる。
 選択部2b3は、系統状態測定部2b2が算出した調整電力量ΔPと、ES情報収集部2b1が算出したES51b~5mbの各々の遅延時間Δtと、に基づいて、ES51b~5mbの中から、電力系統の電力量の調整に使用される調整用電池を選択する。
 例えば、選択部2b3は、ES51b~5mbの中から遅延時間Δtが短いESを優先して調整用電池として選択し、かつ、調整電力量ΔPが多くなるほど調整用電池の数を増やす。
 なお、調整電力量ΔPは周波数変化率df/dtに基づいて算出されるため、選択部2b3は、周波数変化率df/dtと、ES51b~5mbの各々の遅延時間Δtと、に基づいて、ES51b~5mbの中から調整用電池を選択することになる。
 選択部2b3は、対応表作成部2b3aと、電池選択部2b3bと、を含む。
 対応表作成部2b3aは、一般的には、グループ分け手段と呼ぶことができる。
 対応表作成部2b3aは、ES51b~5mbを、遅延時間Δtの長さにて区分された複数のグループに分ける。
 図4は、対応表作成部2b3aが行うグループ分け結果を表す対応表を示す図である。
 図4では、遅延時間Δtの長さにて区分された複数のグループとして、グループvES1~vESnが表されている。なお、nは2以上の整数である。
 グループvES1~vESnをそれぞれ規定する遅延時間Δtの区分としては、例えば、グループvES1には0以上100msec以下の遅延時間Δtが用いられ、グループvES2には100msecよりも長く200msec以下の遅延時間Δtが用いられるといった、100msec毎の区分が用いられる。
 この場合、グループvES1には遅延時間Δtが0以上100msec以下であるESが属し、グループvES2には遅延時間Δtが100msecよりも長く200msec以下であるESが属することになる。
 なお、遅延時間Δtの区分は、100msec毎の区分に限らず適宜変更可能である。
 対応表作成部2b3aは、グループごとに、そのグループに属するESに対して、最大充放電出力量が大きいほど高くなる優先順位を付与する。
 図4に示した対応表では、グループごとに、そのグループに属するESに対する優先順位の付与結果も示している。なお、図4には示していないが、対応表には、各ESの最大充放電出力量も記載される。
 例えば、図4に示したグループvES1では、ID3にて識別されるESに対して最も高い優先順位(No.1)が付与され、ID13にて識別されるESに対して2番目に高い優先順位(No.2)が付与されている。なお、IDの番号は、ESに付された符号の「m」が示す数に対応する。
 電池選択部2b3bは、一般的には、電池選択手段と呼ぶことができる。
 電池選択部2b3bは、グループvES1~vESnの中から遅延時間Δtが短いグループを優先して調整用グループとして選択し、調整用グループ内のESを調整用電池として選択する。また、電池選択部2b3bは、周波数変化率df/dtの絶対値が大きくなるほど、調整用グループの数を増やす。
 指示制御部2b4は、一般的には、指示手段と呼ぶことができる。
 指示制御部2b4は、調整用電池に、実行指示(充電または放電を実行する旨の実行指示)を出力する。
 例えば、指示制御部2b4は、系統状態測定部2b2が電力系統で不足する電力量を調整電力量ΔPとして算出した場合、つまり、周波数変化率df/dtが負の値である場合、調整用電池からの放電量の総量が調整電力量ΔPの絶対値に近づくまたは一致するように各調整用電池の放電量を指示した放電実行指示を、実行指示として調整用電池の各々に出力する。
 中継ノード4は、DEMS2bと通信端末51a~5maとの通信、さらに言えば、DEMS2bとES51b~5mbとの通信を中継する。なお、中継ノード4の数は1に限らずDEMS2bから需要家側ESへの情報通信経路の状態によって、複数のノードを経る場合がある。ノード数は、通信遅延最小化の観点では、少なければ少ないほどよいが、一方で有限数のノードを経る場合には、通信遅延最小化の観点で、そのルート、及び通過ノード数は、適宜変更可能である。
 通信端末51a~5maは、それぞれ、ES51b~5mbとDEMS2との通信を実行する。
 次に、動作を説明する。
 図5は、図4に示した対応表を作成する動作を説明するためのフローチャートである。
 図5に示した動作は、特定時間間隔(例えば2秒間隔)で実行される。特定時間間隔は、2秒間隔に限らず適宜変更可能であり、専用線等の遅延保証が得られるケースでは、遅延時間のデータ入手に関して、より時間間隔を長くする事が可能である。
 なお、ES情報収集部2b1は、ES51b~5mbの各々の応答時間情報をあらかじめ入手しており、DEMS2b内での処理遅延時間Δtdをあらかじめ記憶しているとする。また、ES情報収集部2b1は、DEMS2b内での処理遅延時間Δtdと、機器内応答時間と、通信遅延時間と、を加算した時間を、遅延時間Δtとして用いるとする。
 ES情報収集部2b1は、ES51b~5mbの各々の通信遅延時間を検出し、また、ES51b~5mbの各々の最大充放電出力量情報を、ES51b~5mbの各々の制御部5b2から入手する(ステップS401)。なお、最大充放電出力量情報の入手では、制御部5b2は、BMUに付属する形、PCSに付属する形等が考えられ、それ以外にも、システム構成によっては、ES外のEMSサーバから入手するシステムも考えられる。
 ステップS401では、例えば、ES情報収集部2b1は、まず、ES51b~5mbの各々に対して、応答を要求する旨の応答要求を送信する。ES51b~5mbの各々では、通信端末が応答要求を受信すると、制御部5b2は、応答要求に対する応答を、応答要求の送信元であるES情報収集部2b1に送信する。ES情報収集部2b1は、その応答要求に対する応答を受信し、ES51b~5mbの各々について、応答要求を送信してから応答を受信するまでの時間を2で割った時間を、通信遅延時間として検出する。
 続いて、ES情報収集部2b1は、ES51b~5mbの各々について、あらかじめ記憶していたDEMS2b内での処理遅延時間Δtdと、あらかじめ入手していた応答時間情報が表す機器内応答時間と、検出された通信遅延時間と、を加算して遅延時間Δtを算出する(ステップS402)。
 続いて、ES情報収集部2b1は、ES51b~5mbの各々の遅延時間Δtおよび最大充放電出力量情報を、対応表作成部2b3aに出力する。
 対応表作成部2b3aは、ES51b~5mbの各々の遅延時間Δtおよび最大充放電出力量情報を受け付けると、ES51b~5mbの各々の遅延時間Δtおよび最大充放電出力量情報を用いて、図4に示したような対応表を作成し、その対応表を保持する。
 本実施形態では、対応表作成部2b3aは、まず、ES51b~5mbの各々を、ES51b~5mbの各々の遅延時間Δtに基づいて、グループvES1~vESnのいずれかに分類する。その後、対応表作成部2b3aは、グループvES1~vESnの各々で、グループ内のESに対して、最大充放電出力量が大きいほど高くなる優先順位を付与する。その後、対応表作成部2b3aは、各グループでの優先順位の付与結果と各ESの最大充放電出力量とを示した対応表(図4参照)を作成する。
 対応表作成部2b3aは、対応表を作成するごとに、その対応表を作成する前に作成された対応表を削除する。このため、対応表は更新されていく(ステップS403)。
 図6は、調整用電池を選択する動作と調整用電池への実行指示を出力する動作とを説明するためのフローチャートである。なお、図6に示した動作は、継続的に実行される。
 系統状態測定部2b2は、常時、系統電力線の電力の周波数変化率df/dtを検出し、周波数変化率df/dtの絶対値が、DEMS2bが実行指示を出力する必要があるかを判断するために使用する閾値よりも大きいかどうかを判断する(ステップS501)。なお、この閾値として、ある時間内における周波数偏差Δfが用いられてもよい。
 周波数変化率df/dtの絶対値が閾値よりも大きいと、系統状態測定部2b2は、DEMS2bが実行指示を出力する必要があると判断し、周波数変化率df/dtに基づいて調整電力量ΔPを算出する(ステップS502)。
 例えば、系統状態測定部2b2は、周波数変化率df/dtに係数Xを乗算することによって調整電力量ΔPを算出する。以下では、係数Xを正の定数とする。このため、周波数変化率df/dtが負の値を示す場合、調整電力量ΔPは、負の値となり、電力系統で不足する電力量を表すことになる。一方、周波数変化率df/dtが正の値を示す場合、調整電力量ΔPは、正の値となり、電力系統で過剰となる電力量を表すことになる。
 続いて、系統状態測定部2b2は、調整電力量ΔPを、電池選択部2b3bと指示制御部2b4とに出力する。
 電池選択部2b3bは、調整電力量ΔPを受け付けると、対応表作成部2b3aが作成した対応表を参照して、調整電力量ΔPを満足するのに必要な数(=出力電力)の調整用電池を、ES51b~5mbの中から遅延時間Δtが短いESを優先して選択する(ステップS503)。
 続いて、電池選択部2b3bは、調整用電池の選択結果を指示制御部2b4に出力する。
 指示制御部2b4は、調整用電池の選択結果を受け付けると、調整用電池に、実行指示(充電または放電を実行する旨の実行指示)を出力する(ステップS504)。
 本実施形態では、指示制御部2b4は、調整電力量ΔPが負の値である場合、調整用電池からの放電量の総量が調整電力量ΔPの絶対値に近づくまたは一致するように各調整用電池の放電量を指示した放電実行指示を、実行指示として、調整用電池の各々に出力する。
 各調整用電池は、自己の接続されている通信端末を介して放電実行指示を受け付けると、その放電実行指示にて指示された放電を開始し、放電を開始した旨ES情報収集部へ返信する。
 一方、指示制御部2b4は、調整電力量ΔPが正の値である場合、調整用電池への充電量の総量が調整電力量ΔPの絶対値に近づくまたは一致するように各調整用電池の充電量を指示した充電実行指示を、実行指示として、調整用電池の各々に出力する。
 各調整用電池は、自己の接続されている通信端末を介して充電実行指示を受け付けると、その充電実行指示にて指示された充電を開始し、充電を開始した旨ES情報収集部へ返信する。
 次に、本実施形態の一例を説明する。
 以下では、あるとき、ある発電所が事故により発電を停止し、電力系統の電力の周波数が突然低下する事態に直面したとする。
 図7は、電力系統の電力の周波数が突然低下する事態が発生した後の電力の周波数変化を示した図である。
 図7において、Δtpは、ES情報収集部2b1がES51b~5mbの各々の通信遅延時間を収集する時間間隔、または、対応表作成部2b3aが対応表を更新する更新間隔である。
 電力系統の電力の周波数の低下により、周波数変化率df/dtの絶対値が閾値よりも大きくなると、系統状態測定部2b2は、グループvES1~vESnの中で遅延時間Δtが最も短いグループvES1を画定する遅延時間Δt(例えば、0~100msec)の値のうち、長い方の値である100msec(以下「Δtmin」と称する)を、周波数変化率df/dtに乗算して、目標とする周波数偏差Δfを算出する。なお、周波数偏差Δfは、現時点から時間Δtmin(100msec)経過した時点での電力の周波数から、現時点の電力の周波数を差し引いた値を示す。
 続いて、系統状態測定部2b2は、周波数偏差Δfに、あらかじめ設定されている相関係数αを乗算して、調整電力量ΔPを算出し、調整電力量ΔPを電池選択部2b3bと指示制御部2b4に出力する。
 電池選択部2b3bは、調整電力量ΔPを受け付けると、対応表を参照して、グループvES1内の各ESの最大充放電出力量の総和ΣvES1Pmaxを算出する。
 続いて、電池選択部2b3bは、調整電力量ΔPの絶対値と総和ΣvES1Pmaxとの大小関係を判定する。以下、|調整電力量ΔP|<=総和ΣvES1Pmaxの場合と、|調整電力量ΔP|>総和ΣvES1Pmaxの場合とに分けて説明を行う。
 ケース1)|調整電力量ΔP|<=総和ΣvES1Pmaxの場合
 電池選択部2b3bは、|調整電力量ΔP|<=総和ΣvES1Pmaxの場合、グループvES1を調整用グループとして選択し、グループvES1に属するESを調整用電池として選択し、調整用電池の選択結果を指示制御部2b4に出力する。
 指示制御部2b4は、調整用電池の選択結果を受け付けると、対応表を参照して、調整用電池ごとに、その調整用電池の放電出力Pを、例えば、
P=Pmax×(|ΔP|/ΣvES1Pmax)の式に従って算出する。なお、放電出力Pにおいて、Pmaxは、対象となる調整用電池の最大充放電出力量である。
 指示制御部2b4は、調整用電池の各々に対して、その調整用電池の放電出力Pを指示した放電実行指示を出力する。
 各調整用電池は、放電実行指示にて指示された放電を開始し、放電を開始した旨ES情報収集部2b1へ返信する。
 なお、調整電力量ΔPは、電力系統の規模や系統定数(調整電力量を算出するために電力系統に対して設定されている定数)、事故の規模に依存し、相関係数αは必ずしも最適値でない可能性がある。
 図8は、相関係数αがある程度適切であり、かつ、グループvES1に属するESのみが放電した後の状況の一例を説明するための図である。このとき、グループvES1に属するESは、余力を残して電力を放電しているとする。
 この場合は、相関係数αがある程度適切であるため、DEMS2bが実行指示を出力する必要があると系統状態測定部2b2が判断した時点からΔtmin後に計測される周波数変化率df/dtが0となる。電力系統の発電機の状態によっては、この状態、すなわち、周波数がずれたまま、周波数変化率df/dtが0となった状態がある時間続くことも考えられるが、ここでは、次のステップとしてLFC制御へ移る状況を説明する。
 指示制御部2b4は、例えば、監視・制御部1bから提供される、緊急状況下で電力の需給バランスを取るために起動、もしくは出力増大された発電所の出力状態を表す情報(LFC信号等)に基づいて、時間Δtminごとの放電実行指示において、調整用電池の放電出力Pを、例えば10%ずつまたは5%ずつ下げる。このとき、電力系統内の別の発電所の周波数調整用発電機が出力を増大させつつ、周波数を基準値へ戻す動作を行っていることになる。なお、調整用電池の放電出力Pを小さくする割合は、10%ずつまたは5%に限らず発電所の出力変動状態に応じて適宜設定される。
 ケース2)|調整電力量ΔP|>総和ΣvES1Pmaxの場合
 電池選択部2b3bは、|調整電力量ΔP|>総和ΣvES1Pmaxの場合、グループvES1を調整用グループとして選択し、さらに、対応表を参照して、グループvES2内の各ESの最大充放電出力量の総和ΣvES2Pmaxを算出する。
 電池選択部2b3bは、(|調整電力量ΔP|-総和ΣvES1Pmax)と総和ΣvES2Pmaxとの大小関係を判定する。
 電池選択部2b3bは、(|調整電力量ΔP|-総和ΣvES1Pmax)<=総和ΣvES2Pmaxである場合には、グループvES2を調整用グループとしてさらに選択する。
 電池選択部2b3bは、調整用グループに属するESを調整用電池として選択し、調整用電池の選択結果を指示制御部2b4に出力する。
 指示制御部2b4は、調整用電池の選択結果を受け付けると、対応表を参照して、グループvES1に属するESについては、放電出力PをそのESの最大充放電出力量Pmaxとする放電実行指示を出力し、グループvES2に属するESについては、放電出力Pを、例えば、P=Pmax×((|ΔP|-ΣvES1Pmax)/ΣvES2Pmax)の式に従って算出される値とする放電実行指示を出力する。
 なお、(|調整電力量ΔP|-総和ΣvES1Pmax)>総和ΣvES2Pmaxである場合には、電池選択部2b3bは、調整用グループに属する各ESの最大充放電出力量の総和が調整電力量ΔPの絶対値以上になるまで、遅延時間が短いグループを優先して調整用グループとして選択していく。
 また、指示制御部2b4は、対応表を参照し複数の調整用グループが選択されていると判断すると、複数の調整用グループのうちで遅延時間が最も長いグループ(長時間グループ:以下「グループvESi」とする)に属するESについては、
P=Pmax×((|ΔP|-((ΣvES1Pmax)+・・・+(ΣvES(i-1)Pmax)))/ΣvESiPmax)の式に従って算出される値を放電出力Pとした放電実行指示を出力し、複数の調整用グループのうちで長時間グループ以外のグループに属するESについては、放電出力PをPmaxとした放電実行指示を出力する。
 図9は、相関係数αが最適でなく、かつ、グループvES1~vES3に属するESが放電した後の状況の一例を説明するための図である。このとき、グループvES1に属するESおよびグループvES2に属するESは、最大放電出力で電力を放電し、グループvES3に属するESは、余力を残して電力を放電しているとする。
 図9において、Δtmin2は、グループvES2を画定する遅延時間Δtのうち長い方の値(200msec)であり、Δtmin3は、グループvES3を画定する遅延時間Δtのうち長い方の値(300msec)である。
 この場合、図9に示すように、DEMS2bが実行指示を出力する必要があると系統状態測定部2b2が判断した時点からΔtmin3後に計測される周波数変化率df/dt(以下「df/dt(t3)」と称する)が0になっておらず、このため、系統状態測定部2b2は、相関係数αが最適ではなかったと判断する。
 系統状態測定部2b2は、相関係数αが最適ではなかったと判断すると、周波数変化率df/dt(t3)に定数Xを乗算することによって追加調整電力量ΔPaを算出し、追加調整電力量ΔPaを、電池選択部2b3bと指示制御部2b4に出力する。
 電池選択部2b3bは、追加調整電力量ΔPaを受け付けると、図9に示したタイミングCでのES情報収集部2b1の動作に応じて作成された対応表を参照して、放電実行指示が出されていないESの中から、遅延時間Δtが短いESを優先して、新たな調整用電池を選択していく。この際、電池選択部2b3bは、新たな調整用電池の最大充放電出力量の総和が追加調整電力量ΔPaの絶対値を超えるまで、新たな調整用電池を選択する動作を続ける。電池選択部2b3bは、新たな調整用電池の選択結果を、指示制御部2b4に出力する。
 指示制御部2b4は、新たな調整用電池の選択結果を受け付けると、新たな調整用電池の各々に対して、新たな調整用電池の放電出力Pとして最大充放電出力量Pmaxを指示した放電実行指示を出力する。
 図9の下段(b)は、新たな調整用電池の放電によって、周波数の変化が止まり、電力系統のLFC制御の開始によって、電力の周波数が回復しつつある状態を示した図である。LFC制御に移り、周波数が基準の値へ帰還する段階では、指示制御部2b4は、例えば、監視・制御部1bから提供される、緊急状況下で電力の需給バランスを取るために起動、もしくは出力増大された発電所の出力状態を表す情報(LFC信号等)に基づいて、例えば、時間Δtminごとの放電実行指示において、調整用電池および新たな調整用電池の放電出力Pを10%ずつまたは5%ずつ下げる。なお、放電出力Pを小さくする割合は、10%ずつまたは5%に限らず発電所の出力変動状態に応じて適宜設定される。
 次に、本実施形態の効果を説明する。
 本実施形態によれば、ES情報収集部2b1は、ES51b~5mbの各々の遅延時間Δtを検出する。系統状態測定部2b2は、電力系統での電力の周波数変化率df/dtを測定する。選択部2b3は、周波数変化率df/dtとES51b~5mbの各々の遅延時間Δtとに基づいて、ES51b~5mbの中から調整用電池を選択する。指示制御部2b4は、調整用電池に実行指示を出力する。
 このため、本実施形態の電池制御システムは、ES51b~5mbの各々の遅延時間Δtを考慮して調整用電池を選択でき、かつ、周波数変化率df/dtに応じて調整用電池の数を調節することが可能になる。よって、調整用電池を用いることによって電力需給バランスを適切に制御することが可能になる。
 なお、この効果は、ES情報収集部2b1と系統状態測定部2b2と選択部2b3と指示制御部2b4とからなる電池制御システムでも奏する。
 図10は、ES情報収集部2b1と系統状態測定部2b2と選択部2b3と指示制御部2b4とからなる電池制御システムを示した図である。図11は、図10に示した電池制御システムの動作を説明するためのフローチャートである。
 図10に示した電池制御システムでは、まず、ES情報収集部2b1は、ES51b~5mbの各々について、そのESに対してDEMS2bが実行指示を出力してからそのESがその実行指示に応じた動作を実行するまでの時間である遅延時間を検出する(ステップS1001)。
 続いて、系統状態測定部2b2は、電力系統での電力の周波数変化率df/dtを測定する(ステップS1002)。
 続いて、電池選択部2b3bは、周波数変化率df/dtとES51b~5mbの各々の遅延時間とに基づいて、ES51b~5mbの中から調整用電池を選択する(ステップS1003)。
 続いて、指示制御部2b4は、調整用電池に実行指示を出力する(ステップS1004)。
 本実施形態では、選択部2b3は、ES51b~5mbの中から遅延時間Δtが短いESを優先して調整用電池として選択し、さらに、周波数変化率df/dtの絶対値が大きくなるほど調整用電池の数を増やす。
 この場合、遅延時間Δtが短いESが優先的に調整用電池として選択されるので、ES51b~5mbのうち高速応答が可能なESが、優先的に調整用電池として選択される。また、周波数変化率df/dtの絶対値が大きくなるほど、電力の調整量が大きくなるので、電力の調整量の増加に伴って、調整用電池の数を増やすことができる。よって、電力需給バランスを適切に制御することを速やかに行うことが可能になる。
 本実施形態では、対応表作成部2b3aは、ES51b~5mbを、遅延時間Δtの長さにて区分された複数のグループvES1~vESnに分ける。電池選択部2b3bは、グループvES1~vESnの中から遅延時間Δtが短いグループを優先して調整用グループとして選択し、調整用グループ内のESを調整用電池として選択する。電池選択部2b3bは、周波数変化率df/dtの絶対値が大きくなるほど、調整用グループの数を増やす。
 この場合、調整用電池を、遅延時間Δtにて区分されたグループ単位で選択することが可能になる。なお、グループvES1~vESnの各々を仮想電池と見做せば、調整用電池を、仮想電池単位で選択することが可能になる。
 本実施形態では、系統状態測定部2b2は、周波数変化率df/dtに基づいて、電力系統で調整が必要となる調整電力量を算出する。指示制御部2b4は、周波数変化率df/dtが負の値である場合、調整用電池からの放電量の総量が調整電力量の絶対値に近づくまたは一致するように調整用電池の放電量を指示した放電実行指示を、実行指示として、調整用電池の各々に出力する。
 この場合、電力系統での電力供給力が低下した際に電力需給バランスを適切に制御できる。
 本実施形態では、系統状態測定部2b2は、周波数変化率df/dtが正の値である場合、調整用電池への充電量の総量が調整電力量の絶対値に近づくまたは一致するように調整用電池の充電量を指示した充電実行指示を、実行指示として、調整用電池の各々に出力する。
 この場合、電力系統での電力供給力が過剰になった際に電力需給バランスを適切に制御できる。
 本実施形態では、ES情報収集部2b1は、ES51b~5mbの各々から、遅延時間Δtとは異なる所定項目(最大充放電出力量)についての値を検出する。このため、選択部2b3の代わりに、周波数変化率df/dtとES51b~5mbの各々の遅延時間Δtと所定項目についての値とに基づいて、ES51b~5mbの中から調整用電池を選択する選択部を用いることも可能である。
 図12は、選択部2b3の代わりに、周波数変化率df/dtとES51b~5mbの各々の遅延時間Δtと所定項目についての値とに基づいてES51b~5mbの中から調整用電池を選択する選択部2b3Aが用いられたDEMS2bAを示した図である。なお、図12において、図2に示したものと同一構成のものには同一符号を付してある。
 図12において、選択部2b3Aは、一般的には、選択手段と呼ぶことができる。
 選択部2b3Aは、対応表作成部2b3aと、電池選択部2b3bAと、を含む。
 電池選択部2b3bAは、一般的には、電池選択手段と呼ぶことができる。
 電池選択部2b3bAは、グループvES1~vESnの中から遅延時間Δtが短いグループを優先して調整用グループとして選択する。
 電池選択部2b3bAは、調整用グループのうち遅延時間Δtが最も長い長時間グループに含まれるESの中から、所定項目(最大充放電出力量)についての値に基づいて調整用電池を選択し、かつ、調整用グループのうち長時間グループ以外のグループが存在する場合には長時間グループ以外のグループに含まれるESを、調整用電池として選択する。
 例えば、電池選択部2b3bAは、長時間グループ以外のグループが存在しない場合、調整用電池の最大充放電出力量の総計が調整電力量ΔPを超えるまで、長時間グループに含まれるESのうち、最大充放電出力量が大きいものから順に調整用電池として選択していく。
 また、電池選択部2b3bAは、長時間グループ以外のグループが存在する場合、長時間グループ以外のグループに含まれるESを調整用電池として選択した後、調整用電池の最大充放電出力量の総計が調整電力量ΔPの絶対値を超えるまで、長時間グループに含まれるESのうち、最大充放電出力量が大きいものから順に調整用電池として選択していく。
 指示制御部2b4は、例えば、調整電力量ΔPが負の値である場合、調整用電池の各々に対して、調整用電池の放電出力Pとして最大充放電出力量Pmaxを指示した放電実行指示を出力する。
 この場合、所定項目についての値を考慮して調整用電池を選択することが可能になる。
 例えば、上述したように所定項目として最大充放電出力量が用いられた場合、長時間グループから最大充放電出力量が大きいESを調整用電池として優先的に選択することが可能になる。この場合、最大充放電出力量が大きいESが優先的に選択されると、調整用電池の数を少なくすることが可能となり、調整用電池との通信を少なくすることが可能になる。
 なお、所定項目は、ESの最大充放電出力量に限らず、ESの残存する充放電容量、ESと電力系統との連系点の電圧、または、ESの最大充放電出力量とESの充放電レートでもよい。この場合、ES情報収集部2b1は、所定項目についての値を収集する。
 例えば、所定項目として、ESの残存する充放電容量が用いられた場合、電力量の調整能力が高いES、つまり、残存する充放電容量が大きいESを優先的に調整用電池として選択することが可能になる。
 また、所定項目として、連系点の連系電圧が用いられた場合、調整用電池で充電を行う場合には、連系電圧が高い機器に接続されているESを優先的に調整用電池として選択し、調整用電池で放電を行う場合には、連系電圧が低い機器に接続されているESを優先的に調整用電池として選択することが可能になる。この場合、電圧制約(例えば、101±6Vや202±20Vの系統連系ガイドライン上の制約)、により調整用電池の充電出力や放電出力が制限される問題から開放される。
 また、所定項目として、ESの最大充放電出力量とESの充放電レートとが用いられた場合には、最大充放電出力量と充放電レートが大きいESを優先的に調整用電池として選択することが可能になる。なお、本実施形態では、ESの充放電レートについての制御は説明の簡略化のために割愛したが、よりきめ細かい制御を行う上では、充放電量、時間だけでなく、充放電レートの指定も可能である。
 また、本実施形態の電池制御装置51~5mでは、制御部5b2は、応答要求(検査用情報)を受信すると、その応答要求に対する応答(所定情報)を応答要求の送信元に送信し、動作指示を受信すると、動作指示に基づいて電池本体5b1を制御する。このため、DEMS2bまたは2bAの制御に従って、電池制御装置51~5mの動作を制御することが可能になる。
 なお、上記実施形態は、以下のように変形されてもよい。
 各ESの制御部5b2が、自ESの単位時間当たりの充放電量の調整量について変更可能か否かを表す変更可否情報を格納する。なお、変更可否情報は、ESを所有する需要家のポリシー、または、需要家と電力供給元(例えば、電力会社)との間の契約にて設定される。
 そして、ES情報収集部2b1が、ES51b~5mbの各々の通信遅延時間を検出する際に、各ESの制御部5b2から変更可否情報を入手する。
 指示制御部2b4は、調整用電池として選択されたESの変更可否情報が、変更否を表す場合、その調整用電池の出力を最大充放電出力量から変更せずに、最大充放電出力量とする。
 また、上記実施形態は、以下のように変形されてもよい。
 対応表作成部2b3aは、対応表に示されたESのグループ分け結果を毎回更新するのではなく、例えば、遅延時間Δtが短い上位5つのグループについては毎回更新し、他のグループについては10回に1度程度の更新にしてもよい。
 また、指示制御部2b4が、実行指示の履歴を保持してもよい。この場合、実行指示の履歴を解析することによって、調整用電池として使用されたESを特定することが可能になる。よって、この特定結果を使用すれば、調整用電池として使用されたESを保有する需要家に、調整用電池の使用に応じた対価を支払うことが可能になる。
 また、本実施形態では、図4に示した対応表を構成する複数のグループのうち、遅延時間が最も短いグループvES1に属するESを増やすことが有効である。このため、グループvES1に属するESが増えるような位置に、DEMSを配置することが望ましい。例えば、通信遅延を考慮すると、通信のノード設置場所にDEMSを設置することが望ましい。
 また、DEMSの数を増やすことで、グループvES1に属するESを増やすことも可能である。この場合、ES51b~5mbは、複数のDEMSのいずれか1つに属するようにする。
 ただし、DEMSが複数存在する場合、DEMS間にて同期をとった上で、電池制御システムとしての周波数変化率の測定機能等が担保されなければならない。
 DEMSが複数存在する場合、 複数のDEMSを集中制御方式で監視・制御部1b(図2参照)が制御してもよいし、複数のDEMSが自律分散で動作してもよい。
 また、DEMSが複数存在し、DEMSの各々が対応表を作成する場合、調整電力量ΔPのうち、各DEMSが分担する電力量ΔPbは、各DEMSでのグループvES1に属するESの容量の総和の比に応じて決定されることが望ましい。
 例えば、複数のDEMSのうちでグループvES1に属するESの容量の総和が大きいDEMSほど、電力量ΔPbを大きくする。ただし、この場合、グループvES1に属するESの容量の総和が、通信トラフィックの増減に起因する通信遅延の変動によって変わる可能性があるため、各DEMSが分担する電力量ΔPbは、時間の経過とともに変化する。
 また、上記実施形態において、中継ノード4は省略されてもよい。中継ノード4が省略された場合、電池制御装置51~5mは、通信NW3と接続する。
 なお、DEMS2bまたは2bAは、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能なCD-ROM(Compact Disk Read Only Memory)のような記録媒体に記録されたプログラムを読込み実行して、ES情報収集部2b1、系統状態測定部2b2、選択部2b3または2b3A、および、指示制御部2b4として機能する。記録媒体は、CD-ROMに限らず適宜変更可能である。
 また、電池制御装置51~5m内の制御部5b2は、コンピュータにて実現されてもよい。この場合、コンピュータは、コンピュータにて読み取り可能な記録媒体に記録されたプログラムを読込み実行して、制御部5b2として機能する。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記各実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2011年9月22日に出願された日本出願特願2011-207341を基礎とする優先権を主張し、その開示の全てをここに取り込む。
   1X   発電所
   1Y   中央給電指令所
   1a   電力供給部
   1b   監視・制御部
   2    配電用変電所
   2a   変圧器
   2b、2bA DEMS
   2b1  ES情報収集部
   2b2  系統状態測定部
   2b3、2b3A 選択部
   2b3a 対応表作成部
   2b3b、2b3bA 電池選択部
   2b4  指示制御部
   2b5  通信部
   3    通信NW
   4    中継ノード
   51~5m 電池制御装置
   51a~5ma 通信端末
   51b~5mb、5b ES
   5b1  電池本体
   5b2  制御部
   6    電力線

Claims (13)

  1.  電力系統に接続された複数の電池の動作を制御する電池制御システムであって、
     前記電池の各々について、当該電池に対して前記電池制御システムが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出する検出手段と、
     前記電力系統での電力の周波数変化率を測定する測定手段と、
     前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択する選択手段と、
     前記調整用電池に前記実行指示を出力する指示手段と、を含む電池制御システム。
  2.  前記選択手段は、前記複数の電池の中から前記遅延時間が短い電池を優先して前記調整用電池として選択し、さらに、前記周波数変化率の絶対値が大きくなるほど前記調整用電池の数を増やす、請求項1に記載の電池制御システム。
  3.  前記選択手段は、
     前記複数の電池を、前記遅延時間の長さにて区分された複数のグループに分けるグループ分け手段と、
     前記複数のグループの中から前記遅延時間が短いグループを優先して調整用グループとして選択し、前記調整用グループ内の電池を前記調整用電池として選択する電池選択手段と、を含み、
     前記電池選択手段は、前記周波数変化率の絶対値が大きくなるほど、前記調整用グループの数を増やす、請求項1または2に記載の電池制御システム。
  4.  前記検出手段は、前記電池の各々について、さらに、前記複数の電池の各々または前記複数の電池の各々に接続された機器の各々から、前記遅延時間とは異なる所定項目についての値を検出し、
     前記選択手段は、前記周波数変化率と前記複数の電池の各々の遅延時間と前記所定項目についての値とに基づいて、前記複数の電池の中から前記調整用電池を選択する、請求項1に記載の電池制御システム。
  5.  前記選択手段は、
     前記複数の電池を、前記遅延時間の長さにて区分された複数のグループに分けるグループ分け手段と、
     前記複数のグループの中から前記遅延時間が短いグループを優先して調整用グループとして選択し、前記調整用グループのうち前記遅延時間が最も長い長時間グループに含まれる電池の中から、前記所定項目についての値に基づいて前記調整用電池を選択し、かつ、前記調整用グループのうち前記長時間グループ以外のグループが存在する場合には前記長時間グループ以外のグループに含まれる電池を、前記調整用電池として選択する電池選択手段と、を含み、
     前記電池選択手段は、前記周波数変化率の絶対値が大きくなるほど、前記調整用グループの数を増やす、請求項4に記載の電池制御システム。
  6.  前記所定項目は、前記電池の最大充放電出力量、前記電池の残存する充放電容量、前記電池と前記電力系統との連系点の連系電圧、または、前記電池の最大充放電出力量と前記電池の放電レートとである、請求項4または5に記載の電池制御システム。
  7.  前記測定手段は、さらに、前記周波数変化率に基づいて、前記電力系統で調整が必要となる調整電力量を算出し、
     前記指示手段は、前記周波数変化率が負の値である場合、前記調整用電池からの放電量の総量が前記調整電力量の絶対値に近づくまたは一致するように当該調整用電池の放電量を指示した放電実行指示を、前記実行指示として、前記調整用電池の各々に出力する、請求項1から6のいずれか1項に記載の電池制御システム。
  8.  前記測定手段は、さらに、前記周波数変化率に基づいて、前記電力系統で調整が必要となる調整電力量を算出し、
     前記指示手段は、前記周波数変化率が正の値である場合、前記調整用電池への充電量の総量が前記調整電力量の絶対値に近づくまたは一致するように当該調整用電池の充電量を指示した充電実行指示を、前記実行指示として、前記調整用電池の各々に出力する、請求項1から6のいずれか1項に記載の電池制御システム。
  9.  電力系統に接続された電池の動作を制御する電池制御装置であって、
     前記電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する制御手段を含む電池制御装置。
  10.  電力系統に接続された複数の電池の動作を制御する電池制御システムでの電力制御方法であって、
     前記電池の各々について、当該電池に対して前記電池制御システムが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出し、
     前記電力系統での電力の周波数変化率を測定し、
     前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択し、
     前記調整用電池に前記実行指示を出力する、電池制御方法。
  11.  電力系統に接続された電池の動作を制御する電池制御装置での電池制御方法であって、
     前記電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する、電池制御方法。
  12.  コンピュータに、
     電力系統に接続された電池の各々について、当該電池に対して前記コンピュータが充電または放電を実行する旨の実行指示を出力してから当該電池が前記実行指示に応じた動作を実行するまでの時間である遅延時間を検出する検出手順と、
     前記電力系統での電力の周波数変化率を測定する測定手順と、
     前記周波数変化率と前記複数の電池の各々の遅延時間とに基づいて、前記複数の電池の中から、前記電力系統の電力を調整するための調整用電池を選択する選択手順と、
     前記調整用電池に前記実行指示を出力する指示手順と、を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
  13.  コンピュータに、
     電力系統に接続された電池の使用している通信経路の通信遅延時間を検出するための検査用情報を受信すると、所定情報を前記検査用情報の送信元に送信し、前記電池の充電または放電の動作を規定した動作指示を受信すると、当該動作指示に基づいて前記電池を制御する手順を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2012/070136 2011-09-22 2012-08-08 電池制御システム、電池制御装置、電池制御方法および記録媒体 WO2013042475A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/346,316 US9385540B2 (en) 2011-09-22 2012-08-08 Battery control system, battery control device, battery control method and recording medium
JP2012557319A JP5234234B1 (ja) 2011-09-22 2012-08-08 電池制御システム、電池制御装置、電池制御方法およびプログラム
US15/176,531 US9843203B2 (en) 2011-09-22 2016-06-08 Battery control system, battery control device, battery control method and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207341 2011-09-22
JP2011207341 2011-09-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/346,316 A-371-Of-International US9385540B2 (en) 2011-09-22 2012-08-08 Battery control system, battery control device, battery control method and recording medium
US15/176,531 Continuation US9843203B2 (en) 2011-09-22 2016-06-08 Battery control system, battery control device, battery control method and recording medium

Publications (1)

Publication Number Publication Date
WO2013042475A1 true WO2013042475A1 (ja) 2013-03-28

Family

ID=47914255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070136 WO2013042475A1 (ja) 2011-09-22 2012-08-08 電池制御システム、電池制御装置、電池制御方法および記録媒体

Country Status (3)

Country Link
US (2) US9385540B2 (ja)
JP (2) JP5234234B1 (ja)
WO (1) WO2013042475A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477648B1 (ko) * 2013-06-28 2014-12-30 재단법인대구경북과학기술원 계통 주파수 변화에 따라 에너지 저장장치를 운용하는 시스템 및 방법
JP2016146719A (ja) * 2015-02-09 2016-08-12 日本電気株式会社 制御装置、蓄電装置、制御方法およびプログラム
WO2018139602A1 (ja) * 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電力管理サーバ、制御装置及び電源制御システム
CN109066797A (zh) * 2018-09-12 2018-12-21 云南电网有限责任公司 含光伏发电的电力系统运行控制方法及装置
CN110571836A (zh) * 2019-08-28 2019-12-13 李美玉 一种风力发电储能匹配电路及其控制方法
WO2021187739A1 (ko) * 2020-03-20 2021-09-23 주식회사 시너지 Ess 충방전 스케쥴 관리장치
CN113541204A (zh) * 2021-08-10 2021-10-22 上海电力大学 一种燃煤发电机组全负荷调峰的自适应调节方法及系统
CN114704934A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、直流空调器
JP7202490B1 (ja) 2022-01-25 2023-01-11 京セラ株式会社 電力システム及び制御方法
JP7431769B2 (ja) 2021-03-15 2024-02-15 株式会社東芝 電圧制御インバータ、電源装置、エネルギー制御システム、及び電圧制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136711B2 (en) * 2007-08-21 2015-09-15 Electro Industries/Gauge Tech System and method for synchronizing multiple generators with an electrical power distribution system
US9385540B2 (en) * 2011-09-22 2016-07-05 Nec Corporation Battery control system, battery control device, battery control method and recording medium
GB2510735B (en) 2014-04-15 2015-03-04 Reactive Technologies Ltd Frequency response
KR101678926B1 (ko) * 2014-12-22 2016-12-06 주식회사 효성 다중 에너지저장장치 시스템의 계통 주파수 제어 방법 및 그를 위한 시스템
JPWO2016111087A1 (ja) * 2015-01-07 2017-10-26 日本電気株式会社 制御装置、需給調整制御装置、電力需給調整システム、制御方法、需給調整制御方法およびプログラム
EP3136532A1 (de) 2015-08-24 2017-03-01 Caterva GmbH System und verfahren zur erbringung einer regelleistung für ein stromnetz
US10892620B2 (en) * 2015-11-16 2021-01-12 General Electric Company State of charge maintenance during operation of energy storage systems
WO2018043862A1 (ko) * 2016-08-31 2018-03-08 주식회사 그리드위즈 온사이트형 ess 관리 장치
US10847835B2 (en) * 2017-12-13 2020-11-24 William Jeffrey Schlanger Battery management system for battery banks with a small number of cells

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065766A (ja) * 2007-09-05 2009-03-26 Toshiba Corp 広域保護制御計測システムと方法
JP2009213240A (ja) * 2008-03-04 2009-09-17 Tokyo Electric Power Co Inc:The 電力系統の周波数制御システム、給電所、および電気機器
JP2010233353A (ja) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2011019380A (ja) * 2008-11-25 2011-01-27 Central Res Inst Of Electric Power Ind 電力系統の周波数安定化システム
JP2011050133A (ja) * 2009-08-25 2011-03-10 Toshiba Corp 電力系統の需給制御装置、需給制御プログラム及びその記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031394A1 (ja) * 2011-09-02 2013-03-07 日本電気株式会社 電池制御システム、電池制御装置、電池制御方法、および記録媒体
US9385540B2 (en) * 2011-09-22 2016-07-05 Nec Corporation Battery control system, battery control device, battery control method and recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065766A (ja) * 2007-09-05 2009-03-26 Toshiba Corp 広域保護制御計測システムと方法
JP2009213240A (ja) * 2008-03-04 2009-09-17 Tokyo Electric Power Co Inc:The 電力系統の周波数制御システム、給電所、および電気機器
JP2011019380A (ja) * 2008-11-25 2011-01-27 Central Res Inst Of Electric Power Ind 電力系統の周波数安定化システム
JP2010233353A (ja) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The 電力供給システムおよび電力供給方法
JP2011050133A (ja) * 2009-08-25 2011-03-10 Toshiba Corp 電力系統の需給制御装置、需給制御プログラム及びその記録媒体

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477648B1 (ko) * 2013-06-28 2014-12-30 재단법인대구경북과학기술원 계통 주파수 변화에 따라 에너지 저장장치를 운용하는 시스템 및 방법
JP2016146719A (ja) * 2015-02-09 2016-08-12 日本電気株式会社 制御装置、蓄電装置、制御方法およびプログラム
US10998728B2 (en) 2017-01-27 2021-05-04 Kyocera Corporation Power supply control method, power management server, control apparatus, and power supply control system
WO2018139602A1 (ja) * 2017-01-27 2018-08-02 京セラ株式会社 電源制御方法、電力管理サーバ、制御装置及び電源制御システム
JPWO2018139602A1 (ja) * 2017-01-27 2019-11-14 京セラ株式会社 電源制御方法、電力管理サーバ、制御装置及び電源制御システム
CN109066797A (zh) * 2018-09-12 2018-12-21 云南电网有限责任公司 含光伏发电的电力系统运行控制方法及装置
CN109066797B (zh) * 2018-09-12 2021-10-08 云南电网有限责任公司 含光伏发电的电力系统运行控制方法及装置
CN110571836A (zh) * 2019-08-28 2019-12-13 李美玉 一种风力发电储能匹配电路及其控制方法
WO2021187739A1 (ko) * 2020-03-20 2021-09-23 주식회사 시너지 Ess 충방전 스케쥴 관리장치
JP7431769B2 (ja) 2021-03-15 2024-02-15 株式会社東芝 電圧制御インバータ、電源装置、エネルギー制御システム、及び電圧制御方法
CN113541204A (zh) * 2021-08-10 2021-10-22 上海电力大学 一种燃煤发电机组全负荷调峰的自适应调节方法及系统
JP7202490B1 (ja) 2022-01-25 2023-01-11 京セラ株式会社 電力システム及び制御方法
JP2023108506A (ja) * 2022-01-25 2023-08-04 京セラ株式会社 電力システム及び制御方法
CN114704934A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、直流空调器
CN114704934B (zh) * 2022-02-18 2024-02-20 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、直流空调器

Also Published As

Publication number Publication date
US9385540B2 (en) 2016-07-05
US20160285286A1 (en) 2016-09-29
US9843203B2 (en) 2017-12-12
JP2013153648A (ja) 2013-08-08
JP5234234B1 (ja) 2013-07-10
US20140239913A1 (en) 2014-08-28
JP5447710B2 (ja) 2014-03-19
JPWO2013042475A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5447710B2 (ja) 電池制御システム、電池制御装置、電池制御方法およびプログラム
JP6471766B2 (ja) 電池制御システム
JP5447712B2 (ja) 電池制御システム、電池制御装置、電池制御方法、およびプログラム
US8571720B2 (en) Supply-demand balance controller
JP6070773B2 (ja) 電力制御システム及び方法
JP5633872B1 (ja) 電池制御装置、電池制御システム、電池制御方法、および記録媒体
WO2016017425A1 (ja) 制御装置、蓄電装置、制御支援装置、制御方法、制御支援方法および記録媒体
JP6790833B2 (ja) 蓄電池制御システム、蓄電池制御方法、及び、記録媒体
KR101566296B1 (ko) 전력계통에서의 주파수 제어 시스템
JP5576826B2 (ja) 風力発電装置群の制御システム及び制御方法
JPWO2016158900A1 (ja) 制御装置、機器制御装置、制御システム、制御方法およびプログラム
KR20180047137A (ko) 에너지 저장 시스템 및 이를 포함하는 주파수 제어 시스템
WO2021043379A1 (en) A method for controlling charging of electrical storage devices
JP2011244511A (ja) ローカルエリア電源復旧時需給バランス装置
WO2022180799A1 (ja) 指令装置、充放電制御システム、電力制御システム、中央指令装置、整定値管理装置、蓄電池、充放電制御方法およびプログラム
JP2023088158A (ja) 分散型エネルギリソース管理装置、分散型エネルギリソース管理システムおよび分散型エネルギリソース管理プログラム
JP2011244510A (ja) ローカルエリア緊急時需給バランス装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012557319

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834206

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14346316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834206

Country of ref document: EP

Kind code of ref document: A1